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Abstract. Physical Unclonable Functions (PUFs) have been increasingly used as an
alternative to non-volatile memory for the storage of cryptographic secrets. Research
on side channel and fault attacks with the goal of extracting these secrets has begun
to gain interest but no fault injection attack targeting the necessary error correction
within a PUF device has been shown so far. This work demonstrates one such
attack on a hardware fuzzy commitment scheme implementation and thus shows
a new potential attack threat existing in current PUF key storage systems. After
presenting evidence for the overall viability of the profiled attack by performing it
on an FPGA implementation, countermeasures are analysed: we discuss the efficacy
of hashing helper data with the PUF-derived key to prevent the attack as well as
codeword masking, a countermeasure effective against a side channel attack. The
analysis shows the limits of these approaches. First, we demonstrate the criticality of
timing in codeword masking by confirming the attack’s effectiveness on ostensibly
protected hardware. Second, our work shows a successful attack without helper
data manipulation and thus the potential for sidestepping helper data hashing
countermeasures.

Keywords: physical unclonable function - fuzzy commitment scheme - fault attack
- safe error attack - clock glitch - masking

1 Introduction

Suppose you find yourself in the shoes of a vendor needing to protect a device’s firmware
against unauthorised copying and modification. As your product does not have a protected
non-volatile memory (NVM) suitable for the secure storage of an encryption key, you turn
your attention to Physical Unclonable Function (PUF) key storage schemes. PUFs have
gained much attention for similar applications in the last two decades as they can sidestep
the problems of storing a secret in NVM.

By exploiting unavoidable tolerances of the manufacturing process, a PUF provides a
device-unique secret. These variations are measured with a PUF circuit, such as SRAM
cells [HBF07], ring oscillators (ROs) [Gas+02; SD0O7; YD10b], or concurrent delay chains
like in Arbiter PUFs [Gas+04]. In any case, the PUF circuit measurement under different
challenges or of PUF circuits in different positions in a device results in a set of noisy PUF
responses, which—in case of key storage systems—are then error-corrected to arrive at a
sufficiently stable secret.

One big benefit of a PUF-based key storage system is that the secret generated from a
PUF is only made available on the chip on demand. As a consequence, countermeasures
such as tampering sensors can focus on protecting the time window in which the secret
is derived and processed. The existence of invasive attacks such as the ones presented in
[Hel+13; Mer+11a] shows that such countermeasures are needed. However, sensors are
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hardly able to detect non-invasive attacks and a variety of possible attacks have thus to be
considered in the PUF context.

State of the art regarding attacks on PUFs. Attacks on PUFs encompass a large
variety of different attack vectors. The likely most popular attacks are related to machine
learning, e.g. [Rith+10; Becl5; Gan+16]. Attacks in this domain mostly focus on the
challenge-response behaviour of a PUF's and are therefore not of relevance when storing a
secret key with a PUF, where the response is usually not available from outside of the
chip. Even though few works have shown that PUFs with challenge-response behaviour are
also vulnerable through exploiting public helper data needed to enable error correction in
the system [BWG15; SFP21], such attacks are not critical for the majority of key storage
schemes today, which only use single-challenge PUF's.

Another class of attacks hinges on observing the PUF measurement through side chan-
nels, including invasive attacks exploiting the photon emission of SRAM cells and Arbiter
PUFs [Hel+13; Taj+14] as well as attacks using localised electromagnetic measurements
of RO PUFs [Mer+11a; SF20]. The latter are not limited to invasive attacks; successful
side-channel attacks on the TERO PUF [TPI19] and on the Loop PUF [TDP20] show that
even non-invasive attacks are feasible and have to be taken into account through some
protection mechanism when implementing a PUF system.

As for any cryptographic algorithm processing a secret, the algorithm deriving a
noise-free key from a noisy PUF response is also subject to hardware-related attacks. For
example, the two-metric helper data scheme can enable the derivation of response bits from
side-channel measurements [Teb+421]. In addition, the error correction code (ECC) decoder
circuit itself can also be subject to side channel attacks [Mer+11b; MSS13; TPS17].

While the feasibility of side-channel attacks (SCAs) on PUFs has already been proven,
Fault Injection Analysis (FIA) of a PUF-based key storage systems has been mostly out of
scope for the community. Only few works like the fault attacks on RO- and Arbiter-based
PUF primitives [Taj+15; DV14b] investigated the feasibility of such attacks.

Yet, none of the existing works focused on attacks on the PUF error correction. The
focus of this work lies in the feasibility of Fault Injection Analysis of the error correction
code of PUF-based key storage systems, which has so far not been explored.

Another potential attack vector in a PUF-based key storage system are the public
helper data required for error correction [Del+15]. Deliberate helper data manipulation
can be used to extract secrets due to inherent weaknesses of some helper data algorithms
[Hil+13; DV14a; DV14c] or to force the output of an attacker-controlled key if particular
ECCs are used [Becl9].

Helper data manipulation also plays a central role in hardware-oriented attacks on the
ECC. For example, the Differential Power Analyses (DPAs) of [MSS13; TPS17] depend on
the ability to influence intermediary states via the helper data. Comparable to [DV14c],
our FIA extracts secrets bit-wise after using helper data manipulation to make an induced
fault observable. However, the former exploits algorithmic weaknesses to cause a data-
dependency in the failure rate of the key recovery via helper data manipulation; our attack
achieves this via a clock glitch, exploiting implementation effects in a hardware decoder.

In contrast to [Hil+13; DV14a; DV14c; Becl19], where helper data manipulation is the
only attack vector, it is merely an enabler for our fault attack. Attack possibilities without
helper data manipulation are thus also possible and are discussed later.

Contributions. This work is focused on one concrete implementation of a PUF-based key
storage system. Nevertheless, our conclusions are applicable to a more general scope. The
contributions are:

e We introduce a theoretical model for a FIA on an error correcting scheme.
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o We demonstrate the practical feasibility of the FIA using a code concatenation of a
(7,1, 3) repetition code and a (127,64, 10) Bose-Chaudhuri-Hocquenghem (BCH)
code.! implemented on an field-programmable gate array (FPGA)

o We discuss the impact of long-term PUF response drift and methods to compensate
it for the attack. We also demonstrate the attack’s feasibility under a range of PUF
noise conditions.

o We discuss the applicability of two possible countermeasures, namely of codeword
masking and helper data hashing. We demonstrate the attack in the presence of mask-
ing, as well as in a cross-device profiling scenario without helper data manipulation.
Given these results, we suggest further basic countermeasures.

o We demonstrate the impact of different guessing strategies for a base-line case as well
as in the presence of codeword masking, as well as for an attack without helper data
manipulation.

Outline. The rest of this work is structured as follows. Section 2 provides preliminaries
on PUF-based key storage systems and fault attacks. In particular, it motivates error
correction code choices and introduces the PUF noise model used in this work. In addition,
it summarises glitch-based Fault Injection Analysis and introduces the notation for this
work. After providing the attacker and fault models, Section 3 describes the attack itself.
Section 4 justifies the hardware set-up used for validating the attack experimentally, after
which Section 5 presents the experiment results for a range of different scenarios. After
the results’ implications have been discussed in Section 6, this work ends with a conclusion
and an outlook in Section 7.

2 Preliminaries

Before describing the actual fault attack, the fundamentals of the underlying system are
defined. This section discusses how keys are stored with PUFs and summarises fault
attacks with a focus on glitch-based attacks.

2.1 Notation

Upright bold-face variables denote bit vectors, as they are used within the device under
attack for storage and transmission of messages and secrets. a; is the i-th bit of the vector
a and can either be 0 or 1. The bits are defined to be numbered from left to right, in their
order of transmission, i.e. ¢ will be the first codeword bit to be transmitted to an ECC
decoder and ¢,_; the last. e; =[0,...,1,...,0] denotes the bit vector which is 1 at the
position 7 and 0 elsewhere. HW(a) refers to the hamming weight of a, i.e. the number of
1s in the bit vector.

Important constants for the secret recovery algorithms outlined later in this section are
the parameters of the attacked ECC decoder, which are often written as a triplet (n, k, ).
n is the codeword length, coinciding with the length of the PUF secret, while k is the
length of the encoded secret. ¢ denotes the number of bit errors the ECC is guaranteed to
recover from.

IThe code parameters are taken from [MSS13] to allow for a better comparability of the impact of the
attack.
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2.2 PUF-based key storage

A PUF allows for low-cost key storage solutions, which are useful e.g. for Internet of Things
(IoT) devices. However, PUF responses are subject to noise, environmental effects, and
ageing. While a few approaches like [DGS19] promise error-correction-free key storage
with PUFs, in practical implementations error correction is used to reliably reproduce a
secret key from a noisy PUF response.

To allow for using an error correcting code, however, a helper data algorithm is needed
to map the PUF response to an ECC codeword. In this work we focus, for the sake of
simplicity of our explanation, on the fuzzy commitment scheme [JW99], which this section
introduces. We discuss the equivalence of the code-offset fuzzy extractor and the principal
applicability to syndrome construction in Appendix A.

As we focus on key storage, approaches like the reverse fuzzy extractor [Van+12], which
are used for authentication and require only an error correction encoder on the device, are
out of scope for this work. We also do not consider pointer-based helper data algorithms
like [YD10a; Hil+12; HYS16], though they can still enable our attack if they are only the
first stage of an helper data algorithm.

Fuzzy Commitment Scheme. Figure 1 depicts a sketch of the resulting system when
using the Fuzzy Commitment Scheme. It is based on two phases: the enrolment phase
and the reconstruction phase.

