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Abstract. This paper proposes the first practical pairing-free three-move blind signature schemes that
(1) are concurrently secure, (2) produce short signatures (i.e., three or four group elements/scalars),
and (3) are provably secure either in the generic group model (GGM) or the algebraic group model
(AGM) under the (plain or one-more) discrete logarithm assumption (beyond additionally assuming
random oracles). We also propose a partially blind version of one of our schemes.

Our schemes do not rely on the hardness of the ROS problem (which can be broken in polynomial
time) or of the mROS problem (which admits sub-exponential attacks). The only prior work with these
properties is Abe’s signature scheme (EUROCRYPT ’02), which was recently proved to be secure in
the AGM by Kastner et al. (PKC ’22), but which also produces signatures twice as long as those from
our scheme.

The core of our proofs of security is a new problem, called weighted fractional ROS (WFROS), for
which we prove (unconditional) exponential lower bounds.

1 Introduction

Blind signatures [Cha81] allow a user to interact with a signer to produce a valid signature that cannot be
linked back by the signer to the interaction that produced it. Blind signatures are used in several applications,
such as e-cash systems [Cha81, CFN90], anonymous credentials (e.g., [CL04]), privacy-preserving ad-click
measurement [PCM], and various forms of anonymous tokens [HIP*21, Tru]. They are also covered by an
RFC draft [DJW21].

This paper develops the first practical pairing-free three-move blind signature schemes that (1) are
concurrently secure, (2) produce short signatures (i.e., three or four group elements/scalars), and (3) are
provably secure either in the generic group model (GGM) [Sho97, Mau05] or in the algebraic group model
(AGM) [FKL18] under the discrete logarithm (DL) or the one-more discrete logarithm (OMDL) assump-
tion (in addition to assuming random oracles [BR93]). Our DL-based scheme also admits a partially blind
version [AF96], roughly following a paradigm by Abe and Okamoto [AOO00], that targets applications where
signatures need to depend on some public input (e.g., an issuing date) known to the signer. An overview of
our schemes is given in Table 1.

Unlike blind Schnorr [CP93], Okamoto-Schnorr [PS00], and other other generic constructions based
on identification schemes [HKL19], we do not rely on the hardness of the ROS problem, for which a
polynomial-time attack has recently been presented [BLL'21]. Also, unlike Clause Blind Schnorr (CBS)
signatures [FPS20], we do not rely on the assumed hardness of the mROS problem, which is subject to
(mildly) sub-exponential attacks and we can thus support smaller group sizes.! In fact, our schemes all
admit tight bounds, and this suggests that they can achieve (A/2)-bit of security on A-bit elliptic curves,
supporting an instantiation with 256-bit curves. Our security proofs rely on a reduction to a new variant
of the ROS problem, called weighted fractional ROS (WFROS), for which we prove an exponential, uncon-
ditional lower bound. Therefore, another benefit over CBS, beyond concrete parameters, is that we do not
need to rely on an additional assumption.

! The best known attack against mROS [FPS20] runs in time 2¢F0s(¢+D+A/(A+loe(t+1) " where A is the security
parameter and ¢ corresponds to the number of concurrent sessions. The worst £ gives a 20108 A) attack, and in
practice, this suggests a choice of A\ = 512 to achieve 128-bit security for all £’s.



Scheme PK size| Sig. size | Assumption | Communication
BS: (Section 4) 1G 3 Zyp GGM 2G + 3%Zy
BS2 (Appendix C) 1G 4 Zp OMDL 2G + 47y
BSs (Section 5.1) 2G 4 7y DL 2G+47Z,
PBS (Section 6) 1G 4 Zyp DL 2G + 47y
Blind Schnorr [FPS20] 1G 2 7y OMDL + ROS 1G6+2%Z,
Clause Blind Schnorr [FPS20]| 1G 27y OMDL + mROS 2G+ 47
Abe [Abe01, KLRX22] 3G 12G +62Zp DL A bits + 3G + 6 Z,

Table 1. Overview of our results. The four schemes proposed in this paper compared to pairing-free schemes
that admit GGM/AGM security proofs in the literature. All schemes are three-move and secure assuming the ROM;
All schemes except BS: admit AGM security proofs; further p = |G|. As in plain Schnorr signatures, most schemes
allow replacing one element in Z, with a group element in the signature. The ROS assumption can be broken in
polynomial time unless the scheme is restricted to tolerate only a very small number of sessions. Also, the mROS
assumption admits sub-exponential attacks, which require the choice of a larger order p over all schemes (roughly
512-bit for 128-bit security [FPS20]).

Perhaps as a testament of the unsatisfactory status of pairing-free schemes, the only other scheme known
to achieve exponential, concurrent, security is Abe’s scheme [Abe01]. Although its original (standard-model)
proof was found to be flawed, proofs were then given both in the GGM [OA03] and the AGM [KLRX22], along
with a proof for the restricted setting of sequential security [BL13]. Still, it produces longer signatures and
public keys, and is overall less efficient. Also, it only offers computational blindness (under DDH), whereas
our scheme provides perfect blindness.

DISCRETE-LOGARITHM BASED BLIND SIGNATURES. We stress that our focus here is making pairing-free
schemes as practical and as secure as possible. Indeed, very simple pairing-based blind signature schemes
in the ROM can be obtained from BLS signatures [BLS01, Bol03]. Blind BLS offers a different trade-off:
signatures are short (i.e., one group element) and signing requires only two moves, but signature verifica-
tion requires a more expensive (and more complex) pairing evaluation. Indeed, the current blind signature
RFC draft [DJW21] favors RSA over BLS, also due to lesser availability of pairings implementations. In
particular, several envisioned applications of blind signatures are inherently browser-based, and the available
cryptographic libraries (e.g., NSS for Firefox and BoringSSL for Chrome) do not yet offer pairing-friendly
curve implementations.

In contrast, (non-blind) Schnorr signatures [Sch90, Sch91] (such as EADSA [BDL*12]) are short, can rely
on standard libraries, and outperform RSA. Though their blind evaluation requires three rounds, this may be
less concerning in applications where verification cost is the dominating factor and the signing application
can easily keep state. Indeed, [DJW21] identifies CBS as the only plausible alternative to RSA, and our
schemes improve upon CBS by avoiding the mROS assumption. Once the group order is adjusted to resist
sub-exponential attacks, we achieve comparable signature size, more efficient signing, and accommodate for
partial blindness. (No partially blind version of CBS is known to the best of our knowledge.)

Finally, note that it is easier to prove security of pairing-free schemes under sequential access to the
signer. For example, Kastner et al. [KLRX22] prove that plain blind Schnorr signatures are secure in this
case, in the AGM, assuming the hardness of OMDL. Also, Baldimtsi and Lysyanskaya [BL13] (implicitly)
prove sequential security of Abe’s scheme. However, many applications, like PCM, easily enable concurrent
attacks.

ON IDEAL MODELS. The use of the AGM or the GGM, along with the ROM, still appears necessary for the
most practical pairing-free schemes with concurrent security. As of now, solutions solely assuming the ROM
can only handle bounded concurrency [HKL19] or, alternatively, their communication and computation costs
grow with the number of signing sessions [KLR21, CAL22, WHL22].

A number of other schemes [GRST11, BFPV13, GG14, FHS15, FHKS16, Ghal7, KNYY21] partially or
completely avoid ideal models, some of which are fairly practical. However, they do not yet appear suitable
for at-scale deployment.



1.1 A Scheme in the GGM

Our simplest scheme only admits a proof in the generic-group model (GGM) but best illustrates our ideas, in
particular, how we bypass ROS-style attacks. It is slightly less efficient than Schnorr signatures, i.e., a signa-
ture that consists of three scalars mod p (or alternatively, two scalars and a group element). Nonetheless, it
has a very similar flavor (in particular, signature verification can be built on top of a suitable implementation
of Schnorr signatures in a black-box way).

PREFACE: BLIND SCHNORR SIGNATURES AND ROS. Recall that we seek an interactive scheme (1) that
is one-more unforgeable (i.e., no adversary should be able to generate ¢ + 1 signatures by interacting only
¢ times with the signer), and (2) for which interaction can be blinded. It is helpful to illustrate the main
technical barrier behind proving (1) for interactive Schnorr signatures. Recall that the verification key is
X = ¢g* for a generator g of a cyclic group G of prime order p, and a signing key x. The signer starts the
session by sending A = ¢, for a random a € Z,. Then, the user sends a challenge ¢ = H(A, m) for a hash
function H and a message m to be signed. Finally, the signer responds with s = a + ¢, and the signature
is o = (c,s).

Let us now consider an adversary that obtains ¢ initial messages Ai,..., Ay from the signer, where
A; = ¢g%. By solving the so-called ROS problem [Sch01, HKL19, FPS20], the attacker can find £ + 1 vectors
a1,...,0p41 € Zﬁ and a vector (¢1,...,¢p) € Zf; such that

Z .
Yol e =c (1)
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) .
for all ¢ € [¢ + 1], where ¢f = H(]_[ﬁ:1 A;y ,m}), for some message m} € {0,1}*. (Here, agj) is the j-th
component of &@;.) Then, the attacker can obtain s; = a; + ¢z from the signer for all j € [¢] by completing
the ¢ signing sessions. It is now easy to verify that (¢}, s¥) is a valid signature for m for all ¢ € [¢+ 1], where

s = Z§:1 ozz(-j ). s;. Benhamouda et al. [BLL™21] recently gave a simple polynomial-time algorithm to solve

the ROS problem for the case ¢ > log(p), which thus breaks one-more unforgeability.?

Fuchsbauer et al. [FPS20] propose a different interactive signing process for Schnorr signatures that is
one-more unforgeable (in the AGM + ROM) assuming that a variant of the ROS problem, called mROS, is
hard. The mROS problem, however, admits sub-exponential attacks, and as it gives approximately only 70
bits of security from an implementation on a 256-bit curve, it effectively forces the use of 512-bit curves.?

OUR FIRST SCHEME. We take a different path which completely avoids the ROS and mROS problems to
obtain our first scheme, BS;. Again, we present a non-blind version — the scheme can be made blind via
fairly standard tricks, as we explain in the body of the paper below. Again, the public key is X = ¢g* for a
secret key . Then, the signer and the user engage in the following protocol to sign m € {0, 1}*:

1. The signer sends A = g® and Y = XV for random a,y € Z,.

2. The user responds with ¢ = H(A,Y, m)

3. The signer returns a pair (s,y), where s = a + cxy.

4. The user accepts the signature o = (¢, s,y) iff g° =A-Y°and Y = XV.

Verification simply checks that H(g°X ¥¢, XY, M) = c. In particular, note that (c,s) is a valid Schnorr
signature with respect to the public-key X¥ — this can be leveraged to implement the verification algorithm
on top of an existing implementation of basic Schnorr signatures that also hash the public key (EdDSA does
exactly this).* Further, as in Schnorr signatures, we could replace ¢ with A in o, and our results would be
unaffected.

2 Many envisioned implementations allow for ¢ > log(p). Still, is worth noting that the scheme retains some security
for ¢ < log(p) even in the standard model [HKL19].

3 mROS depends on a parameter £, with a similar role as in ROS — sub-exponential attacks require £ < log(p), but
a one-more unforgeability attack for a small £ implies one for any ¢ > ¢ simply by generating (¢’ — ¢) additional
valid signatures.

4 Note that this only superficially resembles key-blinding for Schnorr signatures [Hop13]. Here, the “blinding” y is
actually public and part of the signature.



SECURITY INTUITION. To gather initial insights about the security of BS;, it is instructive to attempt an
ROS-style attack. The attacker opens ¢ sessions and obtains pairs (A1,Y7),..., (A, Ye), where A; = g% and
Y; = X¥ = g*¥ for all i € [(]. One natural extension of the ROS attack is to find £+ 1 vectors @; € Z{ along
with messages m¥, m3,... € {0,1}* such that

for all i € [¢ 4+ 1] and then find (¢1,...,¢¢) € Zf; such that

WG =¢f Za(j' Yj s (2)

||'M\

for all ¢ € [£ + 1]. Indeed, if this succeeded, the adversary could complete the ¢ sessions to learn (sj,y]) by

inputting c;, where y; is random and s; = a; + ¢; - x - y;. One could generate £ + 1 signatures (¢}, s}, y;) for

i€ [+ 1] by setting sf = Z§=1 agj)sj and yf = Zf 1 a(]) y;j. These would be valid because

sk ¢ (aj-‘rcjlyj)
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However, finding (cy, ..., ¢¢) that satisfy (2) for £+ 1 ¢’s simultaneously is much harder than ROS. An initial
intuition here is that XY completely hides y to the point where y is revealed later in the session, where it
appears like a random and fresh weight in the sum, independent of ¢;. This intuition is however not correct,
as an attacker can use the group element XY and can try to gain information about y, but our proof will
show (among other things) that in the GGM no useful information is obtained about y, and y is (close to)
uniform when it is later revealed.

THE WFROS PROBLEM. The above attack paradigm is in fact generalized in terms of a new ROS-like
problem that we call WFROS (this stands for Weighted Fractional ROS), for which we prove an unconditional
lower bound. WFROS considers a game with two oracles that can be invoked adaptively in an interleaved
way:

- The first oracle, H, accepts as input a pair of vectors &, ﬁ € fo“, which are then associated with a
random § € Zj.

- The second oracle, S, allows to bind, for some ¢ € [¢], chosen input ¢; € Z,, with a random weight y; € Ly
During the course of the game, this latter oracle must be called ezactly once for each i € [£].

The adversary finally commits to a subset of £ 4+ 1 prior H queries and wins if for each query in the subset,
which has defined a pair of vector &, 5 and returned §, we have A/B = §, where

— 04(0) + Z 21 1) +c- Oé(Qi)) , B = 6(0) + Z yi(ﬂ(%_l) + ¢ - ﬂ(Zz)) .
i€[4] ie[¢]

Here, v(9 denotes the i-th component of vector #. Our main result (Theorem 1) says that no adversary
making Qu queries to H can win this game with probability better than (Q% + 2/Qu)/(p — 1), or, in other
words, Qu > min{,/p,p/} is needed to win with constant probability. Note that ¢ « ,/p is generally true,
as for our usage, ¢ is bounded by the number of signing sessions.

Our GGM proof for BS; transforms any generic attacker into one breaking the WFROS problem. This
transformation is actually not immediate because a one-more unforgeability attacker can learn functions of
the secret key x when obtaining the second message from the signer. A similar challenge occurs in proving
hardness of the OMDL problem in the GGM, which was recently resolved by Bauer et al. [BFP21], and we
rely on their techniques.



1.2 AGM Security and Partial Blindness

The Algebraic Group Model (AGM) [FKL18] can begin seen as a weaker idealization than the GGM. In
particular, AGM proofs deal with actual groups (as opposed to representing group elements with random
labels) and proceed via reductions that apply only to “algebraic adversaries”, which provide representation
of the group elements they output to the reduction. AGM has become a very popular model for validating
security of a number of practical group-based protocols.

The main barrier to proving one-more unforgeability of BS; in the AGM is that the representation of
XY could leak some information about y that would not be available in the GGM, and thus we would not
be able to apply our argument showing that y is still (close to) random looking when it is later revealed —
our reduction in the GGM security proof crucially relies on this. To overcome this issue, for the two schemes
BS; and BSg3, we replace XY with a hiding commitment to y. In particular, we propose two different ways of
achieving this:

Scheme BS,. Here, XV is replaced by g X¥. Later, the signer responds to challenge ¢ with (s, y,t), where
s=a+c-y-z. A signatureis o = (¢, s,y,t).

Scheme BS;3. Here, ¢g* XV is replaced by gt ZY, where Z is an extra random group element included in the
verification key.

We consider BSy mostly for pedagogical reasons. Indeed, we can prove security of BS3 in the AGM based
solely on the discrete logarithm problem (DL). In contrast, BSy relies on the hardness of the (stronger)
one-more DL problem (OMDL) [BNPS03], which asks for the hardness of breaking ¢ + 1 DL instances given
access to an oracle that can solve at most ¢ (adaptively chosen) DL instances. While we know that OMDL
is generally not easier than DL [BFP21], a prudent instantiation may prefer relying on the (non-interactive)
DL problem. While BS3 requires a longer key, one could mitigate this by obtaining Z as the output of a hash
function (assumed to be a random oracle) evaluated on some public input.

The proof of security for both schemes consists of showing that any adversary breaking one-more un-
forgeability can be transformed into one breaking either OMDL or DL (depending on the scheme) or into
one breaking the WFROS problem. For the latter, however, we can resort to our unconditional hardness
lower bound (Theorem 1).

ADDING PARTIAL BLINDNESS. Finally, we note that it is not too hard to add partial blindness to BS3, which
is another reason to consider this scheme. In particular, to obtain the resulting PBS scheme, we can adopt
a framework by Abe and Okamoto [AO00]. The main idea is simply to use a hash function (modeled as a
random oracle) to generate the extra group element Z in a way that is dependent on a public input upon
which the signature depends. We target in particular a stronger notion of one-more unforgeability, which
shows that if the protocol is run £ times for a public input, then no ¢+ 1 signatures can be generated for that
public input regardless of how many signatures have been generated for different public inputs. We defer
more detail to Section 6.

Outline of the Paper

Section 2 will introduce some basic preliminaries. Section 3 will then introduce the WFROS problem, and
prove a lower bound for it. We will then discuss our GGM-based scheme in Section 4, whereas variants secure
in the AGM are presented in Section 5. Finally, we give a partially blind instantiation of our AGM scheme
in Section 6.

2 Preliminaries

NoTAaTION. For positive integer n, we write [n] for {1,...,n}. We use A to denote the security parameter.
We use G to denote an (asymptotic) family of cyclic groups G := {Gy}r=0, where |G| > 2*. We use g(G,)
to denote the generator of Gy, and we will work over prime-order groups. We tacitly assume standard group



Game OMUFg5()\) : Oracle S; :

par < BS.Setup(1*) sid < sid + 1

(sk, pk) < BS.KG(par) (Stia, msg ) < BS.S1(sk)

sid « 0; £ — 0; Tan — & Return (sid, msg;)

{(mf, o) brepes) < A3V (pk) Oracle S2(i,¢;) :

If 3 k1 # k2 such that (mj, o) = (Mg, , o%,) If ¢ ¢ [sid]\Zgn then return L
then return 0 msg, < BS.Sa(stf, ¢;)

If 3 k € [¢ + 1] such that BS.Ver(pk, o, m}) =0 Tiin < Tan U {i}
then return 0 {—0+1

Return 1 Return msg,

Fig. 1. The OMUF security game for a blind signature scheme BS.

operations can be performed in time polynomial in A in G and adopt multiplicative notation. We will often
compute over the finite field Z, (for a prime p) — we usually do not write modular reduction explicitly when
it is clear from the context. We write Zy = Z,\{0}. We often need to consider vectors a € Zf, and usually
refer to the i-th component of & as a(?) € Z,.

BLIND SIGNATURES. This paper focuses on three-move blind signature schemes, and our notation is similar
to that of prior works (e.g., [HKL19, FPS20]). Formally, a (three-move) blind signature scheme BS is a tuple
of efficient (randomized) algorithms

BS = (BS.Setup, BS.KG, BS.Sy, BS.S,, BS.Uy, BS.U,, BS.Ver) ,

with the following behavior:

- The parameter generation algorithm BS.Setup(1*) outputs a string of parameters par, whereas the key
generation algorithm BS.KG(par) outputs a key-pair (sk, pk), where sk is the secret (or signing) key and
pk is the public (or verification) key.

- The interaction between the user and the signer to sign a message m € {0, 1}* with key-pair (pk, sk) is
defined by the following experiment:

(st®,msg,) < BS.S1(sk), (st chl) «— BS.Ui(pk, msg,,m) ,

3
msg, <« BS.Sy(st®, chl) , o « BS.Up(st", msg,) . ®)

Here, o is either the resulting signature or an error message L.
- The (deterministic) verification algorithm outputs a bit BS.Ver(pk, o, m).

We say that BS is (perfectly) correct if for every message m € {0, 1}*, with probability one over the sampling
of parameters and the key pair (pk, sk), the experiment in (3) returns o such that BS.Ver(pk,o,m) = 1. All
of our schemes are going to be perfectly correct.

