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Abstract. We advance the state-of-the art for zero-knowledge commit-and-prove SNARKs (CP-
SNARKs). CP-SNARKs are an important class of SNARKs which, using commitments as “glue”,
allow to efficiently combine proof systems—e.g., general-purpose SNARKs (an efficient way to prove
statements about circuits) and Σ-protocols (an efficient way to prove statements about group oper-
ations). Thus, CP-SNARKs allow to efficiently provide zero-knowledge proofs for composite state-
ments such as h = H(gx) for some hash-function H.
Our main contribution is providing the first construction of CP-SNARKs where the proof size is
succinct in the number of commitments.
We achieve our result by providing a general technique to compile Algebraic Holographic Proofs
(AHP) (an underlying abstraction used in many modern SNARKs) with special “decomposition”
properties into an efficient CP-SNARK.We then show that some of the most efficient AHP constructions—
Marlin, PLONK, and Sonic—satisfy our compilation requirements.
Our resulting SNARKs achieve universal and updatable reference strings, which are highly desirable
features as they greatly reduce the trust needed in the SNARK setup phase.
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1 Introduction

Zero-knowledge (ZK) proofs and argument systems (ZK) [GMR85] are one of the most fascinating con-
cepts in modern cryptography, as they allow proving that a statement is valid without revealing any
additional information as to why said statement is true. Even further, Succinct Non-interactive AR-
guments of Knowledge (zk-SNARKs), allow to do so in such a way that the size of the proof and the
work the verifier needs to perform in order to check the proof is sublinear in the size of the statement.
Today, zk-SNARKs are a fundamental building block in complex cryptographic systems such as e.g.,
Zcash [BCG+14], where succinct zero-knowledge proofs are used to provide integrity while maintaining
privacy. In such applications, it is crucial that the verification time is minimal (as every user in the system
has to perform the verification) and that the proofs are short and non-interactive (as they need to be
posted on the Blockchain).

In this work we focus on commit-and-prove SNARKs (CP-SNARKs) (introduced in [CFQ19]).
This is an important family of SNARKs in which the witness is committed using Pedersen commit-

ments (the de-facto lingua franca of commitments). The presence of these commitments allow to “glue”
together different proof systems. An important application of CP-SNARKs is proving composite state-
ments using the most efficient tool for each part of the statement. Such modularity of the CP proof
system enhances interoperability with other protocols specialized for efficiently proving certain algebraic
relations: consider a composite computation that naturally presents different components, like an arith-
metic circuit for a hash function, and algebraic representation for group exponentiation. A general-purpose
zero-knowledge proof system for such a computation requires a single homogeneous representation, thus
incurring a high cost in performance. Ideally, one would like to take advantage of the nuances of a com-
putation and choose the best proof system for each component of the computation, e.g., SNARKs for an
arithmetic circuit and Σ-protocol for an algebraic relation. One of the simplest examples of such a state-
ment is proving knowledge of the secret key corresponding to a Bitcoin address e.g., proving knowledge
of some x such that y = H(gx) (without revealing gx).

There are many other practical scenarios where the CP extension is useful, including, but not limited
to, anonymous credentials [CGM16, DFKP16, AGM18], verifiable encryption [LCKO19], proof stitch-
ing [CFH+15, Lip16, WTs+18, Set20], and e-voting [LCKO19]. Given these various potential applica-
tions, a working group focused on CP-ZK has recently been launched as part of the ZKProof Stan-
dards [BCF+21].

Unfortunately, existing CP-SNARKs are not truly “succinct” since their proof size scales linearly with
the number of commitments containing the witness. In this work, we fill this gap in the literature and
provide the first truly succinct CP-SNARK.

1.1 Applications

To further motivate the need for succinct CP-SNARKs, we now provide some example applications. In
all these applications, the commitments to (subset of) the witness are part of the public statement and,
in practice, often exist prior to the time we prove properties on them. Motivated by this, we do not count
the commitments as part of the proof size in this work.

We denote by ` the number of individual commitments containing the witness.
1. Anonymous and Delegated Credentials. Consider the application of making digital certificates anony-

mous: one would like to prove knowledge of a message m and a signature σ, where σ is a valid
signature on message m with respect to some public verification key. The main challenge is that the
statement being considered is a composite statement containing both Boolean (hash function) and
algebraic (group operations) components, since the message is hashed before being signed. Efficient
NIZK for composite statements that use a zk-SNARK for the circuit part and Σ-protocols for the
algebraic would yield a proof system that is more efficient for the prover.
Consider now the setting of “delegated credentials”. Each citizen or member of an organization can
have associated a bundle of properties (credentials), e.g., credit and employment history or digital
certificates issued by governments. We assume these properties are fingerprinted through a (com-
pressing) commitment and that each of these users delegates the storage of these properties to a
service. Every time the user needs to prove a statement on these credentials with respect to the
public commitment, it can issue an order to the service. Instead of providing a single proof per user,
a service can wait to accumulate ` orders and provide a single proof for all of them. If the resulting
proof is succinct in `, then this batching technique results in important savings. Note here that in
this application it would not be feasible to commit to the credentials of all users in a single (vector)

3



commitment, because the ` commitments to the credentials already exist and each single user should
be able to verify that on their own.4

2. Blockchains. CP-SNARKs are useful in many Blockchain applications like confidential transactions [Max15]
where range proofs are required on committed values, and in systems balancing privacy and account-
ability [DGK+21] where credentials are proven on committed values.
An example Blockchain application where ` > 1 and succinct CP-SNARKs are desirable is proof of
solvency. In privacy-preserving proof of solvency [AGM18], the number of commitments ` is typically
large. This is because in proof of liabilities, each customer has to check that their own balance has
been included in the total liabilities published by the exchange. This is done by having the exchange
send the decommitment information to each customer privately. Thus, in this application too, using a
single (vector) commitment is not a feasible solution. Since each customer’s balance is private, there
must be as many commitments as the number of customers instead of one vector commitment to all
balances.

3. Machine Learning. Another example of an application that benefits from succinct CP-SNARKs is
verifying integrity of Machine Learning (ML) models. Similar settings have been considered, for
example, in [WZC+18]. A hospital owns sensitive patient data, and one wishes to construct a model
by running a training algorithm on this sensitive data. The hospital does not wish to and/or legally
cannot release the data; making it a challenge to check the integrity of the model. One way to do this
is to have the hospital use a zkSNARK to prove that the model is the output obtained by training it
on the sensitive data and that public commitments indeed open to the same sensitive data.
In practice, ML algorithms are run on data held by different entities (hospitals in the example above),
and each of the ` entities publishes a commitment to their sensitive data. Thus succinct CP-SNARKs
provide efficiency benefits also in this case.

1.2 Our Contributions

In this work we present the first CP-SNARKs whose proof size is succinct in the number of commitments
to the witness. To do so, we combine state-of-the-art SNARKs with state-of-the-artΣ-protocols, inheriting
several important properties of the underlying tools which we use.

An important property of our resulting proof system is that it has universal, updatable and linear-size
reference string: Since we are interested in practically efficient and succinct proof systems, our starting
points are preprocessing SNARKs, in which some form of trusted setup (in the form of a structured ref-
erence string or SRS) is required. If the trusted setup is compromised, it becomes possible to break the
soundness property of the proof system. However, using SNARKs with universal and updatable setup (as
introduced in [GKM+18]) the trust in the setup phase can be reduced to a minimum, as this allows par-
ticipants to dynamically update the SRS was proposed. Even though this does not completely remove the
problem of trusted setup, the security now depends on at least one honest party deleting the contributed
randomness. Moreover, the SRS is universal in the sense that it allows to prove statements about all
circuits of some bounded size (as opposed to earlier systems in which a different SRS was needed for each
circuit, thus increasing the need for trusted setups). Furthermore, the size of the setup will be linear in
the size (or upper bound of) the circuit to be proven.

From a technical point of view, our contributions can be summarized as follows:
– Compiler from AHP to CP-SNARK. In Sec. 3 we present a compiler that takes an AHP (Algebraic

Holographic Proof, the information-theoretic protocol underlying many existing zkSNARKs) and
compiles it into a CP-SNARK. Our compiler is similar in spirit to compilers of [BFS20, CHM+20,
CFF+20] that convert information-theoretic protocols to succinct arguments, but it naturally allows
efficient CP extensions because of our “decompose–and–link” paradigm outlined in Sec. 1.3. The main
technical challenge in building this compiler is that existing SNARK constructions employ different
ways to encode the witness into a polynomial, even though the underlying information-theoretic
objects can be described in the language of AHP. This makes it hard to identify how to generically &
succinctly link committed values to only a small fraction of the large witness vector used in SNARK.
Yet, we are able to abstract out a set of basic properties that AHPs and commitment schemes should
satisfy, in order to apply the same paradigm. Thanks to our abstract approach, one does not need to

4 The service can afford to wait for ` orders depending on the application, and the expected throughput and
time-to-service of the application. As an example, the ID-Layer in Concordium [DGK+21] orders may be even
serviced each epoch.
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examine the entire machinery of the AHP protocol; instead, it is sufficient to look at a few polynomials
present in the AHP, check if they satisfy the properties required by our compiler theorem, and then
focus on designing a sub-protocol performing a minimum set of tasks for “linking”. We believe that
our techniques are general enough to extend to future AHPs and commitment schemes.

– Concrete instantiations. We then apply our compiler to the AHPs of Marlin, PLONK and Sonic to
obtain concrete CP-SNARKs.5 This immediately allows us to prove that the inputs (and/or outputs)
used in the zk-SNARK for an arithmetic circuit/Rank 1 constraint system statement are the same
as the values inside an algebraic (Pedersen) commitment. This helps to hide intermediate outputs
of a composite statement by committing to it, thus allowing switching between the algebraic (Σ-
protocols) and arithmetic (zk-SNARK) worlds. In order to make the argument for the composite
statement succinct, we use recent advances in compressed Σ-protocol theory. We cast the statement
about consistency with Pedersen commitments as statements about knowledge of pre-image of group
homomorphisms. This allows us to apply the compression technique of [AC20] that achieves logarith-
mic communication for the canonical Σ-protocol and the amortization technique that proves many
statements efficiently. Thus, our linking protocol that needs to prove ` statements, where each state-
ment is about equality of vectors of size d, achieves communication complexity O(log(`d)), so the
overall proof (the size of the SNARK together with the size of the linking proof) is still succinct.

1.3 Technical Overview

Most recent constructions of updatable SRS zkSNARKs [BFS20, CHM+20, GWC19] follow a modular ap-
proach where an information-theoretic protocol is constructed in an abstract model like Probabilistically
Checkable Proof (PCP), linear PCP, Interactive Oracle Proof (IOP) etc., and then the information-
theoretic protocol is compiled via a cryptographic compiler to obtain an argument system. While several
abstractions for this information-theoretic parts exist, it is folklore among researchers in this commu-
nity that these formalizations are to some extent equivalent. In this paper, we rely on the formaliza-
tion of (public-coin) Algebraic Holographic Proofs (AHP) of [CHM+20] and we cast the other SNARKs
(PLONK [GWC19] and Sonic [MBKM19]) in the same language.
Plain AHP-to-SNARK framework. In an AHP the prover P takes a statement x and a witness
vector w = (w1, . . . , wn) as inputs and sends some oracle polynomials to the verifier V in each round,
who responds with a random challenge. In the query phase, V can query an oracle polynomial p with an
evaluation point z to obtain v = p(z). V can iterate this process for several different polynomials and
evaluation points. Finally, V outputs a decision bit indicating “accept” or “reject”, based on the result of
the evaluation queries.

An AHP can be turned into an argument system by replacing the oracles and the query phase with
a polynomial commitment scheme (PCS). As proposed by [KZG10], PCS can be succinctly instantiated
by using the discrete log-based encoding of polynomial: PC.Comck(p(X)) := gp0+p1χ+...pn−1χ

n−1 with a
commitment key ck = (g, gχ, . . . , gχn−1). Then upon receiving an evaluation point z, the prover responds
with an evaluation proof to convince the verifier that evaluation v = p(z) is done correctly.
Witness-carrying polynomials and CP extension. Typically, one or few oracles sent by an AHP
prover are witness-carrying polynomials (WCP) [CFF+20], meaning that they encode the entire witness
vector w. For ease of exposition, we assume the AHP has a single WCP w(X) here, but our abstract
compiler works for AHP with multiple WCP as well. The encoding/decoding method differs depending
on the protocol. For example, Sonic employs a simple coefficient encoding, therefore, decoding works by
mapping the coefficients to a witness vector, i.e., w(X) :=

∑
i wi; PLONK and Marlin use interpolation,

and decoding works by evaluating WCP on some prescribed set, i.e., w(X) :=
∑
i wi · Li(X), where

(Li(X))i∈[n] are the Lagrange polynomials associated with some set H of size n.
In our CP scenario, we additionally consider a commitment scheme AC for Auxiliary Commitments.

They are “auxiliary” in the sense that they are used as auxiliary inputs to parts of the witness, and
in some applications, these commitments already exist. For example, if a subvector of witness (wi)i∈Icom

with Icom ⊂ [n] is committed in advance via vector Pedersen commitment, an argument system addi-
tionally takes ĉ = AC.Comack((wi)i∈Icom ; r) := Hr

∏
i∈Icom

Gwii as part of the statement, where ack :=

5 The reason why we apply our compiler to all three proof systems is that Marlin, PLONK and Sonic are a sort of
rock-paper-scissor for AHPs (the first can outperform the second, which can outperform the third, which can
in turn outperform the first). This is because they use different models of computations, and therefore it may
be possible to prove some statements more efficiently with one system rather than the others.
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((Gi)i∈Icom , H). The goal of CP extension is to guarantee consistency between what is committed to via
PC and AC. To this end, it should suffice to provide a sub-protocol for relation

R :=
{

((c, ĉ), (w, r)) : c =
∏n
i=1 g

wi
i ∧ ĉ = Hr

∏
i∈Icom

Gwii
}
.

where gi = gχ
i−1 or gi = gLi(χ), depending on how the AHP under consideration encodes the witness

into WCP.
A naïve approach would be to describe an arithmetic circuit for R and invoke another instance of

SNARK. However, if the committing function of AC involves certain algebraic operations, e.g., group
exponentiation or elliptic curve scalar multiplications as required in the Pedersen commitment, it would
be very costly for the prover to express them in a circuit6. This is where a Σ-protocol comes into play.
Decomposing WCP and linking with Σ-protocol. A simple Σ-protocol can be used for proving
equality of Pedersen-committed messages. However, because naïve instantiation of such a protocol for R
inevitably proves knowledge of the entire vector w, it would incur O(n) proof size and verification time,
losing succinctness. Although it is possible to apply the compressed Σ-protocol theory [AC20] to achieve
O(log(n)) proof size, if logarithmic proof size is acceptable, one could instead use Bulletproofs, which
supports CP extensions with the Pedersen commitment by construction and already achieves O(log(n))
proof size.

In fact, proving R turns out to be quite wasteful, since at the end of the day we only care about a
small fraction of w that are committed beforehand. We circumvent the issue by additively decomposing
the WCP w(X) into two parts wcom(X) and wmid(X), such that w(X) = wcom(X) + wmid(X), wcom(X)
encodes the committed part of the witness (wi)i∈Icom , and wmid(X) contains the rest. In Sec. 3.2 we
formally define this intuition. Accordingly, assuming additively homomorphic PCS (satisfied by KZG),
one can also decompose a polynomial commitment c into ccom and cmid such that c = ccom + cmid =
PC.Comck(wmid) + PC.Comck(wcom). Now we only need to link ccom and ĉ; it suffices to cast ccom to the
Σ-protocol for relation

R′ :=
{

((ccom, ĉ), (w, r) : c =
∏
i∈Icom

gwii ∧ ĉ = Hr
∏
i∈Icom

Gwii
}

which only incurs O(log(|Icom|)) proof size and verification time.
Proving “non-overlapping” decomposition. The above idea needs additional care in order to pre-
serve knowledge soundness since it is not guaranteed that a cheating prover honestly decomposes WCP.
For example, what if a prover crafted w̃mid(X) such that it decodes to w̃mid,i for some i ∈ Icom? In that
case, the knowledge extractor for SNARK outputs w̃i = w̃com,i + w̃mid,i as one of the witness vector
elements, whereas the Σ-protocol only proves that ĉ contains w̃com,i. This breaks consistency between
the value in ĉ and the actual witness used in SNARK. To fix this issue, we require a prover to show the
decomposed WCPs are “non-overlapping”, meaning that wmid(X) only maps to (wi)i/∈Icom .7 In Sec. 5, 6,
and 7, we present different ways to instantiate this additional check: for Sonic it amounts to perform a
degree bound check for wmid(X), while for PLONK and Marlin it suffices to verify wmid(X) vanishes on
certain evaluation points.
Compressing and aggregating many equality proofs. So far we have only considered a single
auxiliary commitment ĉ. But clearly, as described earlier, we are interested in the case where the number
` of commitments is large and we want our proof to be succinct in `. Naïvely, the above ideas can easily be
generalized by invoking ` instances of the equality proof for R′ with statement (ccom, ĉk) for k ∈ [`]. This
in turn would incur in a multiplicative factor of O(`) overhead in the proof size. In Sec. 4 we show how
to amortize ` different protocol instances to achieve O(log(`d)) proof size by adapting the amortization
technique from [ACF20], where d is a dimension of the vector committed to in each ĉk.

1.4 Related Work

Σ-protocols are proof systems that are efficient for proving algebraic statements about discrete loga-
rithms, roots, or polynomial relationships among values [Sch90, GQ88, CDS94, CS97]. They yield short
proof sizes, require a constant number of public-key operations, and do not impose trusted setup require-
ments. Moreover, they can be made non-interactive using the efficient Fiat-Shamir transformation [FS87].
6 While there are approaches that mitigate this problem [KZM+15, jub17, CHA21], they are curve-dependent—
hindering generality and interoperability—and still relatively expensive (at 4-6 constraints per curve operation).

