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Abstract

Lossy trapdoor functions, introduced by Peikert and Waters (STOC ’08), can be initialized
in one of two indistinguishable modes: in injective mode, the function preserves all information
about its input, and can be efficiently inverted given a trapdoor, while in lossy mode, the func-
tion loses some information about its input. Such functions have found countless applications
in cryptography, and can be constructed from a variety of number-theoretic or algebraic “Cryp-
tomania” assumptions. In this work, we introduce targeted lossy functions (TLFs), which relax
lossy trapdoor functions along two orthogonal dimensions. First, they do not require an inver-
sion trapdoor in injective mode. Second, the lossy mode of the function is initialized with some
target input, and the function is only required to lose information about this particular target.
The injective and lossy modes should be indistinguishable even given the target. We construct
TLFs from “Minicrypt” assumptions, namely, injective pseudorandom generators, or even one-
way functions under a natural relaxation of injectivity. We then generalize TLFs to incorporate
branches, and construct all-injective-but-one and all-lossy-but-one variants. We show a wide
variety of applications of targeted lossy functions. In several cases, we get the first Minicrypt
constructions of primitives that were previously only known under Cryptomania assumptions.
Our applications include:

• Pseudo-entropy functions from one-way functions.
• Deterministic leakage-resilient message-authentication codes and improved leakage-resilient

symmetric-key encryption from one-way functions.
• Extractors for extractor-dependent sources from one-way functions.
• Selective-opening secure symmetric-key encryption from one-way functions.
• A new construction of CCA PKE from (exponentially secure) trapdoor functions and

injective pseudorandom generators.
We also discuss a fascinating connection to distributed point functions.
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1 Introduction

Lossy trapdoor functions, introduced by Peikert and Waters [PW08], are a fundamental crypto-
graphic tool and have found countless applications in many areas of cryptography. They can be
constructed from a wide variety of specific number-theoretic and algebraic “Cryptomania” assump-
tions. In this work, we introduce a relaxation of lossy trapdoor functions that we call targeted-lossy
functions (TLFs), and show how to instantiate them using “Minicrypt” assumptions, such as in-
jective pseudorandom generators or even one-way functions for a natural variant. We then provide
applications of TLFs to a diverse set of problems. For several of these problems, we get the first
solutions under one-way functions, where previously only solutions under specific Cryptomania
assumptions were known.

Lossy Trapdoor Functions. Lossy trapdoor functions consist of a function family Ffk(·) indexed
by a public function key fk. The function key fk can be generated in one of two modes. In injective
mode, the function Ffk(·) is injective, and therefore each output y = Ffk(x) uniquely determines the
input x. Furthermore, the public function key fk is generated together with a secret trapdoor td
that allows one to efficiently invert the function and recover the input x from the output y = Ffk(x).
In lossy mode, the output y = Ffk(x) loses some information about the input x. This is captured
by defining a lossiness parameter ` and requiring that the size of the image of Ffk is at most a 1

2`
fraction of the size of the domain. In particular, this implies that when x is uniformly random over
its domain, then the conditional entropy1 of x given Ffk(x) is at least ` bits, meaning that this
information about x is lost by Ffk(x). The two modes should be computationally indistinguishable:
given fk, one cannot tell if it was generated in injective mode or lossy mode.

Since their introduction, lossy trapdoor functions have turned out to be incredibly versatile tool
and have quickly become an integral part of our cryptographic tool-set. They have found countless
and varied applications, including to CCA security, trapdoor functions with many hard-core bits,
collision-resistant hash functions, and oblivious transfer [PW08], deterministic encryption [BFO08],
analyzing OAEP [KOS10], hedged public-key encryption with bad randomnes [BBN+09], selective
opening security [BHY09], pseudo-entropy functions [BHK11], point-function obsuscation [Zha16],
computational extractors [DVW20,GKK20], incompressible encodings [MW20], etc.

Lossy trapdoor functions are known to imply public-key encryption, making them a Crypto-
mania primitive. We currently know how to construct lossy trapdoor functions under most (but
not all) concrete Cryptomania assumptions, such as DDH, LWE, Quadratic Residuosity (QR),
Decision-Composite Residuosity (DCR), and Phi-hiding [PW08, KOS10, FGK+13], but not e.g.,
factoring, RSA, or the (low noise) LPN assumption.

Targeted-Lossy Functions. In this work, we introduce a relaxation of lossy trapdoor functions,
that we call targeted-lossy functions (TLFs), with the goal of constructing them under weaker
assumptions. TLFs relax the notion of lossy trapdoor functions along two orthogonal dimensions:

• No inversion trapdoor in injective mode. When we generate fk in injective mode, we now only
require that the function Ffk(·) is injective, but we no longer require there to be a trapdoor
td that allows us to efficiently invert it.

1Throughout the introduction, entropy refers to min-entropy, and conditional entropy refers to average-case con-
ditional min-entropy [DORS08].
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• Targeted Lossiness. When we generate fk in lossy mode, we are now also given a target input
x∗ and only require that Ffk(x∗) loses ` bits of information about the particular target x∗. In
particular, when the target x∗ is chosen uniformly at random and fk is chosen in lossy mode
for this target, then the conditional entropy of x∗ given (fk, Ffk(x∗)) should be at least ` bits.

The two modes should be computationally indistinguishable even given the potential target x∗. In
other words, given the pair (fk, x∗), one cannot distinguish whether fk was chosen in injective mode
and independently of x∗ or in lossy mode with x∗ as the target.

Notice that the first relaxation already appears to take us out of Cryptomania – without a
trapdoor, there is no obvious way to use this primitive to construct public-key encryption. This
relaxation was considered on its own in prior works (e.g., [BHK11,DVW20]), and is already known
to have interesting applications. Unfortunately, there has been no progress towards achieving this
relaxation on its own under any Minicrypt assumption, or even under any assumption that doesn’t
already imply the full notion of lossy trapdoor functions.2 This motivates us to consider this
relaxation in conjunction with our second relaxation.

Lossy Targeted Lossy

target

Figure 1: Lossy vs Targeted-Lossy

The second relaxation substantially weakens the lossiness requirement and only asks for targeted
lossiness. To highlight the difference between standard vs targeted lossiness, notice that targeted
lossiness with parameter ` could be achieved by choosing a lossy function key fk for some target
x∗, where the output y = Ffk(x∗) has 2` pre-images in the set S = {x : Ffk(x) = y}, but for every
x 6∈ S, the value Ffk(x) has a unique pre-image x. Such a function would not be lossy in the standard
sense. For example, if the domain of the function is {0, 1}n with n = 2`, then, from the point of view
of standard lossiness, the function only has negligible information loss `′ = O(2−`), even though its
targeted-lossiness ` can be an arbitrarily large polynomial.3 This example is illustrated in Figure
1. Despite the significant difference between the notions, we show that targeted lossiness suffices
in many applications in place of standard lossiness.4

2It is also known that, with a sufficiently high lossyness rate, this relaxation on its own would already at least
imply collision-resistant hashing [PW08], and therefore is unlikely to follow from one-way functions/permutations.

3The function has an image of size 2n − 2` + 1, which we can write as 1
2`′ 2n for `′ = O(2−`).

4We could also consider the second relaxation to targeted lossiness on its own, without making the first relaxation
(i.e., by still insisting on an inversion trapdoor in injective mode). In that case, the resulting notion would still be
a Cryptomania primitive. Interestingly, this notion was considered informally in [GGH19], where it was constructed
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TLFs with Branches/Tags. We also consider an augmented notion of TLFs with branches/tags,
analogously to prior notions of branches for lossy trapdoor functions [PW08]. In this setting, a
single function key fk defines an entire family of functions Ffk,tag(·) with various branches indexed
by tag. We can sample the function key fk with a special branch tag∗ and a target value x∗, and
we require that the pair (fk, x∗) computationally hides tag∗. We define two main variants of this
notion, depending on whether the special branch is lossy or injective.

In a targeted all-injective-but-one (T-AIBO) family, the special branch tag∗ is targeted-lossy and
all other branches are injective. In particular, for all tag 6= tag∗, the function Ffk,tag is injective,
while Ffk,tag∗(x∗) loses ` bits of information about the target x∗. This notion is most directly
analogous to the way branches were defined for standard lossy trapdoor functions of [PW08].

In a targeted all-lossy-but-one (T-ALBO) family, the function Ffk,tag∗ is injective on the special
branch tag∗, while all other branches Ffk,tag are cumulatively targeted-lossy. In particular, the
cumulative outputs of all lossy branches (Ffk,tag(x∗))tag 6=tag∗ must lose `-bits of information about
the target x∗. An analogous notion of branches for the case of lossy trapdoor functions was
previously considered in [CPW20], and a relaxed version without trapdoors (but without the second
relaxation to targeted lossiness) was considered implicitly in [BHK11, GKK20] and explicitly in
[DVW20]. All prior constructions relied on Cryptomania assumptions.

Relaxing Injectivity. It turns out that we can also relax the injectivity requirement of TLFs,
while sufficing for most of our applications. When we choose fk in injective mode, instead of
requiring that Ffk(x) uniquely determines x, we only require that it uniquely determines some
property of x, modeled as an arbitrary function P (x). In this case, we also require that when
fk is in lossy mode for the target value x∗, then Ffk(x∗) loses ` bits of information about the
same property P (x∗). We can define T-AIBOs and T-ALBOs with relaxed injectivity analogously,
and even allow the property P to depend on fk. In the case of T-ALBOs, by setting the property
P (x) = Ffk,tag∗(x), this relaxed injectivity requirement is equivalent to insisting that the cumulative
outputs of all lossy branches (Ffk,tag(x∗))tag 6=tag∗ should lose ` bits of information about the output
of the “injective” branch Ffk,tag∗(x∗).

1.1 Our Results

We construct targeted lossy functions (TLFs) from injective pseudorandom generators (PRGs).
We also generalize our construction to targeted all-injective-but-one functions (T-AIBOs) under
the same assumption. For all-lossy-but-one functions (T-ALBOs), we need a stronger “doubly
injective” PRG G(x) = (y0, y1), whose output consists of two halves y0, y1, and the PRG is injective
on each half individually (i.e., either one of y0, y1 uniquely determines x). We also construct TLFs,
T-AIBOs and T-ALBOs with relaxed injectivity from just one-way functions. In all cases, we
start with a basic construction that only achieves lossiness of ` = 1 bits, but can then amplify
lossiness via parallel repetition to get to an arbitrary polynomial `. (However, the lossiness rate of
our constructions, defined as `/n where n is the domain size, is only 1/λ, where λ is the security
parameter. Achieving a higher lossiness rate in Minicrypt is a fascinating open problem.)

under the CDH assumption, which is not known to imply standard lossy trapdoor functions. Not much else is known
about this setting.
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Application: Pseudo-entropy Functions. The work of Braverman, Hassidim, and Kalai
[BHK11] introduced the notion of a pseudo-entropy function (PEF), and constructed them un-
der the DDH assumption. A PEF fk(x) has a secret key k and takes as inputs values x. The
requirement is that for any a-priori chosen input x∗, we can indistinguishibly select the key k so
that fk(x∗) has ` bits of true statistical entropy even given fk(x) for all inputs x 6= x∗. We observe
that PEFs follow almost immediately from T-ALBOs with relaxed injectivity (just by “renaming”
the various components), and therefore get a construction of PEFs from one-way functions. The
amount of entropy ` in our construction can be set to an arbitrarily large polynomial. (On the
other hand, the entropy rate of our construction, defined as `/n where n is the key size, is stuck at
1/λ. This is in contrast to the construction of [BHK11], which achieved an entropy rate of 1− o(1)
under DDH.)

