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Abstract.     
     Expanding graphs are known due to their remarkable applications to Com-

puter Science. We are looking for their applications to Post Quantum Cryp-

tography. One of them is  postquantum analog of   Diffie-Hellman protocol in 
the area of intersection  of Noncommutative and Multivariate Cryptographies 

.This graph based protocol allows correspondents to elaborate  

 collision  cubic transformations of  affine space Kn defined over finite com-
mutative ring K. Security of this protocol rests on the complexity of decompo-

sition problem of nonlinear polynomial map into given generators. 

     We show that expanding graphs allow to use such output as a ‘’seed’’ for 
secure construction of infinite sequence of cubic transformation of affine 

spaces of increasing dimension. Correspondents can use the sequence of maps 

for extracting passwords for one time pads in alphabet K and other symmetric 

or asymmetric algorithms. 
We show that cubic polynomial maps of affine spaces of prescribed dimen-

sion can be used for transition of quadratic public keys of Multivariate 

Cryptography into the shadow of private areas. 
   Keywords:  Extremal Graph Theory, Post Quantum Cryptography, Multi-

variate Cryptography,   stable subgroups of affine Cremona group,  Noncom-

mutative Cryptography,  key exchange protocols, random and pseudorandom 
sequences, digital signatures. 

1. Introduction. 
   In March 2021 it was announced that prestigious Abel prize will be shared 

by A. Wigderson and L.Lovasz. They contribute valuable applications of 

theory of  Extremal graphs  and Expanding graphs to Theoretical Computer 
Science (see [1], [2] and further references). We have been working on 

applications of these graphs to Cryptography.  This paper is dedicated to the  

problem of secure encryption of big files. 

        One time pad is a practical implementation of the idea of absolutely 
secure encryption. Symbiotic combination of this encryption tool with key 

exchange Diffie – Hellman protocol was widely used. Appearance of the first 

versions of quantum computers and cryptanalysis of algorithms based on 
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discrete logarithm problem demands new algorithm of  ‘’post quantum 

secure’’ generation of pseudorandom string S of characters from chosen 
alphabet.  Quantum technologies allow to produce genuine random strings G 

of a chosen length. One time pad encryption of G with the key S will allow 

safe delivery of string G from correspondent to his/her partner. 
       In this paper we use sequence of known expanding graphs  A(n, q) for the 

solution of described above task in the case of alphabet Fq. Analogs  of these 

graphs defined over arbitrary commutative ring K allow to introduce 

algorithm of postquantum secure generation of S  in the case of the alphabet 
K.  

    In terms of graphs A(n, K) we define  polynomial transformation groups 

GA(n, K) of affine space Kn related to A(n, K).  The most important  ”stability 
property” of GA(n, K) is proven in terms of DYNAMICAL SYSTEMS  on the 

variety  Kn (see [3], [4] and further references). 
    Stability property means that in the chosen basis maximal degree of 
elements of GA(n,K) has degree 3. Notice that composition  of two randomly 

chosen nonlinear polynomial maps of degrees  k and l in general position 

with the probability close to 1  will have degree kl. 
  Required properties of graphs A(n,K) (see [5]) can be justified via 
enveloping family of  graphs D(n,K) and their connected components 

CD(n,K) (see [6]). 

  We present  a symbiotic combination of the algorithm of generation of 
potentially infinite string of characters with the postquantum secure Key 

Agreement Protocol based on computations in the group GA(n,K). 

     The initial data for this string  generator are given via ‘’seed of finite 
length’’ in the form of tuple of characters of finite length. Correspondents can 

execute the Key Agreement Protocol with the collision map G from GA(n,K) 

and extract required seed from G. 

    We hope that this combination is capable to replace in current 
postquantum reality a former  symbiotic composition of Diffie-Hellman 

algorithm with classical one time pad. 

  One application gives alternative to one time pad encryption symmetric  
encryption algorithm. Its password can be extracted from the output of 

algorithm of generation of potentially infinite string of characters from K. The 

complexity of encryption process for this stream cipher is O(n).  

   The encryption map of this algorithm is polynomial map of unbounded 

degree. It can be used similarly to public key without the change of password 

during unlimited time. Implemented simplified  version of this algorithm with 

the encryption map of degree 3 can be used safely O(n2) times. Results of 
computer simulation will be presented. Given  densities of cubical maps allow 

to evaluate ‘’usage interval’’ of encryption with a taken password. 

Correspondents can change the password via algorithm of generation of 
potentially infinite string of characters. No need to repeat  the GA(m,K) 
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protocol which costs O(m13) elementary operations.  Execution time for the 

generation of element of GA(n, K) is useful for the time evaluation of the 
main algorithm. 