7 While it is also necessary to prove wcom(X) only maps to (wi)i∈Icom , this is trivially achieved by knowledge
soundness of the Σ-protocol.
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|π| Prove (time) Verify (time)

This work O (log(` · d)) O (n+ ` · d) O (` · d)
Lunar [CFF+20] O (`) O (n+ ` · d) O (`)
LegoUAC [CFQ19] O

(
` log2(n)

)
O(n) + ` · Õ (d) O

(
` log2(n)

)
Table 1. Efficiency comparison among CP-SNARK constructions with universal and updatable SRS. Proving
time expresses group operations. The first line refers to our compiler applied to AHPs with suitable decomposition
properties (See Sec. 3). In the above we denote by n the number of constraints in an R1CS system, by ` the number
of input commitments and by d the size of each committed vectors. (The same asymptotics apply also to other
constraints systems with slight variations though. For example, they apply to the AHPs in PLONK if n above
refers to the total number of gates).

Recent work on compressed Σ-protocol theory [AC20] is a strengthening of Σ-protocols that compress the
communication complexity from linear to logarithmic. The underlying pivot of the compressed protocol
is a standard Σ-protocol for opening linear forms on Pedersen vector commitments, i.e., a Σ-protocol for
proving that a committed vector x satisfies L(x) = y for a public scalar y and public linear form L.

The seminal paper of [GGPR13] proposed a pairing-based zk-SNARK for general NP statements based
on the NP complete langauge of Quadratic Span Programs (QSP) for Boolean circuits and Quadratic
Arithmetic Programs (QAP) for arithmetic circuits. This built on previous works of [IKO07, Gro10, Lip12]
and led to several follow ups [BCI+13, PHGR13, BCG+13, Lip13, BCTV14, Gro16] which have proofs
that are very short and have fast verification time.

The first zk-SNARK with an updatable SRS was introduced by [GKM+18]. However, here the size of
this universal updatable SRS is quadratic in the number of multiplication gates of the circuit representing
the statement. In [MBKM19], the authors construct Sonic, the first zkSNARK that is universal and
updatable with a linear-sized SRS. A different solution to SNARKs with universal and updatable SRS is
to use a secure multi-party computation protocol (MPC) to conduct the setup [BGM17], and as long as
at least one party is honest, the setup remains secure.

Although several works on general-purpose CP-ZK exist in the literature, such as Geppetto [CFH+15],
Cinderella [DFKP16], and [Lip16], there are few examples of efficient zero-knowledge proof systems for
composite statements like those we consider in this paper. The first paper in this important line of
work [CGM16] presents a zero-knowledge proof that can be used to prove that F (x) = 1 given a Pedersen
commitment to x, where F is represented as a Boolean circuit. They provide an efficient way of combining
the garbled-circuit based proof of [JKO13] for circuit-based statements with Σ-protocols for algebraic
parts. However, this is inherently interactive which is inherited from the interactivity of [JKO13] where the
verifier uses private coins. In [BHH+19], the authors show how to extend the MPC-in-the-head techniques
of ZKBoo [GMO16] and ZKB++ [CDG+17] to allow algebraic statements on Pedersen commitments.
While allowing for non-interactive proofs via the Fiat-Shamir transform, this approach results in larger
proof sizes. In [AGM18], protocols combining zk-SNARKs with Σ-protocols are presented. This overcomes
the disadvantage of interactivity, and also gives a system suitable for applications that require short
proofs. Not only does their approach lead to more efficient anonymous credentials than Cinderella, but
it also found new applications to the blockchain, such as proof-of-solvency. Our approach achieves better
asymptotic efficiency as well as further generality compared to [AGM18], which relies on naiv̈e Σ-protocols
and a specific QAP-based SNARK construction with non-updatable SRS.

Bulletproofs [BBB+18] can be used to prove statements on algebraically committed inputs, and can
be made non-interactive using Fiat-Shamir. Even though proof sizes scale logarithmically, unfortunately,
the verification time scales linearly with the size of the circuit.

The works most closely related to ours are LegoSNARK and Lunar. LegoSNARK [CFQ19] is a frame-
work for CP-SNARKs that gives general composition tools to build new CP-SNARKs from proof gadgets
in a modular way. The construction LegoUAC in [CFQ19] is a CP-SNARK with a universal and up-
datable SRS. Lunar [CFF+20] obtains CP-SNARKs with a universal and updatable SRS and presents
proof systems for “linking” committed inputs to the polynomial commitments used in AHP-based argu-
ments. Table 1 shows the efficiency comparison between our work, Lunar and LegoUAC. Note that Lunar
constructions and ECLIPSE outperform each other in different settings.
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2 Preliminaries

Notation. For positive integers a and b such that a < b we use the integer interval notation [a, b] to
denote {a, a+ 1, . . . , b}; we use [b] as shorthand for [1, b]. A finite field is denoted by F. We denote by κ
a security parameter. When we explicitly specify the random tape ρ for a randomized algorithm A, then
we write a ← A(srs; ρ) to indicate that A outputs a given input srs and random tape ρ. For a pair of
randomized algorithms A and EA, we often use the handy notation (a;x)← (A||EA)(srs) which denotes
that A outputs a on input srs, and EA outputs x given the same input srs, and A’s random tape. We
denote by Pr

[
A : B

]
the conditional probability of an event A under the condition B. Throughout, G

denotes an Abelian group of prime order q. For vectors of generators g = (g1, . . . , gd) ∈ Gd and exponents
x = (x1, . . . , xd) ∈ Zdq we often write gx :=

∏d
i=1 g

xi
i .

2.1 Indexed relations

Definition 1 (Indexed relation [CHM+20]). An indexed relation R is a set of triples (i, x,w) where
i is the index, x is the instance, and w is the witness; the corresponding indexed language L(R) is the
set of pairs (i, x) for which there exists a witness w such that (i, x,w) ∈ R. Given a size bound N ∈ N, we
denote by RN the restriction of R to triples (i, x,w) ∈ R with |i| ≤ N.

2.2 Zero-knowledge Arguments of Knowledge with preprocessing

A zero-knowledge proof (or argument)8 for L allows a prover P to convince a verifier V that x ∈ L for a
common input x without revealing w. A proof of knowledge captures not only the truth of a statement
x ∈ L, but also that the prover is in “possession” of a witness w.

Definition 2 (Preprocessing Argument with Universal SRS [CHM+20]). A Preprocessing Argu-
ment with Universal SRS is a tuple ARG = (S, I,P,V) of four algorithms. S is a probabilistic polynomial-
time setup algorithm that given a bound N ∈ N samples a structured reference string srs supporting indices
of size up to N. The indexer algorithm I is deterministic and, given oracle access to srs produces a prov-
ing index key and a verifier index key, used respectively by P and V. The latter two are probabilistic
polynomial-time interactive algorithms.
Completeness For all size bounds N ∈ N and efficient A,

Pr

(i, x,w) 6∈ RN ∨
〈P (ipk, x,w) ,V (ivk, x)〉 = 1

:
srs← S(1κ,N)

(i, x,w)← A(srs)
(ipk, ivk)← Isrs(i)

 = 1

Succinctness We call the argument succinct if the communication complexity between prover and verifier
is bounded by poly(κ) · polylog(|x|+ |w|).

Knowledge Soundness For every N ∈ N and efficient adversary P̃ =
(
P̃1, P̃2

)
there exists an efficient

extractor E such that

Pr

(i, x,w) 6∈ RN ∧〈
P̃2 (st) ,V (ivk, x)

〉
= 1

:

srs← S(1κ,N)
(i, x, st)← P̃1(srs)

w← E(srs)
(ipk, ivk)← Isrs(i)

 = negl(λ)

Above we assumed the extractor takes in input the same random tape as the malicious prover.
Perfect Zero-Knowledge There exists an efficient simulator Sim = (Setup,Prove) such that for every
efficient adversary Ṽ = (Ṽ1, Ṽ2) it holds that

Pr

(i, x,w) ∈ RN ∧〈
P (ipk, x,w) , Ṽ2 (st)

〉
= 1

:
srs← S(1κ,N)

(i, x,w, st)← Ṽ1(srs)
(ipk, ivk)← Isrs(i)

 =

8 We use proof and argument as synonymous in this paper, as we are only interested in computational soundness.
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Pr
(

(i, x,w) ∈ RN ∧〈
Sim.Prove (trap, i, x) , Ṽ2 (st)

〉
= 1

:
(srs, trap)← Sim.Setup(1κ,N)

(i, x,w, st)← Ṽ1(srs)

)
We have the following two optional requirements on the arguments defined above. We say that an
argument is public-coin if all the messages from the verifier are uniformly random strings of a bounded
length. We say it is updatable if there exists an update algorithm that can be run by anyone at any time
and to update the SRS. This algorithm guarantees security as long as at least one of the (sequential)
updates have been carried out honestly.

2.3 Algebraic Holographic Proofs

Below we recall the definition of AHP from Marlin.

Definition 3 (AHP [CHM+20]). An Algebraic Holographic Proofs (AHP) over a field family F for
an indexed relation R is specified by a tuple

AHP = (k, s, d, I,P,V)

where k, s, d : {0, 1}∗ → N are polynomial-time computable functions and I,P,V are three algorithms
known as the indexer, prover, and verifier. The parameter k specifies the number of interaction rounds,
s specifies the number of polynomials in each round, and d specifies degree bounds on these polynomials.
The protocol proceeds as follows:
– Offline phase The indexer I receives as input a field F ∈ F and index i for R, and outputs s(0)

polynomials p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0)) respectively. Note
that the offline phase does not depend on any particular instance or witness, and merely considers
the task of encoding the given index i.

– Online phase Given an instance x and witness w such that (i, x,w) ∈ R, the prover P receives
(F, i, x,w) and the verifier V receives (F, x) and oracle access to the polynomials output by I(F, i).
The prover P and the verifier V interact over k = k(|i|) rounds. For i ∈ [k], in the i-th round of
interaction, the verifier V sends a message ρi ∈ F∗ to the prover P; then the prover P replies with
s(i) oracle polynomials pi,1, . . . , pi,s(i) ∈ F[X]. After k interactions, the verifer outputs additional
randomness ρk+1 ∈ F∗ which serves as auxiliary input to V in subsequent phases. We note that
ρ1, . . . , ρk, ρk+1 ∈ F∗ are public and uniformly random strings.

– Query phase Let p = (pi,j)i∈[k],j∈[s(i)] be a vector consisting of all polynomials sent by the prover
P. The verifier may query any of the polynomials it has received any number of times. Concretely,
V executes a subroutine QV that receives (F, x; ρ1, . . . , ρk+1) and outputs a query set Q consisting of
tuples ((i, j), z) to be interpreted as “query pi,j at z ∈ F”. We denote a vector consisting of query
answers p(Q).

– Decision phase The verifier outputs “accept” or “reject” based on the answers to the queries (and the
verifier’s randomness). Concretely, V executes a subroutine DV that receives (F, x,p(Q); ρ1, . . . , ρk+1)
as input, and outputs the decision bit.
The function d determines which provers to consider for the completeness and soundness properties
of the proof system. In more detail, we say that a (possibly malicious) prover P̃ is admissible for
AHP if, on every interaction with the verifier V, it holds that for every round i ∈ [k] and oracle index
j ∈ [s(i)] we have deg(pi,j) ≤ d(|i|, i, j). The honest prover P is required to be admissible under this
definition.
We require an AHP to satisfy completeness, (knowledge) soundness and zero-knowledge as defined

below.

Completeness. An AHP is complete if for all F ∈ F and any (i, x,w) ∈ R, the checks returned by
VI(F,i)(F, x) after interacting with (honest) P(F, i, x,w) are always satisfied.
Soundness. An AHP is ε-sound if for every field F ∈ F , relation-instance tuple (i, x) 6∈ LR and prover
P∗ we have Pr[〈P∗,VI(F,i)(F, x)〉 = 1] ≤ ε.
Knowledge Soundness. An AHP is ε-knowledge-sound if there exists a polynomial-time knowledge
extractor E such that for any prover P∗, field F ∈ F , relation i, instance x and auxiliary input z:

Pr
[
(i, x,w)∈ R : w← EP∗(F, i, x, z)

]
≥ Pr[〈P∗(F, i, x, z),VI(F,i)(F, x)〉=1]− ε
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where E has oracle access to P∗, i.e., it can query the next message function of P∗ (and rewind it) and
obtain all the messages and polynomials returned by it.

Zero-Knowledge. The property of (b,C)−Zero-Knowledge for AHPs models the existence of a simulator
that can interact with a malicious verifier and can effectively simulate under two conditions: there is a
bound b on the number of evaluation queries asked by the verifier; these queries need to satisfy an
admissible test modelled a a circuit C. We say an AHP is zero-knowledge for some bound b = poly(λ)
and some efficient checker circuit C. We refer the reader to Section 4 in [CHM+20] for formal details.

Public coins and non-adaptive queries. In the remainder of this work, we only consider AHPs that
are public coin and non-adaptive: the messages of the verifier are random elements and its checks are
independent of the prover’s messages.

Generalization to multivariate polynomials. Even though the above formalization is tailored to
univariate polynomial oracles, it is straightforward to generalize it to support multivariate, Laurent
polynomials pi,j ∈ F[X1, X

−1
1 , . . . , Xm, X

−1
m ]. In that case, a query set Q consists of ((i, j), (z1, . . . , zm))

and is to be interpreted as “query pi,j at (z1, . . . , zm) ∈ Fm”. Likewise, the polynomial commitment
scheme definition can also be adapted to support multivariate polynomials as inputs. Our Theorem 1 in
the next section holds under this generalization because the proof does not rely on whether polynomials
are univariate or not. This is analogous to the compiler theorem of [CHM+20]. However, because the
generalization is only required for Sonic presented in Appendix 7, and PLONK and Marlin only deal with
univariate polynomials, we focus on the univariate version in the main body for ease of exposition.

2.4 Polynomial Commitment

Polynomial commitment schemes were introduced by Kate–Zaverucha–Goldberg [KZG10]. Below we recall
the definition of standard polynomial commitment scheme. The definition is taken verbatim from Section
6.1 of [CHM+20].

Definition 4 (Polynomial Commitment Scheme). A polynomial commitment scheme (PCS) over
a field family F is a tuple PC = (Setup,Trim,Com,Open,Check) such that
– Setup(1κ, D) → pp. On input a security parameter κ, and a maximum degree bound D ∈ N, Setup

samples public parameters pp. The parameters contain the description of a finite field F ∈ F .
– Trimpp(1κ,d)→ (ck, rk). Given oracle access to public parameters pp, and on input a security param-

eter κ, and degree bounds d, Trim deterministically computes a key pair (ck, rk) that is specialized to
d.

– Comck(p,d;ω)→ c. On input ck, univariate polynomials p = (pi)ni=1 over the field F with deg(pi) ≤
di ≤ D, Com outputs commitments c = (ci)ni=1 to the polynomials p. The randomness ω is used if
the commitments c are hiding.

– Openck(p,d, Q, ξ;ω) → π. On input ck, univariate polynomials p, degree bounds d, a query set Q
consisting of (i, z) ∈ [n] × F, and opening challenge ξ, Open outputs an evaluation proof π. The
randomness must equal the one previously used in Com.

– Checkrk(c,d, Q,v, π, ξ) ∈ {0, 1}. On input rk, commitments c, degree bounds d, query set Q, alleged
evaluations v = (v(i,z))(i,z)∈Q, evaluation proof π, and opening challenge ξ, Check outputs 1 iff π
attests that, for every (i, z) ∈ Q, the polynomial pi evaluates to v(i,z) at z.

We recall a set of basic properties that the KZG scheme [KZG10] and its variants described in Marlin and
Sonic already satisfy.

Completeness. For every maximum degree bound D ∈ N and efficient adversary A,

Pr


deg(p) ≤ d ≤ D

=⇒ Checkrk(c,d, Q,v, π, ξ)
:

pp← Setup(1κ, D)
(p,d, Q, ξ,ω)← A(pp)
(ck, rk)← Trimpp(1κ,d)

c← Com(ck,p,d;ω)
v← p(Q)

π ← Open(ck,p,d, Q, ξ;ω)


= 1
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Homomorphism. A PC is additively homomorphic if for every D ∈ N, every d such that di ≤ D, every
query set Q, every opening challenge ξ, every p1,p2,ω1,ω2 that are consistent with the degree bound d,

Pr

c1 + c2 = Comck(p1 + p2,d;ω1 + ω2) :

pp← Setup(1κ, D);
(ck, rk) = Trimpp(1κ,d)
c1 = Comck(p1,d;ω1)
c2 = Comck(p2,d;ω2)

 = 1

Succinctness. We require the commitments and the evaluation proofs to be of size independent of the
degree of the polynomials, that is |c| = n · poly(λ), |π| = |Q| · poly(λ), |rk| = n · poly(λ). We also require
the verifier Check to run in time (n+ |Q|)n · poly(λ).
Extractability. From any adversary that can satisfactorily prove evaluations v and degree bounds d over
polynomial commitments c we should be able to extract: (i) polynomials p consistent with the proofs,
(ii) randomness ω through which c opens to p. The complete formal definition is quite involved; we refer
the reader to [CHM+20, Definition 6.2] for details.
Polynomial Binding. We require that it is infeasible for any adversary to open the same commitment
to two different polynomials. Formally, for every maximum degree bound D ∈ N, security parameter κ
and efficient adversary A,

Pr

 p1 6= p2

∧ c = Com(ck,p1,d;ω1)
∧ c = Com(ck,p2,d;ω2)

:
pp← Setup(1κ, D)

(c,p1,p2,d,ω1,ω2)← A(pp)
(ck, rk)← Trimpp(1κ,d)

 ≤ negl(κ)

Hiding. We require the existence of a stateful simulator Sim =
(Sim.Setup,Sim.Commit,Sim.Open) such that an adversary cannot distinguish whether it is interacting
with an honest execution or a simulated one. We refer the reader to [CHM+20] for the full definition.