ONE-MORE UNFORGEABILITY. The standard notion of security for blind signatures is one-more unforgeability
(OMUF). OMUF ensures that no adversary playing the role of a user interacting with the signer ¢ times,
in an arbitrarily concurrent fashion, can issue ¢ + 1 signatures (or more, of course). The OMUF“B45 game
for a blind signature scheme BS is defined in Figure 1. The corresponding advantage of A is defined as
AdvaR (A, \) := PrlOMUF%s(\) = 1]. All of our analyses will further assume one or more random oracles,
which are modeled as an additional oracle to which the adversary A is given access.

BLINDNESS. We also consider the standard notion of blindness against a malicious server that can, in par-
ticular, attempt to publish a malformed public key. The corresponding game Blindés is defined in Figure 2,

and for any adversary A, we define its advantage as Advga"®(A, A) := |Pr[Blindgs(\) = 1] — 1| . We say the
scheme is perfectly blind if and only if Advga™ (A, ) = 0 for any A and all \.



Game Blindé\s()\) :

par < BS.Setup(1*)
b«s{0,1}; bg < b; b1 — 1—b
b/ s AINIT,Ul,UQ (par)

If ¥’ = b then return 1

Return 0

Oracle INIT(p~k, Mo, M1) :
sessp < init
sess; «— init

Oracle U (i, msg!") :

If i ¢ {0,1} or sess; # init then return L
sess; < open

(st¥, chl@) — BS.Us (pk, msg'”, my,)
Return chl®

Oracle Uy (i, msgl?) :

If ¢ ¢ {0,1} or sess; # open then return L
sess; < closed _
b, — BS.Uy(st¥, msgl?)

If sessg = sess; = closed then
If 0o = L or o1 = L then return (L, 1)
Return (og,01)

Return (i, closed)

pk < pk
mo <— Mo; M1 < M1

Fig. 2. The Blind security game for a blind signature scheme BS.

-,

Game WFROS7', : Oracle H(&, B) :

hid « 0; Zgn <« I hid(—hid-tl .
T — A"5(p) Ohid < @; Phid < B
If 7 & [hid] or |J| < or Zgsn # [£] then Onid <8 Zyp

Return 0 Return dpiq, hid

Oracle S(7,¢) :

For each j e J, 20
2 racie Oib, G -
If ¢ ¢ [¢]\Zgn then return L

0 2i—1
Aj<—0¢§>+2ie[£]yz‘(06; )+Ci'06j )

By « B + X v (BT + i - ) yi < Ly
IfVje J:(A; =9;B; A Bj #0) then Ztin < Zin U {3}
Return 1 Return y;
Return 0

Fig. 3. The WFROS problem. Here, &, ge fo“, which is indexed as @ = (Oé<0>, R a(%)) and /5" = (B(O), cee ﬂ@é)).

GAME-PLAYING PROOFS. Several of our proofs adopt a lightweight variant of the standard “Game-Playing
Framework” by Bellare and Rogaway [BRO6].

3 The Weighted Fractional ROS Problem

This section introduces and analyzes an unconditionally hard problem underlying all of our proofs, which
we call the Weighted Fractional ROS problem (WFROS). It is a variant of the original ROS problem [Sch01,
HKL19, FPS20], which, in turn, stands for Random inhomogeneities in a QOverdetermined Solvable system
of linear equations. While ROS can be solved in polynomial time [BLL*21] and its mROS variant can be
solved in sub-exponential time [FPS20], we are going to prove an exponential lower bound for WFROS.

THE WFROS PROBLEM. The problem is defined via the game WFROSZ}},, described in Figure 3, which
involves an adversary A and depends on two integer parameters £ and p, where p is a prime. The adversary
here interacts with two oracles, H and S. The first oracle allows the adversary to link a vector pair &, 5 € fo“
with a random inhomogeneous part § € Z5 — each such query defines implicitly an equation A/B = § in the
unknowns Cy,...,Cpand Yq,...,Y,. A call to S(4, ¢;) lets us set the value of C; to ¢; and set Y; to a random
value y;. The second oracle S(i,-) must be called once for every ¢ € [¢]. It is noteworthy to stress that the
¢;’s can be chosen arbitrarily, whereas the corresponding y;’s are random and independent.



In the end, the adversary wins the game if a subset of £+ 1 equations defined by the H queries is satisfied
by the assignment defined by querying S. In particular, we define

Advyt3(A) = Pr[WFROS?, = 1] . (4)

Note that it would be possible to carry out some of the following security proofs using restricted versions of
the WFROS game, but the above formulation lets us handle all schemes via a single notion.

A Lower BounD rFOR WFROS. The following theorem, our main result on WFROS, shows that any
adversary winning WFROS with constant probability requires @z = £2(min{,/p,p/f}) queries. (Also, note
that all applications of interest assume £ « /p.)

Theorem 1 (Lower bound for WFROS). For any ¢ > 0, any prime number p, and any adversary A
playing the WFROS P game that makes at most Qu queries to H, we have

Qu(2¢ + Qn)
p—1
The proof is given in the next section. To gain some very high-level intuition, we observe that a key

contributor to the hardness of WFROS are values y;, which are defined after the c¢;’s are fixed and hence
randomize the A; and Bj;’s. Therefore, to satisfy A; = §; - B;, the adversary is restricted in the way it

Adv) % (A) <

plays. For example, to satisfy an equation defined by an H query (&, B}), the adversary can pick ¢;’s such
that (afl_l) +ealy =65 ([3](21_1) + c,ﬂ]@’)) for all i € [¢]. Then, the equation A; = §,B; is satisfied no
matter what the y;’s are. Our proof shows that the adversary has to pick ¢;’s this way — and in fact, it has
to follow even more restrictions. Finally, we show that under these restrictions, no set of £ + 1 equations can

be satisfied simultaneously.

3.1 Proof of Theorem 1

Let A be an adversary for the WFROS game that makes at most Qu queries to H. Without loss of generality,
we assume that A makes exactly one query (i,¢;) to S for each i € [¢] and that A always outputs J < [Qn].
In the WFROS;}p game, for each j € [Qu], denote the event W; as

a§0) + Z yi(aﬁgi_l) +ci- a§-2i)) =0; 5](0) + Z yz’(ﬁj(-m_l) +¢- 5§2i)) (W1)
ie[€] ie[(]
AB Y (BT 4 B £ 0. (W2)
€[]

In other words, Wj is the event that the equation defined by the j-th H query is satisfied. Then, A wins
if and only if |J| > ¢ and W, occur for each j € J. Denote W := (|J| > ¢) A (/\jEJ Wj> and we have
Advyos(A) = Pr{IV].

4,p
To bound Pr[W], we need notation to refer to some values (formally, random variables) defined in the

execution of the WFROSZ}p game. First, denote as If(i{l) the contents of the set Zg, when the adversary makes

the j-th query to H, and let (&, ﬂ_;) be the input of this query to H, which is answered with ¢;. Also, let

Iﬁi)k = [2]\If(gl)7 i.e., the set of indices i € [¢] for which .4 has not yet made any query (4,-) to S when the
j-th query to H is made. Further, ¢1,...,¢c, and y1,...,y¢ are the values defined by querying S.
Now, for each j € [Qu], we define the following events:

Event E](l). First, let E}lj) be the event that BJ(-O) + Z-GIU) Yi (@(-21-71) + ¢ -BJ(-%)) # 0. For each i € Igl)l“
’ €L 4in

(1)
also let E2,(j,i)

1 &)
El,j \4 (\/ie[z(]‘) E2,(j,i))'

unk

be the event that a§-2i71> +ci- a;%) # 0; (B](-Qifl)

+ ¢ 5](21)) Finally, let E](-l) =



Event EJ(?). We denote the event E]@ as the event where
Vie Iin)k a(m’) _5§2171) _ a§2i71) . 5§2i) . (5)

Note that events EJ(-I) and E](-z) are, by themselves, not necessarily unlikely — the adversary can certainly
provoke them. However, we intend to show that this has implications on the ability to satisfy the j-th
equation. In particular, we prove the following two lemmas in Sections 3.2 and 3.3 below, respectively.

Lemma 1. Pr[W; A E(l)] 1l

-1

hS]

Lemma 2. Pr[IV; A (ﬁEj(l)) A EJ(,Q)] < 1%_

Now, if we denote E(!) := Vietou Wi A Ej( ) and E?) .= Vietou Wi A (ﬁEJ(-l)) A E§2)), the union

bound yields Pr[E™M] < % and Pr[E?)] < %. Our final lemma (proved in Section 3.4) is then the
following:

Lemma 3. Pr[W A (mEW) A (—mE®)] < @@=l

The three lemmas can be combined to obtain

Qu(2¢+Qn)

Priw] < PrlEW] + Pr(E@] + Pr[W A (=EW) A (~E@)] < o1

which concludes the proof. In the next three sections, we prove the three perceding lemmas.

3.2 Proof of Lemma 1

Throughout this proof, let us fix j € [Qu]. We first define a sequence of random variables (Dg, D1, ...,
D,, X1, ..., X,), where n = ¢ + 1, such that E](-l) implies one of Dy,...,D, is not equal to 0 and
Dy + Zke[n] Dy X, = 0. Further, we also ensure that X is uniformly distributed over Z;‘j independent

of (Do, D1,..., Dk, X1,...,Xk—1) for each k € [n] and use this to bound Pr[E](»l)]. More concretely:
- Let

Do=a" + Y u (afi*l) +ei a§2i’1)) ,
ieTd)

fin

Xi= =0, Di= B+ 3w (B e 8)

zeIg‘Jn)
and note that E&) is equivalent to Dy # 0.
- Further, for 1 < |I ‘k| denote iy, € Iﬁi)k as the index such that (ig, ¢;,,) is the k-th query made to S

among the 1ndexes inZ zl) and let

Xk+1 = Yir » Digr1 1= af“‘“” + ¢, ~a§2ik> —d; (5§2ir1) + ¢ '5§2ik)> ]

we have E( () i) oceurs is equivalent to Dyyq # 0.

- For |Z nk| +1l<k<n,let Dy=0 and X}, be a random variable uniformly distributed in Z* independent
of (Do,Dh.. Dk7X1,.. Xk 1)

5 For |I‘(li])k| +1 < k < n, D, Xy act as placeholders so that we can apply Lemma 4 for an a priori fixed value n
instead of a random variable |Il(ljn)k\ + 1.



Note that

Do-l—ZDka—a SR yz< (2 1)+ci-a§-2i))

- zeIgljn)
—4; BJ('O)+ Z (ﬂ(m 1)+ 5(21))
’LEIf(]Jn)
(21 1) (27,) (2¢—1) (22)
+ Yi + ¢ ﬁ +c; - 6
At

0)+ Zy’( (2i-1) +ci-a§»2i))

oy 59+ X (58 1 e 20)

1€[f]

Therefore, by (W1), we know W, occurs implies Dy + >.. | D;X; = 0. Thus, the event W, A EJO) implies,
in addition, that one of Dy, ..., D, is not equal to 0. Also, we prove the following claim.

Claim 1 For each k € [n], Xy is uniformly distributed over Z independent of (Dy,...,Dx,X1,..., Xk 1)

Proof (of Claim 1). For k = 1, we have X; = —d;. Consider the step when 0; is generated. Since A has
made the j-th query to H, we know Iﬁnk, BJ, a;, and {y;, ¢}, jez() are already determined, which implies

Dy and D, are also determined. Since §; is picked uniformly at random from Z* >, we know X; = —4; is
uniformly distributed over Z% independent of (Do, D1).

For 2 < k < \Iﬁ?ﬂ + 1, we have X, = y;,_,. Consider the step when y;, , is generated. We know

A has made the query (ix_1,¢;,_,) to S and the values ix_1, ¢;,_, are determined. Since ix_q € IL(m)k, we

know A has made the j-th query to H, and thus the values Bj, a;, 65, and (Do, D;) are determined. For
1 <K <k —1, since the query (g, cik,) to S has returned, we know the values i/, ¢;,,,y;,, are determined,
which implies Dy and Xjy1 are determined. Also, since ix_1, ¢;,_, are determined, we know Dy is
determined. Therefore, since y;, _, is picked uniformly at random from Zy, we know Xy = y;, _, is uniformly
distributed over Z* independent of (Do, ..., Dk, X1,..., Xx—1).

For |I]§nk| +1 < k < n, by the definition of X}, we know X} is uniformly distributed over Z;; independent

of (Dg,...,Dg,X1,...,Xk—1). Therefore, the claim holds. o
Now, we can show the upper bound Pr[W; A E](-l)] il by the following lemma,® which we prove in
Appendix A.

Lemma 4. Let p be prime. Let Do, D1,..., Dy, X1,...,X,, € Z, be random variables such that for all
ke [n], X is uniform over Uy € Z, and independent of (Do, ..., Dy, X1,...,Xi_1). Then,

n n
| 1
Pr{3ie{0,...,n} : D; #0 A D0+;Djxj=o gg‘lw

5 Note that this lemma cannot be directly derived from the Schwartz-Zippel lemma by viewing Do + Z;Ll D;X; =0
as a polynomial of X1,...,X,, since we cover for example the case where Dy, D1,..., D, are adaptively chosen,
i.e., each D; can depend on X; ..., X;_1.

10



3.3 Proof of Lemma 2

It is easier to introduce a new event I; and show that W; A (ﬁEj(-l)) implies F;. We will then bound

PrlF; A EJ(-Q)]. In particular, define the event F} as

VieTl

unk

: a§2i71) Yo -a;m _ 6j <ﬁj(2i71) Yo .6§2i)> —0

AY (BT e 8P 20,
ieT)

unk

and we have the following lemma.

Lemma 5. If W; A (—'EJ(-l)) occurs, then the event F; occurs.

Proof (of Lemma 5). By the definition of F;, we need only show that if W; A (ﬁEJ(.l)) occurs, then (F1)

and (F2) hold for j.
Suppose W; occurs but EJ(»l) does not occur. Since EJ(.I) = E&) % (\/

EF]) and {Eé,l()j,i)}ie[l‘(jfk] do not occur. Since the event Eé,l()j,i)

iE[I(j)k]

un

a§2i—1) Yo agm) _ 5j (5§2i—1) s .B§2i)> —0,

we know (F1) holds for j.

. 1
Also, since the event Ei J) does not occur, we have

0 3w (£ ) <o
iez$)

fin

Since W; occurs, we know (W2) holds and, by the above equation, we have

Y wi (877 e 877) = B0+ Y w8V 4 87) 2 0.

ieT@ ie[€]

unk

Therefore, we know (F2) holds for j.

We also denote

(2i—1)

S j 2 al ) j 2i 2i—1
Dy = { S 140 TG00 8% # 0 0 { S 1€ 288 = 0,570 40

J

We have |D;| < |{i € A

unk

870 # 0y o tie T | 67 = 0} = |7}

unk*

Claim 2 The event F; A EJ@) implies 6; € D;.

does not occur implies

Eél() . ), we know all of
2(451)

Proof (of Claim 2). Suppose F; A E](?) occurs but ¢; ¢ D;. We are going to show that ﬁ]@i_l) +Ci-ﬁ§2i) =0

for each ¢ € Il(fn)k
claim holds.

11

Then, since F; occurs, we know (F2) holds, which yields a contradiction, and thus the



(21)

For i € Il(ljn)k, if 5(2’) # 0, since §; ¢ D;, we have §; # 6(2”’ which implies afi) — 4 'ﬁlgm) # 0. Since
QD 5. (2D @ (2i-1) _
F; occurs, by (F1), we have ¢; = —W Since E;™ occurs, by (5), we have a - B;
&5 TP

a§-2i71) . ,8](-2i), and thus

'ﬁj(_%fl) 'ﬁj(_%)

5(21—1) ny 6(21) 521 n 9 4 '
J Oé(?l) . (5j . 5](22)

. _ﬁjgzi—l) 'ﬁj@i)
(29)
& i B
_ /8§21—1) - /6527,—1) 0.

Otherwise, suppose B](-zi) = 0. Then, if ﬁj(-%*l) = 0, we also have BJ(-ZFI) +c;- 6](-%) =0.If ,8](-%4) # 0,

since aﬁ-zi) ~6§-2i71) = a(-2i71) ~ﬂj(-2i) = 0, we have ag-zi) = 0. Since ,Bj(-zi) =0, 6](-21;1) # 0, and d; ¢ D;, we have
iV
0; # (21 v and thus we have

a;zi—l) fo- a§2i) _ 5]_ (B](Qi—l) to _Bj(gi)) _ a§2i—1) _ 5]_ _ﬁ](Zi—l) 20,

(2i—1)

which contradicts (F1). Therefore, it is impossible that ﬂj@l) 0 and ﬁ ) £ 0.

Therefore, from the above arguments, we have ﬁ]@i_l) + ¢ ﬁj@z) = 0 for any i € Il(ljn)k,

and thus
Zzez(” Ui (ﬁ( -1 4 c - 6](-2i)) = 0. However, since F; occurs, we know (F2) holds, which yields a con-

tradlctlon and thus the claim holds. O

Note that d; is generated uniformly at random, independently of D;, since the latter is defined by the j-th
H query. Therefore, Lemma 5 and Claim 2 yield

Priw; A (~E) A EP]<Pr[F; A B

Il _ ¢
Pr[§j EDj] < p—kl < ]i .

3.4 Proof of Lemma 3

To conclude the analysis, we introduce yet another event, E(®). We will show below that W A (ﬁE(l)) A
(— —E( )) implies £®), and thus it is enough to upper bound the probability of E®) occurring. Concretely,
E®) is defined as follows (the definition of the following events Fj: is given in Section 3.3).

Event E(®). For each ji,jz € [Qu] and j; < jo, denote the event E®

(j1.2) B8
34 eI(jnlk) mIl(ljnzk) . 5?1) 6](121 1) £ (21 1) ﬁ(21 531) . ﬁ](fl—l) £ (27 1) 5(27) )
(3) _ (3 _ ) 3) ._ (3)
Denote E'(] o) E(]l,h) ~ Fj A Fj, and E® .= \/jl,jze[Qn],j1<j2 El(jmé)'

To see why the above implication is true, assume that W indeed occurs, but both E() and E® do not
occur. We now fix some j € J. We know W; occurs, but both E(l) and E(Z) do not occur. In particular, by

the definition of E]( we know there exists i € I(n)k such that a(m ﬁ (2i- 1) # « (21 2 5(21)

12



-(3)

(J) ) ( ) .
B ‘min) Qince W occurs,

()
such thata mm) ﬂ Ymin (21 Ymin -1)

Let i(j) be the smallest index in I( 9) #

unk

we know |J| > £. Then, since szu)n € I(j) c [4] for each j € J and |J| > ¢, by the pigeonhole principle,
we know there exists j1, j2 € J such that j; < js and Zl(lein = 1(1]1?37 which implies E((] )7j2) occurs. Also, since
we know both W, A (ﬁE ) and W;, A (ﬁEJ(-Q)) occur, by Lemma 5, we have F}, and F}, both occur.
Therefore, we know E’E ),32) E((;)’h) A F; A Fj, occurs, which implies E®) oceurs.

Therefore, we have

PﬂW’A(ﬁEm)A(ﬁE@U]<PdE@]< > PriE'() )]

J1,92€[Qul,j1<j2

We now just need to bound Pr[E’gf’j )] for any j; < jo.

(3)

To gain insight, suppose E’ G occurs. We can show that there exists i € TV n I(”) such that

J1,52) unk

5?2) (5]1[3(21) # 0 and a (24) _ 5J2ﬁ(22) # 0. Then, since F;, and F}, occur, by (F1), it holds that

2¢—1 2¢—1 2i—1 2i—1
o5 g5, g ol )*@fﬂ; )

J1 =¢ = J2

2i l2i 27,
a§1)_&1.6]('1) _6 'ﬁjz)

However, this can occur with only small probability since d;, and d;, are sampled independently. The following
claim, proved in Section 3.5, makes this formal.