2. On current state of Post Quantum Cryptography. 
Prototype models of probabilistic machine known as Quantum computer al-

ready exist. They  can produce genuine random sequences of bits which can 

be used in information security instead of pseudo random strings. 

Perfect symbiosis of one time encryption with Difiie - Hellman protocol for 
the key exchange can not be   used safely anymore because discrete logarithm 

problem can be efficiently solved with the usage of Turing machine together 

with Quantum Computer. Combination of these two machines can be used for 
effective cryptanalysis of RSA (result of Peter Shor, 1995).  

   Investigation of  public keys  with potential resistance to quantum at-

tacks has been  supported by US NIST international project on Post Quantum 

standardisation process since 2017. In July 2020 the third round started  for 
the final investigation of already selected algorithms . In the area of Multivar-

iate Cryptography  only rainbow-like oil and vinegar digital signatures are  

selected for the further investigation. They can not be used as encryption algo-
rithms.  This fact motivates different from public key directions of Multivari-

ate Cryptography. 

3. Equations of q-regular tree and  string processing. 
The description of q-regular tree Tq in terms of equations was introduced in 

1995 via the construction of  graphs CD(n,q) (see [6] and further references).. 

In fact Tq coincides with well defined projective limit CD(q) of graphs 

CD(n,q) where n tends to infinity. 
It was discovered later that special homomorphic images A(n,q) of CD(n,q) 

form a family of q-regular small world graphs. Well defined projective limit 

A(n, q), n=2,3,… coincides with Tq..                                         
                                                         *                                                                                                                                                                                                                                                                                                  

q =3                                           ∕     │      \                                  

                                           *          *         * 

                                        ∕    \       ∕   \        ∕   \ 

                                      *      *    *     *    *     *     

                                     ∕  \    ∕  \   ∕  \   ∕  \  ∕  \    ∕  \ 

                                   *   * *  *  * *  * * *  * *   * 
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This construction allows to introduce Tq  as q - regular bipartite graph with 

points of kind (p)=(p1, p2,…,p1,…) and lines [l]=[l1, l2,…,li, …] where only 
finite number of coordinates pi and li are different from zero and point (p) and 

line [l] are incident if and only if the following relations hold. 

p2-l2=l1p1, p3-l3=p1l2, p4-l4=l1p3, …., p2s-l2s=l1p12s-1, p2s+1-l2s+1=p1l2s-,… . 
Brackets and parenthesis allow us to distinguish points from lines. 

Projections of (p) and [l] onto (p1, p2,…,pn) and  [l1, l2,…,ln] define graph 

homomorphism on graph A(n, q) with point set and line set isomorphic to 

(Fq)
n and incidence given by first n-1 equations in the definition of Tq. 

We can change finite field F in the given above construction for  arbitrary 

commutative ring K with unity  and get infinite graph TK together with bipar-

tite graph A(n, K) for which two copies of  Kn form partition sets. If K is in-
tegrity ring then TK

 =A(K)  is also an infinite tree but existence of  zero divi-

sors lead  to the  appearance of cycles in these graphs.  
The first coordinates ῤ(p)= p1 and ῤ([l])=l1 are natural colours of points (p) 

and [l] of graphs A(n, K) and A(K). 

The following linguistic property holds. For each vertex v there is a unique 

neighbour u of chosen colour ῤ(u)=a. Let Na(v) be the operator of taking the 

neighbour of v with colour a. 
The walk in the graph A(n, K), n=2,3,…  of length m started at the given 

point p=(p1 , p2,…) can be given by sequence a(1), a(2),…,a(m) of colours. 

This is a sequence (p), v1=Na(1)(p), v2=Na(2)( v1),,…, vm=Na(m)(vm-1). 
We refer to string (a(1), a(2),..,a(m)) as the direction  of  the walk. In the 

case of even m we consider transformation  nC(a(1), a(2),…, a(m)) of Kn into 

itself defined  in the following way. 
   Take the list of variables x1,x2,…,xn and consider K[x1, x2,…,xn] together 

with new graph A(n, K[x1, x2,…, xn]) given by the same equations as in the 

case A(n, K). 

    Take special starting  point (x)=(x1, x2,….,xn) and colour string x1+a(1), 
x1+a(2),…, x1+a(m)  compute   

(x), v1=Na(1)+x(1) (p), v2=Na(2)+x(1)( v1),…, vm=Na(m)+x(1)(vm-1) where x1=x(1).  

Finally take the polynomial transformation C(a(1), a(2),…,a(m)))  of Kn in-
to itself  sending (x) to vm. This transformation is given by the rule (x)→(f1, f2, 

…fn)= vm. 