Application: Leakage-Resilience. Leakage-resilient cryptography aims to preserve security
even if an adversary can get some partial leakage on the secret key. We consider the setting of
memory leakage [AGV09, ADW09, NS09, HLWW13], where an adversary can learn any efficiently
computable function of the secret key, as long as the number of leaked bits is bounded by some
parameter `. As shown by [BHK11], pseudo-entropy functions (PEFs) are useful for leakage-
resilient symmetric-key cryptography and were previously used to construct (selectively secure)
deterministic leakage-resilient MACs under DDH. By using our new construction of PEFs from
one-way functions, we get the first (selectively secure) deterministic leakage-resilient MACs from
just one-way functions. The amount of leakage ` that we can tolerate can be set to an arbitrarily
large polynomial. (However, the length of the key grows depending on ` and the leakage rate of
our construction, defined as `/n where n is the key size, is stuck at 1/λ. This is in contrast to
the construction of [BHK11], which achieved a leakage rate of 1 − o(1) under DDH.) We can also
use a similar technique to construct leakage-resilient CPA-secure symmetric-key encryption from
one-way functions.

We note that a prior work of [HLWW13] constructed leakage-resilient symmetric-key primitives,
including CPA-secure symmetric-key encryption and (adaptively secure) MACs from one-way func-
tions. The amount of leakage and the leakage rate are the same as in our construction. However,
the MACs in the prior work were inherently randomized, while in this work we get deterministic
MACs. This is especially crucial in the context of leakage-resilience since, in a randomized con-
struction, leakage that occurs during a computation may also depend on the randomness of the
computation in addition to the secret key, but such leakage was not analyzed by the prior work
(and indeed, the proof there would fail). Furthermore, our MAC has a smaller signature size: the
ratio of leakage to signature size is (1− o(1)) in our construction while it is 1/λ in the prior work.
For the case of CPA-secure symmetric-key encryption, in the prior work the ciphertext size grew
linearly with the leakage bound `, while in our work, only the secret key size grows with the leakage
bound `, but the ciphertext size just has a minimal O(λ) additive overhead on top of the message
length. For both MACs and symmetric-key encryption, our constructions are substantially different
from those of [HLWW13].

Application: Extractor-Dependent Sources. The work of Dodis, Vaikuntanathan and Wichs
[DVW20], which we will refer to as DVW, defined the notion of (computational) extractors for
extractor-dependent sources. The goal is to extract nearly uniform randomness R from an arbitrary
source of randomness X that has some sufficient entropy. Classical results show this to be possible
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using a seeded randomness extractorR = Ext(X;S), which relies on a public random seed S. As long
as the source X is independent of the seed S, the output R is nearly uniform even given S. Usually,
we think of the source X as coming from nature and therefore consider it to be worst-case but not
adversarial – this is used to justify its independence from S. DVW considered a setting where the
seed S is repeatedly used to extract randomness from nature and may therefore impact nature itself
(e.g., consider using the timing of interrupts to derive entropy, but the interrupts may depend on
processes that may themselves rely on extracted outputs). They model this by assuming that the
source which produces X can depend on oracle access to the extractor Ext(·;S), but is independent
of the seed S otherwise, and they refer to such sources as extractor-dependent sources. DVW showed
that extractors for extractor-dependent sources cannot exist unconditionally and at least imply one-
way functions. They also distinguished between two scenarios, depending on whether the source can
output some additional correlated auxiliary information AUX in addition to the sample X, as long
as it preserves the entropy of X. The setting with auxiliary information is considered more realistic.
As their main results, DVW show how to construct extractors for extractor-dependent sources in
the setting without auxiliary information from sub-exponentially secure one-way functions, and
in the setting with auxiliary information from a wide range of Cryptomania assumptions such as
DDH, DLIN, LWE or DCR. They also gave some evidence that it would be difficult to construct
such extractors from simple Minicrypt primitives, by showing that a large class of constructions
— ones where seeing the outputs of the extractor on many inputs uniquely determines the seed —
cannot be proven secure via a black box reduction.

Despite the above negative result, in this work we construct extractors for extractor-dependent
sources, even in the setting with auxiliary information, from standard one-way functions! Our con-
struction does not require sub-exponential security, is entirely black-box in the one-way function,
and achieves the same parameters as the prior constructions from Cryptomania assumptions. We
circumvent the negative result of DVW by using a construction that lies outside of the class con-
sidered there — by relying on lossiness, we ensure that many outputs don’t uniquely determine the
seed — yet can still be instantiated in Minicrypt. Our main technique is to adapt a construction of
DVW, which relied on all-lossy-but-one functions (without a trapdoor), and adapt it to only rely
on targeted all-lossy-but-one functions.

Applications: Selective Opening Security. We also apply TLFs to the problem of selec-
tive opening security [DNRS99,BHY09] for symmetric-key encryption. A selective opening attack
considers a scenario where an adversary sees a large number of ciphertexts and adaptively asks to
“open” some subset of them; we would like to argue that the adversary does not learn anything about
the messages encrypted in the remaining ciphertexts. An opening could correspond to seeing the
encryption randomness or, if all the ciphertexts are encrypted under different keys, then seeing the
corresponding secret keys. Surprisingly, selective opening security does not follow generically from
standard encryption security [BDWY12,HR14,HRW16]. On the other hand, we have constructions
of selective-opening secure public-key encryption for both randomness-opening and key-opening un-
der many specific public-key assumptions [BHY09, FHKW10, HLOV11, Hof12, HPW15]. However,
the problem does not appear to have been studied in the symmetric-key setting. One piece of good
news is that symmetric-key encryption schemes are often “public coin”, meaning that the encryp-
tion randomness is sent in the clear as part of the ciphertext. Such schemes are automatically secure
against selective randomness-opening attacks, since the randomness is available to the adversary
for free! Therefore, we focus on constructing a public-coin symmetric-key encryption that achieves
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security under selective key-opening attacks. We consider a setting where n secret keys k1, . . . , kn
are chosen uniformly at random and the adversary is given a CPA oracle for each of these keys.
In addition, the adversary gets n challenge ciphertexts, one under each key. The adversary gets to
adaptively choose to open some arbitrary subset of the n ciphertexts and receive the corresponding
secret keys, and we want to argue that the messages encrypted in the remaining ciphertexts stay
hidden. Formalizing this requires some care and we naturally adapt the simulation-based definition
of selective security from the public-key setting. We show how to construct such selectively secure
symmetric-key encryption from one-way functions via our constructions of T-ALBOs/PEFs.

Application: CCA Encryption from Injective Trapdoor Functions The recent work
of [HKW20] gave a black-box construction of CCA-secure public-key encryption from any injective
trapdoor function. In this work, we give a completely different construction using targeted all-
injective-but-one functions (T-AIBOs). As our final result, we get CCA-secure public-key encryp-
tion from any injective trapdoor function with a very high (strongly exponential) level of security
and an injective pseudorandom generator. While our end-result is strictly worse than [HKW20]
in terms of the assumptions, our construction is conceptually simple and we hope it may point to
further applications and/or improvements.

1.2 Our Techniques

Basic Construction. Our basic construction of targeted lossy functions (TLFs) with lossiness
` = 1 is extremely simple. Let G : {0, 1}λ → {0, 1}3λ+1 be an injective pseudorandom generator
(PRG), where λ is the security parameter. LetH = {h : {0, 1}3λ+1 → {0, 1}3λ} be a universal hash
function family that compresses the input by 1 bit. We define the function family Ffk : {0, 1}λ →
{0, 1}3λ via Ffk(x) = h(G(x)), where fk = h ∈ H.

The above parameters ensure that if we choose fk = h randomly, then the function Ffk is
injective with overwhelming probability. In particular, for any x0 6= x1 ∈ {0, 1}λ, the probability
that G(x0) and G(x1) are a collision on h is 2−3λ. By taking a union bound over all such pairs
x0, x1, the probability of there being any collision is at most 2−λ.

For the lossy mode of the function, we’re given some random target that we denote by x∗0. We
choose an additional random input x∗1 and “program” the hash function h so that the values G(x∗0)
and G(x∗1) collide, which ensures that Ffk(x∗0) = Ffk(x∗1). Since x∗0 and x∗1 are treated symmetrically,
the tuple (fk, y = Ffk(x∗0) = Ffk(x∗1)) does not disambiguate between them, and hence preserves at
least ` = 1 bit of entropy in the target.

We can ensure that programming h with a collision in lossy mode is computationally indistin-
guishable from choosing a random h in injective mode, even given the target x∗0. For concreteness,
we consider the specific universal hash function ha(x) = chop(a · x) that performs a field multipli-
cation over F23λ+1 and chops off the least significant bit. Using the standard representation of field
elements, this implies that for all y we have chop(y) = chop(y + 1).5 In that case, programming
h to ensure G(x∗0) collides with G(x∗1) means choosing a = (G(x∗0) − G(x∗1))−1. But, even if we’re
given the target x∗0, the value a = (G(x∗0) − G(x∗1))−1 is indistinguishable from uniform by the
pseudorandomness of G(x∗1). Therefore the lossy mode of choosing a for a target x∗0 is indistin-
guishable from the injective mode of choosing a uniformly at random. The above summarizes the
entire construction and proof of security, highlighting its simplicity!

5The addition here is over F23λ+1 which is of characteristic 2.

6



If we don’t have an injective PRG, the same construction above already achieves a relaxed
form of injectivity. Namely, the injective mode of the function uniquely determines the property
P (x) = G(x), while the lossy mode of the function loses 1-bit of information about the same
property P (x∗) = G(x∗) for the target x∗.

The above only achieves lossiness of 1 bit, but can amplify the lossiness arbitrarily via parallel
repetition. Given a TLF Ffk with 1 bit of lossiness, we define F ′fk′(x1, . . . , x`) = Ffk1(x1)|| · · · ||Ffk`(x`)
for fk′ = (fk1, . . . , fk`) to get ` bits of lossiness. While the lossiness amount can be made arbitrarily
large, the lossiness rate (defined as the ratio of the lossiness ` to the input size) is stuck at 1

λ and
is not improved by parallel repetition.6

Targeted All-Injective-But-One Functions (T-AIBOs). We can also easily extend the basic
construction to get a T-AIBO. For branches tag ∈ {0, 1}t, we need to define a family of functions
Ffk,tag(·) such that, for a special branch tag∗, the function Ffk,tag∗ is lossy and for all other branches
it is injective. We can achieve this generically from any TLF without branches where the injective
function key fk is uniformly random, as is the case in our basic construction. We simply set fk = h
to be a pairwise-independent hash function and then apply it to the value tag to derive a function
key f̂k = h(tag) for the basic TLF; the output of Ffk,tag(x) is then set to Ff̂k(x). We program the
hash so that the special branch tag∗ maps to a lossy function key f̂k∗ for the target value x∗. The
output of the hash on any other tag 6= tag∗ is random and independent, and therefore the resulting
TLF function key f̂k is injective with overwhelming probability.