Enrolment phase Reconstruction phase
PUF PUF
ECC | ¢ & 'k & | EoC | K
K Yan) A s K
o encoder ~ bl decoder o
w w
Helper data Helper data

Figure 1: Fuzzy commitment scheme

During the one-time enrolment, the key to be stored k is encoded to a codeword c.
XORing ¢ with a reference measurement of the PUF response r yields the so called helper
data w, which is then stored for later usage.

When the secret k is needed at a later point in time, it is reconstructed from helper data
and PUF response. This process begins with a PUF measurement ¥. As this measurement
differs from the reference r due to noise and environmental effects, its combination with the
helper data, € = T + w is also not exactly the same as the codeword calculated during the
enrolment phase. However, the error in € is compensated by the system’s ECC, deriving a
key k which is correct with high probability Pr[k = K].

All values above the dashed line in Figure 1 are secrets and only exist within the device
during its operation. The helper data w, on the other hand, can be stored in a publicly
accessible manner, while ensuring sufficient entropy remains in the secrets.

To extract the secrets from the system, the attack described in this work manipulates
the transmission of the ECC codeword € during a reconstruction phase. By introducing
faults during this transmission and observing the system’s behaviour, information about €
and thus T is recovered. Consequently, the attack is also applicable to other helper data
schemes which process PUF and helper data in a comparable manner, like it is the case
for the code-offset fuzzy extractor [Dod—+08] (cf. Appendix A).



Jonas Ruchti, Michael Gruber, and Michael Pehl )

Choice of error correction code. Importantly, the design of a PUF key storage system
includes the choice of an error correction code and its concrete implementation. Next to
the PUF’s noise performance and acceptable decoding failure rate determining the ECC’s
error correction capability, other factors have to be taken into account, e.g. the area usage
of the decoder within the key storage system.

As the review of error correcting codes for PUFs in [HKS20] shows, one of the most
frequently used designs for decoders in this domain is a concatenated code with a repetition
as the inner and a BCH code as the outer code. This is motivated by the requirements for
PUF key storage: since most frequently, the demand for low cost leads to the choice of a
PUF key storage system, low area overhead for the error correction is a requirement; the
concatenation of repetition and BCH codes is well-suited in this regard.

The output of the PUF can be processed in blocks of the size of the repetition code,
which the repetition code decoder then processes using only a few logic gates. A BCH
decoder takes the repetition decoder’s output as its input in a bit-serialised way and derives
the syndromes by using few small linear-feedback shift registers (LFSRs) before the error
in the codeword is computed from the syndromes, typically using the Berlekamp—Massey
and the Chien search algorithms (cf. Section 4.2).

While bit-parallel solutions for BCH decoders exist, they are more complex, i.e. require
more area, and would demand for multiple parallel instantiations of the repetition code in
the concatenation. Naturally, this work focuses on a code concatenation of repetition and
BCH code and uses a bit-serial BCH decoder. The impact of bit-parallel decoders on our
attack will be described in our discussion, Section 6.

2.3 PUF noise model

The long-term deviation and short-term noise affecting the PUF response are key to the
system performance. As any PUF will be subject to environmental influences, the impact
of non-perfect PUF reliability on the attack will have to be considered, too.

While the designer of a PUF key storage system mostly has to consider the worst-case
total difference between enrolment-time PUF response r and the reconstruction-time ¥ for
the ECC design, we will further split this deviation into two parts:

F=r® Ar @ Jr. (1)

Ar is an offset, e.g. due to ageing or a temperature difference between enrolment and
reconstruction. This offset can be thought of as caused by longer-term drift and is assumed
to be constant throughout the attack. The remaining part of the difference is captured by
the noise term ér, which can be different from each reconstruction phase to the next.

This split is of particular importance due to the fuzzy commitment scheme construction:
if Ar becomes known to the attacker, they can compensate it by manipulating the helper
data, since any helper data offset is propagated to a codeword offset. With Ar compensated,
the total PUF noise becomes significantly smaller, simplifying the attack. A method for
determining Ar through helper data manipulation will be discussed later, in Section 3.4.

Note that an attacker with physical access to the device can, in part, influence the
PUF noise terms. The reliability of RO-based PUF's, for example, is known to have a
strong temperature dependency [WBG17]. With full access to the device under attack and
knowledge of the PUF design, the attacker can set the ambient temperature, supply voltage,
or other environmental parameters to effect the best- or worst-case PUF performance.

If the device uses, as mentioned in the previous section, a concatenated code, an
attacker might want to target the outer decoder. Since only one decoder is attacked in
our work, we will use the symbols Ar and dr for the offset and noise at the input of the
attacked decoder, after the inner decoder in this case. Note that the preceding inner code
can be a significant advantage to the attacker: since a large portion of the PUF noise and
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offset are already compensated by the inner decoder, Ar and dr as present at the attacked
outer decoder’s input will have less impact on the secret extraction.

2.4 Glitch-based Fault Injection Analysis

Fault Injection Analysis is the generic term for a class of physical attacks as introduced by
Boneh et al. in their seminal work [BDL00]. The underlying principle of these attacks
is a deliberate violation of a device’s specifications to introduce erroneous behaviour. A
low-cost way to cause a violation of the critical path is glitching [Bar+06; Exil4], either
using a voltage drop or a temporary increase of the clock frequency. Both approaches
intentionally cause a violation of the set-up time requirement ¢, + ts, < T [Sap06], by
either raising the propagation time ¢, or lowering the clock period T so that a critical
path’s output signal is no longer stable in a register’s set-up time window tgy.

Several physical glitching set-ups have been proposed [OC15; Kud+18; SMC20]. Fur-
thermore, Krautter et al. were even able to show that on-chip power glitching is feasible
even without a physical glitching set-up [KGT18].

In this work we will focus on on-chip clock glitching, which enables a high temporal
precision by inserting a precisely timed additional clock edge within a regular clock cycle
[BGV11]. Our glitch generator design is discussed in detail in Appendix B.

3 The proposed attack

This section first outlines our attacker model, describes the fault model used in this work,
and sketches the attack on a PUF key storage system. Thereafter, the process of the attack
and all necessary algorithms are described in detail.

3.1 Attacker Model

The nominal device under attack is a low-cost device, e.g. used in an IoT application,
which uses a PUF as a replacement for secure NVM to store a secret key. This requires a
secure sketch as well as an error correction decoder on the device as it was discussed in
Section 2.2. We assume that the inner construction of the device is known to the attacker.

Similar to the side-channel attacks discussed above, we assume that the attacker has
direct access to the device containing the PUF. This allows for modifications of the device
clock and, in particular, the insertion of a clock glitch.

With direct access to the device, the attacker can also influence its operating environ-
ment, e.g. through ambient temperature or supply voltage. This is useful in two directions:
either an optimal environment can be constructed, where the PUF has very low noise, or
a hostile environment can be enforced, operating the device outside its specifications. The
former case limits the influence PUF noise naturally has on the attack, while the latter
allows for the insertion of additional bit flips.

We further assume that the helper data is public. This assumption is in line with the
use of a PUF: the existence of secure memory to store helper data would allow for storing
a key directly without the need for a PUF. If not explicitly stated otherwise, we further
assume that manipulation of helper data is possible. This is the case if helper data are,
e.g., stored in external NVM and the attacker manipulates the transmission from the NVM
to the device. The prevention of helper data manipulation is one of the suggested potential
countermeasure against FIAs but does not render the attack completely infeasible, as will
be shown in the experiments.

The most secure ways to store a key with a PUF are to store a key encryption key or a
private key. The goal of the attacker is to retrieve this secret key—to which they have
no direct access—or to reduce the key’s entropy in order to corrupt e.g. confidentiality of
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previous or future data. The attacker can observe if the tampered-with device correctly
performs key-based cryptographic operations or not. From these observations the attacker
can conclude if the secret key was correctly derived from the PUF or not.

Base-line attacker. Summarising, the most powerful attacker—our base-line attacker—can
manipulate the input to the error-correcting code via the helper data and observe the
output in a pass/fail manner.

In their most powerful form, this attacker can do on-device profiling, i.e. determine
the optimal timing for the glitch on the same device which is later under attack. In the
attacker’s ideal case, the input to the decoder also is perfectly reliable and constant during
the course of the experiments (without the attacker’s intervention), so that permanent
faults can be compensated through helper data manipulation.

This assumption is related to the attacker’s reach, since controlling the environmental
conditions of the PUF, the attacker can bring it into a region where a very low number of
bit errors occurs. The decoder, on the other hand, has to be designed for the worst-case
error. In the case of a concatenated code, like it was motivated above, the inner repetition
code might filter out most of the PUF noise so that the attacked outer BCH code sees
next to no noise.

Restricted attacker. The described, very powerful attacker is used in the following to
showcase the general principle and feasibility of the attack. To converge towards a more
realistic use case, we decrease the attacker’s power and analyse the following cases:

o We consider the case where the BCH decoder input is noisy. The attacker does not
have to control the PUF’s environment in this case.

e We show results for the case where on-device profiling is not possible. Here, the
attacker has to determine the glitch parameters on a distinct set of devices, possibly
bought on the free market before applying the attack to the target device. Thus,
they need to be in the possession of the device for a significantly shorter time and
do not need to tamper with it as much.

e Finally, we consider the case where the attacker cannot perform helper data ma-
nipulation. In this case, protections against helper data manipulation, e.g. through
hashing the error corrected PUF derived secret with the helper data, do not hinder
the attack anymore. This is the most powerful attacker we consider.

3.2 Fault model

On a fundamental level, the reconstruction of the key from a PUF and in particular the
error correction is carried out by sequential logic, whose memory is provided by registers
capturing their inputs at a clock line’s rising edge.
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Figure 2: Codeword transmission as received by the decoder, exhibiting exemplary fault
effect. The clock glitch is highlighted in red.
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A possible effect of a set-up time violation is that the register stores the state of its
input before the transition. Figure 2 shows this in an exaggerated fashion by adding a
clock glitch during the propagation time of the previous clock cycle’s signal.