2.4.1 The KZG scheme. Below we recall the polynomial commitment scheme due to Kate–Zaverucha–
Goldberg [KZG10], denoted by PCKZG. The scheme is proven extractable under the strong Diffie–Hellman
(SDH) assumption in the algebraic group model (AGM) [FKL18], polynomial binding under the discrete-
log assumption, and perfectly hiding [CHM+20, KZG10]. For simplicity we omit challenge ξ used for
batch opening as well as the Trim function, and set ck = rk = pp. See Appendix B of [CHM+20] for
details of such optimization techniques.
– Setup(1κ, D) → (g, gχ, . . . , gχD , g, gγχ, . . . , gγχD , hχ) where it determines a bilinear group public pa-

rameters (q,G1,G2,GT , e, g, h), with g ∈ G1 and χ, γ ∈ F are randomly chosen. We denote exponen-
tiation in Gi by [·]i.

– Comck(p,D;ω)→ [p(χ) + γω(χ)]1, where ω ∈ F≤D[X] is a random masking polynomial.

– Openck(p,D, z;ω) computes W (X) = p(X)−p(z)
X−z , W̄ (X) = ω(X)−ω(z)

X−z , Π := [W (χ) + γW̄ (χ)]1, v̄ :=
W̄ (z) and outputs π := (Π, v̄).

– Checkrk(c,D, z, v, π) checks e(Π, [χ]2/[z]2) ?= e(C/([v]1 · [γv̄]1), h).

3 AHP-to-CP-SNARK compiler

In this section, we present our general compiler that turns AHPs to commit-and-prove zkSNARKs.

3.1 Additional Preliminaries for Compiler

Auxiliary Commitment Scheme AC We will assume a commitment scheme AC for Auxiliary Commit-
ments. They are “auxiliary” in the sense that they are used as auxiliary inputs to parts of the witness. We
assume AC to satisfy the standard properties of (computational) binding and (computational or other-
wise) hiding. As we explicitly support a vector x ∈ Fd as committed message, the definition is specialized
for a vector commitment scheme. Specifically we assume AC = (Gen,Com) such that AC.Gen(1λ, d)→ ack
is a randomized algorithm returning a commitment key ack for messages of dimension d ∈ N, where
d ∈ poly(λ), and AC.Comack(x; r) is a committing algorithm returning a commitment ĉ on input x ∈ Fd
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for some randomness r. In our concrete instantiations, we use the Pedersen vector commitment scheme
(Appendix A.1) as AC.
Commit-and-Prove Relation Our goal is to construct a general compiler that turns AHP for R into
ARG for the relation over commitments Rcom. Throughout we assume an indexed relation where the
witness can be represented as a vector in Fn.

Definition 5 (Commit-and-prove relation). Let R be an indexed relation, AC a commitment scheme
as defined above and ack an auxiliary commitment key in the range of AC.Gen. We define the corresponding
commit-and-prove relation

Rcom =

 ((i, n, `, d, Icom, (Ik)k∈[`], ack),
(x, (ĉk)k∈[`]), ((wi)i∈[n], (rk)k∈[`]))

:

(i, x, (wi)i∈[n]) ∈ R ∧
Icom ⊂ [n] ∧ |Icom| = `d ∧

Icom =
⋃
k∈[`] Ik ∧ |Ik| = d ∧

ĉk = AC.Comack((wi)i∈Ik ; rk)


3.2 Additional properties for AHP

We present basic properties that the underlying AHPs of PLONK, Marlin and Sonic already satisfy.
First we describe our variant of Definition 3.3 from [CFF+20]: straight-line extractability for AHP. We
note that our definition is in the AHP model, while that in [CFF+20] is for Polynomially Holographic
Proofs. The reason why we explicitly define witness-carrying polynomials (WCPs) is that our compiler
needs to identify a minimum set of polynomials containing enough information about the whole witness,
with which auxiliary commitments are shown to be consistent. Note that we also restrict WitExt to be
deterministic so that it can be essentially seen as a witness decoding algorithm that works for both honest
and malicious provers once and for all.

Definition 6 (AHP with S-straight-line extractor). Fix AHP for indexed relation R and index
set S ⊆

{
(i, j) : i ∈ [k], j ∈ [s(i)]

}
. An AHP is ε-knowledge sound with S-straight-line extractor if there

exists an efficient deterministic extractor WitExt such that for any admissible P∗, every field F ∈ F , every
index i and instance x,

Pr[(i, x,WitExt({pi,j(X)}(i,j)∈S)) ∈ R] ≥ Pr[〈P∗(i),VI(F,i)〉(F, x) = 1]− ε

where {pi,j(X)}(i,j)∈S is a subset of the polynomials output by P∗ in an execution of 〈P∗,VI(F,i)〉(F, x).
Let W be a smallest set such that there exists an efficient extractor satisfying the condition above. Then
we say that {pi,j(X)}(i,j)∈W are witness-carrying polynomials (WCPs) of AHP. If all WCPs are sent
during the same round kw ≤ k, we call kw a witness-committing round.

Definition 7 (Disjoint witness-carrying polynomials). We say that WCPs are disjoint if there ex-
ists some disjoint index sets Ii,j such that [n] =

⋃
(i,j)∈W Ii,j and the corresponding WitExt independently

invokes WitExti,j on pi,j to obtain (wι)ι∈Ii,j .

Remark 1. Let nw = |W |. For Marlin and Sonic we have nw = 1 and kw = 1; for PLONK we have nw = 3
and kw = 1 and disjoint WCPs. In our compiler formalization, we always assume that W is such that kw
is minimum, and that AHP has a witness-committing round.

The following two definitions are needed to guarantee completeness of our compiler.

Definition 8 (Unique extraction). We say that an S-straight-line extractor WitExt performs unique
extraction, if for any honest prover P and every (i, x,w) ∈ R, WitExt({pi,j(X)}(i,j)∈S) = w, where
{pi,j(X)}(i,j)∈S is a subset of the polynomials output by P in an execution of 〈P(i,w),VI(F,i)〉(F, x).

Definition 9 (Decomposable witness-carrying polynomials). Let W be an index set of WCPs of
AHP. We say that polynomials (pi,j(X))(i,j)∈W of AHP are decomposable if there exists an efficient func-
tion Decomp((pi,j(X))(i,j)∈W , I)→ (p(1)

i,j (X), p(2)
i,j (X))(i,j)∈W such that it satisfies the following properties

for any I ⊂ [n].

– Additive decomposition: pi,j(X) = p
(1)
i,j (X) + p

(2)
i,j (X) for (i, j) ∈W .

– Degree preserving: deg(p(1)
i,j (X)) and deg(p(2)

i,j (X)) are at most deg(pi,j(X)) for (i, j) ∈W .
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– Non-overlapping: Let w = WitExt((pi,j(X))(i,j)∈W ), w(1) = WitExt((p(1)
i,j (X))(i,j)∈W ), and w(2) =

WitExt((p(2)
i,j (X))(i,j)∈W ). Then

(wi)i∈I = (w(1)
i )i∈I (wi)i/∈I = (w(2)

i )i/∈I (w(1)
i )i/∈I = (0) (w(2)

i )i∈I = (0)

Remark 2. If the above decomposition function is invoked on WCPs, one can observe that witness ex-
traction/decoding is also additively homomorphic on such honest inputs, i.e.,

WitExt((pi,j(X))(i,j)∈W ) = WitExt((p(1)
i,j (X))(i,j)∈W + (p(2)

i,j (X))(i,j)∈W )

=WitExt((p(1)
i,j (X))(i,j)∈W ) + WitExt((p(2)

i,j (X))(i,j)∈W ).

3.3 Our compiler

In order to prove the relation Rcom above, our compiler will use a commit-and-prove NIZKAoK subproto-
col for following relation. Although the abstract relation Rlnk looks cumbersome for the sake of generality,
the actual instantiation of CPlnk will be rather simple: it can be achieved by “linking” committed witness
sub-vectors and proving “non-overlapping” decomposition as outlined in 1.3. See Figs. 4, 5 and 7 for
concrete examples.

Definition 10 (Commitment-linking relation). Fix an AHP with W -straight-line extractor and
witness carrying polynomials, a polynomial commitment scheme PC, and an auxiliary commitment scheme
AC. We define the linking relation

Rlnk =



((n, `, d, Icom, (Ik)k∈[`], ck, ack),
((ĉk)k∈[`],v, Q,

(ccom
i,j (X), cmid

i,j (X))(i,j)∈W ),
((pcom

i,j (X), pmid
i,j (X))(i,j)∈W ,

(ωcom
i,j (X), ωmid

i,j (X))(i,j)∈W ,
(rk)k∈[`]))

:

Icom ⊂ [n] ∧ |Icom| = `d ∧
Icom =

⋃
k∈[`] Ik ∧ |Ik| = d ∧

ccom
i,j = PC.Comck(pcom

i,j (X), d(|i|, i, j);ωcom
i,j ) ∧

cmid
i,j = PC.Comck(pmid

i,j (X), d(|i|, i, j);ωmid
i,j ) ∧

ĉk = AC.Comack((wi)i∈Ik ; rk) where
w = WitExt((pcom

i,j (X) + pmid
i,j (X))(i,j)∈W ) ∧

v((i,j),z) = pcom
i,j (z) + pcom

i,j (z)
for all ((i, j), z) ∈ Q such that (i, j) ∈W


Remark 3. On a high-level the relation guarantees “the prover knows polynomials committed via PC, such
that their sum correctly decodes to the partial witnesses committed via AC”. Although the correctness
of polynomial evaluation (i.e., the condition “v((i,j),z) = pcom

i,j (z) + pcom
i,j (z)”) is also part of Rlnk, we

remark that this is redundant since it is to be proven by the opening algorithm of PC outside CPlnk
anyway. Looking ahead, security proof of our compiler indeed holds even without showing such a condition
within CPlnk. We rather include this for the ease of proving knowledge soundness of CPlnk; in concrete
instantiations, an extractor of CPlnk typically needs to extract what is committed to cmid

i,j by internally
invoking an extractor of PC, which however is only guaranteed to succeed if the evaluation proof is valid.
Hence, by letting CPlnk take care of evaluation proof by default we can easily make such an argument
go through. In later sections our CPlnk for Sonic takes advantage of this generalization, while the ones
for PLONK and Marlin don’t since they create a special evaluation proof independent of the AHP query
phase.

Intuition about the compiler. The compiler in Figure 1 is close to those in Marlin [CHM+20], Lu-
nar [CFF+20] and DARK [BFS20]. One important difference is the use of polynomial decomposition
where the prover will commit separately to each of the “parts” of the WCPs. This separate commitment
will allow efficiently proving the commitment-linking relation.

Theorem 1. Let F be a field family and R be an indexed relation. Consider the following components:
– AHP = (k, s, d, I,P,V) is a knowledge sound AHP for R with W -straight-line unique extractor, and

with a decomposition function Decomp for witness-carrying polynomials (pi,j(X))(i,j)∈W ;
– PC = (Setup,Com,Open,Check) is an additively homomorphic polynomial commitment over F with

binding and extractability;
– CPlnk = (Ilnk,Plnk,Vlnk) is (preprocessing) non-interactive argument of knowledge for Rlnk (Defini-

tion 10)
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Then the construction of ARG = (S, I,P,V) in Fig. 1 is a preprocessing argument system for the relation
Rcom. Moreover, if witness-carrying polynomials are disjoint and Icom ⊂ Ii∗,j∗ for some (i∗, j∗) ∈ W ,
then the above claim holds even if CPlnk shows a variant of Rlnk such that all “(i, j) ∈ W” are replaced
by (i∗, j∗) and WitExt is replaced by WitExti∗,j∗ .

If PC is hiding, CPlnk is zero-knowledge, and AHP is zero-knowledge as defined in Definition 3, then
ARG is also zero-knowledge.

Remark 4. While in the description of our compiler we generically commit all polynomials with the same
type of polynomial commitments, our instantiations use some ad-hoc tweaks. In particular, we commit
to the witness carrying polynomials using a special version of KZG (see for example the input format of
commitments in Figure 4) different than the one we use for the rest of the oracle polynomials. Note that
this is a standard optimization trick already used in previous works, e.g., [CHM+20],[GWC19],[MBKM19],
and we are still able to satisfy the security requirements of the general compiler this way.

Proof. Completeness. It follows from properties of the Decomp function, uniqueness of extraction, and
homomorphism of PC. Concretely, since PC is homomorphic and decomposition of polynomials is additive
and degree-preserving, it holds that

ccom
i,j + cmid

i,j = PC.Comck(pcom
i,j (X) + pmid

i,j (X), d(|i|, i, j);ωcom
i,j + ωmid

i,j )
= PC.Comck(pi,j(X), d(|i|, i, j);ωi,j).

Hence V always accepts evaluation of pi,j(X) during PC.Checkrk. Moreover, due to uniqueness of extraction
and properties of Decomp, if the instance-witness pair is in Rcom then we have that the inputs to CPlnk
prover satisfy relation Rlnk. In particular,

WitExt((pcom
i,j (X) + pmid

i,j (X))(i,j)∈W ) = WitExt((pi,j(X))(i,j)∈W ) = w.

Knowledge soundness. It follows from homomorphism and binding of PC, knowledge soundness of
CPlnk andW -straight-line extractability of AHP. Our goal is to extract a pair of witness ((wi)i∈[n], (rk)k∈[`])
that satisfies relation Rcom, given index (i,m, `, d, Icom, (Ik)k∈[`], ack) and statement (x, (ĉk)k∈[`]). Namely,
(wi)i∈[n] such that (i, x, (wi)i∈[n]) ∈ R and randomness rk for commitment ĉk such that its opening is
consistent with (wi)i∈Ik . At the high-level the extractor EARG works as follows:
1. Extract the polynomials from the polynomial commitments sent at each round through the extractor

for the polynomial commitments;
2. From these, for each (i, j) ∈W reconstruct the witness-carrying polynomials as p̃i,j(X);
3. On the other hand, extract auxiliary commitment randomness (r̃k)k∈[`] as well as decomposed witness-

carrying polynomials (pcom
i,j (X), pmid

i,j (X))(i,j)∈W such that pi,j(X) = pcom
i,j (X) + pmid

i,j (X), by invoking
the linking extractor.

4. Extract witness (w̃i)i∈[n] from the W -straight-line extractor as WitExt(p̃i,j(X))(i,j)∈W ;
5. Return ((w̃i)i∈[n], (r̃k)k∈[`]).
A more detailed version of the proof follows.
Suppose that P̃ convinces V of ARG with non-negligible probability. Assuming the existence of extractors
EPC for PC and Elnk for CPlnk, we show the existence of another extractor EARG that outputs a valid
witness w̃ for Rcom with non-negligible probability, given access to P̃.
– First we construct an adversary APC against the extractability game for PC. The APC receives ck

and random coins as input, and internally invokes P̃ to obtain a set of commitments (c̃i,j)i∈[k],j∈[s(i)],
where for (i, j) ∈W it holds that c̃i,j = c̃com

i,j + c̃mid
i,j .

– We then invoke an extractor EPC who, given the same input as that ofAPC, outputs a set of polynomials
p̃ := (p̃i,j)i∈[k],j∈[s(i)]. If the cheating prover P̃ convinces the ARG verifier V, then the evaluation
proof π̃Eval is valid w.r.t. the alleged evaluations ṽ := (ṽi,j)i∈[k],j∈[s(i)]. Hence if EPC fails to extract
polynomials (i.e., p̃(Q) 6= ṽ), then APC wins the extractability game, which, however, happens with
negligible probability under our assumption. So below we assume that with overwhelming probability
p̃(Q) = ṽ.

– Second we construct another adversary Alnk against the knowledge soundness game for CPlnk. The
Alnk receives a statement for Rlnk and random coins as input, and internally invokes P̃ to obtain a
linking proof π̃lnk.
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– We then invoke another extractor Elnk who, given the same input as that of Alnk, outputs the cor-
responding witness ((p̃com

i,j (X), p̃mid
i,j (X))(i,j)∈W , (ω̃com

i,j (X), ω̃mid
i,j (X))(i,j)∈W , (r̃k)k∈[`]). If the cheating

prover P̃ convinces the ARG verifier V, then linking proof π̃lnk is valid w.r.t. the commitments (ĉk)k∈[`]
and (c̃com

i,j (X), c̃mid
i,j (X))(i,j)∈W . Hence if Elnk fails to extract the witness, then Alnk wins the knowledge

soundness game, which, however, happens with negligible probability under our assumption.
– Now we construct a cheating prover P̃ for AHP. The P̃ internally invokes EPC and Elnk to obtain

p̃ and ((p̃com
i,j (X), p̃mid

i,j (X))(i,j)∈W , (ω̃com
i,j (X), ω̃mid

i,j (X))(i,j)∈W , (r̃k)k∈[`]). The polynomials of the latter
satisfy relation Rlnk, i.e.,

c̃com
i,j = PC.Comck(p̃com

i,j (X), d(|i|, i, j); ω̃com
i,j )

c̃mid
i,j = PC.Comck(p̃mid

i,j (X), d(|i|, i, j); ω̃mid
i,j )

Due to the homomorphic property of PC, we have

c̃com
i,j + c̃mid

i,j = PC.Comck(p̃com
i,j (X) + p̃mid

i,j (X), d(|i|, i, j); ω̃com
i,j + ω̃mid

i,j )

If p̃com
i,j (X) + p̃mid

i,j (X) 6= p̃i,j(X) for some (i, j) ∈ W (recall that the latter was extracted by EPC),
then P̃ aborts, which only happens with negligible probability as the ability to find such polynomials
breaks binding of PC w.r.t. c̃com

i,j + c̃mid
i,j . Hence we may assume that p̃com

i,j (X) + p̃mid
i,j (X) = p̃i,j(X). In

that case, note that Rlnk relation also guarantees for every k ∈ [`]

ĉk = AC.Comack((w̃i)i∈Ik ; r̃k)

where w̃ = WitExt((p̃com
i,j (X) + p̃mid

i,j (X))(i,j)∈W ) = WitExt((p̃i,j(X))(i,j)∈W ).