    We see that each point to point walk w on vertices of such graph  which 

starts in the chosen origin (i.e 0 point)   can be given by its direction which is 
a tuple of kind w= (a1, a2,…, a2s) with ai ϵ K.  

With such direction  we associate the tuple nC(w)=(f1, f2, …fn), where fi ϵ 

R=K[x1, x2, … , xn]. It can be proven that maximal degree of fi ϵR  ( deg(fi)) is 
3. We identify this tuple with the map nC(w) of kind xi→fi(x1, x2,…xn), 

i=1,2,…,n  which is a bijective polynomial transformation of affine space 

(K)n. 
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The natural composition of walks from 0 origin can be formally given by 

the following rule.   
   For w=(a1, a2, …a2s) and u=(u1, u2, …u2t) their composition w◦u is the 

tuple  (a1, a2, …a2s, a2s +u1, a2s+u2, …, a2s +u2t). 
   Let ∑(K) be the semigroup of all directions with the introduced above 

operation. This is a semi direct product of free semigroup over alphabet K and 

additive group (K,+)  which can be considered as modification of a free prod-

uct (K, +) with itself .      

 It is easy to check that the composition nC(w) and  nC(u)  coincides with 
nC(w◦u). So transformations nC(w), wϵ∑(K) form a subgroup GA(n, q) of 

group Aut K[x1, x2, …, xn] which acts on the affine space (K)n  as group 

CG((K)n) (affine Cremona group [36]) of all bijective polynomial maps of 
(K)n  into itself.  It means that the map ήn: ∑(K)→GA(n, K) sending w to 
nC(w) is a homomorphism and its image GA(n, K) is a stable one of degree 3, 

i.e. maximal degree of the map from this group is 3. 
 Similarly we can define homomorphism ή of ∑(K) onto GA(K) acting on 

points of infinite graph A(K). 

   For studies of walks corresponding to directions (y) of length m we ex-

tend the field K to commutative ring K[y1, y2,…, ym] and consider the special  
direction (y)=(y1, y2,…, ym) of graph An(K[y1, y2,…, ym]) where m is even 

number. 

 Elements of this group  are ήn(C(y)) where ήn is a homomorphism of 
∑(K[y1, y2, …,ym]) onto CG((K[y1, y2,…, ym])n).  

Each of them can be written as a rule  xi→fi(x1, x2,…, xn, y1, y2,…,ym), 

i=1,2,..n. Degree of each polynomial in variables x1, x2,…, xn  (degx) is bound-
ed by 3. 

It possible to prove the following statement. 

    

  PROPOSITION 1  Degree of fi in variables y1, y2,…,ym  (degy(fi)) is i. 
     

TAHOMA PROTOCOL ( [7] uses tame homomorphism ήn of ∑(K) into 

GAn(K)). 
  Alice selects parameters n and m and words w1, w2,.,..wk , k>1 and words u 

and z of  finite even length from ∑(K ). 

 Let  u=(a1, a2, …., as).  We refer to  Rev(u)=(-as +as-1, -as+as-2, … , -as+a1 , 

-as) as a  reversing string for u. It is easy to see that ηn(uRev(u)) is the unity of 
affine  Cremona semigroup CG(Kn). 

 Alice selects affine transformation T1
 ϵAGLn(K) and T2

 ϵAGLm(K)   in ‘’ 

general position” and computes T1
 -1 together with  T2

 -1. She forms  Fi
 

=T1ήn(uwiRev(u))T1
-1

 and Gi=T2ήm(zwiRev(z))T2
 -1

  for i=1,2,...,k.  

 She sends pairs (Fi, Gi), i=1,2,...k to Bob.  
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      He uses formal alphabet {x1, x2,..., xk} to write word xi(1)
k(1)xi(2)

k(2)...xi(s)
k(s) 

of finite length s. Bob computes specialisations F=Fi(1)
k(1)Fi(2)

k(2)...Fi(s)
k(s) and  

G=Gi(1)
k(1)Gi(2)

k(2)...Gi(s)
 k(s). He sends F to Alice but keeps G for himself. 

   Alice has to restore the standard form of G from F.   She knows that 

standard projection of A(n, K) onto A(m, K) induces the homomorphism 
μ of GA(n, K) onto GA(m,k) for which μ(ήn(wi))= ήm(wi). Element F equals 

 T1 ήn(u) ήn (w1(1)
 k(1)wi(2)

k(2)...wi(s)
 k(s)) ήn(u) -1T1

1.  

