Reinforcing Lightweight Authenticated
Encryption Schemes against Statistical Ineffective
Fault Attack

AMBILI K N* JIMMY JosET

Department of Computer Science and Engineering,
National Institute of Technology Calicut, India

Received 31 October 2021; In final form —

The increasing use of resource limited devices with less mem-
ory, less computing resource and less power supply, motivates
the adoption of lightweight cryptography to provide security so-
Iution. ASCON is a finalist and GIMLI is a round 2 candi-
date of NIST lightweight cryptography competition. ASCON is
a sponge function based authenticated encryption (AE) scheme
suitable for high performance applications. It is suitable for use
in environments like Internet of Things (IoT) where large number
of very constrained devices communicate with high-end servers.
The drawback is that fault analyses like Statistical Ineffective
fault attack (SIFA) and Sub-Set Fault Analysis (SSFA) are pos-
sible. GIMLLI is also a sponge function based AE scheme which
is susceptible to SIFA. In this work, we modify ASCON 128a
and GIMLI exploiting the pseudo-random properties of Cellular
Automata (CA) to prevent these attacks. We analyse and show
that these attacks are inapplicable in the reinforced cipher.

Key words: ASCON, GIMLI, Fault analysis, Pseudoran-
dom, Cryptography, Cellular Automata, Authenticated En-
cryption, SSFA, SIFA

*email: ambili_p180002cs@nitc.ac.in

T email: jimmy@nitc.ac.in

1 INTRODUCTION

The changing landscape of electronic devices and technologies involved has
created new demand for security of devices and software. The conventional
methods of providing privacy and authentication separately are not sufficient
to address their simultaneous need.

AE algorithms are used to achieve confidentiality and authenticity simul-
taneously. If a passive adversary cannot determine the content of ciphertext,
the AE scheme is said to have privacy. If an active adversary cannot success-
fully forge a ciphertext C, a nonce N and a tag t and mislead the receiver,
authenticity is guaranteed. AE schemes are the modes of operation. They are
algorithms built on top of primitives which are proven to be secure. These
algorithms are not theoretically proven secure like the block ciphers. The se-
curity of AE modes depend on the security of the underlying primitives. We
briefly outline the evolution of AE schemes before describing the algorithms
under consideration.

The most primitive method of AE involves independent use of algorithms
for encryption and authentication. This is called the generic composition.
The strength depends on the strength of the underlying encryption scheme.
Authenticated Encryption schemes provide both privacy and integrity of the
transmitted messages. Often, messages have associated data with them such
as the receiver’s IP address. Here, it is prudent to use Authenticated En-
cryption with Associated Data(AEAD) [17] schemes. There are three types
of AEAD processes which are Encrypt-and-MAC, Encrypt- then-MAC and
MAC-then-Encrypt.

There are several methods in literature which improved the generic com-
position. Single-pass combined mode is one such method. Integrity Aware
Parallelizable Mode (IAPM) discussed in [[12] developed by Jutla at IBM in
2000 is the first such approach. Offset Codebook Mode (OCB) described
in [13]] was later introduced by Rogaway et. al. It is designed to be fully
parallelizable and has a host of other improvements. IAPM and OCB are
patented. Hence, two-pass combined modes were introduced so that the new
modes are patent-free. Counter with CBC-MAC (CCM) [18]], Encrypt-then-
Authenticate-then-Translate (EAX) [2] and Carter-Wegman-Counter (CWC)
[9] modes belong to this category.

Robust AE designs based on stream ciphers, block ciphers or sponge func-
tions have been proposed in the last decade. National Institute of Standards
and Technology (NIST) selects algorithms as part of lightweight cryptogra-
phy project described in [[15]. The round 2 candidates of NIST lightweight

cryptography competition include ASCON and GIMLI. ASCON is also a fi-
nalist of the competition. However, these have been shown to be susceptible
to fault attacks. We consider three specific cases and propose methods to
invigorate the AE schemes using Cellular Automata (CA).

ASCON [6] and GIMLI [[15] are an AEAD scheme which follows Encrypt-
then-MAC. ASCON is vulnerable to fault attack by double fault injection,
wherein two faults are injected at two different locations. We propose enhnace-
ments to ASCON and GIMLI using CA to prevent fault attacks and provide
mathematical validation for the same.