Targeted All-Lossy-But-One Functions (T-ALBOs). Getting T-ALBOs is more involved.
Recall that we need a family of functions Ffk,tag(·) such that there is a special branch tag∗ on which
the function is injective and, on all other branches tag 6= tag∗, it is cumulatively targeted-lossy for
some target x∗, meaning that the entire collection of outputs on all the lossy tags (Ffk,tag(x∗))tag 6=tag∗

must lose `-bits of information about x∗. We start with an approach that was originally proposed by
[BHK11], and later abstracted more explicitly in [DVW20], as a way of converting lossy (trapdoor)
functions into all-lossy-but-one (trapdoor) functions in the non-targeted setting. We first describe
this approach and then show how to adapt it to the targeted setting.

The basic idea of [BHK11,DVW20] is to rely on function composition. As a first step, assume
we have a lossy (trapdoor) function Ffk where both the domain and the range are {0, 1}n, and
in particular are the same. We can use it to construct an all-lossy-but-one (trapdoor) function
F fk,tag with tags in {0, 1}t. We define the function key fk = ((fk0

1, fk1
1), . . . , (fk0

t , fk1
t )) to consist of

2t function keys for the underlying lossy function and we define

F fk,tag(x) = (Ffktagt
t
◦ Ffktagt−1

t−1
◦ · · · ◦ Ffktag1

1
)(x)

where tagi denotes the i’th bit of tag. We set the t function keys fktag∗i
i corresponding to the

injective branch tag∗ to be injective and the other t function keys fk1−tag∗i
i to be lossy. Since the

6We could slightly improve the lossiness rate of the basic construction to O(log(λ))/λ by using a t = poly(λ)-wise
independent hash function and programming it to have t collisions instead of just 1 collision. This would come at
the cost of a larger function key fk. This slight improvement in lossiness rate would only be of interest if we were to
consider exact security. Otherwise, asymptotic polynomial/negligible security is too coarse-grained to capture this
improvement since it does not even distinguish between λ and λε for ε > 0; in other words, in the asymptotic setting
we can anyway “cheat” and make the rate as high 1/λε by changing the security parameter to λε and weakening
exact security accordingly.
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composition of injective functions is injective, it holds that Ffk,tag∗ is an injective function. On the
other hand, for any lossy branch tag 6= tag∗, there exists some i such that tagi 6= tag∗i and therefore
one of the functions Ffktagi

i
applied during the computation of Ffk,tag(x) will be lossy and lose ` bits

of information about its input, which is the same as losing ` bits of information about x since its
input is a permutation of x. This shows that for each lossy branch tag 6= tag∗, the function Ffk,tag
is individually lossy. But we can even show that the lossy branches are cumulatively lossy. This
is because the only information revealed about x by all the 2t − 1 lossy branches cumulatively,
(Ffk,tag(x∗))tag 6=tag∗ , can be deduced from the t values one gets by applying the first i− 1 injective
functions followed by a lossy one in position i, for i = 1, . . . , t. Each such output reveals at most
n− ` bits of information about x and hence in they reveal at most t(n− `) bits in total. This gives
lossiness `′ = n− t(n− `), which can be large if ` is very close to n and t is small relative to n; e.g,
if ` = n(1 − o(1)) and t = o(n) then `′ = (1 − o(1))n. Indeed, one can get such parameters from
DDH.

Unfortunately, there are several issues with applying the above approach in our case. Firstly,
our basic TLF does not have the same domain and range: it maps an input in {0, 1}λ to an output in
{0, 1}3λ. This makes it difficult to even syntactically rely on the above approach. Fortunately, this
is relatively easy to fix. We can redefine our basic TLF with modified parameters Ffk : {0, 1}3λ →
{0, 1}3λ via Ffk(x) = h(G(x)) where now we have x ∈ {0, 1}3λ, the injective PRG is of the form
G : {0, 1}3λ → {0, 1}3λ+1, and the universal hash functions are of the form h : {0, 1}3λ+1 →
{0, 1}3λ. This lets us syntactically use Ffk in the above construction to define a family with branches.
Unfortunately, now Ffk is no longer injective when fk is chosen in “injective mode”. However, we
can regain injectivity by first pre-processing a smaller input x ∈ {0, 1}λ via an injective PRG
G′ : {0, 1}λ → {0, 1}3λ. We define the overall function with branches F fk,tag : {0, 1}λ → {0, 1}3λ
via:

F fk,tag(x) = (Ffktagt
t
◦ Ffktagt−1

t−1
◦ · · · ◦ Ffktag1

1
)(G′(x)).

This preserves injectivity on the branch tag∗ since, with overwhelming probability, each function
component F

fk
tag∗
i

i

is injective over the domain of inputs (F
fk

tag∗
i−1

i

◦ · · · ◦ F
fk

tag∗1
1

)(G′(x)) of size 2λ.

For targeted lossiness, we can now chose each of the targeted lossy keys fk1−tag∗i
i with the target

x∗[i] = (F
fk

tag∗
i−1

i

◦· · ·◦F
fk

tag∗1
1

)(G′(x∗)). This is enough to show that each lossy branch is individually

targeted-lossy. Unfortunately, we don’t get cumulative lossiness. Recall that the argument we
employed in the previous paragraph only gave cumulative lossiness `′ = n − t(n − `), which was
only meaningful when the initial lossiness ` was a large fraction of the domain size n. But in our
case ` = 1 and hence the above does not give us any meaningful bound on `′, even for tag size
t = 2.

To solve the above issue, we need to control the lossiness more carefully to ensure that the
leakages from different lossy tags don’t add up. We do so by going under the hood of our basic
TLF construction. We set x∗0 = x∗ to be the target and choose a uniformly random and independent
x∗1. We then choose all the lossy function keys fk1−tag∗i

i to ensure that the two values x∗0, x∗1 collide on
every lossy branch. We can do so by programming the universal hash function in the ith lossy key
to ensure that it has a collision on G(x∗0[i]), G(x∗1[i]) where x∗b [i] = (F

fk
tag∗
i−1

i

◦ · · · ◦ F
fk

tag∗1
1

)(G′(x∗b)).

This guarantees that F
fk

1−tag∗
i

i

(x∗0[i]) = F
fk

1−tag∗
i

i

(x∗1[i]) and so x∗0 and x∗1 collide on every lossy branch.
While this ensures cumulative lossiness, we now lose indistinguishability. The reason is that the
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randomness of G(x∗1[i]) is used twice: once to define the lossy key fk1−tag∗i
i , and once to define

x∗1[i+ 1], which is used to define the lossy key fk1−tag∗i+1
i+1 . Since we’re reusing the same randomness,

the lossy keys for different values i will appear correlated and can then be distinguished from
injective keys. We can fix this issue by using two different PRGs G0 and G1 for the 0 functions Ffk0

i

and the 1 functions Ffk1
i

respectively. We need G0, G1 to each be injective and also to be mutually
pseudorandom so that, for a random x the values G0(x), G1(x) look like random and independent
values.7 With this modification, we preserve indistinguishability. This is because, the lossy function
key fk1−tag∗i

i now only relies on G1−tag∗(x∗1[i]) while the value x∗1[i+ 1] used to define fk1−tag∗i+1
i+1 only

relies on Gtag∗(x∗1[i]), and hence we can argue that the two values look random and independent.

T-ALBO with Relaxed Injectivity. We can also get a T-ALBO with relaxed injectivity by
using the same construction as above with standard PRGs rather than injective PRGs, and therefore
from one-way functions. The observation is that, when we program the lossy mode to ensure that
the target x∗ = x∗0 collides with some random x∗1 on every lossy tag, it’s very unlikely that x∗0 and
x∗1 would collide on the injective tag, even when the PRG is not injective. Therefore, although
the injective output Ffk,tag∗(x∗) may not uniquely determine x∗, we ensure that Ffk,tag∗(x∗) has
1-bit of entropy even given (Ffk,tag(x∗))tag 6=tag∗ . In other words, the injective mode of the function
reveals at least 1 bit of information about x∗ that was lost by all the lossy evaluations on x∗. In
fact, we can even ensure that the above holds if we shorten the output size of the function to just
1 bit (in which case, the function certainly can’t be injective). We do so by applying a universal
hash function with 1-bit output at the end, and programming it to ensure that Ffk,tag∗(x∗0) and
Ffk,tag∗(x∗1) hash to different bits. This ensures 1 bit of entropy in a 1 bit output, and therefore the
output of the injective branch is uniformly random, even given the outputs of all the lossy branches.
We can amplify from 1 bit to many bits via parallel repetition.

Applications of T-ALBOs. We notice that T-ALBOs with relaxed injectivity directly give
us pseudo-entropy functions, just by relabeling the components. We define the secret key k of
the pseudo-entropy function as k = (fk, s) to consist of a function key fk for a T-ALBO and a
uniformly random input s for it. We then define the pseudo-entropy function fk(x) = Ffk,tag=x(s)
which interprets its input x as a branch and evaluates the T-ALBO on s. For any input x∗ chosen
a-priori, we can choose k = (fk, s) by selecting a random s and choosing fk with the injective branch
x∗ and the target s. This guarantees the properties of a pseudo-entropy function: the value k chosen
this way is indistinguishable from an honestly chosen k that is independent of x∗, but ensures that
fk(x∗) has ` bits of statistical entropy even given fk(x) for all x 6= x∗. This shows that T-ALBOs
directly give pseudo-entropy functions. In fact, this gives a pseudo-entropy function where the key
k consists of a uniformly random secret component s and a public but carefully chosen component
fk defined in terms of s and the point x∗ on which we want to ensure statistical entropy. Conversely,
a pseudo-entropy function of this form also gives a T-ALBO. By using a T-ALBO where lossiness
` is equal to the output size (as we showed can be done above), we can even ensure that fk(x∗) is
uniformly random given fk(x) for all x 6= x∗.

Our applications to leakage-resilient MACs, leakage-resilient symmetric-key encryption, and ex-
tractors for extractor-dependent sources follow as interesting applications of pseudo-entropy func-
tions.

7Equivalently, we can think of G0(x), G1(x) as the left/right halves of a single PRG G(x).
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For selective-opening security, we notice that our pseudo-entropy function has an additional
feature. Not only can we ensure that fk(x∗) is uniformly random given fk(x) for all x 6= x∗, but
for any output y we can even efficiently find a key ky such that fky(x∗) = y and fky(x) = fk(x) for
all x 6= x∗. Intuitively, this additional feature gives us the ability to efficiently “equivocate”, which
is used to get selective-opening security. In particular, a simulator can efficiently find a key ky to
open a challenge ciphertext to any value it wants, and ky looks consistent even to an adversary
that got access to a CPA oracle.