To sum up, as long as (1) EPC is successful, i.e., P̃ outputs polynomials p̃ which form correct opening
to c̃, (2) Elnk is successful, i.e., P̃ internally obtains polynomials satisfying Rlnk, and (3) witness-carrying
polynomials extracted by EPC and Elnk are identical, it holds that V accepts whenever V accepts. This
indicates that P̃ convinces V with non-negligible probability if P̃ convinces V.

We finally let EARG invoke the W -straight-line extractor WitExt of AHP on witness-carrying polyno-
mials (p̃i,j(X))(i,j)∈W outputted by P̃. By definition of the extractor (w̃i)i∈[n] = WitExt((p̃i,j(X))(i,j)∈W )
satisfies (i, x, (w̃i)i∈[n]) ∈ R. Moreover, the committed part of witness (w̃i)i∈Ik is guaranteed to form
correct opening to ĉk with extracted randomness r̃k, thanks to the linking relation Rlnk. This implies
that a pair of extracted witness ((w̃i)i∈[n], (r̃k)k∈[`]) satisfies Rcom.

We argue a special case where witness carrying-polynomials are disjoint. In that case, we assume
CPlnk only guarantees that (w̃ι)ι∈Ii∗,j∗ = WitExti∗,j∗(p̃i∗,j∗) are consistent with auxiliary commitments.
This still retains knowledge soundness, since when WitExt is invoked on all extracted witness-carrying
polynomials at the end of EARG, we know that WitExt invokes WitExti,j independently on each p̃i,j to
obtain (w̃ι)ι∈Ii,j and index sets Ii,j are disjoint.

Zero knowledge. Our proof closely follows that of the compiler in [CHM+20] (Theorem 8.4). We provide
an overview and we stress when our proof diverges from theirs.

We construct a simulator SimARG by using the simulators SimPC from the polynomial commitment
(hiding property), the zero-knowledge simulator Simlnk of CPlnk and the zero-knowledge simulator SimAHP
of AHP.

Below we require that CPlnk is zero-knowledge with simulator Simlnk. Zero-knowledge for non-interactive
proof systems is standard and is a straightforward extension of the one we define for interactive-arguments
(see for example [Gro16]).

Consider a (stateful) malicious verifier Ṽ . After receiving the srs it outputs a tuple (indexer, statement,
witness):

((i,m, `, d, Icom, (Ik)k∈[`], ack), (x, (ĉk)k∈[`]), ((wi)i∈[n], (rk)k∈[`])).

During the online (proving) stage the input of SimARG consists of the statement ((i,m, `, d, Icom, (Ik)k∈[`], ack), (x, (ĉk)k∈[`]))
as well as the following elements computed by the setup simulator:
– the integer D computed as in the protocol setup for size bound N ;
– the output of SimPC.Setup (to obtain simulated parameters for polynomial commitment)
– the output of Simlnk.Setup (to obtain simulated parameters for CPlnk)).
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For each round i ∈ [k], the simulator:
– receives challenge ρi from the verifier and forwards it to the AHP simulator SimAHP(x).
– samples commitment randomness and use SimPC to simulate all the commitments to oracle polyno-

mials in that round. This step is the same for both branches of Step 3 in the Online Phase of Figure 1
(both witness-carrying polynomials and not).

– sends commitments to verifier.
After the online phase the simulator runs Simlnk and sends the output to the verifier. Then:
– after receiving ρk+1 from the verifier, it runs the (honest) query algorithm to obtain a list of polyno-

mials queries Q from the transcript;
– checks that they are admissible using the checker circuit C (see definition of AHP zero-knowledge in

Definition 3)
– obtains simulated evaluations. In order to do this, it can run the indexer on input i to actually

obtain polynomials p0,j-s.For the evaluation points of the online phase, it forwards the query list Q
to SimAHP.
Finally SimARG simulates the evaluation proofs as follows:

– It receives an opening challenge ξ
– it simulates the evaluation proofs for polynomials through SimPC

We now argue this simulated view is indistinguishable from that of a malicious verifier. Recall from
definition of zero-knowledge for AHPs that the SimAHP can produce an indistinguishable transcript when-
ever the protocol carries out at most b queries that are admissible (i.e., they satisfy checker circuit C).
Since this is the case for our protocol we can invoke this property. It is then straightforward to argue
that SimPC leaks nothing more about these evaluations because of the hiding property of the polynomial
commitments. Invoking the zero-knowledge property of CPlnk completes the proof. ut

4 Compressed Σ-protocol for Equality

We describe how to construct an efficient protocol proving equality of committed vectors, following the
framework due to Attema and Cramer [AC20] and Attema, Cramer and Fehr [ACF20]. This allows us to
instantiate CPlnk with proof size of only O(log(`d)) when ` Pedersen commitments are received as inputs.

4.1 AmComEq: Amortization of ` commitment equality proofs

In our application, we would like to show equality of vectors within a single commitment containing
vector of size `d (corresponding to a polynomial commitment) and ` chunks of vector of size d in multiple
Pedersen commitments. Concretely, our goal is to give an efficient protocol for relation

RAmComEq =


((g,h,G,H, d, d′, d′′, `),

(C, Ĉ1, . . . , Ĉ`),
(w,α,β1, . . . ,β`))

:
C = gwhα, Ĉi = GwiHβi ,

g ∈ G`d,G ∈ Gd,h ∈ Gd′ ,H ∈ Gd′′ ,
wi ∈ Zdq ,α ∈ Zd′q ,βi ∈ Zd′′q ,w = [w1, . . . ,w`]

 (1)

where we assume d′ and d′′ are small constants (for concrete instantiations in later sections, we only need
d′ ≤ 4 and d′′ = 1). Our starting point is a naïve ComEq Σ-protocol proving equality of vectors committed
in two Pedersen commitments, with proof size of O(d) (see Appendix A). To avoid invoking ComEq
individually for many commitments we first amortize the statements. The main idea of amortization
is to introduce additional challenge x ∈ Zq and use it to take a random linear combination in the
exponent. A similar idea has appeared in many contexts, e.g., amortization of many range proofs in
Bulletproofs [BBB+18] and batch verification of EdDSA signatures. Note that the protocol below can be
seen as a verifier-optimized version of the technique described by Attema–Cramer–Fehr [ACF20, §3.4].
For completeness, in Fig. 9 we include a version derived by invoking their amortization of multiple group
homomorphisms in a black-box way. The advantage of our AmComEq over Fig. 9 is that it allows to
save ` group exponentiations on verifier’s side (i.e., computation of H̃), by letting the prover precompute
amortization of commitment randomness βi. However, the proof sizes are identical.

Note also that the protocol is 4-round where the first message is a challenge, which does not really fit
into the format of standard Fiat–Shamir transform [FS87]. However, one can easily make it applicable by
either introducing additional round where the prover first sends a dummy randomness, or let them send
A before receiving challenge x.
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Protocol ECLIPSE compiler

Setup S(1κ,N, d). The setup S on input a security parameter κ ∈ N and size bound N ∈ N, uses N to compute a maximum
degree bound D, samples pp← PC.Setup(1κ, D), samples ack← AC.Setup(1κ, d), and then outputs srs := (pp, ack). The integer
D is computed to be the maximum degree bound in AHP for indices of size N. In other words,

D := max{d(N, i, j)|i ∈ {0, 1, . . . , k(N)}, j ∈ {1, . . . , s(i)}}

Indexer Isrs(i, Icom, (Ik)k∈[`]). The indexer I upon input i, commitment index sets Icom, (Ik)k∈[`] and given oracle access to srs,
deduces the field F ∈ F contained in srs = (pp, ack), runs the AHP indexer I on (F, i) to obtain s(0) polynomials (p0,j)s(0)

j=1 ∈ F[X]
of degrees at most (d(|i|, 0, j))s(0)

j=1. Then it proceeds by computing (ck, rk) := PC.Trimpp(d), where d = (d(|i|, i, j))i∈[k],j∈[s(i)],
and generating (de-randomized) commitments to index polynomials (c0,j)s(0)

j=1 = PC.Comck((p0,j)s(0)
j=1). It also invokes the

indexer of CPlnk: (ipklnk, ivklnk) ← Isrs
lnk(Icom, (Ik)k∈[`]). The indexer outputs ipk := (ck, i, (p0,j)s(0)

j=1, (c0,j)s(0)
j=1, ipklnk) and

ivk := (rk, (c0,j)s(0)
j=1, ivklnk).

Input. The ARG prover P receives (ipk, (x, (ĉk)k∈[`]), ((wi)i∈[n], (rk)k∈[`])) and the verifier V receives (ivk, (x, (ĉk)k∈[`])).
Online phase. For every round i ∈ [k], P and V run the i-th round of interaction between the AHP prover P(F, i, x,w) and

verifier V(F, x).
1. V receives random challenge ρi ∈ F from V, and forwards it to P.
2. P forwards ρi to P, which replies with polynomials pi,1, . . . , pi,s(i) ∈ F[X] with deg(pi,j) ≤ d(|i|, i, j).
3. P computes and outputs commitments as follows.

– If i = kw (i.e. witness-committing round), then P first decomposes witness-carrying polynomials as

(pcom
i,j (X), pmid

i,j (X))(i,j)∈W := Decomp((pi,j(X))(i,j)∈W , Icom)

such that pi,j(X) = pcom
i,j (X) + pmid

i,j (X).
– For every (i, j) ∈W , P sends

ccom
i,j := PC.Comck(pcom

i,j (X), d(|i|, i, j);ωcom
i,j )

cmid
i,j := PC.Comck(pmid

i,j (X), d(|i|, i, j);ωmid
i,j )

to V, where ωcom
i,j and ωmid

i,j are uniformly sampled masking polynomials according the polynomial commitment scheme.
P lets ωi,j := ωcom

i,j + ωmid
i,j . V computes ci,j := ccom

i,j + cmid
i,j .

– For every (i, j) /∈W , P sends

ci,j := PC.Comck(pi,j(X), d(|i|, i, j);ωi,j)

to V.
After k rounds of interaction, V obtains an additional challenge ρk+1 ∈ F∗ from the AHP verifier V, used in the next phase.
Let c := (ci,j)i∈[k],j∈[s(i)], p := (pi,j)i∈[k],j∈[s(i)], ω := (ωi,j)i∈[k],j∈[s(i)] and d := (d(|i|, i, j))i∈[k],j∈[s(i)].

Query phase.
1. V sends ρk+1 ∈ F∗ that represents randomness for the query phase of V(F, x) to P.
2. P uses the query algorithm of V to compute the query set Q := QV(F, x; ρ1, . . . , ρk, ρk+1).
3. P replies with answers v := p(Q).
4. V samples and sends an opening challenge ξ ∈ F to P.
5. P replies with an evaluation proof to demonstrate correctness of all claimed evaluations.

πEval := PC.Openck(p,d, Q, ξ;ω)

Linking phase. P invokes

Plnk(ipklnk, ((ĉk)k∈[`],v, Q, (ccom
i,j (X), cmid

i,j (X))(i,j)∈W ), ((pcom
i,j (X), pmid

i,j (X))(i,j)∈W , (ωcom
i,j (X), ωmid

i,j (X))(i,j)∈W , (rk)k∈[`]))

to obtain and send linking proof πlnk.
Decision phase. V accepts if and only if the following conditions hold:

– the decision algorithm of V accepts the answers, i.e., DV(F, x,v, ρ1, . . . , ρk, ρk+1) = 1;
– the alleged answers pass the test, i.e., PC.Checkrk(c,d, Q,v, πEval, ξ) = 1;
– the alleged linking proof is verified, i.e., Vlnk(ivklnk, ((ĉk)k∈[`],v, Q, (ccom

i,j (X), cmid
i,j (X))(i,j)∈W ), πlnk) = 1;

Fig. 1. Compiler from AHP to Interactive AoK for Rcom. The differences with the Marlin compiler are marked in red.
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Protocol AmComEq

1. V sends random challenge x ∈ Zq. Both parties compute

G̃ = [G,Gx, . . . ,Gx`−1
] ∈ G`d.

2. P samples random r ∈ Z`dq , δ ∈ Zd
′
q , γ ∈ Zd

′′
q , and sends

A = grhδ Â = G̃rHγ

3. V sends random challenge e ∈ Zq.
4. P sends

z = r + ew, ω = δ + eα, Ω = γ + e
∑̀
i=1

βix
i−1

5. V checks

gzhω ?= ACe, G̃zHΩ ?= Â

`∏
i=1

(Ĉx
i−1
i )e

Fig. 2. Four-move protocol for amortized equality of many vector Pedersen commitments.

Theorem 2. AmComEq is a four-move protocol for the relation RAmComEq. It is perfectly complete, com-
putationally (`, 2)-special sound if finding non-trivial discrete-log relation for the generators [g,h] is hard,
and special HVZK. Moreover, the communication costs are:
– P → V: 2 elements of G and `d+ d′ + d′′ elements of Zq.
– V → P: 2 elements of Zq.

Proof. Completeness. It follows by inspection.
(`, 2)-special soundness. For every execution j ∈ [`], we fix the first challenge xj . Given two accepting
transcripts (xj , Aj , Âj , ej , zj ,ωj ,Ωj) and (xj , Aj , Âj , e′j , z′j ,ω′j ,Ω

′
j) for the same xj but with distinct

ej and e′j , we extract valid witness w.r.t. C from the first verification condition gzjhωj = AjC
ej and

gz′jhω
′
j = AjC

e′j :

w̃j = (zj − z′j)/(ej − e′j), α̃j = (ωj − ω′j)/(ej − e′j)

such that C = gw̃jhα̃j . For some distinct execution paths, one may extract different witnesses. However, if
there’s any pair of such witnesses, one is able to find a non-trivial discrete-log relation for the vector [g,h].
Hence under the assumption stated in the theorem it is guaranteed that for every execution path j ∈ [`]
the same witness is extracted with overwhelming probability, i.e., (w̃, α̃) = (w̃1, α̃1) = . . . = (w̃`, α̃`).

Now we show that each i-th slot of w̃ = [w̃1, . . . , w̃`] corresponds to what is committed in Ĉi. First, we
get a value in the form of (Ωj −Ω′j)/(ej − e′j) from j-th execution path for j ∈ [`]. Thus we can extract
(β̃i)i∈[`] such that (Ωj − Ω′j)/(ej − e′j) =

∑`
i=1 β̃ix

i−1
j as these equations uniquely define a degree-`

polynomial β(X) =
∑`
i=1 β̃iX

i−1. From the second verification condition, we get in total ` equations of
the form

∏̀
i=1

Ĉ
xi−1
j

i = G̃(zj−z′j)/(ej−e′j)H(Ωj−Ω′j)/(ej−e′j) = G
∑`

i=1
w̃ix

i−1
j H

∑`

i=1
β̃ix

i−1
j . (2)

for every j ∈ [`]. Let us rewrite G = Gs1 . . . Gsd , H = Gt1 . . . Gtd′′ and Ĉi = Gui using some arbitrary
generator G ∈ G. Then Eq. (2) can be rewritten as follows.

G
∑`

i=1
uix

i−1
j = G

∑`

i=1
(s1w̃i,1+...+sdw̃i,d+t1β̃i,1+...+td′′ β̃i,d′′ )x

i−1
j . (3)
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Protocol CompDLEq

Let g = [gL, gR], G = [GL,GR], z = [zL, zR] where each sub-vector is of dimension d/2.
1. P sends shifted commitments

L = gzL
R , R = gzR

L ,

L̂ = GzL
R , R̂ = GzR

L

2. V sends random challenge c ∈ Zq.
3. P computes

z′ = zL + czR

and both parties compute

Y ′ = LY cRc
2
, Ŷ ′ = L̂Ŷ cR̂c

2

g′ = gcL � gR, G′ = Gc
L �GR.

If d > 2 then they invoke CompDLEq for the next instance

((g′,G′, d/2), (Y ′, Ŷ ′), z′).

Otherwise, P sends z′ and V checks that

g′z
′ ?= Y ′, G′z

′ ?= Ŷ ′.

Fig. 3. Compressed Σ-protocol for equality of vector discrete logs

As xj for j ∈ [`] are distinct with each other, we have ` evaluations for the polynomial u(X) =∑`
i=1 uiX

i−1. Hence u(X) can be uniquely determined as

u(X) =
∑̀
i=1

(s1w̃i,1 + . . .+ sdw̃i,d + t1β̃i,1 + . . .+ td′′ β̃i,d′′)Xi−1 mod q. (4)

Recalling that Ĉi = Gui , we get

Ĉi = G(s1w̃i,1+...+sdw̃i,d+t1β̃i,1+...+td′′ β̃i,d′′ ) = Gw̃iHβ̃i . (5)

Hence we conclude that every Ĉi indeed contains the witness (w̃i, β̃i).
Special HVZK. Given challenge x and e, the simulator samples random z ∈ Z`dq , ω ∈ Zd′q , Ω ∈ Zd′′q ,
and then the other messages can be perfectly simulated as follows.

A := gzhωC−e, Â := G̃zHΩ
∏̀
i=1

(Ĉx
i−1

i )−e

4.2 CompAmComEq: Recursive compression

The major drawback of AmComEq is that its proof size is still linear in the vector dimension `d, due to the
response vector z ∈ Z`dq . Notice however that once the rest of transcript x,A, Â, e,ω,Ω is fixed, it should
be sufficient to prove knowledge of z such that gz = Y := ACeh−ω and G̃z = Ŷ := Â

∏`
i=1(Ĉxi−1

i )eH−Ω,
instead of sending z. This is where the compressed Σ-protocol theory [AC20, ACF20, ACR20, ACK21]
comes into play. That is, the last move of AmComEq can invoke another protocol CompDLEq of proof size
O(log(`d)), for the relation

RDLEq =
{

((g, G̃, `d), (Y, Ŷ ), z) : Y = gz, Ŷ = G̃z
}
. (6)

The protocol CompDLEq for RDLEq is described in Fig. 3. From [AC20, Theorem 2] we immediately
get the following result.
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Theorem 3. CompDLEq is a (2µ + 1)-move protocol for the relation RDLEq, where µ = dlog2(`d)e − 1.
It is perfectly complete and unconditionally (k1, . . . , kµ)-special sound, where ki = 3 for all i ∈ [1, µ].
Moreover, the communication costs are:
– P → V: 4 dlog2(`d)e − 4 elements of G and 2 elements of Zq.
– V → P: dlog2(`d)e − 1 elements of Zq.