      So Alice computes ήn (w1(1)
 k(1)wi(2)

k(2)...wi(s)
 k(s))=F’ because of her 

knowledge about T1 and u. She applies μ to F’  and gets ήm (w1(1)
 

k(1)wi(2)
k(2)...wi(s)

 k(s))=G’.  Finally Alice computes G as T2 ήm(z)G’ήm(Rev(z))T2
 -

1. The collision transformation G has standard form xi →g i (x 1 , x 2 ,…,x m ), 

i=1, 2,…, m. 
     SECURITY RESTS ON THE PROBLEM OF DECOMPOSITION OF 

G  INTO WORD  OF GENERATORS Fi, i=12,…,k. 

      IT IS POST QUANTUM INTRACTABLE. 
This algorithm was presented in Security track of COMPUTING 2019 con-

ference in London  (see [8]). 

 Correspondents can use the concatenation of coefficients of gi listed  in the 

lexicographical order as a password for one time pad encryption. They can 
use the  following 

        algorithm of generation of potentially infinite string of characters. 

        Let g  be a cubical map from CSn(K) of kind xi →gi. i=1, 2,...,n.   To 
simplify definitions we assume that n is even. We define v(g) as tuple of coef-

ficients of  g1+g2, ...+gn written in front of terms xixjxk, |{i,jk}|=3 ordered in 

the lexicographical order. Length of v(g) is C3
n.  

We define reg(d)=d’ for d=(d(1),d(2),....,d(t)) ϵK^t , t ≥2 as the string with 

d’(1)=d(1), d’(2)=d(2), if i>.2 then d’(i)=d(i)+d’(i-2)  if   d(i)≠0,  and 

d’(i)=d’(i-2)+1 for the case d’(i)=0 . 

      Definition. Blow-up of g  (Blow(g)) is the map ή1(reg(v(g)), t= C3
n. 

      We can consider  mBlow via application of Blow exactly  m times, m≥1. 

Noteworthy that  mBlow(g) is bijective cubical transformation, 

Let mv(g) be the tuple v(mu(g)), 
        Application 1. So Alice can take modern implementation of quantum 

computer (number of qubits can be rather small, 2 or 4 are sufficient numbers 

to play) and use this machine to create ‘’genuine’’ random sequence P=(p(1), 

p(2),…, p(m(s)) in the alphabet.  She can elaborate common string a=(a(1), 
a(2),…, a(s)) together with Bob via a postquantum secure protocol.   

      Correspondents  computes g=Tήn(reg(a))T’ where even n and nonsingu-

lar matrices T,T’ are agreed via open channel and start computation of B= 
lBlow(g) ϵ CSk(K) with k≥m(t). 

     Alice takes tuple E of first m(s) coordinates. She sends E+P to  Bob. He 

restores P. 
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        Presented above algorithm allows  correspondents to use one time pad 

encryption as many time as they want. 
Assume that correspondents have common tuple of characters  

(p=(p1, p2, …, pt)ϵKt elaborated via some protocol (the seed). Instead of crea-

tion of potentially infinite string of characters from this seed they can use sin-
gle computation of ήm(p)=G of kind x1 →g1, x2→g2 ,…, xm →gm. So they take 

tuple u of nonzero coefficients of g1+g2+…gm and use the string reg(u) or its 

part as password. The length of tuple reg(u) in the case of m=128 and various 

t (length of the word)  is given by the following figure. 

 

 

Fig. 1. Number of monomial terms of the cubic map induced by the graph A(128, 

K) for K=Fq (-----), K=Zq(- - -)  , q=232 and Boolean ring B(32)  (.-.-.-). 

Application 2 (practical expansion of seed tuple in a single step).  Assume 

that H is a cubical map xi→hi(x1, x2,…, xt), i=1,2,…, t. It has a triangular struc-

ture. Let h=h1+h2…+ht. We can consider matrix A=(aij) where aij is coeffi-
cient of polynomial h in front of x1

2xj if this coefficient  differs from 0, other-

wise aij=1. 

     Let U be matrix with entries u(i,j) such that u(i,j)= aij  for j>i , u(i,i)=1 and 
u(i,j)=0 for i<j. 

        Assume that  L stands for the matrix with entries  l(i,j) such that l(i,i)=1 

and l(i,j)= aij for i<j and l(i,j)=0 for i>j. We compute T=LU=∆(H) together 
with T-1. 

We introduce  Cong(H) as element THT-1. 