Application of T-AIBOs to CCA Security. We also give an application of T-AIBOs to
CCA-secure encryption from any trapdoor function with a sufficient high level of security. We
describe a simplified version of this result, and the main body gives a more general treatment. Let
Ffk,tag be a T-AIBO with λ-bit input and ` = 1 bits of lossiness, as we constructed from injective
pseudorandom generators. Let fpk be a family of trapdoor functions (not necessarily permutations)
with input length n = λ3. Our CCA encryption public key consists of the pair (pk, fk) and the
secret key is the trapdoor of the trapdoor function. The encryption procedure selects a random
r ∈ {0, 1}n and parses it as r = (r1, . . . , rd) with d = λ2 and ri ∈ {0, 1}λ. It also selects a one-time
signature key pair (vk, sk). It computes y = fpk(r) and y1 = Ffk,vk(r1), . . . , yλ2 = Ffk,vk(rd) then
uses a Goldreich-Levin hardcore bit of r to one-time pad the message and signs everything under
vk. The decryption procedure checks the signature, inverts y to recover r and checks that y1, . . . , yd
were computed correctly: if so it recovers the hardcore bit and decrypts the message, else it rejects.

To prove CCA security, we select fk to be lossy on the branch tag = vk and the target value
r that correspond to the challenge ciphertext. We can then simulate the decryption procedure
without knowing the trapdoor td by brute-force inverting all the the values yi = Ffk,vk(ri) in Õ(2λ)
time. In the challenge ciphertext, the value r = (r1, . . . , rd) has d = λ2 bits of entropy even given
y1, . . . , yd. We argue that this makes it hard to recover r even given the trapdoor function output
fpk(r) and the ability to run in Õ(2λ) time. We show that this follows from very strong exponential
hardness of the trapdoor function: we need to assume that for input length n = λ3 no adversary
running in time Õ(2λ) can invert the function with better than 2λ2

2λ3 probability. While this is
a strong assumption, note that the trivial attack that tries 2λ random inputs only has success
probability 2λ

2λ3 and generic non-uniform attacks [DGK17] can’t do better than 2Õ(λ)

2λ3 .

1.3 Relation to Distributed Point Functions

We observe an interesting connection between T-ALBOs (with relaxed injectivity), pseudo-entropy
functions, and distributed-point functions (DPFs) [GI14,BGI15]. In fact, even though the notions
look very different and were introduced with different goals in mind, they are essentially equivalent.
We already discussed the connection between T-ALBOs and pseudo-entropy functions, and so we
now show the connection to DPFs.

Distributed point functions were defined in the context of 2-server private information retrieval
(PIR). They consist of a function family fk : [N ]→ {0, 1}. Given some target x∗ ∈ [N ], it should
be possible to choose two keys k0, k1 such that fk0(x∗) 6= fk1(x∗) differ on the target point, but
for all other points x 6= x∗ they are the same fk0(x∗) = fk1(x∗). Each of the keys k0, k1 should
individually computationally hide the value x∗. This gives 2-server PIR. When a client wants to
retrieve a value DB[x∗] at the location x∗ ∈ [N ] of a database DB ∈ {0, 1}N , it chooses the two keys
k0, k1 using a target x∗ and sends kb to server b. Each server b computes yb = ⊕

x∈[N ] fkb(x) ·DB[x]
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and the client computes y0 ⊕ y1 = DB[x∗]. Neither server individually learns anything about the
location x∗ by the hiding property of the DPF.

A pseudo-entropy function with 1-bit output and 1-bit entropy almost already gives a DPF.
If we select the key k to preserve entropy on x∗, then fk(x∗) has 1 bit of entropy even given
fk(x) for all x 6= x∗. That means that there must be some key k′ such that fk′(x∗) 6= fk(x∗) but
fk′(x) = fk(x) for all x 6= x∗. We can define k0 = k and k1 = k′ to get the two DPF keys for
the point x∗. The only difficulty is ensuring that we can kind k′ efficiently. Recall that in our
construction of pseudo-entropy functions for T-ALBOs, we set k = (fk, s) where fk is a function
key of a T-ALBO with the “injective” branch x∗ and the target input s. When we choose fk, our
T-ALBO construction in turn sets s0 = s, picks a random s1 and ensures that the function outputs
collide on s0, s1 for all branches x 6= x∗ but differ on the branch x∗. Therefore, we can efficiently
set k0 = (fk, s0) and k1 = (fk, s1).

Interestingly, although our construction of T-ALBOs was initially inspired by the works of
[BHK11, DVW20], we observe in retrospect that it is very similar to the construction of DPFs
in [BGI15]. Indeed the function composition construction of T-ALBOs using two PRGs G0, G1 is
similar to the GGM construction of PRFs from PRGs [GGM86], and the use of hash functions h is
similar to the use of “correction words” in the adaptation of GGM to DPFs in [BGI15].

We hope that the connections between all these notions help foster a better understanding of
each of them. The fact that completely different motivations and construction approaches surrep-
titiously converged to yield related notions and constructions should perhaps be viewed as a good
indication of just how fundamental these ideas are.

2 Preliminaries

Basic Notation. For an integer N , we let [N ] := {1, 2, . . . , N}. For a set S we let x← S denote
sampling x uniformly at random from S. For a distribution S we let x ← S denote sampling x
according to the distribution. We will denote the security parameter by λ. We say a function
f(λ) is negligible, denoted f(λ) = negl(λ), if f(λ) = O(λ−c) for every constant c > 0. A function
is f(λ) is polynomial, denoted f(λ) = poly(λ), if f(λ) = O(λc) for some constant c > 0. We
say that an event occurs with overwhelming probability if it holds with probability 1 − negl(λ).
For a randomized algorithm A, we will sometimes explicitly denote the randomness coins it uses,
writing A(x; coins). We will write D1

c≈ D2 if the (ensembles of) distrubtions D1 and D2 are
computationally indistinguishable.

Information Theory. For two random variables X,Y with support supp(X) and supp(Y ) re-
spectively, we define their statistical distance SD(X,Y ) as

SD(X,Y ) :=
∑

u∈supp(X)∪supp(Y )

1
2 |Pr[X = u]− Pr[Y = u]|.

Two ensembles of random variablesX = {Xλ}λ, Y = {Yλ}λ are statistically close if SD(Xλ, Yλ) =
negl(λ).

The min-entropy H∞(X) of a random variable X is defined as

H∞(X) := − log( max
x∈supp(X)

Pr[X = x]).
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Following Dodis et al. [DORS08], we define the (average) conditional min-entropy of X given Y
as: H∞(X|Y ) = − log

(
Ey←Y

[
2−H∞(X|Y=y)

])
. Note that H∞(X|Y ) = k iff the optimal strategy

for guessing X given Y succeeds with probability 2−k.

3 Definitions

3.1 Targeted Lossy Functions (TLFs)

We first define our basic notion of targeted lossy functions (TLF).

Definition 3.1 (Targeted Lossy Functions). A targeted lossy function (TLF) function family with
input length n = n(λ), output length m ≥ n and lossiness parameter ` = `(λ) consists of PPT
algorithms (InjectiveGen, LossyGen, F ) with the following syntax:

• fk← InjectiveGen(1λ): generates a function key fk.

• fk← LossyGen(1λ, x∗): on input a target value x∗ ∈ {0, 1}n, generates a function key fk.

• y = Ffk(x): a deterministic algorithm which, on input fk along with a value x ∈ {0, 1}n,
outputs y ∈ {0, 1}m.

We require the following properties:

Injectivity: With overwhelming probability over the choice of fk ← InjectiveGen(1λ), the function
Ffk is injective over its domain {0, 1}n.

`-Lossiness: For random variables x∗ ← {0, 1}n, fk← LossyGen(1λ, x∗), we have

H∞(x∗ | fk, Ffk(x∗)) ≥ `.

Indistinguishability: For all x∗ ∈ {0, 1}n, we have the computational indistinguishability

(x∗, fkinj)
c≈ (x∗, fkloss)

where fkinj ← InjectiveGen(1λ) and fkloss ← LossyGen(1λ, x∗).

Relaxing Injectivity. We can also define a variant of TLFs with relaxed injectivity, where we
require the injective mode to only uniquely determine some property P (x) while lossy mode loses
`-bits of information on P (x∗) for the target x∗. In particular, we require that there exists some
function P : {0, 1}∗ → {0, 1}∗ for which the following holds:

• Relaxed Injectivity: With overwhelming probability over the choice of fk ← InjectiveGen(1λ)
it holds that for all x, x′ ∈ {0, 1}n if Ffk(x) = Ffk(x′) then P (x) = P (x′).

• `-Lossiness: For random variables x∗ ← {0, 1}n, fk← LossyGen(1λ, x∗), we have

H∞(P (x∗) | fk, Ffk(x∗)) ≥ `.
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3.2 Targeted All-Lossy-But-One Functions (T-ALBO)

Next, we define a tagged version of TLFs, that we name targeted all-lossy-but-one functions (T-
ALBO).
Definition 3.2 (T-ALBO). A targeted all-lossy-but-one (T-ALBO) function family with input
length n = n(λ), output length m ≥ n, tag length t = t(λ) and lossiness parameter ` = `(λ),
consists of PPT algorithms (InjectiveGen, LossyGen, F ) with the following syntax:

• fk← InjectiveGen(1λ): generates a function key fk.

• fk← LossyGen(1λ, tag∗, x∗): on input tag∗ ∈ {0, 1}t, x∗ ∈ {0, 1}n, generates a function key fk.

• y = Ffk,tag(x): a deterministic algorithm, which, on input fk, tag along with a value x ∈
{0, 1}n, outputs y ∈ {0, 1}m.

We require the following properties:
Injectivity: With overwhelming probability over the choice of fk← InjectiveGen(1λ), for all tag ∈

{0, 1}t, the function Ffk,tag is injective over the domain {0, 1}n. Moreover, for any tag∗, x∗,
with overwhelming probability over the choice of fk ← LossyGen(1λ, tag∗, x∗), the function
Ffk,tag∗ on tag tag∗ is injective.

`-Lossiness: For all tag∗ ∈ {0, 1}t and random variables x∗ ← {0, 1}n, fk← LossyGen(1λ, tag∗, x∗),
we have H∞(x∗ | fk, (Ffk,tag(x∗))tag 6=tag∗) ≥ `. We use (Ffk,tag(x∗))tag 6=tag∗ to denote the
(ordered) list of outputs of the function Ffk,tag(x∗) on all 2t− 1 possible lossy tags tag 6= tag∗.

Indistinguishability: For all tag∗ ∈ {0, 1}t and all x∗ ∈ {0, 1}n, we have

(tag∗, x∗, fkinj)
c≈ (tag∗, x∗, fkloss)

where fkinj ← InjectiveGen(1λ) and fkloss ← LossyGen(1λ, tag∗, x∗).