The rest of the paper is organized as follows: Section 2 provides a brief
description of algorithms. Section 3 describes the fault attacks mounted on
them. Section 4 describes CA and specific features of programmable cel-
lular automata (PCA). Our enhanced AE schemes are described in section
5. The security analysis of enhanced algorithms are provided in section 6.
The strength of the algorithm to resist fault attacks is elaborated. Section 7
concludes the paper.

2 PRELIMINARIES

The NIST lightweight cryptography competition has several candidates. Here,
we consider ASCON and GIMLI described in [[15)]. These are found suscep-
tible to fault attacks recently. We describe them briefly with significance to
their vulnerabilities.

2.1 ASCON

ASCON is a lightweight authenticated encryption cipher. ASCON [6] is
based on duplex sponge modes operation which takes in data and squeezes
out the modified data. This is done using core permutations p which is used
in initialization and finalization and pb which is used in processing of as-
sociated data and plaintext. Here, @ and b represent the number of rounds
for which the permutation p is run. ASCON is a light-weight 320-bit state
sponge cipher with state matrix S. The initial state is given by concatenating
the Initial Vector (IV) of 64 bits with key and nonce of 128 bits each. It is then
processed in two parts known as rate and capacity. The first part is known as
rate of r bits. ASCON uses rate of 128 bits. The second part is of length
¢ = 320 — r bits and is known as capacity. We focus on ASCON 128a in
the current work and refer to it as ASCON. ASCON has four stages as shown
in Fig. [T namely:

* Initialization: Twelve rounds of the SPN transformation in which per-
mutation p is applied to the initial state S followed by XORing of the
key K to it.

* Processing Associated Data: The associated data are processed in blocks
of length r (bitrate).

* Processing Plain-text: The plaintext is encrypted blockwise to give the
ciphertext.

* Finalization: The state S passes through 12 rounds of transformation
P, and the key K is XORed with the last 128 bits of S to get the tag T.

The SPN permutation p consists of three sub-transformations p¢, ps and p;
which are described below:

* Pc, the constant layer where a round specific constant is added to
X2 where S=Xxo||X1||x2|[x3]|X4, Xi, i € 0, 1, 2, 3, 4 are part of the
block

* ps, the substitution layer where the data is passed through 64 parallel
5-bit sliced S-boxes

* Py, the linear diffusion layer where each X; , where 0<=i<=4, is mixed
within itself

Since ASCON is inverse—fre the decryption can be done in the same way.
The decrypted ciphertext is returned only if the tags match.

Ar P1Cq Pt G
| \ I 1
7 — — .
Ee b £ — b £ Sbl £ b
320 |64, E g
W] N—— < s 5
“ ¢ H %
0lik «
Initialization Processing Associated Data Plaintext Finalization
k: 128-bit secret key {A1, Ag}: Blocks of associated data {C4, ... Cg): Blocks of ciphertext
IV: Initial Vector N: Nonce {Py, ..., Pg): Blocks of plaintext T: 128-bit tag

FIGURE 1: ASCON block diagram [6]

* An inverse-free cipher uses the same algorithm for encryption and decryption.

2.2 GIMLI

NIST submission of GIMLI AEAD uses a 256-bit key and 128-bit nonce and
generates a 128-bit tag. GIMLI permutation applies a sequence of rounds to
384-bit state. It is a sponge based construction with 128 bit rate and 256 bit
capacity. The state matrix is represented as a parallelopiped with dimensions
3 x 4 x 32 which is 3 x 4 matrix of 32-bit words.

Algorithm 1: GIMLI Permutation [8]]
1: Input s =15 € W3«4
2: Output S = S j € W3« 4 for r from 24 downto 1 inclusive do
for j from 0 to 3 inclusive do
1 X < S0,/ <K 24
Y5, K 9
1 Ze S
S j—(z—1De((yr2z)K2)
S x0((xvz)K1)
:Soj—yo((xAy)K3)
if rmod4 = 0 then
p: 50,0, 50,1, 50,2, 50,3 < 51,0, 50,0, 50,3, 50,2
else if rmod4 = 2 then
10: 50,0, 50,1, 50,2, 50,3 < 50,2, 50,3, 50,0, 50,1
else if rmod4 = 0O then
| 1|: So,0 =S0,0® 0x9e€377900 & r