We introduce Blow’(G) as Cong(Blow(G)). The usage of Blow’(G) instead of 

Blow(G) in described above algorithm of generation of potentially infinite 
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sequences of cubical bijective  polynomials leads to creation of maps without 

obvious invariant subspaces. 
 Let p=(p1, p2, …, pt)ϵKt, where parameter t is  even. We consider reg(p) ϵ 

∑(K), select “sufficiently large” number m and compute Cong(ήm(reg(p))=Hϵ 

CGm(K). 
   Let vm(p) be a string of nonzero coefficients of cubical map H ordered in the 

lexicographical order. We define Zoomm,t(p) as reg(vm(p)). We denote the 

length of Zoomm,t(p) as z(m,t)(p). Computer experiment shows that the value 

of this parameter practically depends on m and t and does not depend on the 
pseudorandom string p. In fact if t is ‘’sufficiently large” then practically we 

have the function from single variable m. 

Table 1. Number of monomial terms z(m,t) of the cubic map induced by the graph A(m, Fq). 

q=232 

 

 length of the word t 

m 16 32 64 128 256 

16  6544   6544   6544   6544   6544 

32  50720   50720   50720   50720   50720 

64  399424   399424   399424   399424   399424 

128  3170432   3170432   3170432   3170432   3170432 

 
Correspondents can use ‘’zoom operator’’ several times. 

 

REMARK. Instead of Cong(g) correspondents can use the following modifi-
cation of this operator. We can take string of coefficients 

grad2(g1+g2+…+gn)=a1x1+a2x2+…+anxn+a0 standing  in front of monomial 

terms xi and form tuple (b1,b2,…,bn) with bi=ai for ai≠0 and bi=1 for ai=0.  

Secondly we consider affine transformation T of kind 

x1→x1+b1x2+b2x3+…bn-1xn+bn, xj→xj, j=2,3,…,n. We define Sparse(g) as  

TgT-1. 

Example 1. 
        Let us assume that Alice and Bob execute described above protocol and 

get collision map g from R GA(m,K)R-1 where R is some matrix known for 

Alice and parameter m is even.  
  They use g as the seed for generation  of potentially infinite string of charac-

ters. Alice  use this string for the transfer of ‘’genuine’’ random parameters 

(r1, r2,…rs) with potentially infinite s. Let us assume that correspondent has to 

send his/her partner large tuple p=(p1, p2,…., p1). 
Correspondents   can take integer parameter d of kind  clog3(l) for some con-

stant c. 
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They can agree on parameter h=O(l) and form strings 

k(1)=(r1, r2,….,rh), k(2)=(rh+1, rh+1,  ,,, ,r2h),…, 
k(d)=(rh(d-1)+1, rh(d-1)+2,…,rhd). 

       They form transformations Gi of kind Cong(ή1(k(i))), i=1.2,…, d. 

     Alice and Bob form G(i)= Cong (ήk(u(i)), i=1,2,   r. They will use compo-
sition E of G(j), j=1,2,…, r 

Noteworthy that degree of E is about 3r, where r is linear function from l.  

Parameter l is ‘’potentially infinite’’ positive number. So degree of E is not 

bounded by constant. 
    This fact makes impossible the linearization attacks by adversary or other 

kind of attacks via interception of pairs of kind  known 

plaintext/corresponding ciphertext. 
     To increase  speed of encryption and decryption correspondents have to 

use the decomposition of E into G(i) and representation of each G(i) as ∆(u(i)) 

u(i) ∆(u(i)) -1 where  u(i)=ή1(k(i))). 
So for the encryption of the plaintext p  of length l correspondent has to exe-

cute computation  of the value of  G(i) in a given vector h times. 

     The computation of value of linear transformation  

∆(u) or its inverse takes O(l2).  Computation of each u(i) takes O(l2) in the 
case when the string k(i) is known.  So encryption with E takes O(l2ln(l)). .  

Noteworthy that the knowledge of rev(k(i)) allows computation of value for 

u(i)-1 with the speed of computation u(i). So encryption and decryption take 
the same time. 

  Noteworthy that speed of proposed nonlinear encryption is close to execu-

tion time  of encryption with linear map which is O(l2). 

Example 2. 

Let us consider modification of algorithm described in the previous example. 

We construct strings k(1),k(2),…,k(d) of length O(1). The usage of operator 

Sparse instead of Cong allows us to construct Hi= Sparse(ή1(k(i))), i=1.2,…, d 
instead of Gi. 

New encryption E’ is defined as the composition of H1. The execution of each 

Hi_takes linear time O(l). 
So the execution time  of E’ is close to the speed of reading the file. 

 

4. On quadratic  multivariate cryptography. 
   

In July 2020 the list of algorithms selected for the Third Round of NIST com-

petition was  published. In the case of digital signatures  preliminary analysis 
indicates some advantages of algorithms based on quadratic public rules of 

Multivariate Cryptography. These systems provide the smallest sizes of the 

used hashed messages  and digital signatures. 