Relaxing Injectivity: Entropy-Preserving T-ALBOs. We can also relax injectivity in much
the same way as we did for TLFs, by requiring that injective mode uniquely determines some
property P (x) while lossy mode loses information on P (x∗). Here, we can even allow the property
P to depend on fk, tag∗. In this case, without loss of generality, we can set P (x) = Ffk,tag∗(x) to be
the output on the “injective” tag, and therefore it tautologically holds that Ffk,tag∗(x) determines
P (x). Hence this notion just requires that seeing the output of the function on input x∗ over
all lossy branches tag 6= tag∗ preserves some entropy of the output Ffk,tag∗(x∗) on the “injective”
branch tag∗. We call this notion entropy preserving. This notion also meaningfully allows us to
make the output much smaller than the input size, and potentially just 1-bit.
Definition 3.3 (Entropy-Preserving T-ALBO.). An entropy-preserving T-ALBO with input length
n = n(λ), output length m = m(λ), tag length t = t(λ) and lossiness parameter ` = `(λ), consists
of algorithms (InjectiveGen, LossyGen, F ). We require that they satisfy the same indistinguishability
property as in Definition 3.2. However, we replace the injectivity and lossiness properties with the
following entropy-preserving property. For any fixed tag∗ ∈ {0, 1}t we have:

H∞(Ffk(tag∗, x∗) | fk, (Ffk,tag(x∗))tag 6=tag∗) ≥ `,
where we define the random variables x∗ ← {0, 1}n, fk← LossyGen(1λ, tag∗, x∗).

We say that (InjectiveGen, LossyGen, F ) is maximally entropy-preserving if ` = m, where m is
the output size of the T-ALBO.
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3.3 Targeted All-Injective-But-One Functions (T-AIBO)

Last, we define another tagged variant of TLFs that we call targeted all-injective-but-one lossy func-
tions (T-AIBO). In a T-AIBO, the branches tag 6= tag∗ are injective, whereas only tag∗ corresponds
to a lossy branch.

Definition 3.4 (T-AIBO). A targeted all-injective-but-one T-AIBO function family with input
length n = n(λ), output length m ≥ n, tag length t = t(λ) and lossiness parameter ` = `(λ),
consists of PPT algorithms (InjectiveGen, LossyGen, F ) with the following syntax:

• fk← InjectiveGen(1λ): generates a function key fk.

• fk← LossyGen(1λ, tag∗, x∗): on input tag∗ ∈ {0, 1}t, x∗ ∈ {0, 1}n, generates a function key fk.

• y = Ffk,tag(x): a deterministic polynomial time algorithm, which, on input fk, tag along with
a value x ∈ {0, 1}n outputs y ∈ {0, 1}m.

We require the following properties:

Injectivity on injective branches: With overwhelming probability over the choice of fk ←
InjectiveGen(1λ), we have that for all tags tag ∈ {0, 1}t, the function Ffk,tag is injective over
the domain {0, 1}n. Moreover, for any tag∗, x∗, with overwhelming probability over fk ←
LossyGen(1λ, tag∗, x∗), we have that for all tags tag 6= tag∗, the function Ffk,tag is injective.

`-Lossiness: For any tag∗ ∈ {0, 1}t and random variables x∗ ← {0, 1}n, fk← LossyGen(1λ, tag∗, x∗),
we have H∞(x∗ | fk, Ffk,tag∗(x∗)) ≥ `.

Indistinguishability: For any tag∗ ∈ {0, 1}t and x∗ ∈ {0, 1}n, we have the computational indis-
tinguishability

(tag∗, x∗, fkinj)
c≈ (tag∗, x∗, fkloss)

where x∗ ← {0, 1}n, fkinj ← InjectiveGen(1λ) and fkloss ← LossyGen(1λ, tag∗, x∗).

We could also relax injectivity as we did for TLFs and T-ALBOs. Since we do not consider this
notion in the paper, we omit it for simplicity.

4 Constructions

In this section we present our constructions of TLFs and its variants. In Section 4.1, we give the
construction of basic TLFs (Theorem 4.1). Then, we show in Section 4.2 our construction of a
T-AIBO (Theorem 4.2). Finally, in Section 4.3, we build both a T-ALBO (Theorem 4.3) and a
maximally entropy-preserving T-ALBO (Theorem 4.4).

4.1 Targeted Lossy Functions

We start with our base construction of TLF. We prove the following:

Theorem 4.1 (TLFs from Injective PRGs). Let ` = `(λ) be a polynomial. Assuming the existence
of injective PRGs, there exists a TLF with input length n = `λ, output length m = 3`λ and lossiness
`.
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Let G : {0, 1}λ → {0, 1}3λ+1 be an injective PRG. Let F = F23λ+1 be the field of size 23λ+1. We
represent elements of F in the standard manner as 3λ+ 1 coefficients of polynomials in F2[X]/(f)
for some appropriate polynomial f , so that adding elements in F can be performed by adding their
coefficients component wise. Throughout this section we will identify {0, 1}3λ+1 with F. For a ∈ F,
represented as a bit string of length 3λ+ 1, define chop(a) as the first 3λ bits of the representation
of a (i.e., the last bit, corresponding to the constant term of the polynomial, is chopped off). Let
e = 1F ∈ F be the field element that has 0s in the first 3λ positions and 1 in the last position. Note
that for all x ∈ F we have chop(x + e) = chop(x), and hence for all x1, x2, chop(x1) = chop(x2) if
and only if x1 = x2 or x1 = x2 + e.

We first construct an LTF (InjectiveGen, LossyGen, F ) with input length n = λ and output length
m = 3λ, and lossiness 1 as follows.

• InjectiveGen(1λ): Sample a← F and output fk = a.

• LossyGen(1λ, x∗): On input x∗ ∈ {0, 1}λ, set x∗0 := x∗ and sample x∗1 ← {0, 1}λ \ {x∗}. Set
a = e · (G(x∗0)−G(x∗1))−1, and output fk = a.

• Ffk(x) = chop(a ·G(x)) ∈ {0, 1}3λ.

Claim 4.1.1. Suppose G : {0, 1}λ → {0, 1}3λ+1 is an injective PRG. Then (InjectiveGen, LossyGen, F )
is a TLF with input length n = λ, output length m = 3λ and lossiness ` = 1.

Proof. Note that in lossy mode, a is well-defined by injectivity of G. We prove injectivity, `-lossiness
and indistinguishability.

Injectivity. Fix any x0 6= x1 ∈ F. By injectivity of G, we have G(x0) 6= G(x1). Therefore,
Ffk(x0) = Ffk(x1) iff chop(a ·G(x0)) = chop(a ·G(x1)), which occurs iff a = e · (G(x0) −G(x1))−1

or a = 0. This happens with probability 2/|F| over the randomness of fk ← InjectiveGen(1λ). By
taking a union bound over all pairs of distinct inputs x0, x1 ∈ {0, 1}λ, we obtain that the probability
over fk← InjectiveGen(1λ) that Ffk is not injective is at most 22λ+1

|F| = 1
2λ .

(` = 1)-Lossiness. Let x∗0 = x∗ ← {0, 1}λ be a random target, and let x∗1 ← {0, 1}λ \ {x∗0}
denotes the random value sampled during the execution of fk ← LossyGen(1λ, x∗0); we will denote
such an execution via fk = LossyGen(1λ, x∗0;x∗1). We think of x∗0, x∗1 as random variables, which in
turn define the random variables fk = LossyGen(1λ, x∗0;x∗1), y = Ffk(x∗0) = Ffk(x∗1). We observe that
the resulting distribution of fk, y does not reveal anything about x∗0, x∗1 beyond the (unordered)
set {x∗0, x∗1}, due to the symmetry of how x∗0, x

∗
1 are treated by LossyGen. In other words, x∗0 →

{x∗0, x∗1} → (fk, y) forms a Markov chain. A data processing inequality gives:

H∞(x∗0 | fk, y) ≥ H∞(x∗0 | {x∗0, x∗1}) ≥ 1,

where the last inequality follows since one cannot predict x∗0 given the (unordered) set {x∗0, x∗1}
with probability better than 1/2. Note that x∗0, x∗1 are uniformly random over {0, 1}λ conditioned
on x∗0 6= x∗1.

Indistinguishability. We define a hybrid experiment where LossyGen is modified as follows:

• ˜LossyGen(1λ, x∗): Set x∗0 := x∗ and select u∗1 ← F. If u∗1 = G(x∗0), output fk = 0. Otherwise
output a = e · (G(x∗0)− u∗1)−1.
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The output of ˜LossyGen is indistinguishable from the output of LossyGen by PRG security of G,
noting that u∗1 = G(x∗0) with negligible probability 1/23λ+1 over the randomness of u∗1 alone.

Moreover, even given x∗, the output of ˜LossyGen is uniformly random in F over the choice of u∗1
alone, and is therefore identically distributed as the output of InjectiveGen.

Amplifying (absolute) lossiness. The construction above only have lossiness 1. We note here
that we can amplify this lossiness, which gives Theorem 4.1.

The idea is that (absolute) lossiness can be amplified by partitioning a (longer) input into blocks
and applying an independent TLF on each chunk. Suppose TLF (InjectiveGen, LossyGen, F ) is a
TLF with input size n, output size m and lossiness `. Let k = k(λ) be a polynomial. The modified
scheme is defined as follows:

• InjectiveGen(1λ): For all i ∈ [k], compute fki ← InjectiveGen(1λ). Output {fki}i∈[k].

• LossyGen(1λ, x∗): On input x∗ ∈ {0, 1}kn, parse x∗ = x1‖ · · · ‖xk ∈ {0, 1}kn where xi ∈ {0, 1}n
for all i ∈ [k]. For all i ∈ [k], compute fki ← LossyGen(1λ, xi). Output {fki}i∈[k].

• F fk(x) : On input x ∈ {0, 1}kn, parse x = x1‖ · · · ‖xk ∈ {0, 1}kn where xi ∈ {0, 1}n for all
i ∈ [k]. For all i ∈ [k], compute yi = Ffki(xi). Output (y1‖ · · · ‖yk).

The resulting scheme is a TLF with input size kn, output size km and lossiness k`. This is at the
cost of making the input longer, and therefore doesn’t affect the lossiness rate. Applying the above
to our construction from Claim 4.1.1, we obtain Theorem 4.1.

Remark: Relaxed Injectivity. If we take our construction of TLFs above but remove the
requirement that the PRG is injective, we get relaxed injectivity with the property P (x) = G(x).
The proof is otherwise identical.

4.2 T-AIBOs

We describe our construction of T-AIBO. We prove the following:

Theorem 4.2 (T-AIBOs from Injective PRGs). Let ` = `(λ) and t = t(λ) be polynomials. Assum-
ing the existence of injective PRGs, there exists a T-AIBO with input length n = `λ, tag length t,
output length m = ` · (3λ+ t) and lossiness `.

We build on our construction of TLF from Section 4.1. Recall that we built our TLF as
Ffk(s) = chop(a · G(s)), where a ∈ F forms the key fk. In order to build a T-AIBO, we now
compute atag = hk(tag) where h is a pairwise independent hash function.

More formally, let t = t(λ) be the tag length. Let n = 3λ+ t+ 1, and let F = F2n . We consider
elements tag ∈ {0, 1}t as elements of F (for instance by considering any injection induced by the
coefficient embedding of F as in Section 4.1, setting the remaining 3λ+ 1 entries as 0), over which
we define the pairwise independent hash function

hu,v(tag) = u · tag + v ∈ F,

where u, v ∈ F. We will use the following useful algorithm related to h:
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• Equivocate(tag, y): on input tag ∈ F and y ∈ F, sample u← F, compute v = y − u · tag, and
output (u, v).