Corollary 1. Let CompAmComEq be a protocol identical to AmComEq, except that its last move is re-
placed by CompDLEq. CompAmComEq is a (2µ + 4)-move protocol for the relation RAmComEq, where
µ = dlog2(`d)e − 1. It is perfectly complete and computationally (`, 2, k1, . . . , kµ)-special sound if finding
non-trivial discrete-log relation for the generators [g,h] is hard, where ki = 3 for all i ∈ [1, µ]. Moreover,
the communication costs are:
– P → V: 4 dlog2(`d)e − 2 elements of G and 2 + d′ + d′′ elements of Zq.
– V → P: dlog2(`d)e+ 1 elements of Zq.

5 Instantiation with PLONK

In this section we apply our ECLIPSE compiler to PLONK. We first go over the essential part of the
PLONK protocol, using the language of AHP. More detailed preliminaries are provided in Appendix B.

5.1 PLONK AHP

We consider an arithmetic circuit with fan-in two over F, consisting of n gates. The PLONK AHP essen-
tially proves knowledge of left, right and output wire values for every gate i ∈ [n] in the circuit, such that
they are also consistent with the constraints determined by the circuit topology. The per-gate constraints
are specified by selector vectors qL,qR,qO,qM ,qC ∈ Fn. We call C = (n,m,L,R,O,qL,qR,qO,qM ,qC)
constraint systems.

AHPPLONK relies on a multiplicative subgroup H =
{
ζ, ζ2, . . . , ζn

}
⊂ F∗ generated by an nth primitive

root of unity ζ ∈ F∗. It follows that an associated vanishing polynomial vH(X) = Xn−1 splits completely
in F[X], i.e., Xn − 1 =

∏n
i=1(X − ζi). Then we have the corresponding Lagrange basis Li(X) ∈ F<n[X]

for i ∈ [n] such that Li(ζi) = 1 and Li(ζj) = 0 for j 6= i.
During the first round of AHPPLONK (Fig. 11), the prover sends the following WCPs encoding both

statement and witness ((wi)i∈[l], (wi)i∈[l+1,3n]):

fL(X) =
∑
i∈[n]

wiLi(X) fR(X) =
∑
i∈[n]

wn+iLi(X) fO(X) =
∑
i∈[n]

w2n+iLi(X) (7)

To achieve zero-knowledge these polynomials are masked by polynomials (ρL,1X+ρL,2)vH(X), (ρR,1X+
ρR,2)vH(X) and (ρO,1X + ρO,2)vH(X) where each coefficient is randomly sampled by the AHP prover.

5.2 CP-PLONK

Our goal is to turn AHPPLONK into CP-PLONK with our compiler. We first describe a commit-and-prove
variant of relation R′PLONK. The auxiliary commitment scheme AC is instantiated with vector Pedersen
commitment and its key ack consists of randomly chosen generators of G with unknown relative discrete
logarithms: G = (G1, . . . , Gd) and H.

We assume without loss of generality that every committed witness (wi)i∈Icom is left input to gate i.
Then we use the following disjoint witness index sets: Ipub = [l], Icom = [l+ 1, l+ `d], Imid = [l+ `d+ 1, n],
assuming that wl+1, . . . ,wl+`d are `d witness values committed in advance. Moreover, every d values
are batched into a single commitment, that is, every vector compound of d wires wi, for i ∈ Ik =
[l+ 1 + d(k− 1), l+ dk], is committed to in the kth auxiliary commitment Ĉk = G(wi)i∈IkHrk for k ∈ [`].
Then we have Icom =

⋃
k∈[`] Ik.

Definition 11 (CP-PLONK indexed relation). The indexed relation RCP-PLONK is the set of all triples

((F, n,m, l,qL,qR,qO,qM ,qC , σ, TC , Icom, (Ik)k∈[`], ack), ((wi)i∈[l], (Ĉk)k∈[`]), ((wi)i∈[l+1,3n], (rk)k∈[`]))
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such that

∀i ∈ [n] : wi = wσ(i)

∀i ∈ [l] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM )iwiwn+i + (qC)i − wi = 0
∀i ∈ [l + 1, n] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM )iwiwn+i + (qC)i = 0

∀k ∈ [`] : Ĉk = G(wi)i∈IkHrk

5.2.1 Applying our compiler We show that AHPPLONK as well as the polynomial commitment scheme
meets the requirements of Theorem 1.
– Decomp takes nw = 3 masked WCPs (fL, fR, fO) and Icom ⊂ [n], parses fL as

∑
i∈[n] wiLi(X) +

(ρ1X + ρ2)vH(X), and decompose them as follows.

fL,com(X) :=
∑
i∈Icom

wiLi(X) + (λcom,1X + λcom,2)vH(X) fR,com(X) := 0 fO,com(X) := 0

fL,mid(X) :=
∑

i∈[n]\Icom

wiLi(X) + (λmid,1X + λmid,2)vH(X) fR,mid(X) := fR(X) fO,mid(X) := fO(X)

where λcom,i’s are randomly chosen and λmid,i := ρi − λcom,i. Clearly, the decomposition is additive,
degree-preserving, and non-overlapping.

– WitExt takes WCPs (fL, fR, fO) and uniquely extracts witness vectors for every i ∈ [n]

wi = fL(ζi) wn+i = fR(ζi) w2n+i = fO(ζi)

As it’s independently extracting witness values within disjoint index sets IL = [n], IR = [n + 1, 2n],
and IO = [2n+ 1, 3n], respectively, we have that fL, fR and fO are disjoint (see Definition 7).

– As PLONK retains zero-knowledge by masking WCPs, but without hiding commitment9, we use de-
randomized version of PCKZG.Comck (see Sect. 2.4.1) that takes polynomial f ∈ F≤D[X] and outputs
[f(χ)]1. Hence the polynomial commitment key is ck = pp = (g, gχ, . . . , gχD ). Clearly, this is an
additively homomorphic commitment scheme. Its binding and extractability were formally shown in
Appendix B-D of [CHM+20]. As mentioned in [GWC19] and from how WitExt works, the knowledge
soundness of PLONK holds only by enforcing degree bound to the maximum degree D for committed
polynomials so the plain KZG construction should suffice for compiling AHPPLONK.
We now define a suitable commitment-linking protocol CPlnk in Fig. 4. Since WCPs are disjoint it

is enough to provide linking w.r.t. a polynomial fL. The main idea is to (1) prove consistency between
fL,com and auxiliary commitments Ĉk with the AmComEq protocol from previous section, and (2) force
the prover to show fmid vanishes at all points in Hcom =

{
ζi
}
i∈Icom

. The latter is in particular crucial for
WitExt to successfully output a witness vector consistent with auxiliary commitments, even after taking
the sum of fL,com and fL,mid. This step only incurs constant overhead in the evaluation proof thanks
to the batch evaluation technique proposed in [BDFG20]. On the other hand, the consistency between
fcom and ` vector Pedersen commitments Ĉk = G(wi)i∈IkHrk for k ∈ [`] are handled by CompAmComEq
protocol (see Sect. 4).

Lemma 1. Assuming extractability of PCKZG and argument of knowledge of CompAmComEq, the proto-
col CPlnk (Fig. 4) is an argument of knowledge. Assuming zero knowledge of Fiat–Shamir-transformed
CompAmComEq, the protocol CPlnk is zero-knowledge in the SRS model.

Proof. Knowledge soundness First, the extractor Elnk obtains fL,mid(X) ∈ F<D[X] such that [fL,mid(χ)]1 =
CL,mid and fL,mid(ζi) = 0 for i ∈ Icom, by internally invoking an extractor EKZG, which succeeds with over-
whelming probability as long as a malicous prover Plnk convinces the verifier.

Second, Elnk invokes an extractor EComEq for the CompAmComEq protocol, which outputs (wi)i∈Icom and
(rk)k∈[`] such that Ĉk = AC.Comack((wi)i∈Ik ; rk) for k ∈ [`], and CL,com = [

∑
i∈Icom

wiLi(χ) + (λcom,1χ+
λcom,2)vH(χ)]1. So we obtain fL,com(X) =

∑
i∈Icom

wiLi(X) + (λcom,1X + λcom,2)vH(X).
9 More formally, if the underlying AHP is (b + 1,C)-zero knowledge, where b is the maximum number of queries
made by the verifier to polynomials, one can retain ZK of the resulting SNARK by compiling AHP via PCS
with somewhat hiding security, a weaker notion of hiding [CFF+20]. Because the deterministic KZG is already
somewhat hiding and every WCP in AHPPLONK is queried once, it suffices to add vH multiplied by a masking
polynomial of degree 1 to tolerate 2 openings (i.e., one evaluation and one commitment).
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Protocol CPlnk for PLONK

Indexing Isrs
lnk(Icom, (Ik)k∈[`]) precomputes [vHcom (χ)]2 such that vHcom (X) =

∏
a∈Hcom

(X − a) and Hcom =
{
ζi : i ∈ Icom

}
⊂ H,

obtains generators gi := [Li(χ)]1 for i ∈ Icom, g := (gi)i∈Icom , h1 = [χvH(χ)]1, h2 = [vH(χ)]1, G and H by accessing srs. It
outputs (ipklnk, ivklnk) such that

ipklnk = (pp, vHcom (X), g, h1, h2,G, H) and ivklnk = ([vHcom (χ)]2, g, h1, h2,G, H).

Input. Plnk (resp. Vlnk) receives ipklnk (resp. ivklnk). The statement ((Ĉk)k∈[`], (CL,com, CL,mid)) is a common input. The Plnk has
as input witness (fL,com(X), fL,mid(X), (rk)k∈[`]) such that Ĉk = G(wi)i∈IkHrk , CL,com = [fL,com(χ)]1, CL,mid = [fL,mid(χ)]1,
fL,com(X) =

∑
i∈Icom

wiLi(X) + (λcom,1X + λcom,2)vH(X), and fL,mid(X) =
∑

i∈[n]\Icom
wiLi(X) + (λmid,1X + λmid,2)vH(X).

Prove.
– Compute a proof πComEq of the following statement.

CompAmComEq :PK
{

((wi)i∈Icom , (rk)k∈[`], λcom,1, λcom,2) : Ĉk = G(wi)i∈IkHrk∧
CL,com = g(wi)i∈Icomh

λcom,1
1 h

λcom,2
2

}
– Compute evaluation proof W (X) = fL,mid(X)

vHcom (X) and Π := [W (χ)]1. Output πlnk = (Π,πComEq).

Verify. Given πlnk, verify πComEq and check that fL,mid vanishes on Hcom:

e(CL,mid, h) ?= e(Π, [vHcom (χ)]2).

Fig. 4. Commitment-linking protocol for PLONK

Let fL(X) := fL,com(X) + fL,mid(X). Due to the 0-evaluation proof output by Plnk, it holds that
fL(X) and fL,com(X) agree on Hcom, i.e., fL(ζi) = fL,com(ζi) + fL,mid(ζi) = fL,com(ζi) = wi for each
i ∈ Icom (recall that the term (λcom,1X + λcom,2)vH(X) vanishes anyway). Hence if WitExt is invoked on
fL it does extract witness (wi)i∈Icom consistent with (Ĉk)k∈[`], which is guaranteed by EComEq.
Zero-knowledge To simulate πComEq we simply invoke the zero-knowledge simulator for CompAmComEq
made non-interactive with Fiat–Shamir [FS87]. To simulate the evaluation proof Π the simulator uses
the trapdoor χ used for generating the commitment key to compute Π := C

1/vHcom (χ)
L,mid .

6 Instantiation with Marlin

In this section we apply our compiler to Marlin. As in the previous section, we first identify WCPs and
how it encodes the witness vector in AHP. More detailed preliminaries are provided in Appendix C.

6.1 Marlin AHP

Notations For a finite field F and a subset S ⊆ F, we denote by vS(X) the vanishing polynomial of S
that is the unique non-zero monic polynomial of degree at most |S| that is zero everywhere on S. We
denote by FS the set of vectors indexed by elements in a finite set S. For a function f : S→ F, we denote
by f̂ , the univariate polynomial over F with degree less than |S| that agrees with f , that is, f̂(a) = f(a)
for all a ∈ S. In particular, the polynomial f̂ can be expressed as a linear combination

f̂(X) =
∑
a∈S

f(a) · La,S(X)

where {La,S(X)}a∈S are the Lagrange basis polynomials of degree less than |S| such that La,S(a) = 1 and
La,S(a′) = 1 for a′ ∈ S \{a}.
Constraint systems Unlike PLONK, Marlin’s AHP is for R1CS (Rank-1 constraint satisfiability) indexed
relation defined by the set of tuples (i, x,w) =

(
(F,H,K, A,B,C), x, w

)
, where F is a finite field, H

and K are subsets of F, such that n = |H| and m = |K|, A,B,C are H × H matrices over F with
|K| ≥ max{‖A‖ , ‖B‖ , ‖C‖}, and z := (x,w) is a vector in FH such that Az ◦Bz = Cz.

Following [CHM+20], we assume efficiently computable bijections φH : H→ [n] and φK : K→ [m], and
denote the first l elements in H and the remaining elements, via sets H[≤ l] :=

{
a ∈ H : 1 ≤ φH(a) ≤ l

}
and H[> l] :=

{
a ∈ H : l < φH(a) ≤ n

}
respectively. We then denote the first part of the vector z as the

public component x ∈ FH[≤l] and the second part as witness component w ∈ FH[>l].
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WCP In AHPMarlin (Fig. 12), the prover P receives as input the instance x ∈ FH[≤l], a witness w ∈ FH[>l].
The verifier V receives as input x, and obtains oracle access to the nine polynomials output at the end of
the preprocessing phase.

Let x̂(X) ∈ F<l[X] and ŵ(X) ∈ F≤n−l[X] be polynomials that agree with the instance x on H[≤ l],
and with the shifted witness on H[> l] respectively. Concretely, these polynomials are defined as follows:

x̂(X) :=
∑

a∈H[≤l]

x(a) · La,H[≤l](X)

ŵ(X) :=
∑

a∈H[>l]

(
w(a)− x̂(a)
vH[≤l](a)

)
· La,H[>l](X) + ρ · vH[>l](X)

where the second term of ŵ is added to retain zero-knowledge when the number of evaluation queries to
ŵ is 1 (which is the case in Marlin AHP) and ρ is sampled uniformly at random from F. Let z := (x,w)
denote the full assignment. Then the polynomial ẑ(X) := ŵ(X) · vH[≤l](X) + x̂(X) agrees with z on H.

6.2 CP-Marlin

We now turn AHPMarlin into CP-Marlin by applying our compiler. We begin by giving a commit-and-prove
relation for R1CS.
Relation for CP-Marlin. We define an extended relation to accommodate consistency of partial witness
wire values and commitment. For convenience we define the following subsets: Hpub := H[≤ l],Hcom :=
H[> l,≤ l + d`],Hmid := H[> l + d`], assuming that w(a) for a ∈ Hcom are d` values committed to in
advance. Moreover, every d values are batched into a single commitment, that is, every vector compound
of d wires w(a), for a ∈ Hcom,k = H[> l + d(k − 1),≤ l + dk], is committed to in the kth auxiliary
commitment Ĉk = G(w(a))a∈Hcom,kHrk for k ∈ [`]. Then we have Hcom =

⋃
k∈[`] Hcom,k.

Definition 12 (CP-Marlin indexed relation). The indexed relation RCP-Marlin is the set of all triples

(i, x,w) =
(
(F,H,K, n,m, l, `, d, A,B,C), (x, (Ĉk)k∈[`]), (w, (rk)k∈[`])

)
where F is a finite field, H and K are subsets of F, such that n = |H| and m = |K|, A,B,C are H × H
matrices over F with |K| ≥ max{‖A‖ , ‖B‖ , ‖C‖}, and z := (x,w) is a vector in FH such that

Az ◦Bz = Cz and ∀k ∈ [`], Ĉk = AC.Commitack((w(a))a∈Hcom,k ; rk)

Applying our compiler.We now show that AHPMarlin and the polynomial commitment scheme PCKZG [KZG10]
meet the requirements of Theorem 1.
– Unique witness extraction: WitExt takes ŵ(X), evaluates ŵ(X) on every a ∈ H[> l], multiplies the

results by vH[≤l](a), and add x̂(a) to constructs a vector of values w ∈ FH[>l]. It is easy to see that
WitExt satisfies unique extraction (Definition 8).

– Decomposable WCP: Decomp takes ŵ(X) and Hcom, and outputs ŵcom and ŵmid of degree at most
n− l as follows:

ŵcom(X) :=
∑
a∈Hcom

(
w(a)− x̂(a)
vH[≤l](a)

)
· La,H[>l](X) + λcom · vH[>l](X)

ŵmid(X) :=
∑
a∈Hmid

(
w(a)− x̂(a)
vH[≤l](a)

)
· La,H[>l](X) + λmid · vH[>l](X)

where λcom was sampled from F uniformly at random and λmid := ρ−λcom. Clearly, the decomposition
is additive, degree-preserving and non-overlapping.