Evidently, in the example in Figure 2, the time between the first rising clock edge
@ and the glitch’s rising clock edge is sufficiently long, the codeword is stable for a
sufficient time, and set-up time is not violated when sampling codeword bit ¢&; at time
point (C). However, the glitch is too close to the following rising clock edge and the driving
signal cannot propagate to the decoder’s input quickly enough—the i-th codeword bit is
captured again at time point @ The value ¢;4; arriving at the decoder input is only
available for a short time (E) as it is quickly replaced by &; 12, which began propagating to
the decoder at the rising clock edge @ after the glitch. Effectively, the decoder samples ¢;
twice and skips €;y1.

The fault model assumed in this work is similar to the one of a Safe Error Analysis (SEA)
as proposed by Yen et al. [YJ00]. In the context of a SEA an attacker gains knowledge
from the observation if the induced fault does alter the output of e.g. a cryptographic
algorithm. In order to achieve such a fault model, the intermediate value under attack is
always set to a known value i.e. set to one or reset to zero. An attacker can successively
deduce the intermediate state by repeating this approach while observing whether the
output changes under fault or not. In our proposed attack we utilise this approach in a
similarly way where the attacker can gain knowledge about the equality of two successively
transmitted bits.

3.3 Attack sketch

To justify the relevance of the attack, we outline an exemplary system where we consider
a device with application code stored in unprotected NVM.

The manufacturer wants to prevent unauthorised copying, and modification of the
memory contents even for an attacker with physical access to the device and thus encrypts
them using a device-unique key. For the key storage, a PUF system as sketched in Figure 1
is employed. Required helper data for the PUF system is considered public and stored
together with the encrypted application code, where it can be read and modified by the
attacker as per attacker model.

During boot-up, the device reconstructs the secret key from a PUF measurement and
the helper data and uses it to decrypt the memory contents. Because all secrets only exist
during runtime, tamper protection measures have to be active only as long as the device is
powered, which allows the attacker to modify the hardware in a powered-down state in
order to introduce a clock glitch later.

The attacker now manipulates the helper data in such a way that the error-correcting
code under attack is at its correction limit, i.e. such that the output key is still correctly
derived but is influenced as soon as a fault injection changes a single codeword bit, e.g.
using the later introduced Algorithm 1.

For consistent results, the attacker extracts any static offset the PUF might have
accumulated due to ageing using Algorithm 2’s helper data manipulation. Additionally,
to exploit the previous section’s fault model, allowing them to replace one codeword bit?
with the preceding bit’s value, the attack will require profiling in most scenarios: optimal
glitch parameters are first determined e.g. using Algorithm 3.

Then, the attacker applies power to the device and introduce a clock glitch while
the codeword is transferred to the ECC decoder. By observing the outcome of the
reconstruction phase (i.e. pass or fail) after inserting a glitch, the attacker can then reason
about the two bits’ difference. If the device still boots, the recovered key was unaffected

2This work assumes a bit-serial transmission. The attack is also adaptable to larger bus widths, in a
straight-forward way up to the ECC’s error correction capability and even further with additional effort,
see Section 6.
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by the bit replacement and both codeword bits can be concluded to be the same. If the
device fails to boot, replacing the targeted codeword bit with its predecessor evidently
changed the codeword and with the ECC at its error correction limit also the key.

The attacker repeats this experiment, as Algorithm 4 summarises, targeting different
codeword bits through repeatedly power-cycling the device, modifying the helper data,
and introducing clock glitches. This way, they finally recover all bit differences of the ECC
codeword and thus the PUF secret.

3.4 Secret extraction algorithms

The following describes required procedures to extract PUF-generated secrets from a
device using the previously described mechanisms. For brevity’s sake, all algorithms in
this section at first assume a perfectly reproducible glitch effect and no PUF measurement
noise or environmental variation, i.e. ¥ = r and € = ¢, which makes all interactions with
the device under attack deterministic. This assumption does not limit the applicability,
since PUF measurement noise or independent extraction errors can be compensated by
averaging multiple codeword extractions.?

To represent an interaction with the device under attack, the algorithms below use a
place-holder function EXPERIMENT(W'[, g, 0]): using the (modified) helper data word w’
and optionally a glitch position g and parameter set 6, a reconstruction phase is carried
out on the target. After a usage of the reconstructed key, EXPERIMENT returns whether
the reconstructed key matches the key programmed during enrolment of the PUF system.

Herein, g is the integer position of the glitch, i.e. the index of the codeword bit during
whose transmission the clock glitch is introduced, while 6 contains other glitch parameters,
e.g. alignment settings or the exact glitch timing to use. 6 is optimised during profiling; the
other algorithms will use 6*, the optimal parameters found during the preceding profiling
step. Consequently, EXPERIMENT(W', g, 0*), which introduces a clock glitch during the
transmission of bit g, returns false if replacing ¢,41 with ¢, leads to k #k.

The algorithms introduced in this section are generic regarding the actual ECC used
in the implementation, as long as our attacker and fault models apply. If, like in our
experiments below, only the outer decoder of a cascaded code is attacked, the code length
n naturally refers to the decoder under attack’s input, as do ¢, Ar, dr, etc.

Helper data manipulation. According to our fault model, introducing a clock glitch at
position g data-dependently influences the codeword bit at position g + 1. For this change
to be observable, the ECC decoder needs to be at its error correction limit.

In general, an ECC can recover from more than ¢ bit errors in some cases, which makes
the necessary helper data manipulation dependent on the codeword and glitch position.
To bring the ECC to its correction limit, an attacker can invert bit g + 1, successively
add more bit flips until EXPERIMENT always fails (without a glitch), and then revert the
modification of g + 1.

The special structure of the BCH code in the experiments, however, allows to add
exactly t bit flips within the first k& bits of the codeword to bring the decoder to its error
correction limit, which simplifies the problem.* Algorithm 1, detailed below, constructs
such a helper data manipulation vector, intelligently placing the bit flips to the attacker’s
advantage. As only the symbol part of the codeword is modified, the improvements do
not hold for redundancy bits, which will become apparent later. However, we accept this
compromise to allow for an easier choice of bit flips.

3We assume a bit error probabilities of below 50 %. Bit error probabilities above 50 % correspond to a
PUF response offset and can be compensated by flipping the corresponding helper data bit.

4This property follows from the systematic encoding with the first k bits of a codeword being equal to
the encoded symbol and the usage of Chien search, which can find a maximum of ¢ errors.



10 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

Algorithm 1 Construct an n-bit vector f which can be used to bring the (n, k, t)-decoder
to its error-correction limit, given a glitch position g and the target hamming weight ¢.

1: procedure CORRECTION LIMIT(g, t)

2: N—{i:0<i<kAO<|i—g|< %} > Define a set of positions near the glitch
3: fi+ 0 Vie[0,n) > Initialise the bit flip vector f to all-zeros
4: Choose f; uniform randomly from {0,1} Vie N \{g+ 1}

5: while HW(f) < ¢t do > Increase hamming weight to ¢
6: f; < 1 with 4 random from [0, k) \

7 return f > Return bit flip vector

As a first step, bit positions ‘near’ the glitch position are chosen i.i.d. uniform in
line 4, ensuring that there are at most ¢ bit flips. This set N of ‘neighbours’ is chosen in
line 2 such that all bit flips are placed within the first £ codeword bits and thus varies
in size. Choosing f, in particular at random has an advantage, because a helper data bit
flip at position g, changing the codeword bit before the glitch, inverts the outcome of
EXPERIMENT (W', g, 0*). If, for some glitch position, the fault effect is not data-dependent,
its behaviour will then become apparent during the attack: for such positions the outcome
of EXPERIMENT is static, i.e. always failing or always succeeding, while it would be expected
to differ depending on the choice of f; in case of a data dependency.

Randomising a range of bit positions also helps to counteract the effects of glitch
position jitter: as the codeword bits neighbouring the glitch position are now unbiased and
independent of the codeword, measurement noise caused by imprecisely placed glitches is
independent as well and can be compensated by averaging multiple trials as long as the
glitch still falls within .

Finally, the loop beginning with line 5 ensures the correct hamming weight of £ with
additional bit flips at random positions. Bit positions from the set of neighbours A are
excluded here to preserve the previously sampled uniform distribution.

If PUF noise is to be considered, this algorithm mostly stays the same, since it does not
require any interaction with the device under attack. However, the target hamming weight
has to be lowered from the decoder’s ¢: since the PUF noise will introduce, on average,
E[HW (ér)] bit flips, HW(f) has to be decreased by this amount to avoid immediately
bringing the ECC over its error correction limit. This number can also be determined with
helper data manipulation by testing which hamming weight helper data modification is,
on average, required to make a reconstruction fail (without a glitch).

PUF offset extraction. Due to ageing or temperature differences, the PUF’s response
during the reconstruction phases the attacker initiates might have a constant offset with
respect to its enrolment-time value. If this offset is known to the attacker, they can
compensate it via the helper data, ensuring that, in the absence of PUF noise and any
further helper data manipulation, the decoder’s input is a valid codeword.

Algorithm 2 extracts this offset by, after adding bit flips to w until the ECC is over
its error correction limit and reconstruction fails (line 9), testing if a single bit flip in a
remaining position lets it succeed again (line 12). If that is the case, the added single bit
flip has collided with an existing offset bit flip and reduced the total difference to a valid
codeword, moving it into the error correction region again.