Namely, Equivocate(tag, y) samples a random key (u, v) conditioned on hu,v(tag) = y. Note that
for any fixed tag ∈ F, we have that hu,v(tag) is uniform over F over the randomness of (u, v). As a
result, for all tag ∈ F, we have:(

tag, (u, v)← F× F, y = hu,v(tag)
)
≡
(
tag, (u, v)← Equivocate(tag, y), y ← F

)
(1)

We now describe our first construction of a T-AIBO with lossiness ` = 1. Let t = t(λ) and
n = 3λ+ t+ 1, G : {0, 1}λ → {0, 1}3λ+t+1 be an injective PRG and h be the pairwise independent
hash function from above. We define the following algorithms:

• InjectiveGen(1λ): Sample (u, v)← F× F and set fk = (u, v).

• LossyGen(1λ, tag∗, x∗): Set x∗0 = x∗ and sample x∗1 ← {0, 1}λ \ {x∗0}. Let a = e · (G(x∗0) −
G(x∗1))−1. Compute (u, v)← Equivocate(tag∗, a) and output fk = (u, v).

• Ffk(tag, x): Output chop(hu,v(tag) ·G(x)).

Claim 4.2.1. Suppose G : {0, 1}λ → {0, 1}3λ+t+1 is an injective PRG. Then (InjectiveGen, LossyGen,
F ) is a T-AIBO with input length λ, tag length t, output length 3λ+ t, and lossiness ` = 1.

Proof. We prove injectivity, 1-lossiness and indistinguishability.
Injectivity follows by the same argument as the TLF of Claim 4.1.1. In particular, an identical

argument shows that, by injectivity of G, for any fixed tag ∈ {0, 1}t, the probability that Ffk,tag
is not injective is at most 22λ+1

|F| = 1
2t+λ . An union bound over the 2t possible tags shows that the

probability that Ffk,tag is not injective for some tag is at most 1
2λ .

The proof of 1-lossiness is identical to the proof of Claim 4.1.1. In particular, we define random
variables x∗0 = x∗ ← {0, 1}λ denoting the target, x∗1 ← {0, 1}λ \ {x∗0} denoting the random value
sampled during the execution of fk ← LossyGen(1λ, tag∗, x∗0), and y = Ffk,tag∗(x∗0) = Ffk,tag∗(x∗1).
We observe that the resulting distribution of fk, y does not reveal anything about x∗0, x∗1 beyond
the (unordered) set {x∗0, x∗1}, due to the symmetry of how x∗0, x

∗
1 are treated by LossyGen. In other

words, x∗0 → {x∗0, x∗1} → (fk, y) forms a Markov chain. A data-processing inequality then shows:

H∞(x∗0 | fk, y) ≥ H∞(x∗0 | {x∗0, x∗1}) ≥ 1.

For indistinguishability, we first argue that for any tag∗ ∈ {0, 1}t and any x∗ ∈ {0, 1}n, the
value a sampled during LossyGen(1λ, tag∗, x∗) is computationally indistinguishable from uniformly
random by PRG security of G, over the randomness of x∗1. Then, indistinguishability follows by
Eq. (1).

As for TLFs and T-ALBOs one can amplify lossiness by concatenating T-AIBOs evaluations
on blocks of the input, which gives Theorem 4.2.

Remark 4.1 (Weaker forms of injectivity). For our applications, we only need a weaker form of
injectivity that ensures that any tag ∈ {0, 1}t induces an injective function with overwhelming
probability. This is in contrast to all of the tags being simultaneously injective with overwhelming
probability. This allows to have a slightly more efficient construction, by considering a PRG
G : {0, 1}λ → {0, 1}3λ+1, which in turn gives a T-AIBO with output size 3λ (as opposed to 3λ+ t
where t is the tag space).
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Remark 4.2 (Generic Construction of T-AIBOs from TLFs). In the above, we build a T-AIBO
starting from the particular TLF from Section 4.1. We note that our transformation above can be
made semi-generic, by assuming that the injective function keys fk generated by the InjectiveGen
procedure of the base TLF are (computationally indistinguishable from) uniformly random (as is
the case in our construction). In that case, by mapping branches tag to function keys fk via a
programmable pairwise independent hash function, we generically obtain a T-AIBO from such a
TLF, in the same way as above.

4.3 T-ALBOs

We now describe our construction of T-ALBOs. We prove the following theorems:

Theorem 4.3 (T-ALBOs from Injective PRGs). Let ` = `(λ) and t = t(λ) be any polynomials.
Assuming the existence of injective PRGs, there exists a T-ALBO with input length n = `λ, tag
length t, output length m = ` · (3λ+ t) and lossiness `.

Theorem 4.4 (Entropy-Preserving T-ALBOs from OWFs). Let ` = `(λ) and t = t(λ) be any
polynomials. Assuming the existence of one-way functions, there exists an entropy-preserving T-
ALBO with input length n = `λ, tag length t, output length m = ` and lossiness `. In particular,
such a T-ALBO is maximally entropy preserving.

Again, we build on our construction of TLF from Section 4.1. We refer to our technical overview
for a high level overview of the following construction. We begin with our construction of a standard
T-ALBO (satisfying injectivity) from any injective PRG.

Building blocks. Let n = 3λ + t. Let F = F23λ+t+1 . Let G : {0, 1}n → {0, 1}2(n+1) be a PRG.
We will write G(x) = (G0(x), G1(x)). In particular, G0 and G1 are PRGs with input size n and
output size n + 1; we will furthermore assume that each of the functions G0 and G1 is injective.
We define (InjectiveGen0, LossyGen0, F 0) and (InjectiveGen1, LossyGen1, F 1) as follows:

• InjectiveGenb(1λ): Sample a← F and output fk = a.

• LossyGenb(1λ, x∗, x∗1): On input x∗, x∗1 ∈ {0, 1}n, set x∗0 = x∗. If Gb(x∗0) = Gb(x∗1), output
fk = 0. Otherwise compute a = e · (Gb(x∗0)−Gb(x∗1))−1, and output fk = a.

• F bfk(x) = chop(a ·Gb(x)) ∈ {0, 1}n.

Let G′ : {0, 1}λ → {0, 1}n be an injective PRG.

Construction. We define a T-ALBO (InjectiveGen, LossyGen, F ) as follows.

• InjectiveGen(1λ): For all i ≤ t and b ∈ {0, 1}, sample fkbi ← InjectiveGenb(1λ), and output
fk = {fkbi}i∈[t],b∈{0,1}.

• LossyGen(1λ, tag∗, x∗): Sample x∗1 ← {0, 1}λ \ {x∗}, and set x(0)
0 = G′(x∗), and x(0)

1 = G′(x∗1).
For i = 1 to t, sample

fktag∗i
i ← InjectiveGentag∗i (1λ).
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Then set

x
(i)
0 = F

tag∗i
fk

tag∗
i

i

(x(i−1)
0 ) = F

tag∗i
fk

tag∗
i

i

◦ · · · ◦ F tag∗1
fk

tag∗1
1

(x(0)
0 )

x
(i)
1 = F

tag∗i
fk

tag∗
i

i

(x(i−1)
1 ) = F

tag∗i
fk

tag∗
i

i

◦ · · · ◦ F tag∗1
fk

tag∗1
1

(x(0)
1 ).

Sample
fk1−tag∗i
i ← LossyGen1−tag∗i (1λ, x(i−1)

0 , x
(i−1)
1 ).

The output is
fk = (fk(b)

i )i∈[t],b∈{0,1}.

• F fk,tag(x): Output
y = F

tagt
fktagt
t

◦ · · · ◦ F tag1
fktag1

1
(G′(x)).

Claim 4.4.1. Suppose G0, G1 and G′ are injective PRGs, and G = (G0, G1) is a PRG. Then
(InjectiveGen, LossyGen, F ) is a T-ALBO with input length λ, tag length t, output length 3λ+ t+ 1,
and lossiness 1.

Proof. We first show a useful property of (InjectiveGen0, LossyGen0, F 0) and (InjectiveGen1, LossyGen1,
F 1).

• For all x∗ ∈ {0, 1}n, we have the following computational indistinguishability:

(fk0
inj , F

0
fk0
inj

(x∗1), x∗, fk1
los)

c≈ (fk0
inj , u, x

∗, fk1
inj), (2)

where fk0
inj ← InjectiveGen0(1λ), fk1

inj ← InjectiveGen1(1λ), x∗1 ← {0, 1}n
and fk1

los ← LossyGen1(1λ, tag∗, x∗, x∗1).
Symmetrically, we have:

(fk1
inj , F

1
fk1
inj

(x∗1), x∗, fk0
los)

c≈ (fk1
inj , u, x

∗, fk0
inj), (3)

where fk1
inj ← InjectiveGen1(1λ), fk0

inj ← InjectiveGen0(1λ), x∗1 ← {0, 1}n
and fk0

los ← LossyGen0(1λ, tag∗, x∗, x∗1).

These properties follow by PRG security of G = (G0, G1), so that Ffkbinj
(x∗1) is computationally

indistinguishable from uniformly random over the randomness of Gb(x∗1), while indistinguishability
of fk1−b

inj and fk1−b
los follows over the (independent) randomness of G1−b(x∗1).

We now prove that the construction above is a T-ALBO.

Injectivity. Fix x0 6= x1 ∈ {0, 1}λ. By injectivity of G′, we have G′(x0) 6= G′(x1). Let i ∈ [t]
and b ∈ {0, 1}, and let x(i)

0 6= x
(i)
1 ∈ {0, 1}n. By injectivity of Gb, the probability over fkbi ←

InjectiveGenb(1λ) that F bfkbi (x
(i)
0 ) = F bfkbi

(x(i)
1 ) is 2/|F| (which correspond to either a = e · (Gb(x(i)

0 −

Gb(x(i)
1 ))−1 or a = 0). In particular, for any fixed tag ∈ {0, 1}t, we have, by taking an union bound

over i ∈ [t], that the probability over fk← InjectiveGen(1λ) that F fk,tag(G′(x0)) = F fk,tag(G′(x1)) is
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at most 2t/|F|. Then, by union bound over all tag ∈ {0, 1}t and pairs of input x0 6= x1 ∈ {0, 1}λ,
the probability that there exists a tag tag and two inputs x0 6= x1 such that F fk,tag(G′(x0)) =
F fk,tag(G′(x1)) is at most 2t·2t·22λ

|F| = t
2λ , which is negligible.

An almost identical argument (without the union bound over all tags) shows that the branch
tag∗ is injective in lossy mode.

1-Lossiness. Fix tag∗ ∈ {0, 1}t. Let x∗0 ← {0, 1}λ be the target, and let x∗1 ← {0, 1}λ \ {x∗0} be
the value sampled during fk← LossyGen(1λ, tag∗, x∗0).

First, we claim that, for all tag 6= tag∗, F fk,tag(x∗0) = F fk,tag(x∗1). To see this, fix any tag 6= tag∗,
and let i denote the smallest index in [t] such that tagi 6= tag∗i . Recall that we have

fk1−tag∗i
i ← LossyGen1−tag∗i (1λ, x(i−1)

0 , x
(i−1)
1 ),

and in particular, by construction of LossyGen and F :

F
tagi
fktagi
i

(x(i−1)
0 ) = F

tagi
fktagi
i

(x(i−1)
1 ).