GIMLI permutation is based on 384-bit state. It is represented as a three
dimensional matrix of words, each of size 3 x 4. The rows of state matrix
are named a, b and c. Columns are enumerated with subscripts 0, 1, 2 and 3.
The rounds are denoted using superscript in each matrix element. The per-
mutations are run for 24 rounds in each usage. Each round is a sequence of
three operations. The algorithm for permutation is described in Algorithm [I]
The first operation in each round is a nonlinear layer in which 96-bit Substitu-
tion Permutation box (SP-box described in [[1]]) is applied to each column. A
linear diffusion layer involving a small swap and a big swap is done in every
second round. In every fourth round, a constant addition is done.

For decryption, the same setup is used. The received tag is compared to
tag obtained after decryption. If both the tags match, plaintext is released else
empty string is output.

3 ATTACKS

A fault attack is an attack on the physical device. It leads to errors, which
causes failure of the placed security systems. Fault attack is done in two steps
fault injection and fault exploitation [3]]. Permanent and transient fault attacks
are the two types. Fault attacks which cause the device to be permanently
damaged are called permanent fault attacks. Transient fault attacks are those
which are not permanent and there is negligible damage to the device [7].

Statistical Ineffective Fault Attack (SIFA) was introduced as a method to
attack block ciphers in 2018 [5]. It is a powerful class of attacks and is based
on a fault model that is easy to achieve. The attack works based on biased
distribution of an intermediate state. It does not require faulty and correct
encryptions as in differential fault attack. SIFA can break traditional detection
or infection based countermeasures.

SIFA is a combination of statistical fault attack (SFA) and ineffective fault
attack (IFA). These differ significantly in how they achieve the fault model.
The only requirement is a biased intermediate state. [FA determines the cor-
rect target partial subkey analytically whereas SFA uses a statistical approach.

IFA is the scenario in which a faulted operation always returns the same
value. An attacker tries to inject ineffective fault by forcing the output to
be a specific value. The subsequent steps check if the output of the faulty
operation is equal to the fault free output. An ineffective fault is said to have
occurred if faulted output equals fault free output.

The non-uniform distribution of intermediate values together with the cor-
responding faulty output is used in SFA to recover the key. In SIFA, an at-
tacker injects a fault after computation of one function and before another
one. The intermediate state thus becomes faulty. The state becomes biased.
An attacker can easily achieve SFA. A partial subkey hypothesis is used to
decrypt the faulty ciphertext and calculate the faulty intermediate value. This
is repeated for several subkey hypotheses. The corresponding biased distri-
bution is ranked corresponding to the intermediate values. The correct key is
eventually determined.

3.1 Statistical Ineffective Fault Analysis (SIFA) on ASCON

SIFA [16] works on ASCON by injecting double faults at the bits 3 and 4
(counting starts from zero) of the output of a pair of selected S-boxes during
the last round of finalization. Let X be Xg||X1||X2]|X3][X4 where each X;
represents consecutive 64 bits of input to the linear diffusion layer L;. The L3
and L4 is XORed to key K to get tag T to form equations with key K. The key

K is XORed with tag T, which is equal to the output of linear diffusion layer,
as shown in Fig. 2] The output of linear diffusion layer is obtained by using a
sparse matrix. The inverse of this output gives the input to the linear diffusion
layer or the output of the substitution layer. The equation for bits 3 and 4 can
be found for the selected pair of S-boxes, which is already known. Hence, the
following equations [(T),(2) and (3)] are obtained in which the only unknown
is the key [16].

w w w w w
Key: k = (ko, k1, K2, ..., K126, K127)
| Jen g 18
3 3 x x
2| |2 2l (2 Tag: T=To |l Ty
w w 7] 7]

To =(To,0- To,1: To,2: ..., To,63)
T1=(T1,0, T1,1: T1,2: ., T1,63)

5
5
5
5
5

T T T T |
%o <| [= -)
T T T T Iy
X < O >
« 1 - | 1/>
2| S 2
—t— —
Xa <| ——— | ‘> D | ko | k1| kg ko2 |Kegz| —> To
T T T T Iy
L —/ D |Ksa| kes | Kee Kig/K127] —> T4
0o 1 2 62 63