Instead of choosing the checked bit positions at random, the algorithm uses a stack in
order to reach all positions more quickly. If this stack has to few positions to guarantee a
failing reconstruction in the worst case (¢ bit flips all hitting positions ¢ with Ar; = 1), it
is refilled once per average (line 7). The positions in the stack are shuffled so that all bits
are covered and to avoid always checking the same combinations of bit flips.

To be able to test all n bits and to combat PUF noise, the process of first bringing
the decoder to a reconstruction failure and then detecting successes due to individual bit
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Algorithm 2 Recover a constant difference Ar between the PUF responses at enrolment
and reconstruction time, given the helper data w and using N averaged iterations.

1: procedure PUF OFrFseT(w, N)

2: Ar; 0 Vie|[0,n) > Initialise offset to zero
3 cntli] <~ 0 Vi€ [0,n) > Set experiment counters zero
4 positions < || > Initialise empty bit position stack
5: for N iterations do

6 if length(positions) < 2¢ then

7
8

positions + shuffle([0, n)) > Refill stack of positions if too few

f; <0 Vie[0,n) > Start with no HD manipulation

9: while EXPERIMENT(w @ f) succeeds do > Add bit flips until reconstruction fails
10: f; < 1 with ¢ = pop(positions) > Draw bit flip position, removing it from the stack
11: forie [0,n)\{i: fi =1} do > Use all positions without bit flips
12: if EXPERIMENT(W @ f @ e;) succeeds then > Try with an extra flip at position %
13: Ar; +— Ar; +1 > Reconstruction succeeds again, so there is an offset at position %
14: cnt[i] + entfi] + 1 > Increment counter for averaging
15: Ar; < Ar;/cnt[i] Vi > Divide by counters to finalise the estimate

16: return Ar
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Figure 3: Result of Algorithm 2 with N = 25 averaged iterations. A 127-bit BCH decoder
was simulated with an error rate of BERgcy = 0.5 %. The bar colour indicates the bit
value of the original Ar, which can be fully recovered from the average.

flips is repeated a number of times, averaging the results for each codeword bit position.
Figure 3 shows an exemplary simulation result based on the decoder later introduced for
the experiments, where the offset was recovered using 25 averaged iterations.

In the following, we will assume that the attacker has extracted and compensated any
PUF offset in all cases where helper data manipulation is available.

Profiling. For a successful attack, the best parameters, e.g. for alignment and timing of
the clock glitch, need to be determined first. To estimate the exploitable data dependency,
given a parametrisation 6, Algorithm 3 carries out four fault injections, modifying two
adjacent helper data bits in all four bit patterns.

If an exploitable data dependency is present for a parametrisation €, either the first two
or the second two conditions in lines 6 to 9 will be fulfilled, regardless of the actual codeword.
In this case, r will accumulate an absolute value of 1. If the results of EXPERIMENT do
not depend on whether a bit difference at the glitch position is present, the contributions
to r will cancel out.

Take, for example, the case where the two consecutive bits ¢, and ¢y differ. With
optimum parameters and thus a fault effect in line with our model, EXPERIMENT in line 6,
where neither of the bit positions g and g+ 1 around the glitch is modified and ¢ errors are
introduced via the helper data, fails. In line 7, ¢ 4+ 1 helper data bit flips are introduced,
which would, without a glitch, lead to a reconstruction failure. If the glitch replaces cg41
with cg4, it offsets the change to c441, effecting a reconstruction success. Lines 8 and 9
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Algorithm 3 Determine a fitness measure of a point # in the parameter space at a glitch
position g, using the original helper data w.

1: procedure FITNESS(w, g, 0)
2: f < CORRECTION LIMIT(g,t — 2)

3: Pick z,y at random from [0,n) \ {g,9 + 1} such that x # y and f, =f, =0

4: w+—wof

5: r<0 01 g n-1
6: if EXPERIMENT(W' @ e, @ ey, g, 0) fails then r <+ r+ % [0 0 R I I
7 if EXPERIMENT(W' @ ey @ eg11 @ ey, g,0) succeeds then 7+ r+ 1 BE---EE-- 3
8: if EXPERIMENT(W @ eg @ ey, g,0) fails then 7+ r— 1 [ R IR
9: if EXPERIMENT(W' @ e; @ egy1 @ ey, g,0) succeeds then r < r — % R =

10: return |r|

result in a success and failure, respectively, and do not affect r, leading to a total value
of 1. For a codeword with equal ¢, and cg41, the behaviour is reversed and r accumulates
a value of —1 before the absolute value is taken.

Averaging multiple calls to FITNESS thus provides an estimate of the observable data
dependency as a value between 0 and 1. An attacker can use this information for a numeric
optimisation of the parameter point. In the simplest case, they evaluate FITNESS averages
for random glitch positions over a grid in the parameter space and then pick the optimal 6.
This approach was used for the experiments; the results of the profiling step are detailed
in Appendix C.

Codeword extraction. Having ensured that the ECC is at its correction limit, Algorithm 4
extracts the codeword by iterating through all bit positions and placing a glitch before
each in turn, observing the result of the fault injection. The first codeword bit is extracted
based on the assumption that the state of the data line before the transmission ¢_; = 0, i.e.
Co is 1 if the first glitch experiments with the clock glitch inserted before the transmission
of bit 0 leads to a reconstruction failure.

Algorithm 4 Recover the n-bit codeword ¢ assuming a set-up time violation glitch effect
model, given the original helper data w.

1: procedure ATTACK(W)

2: ¢_1+0 > Assumption: Data line is 0 before the transmission
3: forg+ —-1...n—2do

4: f +— CORRECTION LiMIT(g,t) > Find suitable helper data bit flip vector
5: if EXPERIMENT(wW & f, g, 6*) fails then

6: Cgr1 < mnot ¢y Dfy > Consecutive bits differ
7 else

8: Cgr1 ¢y Dy > Current bit is the same as the last one
9: return [¢o,...,Cn—1]

The helper data modification of the codeword bit before the glitch position also has to
be accounted for. Lines 6 and 8 invert the recovered bit if w, had been flipped.

This algorithm only attempts to extract each bit once. To compensate measurement
noise and glitch position jitter, it is sensible to run multiple trials of ATTACK on the same
device and then use a majority vote on the extracted codeword bit differences.

Still, skewed results might occur if the fault effect is imperfect, i.e. if EXPERIMENT
sometimes either succeeds or fails without data dependency, unbeknownst to the attacker.
A compensation technique, which was employed in the experiments, is to replace the
strict majority vote after collecting multiple trials with an adaptive threshold: instead
of comparing the per-bit mean recovered difference with a fixed value of %, the average
of all experiment results is used. The threshold is thus automatically adjusted based
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on the assumption of equally probable bit difference values and uniform probability of
non-data-dependency.®

Data error correction. Due to measurement noise or other imperfections, a perfect
codeword extraction might not be possible in a real-world scenario. Since the attacker
has knowledge of the system’s inner construction and thus knows the system’s error
correcting code, they can use it to recover from some bit extraction errors. In the following,
ENcODE and DECODE denote an encoding and error-correcting decoding operation using
an equivalent implementation of the code used in the system under attack.

Since the extraction procedure operates on bit differences instead of the codeword bits
directly, we define a vector of codeword bit differences d,

d;ji=c;_1®c; for0<i<n, (2)

where c_; is the state of the data line before the transmission of the first codeword bit
cp, which we assume to be 0 for now; if this information is unavailable, dy contains the
attacker’s guess of the first codeword bit instead. A vector d for the attacker’s extracted
values is similarly defined using €.

One might be tempted to say that up to ¢t wrongly recovered bits can be recovered by
employing the ECC directly, because the original codeword c is a valid codeword after all.
However, this is not necessarily possible in the general case: a wrong bit in d compared to
d corresponds to bit errors in € from its position onward, often far more than a single bit
flip. Therefore, even a single wrong bit in d might not be correctable.

Still, a number of errors in d can be corrected, depending on the qualities of the
employed error-correction code. An important code class, to which also the BCH code
used in this work belongs to, are cyclic codes, a subset of linear codes. In these, not only
every linear combination of two codewords but also every cyclic shift of a codeword is a
valid codeword, too [Bla03].

Note that the construction of d in Equation (2) almost makes it a cyclic codeword: if
dg were defined as c,—1 @ cg, d would be a linear combination of ¢ and a cyclic shift of c
and thus a valid codeword. In our case, however, we can think of d as a codeword with
one possible bit error in position 0 (which occurs if ¢,—; = 1).

A simple procedure making use of this property is presented as Algorithm 5, which
uses DECODE and ENCODE directly on the vector of extracted codeword bit differences.
To compensate for the possible error due to the ‘imperfect’ cyclic codeword, it attempts
the error correction on two variants, with and without bit 0 flipped and returns the variant
where the error correction changed fewer positions.

Algorithm 5 Error-correct a word d of extracted codeword bit differences for a cyclic
code.

1: procedure CORRECT DIFFERENCES(d)

2: c:io — a, al —do e > Copy to ao, invert bit 0 for 31
3: d; < ENcopg(DEcobi(d;)) Vi€ {0,1} > Error-correct both variants
4: if HD(EI&, do) < HD(&’l,al) then > Pick the variant with fewer errors
5: return El{)

6: else .

7 return d] @ eg

A flipped bit 0 in d corresponds to an inversion of €. If the all-ones word is part of the
code, € is just as valid a codeword as its inverted counterpart and an extraction error at
position 0 is thus not detectable. If we assume a bit difference extraction error probability

5Non-uniformity can be detectable during the profiling step as position-dependent fitness and be used
during post-attack guessing or error correction.
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Table 1: Summary of all conducted experiments.