(3)
(J1,32)
Il(xjnlk) mIL(lzlzk such that a(21d1f) B (2éaie—1) £ a§f1dnf 1) I8(22d1t and a§§1dif).ﬁ‘§222dif*1) -~ agldif*l).ﬁj(_zldif)' Then,
we have

Claim 3 For any j1,j2 € [Qu] such that j1 < jo, suppose E’ occurs. Let igis be the smallest index in

(24air) ¢ (2dair)
j, 5]16]'1 # 0.
(21d|f b)) -5 5(2idif—1)

Moreover, let T = and we have

(21d.f> iy B@dif) ’
J1

(2iaie—1) _ T. Q(Qidif)

/B(Q’Ld;f 1) B(?ld.f) £0 and 6] _ jzi — J2i — . (6)
J2 2 B](j ae=l) _ 63(22 aif)

Let T and i4ir be the values defined in the above claim. Consider the step when J;, is generated. We know
the jo-th query to H has been made, and thus &;, and §;, are determined. Also, since j; < j2, the ji-th
query to H has returned, and thus &, , d;,, and §; are determined. Therefore, we know i4is and 1" are also

determined. Thus, we know d;, is picked uniformly at random from Z% independent of iqit, dj, , @j,, ﬁjv ﬁjg,
d;,, and T. Then, by the above claim,

Jio
2ia;i I ; ;
Pr [E'(g) ] < Pr a;lz,df) N 63'16;11“)4 >0 A 0 (2 G T (2 ait)
(J1,52)4 A B(?Zdif_l) _T. /8(21dif) £0 J2 5(2’d1f D) Tﬁmd.n
(27 ir—1) (2z if) (2daif) (2iair)
<Prlé;, = B Q; 531ﬂ]1 #0
J2 B(zzd,f D _p. B(Zldlf) ﬁ(zzdlf 1) _T. /szzld)f £0
1
<
p—1

3.5 Proof of Claim 3

This proof relies on the following simple lemma, which we first state and prove.

13



Lemma 6. Let p be a prime number. Let a,b,c,d € Z,, be arbitrary values such that a-d # c-b. Then, for
any T € Zy such that a +T -b =0, we have c+ 1 -d # 0.

Proof. Since a+T -b=0and a-d # c-b, we have
O=dla+T-b)=a-d+T-b-d#b-c+T-b-d=blc+T-d),

which implies ¢+ T - d # 0. O
Proof (of Claim 3). Consider j1,j2 € [Qu] such that j; < ja. Suppose E/;‘:’?ﬁ occurs. We know the events
E((j?’l) a)? Fj;,, and F}, occur. Since Ej(f')p occurs, let igif be the smallest index in I](lelk) N I](jf’k) such that
aﬁidif) .Bj(fidif—1) 4 agidif'—n .ﬁjglzidif) and a;jidif) ‘ngidif—l) .7& a§§idif—1) : /6§227;dif). | |

We first show that agz‘“f) - 5jlﬂj(l21dif) # 0. Suppose af“”) — 5jlﬂj(12ldif) = 0. Since aﬁld”) -Bﬁzd”_l) #
ag-?i‘“f_l) . ﬁfid”), by Lemma 6, we know

2iqir—1 2iqir—1
Oég-ldf )—(Sjlﬁj(-ldf )7'50

Therefore, we have

J1 J1 J J

_ a;?idif—l) — 5 'Béfidif—l) + iy (agidif) — 5 'ﬂ§2idif))

a('2idif71) + Cigsr * a('%dif) - 6] <6('2idif71) + Ciasr B(Qidif))

_ (2iair—1) (2iair—1)

= oy —0;,58;, #0.
However, since Fj, occurs, we know (F1) holds for j = j;, which yields a contradiction. Thus, we have
a(2ldif) . 5]'1/83('121(1“) £0.

J1
Similarly, we have ag“”) — 5j2ﬂj(fzdif) # 0. Then, since Fj, and Fj, both occur, we know (F1) holds for
7 =71 and j = jo, and thus
Zigie—1 Zigie—1 Zigie—1 Zigis—1
ag'ldf )_5j1'/8j(' " ):c. —a§2df )_(sjlz'ﬁj(édf :
2iq; 2iq; tdif 2iq; 2iq;
a;ldf)_(sh'ﬁj(‘ dif ) a§2df)_5j2.ﬂj(2df)

(2igie—1) -4, .ﬁ(2idif*1)
j 1 751

Denote T = 2

1
RCT N SCIITY and we have
J1 J1'Fjq

B ) g (gr) gy . o

J2 J2
We now show that ﬁj(‘jidif*l) _T. ﬁj(_fidif) # 0. Suppose ﬁj(jidif*l) _T. /Bj(_fidif) — 0. Since a§zidif) _/Bj(jid;f*l) %
ag,zidif*l) : ﬁj(fidif)’ by Lemma 6, we know agid”*l) -T- agid‘f) # 0 and

zidif)) _ a;fidif—l) _T. a;zidif) #0,

(24air—1) (2iaif) (24air—1) (
ajzdf _T.Oéjédf _5j2( j2df _T.Bj

which contradicts (7). Therefore, we have

(2igig—1) (24aif)
jzdf _T'ﬂdef #O,

and from (7), it holds that

oZiai=D) _p o (2iai)

5]_ — _J2 J2
(2daie—1) (2dqir)
jzdf _T'szdf

14



Algorithm BS;.Setup(1*) :

p < |G|

Let g be the generator of Gy
Select H: {0,1}* — Z,
Return par < (p, g, H)

Algorithm BS;.KG(par) :
(p,g,H) < par

TesZi X —g°

sk «— x; pk — X

Return (sk, pk)
Algorithm BS;.S:1(sk) :
x <« sk; X « g*

a <$ Zp; Y s Z;
A—g"Y « XY

Algorithm BS:.U;(pk, msg,, m) :
X « pk; (A,Y) < msg,
T1,T2 <8 Zp; Y <8 Z:

Y «Y?

A — gAY

 — H(A'|Y"|m)

ce—dcd +ry

st «— (¢, c,r1,7,X,Y, A)
Return (st*, c)

Algorithm BS;.Ux(st*, msg,) :
(c,d,r1,7, X, Y, A) «— st

(s,y) < msg,
Ify=0orY #XYorg°#A-Y°
then return L

st — (a,y,2); msg, < (4,Y) s s 4

Return (st®, msg;) Yy <=7y L

Algorithm BS;.S(st%, ¢) : Return o < (', s',9/)

(a,y,x) < st® Algorithm BS;.Ver(pk,o,m) :
S<—a+c-y-x (C,S,y)<—cr

Return msg, < (s,) If y = 0 then return 0

Y XV, A g* Y e

If c # H(A| Y | m) then return 0
Return 1

Fig. 4. The blind signature scheme BS; = BS:[G].

4 Efficient Blind Signatures in the GGM

This section introduces our first scheme, BS;, which relies on a prime-order cyclic group and a hash function
H. We describe this scheme formally in Figure 4. Roughly, it extends (blind) Schnorr Signatures by sending
an additional group element ¥ = XV in the first round. Then, the signer’s final response to challenge ¢
reveals y along with s = a + cxy. We also note that we could consider a variant of the scheme where the
signature consists of o = (A4’, s',y'), where A’ replaces ¢'.

SECURITY ANALYSIS. First off, we observe that the protocol is blind.

Theorem 2. Let G be an (asymptotic) family of prime-order cyclic groups. Then, the blind signature scheme
BS:[G] is perfectly blind.

Proof (of Theorem 2). Let A be an adversary playing the Blind’és .[c] game. Without loss of generality,
we can assume the randomness of A is fixed and A always finishes both signing sessions and receives valid
signatures (0¢, 7). ©

Define the view of A after its execution as m = (X, mg, m1,To,T1,00,01), where T; := (A;,Y;, ¢i, Si, Yi)s
denoting the transcripts learned from interactions with the i-th signing session and o; = (¢}, s}, y}). Since
the randomness of A is fixed, the only randomness left is the randomness in U; and Us. Denote n :=
(T%O),réo),v(o),rgl),rél),v(l)) as the total randomness. To prove the theorem, we need only show that the
distribution of 7 is identical in both the case b = 0 and b = 1. We prove this by showing that for any fixed

7 Since the output of each query to U; that does not return L is uniformly random over Zy, we know the behavior
of A is identical in both the case b = 0 and b = 1 before A receives the valid signature (oo, 01). Therefore, we know
the probability that A returns before receiving (oo, 01) or receives (L, L) after finishing both signing sessions is
equal in both the case b = 0 and b = 1, which means we consider only the case where A receives valid signatures.
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view A such that Pr[r = Alb = 1] > 0, there exists a unique value of the randomness n that makes 7 = A
for the cases b =0 and b = 1.

For both the cases b = 0 and b = 1, we now show that 7 = A if and only if for each i € {0, 1}, it holds
that

D =y, /yz
TY) — 2=y (8)
réz) = ciA - Cg)LA ?

where the superscript (-)4 represents the corresponding value in A. From the algorithms BS;.U; and BS;.U,,
it is clear that the “only if” part holds. For the “if” part, suppose (8) holds. Since the randomness of A is
fixed, the view of A can differ only on the outputs cp, ¢; from the oracle U or the output (og,07) from the
oracle Us. Since both signatures in A are valid, we have

—cAyA a
A’LA =gsLAXA i 'Yi , }/;A — XAyz ; (9)

sh A A=Y Y AT A
o, =H(g™ X CIXET mg) (10)

For ¢; where i € {0, 1}, suppose the values in the view of A that have already determined when ¢; is generated,
which must include (X, m;, 4;,Y;), are consistent with A. By (8), we have

(1) i
a0y )

@)
o AAW( )YA ORNY

H(g
H(g" i
H(g”
H(

(&5

- R C R P P

_ A
5,2 AU T, A, A L

= g X5 XS my)

= (Z)"_Cb _CiAv

where the third equality is due to (9), the fourth equality is due to (8), and the final equality is due to (10).
Then, consider the step when (o, 01) is output. Suppose the current view, which contains T, is consistent
with A. By (8), we have

Yo, =7 Yi =7 Yi =Y, >
sp =1 47D sy =) 4 4@ A =5 4
A =ci—rS) = Ay =g 2

which implies (00, 01) = (UOA, o1 ) Therefore, by induction, if (8) holds, we know m = A. O

Our main result shows OMUF security of BS; in the generic-group model (GGM) following Shoup’s
original formalization [Sho97], which encodes every group element with a random label. To this end, we
present in Figure 5 a game describing a GGM-version of OMUF security for BS;, adapting the one from
Section 2. We also define a corresponding advantage Advomu[fgggm(A A) to measure the probability that A
wins the game. Note that to keep notation homogenous, it is convenient to allow the game to depend on G,
although the game itself only makes use of the order of the group. The game also models the hash function
H as a random oracle, to which the adversary is given oracle access.

The following theorem states our main result in the form of a reduction to WFROS and is proved in
Section 4.1.

16



Game OMUF-GGMgs (¢1(A) : Oracle S; :
p— |Gy|; x s Z} sid «—sid + 1
sid —0; £ — 0; Zgin «— J; Cur = 5 E— (); T < () as;d 3 Lp; Ysia < Ly
{(m, o1) Yrepeny s ATS52H (p, &(1), §(2)) Stéia < (asid, ysia)
If 3 k1 # k2 such that (mg,, 0k, ) = (Mk,, 0k, ) then msg, — (P(asia), P(ysia - 7))
Return 0 Return (sid, msg,)
If 3 k € [£+ 1] such that yff =0 Oracle Sz (i, ci) :
or ¢ # H(P(sk — ek - yr - @) | D(yw - ) | i) If ¢ ¢ [sid]\Zgn then return L
where (ck, Sk, yx) = o then return 0 (ai,yi) < st
Return 1 Si—ai+¢-yi-x
Oracle @(v) : msgy < (Si»yi)'
If v € Cur then return = (v) Zen < Ln L {i}
Z(v) «s {0, 1}*5(P\ = (Cur) Le—t+1
Cur « Cur n {v} Return msg,
Return Z(v) Oracle H(str) :
Oracle II(¢, &',b) : If T(str) = L then
If Jv,v" € Cur such that £ = Z(v) and ¢ = Z(v') then T(str) s Zp
Return &(v + (—1)"0") Return T'(str)
Else return |

Fig. 5. The OMUF security game in GGM for the blind signature scheme BS1[G].

Theorem 3 (OMUF Security of BS;). Let G be an (asymptotic) family of prime-order cyclic groups.
For any adversary A playing game OMUF-GGMBS ] (A\) making at most Qr queries to I, Qs, queries
to S1, and Qu queries to the random oracle H, there exists an adversary B for the WFROSq, ,, problem,
where p = |Gy|, making at most Qu + Qs, + 1 queries to the random oracle H such that

Qa(Qa +2Qu + 2Qs, + 2)
p_(1+Qsl+Q%) '

where Qg is the maximum number of queries to & during the game OMUF-GGM, and we have Q¢ =
Qm+4Qs, +4.

Advge G FE™ (A, A) < AdvEes,(B) +

By Theorem 1, we have the following corollary.

Corollary 1. Let G be an (asymptotic) family of prime-order cyclic groups. For any adversary A playing
game OMUF—GGMBSl[G]()\) making at most Qm queries to I, Qg, queries to S1, and Qu queries to the
random oracle H, we have

2Qs(Qa + 2Qu + 2Qs, + 2)
p_<1+Q51+Q25) ’

Advgglf[f(;]ggm(A, \) <

where Qs = Qm + 4Qs, +4.

We note in particular that the concrete security of BS; in the GGM is comparable to that of the discrete
logarithm problem, in that Q¢ = 2(min{,/p,p/Qu,p/Qs,}) is necessary to break security with constant
probability.

4.1 Proof of Theorem 3

Let us fix an adversary A that makes (without loss of generality) exactly @ queries to IT, Qs, queries to Sy,
and Qg queries to the random oracle H. Without loss of generality, assume it also makes exactly one query
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Game Gamey: Oracle Sy :

p — |Ga| sid «— sid + 1
sid = 0; £ —0; S — 5 Cur — &5 5 (); T« () msg; < (2(A sia), ?(Ysia))
{(m, 01) Yrefes1) < ATS52H(p @(1), $(X)) Return (sid, msg; )
If 3 k1 # ko such that (mg,,0k,) = (Mky, 0k,) then Oracle Sa (i, ¢;) -
Return 0 If i ¢ [sid]\Zgn then return L
If 3 k € [¢ + 1] such that y* = 0 s s Ty s T
or ex # H(P(st — e -y - X) | S(ye - X) i) Rie A +oY— s
where (ck, Sk, Yr) = 0% then return 0 Ry < Yi — y:X
Return 1 L« LU {Ry,Rs}
Oracle @(P) : msg, < (8i,Yi)
If 3P’ € Cur such that P = P’ then If 3 Py, P> € Cur such that
Return =(P’) Py # Pyand Py =1 P»
Z(P) «s {0, 1}1°e@N\ Z(Cur) then abort game
Cur <« Cur n {P} Zen < Zan L {i}
Return Z(P) L—Ll+1
Oracle IT(£,€',b) : Return msg,
If 3P, P’ € Cur such that ¢ = 5(P) Oracle H(str) :
and é-/ _ E(Pl) then If T(str) = 1 then
Return &(P + (—1)°P") T(str) < Zp
Else return L Return T'(str)

Fig. 6. The definition of Games. The symbols P and P’ denote polynomials over variables X, {Ai, Yi}ic[siaj- Also,
a new equality notation, “=p”, is used. We say P =1 P if and only if Pi — P> can be represented as a linear

combination of polynomials in L.

(i,¢;) to Sy for each i € [Qg, ] Also, it is clear that the overall number of queries to @ in OMUF—GGM“B“S1 is
at most Qg := Q + 4Qs, + 4. Then, after A returns, we know ¢ = Qg, and Zg, = [Qs, |-

We prove the theorem by going through a series of games, from Gamey to Gamey, where Gamey is the
OMU]F‘—GGM“B“S1 game and Gamey is an intermediate game that enables an easier reduction to WFROS.
Here, however, we first introduce Gamey and Lemma 7 and then discuss the reduction to WFROS, which
is the core of the proof. We leave the definition of the intermediate games between Gamey to Gamey to the
proof of Lemma 7. The game-hopping argument is non-trivial, but it follows the same blueprint as in [BFP21]
and is hence deferred to Appendix B.1.

DEFINITION OF Gamey. The pseudocode description of Game, is given in Figure 6. The main difference from
OMUF—GGM“B“S1 is that the encoding oracle @ takes as input a polynomial instead of an integer in Z,,. (Note
that the adversary cannot query @ directly, and thus this difference is not directly surfaced.) This essentially
captures the algebraic core of our proof.

Also, for a valid query (i, ¢;) to Sz, the output values (s;,y;) are directly sampled uniformly from Z, x Z.
Furthermore, when this happens, two polynomials, Ry = A; +¢; - Y; — s; and Ry = Y; — y; - X, are recorded
in the set L. Then, in the encoding oracle @, two polynomials, P, and P5, are considered to differ if and only
if P, #1, P>, where P; =7, P, means that P; — P can be generated as a linear combination of polynomials
in L. Still, P, #1, P» could occur when queries P; and P, are made to @, but they becomes equal (in the
sense of “=p”) after L is updated. The game aborts when this happens.

Overall, we prove the following lemma in Appendix B.1.

L omuf-ggm A Q2%

emma 7. Advgg c1°" (A, A) < PrlGamey’ = 1] + —AT0s 0%
RebpucTioN TO WFROS. The core of the proof is to relate the probability of the adversary A winning
Game, with the advantage of an adversary B winning the WFROS problem, as stated in the following
lemma. The proof is given in Section 4.2.
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Lemma 8. For every A, there exists an adversary B for the WFROSq, , problem, where p = |G|, making
at most Qu + Qs, + 1 queries to H such that

(2Q¢ +1)(Qu + Qs, +1)
P — Qs '

The statement of Theorem 3 follows by combining Lemmas 7 and 8.

Pr(Gamez' = 1] < Advy!*,(B) +

(1)

4.2 Proof of Lemma 8

We construct B that interacts with A by simulating the oracles from Game, using the two oracles S and H
in WFROS. In particular, we extract suitable vectors & and 5 to query to H in WFROS; i.e., each RO query
str is decomposed as str = €4 [ £Y | m, where €4 and &Y are encodings of group elements. If both encodings
are valid, there must exist P4, PY such that Z(P4) = ¢4 and Z(PY) = ¢Y; then, B defines two vectors &
and 5 to make a corresponding query to H in WFROS. The oracle S is also used to simulate the signer’s
second stage. Finally, when A outputs Qs, + 1 different valid message-signature pairs in Game,, B tries to
map each valid message-signature pair to a query to H in WFROS. We show that this strategy succeeds
with probability close to that of A succeeding.

THE ADVERSARY B. Specifically, B initializes the variables sid, Cur, Zg,, =, and T as in Game,. In addition,
B initializes an empty table Hid, used later in the simulation of H.

Then, B runs A on input (p,$(1), $(X)) and with access to the oracles IT, S, Sy, and H. These oracles,
along with 4%, operate as follows:

Oracles dg, II: Same as in Game,. In particular, L is updated by calls to S,.
Oracle Sl: Same as in Gamey.
Oracle S,: Same as Game, except that instead of sampling y; randomly, if i € [sid]\Zan, B makes a query
(7,¢;) to S and uses its output as the value y;.
Oracle H: After receiving a query str, if T(str) # L, the value T'(str) is returned. Otherwise, str is decom-
posed as str = &4 €Y || m such that the length of ¢4 and ¢Y is [log(p)].
— If there exist P4, PY e Cur such that 5(P4) = ¢4 and Z(PY) = ¢Y, denote the coefficients of

PA PY as
PA=a% + 6" X+ Y aMA+ Y any;, (12)
1€[sid] 1€[sid]
PY =39+ X+ Y BAA+ D BTG (13)
i€[sid] i€[sid]

=,

Then, B issues the query (&, 3) to H, where &, Be Z,%QSIH are such that

ar, i’ =0
AY; o 9s . .
2l — | & ) z 21. ’1 , z.e [sid]
—aM i =20, i€ [sid]
0, o.w.
. (14)
-p*, i'=0
B _ —BYi, ' =2i—1,ie[sid]
phi i =20, i€ [sid] '
0, 0.W.

After receiving the output (dhig, hid), B sets T'(str) « dnhig and Hid(str) < hid.
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— Otherwise, if €4 ¢ T(Cur) or ¢¥ ¢ T(Cur) (or if the decomposition of str is not possible), B samples
T'(str) uniformly from Z, and sets Hid(str) = L.
Finally, B returns 7T'(str).