FIGURE 2: SIFA attack on ASCON

. 63
sh=>[(Tore® k) o (D1 mod2)
r=0
. 63 @)
Sy = Z[(Tl,r@ kr+64) @ ;'] mod2 2)
r=0
L7t = [18'”, l(li)T, 1(6‘%7]7, i=0,1,...,4 3)

In equations (1) and (@), SI3 and SI4 refers to the faulted bits 3 and 4 at the
output of the selected S-boxes,

Li_l in (3) refers to the inverse of it"linear diffusion layer and l}[)T is the jth

row of the inverse diffusion matrix coresponding to X;. Here, X; is the ith
input word of the diffusion layer. The terms K and K464 refers to the rth

bit and r + 64t bit of the key K respectively. Tg,r and T1,r are the rth bit
of first and next consecutive 64 bits of the tag T.

The entire process from double fault injection to forming equations, is re-
peated M times. Using the key-dividing strategy to these equations, we find
the secret key K.

3.2 Sub-Set Fault Analysis (SSFA) on ASCON

SSFA [11] is done on the same path as SIFA. However, the fault is induced
to the 64-bit input X2 of the Substitution layer. It was observed that when
the 3rd bit was set to zero in 10 out of 16 cases, taking the XOR of 4th and
5th bits results in zero. This is used here to perform the fault analysis. The
analysis is done in two phases.

In the first phase, subset fault analysis is done using key partitioning. The
128-bit key is partitioned into N-bit sub-keys where N is assumed to be a
power of 2. Each sub-key is a linear combination of n key bits, where coeffi-
cients of a linear combination depend on the target S-boxes used for analysis.
The parity of each sub-key is used for analysis. The key hypothesis for S-
box j is a set Ki = {P(/),Pg]),...,P,(\Illk_l} where Ngk is the total number of
sub-keys which is 128/n. Hence, there are 2Nsk combinations for each key
hypothesis. The phase 1 estimates the parity of each key hypothesis for each
S-box. The flowchart for phase 1 is shown in Fig. 3] Phase 2 is not relevant
to our work as the solution would make phase 1 itself ineffective.

3.3 SIFA on GIMLI

We briefly restate the SIFA attack on GIMLI based on [8]. A nonce and a
hypothesis of target partial subkey Ky is used to calculate an intermediate
value of state. The paper suggests reducing the number of involved key bits
of the intermediate value and the number of hypothesis by attacking the early
rounds of the cipher.

The attack is mounted in the initialization phase with SP-box as the target.
The biased second row is attacked. It is observed that the number of hy-
potheses needed is approximately proportional to 2"keybits where Nkeybits
denotes the number of key bits involved. It can be observed that the number
of hypotheses needed grows exponentially with the number of bits of key in-
volved. If the cipher is attacked in a later round, more number of key bits are
involved and a considerably larger number of hypotheses need to be checked.

The attacks described in above subsections may be effectively thwarted
with the prudent use of CA. The current work focuses on the usage of CA to

ze tables COUNT &
CandidateKeys

Input : plaintext and
associated data

Collected M
faulty tags?

Encrypt the input using
encryption oracle when
subjected to fault induction

Yes

Yes

Collect faulty tag

next entry in
table COUNT>=
(M*0.6)?

Checked all
entries in
counts?

Analyzed
n S-boxes?

Store the value of k in j"‘ row
of table CandidateKeys

next S-box to analyze

Checked
all key
hypothese?

Note: Here inverse diffusion layer is
used

For next hypothesis k and S-box j /

Compute S; and S4 by inverting
diffusion function

No

is (S3 XoR S4==10) 7

Increment the k™ entry in jt

row of table COUNT

FIGURE 3: Flowchart for phasel of SSFA

prevent fault attack. The next section describes the preliminaries of CA.

4 CELLULAR AUTOMATA

CA [19] is a lattice of cells that can take any number of values depending on
its state, e.g., 2-state CA cells can take 0 or 1. Each cell value is modified
in every iteration depending on a function whose parameters are the current
values of the corresponding cell and its neighbor cells. In two-state three-
neighbourhood CA, the neighbors are the two cells adjacent to it. The next
state of a cell can be represented as the output of a function,

Xi(t+ 1) =f{xi—1(t), xi(t), xi+1(t) } 4

where x;(t) denotes the output state of the ith cell at the tth time step or it-
eration. Here f denotes the transition function of the particular cell realized
with a combination logic and is known as a rule of the CA [14].