– Marlin compiles AHPMarlin using the plain KZG polynomial commitment except that degrees of hid-
ing polynomials are minimized. That is, to commit to the WCP PCKZG.Comck takes ŵ(X) and
ω(X) := ω0 + ω1X as input and outputs [ŵ(χ) + γω(χ)]1, where ω0, ω1 ∈ F are randomly sam-
pled masking coefficients. As mentioned in §9.2 of [CHM+20] and as it’s clear from how WitExt
works, the knowledge soundness of Marlin holds only by enforcing degree bound to the maximum
degree D for committed polynomials. In order to construct our commitment-linking protocol for
Marlin, we modify how hiding is achieved. Specifically, we now mask the two decomposed WCPs
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independently as follows: commitment to ŵcom(X) is masked by a random polynomial ωcom(X) :=
ωcom,0 + ωcom,1X and ŵmid(X) is masked by a random polynomial ωmid(X) that vanishes on Hcom;
ωmid(X) := (ωmid,0 +ωmid,1X)vHcom(X). Note that, for ŵmid, we do not apply Marlin’s optimization of
minimising the degree.
Following PLONK and Lunar, one may alternatively compile AHPMarlin with the deterministic KZG
by increasing the degree of masking factor to 1 (i.e., ρ1X + ρ2) to hide one evaluation and the
commitment. In this way, decomposition of WCPs as well as CPlnk can be done as in CP-PLONK and
the number of SRS elements does not grow due to the CP extension.
In Fig. 5 we present a suitable commitment-linking protocol CPlnk. The key idea is to have the prover

commit to an encoding of the assignment in subsets Hcom and Hmid into separate polynomials, and then
show that ŵmid(X) vanishes at Hcom, together with the consistency of ŵcom(X) with vector Pedersen
commitments Ĉk = G(w(a))a∈Hcom,kHrk for k ∈ [`] via CompAmComEq protocol (see Sect. 4). We assume
that Hcom =

⋃
k∈[`] Hcom,k, Hcom,k’s are disjoint with each other and of same cardinality d = |Hcom,k|.

Lemma 2. Assuming extractability of PCKZG and argument of knowledge of CompAmComEq, the proto-
col CPlnk (Fig. 5) is an argument of knowledge. Assuming zero knowledge of Fiat–Shamir-transformed
CompAmComEq, the protocol CPlnk is zero-knowledge in the SRS model.

Proof. Knowledge soundness First, the extractor Elnk obtains ŵmid(X) and ωmid(X) such that Cmid =
PCKZG.Comck(ŵmid;ωmid) and ŵmid(a) = 0 for a ∈ Hcom, by internally invoking an extractor EKZG, which
succeeds with overwhelming probability as long as a malicious prover Plnk convinces the verifier.

Second, Elnk invokes an extractor EComEq for the CompAmComEq protocol, which outputs (w(a))a∈Hcom ,
(rk)k∈[`], λcom, ωcom,0 and ωcom,1 such that Ĉk = AC.Commitack((w(a))a∈Hcom ; rk) for k ∈ [`], and

C̄com = [
∑
a∈Hcom

(La,H[>l](χ)/vH[≤l](a)) · w(a) + λcom · vH[>l](χ) + γ · (ωcom,0 + ωcom,1χ)]1.

Since C̄com = Ccom · [
∑
a∈Hcom

(La,H[>l](χ)/vH[≤l](a))x̂(a)]1, it also holds that

Ccom = [
∑
a∈Hcom

(La,H[>l](χ)/vH[≤l](a)) · (w(a)− x̂(a)) + λcom · vH[>l](χ) + γ · (ωcom,0 + ωcom,1χ)]1.

So we obtain ŵcom(X) =
∑
a∈Hcom

(
w(a)−x̂(a)
vH[≤l](a)

)
·La,H[>l](X) +λcom · vH[>l](X) and ωcom(X) = ωcom,0 +

ωcom,1X such that Ccom = PCKZG.Comck(ŵcom;ωcom).
Let ŵ(X) := ŵcom(X) + ŵmid(X). Due to the 0-evaluation proof output by Plnk, it holds that ŵ(X)

and ŵcom(X) agree on Hcom, i.e., ŵ(a) = ŵcom(a) for each a ∈ Hcom (recall that the term λcom · vH[>l](X)
vanishes anyway). Hence if WitExt is invoked on ŵ(X) it does extract witness (w(a))a∈Hcom consistent
with (Ĉk)k∈[`], which is guaranteed by EComEq.
Zero-knowledge To simulate πComEq we simply invoke the zero-knowledge simulator for CompAmComEq
made non-interactive with Fiat–Shamir [FS87]. To simulate the evaluation proof Π the simulator uses
the trapdoor χ used for generating the commitment key to compute Π := C

1/vHcom (χ)
mid .

7 Instantiation with Sonic

While the proving time of Marlin is an entire order of magnitude better than Sonic, and Marlin’s verifier
requires fewer pairings and fewer exponentiations, for applications that use batched verifications, Sonic
remains the state-of-the-art. Applications like cryptocurrency transactions take advantage of batching
where each verifier is not just given a single proof but many proofs of the same statement. This optimiza-
tion works in the helped scenario, where an untrusted third party can aggregate such proofs in a single
batch for faster verification.

Sonic is a zk-SNARK system in the universal SRS setting that can be used to prove any statement
represented as an arithmetic circuit. While Sonic was orginally not presented in the language of AHPs,
it was later recharacterized as a polynomial IOP by Bünz, Fisch and Szepieniec, which is essentially
equivalent to the AHP framework [BFS20, §1.2]. To frame the underlying information theoretic protocol
of Sonic as AHP, we can consider bivariate, Laurent polynomial generalization mentioned in Sec. 2.3.

The construction in Sonic relies on a special construction of polynomial commitments (a modifiation of
KZG) that forces the prover to commit to a Laurent polynomial with no constant term. Since knowledge
soundness of Sonic was proven in the algebraic group model (AGM) [FKL18], the security proof for our
CPlnk also relies on AGM.
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Protocol CPlnk for Marlin

Indexing Isrs
lnk(Icom, (Ik)k∈[`]) precomputes [vHcom (χ)]2 such that vHcom (X) =

∏
a∈Hcom

(X − a), obtains generators ga :=
[La,H[>l](χ)/vH[≤l](a)]1 for a ∈ Hcom, g := (ga)a∈Hcom , h1 := [vH[>l](χ)]1, h2 := [γ]1, h3 := [γχ]1, G and H by accessing
srs. It outputs (ipklnk, ivklnk) such that

ipklnk = (pp, vHcom (X), g, h1, h2, h3,G, H) and ivklnk = ([vHcom (χ)]2, g, h1, h2, h3,G, H).

Input. Plnk (resp. Vlnk) receives ipklnk (resp. ivklnk). The statement ((Ĉk)k∈[`], (Ccom, Cmid)) is a common input. The Plnk has
as input witness (ŵcom(X), ŵmid(X), (rk)k∈[`]) such that Ĉk = G(w(a))a∈Hcom,kHrk , Ccom = [ŵcom(χ) + γωcom(χ)]1, Cmid =
[ŵmid(χ) + γωmid(χ)]1, and

ŵcom(X) =
∑
a∈Hcom

(
w(a)− x̂(a)
vH[≤l](a)

)
· La,H[>l](X) + λcom · vH[>l](X)

ŵmid(X) =
∑
a∈Hmid

(
w(a)− x̂(a)
vH[≤l](a)

)
· La,H[>l](X) + λmid · vH[>l](X)

Prove.
– Compute a proof πComEq of the following statement where C̄com := Ccom · g(x̂(a))a∈Hcom .

PK
{

((w(a))a∈Hcom , (rk)k∈[`],
λcom, ωcom,0, ωcom,1) : Ĉk = G(w(a))a∈Hcom,kHrk

∧ C̄com = g(w(a))a∈Hcomhλcom
1 h

ωcom,0
2 h

ωcom,1
3

}
– Compute evaluation proof Π = [W1 +γW2(χ)]1, whereW1(X) = ŵmid(X)

vHcom (X) ,W2(X) = ωmid(X)
vHcom (X) . Set πlnk = (Π,πComEq). Note

that since ωmid(X) vanishes on Hcom, is divisible by vHcom , and therefore W2 is a polynomial.
Verify. Given πlnk, verify πComEq, and check that ŵmid vanishes on Hcom:

e(Cmid, h) ?= e(Π, [vHcom (χ)]2).

Fig. 5. Commitment-linking protocol for Marlin

7.1 Sonic AHP

We first describe the system of constraints used by Sonic. The vectors a,b, c of length n, represent left
inputs, right inputs and outputs respectively of the multiplication gates.

a � b = c

Let uq,vq,wq ∈ Fn be fixed vectors for the qth linear constraint with instance values kq ∈ F. There
are Q linear constraints of the form,

a · uq + b · vq + c ·wq = kq

The n multiplication constraints are compressed into one equation by introducing the formal indeter-
minate Y .

n∑
i=1

(aibi − ci)Y i = 0
n∑
i=1

(aibi − ci)Y −i = 0

The Q linear constraints are compressed,

Q∑
q=1

(a · uq + b · vq + c ·wq − kq)Y q+n = 0

Define polynomials

ui(Y ) =
Q∑
q=1

Y q+nuq,i vi(Y ) =
Q∑
q=1

Y q+nvq,i

wi(Y ) = −Y i − Y −i +
Q∑
q=1

Y q+nwq,i k(Y ) =
Q∑
q=1

Y q+nkq
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Combining the multiplicative and linear constraints,

a · u(Y ) + b · v(Y ) + c ·w(Y ) +
n∑
i=1

aibi(Y i + Y −i)− k(Y ) = 0 (8)

The above holds at all points if the constraint system is satisfied. If the constraint system is not
satisfied, the above will fail to hold with high probability for a large enough field. Now, the left hand side
of the above is embedded into the constant term of a polynomial t(X,Y ) in another indeterminate X. A
polynomial r(X,Y ) is designed such that r(X,Y ) = r(XY, 1)

r(X,Y ) =
n∑
i=1

(aiXiY i + biX
−iY −i + ciX

−n−iY −n−i) (9)

s(X,Y ) =
n∑
i=1

(
ui(Y )X−i + vi(Y )Xi + wi(Y )Xi+n) (10)

t(X,Y ) = r(X, 1)(r(X,Y ) + s(X,Y ))− k(Y ) (11)

Note that the coefficient of X0 in t(X,Y ) coincides with the left hand side of Eq. (8). We are now set
out to define the Sonic indexed relation.

Definition 13 (Sonic indexed relation). The indexed relation RSonic is the set of all triples

((F, n,Q, (uq)q∈[Q], (vq)q∈[Q], (wq)q∈[Q]), (kq)q∈[Q], (a,b, c))

such that

∀q ∈ [Q] : a · uq + b · vq + c ·wq = kq

a � b = c

As mentioned above checking Eq. (8) is equivalent to checking whether an instance is in RSonic. To
verify Eq. (8) Sonic implicitly relies on Lemma 3. In Fig. 6 we also present the underlying AHP of Sonic
for RSonic, where the verifier V essentially checks the second point of the following lemma.

Lemma 3. The following two properties hold.
1. Let r(X,Y ), s(X,Y ) and t(X,Y ) be given as above. If Eq. (8) holds, then the constant term of t(X,Y )

w.r.t. X is zero.
2. Let s(X,Y ) be given as above and suppose that r(X,Y ) is a Laurent polynomial of the form r(X,Y ) =∑n

−D riX
iY i. If the constant term w.r.t. X of

r(X, 1)(r(X,Y ) + s(X,Y ))− k(Y )

is zero, then Eq. (8) holds for a = (ri)ni=1, b = (r−i)ni=1 and c = (r−i−n)ni=1.

Proof. For the first statement, we notice that it follows directly from the fact the constant term w.r.t. X
of t(X,Y ) is exactly the left hand side of Eq. (8). For the second statement, let r(X,Y ) =

∑n
−D riX

iY i

with ri ∈ F. Now, we notice that

r(X, 1)(r(X,Y ) + s(X,Y ))− k(Y ) =
(
r0 +

n∑
i=1

(riXi + r−iX
−i + r−i−nX

−i−n) +
D∑

i=2n+1
r−iX

−i
)

·
(
r0 +

n∑
i=1

(
ri(XY )i + r−i(XY )−i + r−i−n(XY )−i−n

)
+

D∑
i=2n+1

r−i(XY )−i

+
n∑
i=1

(
ui(Y )X−i + vi(Y )Xi + wi(Y )Xi+n))− k(Y ).
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Protocol AHPSonic

Offline phase. The indexer I receives as input F ∈ F and i = (F, n,Q, (uq)q∈[Q], (vq)q∈[Q], (wq)q∈[Q]), and computes the polyno-
mial oracle s(X,Y ) as described in the text.

Input. P receives (F, i, (kq)q∈[Q], (a,b, c)) and V receives (F, (kq)q∈[Q]) and oracle access to the polynomials output by I(F, i).
Online phase: first round. P computes r(X,Y ) and t(X,Y ) as described in Eq. (11). Mask r(X,Y ) as r(X,Y ) := r(X,Y ) +∑4

i=1 cn+iX
−2n−iY −2n−i with random cn+i ∈ F and send an oracle polynomial r(X, 1) to V.

Online phase: second round. Upon receiving challenges y ∈ F from the V, P sends an oracle polynomial t(X, y) to V.
Query phase. V queries online oracles r(X, 1) and t(X, y) with a random query point z ∈ F. Moreover, it makes additional

queries to r(X, 1) with yz and to s(X,Y ) with (z, y).
Decision phase. V first computes an instance polynomial k(Y ) as described in the text. Then V checks that

t(z, y) ?= r(z, 1)(r(yz, 1) + s(z, y))− k(y).

Fig. 6. AHP for RSonic

From the above we see that the constant term w.r.t. X is

r2
0 +

n∑
i=1

rir−i(Y i + Y −i) +
n∑
i=1

riui(Y ) +
n∑
i=1

r−ivi(Y ) +
n∑
i=1

r−i−nwi(Y )− k(Y ),

which can only be zero if r0 = 0. It therefore follows as wanted that if the constant term w.r.t. X
of r(X, 1)(r(X,Y ) + s(X,Y )) − k(Y ) is zero, then Eq. (8) holds for a = (ri)ni=1, b = (r−i)ni=1 and
c = (r−i−n)ni=1.

7.2 CP-Sonic
Our goal is to turn AHPSonic into CP-Sonic with our compiler. We first describe a commit-and-prove
variant of relation RSonic. We assume without loss of generality that every committed witness is left input
to gate i, i.e., (ai)i∈Icom is the committed witness whereas ((ai)i/∈Icom ,b, c) is the non-committed part. Then
we use the following disjoint witness index sets: Icom = [n − `d + 1, n], Imid = [1, n − `d], assuming that
an−`d+1, . . . , an are `d witness values committed in advance. Moreover, suppose every vector compound
of d values (ai)i∈Ik , where Ik = [n − dk + 1, n − d(k − 1)], is committed into kth auxiliary commitment
Ĉk for k ∈ [`]. Then we have Icom =

⋃
k∈[`] Ik.

Definition 14 (CP-Sonic indexed relation). The indexed relation RCP-Sonic is the set of all triples

((F, n,Q, (uq)q∈[Q], (vq)q∈[Q], (wq)q∈[Q], Icom, (Ik)k∈[`], ack), ((kq)q∈[Q], (Ck)k∈[`]), (a,b, c, (rk)k∈[`]))

such that

∀q ∈ [Q] : a · uq + b · vq + c ·wq = kq

a � b = c
∀k ∈ [`] : Ĉk = AC.Comack((ai)i∈Ik ; rk)

7.2.1 Applying our compiler We show that AHPSonic as well as the polynomial commitment scheme
meets the requirements of Theorem 1.
– Decomp takes nw = 1 (masked) witness-carrying polynomial r(X) := r(X, 1) and Icom ⊂ [n], parses
r(X) as

∑n
i=1(aiXi + biX

−i + ciX
−n−i) +

∑4
i=1 cn+iX

−2n−i, and decompose them as follows.

rcom(X) :=
∑
i∈Icom

aiX
i +

4∑
i=1

ρn+iX
−2n−i

rmid(X) :=
∑
i∈Imid

aiX
i +

n∑
i=1

(biX−i + ciX
−n−i) +

4∑
i=1

λn+iX
−2n−i

where ρn+i was randomly chosen and λn+i := cn+i−ρn+i for i = 1, 2, 3, 4. Clearly, the decomposition
is additive, degree-preserving (in the sense that separate Laurent polynomials do not exceed the
prescribed degree range), and non-overlapping.
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– WitExt takes a witness-carrying polynomial r(X) =
∑n
−D riX

i and uniquely extracts witness vectors
(a,b, c) such that ai := ri, bi := r−i and ci := r−n−i for every i ∈ [n].

– Sonic uses a variant of the KZG scheme optimized for Laurent polynomials with a 0 constant term.
Concretely, PCSonic.Com takes as input

ck = ([χ−D]1, . . . , [χD]1, [αχ−D]1, . . . , [αχ−1]1, [αχ]1, . . . , [αχD]1, [χ−D]2, . . . , [χD]2, [αχ−D]2, . . . , [αχD]2),

a polynomial f(X) ∈ F[X,X−1], and the degree bound d ≤ D, and then outputs [αχD−df(χ)]1.
Clearly, this is an additively homomorphic commitment scheme. In the AGM its evaluation bind-
ing and extractability were formally proved under the 2D-DLOG assumption (see Theorem 6.3 of
[MBKM19]). The plain binding for a fixed degree bound can be also shown just as in the KZG
scheme. Unlike PLONK, Sonic must enforce a precise degree bound n on the witness-carrying poly-
nomial r(X) to achieve knowledge soundness. Our commit-and-prove variant should thus enforce the
same bound on both rcom(X) and rmid(X). Finally, Sonic retains zero-knowledge by masking witness-
carrying polynomial, instead of hiding commitment. Hence commitment randomness is empty for all
commitments. To sum up, the compiled protocol involves the following commitments to decomposed
witness-carrying polynomials.

Ccom = [αχD−nrcom(χ)]1
Cmid = [αχD−nrmid(χ)]1

We now present a suitable commitment-linking protocol CPlnk in Fig. 7. The high-level idea is to (1)
prove consistency between rcom(X) and auxiliary commitments Ĉk with the AmComEq protocol, and (2)
force the prover to show rmid(X) has degree bounded by n − `d. The latter is in particular crucial for
WitExt to successfully output a witness vector consistent with auxiliary commitments, even after taking
the sum of rcom(X) and rmid(X).