Experiment  PUF noise = HD manip. Profiling Implementations  Results in
Glitch effect none yes on-device base Section 5.1
Attack none yes on-device base Section 5.1
Attack none yes on-device masked I Section 5.2
Attack none yes on-device masked II Section 5.2
Attack variable yes on-device all three Section 5.3
Attack fixed no cross-device base Section 5.4

below %, a correct extraction of bit 0 is more likely than an extraction error. Thus, the
original value of bit 0 is restored with the flip in line 7.

In case of a code with even minimum distance, the modification of bit 0 cannot
erroneously move the codeword to a point closer to the wrong reconstruction; Algorithm 5
can thus reliably correct ¢ errors apart from any error in position 0. For an odd minimum
distance d = 2t 4 1, this cannot be guaranteed and the bit difference error correction
capability drops to t — 1 bits. In the case of the BCH code used in the experiments,
Algorithm 5 was found to reliably correct ¢ errors after bit 0 despite the odd minimum
distance d because d > 2t + 1.

4 Experimental set-up

Since the attack is mainly concerned with the serial codeword transmission between PUF
and ECC decoder, no complete key storage system is implemented for the experiments.
In particular, the PUF is replaced with a model and the derived key is not used in a
cryptographic application. This section outlines the design choices behind the hardware
model in terms of its scope and additional features, which facilitate a reasonably fast
validation of the attack while representing a real-world system’s behaviour realistically.

4.1 Experiment scenarios

Within our attacker model, several slightly different experiment scenarios are possible,
depending on the attacker’s actual capabilities, the system under attack’s design and the
PUF’s performance. To assess the attack’s prospects in a broad range of scenarios, several
experiments were carried out. Table 1 summarises the experiments and highlights their
differences, e.g. if helper data manipulation or on-device profiling was considered in-scope
for the attacker.

The base and masked implementations mentioned in Table 1 will be introduced in
Section 4.2 and Section 4.3, respectively. In addition to these experiments focusing on
the attack itself, results from the preceding profiling step with and without helper data
manipulation are presented in Appendix C.

4.2 Basic experiment hardware

Figure 4 shows a block diagram of the experiment set-up: a Xilinx XC7A35T-1CPG236C
FPGA contains both the system under attack and a clock glitch generator; all components
are configured and communicated with using a UART interface. Naturally, this model
carries a number of design choices and simplifications.

PUF model. As the proposed attack only needs the data transmission to the error
correction code, the PUF itself lies beyond the scope of this work and its concrete
implementation is not relevant.

For a practical setting, it can be expected that the PUF is either derived before the
decoding starts, e.g. for an SRAM PUF, where the bits are available after power on of the
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Figure 4: Simplified block diagram of the experiment set-up.

SRAM, or in parallel to the decoding, e.g., for an RO PUF. In the latter case, the PUF is
measured for a long time and there is a low probability that a clock glitch skipping one
clock cycle affects the PUF response significantly. In any case, it can be expected that
data is buffered before fed into the repetition code.

Thus, the PUF is simulated by a programmable register in our design.® This simulated
PUF makes our results independent of the actual PUF implementation.

For the first set of experiments, the PUF response was held constant, as PUF meas-
urement noise can be compensated by averaging multiple attack runs. The hardware
PUF model then enabled us to simulate differently reliable PUFs, as will be described in
Section 4.4, to assess the impact of real-world PUF noise on the attack’s feasibility.

Error correction code. So far, the exact code used as the PUF system’s error-correction
measure was not important, as long as its codeword was transmitted serially. This work’s
implementation closely mirrors the code used in [MSS13] and [TPS17], i.e. a concatenated
code consisting of a (7,1, 3)-repetition code as its inner code and a (127,64, 10)-BCH code
as its outer code. BCH codes have been proposed and used in the context of PUF systems
a number of times [Yu+12; Kan+14], sometimes in combination with a repetition code
[MVV12]. They offer good performance and efficient hardware implementations and are
thus suitable for the task (cf. Section 2.2).

Since the PUF value is initially assumed constant and the repetition decoder consists
entirely of combinational logic, this part of the code concatenation is of little importance
for the functional principle of this attack. It is still included in the hardware design because
the propagation delay caused by its logic has an influence on the exact timing of the
system. Therefore, the manipulation of one helper data bit in the attack described above
corresponds to flipping one 7-bit block at the repetition decoder input.

The implementation of the BCH decoder has been generated using the software presen-
ted in [Jam97]. This code uses systematic encoding, i.e. the codeword is a concatenation of
the 64-bit symbol part, which correspond to 64 key bits, and the 63-bit redundancy part,
containing error correction information. To derive a 128-bit key two BCH code words
would be used in practice.

6Profiling and experiment results (cf. Section 5) for different configurations agree well with the fault
model. Together with simulations explaining particular behaviours (cf. Section 5.1) they substantiate that
indeed the targeted ECC decoder is attacked and not just the PUF model.
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Figure 5: Block diagram of the BCH decoder hardware.

Figure 5 presents a block diagram of the BCH decoder’s internal structure: LFSRs
are used to compute the syndromes of the bit-serially supplied input, after which the
error locator polynomial is determined. Based on that, the actual bit errors are calculated,
which are than corrected in a stored copy of the input’s first 64 bits. Since the input
first-in first-out (FIFO) and the syndrome LFSRs use only a bit-wise serial input of €&, the
described attack is directly applicable for this ECC implementation.

In this BCH implementation, the locations of the errors are determined using Chien
search, i.e. by finding the roots of a polynomial of degree ¢ [Jam97]. As this polynomial has
at most ¢ roots, eractly t bit errors can be corrected if all errors are within the symbol part
of the codeword. Since we assume a constant PUF secret, which is the same for enrolment
and reconstruction, this allows for a simplification of the attack: to bring the decoder to
its error correction limit, Algorithm 1, which inserts a fixed number—t in the noise-free
case—of bit flips, can be used instead of a more generic helper data modification scheme.

Fuzzy commitment scheme implementation. Only the reconstruction phase is imple-
mented, as the enrolment phase is out of the attacker’s control and not relevant to the
attack. Thus, only the error correction based on simulated PUF secret and helper data is
necessary. The usage of the reconstructed key is simulated by a comparison to a stored
copy, yielding the pass/fail result.

Because the BCH has a bit-serial input, parallel-in serial-out (PISO) shift registers
(SRGs) are used to convert from the parallel codeword to the serial decoder input, one
for each repetition decoder input. These registers might also be present in a real-world
implementation as part of a FIFO buffer to interface between the slow PUF and fast ECC
decoder. Similarly, a serial-in parallel-out (STPO) SRG is used to convert the reconstructed
key to a parallel format.

On-chip glitching. We opted for on-chip glitching during our work as this approach
allows us to perform experiments on several FPGAs simultaneously without requiring
multiple physical glitch generator set-ups. The architecture of the on-chip glitch generator
used in this work is based on the ChipWhisperer’s design [OC15]. A more detailed look
into its operating principle and performance is provided in Appendix B.

If a physical glitching set-up is used, the wiring between the device under test (DUT)
and the glitch generator introduces a constant delay. In contrast to the off-chip glitching
approach, this delay is very small for on-chip glitching. A physical glitching set-up’s delay
can be determined during the profiling phase for later compensation, as it does not change
during the measurements.

In contrast to a real-world attacker, who would use an external glitch generator, on-chip
glitching guarantees perfect glitch alignment with very low jitter. Contrarily, off-chip
glitching is influenced by a certain amount of jitter, since optimal trigger signals for the
external glitch generator might not be available. However, with an intelligent helper
data modification scheme, glitch position jitter can be compensated with averaging (cf.
Algorithm 1): a randomisation of a range of helper data bits ensures that measurement
noise caused by imprecisely placed glitches appears as independent noise.
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Lastly, if a physical glitching set-up is used, the whole DUT is affected by the glitch;
in the on-chip glitching scenario only parts of the FPGA which form the model for the
device under attack are influenced by the glitch. Nevertheless, we assume our model to be
realistic as the whole ECC, the accompanying registers, and control logic are all wired to
the on-chip glitch generator. This is essentially the same experiment setting as when the
attack is conducted with a physical glitching set-up, e.g. with an ASIC design.

A comparison of both glitching techniques is shown in Table 2, where different para-
meters with respect to the according glitching technique are compared.

Table 2: Comparison of on-/off-chip glitching.

Glitching technique

Parameter On-chip glitching  External glitch generator

Jitter nearly none compensated by averaging/profiling
Delay none determined during profiling

Glitch target  device model real device

4.3 Masking implementations

Masking is a well-known countermeasure against SCAs [Cha+99; RP10; GMK16]. By
adding a random mask to a secret intermediate value, which is later removed again,
masking effectively makes the intermediate value useless to the attacker without knowledge
of the ephemeral mask. In the context of PUFs, masking has already been found successful
against an SCA on a system similar to the one under consideration in this work [MSS13].

On a hardware implementation of a fuzzy-commitment-based PUF key storage system,
masking of the decoder is nearly free in terms of required resources as the random number
generator (RNG) and ECC encoder are likely already present for the enrolment phase and
only an intermediate storage for the masking key and some control logic need to be added.

The principles of masking have also been used to provide protection against Statistical
Ineffective Fault Analysis (SIFA) under the assumption of a SIFA-1 fault model [Sah+-20],
which assumes an alternation of parts of the shares.

Since SCA and FIA have a very similar attacker model, masking could be in place as
an SCA countermeasure in our scenario. Although masking is known to be ineffective
against FIA in the general case (i.e. apart from SIFA-1), it could be assumed to stifle
this particular attack: since the attack extracts a single bit difference at a time, masking
the codeword, thus randomising these bit differences, would—following our bit-level fault
model—make the attack impossible.

The masking scheme in [MSS13] generates a random codeword of the ECC from a
random seed and XORs it to the noisy codeword from the PUF in order to mask the
decoding procedure. Removing the mask after decoding by XORing the random seed to
the decoder output is possible due to linearity of the error correction code. We adapt this
codeword masking scheme in order to analyse its impact on the prospects of a FIA.