If the rules in the cells are same, then it is known as uniform CA. When the
rules used in the cells are different, then it is a hybrid CA. Those CA with
specific rules which result in maximum cycle length and cycle through every
possible state (except 0) once before repeating the cycle of values is called
maximal length CA. The rules which only involve the logical XOR are called
linear or additive rules. CA can also be divided into types based on the neigh-
bors of the extreme cells (the first and last cells). Null boundary CA refers to
the extreme cell’s neighbors connected to logic *0’. In the current work, null
boundary maximal length CA with rules 90 and 150 are used. The rules 90
and 150 for CA are:

rule 90 : qi(t+ 1) = gi+1(t) ® gi—1 () ©)

rule 150 : qi(t + 1) = qi(t) ® qi+1(t) ® qi—1(t) (6)

where q;(t) refers to the state bit of the ith cell at time t.

5 OUR PROPOSAL

We describe the modified AE schemes that use PCA 90-150 in the subsections
below.

10

5.1 CA-based ASCON

During the Initialization and Finalization rounds of ASCON, transformation
p? (12 rounds of permutation p) is done. Since the SIFA attack takes place
during the final round of Finalization, the pseudorandom number generator
is used in the linear diffusion layer of p only. The pseudorandom generator
used here is a linear hybrid cellular automata [[14]. The modified algorithm
for permutation is described in Algorithm[2] In the algorithm, prng() func-
tion calls two CAs - CAs and CAf - to implement a PCA 90-150 [10]. The
CAs function uses a 6-cell, null boundary, maximal length [4] hybrid CA.
This function returns the value between 1 and 63. The CA, function is a
6-cell, maximal length, null boundary hybrid CA which selects a rule from
a predefined ruleset for CAr to use. Together this results in a simulation of
PCA 90-150.

For n (number of cells) = 6, the PCA 90-150 configuration results in an
expression X(X + 1)(x* + x + 1) of degree 6.

Algorithm 2: Permutation(byte S[])
Result: Gives the modified permutation for pg for given S
1=0;
x0,x1,x2,x3,x4 contains the progessive eight indexes of data in S;

while i<12 do
Addition of round constants:(no changes)

x2 =X2 & round — constant;
Substitution layer:(no changes);

Linear Diffusion layer:

x0=x0® x0 >>> prng() ® x0 >>> prng();
x1l=x1@®x1>>>prng()® x1 >>> prng();
X2 =x2@®x2 >>>prng() ® x2 >>> prng();
x3=x3®x3>>>prng() ® x3 >>> prng();
X4 =x4 @& x4 >>> prng() ® x4 >>> prng();
i++;

end

The requirements of this pseudorandom number generator are

* The function should generate numbers from 1 to 63 randomly (number
0 is excluded because the first term of linear diffusion layer is x; as
inclusion of the value zero would make the previous and current value
the same).

11

* The random numbers generated should be unique so as to prevent can-
cellation.

Considering the above requirements, a maximal length CA which gener-
ates numbers from 1 to 63 [4] are chosen. The six options for the rule set so
obtained are shown in Table [I] In the first option, O represents rule 90 and
1 represents rule 150. The modified algorithm for permutation in ASCON is
described in Algorithm 2]

option # ‘ Rule Set

option 1 | 000110
option2 | 101110
option3 | 011010
option 4 | 100101
option5 | 101010
option 6 | 100000

TABLE 1: Table showing different possible rulesets for prng()

The security can be further enhanced by making the random number gen-
erated by prng() hard to predict by using an additional CA whose value
determines which ruleset option to choose each time prng is called.

5.2 CA-GIMLI

CA based prng() is added to the first layer which is the non-linear layer.
The modified permutation is shown in Algorithm . Here, qj, bj, Cj denote
S2,j, 51,j, So,j respectively. The effect of prng() included in the computa-
tion of aj, bj, ¢j is cancelled during decryption. prng() is included in the
permutation layer. The key used in the modified scheme is generated by PCA
90-150. The additional security achieved is described in section 6.

6 SECURITY ANALYSIS

We now provide a detailed security analysis of the enhanced algorithms and
show that the authenticated encryption algorithms considered are invigorated
against the considered attacks with the use of PCA.