After A outputs {(mz,az)}kE[Qsl_’,l], B aborts if the signatures are not valid, i.e., one of the following
conditions is not satisfied:

V ki, ko €[Qs, +1]and k1 # ky = (mj,,0%,) # (mg,,0%,) (15)

VEke[Qs, +1] : yf #0 A ¢ = H(str}), (16)

where (¢, s¥,y¥) = o and str¥ = O(s¥ —ck -y -X) | D(y-X) | m¥. (Here, H and & are the oracles described
previously.) Further, B aborts if the following condition does not hold:

Vke|Qs, +1] : Hid(str}) # L. (17)

Otherwise, B outputs J := {Hid(str})}re[qs, +1]-

ANALYSIS OF B. Note that B queries to H at most once when it receives a query to H and makes Qs, +1
more queries to H when checking the validity of the output. Therefore, 5 makes at most Qu + Qs, + 1
queries to H. Also, it is clear that B simulates oracles Sy, Sy in Gamey perfectly. For the simulation of H,
the only difference is that the distribution of dyiq outputting from H in WFROS is uniformly over Zy, where
in Gamey it is always uniformly from Z,. However, the statistical distance between the two distributions is
1/p. Since B makes at most Qu + s, + 1 queries to H, the statistical difference between the view of A in
Gamey and that in the one simulated by B is bounded by (Qu + Qs, + 1)/p.

Denote the event E; such that when B checks the output from A, both (15) and (16) hold. As these are
exactly the winning conditions of Game,, which is simulated statistically closed to perfect, we have

Pr[E1] + W > Pr[Gamey = 1] . (18)

Also, let Fy be the event for which the condition (17) holds immediately afterward. If E5 does not happen,
but E; does, then we know A outputs a valid message-signature pair (mj,o}) such that Hid(str}) = L,
which is unlikely to happen. The following formalizes this, and the proof is in Appendix B.3.

2Q4 (Qu+Qs, +1)
p—Qao

Claim 4 Pr[E; A (—FEs)] <
Then, we can conclude the proof with the following claim.

Claim 5 If both Fy and Ey happen, then B outputs a valid WFROS solution J, which in turn implies that

PrlEL A Es] < Advgsio (B).

Before we proceed with a proof, we state a simple lemma for Game, that is used in the proof of Claim 5.
The proof is immediate and follows from the uniqueness of values returned by the oracle.

Lemma 9. At any step of Gamey, for any two polynomials P and P’, suppose we make queries P and P’
to @. If &(P) = &(P’'), then P =1, P'. Equivalently, if P #1, P’, then we have ®(P) # ®(P').

Proof (of Claim 5). Suppose both F; and Es happen. We first show that for any ki, ks € [Qs, + 1] and
ki # ko, it holds that stry # strjf , which implies |7| = Qs, + 1. We then show that J is valid for the
WFROS game.

For ki, ks € [Qs, + 1] and ky # ko, suppose strf = strj, . Then, we have

cp, = H(stry,) = H(stry,) = ¢, , mf, =mj, ,
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D(sf, — oy i - X) = D(s, — o, - uih, - X)L By, - X) = By, - X) -
By Lemma 9, it holds that (mj , (¢} ,s¥ ,yf ) = (mg,, (¢§,, sk, Vi,))- However, since £y happens, by (15),
we have (mjf ,of ) # (mf,,oF, ), which yields a contradiction. Therefore, we know stry # stry . From the

simulation of H, we have Hid(strj ) # Hid(str}, ), and thus we have |J| = £ + 1.
We now show that for each j € 7, it holds that

)+ Z yl( (2i=1) 4 ¢, . (21)> < + 2 yz< =1 4 ¢ ﬁ(21)> , (C1)

1€Zgin 1€Z¢in

A (5 ) 0, @

1€Zfin

which implies J is valid for the WFROS game.
Let us fix a j € J. Since j € J, there exists k € [Qs, + 1] such that Hld(strk) = j, and there exists

PA PY € Cur and m; such that str} = (PA) | _(PY) [ m;. Let &; and ,8] denote the coefficients of PA
and PJY Since E; happens, by (16) and Lemma 9, we have PJA =1 8§ —9; - X, P] = yp - X, Wthh
A A Y Y

o : PA PA PY P
implies there exists {r,} ,75% , 7% ;79 }iezs, such that

PA
PA =5t —65;-yf - X+ Z T“(A + Y —s;) + Z ok (Yi—uiX)

J

iE[Qsl] 7LE[C\?Sl]
pY
PjY =yr X+ 2 r1 % (A +¢Yi—8) + Z roh (Yi—yiX) . (19)
iE[Qsl] iE[Qsl]
A
By looking mto the coefﬁc1ents of X, {A;,Yi}ic[qs,] on both sides of (19), we have 07?7" = rf"’% ) d;(l =
A Yy R Y
ri@ cc + 7“22 , ﬂj = r“ , ﬁ = 7{1 and ¢; + 7“;; for each 7 € [Qg, ], B? = yi - Zie[Qsl]r;— -3, and
o?? =—6;yp — ZlE[QS ]7“;1 - y;. By sorting out the equations, we have
vi =B85+ D i (BJY _Ci'/@?i> ;
1€L¢in
SIS TS SN R B A
iE[Qsl] iE[QSl]
By the definition of @ and J in (14), we know (C1) holds and
0 2i—1 2i
yZ=5§)+Zyi(5§ )+C¢'5§z))-
1€Z¢in
Since E; happens, by (16), we know y;* # 0, which implies (C2) happens. ]

5 Efficient Blind Signatures in the AGM

We now present schemes that are secure in the algebraic group model (AGM) [FKL18]. This model considers
security for algebraic adversaries - these are adversaries that, when used within a reduction, provide a
representation of any group element they output in terms of all prior group elements input to the adversary.
(We dispense with a more formal definition since the use of the AGM is self-evident in our proofs.)
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Algorithm BS3.Setup(1?) : Algorithm BSs.U;(pk, msg,, m) :

p—[Gx; g — g(Gn) X < pk; (A,C) — msg,

Select H : {0, 1}* — Z;’: r1,72 <38 Lp; Y1,7Y2 <3 Z’;

Return par < (p,Gx, g, H) A gt A/

Algorithm BS3.KG(par) : C/’/ h ngrz )

.G, g.1) — par ¢ HA|C |m)

X —$Lp; X «— g% Z <3Gy C‘_C"Y2/

sk — x; pk — (X, Z) st «— (¢,cyr1,7m2,71,72, X, Z, A, C)
Return (sk, pk) Return (st“, c¢)

Algorithm BS3.S;(sk) : Algorithm BS3.U(st", msgy) :

x <« sk; X < g (e, r1,7m2,71,72, X, Z, A, C) « st*
a,t «sZp; y s Zyp (8,y,1) < msg,

A—g% C—gtzy Ify=0o0rC#¢g'Z%o0rg°#A- XY
st® « (a,y,t,x); msg, — (A,C) then return L

Return (st®, msg;) s’, — (y1/72) - s+

Algorithm BS3.S>(st’, ¢) : vy=m-y

'~y -t+r
Return o « (¢, s',y,t")

If ¢ = 0 then return L
(a> Y, t7 ‘T) <~ Sts
s—a+c-y-x Algorithm BS3.Ver(pk,o,m) :
Return msg, « (s,y,t) (¢,5,9,t) <o

If y = 0 then return 0
C—g'ZV; Ae—g* XY

If ¢ # H(A| C||m) then return 0
Return 1

Fig. 7. The blind signature scheme BS3 = BS3|[G].

5.1 A Protocol Secure under the DL Assumption

In this section, we introduce a scheme, which we refer to as BSs, that relies on the hardness of the (plain)
discrete logarithm (DL) problem, which is formalized in Figure 8. In contrast to BS;, our new scheme
(described in Figure 7) requires an extra group element Z in the public key, and the commitment XV in is
replaced by ¢g*Z¥. (This will necessary result in an additional scalar in the signature.) However, one could
generate Z as an output of a hash function (assuming the hash function is a random oracle, which we
assume anyways), although, interestingly, our proof for BSs will show that blindness holds even when Z is
chosen maliciously by the signer (who may consequently also know its discrete logarithm). In Appendix C,
we present a slightly simpler alternative protocol, called BSs, that avoids the need of such an extra group
element, at the cost of relying on the hardness of a stronger assumption, the one-more discrete logarithm
(OMDL) problem. (Needless to say, a scheme based on DL only is seen as more desirable than a scheme
based on the OMDL assumption [KMO08].)

The additional group element Z will in fact allow us to develop a partially blind version of BS3, which
we refer to as PBS, which we discuss in Section 6 below. We note that in fact all results about BS3 can be
obtained as a corollary of our analysis of PBS, because a blind signature scheme is of course a special case
of a partially blind one. However, we are opting for a separate presentation, as the main ideas behind the
reduction are much simpler to understand in (plain) BSs, and the proof of PBS adds some extra complexity
(in particular, in order to obtain a tighter bound), which obfuscates the main ideas.

SECURITY ANALYSIS. The following theorem establishes the blindness of BSs. (Its proof is very similar to the
blindness proof of BS;[G], so we defer it to Appendix D.2.)

Theorem 4. Let G be an (asymptotic) family of prime-order cyclic groups. Then, the blind signature scheme
BS3[G] is perfectly blind.
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Game DLog# ()) :

p < [Gal; g < g(Gx)

X s Gy

y < A(p,g,Gx, X)

If g = X then return 1

Return 0
Fig. 8. The DLog game.

Game OMUF ¢ (V): Oracle S, :
P |Gal; g = 9(Gx); & <3 Zp; X < g5 Z < G sid < sid + 1 .
sid « 0; £ «— 0; Zan «— @; T « (); hid < 0; Hid < () as;dvtSid 8 Lp; Ysia < ZP
{(mf, o7 eqesny < ALy (9,9, G, X, Z) jsid - (Z:(jvysidvtsid)
If 3 k1 # k2 such that (mjf , o} ) = (my,,0f,) then sid =g

Return 0 Csiq « g'sid Z¥id
If 3 k € [€ + 1] such that y* = 0 msg; «— (Asid; Csia)

or ¢f # H(gsfxfc;f-yz‘ I gﬁk" gk | m) Return (sid, msg;)
where (cf, sF,yif, t}) = off then return 0 Oracle S2(i,¢;) :
Return 1 If i ¢ [sid]\Zgn

or ¢; = 0 then
Return L

(@i, yi, ti) < stf

Si <= Q; +Ci"Yi* T

Oracle H(A[|C | m) :
IfT(A|C|m) =L then
T(A[C|m) sy

hid « hid + 1 Y

Hid(A | C | m) < hid msgy «— (i, i, L)

J A =g¥ XY 28 gy AX 0 Zon < Zan U {i}
=9 sefsia] i G L 011

) C=g" x% 7% [ Licgsiay AfAi CfCi Return msg,

Snia — T(A[ C | m); dnia — & Buia — B
Return T'(A || C || m)

Fig. 9. The OMUF security game for the blind signature scheme BS3[G].

The core of the analysis is once again a proof that the scheme is one-more unforgeable in the AGM, i.e.,
we only prove security against algebraic adversaries. In particular, we model the selected hash function as a
random oracle H, to which the adversary is given explicit access.

Theorem 5. Let G be an (asymptotic) family of prime-order cyclic groups. For any algebraic adversary
Aaig for the game OMUFBS3[€] () making at most Qg, queries to Sy and Qu queries to the random oracle
H, there exists an adversary Baiog for the DLog problem running in a similar running time as Aag such that

(Qu + Qs, +1)(Qu +3Qs, +1)
p—1 '

AdVEEs) (Auigs A) < 2AdVEE (Byiog, A) +

Proof (of Theorem 5). Let us fix an adversary A, that makes at most Qg, queries to S; and Qu queries to
the random oracle H. Without loss of generality, assume A,j; makes exactly (s, queries to S; and exactly
one query (i,¢;) to Sy for each i € [Qg,]. Then, after A,z returns, we know £ = Qs, and Zg, = [Qs, ]

The OMUFég;g[G] game is formally defined in Figure 9. In addition to the original OMUF game (defined
in Figure 1), for each query (A | C|m) to H, its corresponding hid is recorded in Hid(A | Y ||m), and the

output of the query is recorded as dniq. Also, since A,jq is algebraic, it also provides the representations of

A and C, and the corresponding coefficient & and B are recorded as Gniq and Bhid.
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Denote the event WIN as A, wins the OMUFg “ S,[G] Same, i.e., all output message-signature pairs
{m}, 0% re[qs, +1) are distinct and valid. Furthermore, let us denote strj := g X—ei il || gtk zvi || my. We
let E be the event in the OMUFQ;;‘{[G] game for which, after the validity of the output is checked, for each
k€ [Qs, + 1] and j = Hid(str}),® the following conditions hold:

Z Yi G- = 5 y;: ’ (20)
ie[Qs;, ]
2 vi By =yi (21)
’iE[Qsl]

Since Adv%rsn;[f 1(Aaig, A) = Pr{WIN] = Pr[WIN A E] + Pr[WIN A (—E)], the theorem follows by
combining the following two lemmas with Theorem 1.

Lemma 10. There exists an adversary Byfos for the WFROSQSP,, problem making at most Qu + Qg, + 1
queries to the random oracle H such that
wiros
AV %, (Butros) = PrIWIN A E]. (22)

Lemma 11. There exists an adversary Baiog for the DLog problem running in a similar running time as
Aaig such that

1
AdvE® (Baiog, \) = FPIWIN A (-E)]. (23)
O

5.2 Proof of Lemma 10
Proof. We first give a detailed description of Byfos playing the game VVFROSQSl p- To start with, Bytros
initializes sid, Zgy, ¢, T, hid, and Hid as described in the OMUFQ;;g[G] game. In addition, Byos samples x, z
uniformly from Z,, sets X to ¢* and Z to g*.

Then, Byfos runs Aae on input (p,g,Gy, X, Z), and with access to the oracles S1, S,, and H. These
oracles operate as follows:

Oracle S;: Same as the OMUF“BL‘;]‘TG] game except that instead of sampling ¥4, tsiq randomly and setting

Csid < g'4 XY, Bypos samples a new variable ¢/, uniformly from Z, and sets Cgiq = g thia
Oracle So: After receiving a query (i,¢;) to S, from Aatg, if i ¢ [Sld]\Iﬁn or ¢; = 0, Byfos returns L.
Otherwise, Byfos makes a query (i,¢;) to S and uses its output as the value y;. Also Bytros sets t; =

— y; - z. With the value (a;,y;,t;), the rest of S, is the same as S, in the OMUFg alg [c] game.
Oracle H: After receiving a query (A | C ||m) to H from Ay, if T(A|C||m) # L, the Value T(A|C|m)
is returned. Otherwise, since A, is algebraic, Byfos also knows the coefficient & and é such that
A= g X% [T A s, =g x7 ] a7 .
ic[sid] ie[sid]

=,

Then, Byfos issues the query (&, 8) to H, where &, Be Z?,QSIH are such that

ax | =0
o) =3 A =20 iesid] ,
0, 0.W. 04
7 v_o (24)
B =8 —BC i =2i—1,ie[sid] .
0, 0.W.

8 Here, Hid(strf) must be defined since a query stri is made to H when checking the validity of the output (m}, o).
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After receiving the output (dpiq, hid), Byfros sets T(A | C'| m) < 6nig and Hid(A || C'|| m) < hid. Finally,
Bytros returns T(A | C || m).

After A, outputs {(m,”;,al’:)}ke[@slH], Bwiros aborts if the conditions from the event WIN A FE do not

occur. Otherwise, Byfos outputs J := {Hid(str}) | k € [Qs, + 1]}. Since Byros simulates the OMUFQ;‘;E[G]

game perfectly, the probability that WIN A E occurs when running By o5 is the same as in the OMUF’B“S";"{[G]

game with Aajg.
Following the similar analysis of B in the GGM proof (Section 4.2), we know Bypos makes at most
Qu + Qs, + 1 queries to H.

It is left to show that if WIN A FE occurs within the simulation, then Bygos wins the WFROS game.

We first show that | 7| = Qs, + 1. Suppose |J| < Qs,. Since A, wins the OMUF“B“S‘“:{[G] game, we know

there exists ki, k2 € [@s, + 1] such that k1 # ke and Hid(stry ) = Hid(str},), which implies strj = str} .
Therefore, we have

gstl X_C:1'y7f1 = gs:2X_c:2'y2<2 , gtfl Zy;:1 = gt’fz Zy;k2 , m:1 = mzz . (25)
AISE’ let j = Hid(str}; ) = Hid(str},). Since E occurs in the OMUF;\S&;g[G] game simulated by Byros, by (20),
we have

v =B+ Y wilB5 =i BY) = v, -
i€[Qs, ]
Since yji = yi, and ¢, = cf , by (25), we have
th =15, Sk = Sk, -
However, since (mj ,o} ) and (mj_, o} ) are different message-signature pairs, we have
(s 5hs U tE,) # (o 81,

which yields a contradiction. Therefore, we have | 7| = Qg, + 1.
Then, since in particular E occurs, by (20) and (21), it holds that for any j e J

04;'(— Z yi'ci'a?i = —0; 5JZ+ Z yzﬂjcl
iE[Qsl] iE[Qsl]

From the simulation of H, by (24), we have for any j € J

0 2i—1 21 0 2i—1 21
o+ 3wV ool =6 {87+ Y w47
i€[Qs, ] i€[Qs;, ]

Therefore, By fos wins the VVFROSQsl .p game, which concludes the proof. O

5.3 Proof of Lemma 11

Proof. We first partition the event WIN A (—FE) into two cases. Denote F} as the event in the OMUF’B%;?’[G]

game that there exists k € [Qg, + 1] such that (20) does not hold, and denote Fy as the event that there
exists k € [@Qs, + 1] such that (21) does not hold. Then, if E does not occur, we know either Fy or F5 occurs.
Therefore, we have WIN A (—FE) = (WIN A Fy) v (WIN A Fy). We then prove the following two claims.

Claim 6 There exists Bgfgg for the DLog problem running in a similar running time as Aag such that

PrIWIN A Fi] < Advi*(BS),,A) - (26)
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Claim 7 There exists B(

dlog for the DLog problem running in a similar running time as Aag such that

PrIWIN A F] < Advi*® (B, \) - (27)

(0)

By the above two claims, we can construct an adversary Baiog for the DLog problem that runs either Bdlog

or B((ﬁ())g with 1/2 probability, and we can conclude the lemma since

Pr[WIN A (=E)] <Pr[WIN A Fy]+Pr[WIN A F]

< AdVEE(BL A) + AdvEE (B, A) = 2AdVE" (Batog, A).-

Proof (of Claim 6). We first give a detailed description of B playing the DLogg game.

dlog

Initially, B

dlog initializes sid, Zgy, £, T', hid, and Hid as described in the OMUFg ’1g

receives (p,g,G)\, W) from the DLogg game, Bd

THE ADVERSARY B(O

dlog* [G]

game. After Bd samples z uniformly from 7Z, and sets

log log
X « W, Z < g#. Then, Bdlog runs A, on input (p, g, G, X) and with access to the oracles Si1, S,, and H.
These oracles operate as follows:

Oracle Slz B((i(l)c))g samples Sgid, tl;4 uniformly from Z, and y/;4 unifomly from Z: and sets Agq = g% X —Ysia
and Cgiq = gt;id Then, B((i[f()j returns (sid, Asia, Csid)-
Oracle S,: Same as in the OMUFAalg | game if i ¢ [sid]\Zan or ¢; = 0. Otherwise, after receving a query

(i,¢;) to S, from Aalg, <(11c)>g sets y; «— yi/c; and t; < t; — y; - z. Then, B((ilog returns (s;, ¥;,t;) to Aalg.

Oracle H: Same as in the OMUFBS“E[G] game.

dl())g aborts if the event WIN A F; does not occur.

It is clear that B((ﬂ) simulates the OMUFBS"”g[G] game perfectly. Therefore, it is left to show that if the
event WIN A Fj occurs within the simulation, Bdlo can compute the discrete log of X, which equals to W.
Suppose WIN A F} occurs. There exists k € [QS1 + 1] and j = Hid(str}) such that (20) does not hold.