As tagj = tag∗j for all j < i, we have by construction of x(i−1)
0 and x

(i−1)
1 :

yi := F
tagi
fktagi
i

◦ · · · ◦ F tag1
fktag1

1
(G′(x∗0)) = F

tagi
fktagi
i

◦ · · · ◦ F tag1
fktag1

1
(G′(x∗1)),

and in particular

F fk,tag(x∗0) = F
tagt
fk(tagt)
t

◦ · · · ◦ F tagi+1

fk(tagi+1)
i+1

(yi)

= F fk,tag(x∗1)

(where by convention we consider the composition to be empty if i = t).
Then, we observe, similarly to the proof of Claim 4.1.1, that the resulting distribution (fk,

(F fk,tag(x∗))tag 6=tag∗) does not reveal anything about x∗0, x∗1 beyond the (unordered) set {x∗0, x∗1}.
This follows since x∗0, x

∗
1 are treated symmetrically in the generation of fk and the fact that

F fk,tag(x∗0) = F fk,tag(x∗1) for all tag 6= tag∗. In other words, x∗0 → {x∗0, x∗1} → (fk, (F fk,tag(x∗0))tag 6=tag∗)
forms a Markov chain. A data-processing inequality then shows:

H∞(x∗0 | fk, (F fk,tag(x∗0))tag 6=tag∗) ≥ H∞(x∗0 | {x∗0, x∗1}) ≥ 1,

where the last inequality follows since one cannot predict x∗0 given the (unordered) set {x∗0, x∗1}
with probability better than 1/2. Note that x∗0, x∗1 are uniformly random over {0, 1}λ conditioned
on x∗0 6= x∗1.

Indistinguishability. On a high level, x(0)
1 looks pseudorandom by security of G′. Then, we

switch lossy keys to injective keys, one by one, using our special TLF property (Eq. (2), Eq. (3)),
simultaneously switching x(j)

1 to uniform and fk
1−tag∗j
i to injective.

Fix tag∗ ∈ {0, 1}t and x∗ ∈ {0, 1}λ. We define the following hybrids:
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Hybrid H0 : This is the distribution induced by the lossy mode, namely, the output distribution
is:

(tag∗, x∗, fk),

where fk← LossyGen(1λ, tag∗, x∗).

Hybrid H1,j, 0 ≤ j ≤ t : We switch how we generate fk.
For all i ≤ t, sample

fktag∗i
i ← InjectiveGentag∗i (1λ).

Sample x(j)
1 ← {0, 1}n, and set, for all i > j:

x
(i)
1 = F

tag∗i
fk

tag∗
i

i

◦ · · · ◦ F
tag∗j+1

fk
tag∗
j+1

1

(x(j)
1 ),

and set for all i ≥ j + 1:

fk1−tag∗i
i ← LossyGen1−tag∗i (1λ, x(i−1)

0 , x
(i−1)
1 ).

For all i < j, set:
fk1−tag∗i
i ← InjectiveGen1−tag∗i (1λ),

and set if j ≥ 1:
fk

1−tag∗j
j ← InjectiveGen1−tag∗j (1λ).

Output (tag∗, x∗, fk) where
fk = (fkbi)i∈[t],b∈{0,1}.

Note that the distribution output by HybridH2,t is identical to the one output by InjectiveGen(1λ).
Therefore it suffices to prove that the hybrid distributions above are indistinguishable.

Claim 4.4.2. Assuming G′ is a PRG, for all tag∗ ∈ {0, 1}t and all x∗ ∈ {0, 1}n, the distributions

(tag∗, x∗, fk)

generated in Hybrids H0 and H1,0 are computationally indistinguishable.

Proof. The only difference between these two hybrids is how x
(0)
1 is distributed. In H0, it is

computed as G′(x∗1) where x∗1 ← {0, 1}λ, and in H1,0, as uniformly random in {0, 1}n. Indistin-
guishability follows by PRG security of G′.

Claim 4.4.3. For all tag∗ ∈ {0, 1}t, all x∗ ∈ {0, 1}n, and for all j ∈ [t], the distributions

(tag∗, x∗, fk)

generated in Hybrids H1,j−1 and H1,j are computationally indistinguishable.
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Proof. Fix tag∗ ∈ {0, 1}t, x∗ ∈ {0, 1}n, j ∈ [t]. The only differences between hybrids H1,j−1 and
H1,j , are how x

(j)
1 and fk

1−tag∗j
j are generated.

To argue indistinguishability, we use our special joint indistinguishability property of
(InjectiveGen0, LossyGen0, F 0) and (InjectiveGen1, LossyGen1, F 1) (Eq. (2), Eq. (3)).

Suppose tag∗j = 0. We use the output distribution (fk0, u, x∗, fk1) from Eq. (2), setting x∗ =
x

(j−1)
0 = F

tag∗j−1

fk
tag∗
j−1

j−1

◦ · · · ◦ F tag∗1
fk

tag∗1
1

(x(0)
0 ) where x(0)

0 = G′(x∗). We set fk0
j = fk0, x(j)

1 = u and fk1
j = fk1,

where we implicitly set x∗1 from Eq. (2) as x∗1 = x
(j−1)
1 (note that x(j−1)

1 is only used to define x(j)
1

and fk
1−tag∗j
j in H1,j−1, and is not used in H1,j). We compute all the other components as in Hybrid

H1,j .
If the distribution of Eq. (2) comes in lossy mode (meaning that fk0 is in lossy mode), then

we obtain the output distribution of Hybrid H1,j−1. If the distribution comes in injective mode
(meaning that fk0 is in injective mode), then we obtain the output distribution of Hybrid H1,j .

The case tag∗i = 1 is almost identical, where we use Eq. (3) instead of Eq. (2).

This overall shows that for any tag∗ ∈ {0, 1}t and x∗ ∈ {0, 1}λ, the distributions (tag∗, x∗, fk)
induced by Hybrids H0 and H1,t are computationally indistinguishable, which concludes the proof.

Amplifying Lossiness. As in our construction of TLF, the construction above of T-ALBO only
has lossiness 1. We note that we can also amplify lossiness for T-ALBOs, which gives Theorem 4.3.

We now move on to our construction of (maximally) entropy-preserving T-ALBO.

Entropy-Preserving T-ALBOs. Next, we describe how to obtain a (maximally) entropy-
preserving T-ALBOs with output size m. We first start by giving a construction of an entropy-
preserving T-ALBOs with output size 1 and lossiness 1.

Our starting point is our previous construction of a T-ALBO. Let chop : {0, 1}n → {0, 1} be
the function that outputs the last bit of its input. In particular chop(x + e) 6= chop(x) for all
x ∈ {0, 1}n. We slightly modify our previous construction as follows. First, we will further chop
the final output of the previous construction to match the output size m = 1. Second, we slightly
modify the LossyGen algorithm to resample a fresh key if x∗ and x∗1 collide. The reason is that
entropy-preserving would otherwise only hold with overwhelming probability in lossy mode (over
the choice of the function key).

Let (InjectiveGen, LossyGen, F ) denote the T-ALBO of Claim 4.4.1. We define our entropy-
preserving T-ALBO as follows.

• ˜InjectiveGen(1λ): Sample fk← InjectiveGen(1λ). Sample a← F and output (fk, a).

• ˜LossyGen(1λ, tag∗, x∗): Sample fk ← LossyGen(1λ, tag∗, x∗), which also internally samples
x∗1 ← {0, 1}λ.
If F fk,tag∗(x∗) = F fk,tag∗(x∗1), sample b← {0, 1}. If b = 0, output f̃k = (⊥, tag∗, x∗, x∗1), and if
b = 1, output f̃k = (⊥, tag∗, x∗1, x∗).
Otherwise, compute y∗ = F fk,tag∗(x∗) and y1 = F fk,tag∗(x∗1). Set a = e · (y∗ − y1)−1. Output
f̃k = (fk, a).
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• F̃f̃k,tag(x): If f̃k = (⊥, tag∗, x0, x1), output 1 if tag = tag∗ and x = x1, and 0 otherwise.
Otherwise output

y = chop(a · F fk,tag(x)).

Claim 4.4.4. Let (InjectiveGen, LossyGen, F ) be the T-ALBO of Claim 4.4.1. Then ( ˜InjectiveGen,
˜LossyGen, F̃ ) is an entropy-preserving T-AIBO with input length λ, tag length t, output length 1,

and lossiness ` = 1.

We first show that the event F fk,tag∗(x∗) = F fk,tag∗(x∗1) in ˜LossyGen only occurs with negli-
gible probability. Indeed, this occurs only if x∗ = x∗1, or if there exists some i ∈ [t] such that
F

tag∗i
fk

tag∗
i

i

(x(i−1)
0 ) = F

tag∗i
fk

tag∗
i

i

(x(i−1)
1 ) (using the notation of Claim 4.4.1).

If i∗ is the smallest such i, then x(i∗−1)
1 is computationally indistinguishable from freshly uniform

in {0, 1}n even given x∗ and fk (which we showed in the proof of Claim 4.4.1 to argue 1-lossiness).
Therefore F tag∗i

fk
tag∗
i

i

(x(i∗−1)
1 ) is also computationally indistinguishable from uniformly random in {0, 1}n

even given x∗ and fk: this follows by our special properties of F 0 and F 1 (Eq. (2), Eq. (3)), using
x∗1 = x

(i∗−1)
1 . In particular F tag∗i

fk
tag∗
i

i

(x(i−1)
0 ) = F

tag∗i
fk

tag∗
i

i

(x(i−1)
1 ) with at most negligible probability. An

union bound over i ∈ [t] gives that the probability that f̃k = (⊥, tag∗, x0, x1) for some x0, x1 is
negligible.

To argue indistinguishability, we note that the previous argument shows that conditioned on
f̃k 6= (⊥, tag∗, x0, x1), we have that y1 = F fk,tag∗(x∗1), where (fk, a) ← ˜LossyGen(1λ, tag∗, x∗), is
computationally indistinguishable from uniform even given x∗ and fk, and therefore so is a = e·(y∗−
y1)−1. Given that f̃k 6= (⊥, tag∗, x0, x1) only occurs with negligible probability, indistinguishability
then follows by indistinguishability from Claim 4.4.1.

For lossiness, let x∗ = x∗0 ← {0, 1}λ be the target, and let x∗1 ← {0, 1}λ \ {x∗0} be the value sam-
pled during the generation of f̃k. We observe that (f̃k, (F̃f̃k,tag(x∗))tag 6=tag∗) does not reveal anything
about the values x∗0, x∗1 beyond the (unordered) set {x∗0, x∗1}, since they are treated symmetrically
during the generation of f̃k and F̃f̃k,tag(x∗0) = F̃f̃k,tag(x∗1) for all tag 6= tag∗. In other words, we have
a Markov chain

x∗0 → {x∗0, x∗1} → (f̃k, (F̃f̃k,tag(x∗0))tag 6=tag∗).