Masking architecture. The ECC encoder was generated using the same software as the
decoder to ensure a matching code. For the RNG, a 64 bit LFSR was instantiated using a
polynomial from [A1f96]. Note that this is by no means a cryptographically secure RNG,
which could be exploited in a more advanced attack. As the RNG’s potential weaknesses
are not the focus of this work, it is merely important that its output is (approximately)
bias-free. To achieve this, the LFSR is left free-running and sampled once for each
reconstruction phase. During the experiments, the codeword bits are attacked in random
order to ensure any periodicity effects the LFSR might show cannot affect the results.
Two slightly different approaches are analysed in this work, shown in Figure 6. In the
first one, (a), the random mask is applied to the BCH decoder’s input. This scheme might
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suffice to protect against side-channel attacks targeting the BCH decoder, as the attacks
target the decoder’s input FIFO, whose contents are now randomised.

A second, more complete variant, (b), applies the mask before the repetition decoder,
thus masking the complete concatenated code. This implementation has the disadvantage
of needing one XOR gate for each repetition decoder input and thus comes with a slightly
higher hardware overhead.

64
Register
LFSR
PISO L BCH
64 SRG encoder
(b) ------ J (a) o
1o PISO SRG B — . - o B "
c - Repetition @ BCH N SIPO CB i
= decoder decoder SRG
\L/

Figure 6: Masking block diagram with control and clock signals omitted for brevity and the
already present reconstruction phase circuit drawn in grey. Two masking implementations
are tested: the codeword mask is either added (a) before the BCH decoder or (b) before
the repetition decoder.

4.4 PUF offset and noise simulation

As introduced in Section 2.3, we consider the deviation of the PUF response from the
enrolment time response to consist of two parts, a constant offset term Ar and a variable
noise term dr. These will be simulated in our experiments as follows:

Offset. Since Ar is constant throughout the experiments and can be extracted by an
attacker using Algorithm 2, it is assumed to be known by an attacker where helper data
manipulation is possible. Since it can then be fully compensated by adding Ar to the
helper data, the offset term is set to zero for experiments with helper data manipulation.

If helper data manipulation is not available, the offset term can neither be extracted
nor compensated by an attacker. To simulate it, a set number of bits is flipped in the
codeword with the flip positions chosen uniform randomly once at the experiment’s start.

Noise. For maximum generalisability, we model the PUF noise as i.i.d. for all bits of
the PUF response. Note that this is not necessarily the case for a real-world PUF, where
different bits commonly have different reliability; on the other hand, any non-uniformity
in the error distribution over the codeword bits can be used to the attacker’s advantage by
prioritising less reliable bits during the post-attack guessing or error correction.

Since the modelled system architecture contains a concatenated code, the PUF noise
has to be considered to be present at the input of the inner (7, 1, 3) repetition code. The
bit error rate (BER) at the input of the BCH decoder, after repetition decoder with odd
Nyrep, can be calculated from the PUF BER as:

Nrep

Ny, i Nrep—1%
BERpcn = ( Z.ep)(BERPUF) (1 — BERpyrp)™® 3)
i=(rep+1)/2
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7
- Z (Z) (BERpur)’(1 — BERpur)" ™" (4)

Throughout the experiments, PUF noise was simulated by Bernoulli-sampling all n
bits of ér with the probability BERgcn before each fault injection experiment. dr can
then, together with the constant Ar, be XORed with the codeword.

4.5 Experiment procedure

For a representative evaluation, experiments were carried out on 15 FPGA boards. For all
tested implementation variants, an attack procedure based on two phases was carried out
independently for each board:

e Profiling. Before a codeword was extracted, the optimal glitch parameters were
determined using Algorithm 3. To match a realistic scenario, where an attacker
cannot choose or change the system’s codeword, as closely as possible, a single
random codeword per FPGA board was used for the profiling stage.” To limit
operator bias, the maximum was found using a peak search on FITNESS evaluations
of uniformly random glitch parameters, which required a comparatively high number
of 250000 samples. An attacker can employ a guided search or pick the timings
manually, requiring considerably fewer data points. Results of the profiling step,
shown in Appendix C, provide additional support to our fault model.

o Attack. Using the per-FPGA optimal glitch timings, the attack was carried out
using Algorithm 4. 250 trials of this algorithms were used for 100 random attacked
codewords per FPGA. To monitor the attack as it progressed, the extracted codeword
bit differences were computed on-line based on the average of the current trials.

The number N of trials corresponds directly to the total number of glitches needed
for the attack since each trial consists of 127 fault injection experiments. If only the
key part of the codeword was attacked, the total number of glitches would be 64 - V.

4.6 Attack success metrics

After extracting a secret codeword from a device, the number of bit extraction errors gives
a first indication for the attack’s success. However, since the position of any extraction
errors is unknown to the attacker, they need, in general, to guess more than this number
of bits to reach the correct secret. This section discusses different metrics for bit guessing
after the attack, used during the experiments to assess the attack’s power.

Since the attacker can only extract bit differences between subsequent bits, it is sensible
to judge their success based on the number of correct bit differences. In the following, ‘bit
extraction errors’ refer to errors in the bit differences of codeword and, respectively, key.

Residual guess entropy (RGE). Lacking any further information, a sensible approach
for an attacker would be to guess codewords based on their error count, i.e. the attacker
would try all codewords with one bit flip respective to their extracted value, then two
additional bit flips, and so on. An upper bound of the number of bits the attacker needs
to guess to find x bit errors in an [-bit word is the max-entropy:

RGE(z,1) = log, i(i) : (5)

=0

7A cross-check repeating the experiments on a subset of the FPGAs with different codewords did not
reveal any dependence on the particular codeword.
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If the system under attack uses systematic encoding, i.e. the key bits are available
directly as a subset of the codeword bits, the attacker can try to only extract these key
bits. If z bit extraction errors were made during that process, the residual guess entropy
for the key-only attack becomes

RGE; (z) := RGE(k, x). (6)

As previously discussed, if a cyclic code is used, its decoder can be used by an attacker
to error-correct their extracted codeword. For simplicity, we assume that the attacker will
always guess bit 0 due to its special role and will be able to correct ¢ bit extraction errors
among the remaining codeword bits. The RGE thus becomes

1 for 14 <t
RGEe(z14) == { 1+ RGE(n — 1,214 —t) otherwise ’ @)

where x14 is the number of bit extraction errors for the codeword bits 1 to n — 1.

Note that either strategy can be better. For low extraction error counts, a significant
part can be error-corrected if the complete codeword is extracted, whereas RGEg > RGEg
for higher error counts, since the attacker has to find the errors within n > k bit positions.
For example, for the (127,64, 10)-code used for the experiments, extracting the whole
codeword leads to a lower residual guess entropy only if there are less than 16 bit extraction
errors (assuming an equal distribution of errors within the codeword).

Smart guessing strategies. If additional information about the system is known, an
attacker can guess bits more intelligently. We consider two approaches:

Mazimum-variance (MV) guessing. As multiple fault injection experiments are carried out
for each codeword bit to compensate for measurement noise by averaging, estimating
the measurement variance per bit is possible. This variance intuitively maps to a
confidence in the extracted bit and an attacker can try to guess bits in order of
decreasing measurement variance.

This metric is computed as the number of bits, as ordered by their measurement
variance, which need to be adapted for all extraction errors to be compensated or
until the remaining errors can be corrected using the ECC. As with the residual
guess entropy, bit 0 is always adapted first in the case of a codeword extraction.

Maximum error probability (ME) guessing. In some cases, an attacker might be able to
profile the attack more extensively or in other ways obtain information at which
positions a secret extraction is less likely succeed. They would then adapt the bit
positions with the highest extraction error probability first.

In the experiments, this metric is calculated a-posteriori, using the collected data
from all boards to estimate all bit positions’ extraction error probabilities. The
number of bits to be flipped to reach a correct key/codeword is then determined
analogously to the MV guess count.

5 Experiment results

Using the procedure outlined in Section 4.5, 15 FPGA boards were used to carry out 100
attacks on randomly chosen secret keys each. This section presents the results of each
implementation variant’s 1500 attack experiment results, highlighting boards showing
representative behaviour. The results of the preceding profiling step are detailed in
Appendix C.
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5.1 Base-line implementation

Before examining the proposed countermeasure, we first demonstrate the attack’s feasibility
on the base-line implementation. This section begins with a short analysis of the clock
glitch’s influence on the system before proceeding with the actual attack results.

Error correction limit under glitch influence. Following the argumentation of Section 3.2,
we would expect a clock glitch to have no effect at all for fewer than ¢ bit flips in the
(fault-less) codeword because the decoder can always recover from a single additional error.
However, reconstruction failures were already observed for much fewer helper data bit flips.

To analyse this behaviour, 250 random 64-bit keys were encoded and the effects of a
glitch at each codeword bit position was recorded for different number of helper data bit
flips. The previously determined optimum glitch timing was used and the 0 to 11 helper
data bit flips’ positions were chosen at random within the k symbol bits of the codeword,
excluding the glitch position g and g — 1.
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(a) Share of reconstruction failures when introducing a clock glitch at a specific position.
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Figure 7: Fault injection behaviour depending on the number of inserted helper data bit
flips, based on experiments with 250 random codewords.

Figure 7a shows the share of the recorded reconstruction failures for each glitch position;
the number of additional bit flips at which the reconstructions start to fail is indicated by
the bars’ colours. As expected, all reconstructions fail at ¢ + 1 bit errors, since the flip
positions do not permit a compensation by the clock glitch. Note that only very small red
regions are visible, i.e. very few reconstruction failures occurred at 3 bit flips which did
not occur at 2 or fewer bit flips. The colour cyan is completely absent: from 3 to 9 bit
flips, the behaviour does not change.