Since Hid(stry) = j and d; = ¢, we have

After receiving the output {(m}, o))} ke Q::1+1] B

A G
gS:X—‘;j'y;’f - gs:X—cz‘-yf _ g&;?Xd?Zd? n A;"j C«;‘j ] (28)
i€[sid]

Similar to the preceding case, since B((i?gg knows the discrete log of Z as z, by substituting A; = g% X %Y,
C;=g'ZY, and Z = ¢g* into (28), we have

gsz‘Xf(Sj.y:‘ _ gd?+d§'2+Zis[Qsl](‘i?i'sﬂrd;i'(ti+yi'z))X&§*Zie[Qsl] yi'ci'd?i
Since (20) does not hold, Bé?())g can compute the discrete log of X as

.Z_ZZE[QS ]( A 81+a (tz"‘yl-z))
- Zie[Qsl] Yi * C; -aj +0; -y

Proof (of Claim 7). We first give a detailed description of Bl playing the DLogg game.

dlog
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Aalg
BS3[G]

samples  uniformly from Z, and sets

THE ADVERSARY B . Tnitially, B initializes sid, Zgn, ¢, T, hid, and Hid as described in the OMUF
dlog dlog

game. After B receives (p, 9,Gx, W) from the DLog game, BY

dlog dlog
X «— g*, Z «— W. Then, B((ﬁ())g runs A,y on input (p, g, Gy, X) and with access to the oracles S, S,, and H.
Since B((ﬁ())g knows X = ¢”, Bfﬁgg can simulate all the oracles Sl, SQ, and H the same as in the OMUFQ;;g[G]

game. After receiving the output {(m}, Uz)}kE[Qsl+1], BW aborts if the event WIN A F5 does not occur.

dlog
It is clear that ngg simulates the OMUF?;;TG] game perfectly. Therefore, it is left to show that if the

event WIN A Fj occurs within the simulation, ngg can compute the discrete log of Z, which equals to W.
Suppose WIN A F, occurs. There exists k € [Qs, + 1] and j = Hid(str}) such that (21) does not hold.
Since Hid(stry) = j, we have

R N R SAL ACs
gtk zvt = ¢P x B 785 H Afi ij . (29)
i€[sid]

From the simulation of Sy, for each i € [Qs, ], we have
gsi = A, XCiVi , gti =C,Z7Y .

Also, B((ﬁ())g knows the discrete log of X as x. By substituting A4; = g X ¢, C; = ¢gt*Z¥%, and X = ¢* into
(29), we have

JU AL C . .
ﬁf*‘ﬁ?'ﬂf"'Zie[Qsl](ﬁj”~(si—czz~yi~:6)+ﬁj”~ti) 5]Z+Zi6[@sl]yi'5c’

gz =g Z

Since (21) does not hold, B((ﬁc))g can compute the discrete log of Z as

=B = B2 = Mo ) (B - (si — iy w) + B - 1)
z = = = .
B]Z + Zie[Qsl] yi - G — y,’:

6 Partially Blind Signatures

This section presents our partially blind signature scheme, PBS, which is detailed in Figure 10. The scheme
builds on top of the BSs scheme by replacing the extra generator Z contained in the public key with the
output of a hash function F (also modeled as a random oracle in the OMUF proof) applied to the public
input info. We do not formally redefine the syntax of partially blind signatures, but we note that it simply
extends that of blind signatures by adding the extra input info € {0,1}* to the signer, the user, and the
verification algorithm.

BLINDNESS. We first study the blindness of PBS. The PBlind,’st game is defined in Figure 11. The only
difference between PBlind and Blind is that initially, the adversary A also picks a public information info
and interacts with PBS.U; and PBS.U; for signing (info,mg) and (info,m1). Denote the advantage of the

adversary A as

- 1
AdvBRE (A, \) := |Pr[PBlindpgs(\) = 1] — 5| -

We say a partially blind signature scheme PBS is perfectly blind if and only if Advgggnd(A) = 0 for any A.

Theorem 6. Let G be an (asymptotic) family of prime-order cyclic groups. The partially blind signature
scheme PBS[G] is perfectly blind.

Since the algorithm PBS.U; and PBS.U; are almost the same as BS3.U; and BS3.U,, we can use a proof
similar to the one for BS3 (Section 5.1) to show PBS[G] is perfectly blind. The only difference is that in BSs,
Z is given in the public key, while in PBS[G], Z is given by F(info).
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Algorithm PBS.Setup(1*) :

p < |Gal; g < 9(Ga)

Select H : {0,1}* — Z%
Select F: {0,1}* — G,
Return par < (p,Gx,g,H,F)

Algorithm PBS.KG(par) :
(P, Gr, 9, H, F) < par
TesZy X < g°

sk — x; pk — X

Return (sk, pk)

Algorithm PBS.S;(sk, info) :

x «— sk; X «— g%; Z < F(info)
a,t «s Zp; Y «—$ Z;‘

A g% C«—g'z¥

st® «— (a,y,t,x); msg; — (A,C)
Return (st®, msg;)

Algorithm PBS.Sx(st®, ¢) :
If ¢ = 0 then return L
(a,y,t,x) « st®
S<—a+c-y-x

Return msg, < (s,y,t)

Algorithm PBS.U1(pk, msg,, info,m) :

X « pk; (A,C) < msg,; Z — F(info)
71,72 <8 Lp; V1,72 <3 Z;f

A — g’fl . A’Yl/’Y2

O — C’hgrz

¢« H(info| A" ||C" | m)

ce—c 7

st «— (¢, c,r1,72,71,72, X, Z, A, C)
Return (st”, c)

Algorithm PBS.Ux(st*, msg,) :

(e, r1,7m2,71,72, X, Z, A, C) « st*

(s,y,t) < msg,

Ify=0o0rC#¢g'Z%o0rg°#A- XY
then return L

s — (y1/72) s+ 11

Y —m-y

'~y -t+r

Return o « (¢, s',y,t")

Algorithm PBS.Ver(pk, info, o, m) :

X «— pk; Z < F(info); (¢, s,y,t) «— o
If y = 0 then return 0

C—g'ZV; Ae—g* XY
If ¢ # H(info | A||C || m) then return 0
Return 1

Fig. 10. The partially blind signature scheme PBS = PBS[G].

OMUF secURITY. We next study the OMUF security of PBS. Note that the definition must also be adjusted:
The main difference is that the adversary wins as long as it can produce £ + 1 valid message-signature pairs
for some info for which it has run only ¢ signing sessions, regardless of how many signing sessions are run
with info’ # info (i.e., their number could be higher than ¢). The corresponding game is defined in Figure 12,
for the specific case of the scheme PBS. We prove the following theorem.

Theorem 7. Let G be an (asymptotic) family of prime-order cyclic groups. Let Aag be an algebraic adver-
sary for the game OMUFPBS[G]()\) such that for each public information info, makes at most Qs, queries to
S1 and Qu queries to the random oracle H that start with info. Also, let the total number of distinct public
information info’s queried by Aag to S1 be bounded by Qinto. Then, there exists an adversary Baiog for the
DLog problem running in similar running time as Aag such that

N Qinfo(Qu + @s, +1)(Qu +3Qs, +1) +2
p—1

The proof is very similar to that for BS3 except we need to additionally perform a hybrid argument over
queries to F, guessing which info will be the one leading to a one-more forgery. However, we need to work
harder here to ensure the discrete logarithm avantage does not scale with Qinfo.

We also note that we have no argument supporting the fact that the information-theoretic term in
Theorem 7 is tight and the inclusion of info in H is necessary. However, a tighter analysis appears to require
studying a more general version of WFROS. We leave this to future work.

Advgrélsu[fG] (Aa1g7 )\) < 2Advélog (Bleg7 >\)

6.1 Proof of Theorem 7

Proof. Let A, be an algebraic adversary described in the theorem. The OMUF“:;ISg[G] game is formally

defined in Figure 12. Without loss of generality, we assume that if A, outputs the public information info*,
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Game PBlind“PABS()\) :

par < BS.Setup(1*)
b«s{0,1}; bg < b; b1 — 1—b
b/ s AINIT,Ul,UQ (par)

If ¥’ = b then return 1

Return 0

Oracle INIT(p~k, info, o, ma) :
sessp < init

sess; «— init

pk < pk_

Oracle U (i, msg!") :

If i ¢ {0,1} or sess; # init then return L
sess; < open
(st¥, chl®) — PBS.U; (pk, msg!”
Return chl®

,info, ms, )

Oracle Uy (i, msgt?) :

info « info mg <« Mg; m1 <« My

If ¢ ¢ {0,1} or sess; # open then return L
sess; < closed
b, « PBS.Us(stl, msgl”)
If sessg = sess; = closed then
If 0o = L or o1 = L then return (L, 1)
Return (og,01)
Return (i, closed)

Fig. 11. The PBlind security game for a partially blind signature scheme PBS.

Game OMUFgt . (V):

fid < 0; Fid « (); Hid « ()
(info™, {(mi, o) Yrereqinfor )+1)

Return 0

then return 0
Return 1

Oracle H(info || A || C | m) :
If T\ (info || A||C|m) =
Ti(info || A || C'||m) «sZy

hid « hid + 1
Hid(info | A || C' | m) <« hid

6h1d «— Tl(mfo H A H C |

&hid < &; Puia < B
Return T} (info || A||C | m)

m)

p—IGxl; g <—9(GA) T s Lp; X < g"
bld<_0 Iﬁn(_®7 Tl(_() T2(_()
{ < a table where all entry are initially set to 0

- AallgSQ " l‘(p7 9, G>\7X) Asid < gagid;

If 3 k1 # k2 such that (mf , o) = (mj,,0F,) then

If 3 k € [£(info*) + 1] buch that yk =0

or cf # H(info™ || g° X x ekl | g* Al [ mf)
where (c¥, s¥,y¥ tF) = of and Z = F(info*)

1 then

&9 yra* a%i ahi ~aCi

/A= gA X*x Hze fid] Z; Hie[sid] Az;A Cl;c
g i i i

// C= ﬁ Xﬁ HZE[ﬁdf Zﬁ Hie[sid] A? Czﬁ

Oracle Si(info) :

Z < F(info)

sid « sid + 1; infogiq < info
Gsid, tsid <3 Zp; Ysid < Z;‘
Stgia < (@sid, Ysid, tsia)

d — gtsid 7 Ysid
msg, <« (Asid, CVsid)

Return (sid, msg;)

Oracle Sa(i,¢;) :

If ¢ ¢ [sid]\Zgn or ¢; = 0 then
Return |

(aia Yi, tl) « st}

Si<—a;+¢ YT

msgy < (8i, Yi, ti)

Zﬁ‘n <« Iﬁn v {}

If(ilgfoi) mfo i) { }

£L(info) « K(lnfo) +1

Return msg,

Oracle F(info) :
If T>(info) = L then
T5(info) «s G
fid « fid + 1; Fid(info) « fid
Zﬁd = Tg(info)
o
Return T5(info)

Fig. 12. The OMUF security game for the partially blind signature scheme PBS[G].

then A, makes exactly Qs, queries to S; and Qs, queries to S that do not return L for info
Aqlg returns, we know £(info*) = Qs, .

In the OMUF;,“;?[G] game, the corresponding hid for each query (info | A| C|m) to H is recorded in

Hid(info | A||C||m), and the output of the query is recorded as dniq. Also, since A, is algebraic, Aaig also
provides the representation of A and C and the corresponding coefficients @ and 3 are recorded as dpiq and
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Ehid. The corresponding fid for each new query info to Sy is recorded in Fid(info). Also, Ig;fo) records the
subset of Zg, corresponding to signing sessions with public information info.

Denote the event WIN as A,j, wins the OMUFP;SE[G] game, i.e., all the output message-signature pairs

{mi, 7% brer@s, +1) are distinct and valid for info™. Furthermore, we denote strj; := info* | g° EX el || gt Zgld(mfo*) [ mi.

We let E be the event in the OMUFPé‘ng[ ] game that after the validity of the output is checked, for each
k€ [Qs, + 1], j = Hid(str}), and i* = Fid(info*) ?, the following conditions hold:

P Y B =t (30)
iez ™)
*Z%'Ci’d?izfj'y;:, (31)
1€Ztin
Vi e [sid\Zgn : 650 =0. (32)

Since Adv,grélg[f 1(Aaig, A) = Pr{WIN] = Pr{[WIN A E] + Pr[WIN A (—E)], the theorem follows by
combining the following two lemmas with Theorem 1.

Lemma 12. There exists an adversary Byfros for the WFROSq , problem making at most Qu + Qs, + 1
queries to the random oracle H such that

AdVE (Butios) = ~—Pr{WIN A EJ. (33)

anfo

Lemma 13. There exists an adversary Bqiog for the DLog problem running in a similar running time as
Aaig such that

2
Pr[WIN A (—E)] < 2AdvE°® (Baiog, A) + pa— (34)
O

6.2 Proof of Lemma 12

Proof. We first give a detailed description of Byfos playing the WFROS game.
THE ADVERSARY Byfros. To start with, Byfos first samples a label i* uniformly from [Qinfo]- AlS0, Byfros
samples = uniformly from Z,, sets X to g”, and initializes sid, hid, fid, Hid, Fid, Zan, 71, and 75 as described
in the OMUF?Bang[G] game. In addition, Byos initializes tfid to 0 and tFid to an empty table, which are used
to record the labels of info queries to S, and initializes tsid to 0 and tSid to an empty table, which are used
to record the labels of session IDs for info such that tFid(info) = i

Then, Byfos runs Aag on input (p, g, Gy, X) and with access to the oracles F, Si, S, and H. These
oracles, operate as follows:

Oracles F: Same as in the OMUFPQIS[ ] game except instead of sampling T5(info) uniformly from G, if
TQ(lnfO) L, Bufros samples zgq umformly from Z, and sets Th(info) « g*fid.
Oracles 81 After receiving a query info to S, from Aalg, if tFid(info) = L, Byros increases tfid by 1 and
sets tFid(info) = tfid. Then, there are two cases:
— If tFid(info) # 7%, Bytros samples sgiq, t;q uniformly from Z, and samples y.;4 uniformly from Z3.
Then, Byfros sets Aga = ¢°¢ X Ysia and Cgq = glea.
— If tFid(info) = i*, Bufros Samples asid, thiq uniformly from Z, and sets Agq = ¢g*i¢ and Cyiq = gt/sid.
Also, Byfios increases tsid by 1 and sets tSid(tsid) < sid.
Finally, Byfros returns (sid, Agig, Csid)-

9 Here, Hid(strf) must be defined since a query stri is made to H when checking the validity of the output (m}, o).
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Oracles Sy: After receiving a query (4,¢;) to S, from Aaig, if 7 ¢ [sid]\Zgn or ¢; = 0, Buwiros returns L.
Otherwise, there are two cases:

— If tFid(info;) # 1%, Bufros cOmMputes y; <« yi/ci and t; < t; — i ZFid(info,)-

— If tFid(info;) = 7*, let 7/ be the index in [sid] such that tSid(i') = i and Bypes sets & <« ¢;.
Then, Bysos makes a query (i,¢y) to S. After Bypos receives gy from S, B sets y; «— ¢y and
ti <1, — Yi - ZFid(info,)-

Finally, Byfros returns (s;, ys, t;)-
Oracles H: After receiving a query (info | A | C' | m) to H from Ay, if tFid(info) # 7* or Ty (info | A | C | m) #

1, then H is the same as H in the OMUF;‘;ISg[G] game. Otherwise, since Ay, is algebraic, Byos also

knows & and B such that

A=g¥x% T 2% [ 4™ e™, c=g"x% [ 2" T[] A7 ¢ .
i€[fid] i€[sid] i€[fid] i€[sid]

Then, Byfos issues the query (&, E) to H, where @, Be Z,Q,QSIH such that

A X Aty
@ *Zie[sid],tFid(infoi);ei*0‘ Yir

a®) = § _Asiac | i =2i, i€ [tsid] , (35)
0, o.w.
—pfx =0

B = { _pGsiaw | =2i—1, i€ [tsid] . (36)
0, 0. w.

After receiving the output (dpid, hid), Bwtros sets Ti(info|| A | C||m) < dnia and Hid(info | A| C' | m) <
hid. Finally, Byfos returns Ty (info | A | C || m).

After receiving the output {info*, (mj, o})} ke[Qs, +1] from Aaig, Busros aborts if the conditions from the event
WIN A E do not occur. Otherwise, Byfos outputs J := {Hid(str}) | k € [Qs, + 1]}.

ANALYSIS OF Byfros. Note that Byfros makes a query to H at most once when it receives a query to H for
infogrg and at most Qg, + 1 more queries to H when checking the validity of the output. Therefore, B makes

at most Qu + Qs, + 1 queries to H. Also, it is clear that B simulates oracles F', S1, Sa, H in the OMUF;‘;ISg[G]

game perfectly no matter what label is assigned to tfid. Therefore, the probability that tFid(info™) = i* and
WIN A E occurs when running Byges is equal to ﬁPr[WIN A E.

It is left to show that if tFid(info*) = i* and WIN A E occurs within the simulation, then Byfros wins
the WFROS game. Suppose WIN A E occurs and tFid(info™) = *. Following the similar analysis of Byros
in the proof of Lemma 10, we have |J| = Qs, + 1.

Denote Z£°* and sid*®" as the values of Zg, and sid when Ay, returns. Then, since E occurs, by (30) and
(31), for any j € J it holds that

A X ~AA; ALix AC;
&= Y gie-dl = =5 [ BT+ Yy BT (37)
ieTh; iez{me®)
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Game rel—DLogé’n(A) :

P —[Gal; g < 9(G»)

{Xitiern) <5 Gy

Yo, Y155 Yn < "A(pvg7 G, {XZ}ZE[n])
Ifvie{l,...,n} : y; =0 then return 0
If g [ Liep) X/* = lc, then return 1
Return 0

Fig. 13. The rel-DLog game.

Then, by (32), we have

AZE AC; A X ~A;
=05 | B + Z yi- B | = a5 — Zyrciﬂj

i) €Ty
~AA; ~AA;
Z%"Q"Oéj - Z y;'aj
ieTior ie[sid*ot\Zgot
A X ~A; ~A;
=a; - Z vi - 05" = Z Yi-Gi-a; .
ie[sidtt] tFid(info; ) %1% z’el'f(.i"b*)
Then, from the simulation, by (35), we have for any j € J
0 2 1) 2i (0 2i—1 2i
()+Z =4 g ag.l)) 5 )+Z B(% )4_0z ,BJ(Z))
ZE[le] ZE[qu]
Therefore, By ros wins the VVFROSQSl p game. ]

6.3 Proof of Lemma 13

Proof. We first partition the event WIN A (—F) into two cases. Denote F} as the event in the OMUFPB“Sg[ G]

game that there exists k € [Qs, + 1] such that either (31) or (32) does not hold, and denote F, as the event
that there exists k € [Qg, + 1] such that (30) does not hold. Then, if F does not occur, we know either Fj or
F5 occurs. Therefore, we have WIN A (—FE) = (WIN A Fy) v (WIN A Fj). For the case that WIN A Fj
occurs, we show the following claim.

Claim 8 There exists B((j?())g for the DLog problem running in a similar running time as Aag such that

1

PIWIN A Fi] <Adva°s(BY) )) + 1

dlog>

(38)

For the case that WIN A F, occurs, we construct an adversary Brel-dlog for the rel—DLogGQF game (defined
in 13) with advantage equals to the probability that WIN A Fj occurs, where Qp denotes the maximum

number of queries to F issued in the OMUFPSISg[ G] game, and we summarize it into the following claim.

Claim 9 There exists Brel-diog for the rel-DLog problem running in a similar running time as Aag such
that

PrIWIN A F3] < Adv o (Brel-diog: ) - (39)

The rel-DLog problem is equivalent to the DLog problem, as shown in the following lemma from [JT20].
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Lemma 14 (Lemma 3 in [JT20]'). For any n > 0 and any adversary Biel-aiog for the rel-DLogg ,
game, there exists an adversary Baiog for the DLogg game such that

Adv glndlog(Brel-dloga A) < Advélog(3<llog’ A)+1/p.