12

Algorithm 3: GIMLI Permutation
1: Input s =15;; € W3«4
2: Output S = S;j € W34 for r from 24 downto 1 inclusive do
for j from 0 to 3 inclusive do
i g+ S0, K 24
ctp =519
2 te 52,j
caje—tcotp®prng() ® ((tg A tp) < 3)
s bje—tg@tp®prng()® ((ta vtc) K1)
s Ge—tg®prng()e (tc < 1)® ((tp A tc) K 3)
v: if rmod4 = 0 then
1p: 50,0, 50,1, 50,2, 50,3 < 51,0, 50,0, 50,3, 50,2
else if rmod4 = 2 then
1I: S0,0, S0,1, S0,2, S0,3 < S0,2, 50,3, 50,0, S0,1
else if rmod4 = 0 then
12: So,0 =So0,0 ® 0x9e377900 @ r

6.1 ASCON

The vulnerability of ASCON 128a against SIFA and SSFA is no longer appli-
cable to enhanced ASCON. In this section, we provide mathematical analysis
of the enhanced security.

Security against SIFA

We describe the fault distribution and analysis strategies used in [[L6] briefly
before analysing the reinforced ASCON. The fault distribution chosen for
SIFA attack is the random-AND model wherein a non-uniform distribution
along the diagonal of fault distribution table indicates ineffective fault. The
statistical model used to determine the key from the chosen key hypothesis
is the Boltzmann model [16]]. It can describe the most unbiased distribution.
We investigate the security of CA based ASCON against SIFA in the random-
AND model under Boltzmann distribution.

The random-AND oracle model uses the equation and [3]to determine
the fault bits S3 and S4. With the use of CA, the randomness in linear diffu-
sion layer spreads. The positions of non-zero entries of the matrix L become
random. This means the inverse linear diffusion matrix also becomes random.
The equations for faulty bits cannot be solved reliably.

When we consider the Boltzmann model chosen to analyse the fault dis-

13

tribution, the key component used is Hamming weight[l The enhanced CA
based ASCON spreads fault quickly and variation in Hamming weight will
be unpredictable. This further makes it difficult to solve the Hamming weight
based equations and calculate the faulted bits S3 and S4.

The key dividing strategy used to reduce the search space of 268 (o the
words involved in the equation of faulty bit [[16] is not possible in CA en-
hanced ASCON. The key dividing strategy is briefly restated here for clarity.
The 128-bit length key used in the generation of tag is divided into words of
length W (a power of 2). The coefficients of the combination are determined
by the j-th row of the inverse diffusion matrices L;l and Lzl. The equations
for bits 3 and 4 are are rewritten as follows.

% =r ey T e Mok, 0
= o ek, ®

Thus, bits 3 and 4 at the output of S-box j can be calculated with a linear
combination of bits within the key words. The key bit combinations for S =
0,1,...,128/w—1 are defined as

j 1).w—1 .
Kl =zt Dw=lp o (), ©)
where [j = (lj3, lj‘.‘) has been used to simplify notation.

Hence, we can represent a key hypothesis for S-box j as

il KK
K = (Ko, K oo Koag 1) (10)

Every st is a linear combination of W bits of the key within the word S.
Hence, we see that key bit combinations are only needed and not the entire
key. There would be W binary equations for W key bits in a word. The
W-bits of each keyword are calculated by solving a set of linear equations
corresponding to that word.

Now, we analyse the reinforced CA based ASCON in key dividing strat-
egy. The mixing of words in the linear diffusion layer also includes pseu-
dorandom generators. The difficulty of calculating the mixed words thus in-
creases. This randomisation also affects the [j r used in equations involved

T The hamming weight of a code word is defined as the number of non-zero elements in it.
The Hamming distance between two codewords is defined as the number of elements in which
they differ.

14

in key dividing strategy. The positions of non-zero values in linear diffusion
matrix becomes unpredictable. The key dividing strategy used in SIFA attack
will not be feasible in CA based ASCON. This implies that brute force search
on key space of size 268 will be needed. SIFA thus becomes inapplicable.