        Recall that classical multivariate signature system is based on public 
quadratic map  P' of vector space Fq

m onto Fq
 n of kind P’= T1PT2  where the 
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map  P is given by rule xi→fi(x1, x2,… , xm), i=1,2,…,n  defined by quadratic 

polynomials fi and bijective affine transformations  T1,T2 of spaces Fq
 m and   

Fq
 n. Users Alice and Bob use selected encryption function F and hash func-

tion which creates hash vector H(c) from vector space Fq
m. Alice writes the 

plaintext p  and computes corresponding ciphertext c.  The knowledge of the 
decomposition  T1PT2 and private algorithm to compute value of P-1 in a given 

point allows Alice to compute some reimage  P'-1(H(c))=(u1, u2, …, un)=u of 

H(c) (so called signature) and to send u to Bob via an open channel. He 

checks the identity P'(u)=H(c). This is his confirmation that ciphertext is sent 
by Alice. Finally  he decrypts via his decryption tool. The security of present-

ed above algorithm  rests on the complexity of the problem of computation of 

reimage for non-bijective  P’. This is  a well known general NP hard  prob-
lem.  

     We can change finite field for general commutative ring. 

    Noteworthy that in the case of Unbalanced Oil and Vinegar system the par-
tition of variables into two parts of ‘’ oil’’ and ‘’vinegar’’ unknowns  and spe-

cial form of P allow Alice to compute element from P-1(H(c)). She uses a spe-

cialisation of  ‘’vinegar’’ variables via substitution of pseudorandom parame-

ters, such specialisation  reduces the search for reimage via  solving the sys-
tem of linear equations. 

    We start the search for the options to modify  general digital scheme of 

multivariate cryptography which eliminates attacks investigated in [10] and 
[11]. Additionally we search for  modifications of public keys of quadratic 

multivariate cryptography. These schemes use system of nonlinear polynomi-

al equations 
1p(x1,x2 , . . . , xn) = 1pi,j · xixj+

1pi · xi+
 1p0 

2p(x1, x2, . . . , xn) = 2p i,j · xixj +
2pi · xi +

2p0 

   … 

mp(x1,x2 , . . . , xn) = mpi,j · xixj+
mpi · xi+

 mp0  where kp i,j, , 
kp i are elements of 

selected commutative ring K. The transformation rule P of  the tuple (x1,x2 , . . 

. , xn),
  into (1p(x1,x2 , . . . , xn),

 2p(x1, x2, . . . , xn), …, mp(x1,x2 , . . . , xn))   has to 
be supported by  the algorithm of computation of its reimage. For example, in 

the case of ‘’oil and vinegar’’ variables x1,x2 , . . . , xn are subdivided  into two 

groups and specialization of representatives of one of them converts system of 

quadratic equations to solvable system of linear equations. 
The quadratic multivariate cryptography map  consists of two bijective af-

fine  transformations  S and T of dimensions n and m, and a quadratic element  

P’ of kind  SPT. The standard form of P’ has to be given publicly.  
So public user Bob can compute image of vector (v1,v2 ,...,vn) in time 

O(n3). 
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The key holder Alice knows the decomposition of P’ into SPT. We assume 

that this knowledge allows Alice to compute the reimage in time O(n2). 
That condition holds for the majority of investigated examples of multivar-

iate schemes. 

One of the approaches for modification is based on the idea that 

the map P' is not given publicly [12].  

In this paper we assume that correspondents execute the protocol of 

non-commutative cryptography based on the platform of stable multi-

variate transformations of degree 2 in n variables (see [13]) or degree 3 

as in the case of presented platform GA(n,k). 
 They extract  the collision map G from the semigroup CSn(K) and extract 

the tuple v(G) defined as the list of coefficients in font of terms xixjxk where i, 

j, k are different  (deg (G)=3) or terms xixj , i≠j (deg (G)=2) . 

%%%%%They use tuple v(G) as the ‘’seed’’ for elaboration of potentially 
infinite string of characters (p1, p2,....ps). This string allows Alice to deliv-

er‘’genuine’’ random string  (r1, r2,...., rs) to Bob. 

Let P’ be given by quadratic polynomials 
ip’(x1, x2,..., xn), i=1,2,...m. 