By the lemma and Claim 9, there exists an adversary B((ﬁ())g for the DLog, problem such that Pr[WIN A Fj] <
Adv dlog(B(l)

dlog’ A) + l Therefore together with Claim 8, we can construct an adversary Baiog for the DLogg

problem that runs elther BY or BY with 1 /2 probability, and we can conclude the lemma since

dlog dlog

Pr[WIN A (—E)] < Pr[WIN A Fi] + Pr[WIN A Fy]

9 2
) 1 Adv dlog(B( ) )\) 4+ — = 2AdV(d;10g(Bdlog7 )‘) +—

dlog (0)
<
Adv (B dlog’ p— 1 p— 1

dlog>

Proof (of Claim 8). We first give a detailed description of B playing the DLogg game.

dlog
THE ADVERSARY Bdl . To start vvith7 Bdlog initializes sid, hid, fid, Hid, Fid, Zg,, T1, and T5 as described in

the OMUF;‘glsg[ g game. After BY

runs A,j, on input (p, g, Gy, X), and with access to the oracles 13‘, Sl, Sg, and H. These oracles operate as
follows:

receives (p, g, Gx, W) from the DLog game, sets X <« W. Then, B

dlog dlog

Oracle F: Same as in the OMUnglsg[G] game except instead of sampling T5(info) uniformly from G, if

Ty(info) = L, BY

dlog samples z uniformly from Z, and sets 75 (info) « g*fid.

Oracle S;: After receiving a query info from Aaig, Bwiros samples sgiq, t4y uniformly from Z, and samples
Yliq uniformly from Z¥. Then, Byros sets Agia < gS*‘dey;‘d and Cgiq < gtéid and returns (Sid Asid, Csia)-

Oracle So: After recelvmg a query (i,¢;) to S, from Aalg, if @ ¢ [sid]\Zan or ¢; = 0, B9  returns L.

dlog
Otherwise, let 7 := Fid(info,), and Bglog computes y; < yi/c; and t; < t; — y; - z;. Then, Bdlgg returns
(8i, Yi t;).

Oracle H: Same as in the OMUFPB“SE[ G game.

After receiving the output (info™*, {(m}, J:)}ke[Qsl+1]), B aborts if the event WIN A F does not occur.

)
dlog
It is clear that B simulates the OMUFZ2 game perfectly, and thus it is left to show that if WIN A F}

dlog PBS[G]
occurs, Bdlog can compute the discrete log of W except for probability 1/p.

Suppose WIN A Fj occurs in the OMUF?;}SF;[G] game simulated by B((i?()) - There exists k € [Qs, + 1] and

J = Hid(str}}) such that either (31) or (32) does not hold. Since j = Hid(str}) and 6; = ¢}, we have
* 5. ¥ * %% 49 &% &% ahi _aSi
et Xt = gttt = gt T 750 ] 4 ol o
i€[fid] 1€[sid]
From the simulation of Sy, for each i € [sid], we have
A= g" X7V, Cy =gt

Also, B((i?())g knows the discrete log of Z; as z; for each i € [fid]. By substituting A; = g XVi C; =g, and
Z; = g% into (40), we have
gst—éj'y;: — gﬂanjZ ’

10 The DLog and rel-DLog games defined in [JT20] differ slightly from our descriptions, but the lemma, follows by a
similar proof.
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where

i€[fid] 1€[sid]
~ AAi
i€[sid]

If 0 # =65 -y, B

dlog Can compute the discrete log of X, which is also W, as

x = 78?;_77?
nt+ ;i

Therefore, it is left to bound the probability that 77;( = —0; - yy, and there are the following two cases.
(32) does not hold for k, j. Consider the transcript 7" that the adversary sees before it returns. Given the

transcript 7'°*, since for each i € [sid]\Zan, the adversary sees only A; but does not know either s; or y., the

value y; is uniformly distributed over Z} independent of all other y;, for i’ # i. Therefore, the probability

that 77;( = —6; - yfis L.

p—1
(32) holds but (31) does not hold for k, j. Since (32) holds and for each i € Zg, it holds that y} = y; - ¢;, we
have
77§<:&3<_ 2 R RE A
1€Zgin
Then, since (31) does not hold, we have
e # =0 Yt

which means the probability that 77? = —4; - yj is 0. Therefore, for both cases, the probability that 77;'( -
—0; - yi is bounded by Iﬁ D

Proof (of Claim 9). We first give a detailed description of Byel-diog playing the rel-DLogg o, game.

THE ADVERSARY Brel-dlog. 10 start with, Biel-dlog initializes sid, hid, fid, Hid, Fid, Zan, 71, and 15 as
described in the OMUF?;IS‘%'[G] game. Also, Brel-diog samples 2 uniformly from Z, and sets X <« ¢®. After
Bhel-diog receives (p, g, Gy, Z1, ..., Zg, ) from the rel-DLogg, o game, Biel-dlog TUns Aalg on input (p, g, Gy, X)

and with access to the oracles 13‘, Sl, Sg, and H. These oracles operate as follows:

Oracle F: Same as in the OMUF,’;‘;S’{[G] game except instead of sampling Ts(info) uniformly from G, if
Tg(info) =1, Brel-dlog sets Tg(info) — Zg4.

Oracle S;, S, H: The same as in the OMUF;\é‘Isg[G] game.

After receiving the output (info*, {(m}, U:)}ke[Qlerl])a Biel-diog aborts if WIN A F5 does not occur.

It is clear that Biel-diog simulates the OMUF;‘;ISg[G] game perfectly, and thus it is left to show that if

WIN A Fy occurs, Brel-diog can win the rel—DLogGQF game.

Suppose WIN A Fy occurs in the OMUF;‘Q;‘{[G] game simulated by Biel-diog. There exists k € [Qg, + 1]

and j = Hid(str}) such that (30) does not hold. Since j = Hid(str}), we have

* A9 .4 G ghi S
Gz = x5 [ 2 [ A e (41)
i€[fid] 1€[sid]

From the simulation of Sy, for each i € [sid], we have

Aj=g%, g =CZ; " .
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Also, Biel-diog knows the discrete log of X as z. By substituting A4; = g%, C; = g'Z¥, and X = ¢g* into
(41), we have

~ ~ N ~ aZi aC,
® _y¥ 94 B+ Ai .+ B, DI wd(iy—i Yir B
gtk Zlyf = gBJ +ﬂj z+ i€[sid] (ﬂjl @ +6jl tz) | | Zf7 lee[bld]vtsm(l/)*‘b Yir g .

ie[fid]

Therefore, Brel-diog can compute (wo, ..., wq, ) such that g*° HiE[QF] Wt = gwo Hie[ﬁd] Z" = 1g, as

ﬂerﬂ;(’z*Zie[sid](ﬂ?i‘aiJFﬁ](':i'ti)*tzv i=0
AZ; AC., . . .
v Byt + Divelsid]ssid(in—i Yir - B c i€ [fid], i # i*
1 T AZi A il . .

—Yi + Bt + Zi/e[sid],tSid(i/)=i i - B i=i*

0 ) o.w.
Since (30) does not hold, we have

~Z. 5C.
iez (™)

Therefore, Byel-diog wins the rel-DLogg , game by outputting (wo, - .., wgq,) defined above. ]
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A  Proof of Lemma 4

Proof. For k € {0, ...,n}, define Ey as

k
3ie{0,...,k}such that D; #0 A Do+ Y D;X; =0.
j=1
We will prove the theorem using induction. It is clear that Pr[Eg] = 0. For k > 1, assume Pr[E;_1] <
S L Tt holds that

i=1 [0
Pr[Ek] = Pr[Ek|Ek_1]Pr[Ek_1] + Pr[Ek\ﬁEk_l]Pr[ﬁEk_l]
< Pr[Ek_l] + Pr[Ek|ﬁEk_1]
= Pr[Eg_1] + Pr[Ex| (—Ek—1) A Dy # 0] Pr[Dy, # 0|=Fj_1] (42)

+ Pr [Ek | (_‘Ek—l) AN Dy = 0] PI’[Dk = 0|ﬁEk_1]
< PI’[Ekfl] + Pr [Ek } (_'Ekfl) A Dy # 0] + Pr [Ek ‘ (_'Ekfl) AN Dy = 0] .
It is left to bound Pr [Ek | (=Ek—1) A Dy # O] and Pr [Ek | (=Ek—1) A Dy = O].
Suppose Ej_1 does not occur and then we have either D; = 0 for all 0 < i < k or Dy + 25;11 D;X; =0.
If Dy = 0, we have either D; = 0 for all 0 < i < k, or Do+ s, D;X; = Do+ 3;_{ D;X; # 0, which

means Fj does not occur. Therefore, we have

Pr [Ek ’ (*Ek,1) A Dk = 0] =0. (43)
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Otherwise, if Dy # 0, we know Ej occurs if and only if Dy + Z§=1 D;X; # 0. Since X, is uniformly
distributed over Uy independent of (Dy,..., Dy, X1,...,Xk—1) given Dy # 0 and Ej_; does not occur, it
holds that

k
Pr[Ek|(=Ex-1) A Dy #0] =Pr lDo + Z D;X; =0|(=Ex_1) n Dy # 0]

j=1
Do+ Y !'D;X;
— Pr le D0t s DN ) s 7&01 (44)
Dy,
1
<.
Uil

Therefore, from (42), (43), and (44), we have

k
1 1
Pr[Ek] < PI’[Ekfl] + < .
Ui Z; Uil

Therefore, by induction, we have

Pri3ie{0,....,n} : Di#0 A Do+ Y D;X; =0

j=1

Pr[E,]

N
=
=

@
Il
—

B Postponed Proofs from Section 4

B.1 Proof of Lemma 7

We prove the lemma by going through a serious of games.
Gameg': This is Ol\/IUF—GGMg‘S1 (Figure 5).

Game’f‘: This is defined in Figure 14 that only contains the dashed box. We introduce variables X, A, Y1,

s AQy, s Y, In Gamef‘. Each variable is assigned a value, that is, X is assigned z, A; is assigned a;, and
Y; is assigned y; - . The input to @ is a polynomial P of variables X, {A;, Yz’}ie[Qsl] over Z, instead of a single
value v € Z,, and the set Cur is a set of polynomials. Also, in @ we check the equality of two polynomials by
its evaluation on the assigned values, which is denoted by =¢ya1 (see Definition 1).

Definition 1. For two ploynomial P and P’ of the variables Xi,..., X, over a field F, suppose each X;
is assigned with a value x; € F. We say P =cwa P’ if and only if P(X; = 21,..., X, = 2,,) = P'(Xy =

Xiye oy, XKy = Tp).
For convenience, we also have P =gya P(X1 = x1,..., X, = ).
It is easy to check that =eva is an equivalence relation over the polynomials of the variables Xy, ..., X,.

We first show that the oracle @ in Game{4 is well-defined, that is, for each query P to @, there exists at most
one P’ € Cur such that P =, P’. Suppose there exists P/, P” € Cur such that P’ # P”, P! =.ya1 P =cva1 P”.
Suppose P” is added to Cur after P’. Consider the query to @ during which P” is added to Cur. Since P’
is already in Cur when P” is added, we have P’ #¢ya P”, which yields a contradiction. Therefore, for each
query to @, if there exists P’ € Cur such that P =, P’, then P’ is the unique polynomial in Cur such that
P =qal P'.

We now show that the views of the adversary in Gamey and Game; are identical. Define an intermediate

game Game’lA such that it is identical to Graumei4 except each the polynomial P appear in the game is
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Game,™ ‘ :

u

p « |Gal; © < Z}; assign z to variable X
sid —0; 0 —0; Zgn — T; E—(); T« ()
o
{(mlm O'k)}ke[ZJrl] 8 AH7SI’S27H(p, @(1)7 QS(X))
If 3 k1 # k2 such that (my,,0k,) = (Mky, ok,) then
Return 0
If 3 k € [£+ 1] such that yf =0
or i # H(P(sk — cr - yi - X) [ @(yx - X) | ma)
where (ck, Sk, yx) = o then return 0

Oracle S :

sid «—sid + 1

Asid <3 ZLp; Ysid <9 Z;‘;

stéia < (asid, Ysia)

Assign agia to variable Agq
Assign ysig - © to varaible Ygiq
msg; < (P(Asia), P(Ysia))
Return (sid, msg;)

Oracle Sa(i,¢;) :
If ¢ ¢ [sid]\Zgn then return L

(ai7yi) « st}

Si < Qi +Ci ~Yi T
Ry —A;+cYi—s;
Ry < Y; —yiX
L<—LU{R1,R2}

Return 1
Oracle @(P) :

If 3P’ € Cur such that P =cya1 P’
and P #;, P’ then abort game

1f 3P € Cur such that P =eva P’ thenj: msgy < (si,:)

i Return Z(P’) ‘ ?ﬁn <€—+If;n v {i}
- «—
Return msg,

Oracle H(str) :

If T(str) = L then
T(str) «s Zyp

Return T'(str)

If 3P’ € Cur such that P =, P’ then
Return Z(P’)

E(P) s {0,1}'°s")\=(Cur)

Cur < Cur n {P}

Return =(P)

Oracle IT(£,€',b) :

If 3P, P’ € Cur such that £ = Z(P)
and ¢ = Z(P’) then
Return &(P + (—=1)°P’)

Else return L

Fig. 14. The definition for Gamef', Games', and Game'QA7 where Game7' only contains the dashed box, Games'

contains all but the gray box, and Game'zA contains all but the dashed box.

replaced by its evaluation value P(X = z,A1 = a1,Y1 = y1- @, ..., Agid = Qsid, Ysid = Ysid - x). 1t is clear that
Game/lA is identical to Gamey'. Also, since in the oracle @ in Game?', a polynomial P is considered equal
or not equal to another polynomials by its evaluation value, the view of the adversary in Game; and Game)
are identical. Thus, we know the views of the adversary in Gamey and Game; are identical, which implies

Pr[Game;' = 1] = Pr[Games = 1] . (45)

Gamef‘: This is defined in Figure 14 by ignoring the graybox. A set L is introduced to record the information
leaked to the adversary by Sa. For the query (i, ¢;) to Sa, polynomials Ry = A; +¢;Y; —s; and Ry = Y; —y; X
are added to L. Suppose L is also recorded in Gamef‘. In Gamef‘, define the event F; as after an query P
to @ is made,

3P’ € Cur such that P =y P’ and P #;, P’ .
Then, Geurneé4 is identical to Gamej4 except it aborts when Fy occurs and we have

Pr[Game;* = 1] < Pr[Games' = 1] + Pr[E4], (46)

To bound Pr[E}], for each j € [Qs], we denote the event E; ; in Gamey' as during the j-th query to &

3P’ € Cur such that Pj; =cva P" and P; #,, P’ .
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Then, we have By = \/, (g, E1,j- Denote Ei ; := E1; A\;c(;)(—E1,). We now bound Pr[E] ;] for each
J € [Qa].

We now fix a certain j € [Qg]. Consider the step when the j-th query to @ is made during Gamef‘.
Denote the transcripts between the oracles and adversarys when the j-th query to @ is made as m;, which
contains @(1), #(X), and all the inputs and outputs of the queries to S, Sa, IT, and H made before the j-th
query to ¢. For a certain transcript m; = A, for 1 < k < j, denote the k-th query to @ in A as P,CA. From the
transcript A, one can compute the set Zg,, Cur, and L at the step when the j-th query to @ is been made.
Denote them by Ifﬁl, CurA, and L2. For each i € Ifﬁ, denote the input and output of the query to the So
for the session ¢ in the transcript A as cl-A and (siA, ylA) Also, from the transcript 7;, one can tell whether
F4 i, occurs or not for k € [j — 1], since the event Ey j, occurs if and only if Py, #; P’ for all P’ € Cur but Py
is not added to Cur. Denote the value of sid when the j-th query to @ is made as sid?.

Denote 7; as the set of all transcripts A such that Pr[7; = A] > 0 and none of {E} x }e[;] occurs given
m; = A. We just need to bound Pr[E] ;|m; = A] for each A € T;.

We now fix a certain A € 7;. For any polynomial P, denote the event Fp as P =¢va1 Pj and P #p, P;.
Then we know Ef ; implies one of {Fp} pec,a occurs and we have

PI’[ELJ-‘T(J‘ = A] < Prl \/ Fp|7Tj =A
PeCur?

Therefore, it is left to bound Pr[Fp] for each P € Cur®.

We now fix a certain P € Cur®. Since PjA and LA are fixed in A, we can directly check whether P =; a PjA
or not. If P =ra PjA, then we have Pr[F] = 0. Therefore, we can assume P #r,A PjA. Then, we only need to
bound the probability of P =cva PjA. Since we fix 7; = A, the only randomness here is the values assigned to
the random variables X, {A;, Y;}c[sq4]- Denote the values as 77 := (z,a1,y1° 7, ..., 4494, Ysias *T) € Z;”SidA,
where x, {a;,Yi};e[sias) are random variables sampled in the game, and we have P =cya P(X = n1, {A; =
M2is Yi = M2i+1 }ie[sida])-

To bound Pr[P =gy PjA|7rj = A], we first introduce Lemma 15 below. Then the proof structure can be
described as follows. We first define a sequence of polynomials Dg, D1, ..., Dy, By, ..., Bgy1 over variables
X, {Ai;Yi}icrsiaa] such that Bgyq = P PjA. Then, we try to apply Lemma 15 to bound the probability
by showing 7 is uniformly distributed over C, Zero(Bg+1) nC # &, and Byy1 ¢ Span({1, B, ..., By}) given
m; = A, where C is defined in Lemma 15.

Lemma 15 (Lemma 1 in [BFP21]). Let D1,...,Dp, Bu,...,Bgy1 be polynomials in Zy[X1,...,X,] of
degree 1. Let

C:= ﬂZero(Bi) \ U Zero(D;) | ,

ielaq] iem]

where Zero(P) means the zero set of P. Assume Zero(Bgi1) nC # & and Bgy1 ¢ Span({1, B1,...,Bg}). If
Z is picked uniformly at random from C then
p—m 1

< PHBa(@) =0 <

Let m :=sid® + 1 + |Cur®|(|Cur® — 1|). Denote Dy := X and Dy :=Y; for i € [sid?]. For each P, P’ €
Cur® such that P # P’, denote Dp pr := P — P'. We can relable {Dp.p}pprecura prp t0 Dgqa ;.- D
Let q := 2|Z4 |. For each i € Z& , denote
B(i,l) = Az‘ + CiAYZ‘ — SA Bi)g = Yz — ylAX .

7 0

We can relabel {B(z‘,l)7B(i,2)}ieIf4 to Bi,...,B, and denote B4 := pP- P]-A. Here one thing to notice is
that we have LA = {By, ..., B,}.
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Denote C := (ﬂie[q] Zero(Bi)) \ <Ui€[m] Zero(Di)) and we have the following claim. The proof of the
claim is deferred to Appendix B.2.

Claim 10 In Gamef, for any AeT;, given m; = A, we have 77 is uniformly distributed over C.

We now continue to show that Zero(By11) N C # . If Zero(By4+1) n C = &, since by the above claim
1 must be in C given m; = A, we know Bgy1 =eval Bg+1(n) # 0, which implies Pr[]:j =eval Pjlmj = A] = 0.
Therefore, we only need to consider the case when Zero(Bg4+1) nC # .

We then show that B,11 ¢ Span({1, B1,...,B,}). Since P % cu PjA and L2 = {By,..., B,}, we know
Bgi1 ¢ Span({B1,...,Bg}). If Byy1 € Span({1, By, ..., B,}), we know there exists a constant § € Z, such
that 6 # 0 and By41 + 6 € Span({Bi, ..., By}). Let B’ = B,11 + 0. Then, we have for any 7jp € C, B'(7j) = 0
and thus B,11(7f) = B'(77) —d = —6 # 0, which means Zero(By+1) nC = J. This contradicts with the above
argument that Zero(By4+1) N C # &. Therefore, we have Byi1 ¢ Span({1, By, ..., By}).

Then, by the above claim, we can apply Lemma 15 here and we have

P[P =cval P{|m; = A] = Pr[Bgy1(i7) = 0| mj = A] < p_lm
Since m = sid® + 1 + |Cur?|(|Cur® — 1) < 1+ Qs, + Q%, we have
PrE] ;1= ) Pr[E}; A m = 4]
AeT;
Qo
g A L P s S A g
Therefore, we have PrlE1] = ;0,1 PrlE] ;] < Wm and by (46)

Q%

P17 Qs 103 ()

Pr[Game* = 1] < Pr[Games' = 1] +

Game;A: This is defined in Figure 14 by ignoring the dashed box. The only difference between Gameé4 and
Game;A is that in the oracle @ the condition “3P’ € Cur such that P =, P’ is changed to “3P’ € Cur
such that P =; P””. We will show that P =, P’ is equivalent to P =; P’ here in Games, and thus we
know the view of adversary are identical in these two games.