Lemma 4. Assuming hardness of the 2D-DLOG problem, extractability of PCSonic and argument of
knowledge of CompAmComEq, the protocol CPlnk (Fig. 7) is an argument of knowledge in the algebraic
group model [FKL18]. Assuming zero knowledge of Fiat–Shamir-transformed CompAmComEq, the protocol
CPlnk is zero-knowledge in the SRS model.

Proof. Knowledge soundness First, the extractor Elnk obtains r(X) ∈ F[X,X−1] of degree at most n
such that [αχD−nr(χ)]1 = Ccom ·Cmid and r(z) = v, by internally invoking an extractor for PCSonic, which
succeeds with overwhelming probability as long as a malicous prover P∗lnk convinces the verifier.

Second, Elnk invokes an extractor EComEq for the CompAmComEq protocol, which outputs (ai)i∈Icom

and (rk)k∈[`] such that Ĉk = AC.Comack((ai)i∈Ik ; rk) for k ∈ [`], and Ccom = [α(
∑
i∈Icom

aiχ
D−n+i +∑

i∈[1,4] ρn+iχ
D−3n−i)]1. So we have extracted rcom(X) =

∑
i∈Icom

aiX
i +
∑
i∈[1,4] ρn+iX

−2n−i such that
Ccom = PCSonic.Comck(rcom(X), n).

Let rmid(X) := r(X) − rcom(X). Due to the homomorphism of committing function it holds that
Cmid = C ·C−1

com = PCSonic.Comck(rmid(X), n) = [αχD−nrmid(χ)]1. Due to the second pairing check we also
have that C ′mid = (Cmid)χ`d = [αχD−n+`drmid(χ)]1.

On the other hand, when an algebraic adversary P∗lnk outputs C ′mid it is accompanied by the represen-
tation fχ(X) +Xαfα(X) such that C ′mid = [fχ(χ) + αfα(χ)]1, fχ(X) has non-zero terms between degree
−D and D, and fα(X) has non-zero terms between degree −D and D except for the constant term. If
fχ(X) + Xαfα(X) 6= XαX

D−n+`drmid(X) we have two distinct representations of C ′mid, from which one
can find χ solving the 2D-DLOG problem, as in a proof of Theorem 6.3 of [MBKM19]. Hence we may
assume that fχ(X) = 0 and fα(X) = XD−n+`drmid(X), implying that rmid(X) has degree bounded by
n− `d.

Now the committed part of coefficients of r(X) corresponds to extracted rcom(X). Hence if WitExt
is invoked on r(X) it does extract witness (ai)i∈Icom consistent with (Ĉk)k∈[`], which is guaranteed by
EComEq.
Zero-knowledge To simulate πComEq we simply invoke the zero-knowledge simulator for CompAmComEq
made non-interactive with Fiat–Shamir [FS87]. To simulate the evaluation proof Π the simulator uses the

trapdoor α and χ used for generating the commitment key to computeΠ :=
(

(Ccom · Cmid)
1

αχ−D+n · [−v]1
) 1
χ−z .

To simulate C ′mid we compute C ′mid := Cχ
`d

mid .
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Protocol CPlnk for Sonic

Indexing Isrs
lnk(Icom, (Ik)k∈[`]) obtains generators gi := [αχD−n+i] for i ∈ Icom, g := (gi)i∈Icom , hi := [αχD−3n−i] for i ∈ [1, 4],

h := (hi)i∈[1,4], G and H by accessing srs. It outputs (ipklnk, ivklnk) such that

ipklnk = (pp, g,h,G, H) and ivklnk = ([α]2, [αχ]2, [χ−D+n−`d]2, [χ`d]2, g,h,G, H).

Input. Plnk (resp. Vlnk) receives ipklnk (resp. ivklnk). The statement ((Ĉk)k∈[`], (Ccom, Cmid), z, v) is a common input. The Plnk has
as input witness (rcom(X), rmid(X), (rk)k∈[`]) such that

rcom(X) =
∑
i∈Icom

aiX
i +

4∑
i=1

ρn+iX
−2n−i rmid(X) =

∑
i∈Icom

aiX
i +

n∑
i=1

(biX−i + ciX
−n−i) +

4∑
i=1

λn+iX
−2n−i

Ĉk = G(ai)i∈IkHrk Ccom = [αχD−nrcom(χ)]1 Cmid = [αχD−nrmid(χ)]1 v = rcom(z) + rmid(z)

Prove.
– Compute a proof πComEq of the following statement.

CompAmComEq :PK
{

((ai)i∈Icom , (rk)k∈[`], (ρn+i)i∈[1,4]) : Ĉk = G(ai)i∈IkHrk∧
Ccom = g(ai)i∈Icom h(ρn+i)i∈[1,4]

}
– Let r(X) := rcom(X) + rmid(X). Compute evaluation proof as follows.

W (X) = r(X)− v
X − z Π = [W (χ)]1

– Compute a shifted commitment as follows.

C′mid := [αχD−n+`drmid(χ)]1 = PCSonic.Comck(rmid(X), n− `d)

– Output πlnk := (πComEq, Π,C
′
mid).

Verify. Given πlnk, verify πComEq, check evaluation proof:

e(Π, [αχ]2) · e([v]1 ·Π−z, [α]2) ?= e(Ccom · Cmid, [χ−D+n−`d]2)

and check rmid(X) has degree at most n− `d:

e(Cmid, [χ`d]2) ?= e(C′mid, h)

Fig. 7. Commitment-linking protocol for Sonic
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A Additional Materials on Compressed Σ-protocol Theory

A.1 Σ-Protocols and Pedersen Vector Commitment

Σ-protocols are interactive proof systems consisting of three rounds. In a Σ-protocol, the prover sends a
message a, the verifier replies with a random bit string c, and the prover responds with z. The verifier
decides to accept or reject based on the transcript (a, c, z). A Σ-protocol can be efficiently compiled
into a non-interactive zero-knowledge proof of knowledge (in the random oracle model) through the
Fiat-Shamir transform [FS87]. Throughout the paper, we use the Pedersen commitment scheme [Ped92]
as the algebraic commitment, which gives unconditional hiding and computational binding properties
based on the hardness of computing the discrete logarithm in a group G of prime order q. Given two
random generators G,H ∈ G such that logGH is unknown, a value x ∈ Zq is committed to by choosing
r randomly from Zq, and computing GxHr. We write Comq(x; r) to denote a Pedersen commitment
to x with randomness r in a group of order q, and omit the subscript when the group is clear. A
Pedersen commitment to a vector x ∈ Zdq is computed as Com(x; r) = GxHr = (

∏d
i=1 G

xi
i )Hr where

G = (G1, . . . , Gd) and H are randomly chosen generators with unknown relative discrete logarithms.

A.2 ComEq: Proving equality of two Pedersen vector commitments

In this section, we first define a naïve ComEq protocol proving equality of vectors committed in two
Pedersen commitments, with proof size of O(d). Our goal is to give a protocol for the relation

RComEq =
{

((g,h,G,H, d, d′, d′′), (C, Ĉ), (w,α,β)) : C = gwhα, Ĉ = GwHβ, g,G ∈ Gd,w ∈ Zdq
h ∈ Gd′ ,H ∈ Gd′′ ,α ∈ Zd′q ,β ∈ Zd′′q

}
(12)

where we assume that d′ and d′′ are small constants. Fig. 8 shows a bare-bone protocol for RComEq.

Protocol ComEq

1. P samples random r ∈ Zdq , δ ∈ Zd
′
q , γ ∈ Zd

′′
q and sends

A = grhδ, Â = GrHγ

2. V sends random challenge e ∈ Zq.
3. P sends

z = r + ew, ω = δ + eα, Ω = γ + eβ

4. V checks

gzhω ?= ACe, GzHΩ ?= ÂĈe

Fig. 8. Σ-protocol for equality of vector Pedersen commitments.

Theorem 4. ComEq is a Σ-protocol for the relation RComEq. Moreover, the communication costs are:
– P → V: 2 elements of G and d+ d′ + d′′ + 2 elements of Zq.
– V → P: 1 elements of Zq.

Proof. Special soundness. Given two accepting transcripts (A, Â, e, z,Ω,ω) and (A, Â, e′, z′,Ω′,ω′) we
extract valid witness as follows.

w = (z− z′)/(e− e′), α = (ω − ω′)/(e− e′), β = (Ω−Ω′)/(e− e′) (13)

Special HVZK. Given e, the simulator samples random z ∈ Zdq as well as ω ∈ Zd′q and Ω ∈ Zd′′q . Then
the first messages are determined such that A = gzhωC−e and Â = GzHΩĈ−e.
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Let CompComEq be a protocol identical to ComEq, except that its last move is replaced by the
compression mechanisim CompDLEq (Fig. 3). Then we obtain the following.

Corollary 2. CompComEq is a (2µ+ 3)-move protocol for the relation RComEq, where µ = dlog2(d)e− 1.
It is perfectly complete and unconditionally (2, k1, . . . , kµ)-special sound, where ki = 3 for all i ∈ [1, µ].
Moreover, the communication costs are:
– P → V: 4 dlog2(d)e − 2 elements of G and 2 + d′ + d′′ elements of Zq.
– V → P: dlog2(d)e elements of Zq.

A.3 AmComEq′: as a result of [ACF20]

Protocol AmComEq′

1. V sends random challenge x ∈ Zq. Both parties compute

G̃ = [G,Gx, . . . ,Gx`−1
] ∈ G`d

H̃ = [H,Hx, . . . ,Hx`−1
] ∈ G`d

′′
.

2. P samples random r ∈ Z`dq , δ ∈ Zd
′
q , γ ∈ Z`d

′′
q , and sends

A = grhδ

Â = G̃rH̃γ

3. V sends random challenge e ∈ Zq.
4. P sends

z = r + ew, ω = δ + eα, Ω = γ + eβ

5. V checks

gzhω ?= ACe, G̃zH̃Ω ?= Â

`∏
i=1

(Ĉx
i−1
i )e

Fig. 9. Four-move protocol for amortized equality of many vector Pedersen commitments

B PLONK Preliminaries

Conventions. We use i as an index for gate and j for wire.

B.1 PLONK constraint systems.

We consider a fan-in two arithmetic circuit over F, consisting of n gates and m wires. The vector w ∈ Fm
consists of assigned wire values. The index vector v = L||R||O ∈ [m]3n represents the indices of wires
for each gate: concretely, for each i ∈ [n], Li represents left, Ri represents right, and Oi represents
output wire of gate j, respectively. For example, the left input wire value of i-th gate is obtained
by wLi . The per-gate constraints are specified by selector vectors qL,qR,qO,qM ,qC ∈ Fn. We call
C = (n,m,L,R,O,qL,qR,qO,qM ,qC) constraint systems. We say that w ∈ Fm satisfies the constraint
systems C if for each gate i ∈ [n]

(qL)i · wLi + (qR)i · wRi
+ (qO)i · wOi

+ (qM )i · wLiwRi
+ (qC)i = 0. (14)

For the wire values w ∈ Fm, we call (wj)j∈[l] public input and (wj)j∈[l+1,m] private input, respectively.
We say C is prepared for l public inputs if for each i ∈ [l] we define Li = i, (qL)i = 1, (qR)i = (qM )i =
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(qR)i = (qC)i = 0, i.e., each gate i ∈ [l] is dedicated for the input wire j = i ∈ [l] of w. Then the constraint
for an input gate i ∈ [l] can be satisfied by subtracting wj from the above equation. Accordingly, we can
define relation wrt C.

Definition 15 (PLONK indexed relation). The indexed relation RPLONK is the set of all triples

((F, n,m, l,L,R,O,qL,qR,qO,qM ,qC), (wj)j∈[l], (wj)j∈[l+1,m])

such that

∀i ∈ [l],(qL)i · wLi + (qR)i · wRi + (qO)i · wOi + (qM )i · wLiwRi + (qC)i − wi = 0
∀i ∈ [l + 1, n],(qL)i · wLi + (qR)i · wRi + (qO)i · wOi + (qM )i · wLiwRi + (qC)i = 0

B.2 Lagrange basis.

Let q be a characteristic of F and n be such that q = 1 mod n. Then F∗ contains a multiplicative
subgroup H =

{
ζ, ζ2, . . . , ζn

}
generated by an nth primitive root of unity ζ ∈ F∗. It follows that an

associated vanishing polynomial vH(X) = Xn− 1 splits completely in F[X], i.e., Xn− 1 =
∏n
i=1(X − ζi).

In PLONK the Lagrange basis Lx(X) for x ∈ H is defined as follows.

Lx(X) := cx(Xn − 1)
X − x

By definition it is easy to check that Lx(y) = 0 for all y ∈ H \{x}. We show Lx(x) = 1 so that Lx(X) is
indeed a Lagrange basis. First, due to the Euclidean division of polynomials Xn − 1 can be rewritten as

Xn − 1 = (X − x) ·
(
n−1∑
i=0

xiXn−1−i

)
+ (xn − 1).

As x has order n the remainder xn − 1 vanishes. Therefore, we get

Lx(X) = cx ·

(
n−1∑
i=0

xiXn−1−i

)
.

Defining cx = (nxn−1)−1 we have Lx(x) = 1. In what follows we write Li(X) := Lx(X) for x = ζi.

B.3 Checking gate-by-gate constraints.

When working over a multiplicative subgroup H ⊂ F∗, the selector vectors define polynomials in F<n[X]
via interpolation:

qL(X) =
∑
i∈[n]

(qL)i · Li(X) qR(X) =
∑
i∈[n]

(qR)i · Li(X) qO(X) =
∑
i∈[n]

(qO)i · Li(X) (15)

qM (X) =
∑
i∈[n]

(qM )i · Li(X) qC(X) =
∑
i∈[n]

(qC)i · Li(X) (16)

So qL(ζi) = (qL)i, qR(ζi) = (qR)i and so on. Let us define the following polynomials.

fpub(X) =
∑
i∈[l]

−wiLi(X) fL(X) =
∑
i∈[n]

wLiLi(X) fR(X) =
∑
i∈[n]

wRi
Li(X) fO(X) =

∑
i∈[n]

wOi
Li(X)

(17)

Then the gate-by-gate constraint of Eq. (14) can be checked if the polynomial

FC(X) := qL(X)fL(X) + qRfR(X) + qO(X)fO(X) + qM (X)fL(X)fR(X) + qC(X) + fpub(X) (18)

vanishes at ζi for all i ∈ [n].
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B.4 Checking copy constraints.

Notice that the above ranged polynomial evaluations are only individually checking constraint for each
gate, but do not care about how different gates are associated with each other. To define a relation
equivalent to RPLONK, we need to enforce the copy constraints on evaluations of witness polynomials
fL, fR, fO. Let us first define two useful notions.

Definition 16 (Extended permutation across multiple polynomials). Let f1, . . . , fc, h1, . . . , hc ∈
F[X] and σ : [cn]→ [cn] be a permutation. Define the sequences of polynomial evaluations f(1), . . . , f(cn), h(1), . . . h(cn)
over H = {ζ, . . . , ζn} as follows:

f((j−1)n+i) := fj(ζi) and h((j−1)n+i) := hj(ζi)

for each i ∈ [n] and j ∈ [c]. Then we write (h1, . . . , hc) = σ(f1, . . . , fc) if h(i) = f(σ(i)) for all i ∈ [cn].

Definition 17 (Copy-satisfy). Let T = {T1, . . . , Tm} be a partition of [cn]. We say that f1, . . . , fc ∈
F[X] copy-satisfy T if f(i) = f(i′) for all distinct pairs i, i′ ∈ Tj and for all j ∈ [m].

Lemma 5 ([KPV19][GWC19]). Let T = {T1, . . . , Tm} be a partition of [cn]. Suppose a permutation
σ : [cn]→ [cn] is defined such that its restriction σ|Tj contains a cycle going over all elements in Tj for
all j ∈ [m]. Then f1, . . . , fc ∈ F[X] copy-satisfy T if and only if (f1, . . . , fc) = σ(f1, . . . , fc)

In a concrete instantiation of PLONK, we set c = 3 and consider an extended permutation across f1 =
fL, f2 = fR, and f3 = fO. Let TC = {T1, . . . , Tm} be a partition of [3n] such that Tj =

{
i ∈ [3n] : vi = j

}
,

i.e., a set Tj contains positions in v := L||R||O ∈ [m]3n that point to wj . Then, by defining a permutation
σ : [3n] → [3n] such that it satisfies a condition for Lemma 5, it suffices to provide some permutation
argument that proves (fL, fR, fO) = σ(fL, fR, fO), in order to show (fL, fR, fO) copy-satisfy TC .

B.5 Putting together.

We are now set out to define an alternative formulation of the indexed relation RPLONK, which is in fact
the one used by the resulting protocol of [GWC19]. Let fL, fR, fO be polynomials as defined above and let
us define a slightly redundant form of statement and witness. Namely, we define ((wi)i∈[l], (wi)i∈[l+1,3n])
such that

fpub(X) =
∑
i∈[l]

−wiLi(X) (19)

fL(X) =
∑
i∈[n]

wiLi(X) (20)

fR(X) =
∑
i∈[n]

wn+iLi(X) (21)

fO(X) =
∑
i∈[n]

w2n+iLi(X) (22)

so wi = fL(ζi), wn+i = fR(ζi), and w2n+i = fO(ζi).