Each polynomial is presented as string ia=(ia1, 
ia2,..., 

iak), k=n(n-1)/2+n+1 
of its coefficients written in a standard lexicographical order. Alice forms 

vectors r(1)=(r1, r2,..., +rk), r(2)=r1+k+r2+k+...+r2k ,…, r(m)=r1+k(m-1)+r2+k(m-

1)+...+rmk. She sends vectors ia+r(i), i=1,2,...,k to Bob. He restores polynomi-
als ip’(x1, x2,..., xn), i=1,2,..., m. 

So Alice and Bob share P’ and keep this map in their  private storages The 

map P’ is not given publicly.  
  Correspondents execute described above algorithm of digital signatures 

in secure private mode. 

OPTIONS  FOR ADVERSARY. 

 Adversary can try to intercept several pairs of kind (tuple P’(v1, v2, ,...,vn_), 
corresponding reimage (v1, v2,..., vn)).  He/she treats coefficients of the quad-

ratic map as (n(n-1)/2+n+1) variables. 

    One interception provides m equations. 
    Adversary need more than n(n-1)/2 pairs of kind the image/corresponding 

reimage of P’. If he/she gets more pairs than number of equations then adver-

sary has a chance to solve the system and transfer standard form of P’ from 

private shadow to his own possession. 
The remaining part of the job is cryptanalytic studies of explicitly given P’ to 

find the procedure of finding the reimage for this map.  

  REMARK. Correspondents can agree on the execution of signature proce-
dure at most [n2/4] times. 

After reaching this number of exchanges correspondents have to change  the 

map P’ for other quadratic multivariate rule P’’. The following options have 
to be considered. 



12 

(a) Alice works with the same P but change S and T for other pair (S’, T’) 

of bijective affine transformations. She uses P’’=S’PT’. 
(b) Alice changes internal parameters of P  and gets the map Q with 

changed procedure of reimage computation. She uses decomposi-

tion  P” =S’QT’. 
     

After choiosing  the map Alice can select other part of common sequence (r1, 
r2,...., rs) for the safe delivery of P” to Bob. If necessary Alice and Bob can 
use other session of the protocol to construct new parameter  ia’ together with 

other session of quantum computation to produce new string of characters r’i. 

      REMARK 1. Described above method can be used for maps P’ of bound-

ed degree >2. 
      REMARK 2. 

The usage of quantum computers and parameters ri means that the described 

digital signature scheme belongs to the list of algorithms of Quantum Cryp-
tography.  

      REMARK 3. 

Instead of  parameters ri  correspondents can simply use elements ai , which 
are computed as polynomials of exponentially growing degrees. This change 

leads to deterministic algorithms of Postquantum Cryptography. 

      REMARK 4. For each n we construct quadratic stable subgroup En (K) of 

affine Cremona group CGn (K) . So we can use presented above protocol  
with quadratic platform (see [13] and further references).We get complexity 

O(n7) instead of O(n13). 

     This stable platform is also constructed in terms of expanding graphs. Cor-
responding families of graphs are geometrical expanders in sense of Noga 

Alon. They are of unbounded degree. These platforms contain large noncom-

mutative subgroups  generated by elements of exponential order. 

5. Stable Chaos in the case of intergrity ring with unity of charac-

teristic zero. 
     Affine Cremona groups  in the cases of K=C and K=R   are classical ob-
jects of Algebraic Geometry. Let us discuss more general case of integrity 

ring with unity of characteristic zero. 

    Assume that w=(d1, d2,…,dt) is an element of ∑(K) with dt≠0. In this case 
ή(w)ϵCGn(K) is a cubical map of infinite order and cyclic group generated by 

TgT-1 with TϵAGLn(K) is an infinite stable group of degree 3   

       Let us assume that we have several elements w(i) with the last coordinate 
different from zero. Then  <ήn(w(1)), ήn(w(2)), ήn(w(m))>, m>1 is an infinite 

stable subgroup of cubical transformations with infinite generators.  

    Let g be a cubical transformation of CSn(K) then elements CongBlowi(g), 

i>1generate a cyclic stable subgroup of GA(n, K). 
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      Noteworthy that <Cong(Blow)i(g1), Cong(Blow) i (g2)> is not  stable sub-

group but for the majorty of pairs g1, g2 of cubical transformations  composi-
tion of Cong(Blow)i(g1) and Cong(Blow) i (g2) has degree 9. 

Studies of stable subgroups of affine Cremona groups CGn(K) is an interesting 

task. Note that all algorithms presented in the paper have the same complexity 
estimations counted via numbers of basic operatio (+, ◦) of general commuta-

tive rings. In the case of integrity  rings K , 1<K<R the absolute values of 

polynomial coefficients of polynomial maps  ήn(w) are growing fast with the 

growth of n or length l of the word w. 
  So in many cases memory restrictions of the computer  do not allow to im-

plement the  computation of the map. 