Next, we consider the number of fault experiments that would be needed in
CA based ASCON. The equations for SIFA (T)), (), (3) show that L3 and L4
are of vital importance in forming the set of linear equations. In the current
design, we use a PRNG in the linear diffusion layer. The attacker should find
the correct positions across which it is rotated twice. If the control bit is also
randomized, 63 x 31 x 64 options are to be tried out of which only one is
correct. We get 63 x 31 x 64 options for the two positions of L; matrix for
which the value is one. Combination is used instead of permutation because
XOR is commutative, i.e., a® b = b® a. Hence, the attacker has to guess just
the number generated and their order is not significant. To find L3 and L4, the
attacker would have to guess the correct L3 and L4 out of (63 x 31 x 64)2
choices for each of the M cases if control bit is not randomized. Out of the M
cases, success probability is 1 out of (63 x 31 x 64)2M which is negligible.
Thus, SIFA attack is rendered useless against the modified ASCON.

Security against SSFA

The flowchart for SSFA show that L3 and Ly are of vital importance in form-
ing the set of linear equations. The analysis based on number of fault ex-
periments follows on similar lines as presented in Section 6.1. Thus, SSFA
becomes inapplicable on reinforced ASCON.

6.2 CA-GIMLI

There are two ways of strengthening GIMLI. CA may be used as key gen-
erator and also as PRNG in linear diffusion layer. We analyse the security
achieved when CA is used in both these cases, key generation being the first
case.The paper [8] suggests reducing the number of involved key bits and the
number of hypotheses attacking the early rounds of the permutation.

PCA used in CA-GIMLI is a combination of two CAs namely CA() for
the ruleset and CAs() which generates the key bit. Both CA,() and CAs() are
of degree 8. This implies that the each key bit generated is one among 2 8x28
chaoices. Consider the fault attack in which round 23 is the target and it is
possible to recover two key bits as described in [8]. With CA in place, we
will have (28 x 28)/2 = 213 choices per bit as the chances of getting zero
or one is equal. Thus, for two bits 21° x 213 = 230 accurate predictions are
needed to solve the round 23 equations and recover two key bits. The fault

15

attack with round 22 as the target can recover 11 key bits. In the enhanced
CA-GIMLI, this would become accurate prediction using 215" Choices as
there are 21 choices for each of the 11 key bits. The attack thus becomes
impractical.

Next, we consider the security benefits of using CA based PRNG in linear
diffusion layer. The PRNG generates a value between 1 and 256 which im-
plies that there are 28 options. Let the plaintext space be M. Consider the
attack on round 23. We will need 28 x 27 x M more experiments at least to
recover two key bits. If we consider attack with round 22 as the target, 11 key
bits may be recovered as shown in [8]. Among them, six can be recovered
uniquely. Thus, we need to perform at least 26 x 28 x 27 x M experiments
in modified scheme.

In the modified CA based GIMLI, the randomness of the SP-box will be
proportional to the power of the CA. Hence a larger number of hypothesis
will have to be checked even if attack is mounted on first round. The number
of key bits revealed will remain the same. Effectively, the attacker’s job of
determining the key will becomes very difficult. Hence, there is considerable
benefit while using CA for key generation and also as PRNG in the linear
diffusion layer.

7 CONCLUSION

The authenticated encryption schemes based on sponge construction are as se-
cure as the underlying cryptographic primitive or the block ciphers. The pro-
posed introduction of cellular automata based pseudorandom generator in the
permutation p? of ASCON makes the calculation of Li_l infeasible, which is
needed for the SIFA and phase-1 of SSFA thereby rendering SIFA and SSFA
ineffective against the modified ASCON algorithm. Also, we noticed that the
proposed change prevents any attack from the trivial path produced due to
XORing the key for tag calculation mentioned in [L1]. In the modified AS-
CON, it is also observed that if the attacker already has the key, nonce, and
the ciphertext, she cannot decrypt the message without the sequence used in
the linear diffusion layer. The number of iterations of permutations of p% and
pb can be reduced without reducing the security of ASCON and thereby in-
creasing the performance of the algorithm. The resistance of GIMLI against
SIFA is noteworthy. Future work include experiments on practical devices.

16

REFERENCES

[1] Biryukov A, (2011). Keccak specifications summary. Encyclopedia of Cryptography and
Security. Springer, Boston, MA., https://doi.org/10.1007/978-1-4419-5906-5_
619,

[2

—

M Bellare, P Rogaway, and D Wagner. (2003). A conventional authenticated-encryption
mode. IACR Eprint archive.