In Gameé, consider an query P to the oracle @. Let P’ be an arbitrary polynomial in Cur. Consider the
step when the condition “3P’ € Cur such that P =, P’ is checked. We now show that P =, P’ is if and
only if P =5 P’. Suppose P =, P’. Since the game does not abort, it must hold that P =7 P’. Therefore,
we know P =y, P’ implies P =, P’.

On the other hand, we show the following lemma.

Lemma 16. In Game{‘, at any step of the execution, we have

V PeSpan(L) : P =40, (48)
which implies for any two polynomials P, P' of variables X and {A;,Y}iclsid]
P =1 P implies P =¢ya P’ . (49)
Proof. We just need show that for each R € L, we have R =, 0. From the description of Sy, we know
L={A;i+cYi—54,Yi — YiX}iety, -
For R=A;+¢Y; —s;, we have R =¢ya1 a; +¢; - y; -x; —s; = 0, since s; = a; + ¢; - y; - ;. For R =Y; —y; X|

we have R =cya ¥; - € — y; - © = 0. Therfore, we know the lemma holds. O
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77777 A

Game'! Gaume{‘xJ , , Game'gA : Oracle S; :
PG st
x s Z;; 1assign x to variable X | Gsid »; Ysid P

d 0,008 & 7 Cor e 25, 5 (5T () Foe o (G "
St fos gluzz 0 y ! Asmgn asia to variable Agq !
{(m, %) brefes1) <5 A (p, 2(1), 2(X)) |

| Assign ysiq - © to varaible Ygiq 1

If 3 k1 # ko such that (mg,, 0%, ) = (M, Ok,) then Lo TS IS a

Return 0 msg,; < (?(A51d)7 ®(Ysia))
If 3 k € [£ + 1] such that yf =0 Return (sid, msg, )

or ¢ # H(P(sk — ¢k - yr - X) | D(yw - X) | ms) Oracle S2(i,¢;) :
where (ck, Sk, yk) = ok then return 0 If i ¢ [sid]\Zgn then return L
Return 1 (as,yi) < sti
Oracle @(P) : Si<—ai+¢i Yi-x
il a Ry — A +cYs —s;
w If 3P’ € Cur sucl:h that P =cya P’ | Ry < Y; — yiX
\ and P #r P’ then abort game | L — LU{Ri, Ry}
Ifijl—; ‘e Cur such that P =, P 7t7hén msgy — (Si, Yi)

Return :(P:) If 3 Py, P> € Cur such that
Z(P) s {0, 1}*="\Z(Cur) Pi# Pyand P =1, P
Cur < Cur n {P} then abort game
Return =(P) Tan < Zan U {i}
Oracle I1(€,¢',b) : Le—L+1
If 3P, P’ € Cur such that £ = 5(P) Return msg,

and ' = Z(P') therbl Oracle H(str) :

Return (P + (—1)°P") If T(str) = L then
Else return L T(str) «s Zp

Return 7T'(str)

Fig. 15. The definition for Games' and its difference from Games'. Games' contalns all but the solid boxes and

Games' contains all but the dashed boxes. We also define an intermediate game Game3 which contains both dashed

and solid boxes.

From the above lemma, we know P =, P’ is equivalent to P =4 P’ at the step in @ when the condition
“JP’ € Cur such that P =.,a P"”. Therefore, we know the view of adversary are identical in these two games,
which implies

Pr[(}ameé4 =1]= Pr[Game/QA =1]. (50)

Game3 Games is defined in Figure 15 by ignoring the dashed box, where the only difference from GamezA

is the orinal abort condition is removed from @ and a new abort condition is added to So. Also, in Gramrlef,f‘7
since the new abort condition only use the information L, we do not need to assign values to the variables
anymore.

We first show that the oracle @ in GamegA is well-defined, that is, for each query P to @, there exists
at most one P’ € Cur such that P =5 P’. Suppose during a query P to @ in Game{‘, the game does not
abort and there exists P/, P"The € Cur such that P’ = P =7 P”. Without loss of generality assume P” is
added to Cur after P’. If L is not updated after P” is added to Cur, then by the description of &, we know
P’ #1, P", which yields a contradiction. Otherwise, if L is updated after P” is added to Cur. Consider the
last time L is updated in S,. Since P’ = P” and P’, P"” € Cur, we know Graumeg4 must abort in S, which

yields a contradiction. Therefore, we know the oracle & in Games' is well-defined.

To show that the probability A wins Game'zA is bounded by the probability A wins Game?, we introduce
an itermidiate game GameéA which is defined in Figure 15 containing everything. We first show that the
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probability .4 wins Game’QA is bounded by the probability A wins GameéA. Denote the event F5 in Game;A
as during a query to So after L is updated,

HPl,PgeCursuchthatPl;éPgandPl :LP2-

Then, we have GamegA is identical to Game;A except it aborts when Fs occurs, which implies

Pr[Game,™ = 1] < Pr[Game,” = 1] + Pr[Es] (51)

We now show that Pr[E2] = 0. Suppose F5 occurs. Then, we know at some timestep in Game'QA there
exists Py, P, € Cur such that P; # P and P, =1 P>. We first show that P, #eval P2. Suppose P; =qya1 Ps.
Without loss of generality assume P; is added to Cur before P,. Consider the step when P; is added to Cur.
Since P is already in Cur, we know P; #; P,. However, since P, #; P, but Py =y P1, the game aborts,
which yields a contradiction. Thus, we know P; #¢va1 P2. Then, by Lemma 16, we know P; #; P, at any
timestep in GameéA, which yields a contradiction. Therefore, we know F5 never occurs in Game/zA, which
implies

Pr[Game* = 1] < Pr[Game}* = 1] .

Also, since the only difference between Game' and Game;' is that Gamej' might abort in & while

Gamey' never abort in @, we have Pr[Game}* = 1] < Pr[Gamez' = 1]. Therefore, we have

Pr[Gamey* = 1] < Pr[Game}* = 1] < Pr[Gamez' = 1] . (52)

Gamef: This is defined in Figure 16 by ignoring the dashed box. Gamef is identical to Game?’A, except the
generation of ,{a;, yi, Si }ic[sia) are changed. More precisely, the sampling of x is removed from the main
procedure, the sampling of a4, ysiq is removed from Sq, and in So, y; is sampled from Z;’; and s; is sampled

from Z, instead of computing from a; and y;. The oracle ¢ in Gamef is well-defined, which can be showed
using the same way as in Gamey'.

We now show that the view of the adversary in Games and Game, are identical. Since the value z and
a; are not used in GamegA except the dashed box, we just need to show that the distribution of (s;,y;) are
identical in Gaumeg4 and Gamef for each query (%, ¢;) to Sa. Consider the step when the adversary makes a
query (i,¢;) to Sp in Games' and assume i € [sid]\Zgn. The value y; and a; are not used anywhere in the
game yet. Therefore, given the current transcript, the distribution of (s;,y;) is uniformly random in Z, x Z5.
Since a; < s; + ¢; - y; - * and s; is uniformly in Z, given y;, we know the distribution of a; is uniformly

random in Z,, even given y;. Therefore, the distribution of (a;, y;) is uniformly random in Z, x Z;. Thus, we

know the view of the adversary in Gameg4 and Gamef are identical, which implies

Pr[Gameg' = 1] = Pr[Game;' = 1] . (53)

B.2 Proof of Claim 10

Proof. Without loss of generality, assume the randomness used in ¢ and the randomness of A are fixed and
assume Pr[m; = A] > 0 given those fixed randomness.
The claim is equivalent to show that

o I 1
VijoeC : Prygglii=10|m = A] = ﬁ
The probability here is taken over the randomness x, @, i, where @ = (a1,...,04q4), ¥ = (Y1, - -, Ysq2 )- Also,
T, Y1,---,Ysqa are picked uniformly at random from Zj and ay,...,agqa are picked uniformly at random

from Z,.
We first show that
mj =A implies 7eC.
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Sid 0 00,8 — & Cur— 25 5 (1 T — ()
{(m, o) Yreper1) s AT (p, 0(1), &(X))
If 3 k1 # ko such that (mg,,0k,) = (Mky, 0k,) then
Return 0
If 3 k € [ + 1] such that yf =0
or ci % H(@(sk — cx - g - X) | By - X) | ma)
where (ck, Sk, Yr) = 0% then return 0
Return 1

Oracle @(P) :

If 3P’ € Cur such that P =1, P’ then
Return =(P’)

Z(P) «s {0, 1}°e®\ = (Cur)

Cur <« Cur n {P}

Return Z(P)

Oracle IT(£,€',b) :

If 3P, P’ € Cur such that £ = Z(P)
and ¢ = Z(P’) then
Return &(P + (—1)°P)

5
. %
| Gsid < Lp; Ysid <5 Ly |

Istiq < (asid, Ysid) ‘

Return (sid, msg;)
Oracle S2(i,¢;) :

' (ai,yi) < st
18; «— Qs +C; - Yi - T
g

Cay. *
Si <8 Lp; Yi <3 Zp

Ry — A; +ciYi—s;

Rz <« YL - yLX

L—Lu {R1, RQ}

msg, «— (i, ¥i)

If 3 P1, P> € Cur such that
P # Poand P, =1 P»

then abort game

Iﬁnﬁzﬁnu{i}; {—L0+1

Return msg,

Oracle H(str) :

Else return L If T(str) = L then

T (str) «s Zp
Return 7T'(str)

Fig. 16. The definition for Gamez' and its difference from Games'. Games' contains all but the solid box and Gamez'
contains all but the dashed box.

Suppose m; = A occurs. We just need to show D;(n) # 0 for each i € [m] and B;(n) = 0 for each i €
[q]. For Dy,...,Dgqa 4, since  # 0 and y; # 0 for each i € [sid?], we know Di(n) = = # 0 and
D;i1(n) = y; -z # 0 for each i € [sidA]. For Dgqa.q,...,Dn, we make the argument using the original
label {Dp pi}p precura pppr- For each P, P’ e Cur? such that P # P’, assume without loss of generality P
is added to Cur before P’. When P’ is added to Cur, since P is already in Cur, we know P’ #.. P, which
implies Dp p/(77) = P'(7f) — P(7]) # 0.

For By, ..., By, we also make the argument using the original label {B(i,l)’B(m)}iezﬁAD. For each i € T3,
consider the query (i,c?) made to Sa. Since 7; = A, we have s2 = a; + c2 - y; - ¥ and y2 = y;. Therefore,
we have B(; 1)(77) = a; + ¢ - yi - @ — s£ = 0 and B(; o) () = y; - @ — y2 - @ = 0. Therefore, we have 7 € C.

We then show that

7€C impliess m; =A.

Since Pr[m; = A] > 0, we know there exists (zo,do, %) € Z},*’QSidA such that m; = A when (z,d,y) =
(0, o, Jo). We now show that for any (z1,d1,%;) € Z})“SidA, given (x,d,¥) = (x1,d,%:) and 7j € C, it must
have m; = A.

Denote the case when (z,d, ) = (zg, do, Jo) as case 0 and the case when (x,d,§) = (x1,d1,71) as case 1.
We will show that the transcripts between the adversary and the oracles are exactly the same in these two
cases, which implies 7; = A in case 1. We show this by induction. It is clear that the transcripts are the

1 Note here the value y; - x is assigned to Y;

44



same at the begining. For a time step T, suppose the transcripts are the same prior to this step and we have
the following situations:

- Query to @, Sy, IT: Suppose the adversary receives ($(1),P(X)) or makes query to S; or IT at step T.
For the case that the adversary makes query to S; or @, the transcripts can only differ on the invokation
of @ in S or II. Therefore, we only need to consider the queries and outputs of each .

For the k-th query to @ where k£ < j, since the prior transcripts are the same in these two cases and
the adversary is deterministic, we know the query P, and the set Cur are the same in the two cases.
If P; #eval P’ for any P’ € Cur in case 0, then we know P is added to Cur in case 0. Since m; = A
occurs in case 0, we know {P,} U Cur < Cur®. Since 7, € C, we know Py (1) # P'(if1) for any P’ € Cur?.
Therefore, we have Py #¢va P’ for any P’ € Cur in case 1 too. Then, the outputs of @ are the same in
the two cases.

Otherwise, if Py =evai P’ for some P’ € Cur, we know such P’ must be unique. Since E;j; does not
occur in case 0, we have P, =1, P’ in case 0. Since the current L is the same in the two cases, we know
P, =1, P’ in case 1 too. Since P, =;, P’ implies Py, =cva1 P’, we have Py, =¢ya1 P’ in case 1 too. Thus, the
output of @ must be the same in the two cases. Therefore, we know the transcripts in these two cases
must be the same after the k-th query to @ is finished.

- Query to So: Suppose the adversary makes query (4, ¢;) to So at step T'. Since m; = A occurs in case 0,
we know 7 € IﬁAn, ci = ciA, Yi = Yo,i = yiA, and s; = ao,; + ¢ " Yo,i - To = siA in case 0. Since the transcripts
are the same in the two cases prior to T' and the adversary is deterministic, we know ¢; is the same in
both cases. Therefore, we know ¢; = cl-A in case 1. Since 7, € C, we have

B(iJ)(ﬁl) =ay; + CZ-A “Y1ic X1 — SiA =0,

Blioy(i) =y1i 21—y 21 =0.

Therefore, we have y; = y;1 = yiA and s; =a1,;+¢ Y1, T1 = a1, + ciA Y1 T = siA in case 1. Since
the output (y;, s;) is the same in the two cases, we know the transcripts must be the same in these two
cases after the query to S is finished.

- Query to H : Since H does not envolve the randomness z, @, i, we know the transcripts are the same in

the two cases after the query.

By induction, we know the transcript is the same by the step when the j-the query is made to @ in the two
cases. Therefore, we know m; = A in case 1. Since it holds for any (z1,d1,%1) € Z;idA, we know 77 € C implies
m; = A. Therefore, m; = A is equivalent to 7 € C, which implies for any 7jp € C

Pro.a gl = fo|mj = Al = Prya gl = Mol e C] .

It is left to show Pry z #[7 = 70|77 € C] = ﬁ for any 7jo € C. Denote & := Z% x (Z, x Z;)SidA and we know

(x,a1,Y1,- -, 0444, Ysig2 ) 18 uniformly distributed over €. Therefore, 77 = (z,a1,y1°2, . . ., agqaisalsodygqa.,)
is also uniformly distributed over £, which implies for any 7 € £,

Pre.agl =m0l = e

Since C € &, we have for any 775 € C

_ el 1

Pro.agli = ol e C] = oTE =TT
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B.3 Proof of Claim 4

Proof (of Claim 4). Suppose E1 A (—E3) occurs. Denote str; as the input of the j-th query to H. Denote
the total number of queries to H as num®*. Denote the decompositin of str; as str; = &1 €Y | m;. Denote
Cur; as the set Cur by the step when the j-th query to H is made and denote Cur®™* as the set Cur after B

finishes the check of the condition (15) and (16). Since B makes a query str¥ to H to check the condition

(16), there exists j € [num*] such that str; = strj. Let jmin be the smallest index such that str;,,, = strf.

Since Hid(str¥) = L, from the simulation of H, we know A ¢ 5(Cury,,,) or & ¢ Z(Cury,,.). However,
since §ﬁnm = @(sk —cfyf-X)and & = d(y - X), we know &t 5};“] € Cur'®. Therefore, denote the set
of all f}/ and g;‘ that do not correspond to any encoding of polynomials when the j-th query to H is made
as

D** = {1 € [mumy*], & ¢ Z(Cury)} U {€] ] € [numg*], & ¢ =(Cury)}

and then we have at least one of £ and & isin D n Z(Cur™"), which implies D n Z(Cur®™") # &.

Therefore, we have the event E occurs implies D n Z(Cur*") # ¢, which means
Pr[E1 A (—FEs)] < Pr[D™" n Z(Cur™") # ] . (54)

It is left to bound Pr[D n Z(Cur'®") # .
Denote

= (i e [71,€r ¢ Z(Cury)} U {E) 15 € [1],€) ¢ Z(Cury)} .

Denote Cur® as the set Cur after the i-th query to & is finished and Cur © — &¥. Consider the step when the

i-th query to & is made. Denote the number of queries to H before the i-th query to @ is made as num(z)

Denote the event E; as D) N Z(Cur™VYy = & and D o0 Z(CurY) # @. We first show that if
i i

Dt ~ Z(Cur'") # &, then there exists i such that E/ occurs, and then bound Pr[E!] for each i.

Denote the total number of queries to & as num*. Suppose none of {El{}ie[num;ot] occurs. We show that
at any time step, supposing the number of queries to & made so far is i and the number of queries to H
made so far is j, we have D; n T(Cur®”) = &5, which implies D'* ~ Z(Cur'®") = 5. We show the statement

by induction. At the begining, we know ¢ = 0, 7 = 0, Cur® = &, and Dy = . Thus, the statement
holds trivially. For any time step with ¢ > 0 or j > 0, suppose the latest query is made to H and we have
D1 n T(Cur™) = . Consider the step when the j-th query to H is made. If T(str;) # L, we have
Dj=D;_y and D; n T(Cur™) = &, Otherwise, if T(strj) = 1, we have Dj = D;_; U ({ﬁf,f}/}\T(Curj)).
Since Cur; = Cur® | we have D; AT (Cur®?) = D;_4 UT(Cur™) = . Therefore, we have D'mT(Cur(i)) .
Otherwise, suppose the latest query is made to & and we have D; mT(Cur(i_l)) 3. Since we have j = num(z)
and E; does not occur, we have D; N T(Cur(’;l)) =D m(® N E (Cur )) = . Therefore, by induction, the
statement holds. Then, considering the step when B ﬁmshes the check of the condition (15) and (16), we
have D' ~ Z(Cur™") = Dyymtor 0 E (Cur(num )) = (. Therefore, if D' n Z(Cur") # &, then at least
one of {E! }ie[num;ot] occurs.

Finally, to bound Pr[E’], consider the i-th query to ®. Denote the input of the i-th query to & as Pi.
Denote j = numg) for simplicity. Suppose E] occurs. We know Cur® = Curl~ , which implies Cur® =

Cur™ VU {P} and Z(Cur™?) = Z(Cur=Y)U{Z(P)}. Since D; nZ(Cur™ V) = & and D; nZ(Cur®) # &,
we know =(P;) € D;. Therefore, we have

PrlE!] < p[Cur®® = Cur™ ~ (P} A E(P) € D;] .
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Game OMDLZ ()) : Oracle CHAL :
p < |Gal; g < g(Gy) cid « cid + 1
cid«—0; /<0 Teid <3 Ly
{yi}iereia) «— APE%(p, g, Gy) Return g%eid
If /¢ 2 c1d.then return 0 Oracle DLoG(X) :
If Vlz’{zte [cui] :y; = x; then T i+1
eturn

Return log, (X

Return 0 gy(X)

Fig.17. The OMDL game.

Consider the step when =(P;) is generated. We know D is already determined. Therefore, we know Z(F;)
is sampled uniformly at random from {0, 1}1°s(®)\ = (Cur(i_l)) independent of D;, which implies

Pr[E]] < PriCur® = Cur™ VD U {P} A Z(P) e D]
< Pr[E2(P) € D;|Cur = Cur™Y U {P}]
DD
p—|Cur@ V| 7 p—|Cur'

Therefore, we have

tot . | ytot
num " - |D*|

! ! p — |Cur'®’|

Pr[D%* A Z(Cur*™") # @] < Pr \/ E| < Z Pr[E]] <

i€[numip* i€[num°°]

Since [D**] < 2num* < 2(Qu + Qs, + 1) and |Cur'™®®| < num?* < Qg, by (54), we have

2num(t1§t . numﬁ’t _ 2Q4(Qu + Qs, + 1)

Pr[E —Ey)] <
1B A (CED] € = e

C A Scheme Secure under OMDL

In this section, we present our second blind signature scheme, BSs, that is proved secure in AGM assuming the
hardness of the one-more discrete logarithm (OMDL) problem [BNPS03], which is formalized in Figure 17.
We also denote by Adv?c,mdl(.A7 A) the corresponding advantage that A wins the game. The adversary is now
given access to a powerful oracle that can compute discrete logarithms, but if the adversary queries this
oracle ¢ times, it is asked to solve ¢ + 1 discrete-log instances. While the OMDL game gives more power to
an adversary compared to the classical DL problem, its generic concrete security is comparable, as recently
proved by Fuchsbauer et al. [BFP21].