Thus, reconstructions start to fail much earlier than at ¢ bit flips. First, a number of
glitch positions, visible as regularly spaced black vertical bars, lead to a reconstruction
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Figure 8: Bit extraction error probability over the bit position, estimated from all experi-
ments.

failure in every case, even without any helper data manipulation. These glitch positions
thus cannot exhibit any useful data dependency.® Since they coincide with two control
signals with 9-bit period, it is likely that a glitch at these positions disturbs the decoder’s
internal control logic, affecting the reconstructed key.

Second, even with one bit of helper data manipulation, a significant share of clock-
glitched reconstructions begins to fail. Even more so, with the exception of a few cases at
three bit flips (drawn in red), the experiment’s outcomes do not change from two to ten bit
flips and no cyan is visible in Figure 7a. This is more directly visible in Figure 7b, where the
share of pass/fail results in line with the set-up time violation model is shown depending on
the number of additionally inserted bit flips. In simulations, a similar behaviour occurred
when some syndrome LFSRs were left unaffected by the clock glitch, which also fits the
intuition: as soon as the syndrome computation units become desynchronised, the error
correction capability suffers.

However, since a behaviour like this cannot be presumed from a general system under
attack, the majority of the attacks in the remainder of this section are carried out as they
were described earlier, with helper data manipulation bringing the error-correcting code to
its error correction limit before the insertion of clock glitches. Since the observable data
dependency, as Figure 7b shows, is not worse for this case, this approach does not degrade
the attack’s performance. The evidently exploitable data dependency for fewer artificially
introduced bit flips allowed for an attack without helper data manipulation in Section 5.4.

Attack results. As expected, the bit positions without or with limited data dependency
highlighted in Figure 7a and discussed in the previous section also appear during the attack
as bit positions with high extraction error probability. Figure 8 shows the indeterminable
bits (i.e. with 50 % error probability) with their regular 9-bit spacing.

Apart from these positions, Figure 8 only has a very small ‘error floor’, indicating that
the attack performs well with respect to measurement noise. This is corroborated by the
attack’s progress on the number of extraction errors within a codeword over the number
of trials in Figure 9a, which is mostly constant despite a growing number of averages.

To find the locations of enough of the on average 14.9 bit errors to arrive at a correctable
codeword, the maximum-variance strategy is well-suited for a majority of the cases. Because
the indeterminable bits always result in a reconstruction failure, the compensation of the
uniformly chosen helper data bit flip immediately before the glitch position results in
maximum measurement variance. As Figure 9b shows, the majority of the errors can be
found by this strategy after the variances have been determined with a few averaged trials.

Figure 9b also reveals a few faint black lines in its upper half, though. Because
Algorithm 1 used for the helper data modification places bit flips only within the key part

8A glitch timing optimisation specific to these glitch positions could not reveal any beneficial timings,
either. Thus, data extraction with the proposed method seems to be impossible for these bits.
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Table 3: Result statistics after 250 trials for different FPGA board subsets.

& extracti k extracti
Statistic/metric Board(s) ¢ extraction extraction

min avg. max. min. avg. max.

best 6 14.2 18 2 7.4 11

Bit extraction errors all 6 14.8 27 2 7.7 15

worst 9 15.4 27 4 8.2 15

best 1 21.5  41.3 11 30.3 39.8

RGE (in bits) all 1 247 672 11 311 477
worst 1 279  67.2 194 324 477

best 0 8.2 72 5 14.4 16

MV guesses all 0 10.4 97 5 19.7 62

worst 0 12.7 97 11 38.8 62

best 0 7.9 16 6 14.3 16

ME guesses all 0 8.6 19 6 14.5 16

worst 0 9.4 19 10 14.7 16

of the codeword, the stuck bits in the final 63 bits of the codeword cannot be detected by
high measurement variance—instead, they have almost zero variance.

Consequently, the naive MV guessing strategy cannot economically recover codewords
with too many zero bit differences at always-failing bit positions within the redundancy
part. Though, in the experiments, these cases merely make up 3% of all 1500 codewords.

In our case, where the likely error positions are known, this information was used by
means of the ME guessing strategy. As expected, the outlier codewords of Figure 9b no
longer appear in Figure 9c, dropping the worst-case guess count to 19 bit. Naturally, the
attack also performs better on average, decreasing from 10.4 bit to 8.6 bit guesses.

The issues of the MV strategy are due a deliberate choice to simplify the helper data
modification, as placing bit flips in the redundancy part would necessitate fault experiments
to determine the exact error correction limit (since it can no longer be guaranteed that
t 4+ 1 bit flips are enough to induce a reconstruction failure). If Algorithm 1 is extended
to no longer limit the i.i.d. bit flip choices to positions in the symbol part or if the MV
strategy is extended to also detect low-variance positions in the redundancy part, the MV
strategy would approach the ME strategy.

Table 3 summarises the attack’s performance. There, the final number of bit errors,
residual guess entropy, and guess numbers using the two strategies outlined before, are
juxtaposed for an attack targeting the complete 127-bit codeword or only the 64-bit secret
key. As, depending on the scenario, an attacker might depend on extracting data from a
single device or could run the attack on multiple devices, it also includes statistics for the
best- and worst-performing FPGA boards for each metric.

Comparing the two average columns, extracting the codeword yields better results
than only the key, as the average error count is below 16 bit (cf. Section 4.6) and using
the system’s error correction is advantageous. Also note, again, the uneconomically high
worst-case guess counts for the maximum-variance strategy, even with the best-performing
hardware. However, even if more complete profiling and the ME strategy are not available,
MV-guessing within the key on a range of devices could work around this issue, as the
best-board worst-codeword value of 16 bit indicates. The worst-case performance for a
key-only extraction, however, suffers, since there is no error correction of extracted keys
and extraction errors at the least-likely position are still possible because of the PUF noise.

5.2 Codeword masking variants

Having shown the feasibility of the attack on the base-line implementation, we direct our
attention towards devices where masking is in place, e.g. originally as an SCA counter-
measure. This section attempts the same attack first on a key storage system where the
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Figure 9: Progress of the attack over the first 100 trials. Values for all codewords are
shown as thin lines in the background, means for FPGA boards as coloured lines.

random mask is applied after the repetition decoder, before the BCH decoder, and second
on the same system with the repetition decoder’s input masked as well.

Mask applied to BCH decoder input. First, we investigate the slightly lower-cost masking
variant, which applies the random mask to the BCH decoder’s input.

Since the attack targets the now-masked codeword input, we could expect it to be
mitigated by this countermeasure. However, Figure 10 shows that the opposite is the case:
the attack performs much better than on the unprotected implementation and even for
the worst-case board 6, the extraction error count quickly converges to zero. In fact, all
1500 tested codewords were perfectly extractable after 250 trials.

To explain this behaviour, we can take a look at the serial transmission of the secret
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Figure 10: Attacking the configuration with the BCH decoder input masked, the extraction
error count quickly converges to zero for all boards.
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Figure 11: Waveform sketches for a set-up time violation fault attack assuming an
imperfectly aligned codeword mask.

codeword and the mask as seen by the BCH decoder’s input, ignoring the XOR gate’s
propagation delay for now. Because the codeword has to propagate through the repetition
decoder while the mask arrives directly from the BCH encoder’s output register, we expect
each clock cycle’s codeword bit to be slightly delayed with respect to the mask bit. A
clock glitch is now inserted as shown in Figure 11: the codeword transmission is affected
in the same way as for the unprotected implementation while the mask, due to its shorter
propagation time, is received unaltered. Any bit difference of the masked codeword caused
by the fault injection thus is only based on the secret codeword—the mask cannot hinder
the attack at all.

Taking also the XOR gate’s propagation delay into account explains why this masked
implementation is even easier to attack than the unprotected system. The XOR gate
increases the secret codeword’s propagation time, thus providing the attacker with more
room to place a clock glitch without disturbing the decoder’s internal critical paths. With
the timing less critical and unwanted side effects less likely, the secret extraction then
functions closer to the idealised model.

Complete masking of the concatenated decoder. Based on this reasoning, we expect
masking the repetition decoder input to yield a more effective countermeasure, because
both mask and codeword have now to propagate through the repetition decoder and thus
have a better-matched signal delay. Indeed, the average of the attacks on board 10 shown
in Figure 12 stays close to half of the codeword length—the fault injections provide the
attacker close to no information about the secret codeword.

However, the countermeasure does not seem to work equally well on all FPGA boards.
Board 6, for example, arrives at an average of 21.1 bit extraction errors.

Curiously, board 9’s curve bends upwards, indicating an inverted data dependency
of EXPERIMENT. Note that this behaviour is distinct from an inverted codeword, i.e. a
flipped extracted bit difference 0. In the case of board 9, a reconstruction failure correlates
with two identical consecutive codeword bits while a success correlates with a bit change.

This apparent contradiction to the fault model can be explained if we presume a
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Figure 12: Attack progress over the first 100 trials on the fully masked implementation.

situation opposite to the previous masking variant. If the mask arrives after the codeword,
a clock glitch can be inserted such that the codeword is transferred normally while one
mask bit is replaced by its predecessor. In half of the cases, the random mask bits around
the glitch position do not differ and this glitch will not have an effect. If they did differ
before the replacement, the reconstruction will fail, but only if the change was not offset
by a relative difference of codeword bits.

The attack results suggest that the propagation delays of mask and codeword are, on
average, indeed closely matched. However, due to hardware tolerances, they differ slightly
between devices. In some cases, like board 6, the mask arrives slightly earlier like with the
previous implementation; in other cases, like board 9, the codeword arrives earlier at the
BCH decoder. Intermediate degrees of protection, like the exemplary board 15, also occur.