Definition 18 (PLONK indexed relation (alternative formulation)). The indexed relation R′PLONK
is the set of all triples

((F, n,m, l,qL,qR,qO,qM ,qC , σ, TC), (wi)i∈[l], (wi)i∈[l+1,3n])

such that

∀i ∈ [n] : wi = wσ(i)

∀i ∈ [l] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM )iwiwn+i + (qC)i − wi = 0
∀i ∈ [l + 1, n] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM )iwiwn+i + (qC)i = 0

By construction, given an instance of RPLONK one can clearly define constraint systems C as well as
(i′, x′,w′) ∈ R′PLONK. It turns out that the converse is also true. We sketch how to efficiently construct a
tuple (i, x,w) ∈ RPLONK, given (i′, x′,w′) ∈ R′PLONK.
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From i′ we can clearly determine the constraint systems C = (n,m,L,R,O,qL,qR,qO,qM ,qC) as
well as i = (F, l, C). Since wi = wσ(i) holds and due to the way σ : [3n] → [3n] is defined (i.e., such that
its restriction σ|Tj contains a cycle going over all elements in Tj for all j ∈ [m]), we have that wi = wi′
for all distinct pairs i, i′ ∈ Tj and for each j ∈ [m]. Now for each j ∈ [m] we define wj = wi for some
i ∈ Tj . Recall that, by construction of TC , for each j ∈ [m] we also have j = vi = vi′ for each i, i′ ∈ Tj ,
where v = L||R||O ∈ [m]3n. So overall wj = wvi = wi = wvi′ = wi′ . This indicates that

(qL)i · wvi + (qR)i · wvn+i + (qO)i · wv2n+i + (qM )iwviwvn+i + (qC)i − wi = 0 for i ∈ [l]
(qL)i · wvi + (qR)i · wvn+i + (qO)i · wv2n+i + (qM )iwviwvn+i + (qC)i = 0 for i ∈ [l + 1, n]

or in other words,

(qL)i · wLi + (qR)i · wRi
+ (qO)i · wOi

+ (qM )iwLiwRi
+ (qC)i − wi = 0 for i ∈ [l]

(qL)i · wLi + (qR)i · wRi
+ (qO)i · wOi

+ (qM )iwLiwRi
+ (qC)i = 0 for i ∈ [l + 1, n]

implying (i, (wj)j∈[l], (wj)j∈[l+1,m]) ∈ RPLONK.

B.6 Extended Permutation Argument

To prove (fL, fR, fO) = σ(fL, fR, fO), PLONK invokes an extended permutation argument subprotocol,
which we recall in Fig. 10 in the form of AHP. Due to Lemma 5.3 of [GWC19], for any fL, fR, fO ∈ F<D
and any permutation σ : [3n] → [3n] such that D ≥ n, if (fL, fR, fO) 6= σ(fL, fR, fO) then for any
unbounded prover P, the probability that V accepts in the above protocol is negligible in the security
parameter.

Protocol AHPPermArg

Offline phase. The indexer I receives as input F ∈ F and i = (F, n,m, l,L,R,O,qL,qR,qO,qM ,qC), and
computes the permutation σ : [3n]→ [3n]. Then I generates the preprocessed polynomial oracles.

SL,ID =
∑
i∈[n]

i · Li(X) SL,σ =
∑
i∈[n]

σ(i) · Li(X)

SR,ID =
∑
i∈[n]

(n+ i) · Li(X) SR,σ =
∑
i∈[n]

σ(n+ i) · Li(X)

SO,ID =
∑
i∈[n]

(2n+ i) · Li(X) SO,σ =
∑
i∈[n]

σ(2n+ i) · Li(X)

Input. Polynomial oracles fL, fR, fO ∈ F<n[X].
Online phase. Upon receiving random challenges β, γ ∈ F from V, P computes

hL,ID = fL + β · SL,ID + γ hL,σ = fL + β · SL,σ + γ (23)
hR,ID = fR + β · SR,ID + γ hR,σ = fR + β · SR,σ + γ (24)
hO,ID = fO + β · SO,ID + γ hO,σ = fO + β · SO,σ + γ (25)
hID = hL,ID · hR,ID · hO,ID hσ = hL,σ · hR,σ · hO,σ (26)

Then P sends a permutation polynomial oracle:

s(X) = L1(X) +
∑
i∈[2,n]

(
Li(X) ·

∏
1≤j<i

hID(ζj)
hσ(ζj)

)
. (27)

Query phase. V queries all offline and online oracles with all points in a ∈ H.
Online phase. V checks that the following polynomials vanish on H.

F1(X) = hID(X)s(X)− hσ(X)s(ζX)
F2(X) = L1(X)(s(X)− 1)

Fig. 10. Permutation argument subprotocol for (fL, fR, fO) = σ(fL, fR, fO)
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Protocol AHPPLONK

Offline phase. The indexer I receives as input F ∈ F and i = (F, n,m, l,qL,qR,qO,qM ,qC , σ, TC), and computes the following
polynomial oracles as described in the text: selector polynomials (qL, qR, qO, qM , qC); preprocessed polynomials for permutation
argument (SL,ID, SR,ID, SO,ID, SL,σ, SR,σ, SO,σ); vanishing polynomial of H, vH(X) = Xn − 1.

Input. P receives (F, i, (wi)i∈[l], (wi)i∈[l+1,3n]) and V receives (F, (wi)i∈[l]) and oracle access to the polynomials output by I(F, i).
Online phase: first round. P computes fpub(X), fL(X), fR(X), fO(X) as described in Eq. (7) and sends (fL(X), fR(X), fO(X))

to V.
Online phase: second round. Upon receiving challenges β, γ ∈ F from the V, P computes hID(X), hσ(X) and a permutation

polynomial s(X) as described in Eqs. (26) and (27). Then P sends an oracle polynomial s(X) to V.
Online phase: third round. Upon receiving challenge α ∈ F from the V, P computes

FC(X) = qL(X)fL(X) + qR(X)fR(X) + qO(X)fO(X)
+ qM (X)fL(X)fR(X) + qC(X) + fpub(X)

F1(X) = hID(X)s(X)− hσ(X)s(ζX)
F2(X) = L1(X)(s(X)− 1)

T (X) = FC(X) + F1(X) · α+ F2(X) · α2

vH(X)

and sends an oracle polynomial T (X) to V.
Query phase. V queries online oracles (fL(X), fR(X), fO(X), s(X), T (X)) and all offline oracles with a random query point
z ∈ F. Moreover, it makes an additional query to the permutation polynomial s(X) with ζz.

Decision phase. V first computes fpub(X) as described in the text. Then V constructs FC(z) (see (18)), F1(z) and F2(z) based
on the outputs of polynomial oracles. It then checks that (FC(z) + F1(z) · α+ F2(z) · α2) = T (z) · vH(z).

Fig. 11. AHP for R′PLONK

B.7 PLONK AHP

Fig. 11 describes the underlying AHPPLONK implicit in the final AoK protocol of PLONK. Recall that the
goal of PLONK is to verify (1) gate-by-gate constraints by checking FC(X) vanishes on H, and (2) copy
constraints by checking (fL, fR, fO) = σ(fL, fR, fO), as described in R′PLONK of Appendix B.5. Due to the
permutation argument from Fig. 10 the second part amounts to checking that polynomials F1(X) and
F2(X) vanish on H. A naïve way to achieve these would be to let the verifier query polynomial oracles with
every point in H, which of course incurs O(n) query complexity on verfier’s side. This can be circumvented
by replacing queries with divisibility check by vanishing polynomial vH(X) = Xn − 1 =

∏
i∈[n](X − ζi),

and by taking random challenge α to batch polynomials FC , F1, and F2 to be divided. From Lemma 4.5
and 4.7 of [GWC19] the AHPPLONK has knowledge soundness.10

B.8 Adding zero-knowledge

To achieve ZK the polynomials fL, fR, fO, s carrying witness in Fig. 11 have to be slightly adjusted; since
these are evaluated at a single point the prover adds random extra terms that lie outside of the degree
bounds of the original polynomials. Concretely, now P commits to

f ′L(X) = fL(X) + (b1X + b2)vH(X)
f ′R(X) = fR(X) + (b3X + b4)vH(X)
f ′O(X) = fO(X) + (b5X + b6)vH(X)
s′(X) = s(X) + (b7X

2 + b8X + b9)vH(X)

where the so-called masking terms bi are randomly chosen from F. The reason why three masking terms
are required for s(X) is to hide the commitment, and the evaluations at two points z and ζz. Note that
this change doesn’t affect the correctness, since the additional terms are guaranteed to be divisible by
vH(X). In a similar fashion, the Marlin AHP in the next section can be also made zero-knowledge.
10 We remark that [GWC19] presents their protocol in a slightly different form called a polynomial protocol.

The main difference with AHP is that it performs identity checks of polynomials, instead of evaluations of
polynomials at random query points as in AHP. Deriving knowledge soundness of the latter formulation is
straightforward due to the Schwartz–Zippel lemma.
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C Marlin Preliminaries

Notations For a finite field F and a subset S ⊆ F, we denote by vS(X) the vanishing polynomial of S
that is the unique non-zero monic polynomial of degree at most |S| that is zero everywhere on S. For a
matrix M ∈ Fn×n we denote the number of its nonzero entries by ‖M‖. For two vectors u and v, we
denote by u◦v their Hadamard (component-wise) product. Following [CHM+20], we denote by FS the set
of vectors indexed by elements in a finite set S. For a function f : S→ F, we denote by f̂ , the univariate
polynomial over F with degree less than |S| that agrees with f , that is, f̂(a) = f(a) for all a ∈ S. In
particular, the polynomial f̂ can be expressed as a linear combination

f̂(X) =
∑
a∈S

f(a) · La,S(X)

where {La,S(X)}a∈S are the Lagrange basis polynomials of degree less than |S| such that La,S(a) = 1 and
La,S(a′) = 1 for a′ ∈ S \{a}.

For an n × n matrix M with rows/columns indexed by elements of S, we denote by M̂(X,Y ), the
polynomial of individual degree less than n such that M̂(s, t) is the (s, t)th entry of M for all s, t ∈ S.

Define the bivariate polynomial uS(X,Y )

uS(X,Y ) := vS(X)− vS(Y )
X − Y

such that uS(X,X) = |S|X |S|−1 is the formal derivative of the vanishing polynomial vS(X). We have that
uS(X,Y ) vanishes on the square S× S, except on the diagonal. It takes uS(a, a)a∈S on the diagonal.

C.1 Univariate sumcheck [BCR+19].

Given a multiplicative subgroup S of F, a polynomial f(X) sums to σ over S if and only if f(X) can be
written as h(X)vS(X) +Xg(X) + σ/|S| for some h(X) and g(X) where the degree of deg(g) < |S| − 1.

C.2 R1CS Constraint System

Definition 19 (R1CS indexed relation). R1CS (Rank-1 constraint satisfiability) indexed relation is
the set of tuples

(i, x,w) =
(
(F,H,K, A,B,C), x, w

)
where F is a finite field, H and K are subsets of F, such that n = |H| and m = |K|, A,B,C are
H × H matrices over F with |K| ≥ max{‖A‖ , ‖B‖ , ‖C‖}, and z := (x,w) is a vector in FH such that
Az ◦Bz = Cz.

Just like PLONK, we assume H and K are multiplicative subgroups of F. We assume efficiently com-
putable bijections φH : H→ [n] and φK : K→ [m], and denote the first l elements in H and the remaining
elements, via sets H[≤ l] :=

{
a ∈ H : 1 ≤ φH(a) ≤ l

}
and H[> l] :=

{
a ∈ H : l < φH(a) ≤ n

}
respec-

tively. We then denote the first part of the vector z as the public component x ∈ FH[≤l] and the second
part as witness component w ∈ FH[>l].

C.3 Marlin AHP

We now introduce the Marlin AHP, formally described in Fig. 12. In the preprocessing phase, the indexer
I is given as input a field F, subsets H,K of F, and matrices A,B,C ∈ FH×H representing the R1CS
instance. The output of the preprocessing phase is three univariate polynomials { ˆrowM , ĉolM , v̂alM} of
degree less than |K| for each matrix M ∈ {A,B,C }, such that the following polynomial is a low-degree
extension of M .

M̂(X,Y ) :=
∑
k∈K

uH(X, ˆrowM (k))uH(Y, ĉolM (k))v̂alM (k)

The three polynomials ˆrowM , ĉolM , v̂alM are the unique low-degree extensions of the functions rowM , colM , valM :
K → F that denote the row index, column index and value of the non-zero entries of the matrixM respec-
tively. Let M̂(X,Y ) be the unique low-degree extension of M that agrees with the matrix M everywhere
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Protocol Protocol AHPMarlin

Offline phase. The indexer I is given as input a field F ∈ F , subsets H,K of F, and matrices A,B,C ∈ Fn×n representing the
R1CS instance, and outputs three univariate polynomial oracles { ˆrowM , ĉolM , v̂alM} of degree less than |K| for each matrix
M ∈ A,B,C, such that the following polynomial is a low-degree extension of M .

M̂(X,Y ) :=
∑
k∈K

uH(X, ˆrowM (k))uH(Y, ĉolM (k))v̂alM (k)

Input. P receives (F,H,K, A,B,C, i, x, w), and V receives (F,H,K, x) and oracle access to the nine polynomials output by I(F, i).
Online phase: first round. P sends the oracle polynomials ŵ(X) ∈ F≤n−l[X], h0(X), ẑA(X), ẑB(X), ẑC(X) ∈ F≤n[X]. It

samples a random s(X) ∈ F<2n[X] and sends polynomial oracle s(X) together with σ1 ∈ F where σ1 :=
∑
a∈H

s(a), and

ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X).
Online phase: second round. Upon receiving challenges α, ηA, ηB , ηC ∈ F from V, P sends oracle polynomials g1(X) ∈

F<n−1[X], h1(X) ∈ F<n[X] to V, where

s(X) + uH(α,X)
( ∑
M∈{A,B,C}

ηM ẑM (X)
)
−
( ∑
M∈{A,B,C}

ηMrM (α,X)
)
ẑ(X) = h1(X)vH(X) +Xg1(X) + σ1/|H|

Online phase: third round. Upon receiving challenge β1 ∈ F from the V, P sends oracle polynomials g2(X), h2(X) ∈ F<n−1[X]
and σ2 ∈ F to V, where σ2 :=

∑
k∈H

uH(α, k)
∑

M∈{A,B,C}

ηMM̂(k, β1),

uH(α,X)
∑

M∈{A,B,C}

ηMM̂(X,β1) = h2(X)vH(X) +Xg2(X) + σ2/|H|

Online phase: fourth round. Upon receiving challenge β2 ∈ F from the V, P sends oracle polynomials g3(X) ∈ F<m−1[X]

h3(X) ∈ F<6m−6[X] and σ3 ∈ F to V, where where σ3 :=
∑
k∈K

∑
M∈{A,B,C}

ηM
vH(β2)vH(β1)v̂alM (k)

(β2 − ˆrowM (k))(β1 − ĉolM (k))
,

h3(X)vK(X) = a(X)− b(X)(Xg3(X) + σ3/|K|)

a(X) =
∑

M∈{A,B,C}

ηMvH(β2)vH(β1)v̂alM (X)
∏

L∈{A,B,C}\{M}

(β2 − ˆrowL(X))(β1 − ĉolL(X))

b(X) =
∏

M∈{A,B,C}

(β2 − ˆrowM (X))(β1 − ĉolM (X))

Query phase. V queries the oracles ŵ(X), ẑA(X), ẑB(X), ẑC(X), h0(X), s(X), h1(X), g1(X) at β1; h2(X), g2(X) at β2;
h3(X), g3(X) and all offline oracles { ˆrowM , ĉolM , v̂alM} for each M ∈ A,B,C at a random query point β3 ∈ F.

Decision phase. V accepts if the following tests pass:
– h3(β3)vK(β3) = a(β3)− b(β3)(β3g3(β3) + σ3/|K|)
– h2(β2)vH(β2) + β2g2(β2) + σ2/|H| = uH(α, β2)σ3

– s(β1) + uH(α, β1)(
∑

M
ηM ẑM (β1))− σ2ẑ(β1) = h1(β1)vH(β1) + β1g1(β1) + σ1/|H|

– ẑA(β1)ẑB(β1)− ẑC(β1) = h0(β1)vH(β1)

Fig. 12. AHP for RR1CS
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on the domain H×H. The prover P receives as input the instance x ∈ FH[≤l], a witness w ∈ FH[>l]. The
verifier V receives as input x, and obtains oracle access to the nine polynomials output at the end of the
preprocessing phase.

Let x̂(X) ∈ F<l[X] and ŵ(X) ∈ F≤n−l[X] be polynomials that agree with the instance x on H[≤ l],
and with the shifted witness on H[> l] respectively. Concretely, these polynomials are defined as follows:

x̂(X) :=
∑

a∈H[≤l]

x(a) · La,H[≤l](X)

ŵ(X) :=
∑

a∈H[>l]

(
w(a)− x̂(a)
vH[≤l](a)

)
· La,H[>l](X) + ρ · vH[>l](X)

where the second term of ŵ is added to retain zero-knowledge when the number of evaluation queries to
ŵ is 1 (which is the case in Marlin AHP) and ρ is sampled uniformly at random from F.

Let z := (x,w) denote the full assignment. Then the polynomial

ẑ(X) := ŵ(X) · vH[≤l](X) + x̂(X)

agrees with z on H. The prover computes the linear combinations zA := Az, zB := Bz, zC := Cz, and sets
polynomials ẑA(X), ẑB(X), ẑC(X) ∈ F≤n[X].

P needs to prove that zA, zB , zC are obtained as the specified linear combinations of z, and that
zA ◦ zB = zC . P sends the polynomial h0(X) such that ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X), a random
s(X) ∈ F<2n[X] together with its sum over H, σ1 :=

∑
a∈H

s(a). V samples α, ηA, ηB , ηC randomly from

F and send them to the prover. P and V engage in a univariate sumcheck protocol to prove that the
polynomial q1(X) defined below sums to σ1 on H.

q1(X) := s(X) + uH(α,X)
( ∑
M∈{A,B,C}

ηM ẑM (X)
)
−
( ∑
M∈{A,B,C}

ηMrM (α,X)
)
ẑ(X)

where rM (X,Y ) :=
∑
a∈H

uH(X, a)M̂(a, Y ). This is done via three sequential sumchecks.
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