6. Conclusions 

    Constructions of analogs of Diffie Hellman protocol for Post Quan-

tum Cryptography is an important direction of Noncommutative Cryp-

tography (see [17]-[35]). Some of suggested protocols use groups or 

semigroups given via generators and relations as platforms for the pro-

tocol. We work in the area of intersection of Noncommutative and Mul-

tivariate cryptography without the usage of methods of Combinatorial 

Group Theory or its generalization on Semigroups. As platforms for 

protocol we use special subgroups and subsemigroups of affine Cremo-

na group CGn(K) (see [36]) which is a collection of all endomorphisms 

of K[x1, x2,…, xn]. Each element from CSn(K)  is presented in its stand-

ard form xi →fi(x1, x2,…, xn), i=1,2,…,n where monomial terms of fi are 

listed accordingly lexicographical order.  In section 3 we present the 

protocol proposed in [7]. It uses the properties of progective limit 

GA(K), n=2,3,… defined via the family of groups GA(n, K)  construct-

ed via known small world graphs A(n, K). Let A(K) be the projective 

limit of A(n,K). We introduced the semigroup of walks ∑(K) on A(K) 

and homomorphisms ή:∑(K)→GA(K), ήn:∑(K)→GA(n,K), 

μ:A(K)→A(n,K) forming commutative directed triangle. The protocol 

uses hidden conjugates of GA(n, K) and GA(m,K),n>m and hiddent 

homomorphism between them. The collision element g from CGm(K) 

has degree 3. 

    The security of protocol rests on the problem of decomposition of h ϵ 

CGn(K) into composition of known generators. 

    This problem is more general than Conjugacy Power Problem of 

Noncommutative Cryptography. It is untractable even in the case of the 

usage of Turing Machine and Quantum Computer.  

   Complexity of this asymmetric protocol for public user Bob is O(n13). 
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The main goal of the paper is safe expansion of ‘’seed ‘’ g  on finite 

sequence of cubical gi =Blowi(g) ϵ CGn(i)(K)  where sequence 

n(1)<n(2)<… n(k) is defined by the rule n(i+1) =C3
n(i), n(0)=n.  Coeffi-

cients of g(i) are polynomial expressions from seed variables of degree 

n(1)+n(2)+…+n(k). The complexity of algorithm is O(n(k) 4). Corre-

spondents can use strings of coefficients of gi  or their parts as pass-

words of symmetrical cryptography. 

  It means that they need just a single usage of expensive Tahoma pro-

tocol and to use iterative expansion to get larger string of common 

characters. 

   In section 4 we consider application of these results for the “privatiza-

tion” of algorithms of Multivariate Cryptography, i. e. El Gamal type 

transition of public key data into safe private zone. 

  Of course further investigation of coordinates R(K) is needed with the 

usage of various NIST tests  on pseudo randomness. 

 Summary 

     Discovery of explicit constructions of expanding graphs (sequence 

CD(n, q) and modifications of this family) of increasing girth  were used in 

many constructions of Extremal Graph Theory  and Theory of LDPC codes 

(see upper bounds for cages  in [37] or  papers [38], [39] on Coding Theory),. 
        It also has an impact on Algebraic Geometry, first constructions of large 

stable subgroups of affine Cremona group CG_n(K) over general commuta-

tive ring K  had been obtained . In particular large groups of cubical (or even 

quadratic) transformations of a free module were found. 
     Discovery of homomorphism of ∑(K) (semigroups of walks on  infinite q-

regular tree in the case K=Fq)   onto stable group G leads to Construction of 

analog of Diffie-Hellman protocol which is secure in sense of Post Quantum 
Cryptography. This result is based on the ideas  of NONCOMMUTATIVE 

CRYPTOGRAPHY. Possibility of the change of finite field for general com-

mutative ring were considered. 
     So we have symbiotic combination of this protocol with one time pad or 

other symmetric encryption algorithm. 

   Multiple usage of mentioned above homomorphisms can be used for the  

secure expansion of the output of  postquantum secure protocol  to potentially 
infinite sequences   gn of cubical elements of affine Cremona groups CGn(K) 

where n tends to infinity. One can extract special tuples of coefficients of 

maps gm for their usage for safe delivery of pseudorandom sequences of char-
acters produced by quantum computer. We discuss the usage of these se-

quences for the  delivery of multivariate maps capable to provide digital sig-

nature schemes and schemes for the message exchange. 
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     The content of the paper was presented by author at the international con-

ference ‘’Modern Stochastic: Theory  and Applications, 5’’, Kyiv, June 2021 
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