An attacker can naturally also make use of the inverted data dependency. For the
attack on this variant, an additional bit guess is included in the metrics, since the attacker
cannot know the polarity. Table 4 summarises the results.

Table 4: Attack statistics for the fully masked concatenated decoder.

¢ extraction k extraction
Statistic/metric Board(s)

min. avg. max. min. avg. max.

best 11 21.1 35 2 4.9 10

Bit extraction errors all 11 47.3 63 2 21.3 40

worst 48 58.9 63 19 29.8 40

best 2 51 87.4 12 23.4 38.4

RGE (in bits) all 2 104.3 123.5 12 54.2 65

worst 109.1 120.3 1235  54.7 63 65

best 2 30.1 48 4 19 43

MV guesses all 2 78.1 116 4 51.2 65

worst 88 103.5 116 57 63.7 65

best 2 46.7 103 3 36.9 65

ME guesses all 2 95.1 116 3 60.8 65
worst 91 105.4 116 59 64 65

Because of the overall higher extraction error probabilities (42 % even for the best-case
board 6), extracting the key only is advantageous in this case, as the two result columns
in Table 4 show. As the errors are no longer concentrated on a few constant positions like
with the base-line bitstream, the ME guessing strategy based on global statistics performs
worse than the MV strategy operating on the current codeword’s measurements only.

Comparing the attack’s progress to the base-line case via Figures 9a and 12, it is
clear that this countermeasure slows the attack down considerably. On average for all
boards, the number of extraction errors now takes 83 trials to progress from a mere guess
(63.5bit) to its final value (47.3 bit), within 10 % of the difference, whereas the attack on
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the base-line implementation achieves this within the first trial.

However, considering the eventually extractable information, masking cannot be con-
sidered too effective. After the full 250 trials, an average of only 19 bit MV guesses on the
best-attackable FPGA board remain.

5.3 With PUF noise

Until this point, the PUF response has been assumed to be constant and at its enrolment-
time value. While a constant offset Ar can be extracted through helper data manipulation
(cf. Algorithm 2), it is clear that PUF noise will directly impact the attack: any bit
flip caused by dr can bring the ECC over its error correction limit, resulting in a false
reconstruction failure, or interact with the codeword bits at the glitch positions for the
inverse effect.

This section assesses how well the attack performs under the influence of PUF noise. To
do this, noise with different bit error rates has been introduced using the approach outlined
in Section 4.4 while Ar is still assumed to be known to the attacker and compensated. To
speed up the experiments and allow more fine-grained BER analysis, only three codewords
were used per FPGA board. These codewords were picked from the previous, noise-less,
experiments as the best- and worst-performing and median codewords.

Note that for higher BERs, the number of helper data bit flips introduced via Algorithm 1
has to be reduced by E[HW(dr)] = n - BERpcn, otherwise the average case will be over
the error correction limit and always lead to reconstruction failures, regardless of the
codeword data. Since the data dependency is equally high for a range of helper data bit
flip counts (cf. Section 5.1), HW(f) was reduced to 9, i.e. one bit below the guaranteed
error correction limit ¢ = 10 of the used BCH code, for all experiments in this section.

This difference corresponds to one expected noise bit flip for bit error rates below
the ECC’s design goal of 15 %, since the repetition decoder preceding the attacked BCH
decoder already partially compensates the noise. Note that for a different concrete ECC
implementation, where the attack does not perform equally well over a wide range of helper
data bit flips, it might well be that the attacker needs to adapt the number of helper
data bit flips so that the expected amount of errors before glitching remains at the error
correction limit.

Figure 13 shows the impact of a range of bit error rates on the attack’s performance
for all tested bitstream variants. Shown are the overall performance and two exemplary
boards, in each case with an average line and the minimum and maximum as a shaded
area. It can be seen that the attack performs as well as in the noise-free case even up to
the ECC’s specified maximum PUF bit error rate of 15 %.

For BERpyur = 15 %, the noise-induced error after the repetition decoder is on average
1.5 bit; at 20 %, it is 4.2 bit. Thus, with further reduction of the number of helper data bit
flips, the maximum error rate for which the attack succeeds might be further increased.

Note that we used 250 trials for comparability to the previous results. However, for
BERpyur < 11 %, fewer than 0.5 bit errors are, on average, present in the codeword after
the repetition decoder. For realistic error rates, the attack thus performs nearly the same
as in the noise-free case and, similarly, significantly fewer trials are required in practice.

5.4 With cross-device profiling and no helper data manipulation

Finally, we want to consider the case where the attacker has more limited access to the
device under attack and has to carry out the profiling on a separate device. We also
investigate if the attack is still feasible without helper data modification, which might be
prohibited by helper data modification detection schemes on the device [Del+15]. This
section details an experiment to assess the attack under these conditions.
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Figure 13: Number of codeword bit extraction errors after 250 trials for a range of PUF
bit error rates. Minimum, maximum and average values are shown for all 15 boards (grey)
and exemplary boards (coloured).

Cross-device profiling. The previous attack experiments have all assumed on-device
profiling, i.e. the attack parameters were optimised for the specific device the attack was
later run on. Since profiling can, depending on the number of parameters to be optimised,
take a rather long time, longer than the time the attacker has access to the device to be
attacked, it is sensible to consider cross-device profiling.

For our experiments, we reused the existing profiling data, but shifted the results by
one board, i.e. the optimum glitch timings for board 1 were used for board 2 while board 1
used the parameters determined on board 15, and so forth. Since not all our FPGAs have
the same lot code, this naturally means that we also check the case when the attacker can
only run profiling on a device of different production date.”

9However, our experiments were inconclusive as to whether profiling on an FPGA of the same lot leads
to better or worse attack performance.



Jonas Ruchti, Michael Gruber, and Michael Pehl 29

An attacker might have multiple devices at their disposal for the profiling step. This
could be used to either speed up the profiling process through parallelisation or to collect
more data in the same time frame. We expect the attack to be, on average, more powerful
with a ‘profile many, attack one’ strategy since the attack is less sensitive to outlier devices
during the profiling; however, all our experiments assume the single-device profiling case.

Attack without helper data manipulation. While in this scenario, the attacker can spend
significant time on profiling a structurally identical device and carry out profiling with
helper data manipulation, we also want to highlight the case where helper data manipulation
is not available during the attack.'® An attack without helper data modification is possible,
since we found the glitch-induced data dependency to be already present for low helper data
bit flip counts (cf. Section 5.1) and a sufficient number of bit flips might occur naturally
through PUF offset or noise.

The experiments in this section focus on the unmasked implementation, which has
served as a base line before. Since it no longer can be compensated, we assume that a
PUF offset of one bit is present after the repetition decoder. We set the PUF noise to
BERpur = 15 %. Note that for regular operation, this is an unrealistically high amount of
noise, since the ECC in our device model was designed for a total bit error rate of 15 %,
including all effects. However, as discussed previously, the attacker is assumed to have full
control over the device’s environment and can therefore operate it outside its specifications,
e.g. with significantly lower ambient temperature or noisy supply voltage.

Experiment results. Except for the changes regarding glitch parameter settings, noise and
helper data manipulation outlined above, the attack was carried out using the procedure
described in Section 4.5: 100 randomly chosen codewords were attacked on each of the 15
FPGA boards.

Figure 14 shows the attack’s progress for the first 100 trials and the previously discussed
success metrics. In it, the means for the three boards performing sub-par, boards 1, 5,
and 8, are shown as dashed lines, while the best case’s, board 10’s, is drawn as a solid
line. While the attack provides only little usable information gain to an attacker for the
worst-case boards, it performs well for all other cases.

The original MV guessing strategy (not shown here) is not useful for the majority
of the cases and only leads to good performance for a small fraction of all codewords.
This is as expected: for the previous experiments, e.g. the first attack on the unprotected
implementation (cf. Section 5.1), this strategy could point out the positions of the stuck
bits due to the helper data modification scheme. Without helper data modification, the
dominating cause of variance is the PUF noise, which we assumed to be uniform.

Since the bit positions of little data dependency, where the fault injections indiscrimin-
ately lead to reconstruction failures, are also not influenced by the PUF noise, they now
appear with minimum variance. It thus is sensible to invert the MV guessing strategy and
guess bit positions of small variance first. The attack results, shown in Figure 14b, now
closely match the ME strategy (Figure 14c¢), which is based on a-posteriori error position
information. However, comparing Figure 14b and Figure 14c shows that the ME guessing
strategy needs fewer trials to achieve a good residual guess count.

Table 5 lists the overall results after the full 250 trials. Instead of the MV guessing
strategy of the previous experiments, minimum variance guessing is used here, like
described previously. Comparing these results to the base case Table 3 reveals similar
attack performance. Codeword minimum-variance guessing in the case without helper data
manipulation could, in theory, even perform better than maximum-variance guessing in
the base case since stuck bits are now also detected within the redundancy part. However,

10Profiling without helper data manipulation is also possible, but provides less information to an attacker.
Appendix C.2 shows an approach to do this and some experiment results.
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Figure 14: Progress of the attack over the first 100 trials. Values for all codewords are
shown as thin lines in the background, means for FPGA boards as coloured lines. Dashed
lines show means for the three boards with sub-par performance.

the error-correction of extracted codeword is hindered by the PUF offset appearing as
additional errors.

To assess the overall attack effort, we again measure how many trials the first 90 % of
the approach to the final value require. On average, the extraction error and ME guess
count now take 8 trials to settle, a noticeable slowdown to the base-lines single trial but
still an order of magnitude faster than for the fully masked implementation. The MV
strategy needs 22 times as many trials than the base-line’s 2; it