The scheme BSsy is described in Figure 18. It very much resembles BS;, with the exception that the
commitment C is now ¢*X?¥ instead of X¥. This also gives us a more involved blinding method. Still, the
resulting scheme is perfectly blind, as shown by the following theorem. (Its proof is very similar to the
blindness proof of BS;[G], so we defer it to Appendix D.1.)

Theorem 8. Let G be an (asymptotic) family of prime-order cyclic groups. Then, the blind signature scheme
BS2[G] is perfectly blind.

The core of our analysis is the following theorem, which asserts the one-more unforgeability of BSs in the
AGM, assuming random oracles.
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Algorithm BSs.Setup(1?) : Algorithm BS3.U;(pk, msg,, m) :

p—[Gx; g — g(Gn) X« pk; (A,C) < msg,
Select H: {0,1}* — Z, 71,72, 13 <8 Ly y s L}
Return par < (p,G, g, H) A — gt AT O

4 T
Algorithm BS2.KG(par) : "= C7g"

¢ e HA'|C'|m)
ce—c +r3
st « (¢, c,r1,72,73,7, X, Z, A, C)

(p,G, g,H) < par
T s Ly X — g°
sk «— x; pk — X

Return (sk, pk) Return (st*, c)
Algorithm BS>.S:(sk) : Algorithm BS3.Us(st", msg,)
Jl(—Sk;X(—gx (676/7T17T27T37’77X7ZvA7C)(_Stu
a,t‘*$ Zp7 Y s Z: (Say7 t) <« msg,
A— g% C—gtxV Ify=0o0orC#¢g'XYorg°#A-XY
st «— (a,y,t,z); msg, — (A,C) / then return L
Return (st®, msg,) s —y-stri+rz-y-t

: : Y~y
Algorithm BS2.S»(st®, ¢) : Vet

(a7 y7 t7 w) <~ Sts
S—a+c-y-x
Return msg, < (s, y,t) Algorithm BSs.Ver(pk,o,m) :

(C’ 57 y’ t) — 0o

If y = 0 then return 0

C « thy; A «— gs D G

If ¢ # H(A | C||m) then return 0
Return 1

Return o « (¢, s',y,t)

Fig. 18. The blind signature scheme BS; = BS2[G].

Theorem 9. Let G be an (asymptotic) family of prime-order cyclic groups. For any algebraic adversary
A for the game OMUFBSZ[G]()\) making at most Qs, queries to S1 and Qu queries to the random oracle
H, there exists an adversary Bomar running in a similar running time as Aayg for the OMDL problem making
at most 2Qs, + 1 queries to CHAL such that

1 3 2
Adv%‘é‘;[fg] (Aalg7)\) < Adv?(}mdlagomdla)\) + (QH + QS1 + )(QH + QSl + ) .

p—1

The proof of Theorem 9 resembles the proof of security for BS; in Theorem 3, in particular, by relying
on the WFROS game.

Proof (Theorem 9). Let us fix an adversary A, making at most Qs, queries to S1, and Qu queries to the
random oracle H. Without loss of generality, assume A,j, makes exactly (s, queries to S; and exactly one
query (i,¢;) to Sy for each i € [Qg, ]. Then, after A, returns, we know ¢ = Qs, and Zg, = [Qs, ].

The OMUFgg;TG] game is formally defined in Figure 19. In addition to the original OMUF game (defined

in Figure 1), for each query (A C|m) to H, its corresponding hid is recorded in Hid(A | C'||m) and the
output of the query is recorded as dniq. Also, since A,jg is algebraic, A,jg also provides the representations

of A and C, and the corresponding coefficients & and B are recorded as oihid and Bhid.

Denote the event WIN as A, wins the OMUF;‘;;E[G] game, i.e., all output message-signature pairs
{m}., 0} tre[qs, +1) are distinct and valid. Furthermore, let us denote strj := g X ek l glk Xt [ mf. We
let E be the event in the OMUF’;S‘“;{[G] game for which, after the validity of the output is checked, for each
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Game OMUF¢' (V):
P < [Gal; g g(Gr); & <8 Zp; X < g°
sid « 0; £ < 0; gy «— & T — (); hid « 0; Hid « ()
{(m;:7 O'Z)}ke[£+1] 8 Aleg’b%H(p? 9, G/\7 X)
If 3 k1 # k2 such that (mjf , o} ) = (m},,0F,) then
Return 0
If 3 k € [£ + 1] such that y =0
% s* 7(;*- * t* * *
or ¢y # H(g™ X™% Yk || "k XVk || my)
where (cf, s¥,yf,t¥) = off then return 0
Return 1

Oracle H(A||C | m) :

Oracle S :

sid «— sid + 1

Gsid, tsid <=8 Lp; Ysid <5 Zyp

Stsia < (@sid, Ysid, tsid)

Asig < g4

Csiq «— gisidesid

msg,; < (Asidacsid)

Return (sid, msg;)

Oracle S2(i,¢;) :

If i ¢ [sid]\Zan then
Return |

(ai, i, ti) < st}

Si <= Qi +CiYi-T
msg, — (i, ¥i, ti)
Ttin < Zan U {1}
l—{0+1

Return msg,

If T(A]|C|m)= 1 then
T(A[C|m) sy
hid « hid + 1
Hid(A | C | m) < hid
a9 yra* ati ~aCi
I A =g X g AY Cf
89 < pX G 5Cs
] C= QBQXB Hie[sid] Aiﬂ Cz'ﬁ
Suia « T(A[ C | m); dnia < &; Bria < B
Return T'(A || C || m)

Fig. 19. The OMUF security game for the blind signature scheme BS2[G] and Game; used in the proof of Theorem 9,
where OMUF“BAS‘:’QI‘EG] contains all but the solid box and Gamef\"lg contains all.

k€ [Qs, + 1] and j = Hid(str}),"? the following conditions hold:

&+ Y w65 - al) = =85yt (55)
iG[Qsl]

BY + Z yi(BS =i BR) = wi . (56)
iG[le]

Since Adv%?;[fg](Aalg,/\) = Pr[WIN] = Pr[WIN A E]+ Pr[WIN A (—FE)], the theorem follows by
combining the following two lemmas with Theorem 1.

Lemma 17. There exists an adversary Byfos for the WFROSQSl’p problem making at most Qu + Qs, + 1

queries to the random oracle H such that

QH + QS1 +1 >
p

Lemma 18. There exists an adversary Bomar running in similar running time as Aag for the OMDL problem
making at most 2Qs, + 1 queries to CHAL, such that

AdvE (Butros) + Pr[E, A Es]. (57)

1P

Adv2™ ! (Bomar, A) = Pr[Game:™ = 1] . (58)

O

C.1 Proof of Lemma 17
The proof is almost the same as the proof of Lemma 10.
Proof. We first give a detailed description of Byfros playing the game WFROSq, p-

12 Here, Hid(str) must be defined since a query str} is made to H when checking the validity of the output (m}, o).
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THE ADVERSARY Byfros. To start with, Bypos initializes sid, Zgn, ¢, T, hid, and Hid as described in the
OMUFg;;g[G] game. In addition, Byfos samples = uniformly from Z, and sets X to ¢g”.

Then, Byfos runs A, on input (p, g, Gy, X ) and with access to the oracles 31, Sg, and H. These oracles
operate as follows:

Oracle S;: Same as the OMUFQ;;g[G] game except that instead of sampling ysiq, tsiq randomly and setting

Ciid < gtsia X ¥sia | Boeoo samples a new variable t’.q uniformly from Z, and sets Cgq = gteia.

Oracle Sy: After receiving a query (i,¢;) to S from Aayg, if ¢ ¢ [sid]\Zan, Bweos returns L. Otherwise,
Bytros makes a query (i,¢;) to S and uses its output as the value y;. Also, Bytros sets t; = ¢} —y; - x. With
the value (a;,y;,t;), the rest of S, is the same as Sy in the OMUF;‘;;T:G] game.

Oracle H: After receiving a query (A [ C | m) to H from Ay, if T(A[ C|m) # L, the value T(A | C | m)
is returned. Otherwise, since A, is algebraic, Byfos also knows the coefficient & and B such that

N N A, AC, A A AA; 3G
A=g¥' X% [T ad™coe™  c=¢""x" [] A/l .
ie[sid] ie[sid]

-,

Then, Byfos issues the query (&, 8) to H, where &, Be Zf,QSlH are such that

&, i'=0
o) — a% ,  i'=2i—1,ie[sid]
—aMi | d' =20, i e [sid]
0, o.w. 5
. i (59)
B _ —BC%, i =2i—1, i€ [sid] ’

phL i =20 e [sid]

0, o0.w.

After receiving the output (dniga, hid), Byiros sets T(A | C | m) < dniq and Hid(A || C | m) < hid. Finally,
Bytros returns T(A | C || m).

After A,z outputs {(mz,az)}kE[QSIH], Buwiros aborts if the conditions from the event WIN A E do not
occur. Otherwise, Byos outputs J := {Hid(str}) | k € [Qs, + 1]}
Following an analysis similar to B in the GGM (Section 4.2), we know By s makes at most Qu + Qs, + 1

queries to H and Byfos simulates the OMUF“és“;g[G] game statistically close to perfect with distance bounded

by QutQs, 1 Therefore, the probability that WIN A E occurs when running Byfros is at least Pr[WIN A

p
E] _ QutQs, +1 )

It is lezf)t to show that if WIN A FE occurs within the simulation, then Byf.os wins the WFROS game.
We first show that |J| = Qs, + 1. Suppose |J| < Qs,. Then, we know there exists ki, ks € [@s, + 1] such
that k1 # ko and Hid(strj ) = Hid(str},), which implies strj = strj . Therefore, we have

95;51 X_cfl.y;fl = ggfz X_Czjz 'y:; , gttl Xy;k1 = gt;:szz; R mzl = mzz . (60)
Also, let j = Hid(str} ) = Hid(str,). Since E occurs, by (56), we have

vl =B+ DL wilBy =i B = ok, -
iE[Qsl]

Since yji = yi, and ¢, = cf,, by (60), we have

k0 gk k0 __ o¥
le, =1k, s Sp, = Sg, -
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However, since (mj ,o} ) and (mj_, o} ) are different message-signature pairs, we have

* * * * * * * *k * *
(M5 s Sty Yy o oy ) 7 (Mys Choys Skas Yy > by )5

which yields a contradiction. Therefore, we have |J| = Qg, + 1.
Then, since E occurs in the OMUFA"“g[ g game simulated by Byos, by (55) and (56), it holds that for

any je€ J

o Y paS —ea) =g, (Y W e )
i€[Qs; | i€[Qs ]

From the simulation of H, by (59), we have for any j € J

(o) n Z 21 D4 a§2i)) — 5, [ 8¢ (0) Z vi(B (21 D4 /3(21))
ZE[le] ZE[qu]
Therefore, Byos wins the WFROSq , game. |

C.2 Proof of Lemma 18

Proof. We first give a detailed description of Bypna) playing the OMDLg game.
THE ADVERSARY Bomaql. To start with, Bonq initializes sid, Zgn, £, T, hid, and Hid as described in the
OMUFBS“1 (] game.

After Bomar receives (p, g, Gy) from the OMDLg game, Byfros sets X «—s CHAL() and runs Ay, on input
(p, 9,Gy, X) and with access to the oracles Sl, S,, and H. These oracles operate as follows:

Oracle S;: After receving a query to S, from Aalg, Bomdl increases sid by one and sets Agigq <—s CHAL() and
Csig «<s CHAL(). Then, Bomar returns (sid, Agq, Csia)-

Oracle Sy: After receving a query (%, ¢;) to S, from Aaig, if @ ¢ [si1d]\Zgn, Bomar returns L. Otherwise, Bomai
samples y; uniformly from Z and sets s; <~ DLOG(AX®'¥) and t; <~ DLOG(CX™¥). Then, Bomal
returns (s;, Ys, t;)-

Oracle H: Same as in the OMUFBS”“‘%[G] game.

After receiving the output {(m:,ﬁk)}ke[Qslﬂ], Bomar aborts if the event WIN A (—FE) does not occur.
Otherwise, we show in Claim 11 that Bynq can compute the discrete log of X.

Denote x := logg(X). Then, for each i € [Qs, + 1], Bomai computes the discrete log of A; and C; as
a; — 8; — ¢; - y; -« and ¢, — t; + y; - . Finally, Bomar returns (x,aq,cq, .. ., aQs, > CQs, ).
ANALYSIS OF Bomal- Note that Bomar makes one queries to CHAL to get X, two queries to CHAL when it
receives a query to Si, and two queries to CHAL when it receives a query to So. Therefore, Bomqr makes
2Qs, +1 queries to CHAL and 2Qg, queries to DLoG. Also, it is clear that Bomar simulates oracles Sq, Sa,
H in the OMUFBS‘“g[G] game perfectly, and Bop,q1 wins the OMDL game if it can compute the discrete log of
X correctly. Therefore, we can conclude the lemma with the following claim.

Claim 11 If WIN A E occurs when running Bomdi, then Bomal can compute the discrete log of X.
O

Proof (of Claim 11). Suppose WIN A FE occurs within the simulation. We know WIN occurs, but one of
(55) and (56) does not hold.
Case 1: (55) does not hold. There exists k € [Qs, + 1] and j := Hid(str}) such that &7 + Zle[Qg (a?i -

¢ -éz?") # —0; - y;. Since WIN occurs, we know cj = H(strk) = §,. Then, since Hld(strk) = j, we have

A A
grEXOE = g xS T Al (61)
i€[sid]
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Similar to case 1, by substituting A; = g% X "% and C; = g' X¥i into the equation (61), we have
st—§j~yf _ gd§+2i€[Qsl](d?i'si+d] )X% +21G[le] yi(dgi*Crd?i) .
Therefore, Bomqr can compute the discrete log of X as

. ~A;
B sZ—a?—ZlG[Qq]( sz+a 1)
d;("i'Zie[Qsl]yi( j _Ci'aj )+ yE

Case 2: (56) does not hold. There exists k € [Qs, + 1] and j := Hid(str}) such that ﬁ + ZZE[QS (ﬁjcl —
¢ Bﬁ) # yy. Since Hid(stry) = j, we have

gExvE = FIXP T AP (62)
i€[Qs, ]
From the simulation of Sy, for each i € [Qs, ], we have
g = A XV gl = O XY
By substituting A; = g X %% and C; = ¢g' X¥ into (62), we have
A

gtf Xy;" _ ngwLZiE[Qsl](B?i-erB;i~ti)XB;(+Z,~E[QSI] yz(BJCI*CzB/) '

Therefore, Bomar can compute the discrete log of X as

Bg Zze [Qs, ](5 S+ ﬁc )
ﬂMZw yi(BS — i M) —yE

D Blindness Proofs

D.1 Blindness of BS,

Proof. Let A be an adversary playing the Blindés2 [c] game. Similar to the blindness proof of BS; [G], we can
assume the randomness of A is fixed and A always finishes both signing sessions and receives valid signatures
(00, 01) without loss of generality.

Define the view of A after its execution as © = (X, mg, m1,To,T1,00,01), where T; := (4;, Cy, ¢, Si, Vi,
t;), denoting the transcripts learned from interactions with the é-th signing session and o; = (c}, s}, yj, ;).
Since the randomness of A is fixed, the only randomness left is the randomness in U; and Us. Denote
n = (rgo),réo),rgo),’y(o),rgl),T;I),rél),7(1)) as the total randomness. To prove the theorem, we need only
show that the distribution of 7 is identical in both the case b = 0 and b = 1. We prove this by showing that
for any fixed view A such that Pr[r = A|b = 1] > 0, there exists a unique value of the randomness 7 that
makes m = A for the cases b = 0 and b = 1.

For both the cases b = 0 and b = 1, we now show that 7 = A if and only if for each ¢ € {0,1}, it holds
that

i = yb /yz )

(Z) _ sb (z)( + T'g) tA)

<z> A (63)
Ty = tb —@ -4

r{) = A c;f :
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where the superscript (-) represents the corresponding value in A. From the algorithms BSy.U; and BSy.Us,
it is clear that the “only if” part holds. For the “if” part, suppose (63) holds. Since the randomness of A is
fixed, the view of A can differ only on the outputs cp,¢; from the oracle Uy or the output (og,07) from the
oracle Us. Since both signatures in A are valid, we have
P gstA*C?-y? oA _ gthAyiA
1 b

3 ?

(64)

;A . A A ;A A
TS H(gh XA g X A i) (65)
For ¢; where i € {0, 1}, suppose the values in the view of A that have already determined when ¢; is generated,
which must include (X, m;, 4;, C;), is consistent with A. By (63), we have
Q)

co=r{) B 4T g )
S T P e A PR R T
:T:(;') +H(grY)er("')(s?+r§”~t?) A=y D (P —r§ ))” “’ﬂ("’)-t?XAyf'v(” ” mbAi)
— ) H(gh AT g AT )

where the third equality is due to (64), the fourth equality is due to (63), and the final equality is due to (65).
Then, consider the step when (0, 01) is output. Suppose the current view, which contains 7T}, are consistent
with A. By (63), we have

Yh, = ~® (@)

A
=Yyt =y,

sy = 44O (s + 75 ty) = 1D 440 (A +r§”) o 2
tbi=7‘(z)+’7()t_7‘()+’y() tA_tgi :
cgi:ci—ré)—c —ré):cg_A,

which implies (09, 01) = (0§, 07"). Therefore, by induction, if (63) holds, we know m = A. |

D.2 Blindness of BS3

Proof. Let A be an adversary playing the Bhnst (] game. Similar to the blindness proof of BS; [G] and
BS2[G], we can assume the randomness of A is ﬁxed and A always finishes both signing sessions and receives
valid signatures (og,o1) without loss of generality.

Define the view of A after its execution as m = (X, Z, mg, m1, Ty, T1,00,01), where T; := (A;, C;, ¢i, i,
Yi, 1), denoting the transcripts learned from interactions with the i-th signing session and o; = (¢}, s, y%, t5).
Since the randomness of A is fixed, the only randomness left is the randomness in U; and Us,. Denote
n = (rgo)7réo),'yio),'yéo),rgl),rél), (1)7751)) as the total randomness. To prove the theorem, we need only
show that the distribution of 7 is identical in both the case b = 0 and b = 1. We prove this by showing that
for any fixed view A such that Pr[r = A|b = 1] > 0, there exists a unique value of the randomness 7 that
makes m = A for the cases b = 0 and b = 1.

For both the cases b = 0 and b = 1, we now show that 7 = A if and only if for each ¢ € {0, 1}, it holds
that

A, A

yil)l /yz )

. A A
7 = e/,

7 A 7 7
ri? =s;i _54.( “/fy§>>,
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where the superscript (-) represents the corresponding value in A. From the algorithms BS3.U; and BS3.Us,
it is clear that the “only if” part holds. For the “if” part, suppose (66) holds. Since the randomness of A is
fixed, the view of A can differ only on the outputs cp,¢; from the oracle Uy or the output (og,07) from the
oracle Us. Since both signatures in A are valid, we have

oAy a
AD = P XATEE oA _ it gAY (67)

;A _/A_/A ;A 1A
A = H(gh T XATITT ) g Sz AN ) (68)

For ¢; where i € {0, 1}, suppose the values in the view of A that have already determined when ¢; is generated,
which must include (X, m;, 4;, C;), are consistent with A. By (63), we have

R (A e VAN S
=) H(g s g O g o )
A (g st a0 ) x aTrE e O | 0O gar iy
R A S P S P
— e, S = e

where the third equality is due to (67), the fourth equality is due to (66), and the final equality is due to (68).
Then, consider the step when (0g,01) are output. Suppose the current view, which contains T}, is consistent
with A. By (63), we have
i i A
v =0 v = 0wt =
i i), (i i i), (i A
sho=r1") + s /8") = i+ st (17 ) = 4,7
th, =rg) + 1t =) o ap = 4,2
i i A
&, = e/ = /g = ¢,

)

i )

which implies (0g,01) = (0§, 01"). Therefore, by induction, if (66) holds, we know m = A. =
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