3

—_

Olivier Benot. (2011). Encyclopedia of Cryptography and Security, pages 218-219.
Springer US, Boston, MA.

Jaydeb Bhaumik. (2015). Synthesis of all maximum length cellular automata of cell size
up to 12. arXiv preprint: https://arxiv.org/pdf/1503.04006.pdf. Last
accessed 04 September 2020.

Dobraunig C, Eichlseder M, Korak T, Mangard S, Mendel F, and Primas, (2018). Sifa:
Exploiting ineffective fault inductions on symmetric cryptography. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2018(3), 547-572.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schliffer. Ascon v1.

2. submission to nist, 2019. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.
pdf. Last accessed 04 September 2020.

Christophe Giraud and Hugues Thiebeauld. (01 2004). A survey on fault attacks. Inter-
national Federation for Information Processing Digital Library; Smart Card Research and
Advanced Applications VI, 153.

Michael Gruber, Matthias Probst, and Michael Tempelmeier. (2020, Last accessed 1 Jan-
uary 2021). Statistical ineffective fault analysis of gimli. 2020 IEEE International Sympo-
sium on Hardware Oriented Security and Trust (HOST), San Jose, CA, 2020, pp. 252-261,
doi: 10.1109/HOST45689.2020.9300260.

Guan, Sheng-Uei, and Shu Zhang. (2004). Cwc: A high-performance conventional
authenticated encryption mode. Fast Software Encryption.

[4

=

[5

—

[6

[t}

[7

—

[8

=

[9

[t

[10] Dolores de la Guia Martinez and Alberto Peinado Dominguez. (2001). On the sequences
generated by 90-150 programmable cellular automata. In 5¢th World Multiconference on
Systemics, Cybernetics and Informatics and 7th International Conference on Information
System Analysis and Synthesis (SCI/ISAS 2001, Orlando, Florida).

[11] Priyanka Joshi and Bodhisatwa Mazumdar. (2021). Ssfa: Subset fault analysis of ascon-
128 authenticated cipher. Microelectronics Reliability, 123:114155.

[12] C S Jutla, (2001). A parallellizable authenticated encryption for ipsec.
https://tools.ietf.org/html/draft-jutla-ietf-ipsec-esp-iapm-00.

[13] T. Krovetz, (2014). Rfc 7253: The ocb authenticated-encryption algorithm
https://tools.ietf.org/html/rfc7253,
https://tools.ietf.org/html/rfc7253|

[14] Sukumar Nandi, Biswajit K Kar, and P Pal Chaudhuri. (1994). Theory and applications of
cellular automata in cryptography. IEEE Transactions on computers, 43(12):1346-1357.

[15] NIST, (2020). Lightweight cryptography csrc.
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates.

[16] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. (2019). A statistical fault
analysis methodology for the ascon authenticated cipher. In 2019 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 41-50. IEEE.

[17] Phillip Rogaway. (2002). Authenticated-encryption with associated-data. In Proceedings
of the 9th ACM conference on Computer and communications security, pages 98—107.

17

https://doi.org/10.1007/978-1-4419-5906-5_619
https://doi.org/10.1007/978-1-4419-5906-5_619
https://arxiv.org/pdf/1503.04006.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://tools.ietf.org/html/draft-jutla-ietf-ipsec-esp-iapm-00
https://tools.ietf.org/html/rfc7253
https://tools.ietf.org/html/rfc7253
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates

[18] D. Whiting, Hifn, R. Housley, Vigil Security, N. Ferguson, and MacFergus. (2003, Last
accessed 3 March 2021). Counter with cbc-mac (ccm). Counter with CBC-MAC (CCM).

[19] Stephen Wolfram. (1984). Cellular automata as models of complexity. Nature, 311(5985):419—
424,

18

	Introduction
	Preliminaries
	ASCON
	GIMLI

	Attacks
	Statistical Ineffective Fault Analysis (SIFA) on ASCON
	Sub-Set Fault Analysis (SSFA) on ASCON
	SIFA on GIMLI

	Cellular Automata
	Our Proposal
	CA-based ASCON
	CA-GIMLI

	Security Analysis
	ASCON
	Security against SIFA
	Security against SSFA

	CA-GIMLI

	Conclusion