On the other hand, given f̃k and {x∗0, x∗1}, the value Ff̃k,tag∗(x
∗
0) completely determines x∗0 since

Ff̃k,tag∗(x
∗
0) 6= Ff̃k,tag∗(x

∗
1). Therefore,

H∞(F̃f̃k,tag∗(x
∗
0) | f̃k, (F̃f̃k,tag(x∗0))tag 6=tag∗)

≥ H∞(F̃f̃k,tag∗(x
∗
0) | f̃k, (F̃f̃k,tag(x∗0))tag 6=tag∗ , {x∗0, x∗1})

≥ H∞(x∗0 | f̃k, (F̃f̃k,tag(x∗0))tag 6=tag∗ , {x∗0, x∗1})
≥ H∞(x∗0 | {x∗0, x∗1})
≥ 1.

Note that the only property that used the injectivity of the PRGs in 4.4.1 is the injectivity of
the T-ALBO. As we do not require injectivity for entropy-preserving T-ALBOs (the output size
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being shorter than the input size anyway), we can instantiate the PRGs G and G′ with standard
(non-necessarily injective) PRGs. In particular, we obtain an entropy-preserving T-ALBO from
any one-way function.

Amplifying Lossiness. Again, we can amplify the lossiness ` by concatenating images of the
previous entropy-preserving T-ALBO on blocks of the input, which results in Theorem 4.4.

5 Applications of T-ALBOs

We first recall in Section 5.1 the definition of pseudo-entropy functions (PEF) introduced by
[BHK11]. We note that any entropy-preserving T-ALBO directly gives such a PEF, thus giv-
ing a construction from one-way functions (Theorem 5.2). Then, we describe applications of PEF,
by constructing (1) extractor-dependent extractors (Theorem 5.4), (2) leakage-resilient, determin-
istic MACs (Theorem 5.8), and (3) leakage-resilient, public-coin symmetric encryption schemes
(Theorem 5.9).

5.1 Pseudo-Entropy Functions.

Definition 5.1 (Pseudo-Entropy Functions.). A pseudo-entropy function family with input length
n = n(λ), output length m = m(λ), and lossiness parameter ` = `(λ) consists of the following PPT
algorithms (Gen, LossyGen, f):

• k ← Gen(1λ): generates a key k.

• k ← LossyGen(1λ, x∗): on input x∗ ∈ {0, 1}n, outputs a key k.

• y = fk(x): on input x ∈ {0, 1}n, deterministically outputs y ∈ {0, 1}m.

We require the following properties:

`-Lossiness: For all x∗ ∈ {0, 1}n:

H∞ (fk(x∗)) | (fk(x))x 6=x∗) ≥ `

over the randomness of k ← LossyGen(1λ, x∗). We use (fk(x))x 6=x∗ to denote the (ordered) list of
outputs of the function (fk(x)) on all 2n − 1 possible inputs x 6= x∗.

Indistinguishability: For all x∗ ∈ {0, 1}n:

Gen(1λ) c≈ LossyGen(1λ, x∗).

Next, we show the following:

Theorem 5.2 (PEFs from OWFs). Let ` = `(λ) and t = t(λ) be polynomials. Assuming the
existence of one-way functions, there exists a PEF with input length t, output length `, lossiness `
and key length `λ.

Next, we note that PEFs are directly implied by any T-ALBO.
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Claim 5.2.1. Suppose (InjectiveGen, LossyGen, F ) is an entropy-preserving T-ALBO with input
length n, output length m, tag length t and lossiness parameter `. Then there exists a PEF with
input length t, output length m, key size n and lossiness parameter `.

Proof. Let (InjectiveGen, LossyGen, F ) be such a T-ALBO. We define a PEF (Gen, LossyGen, f) as
follows:

• Gen(1λ): Sample a uniformly random s ∈ {0, 1}n, and computes fk ← InjectiveGen. Output
k = (fk, s).

• LossyGen(1λ, x∗): Sample s∗ ← {0, 1}n, and compute fk ← LossyGen(x∗, s∗), interpreting x∗
as a tag for the T-ALBO and s∗ in its input space. Output k = (fk, s∗).

• fk(x): On input x ∈ {0, 1}t and a key k = (fk, s), output Ffk,x(s) (again interpreting x as a
tag for the T-ALBO, and s as an input to the T-ALBO).

Indistinguishability follows immediately by indistinguishability of the T-ALBO. For lossiness, if
k∗ ← LossyGen(x∗), then

H∞ (fk(x∗)) | {fk(x)}x 6=x∗) = H∞ (Ffk,x∗(s∗)) | (Ffk,x∗(s∗))x 6=x∗)
≥ H∞ (Ffk,x∗(s∗)) | fk , (Ffk,x∗(s∗))x 6=x∗)
≥ `,

where the last equality is due to the entropy-preserving property of the T-ALBO.

Theorem 5.2 follows by combining Claim 5.2.1 with Theorem 4.4.

5.2 Extractors for Extractor-Dependent Sources

We first recall the definition of extractor-dependent source extractors (ED-extractors), defined
in [DVW20]. The following is taken verbatim from [DVW20].

Definition 5.3 (Extractor-Dependent Source Extraction). An extractor for α-entropy extractor-
dependent sources (α-ED-Extractor) consists of two polynomial-time algorithms (SeedGen,EDExt)
with the following syntax:

• seed← SeedGen(1λ) is a randomized algorithm that generates seed.

• EDExt(s, seed) is a deterministic algorithm that takes a sample s ∈ {0, 1}n, together with seed
and outputs a value y ∈ {0, 1}m for some polynomial length parameters n = n(λ),m = m(λ).

Consider an adversarial source/distinguisher pair (D,S) and define the following extraction exper-
iment EDGameD,S(1λ):

• Sample a random bit b← {0, 1} and a random seed← SeedGen(1λ).

• Run (s, aux)← DEDExt(·,seed)(1λ).

• If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.

• Let b′ = S(1λ, seed, aux, r).
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We say that D is an α-legal extractor-dependent source if the following conditions hold:

1. The probability that D queries its oracle on the value x that it outputs is negligible.

2. H∞(X|AUX, SEED) ≥ α(λ), where X,SEED,AUX denotes the joint distribution of the values
x, seed, aux in the above experiment.

An α-ED-Extractor is secure if for all α-legal polynomial-time sources D and all polynomial-time
distinguishers S, the above experiment satisfies∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ = negl(λ).

The rest of the section is dedicated to prove the following theorem:

Theorem 5.4 (ED-Extractors from OWFs). Assuming the existence of one-way functions there
exists an ED-extractor for α-entropy sources with auxiliary information, where α = λΩ(1).

We recall the definition of a 2-source extractor, and a construction due to Raz [Raz05].

Definition 5.5 ((Strong, Average-Case) Two-Source Extractor [CG88]). We say that an efficient
function 2Ext : {0, 1}n × {0, 1}n → {0, 1}m is an (e1, e2, δ)-strong 2-source extractor if for all
random variables (X1, X2, Z) such that X1, X2 are independent conditioned on Z and H∞(X1|Z) ≥
e1, H∞(X2|Z) ≥ e2 we have SD( (Z,X2, 2Ext(X1;X2)) , (Z,X2, Um) ) ≤ δ where Um is a uniformly
string of length m.

Theorem 5.6 ( [Raz05]). For any polynomial input length n = poly(λ), any e1 = λΩ(1) and any
e2 = (1/2 + Ω(1))n, there exist (e1, e2, δ)-extractor with input length n, output length m = λΩ(1)

and error δ = 2−λΩ(1).

Next, we present a construction of an ED-extractor, starting from PEFs. Our construction
essentially just abstracts out the construction of [DVW20], which relied on (non-targeted) all-lossy-
but-one functions, in terms of PEFs. Doing so essentially shows that the construction [DVW20]
only needs a targeted form of all-lossy-but-one functions.

Construction Outline. The basic idea is to set the seed seed = k to consist of a PEF key k
for a PEF fk. The extractor on input x “hashes” x to some much smaller value z and computes
y = fk(z) to be the PEF output. We then think of y as a seed to a standard seeded randomness
extractor and output the extracted randomness r = Ext(x; y). The idea behind the proof of security
is to “guess” the value z that the sample x chosen by the source will hash to and select the PEF
key K to preserve entropy on z. This is indistinguishable even if the adversary sees the seed
later. The above change ensures that y = fk(z) is uniformly random and independent of all the
values yi = fk(zi) that were used to compute prior extractor outputs. Therefore, this essentially
corresponds to using a completely fresh and independent seed y when extracting from the challenge
sample x, and guarantees that the extracted output looks random.

The above relies on hashing, but we can replace the hash by a standard PRF whose key is part
of the seed, and rely on the fact that the source does not see the seed and therefore will not be able
to cause a collision. A bigger issue is that the above argument relies on “guessing” and therefore has
a super-polynomial security loss. This is fixed by using a series of PEFs with progressively larger
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input sizes i = 1, . . . , imax = ω(log λ) and targeting our guessing strategy for a particular input
size i which is just slightly larger than the number of queries q made by the source and therefore
ensures we guess correctly with inverse polynomial security. Doing this correctly, requires a more
careful construction and proof.

Construction. We now describe our construction more formally.
Let imax, jmax = ω(λ), and w = jmaximax(imax + 1)/2. For i ∈ [imax], let (Geni, f i) be a PEF

with input size i and lossiness `. Let F : {0, 1}λ × {0, 1}n → {0, 1}v, G : {0, 1}v → {0, 1}w. Let
2Ext : {0, 1}n × {0, 1}n → {0, 1}m be a strong 2-source extractor. We construct an ED-extractor
(SeedGen,EDExt) as follows:

• SeedGen(1λ): For i ∈ [imax], j ∈ [jmax], set ki,j ← Geni(1λ), K ← {0, 1}λ. Output seed =
({ki,j},K).

• EDExt(s, seed): Compute z = FK(s). Parse G(z) = {xi,j}i∈[imax],j∈[jmax] where xi,j ∈ {0, 1}i
for all i ∈ [imax], j ∈ [jmax]. Compute, for all i ∈ [imax], j ∈ [jmax], yi,j = f iki,j (xi,j), and set
y = ⊕

i,j yi,j . Output 2Ext(x, y).

Theorem 5.7. Let e1 = α − v − 1, e2 = ` − v − 1. Assume 2Ext is a (e1, e2, negl(λ))-extractor,
that F is a PRF, G is a PRG, and the PEFs (Geni, f i) satisfy `-lossiness. Then (SeedGen,EDExt)
is an α-entropy secure ED-extractor.

Proof. For completeness, we describe the hybrid games which we directly adapt from [DVW20],
and highlight any differences that occur.

Let D,S be a source/distinguisher pair. Let q be the number of extractor queries made by D,
and let i∗ = dlog qe+ 1. We consider the following sequence of hybrids.

Hybrid H0. This is the ED-Extractor game with a source/distinguisher D,S. The game proceeds
as follows:

• Sample a random bit b← {0, 1} and a random seed← SeedGen(1λ).

• Run (s, aux)← DEDExt(·,seed)(1λ).

• If b = 0 set r = EDExt(s, seed) else if b = 1 set r ← {0, 1}m.

• Let b′ = S(1λ, seed, aux, r).

Hybrid H1. We change the way b′ is computed. Let x∗i,j ∈ {0, 1} denote the values internally
computed by the call EDExt(s, seed) in the experiment. Let BAD denote the event that, any oracle
call from S to EDExt(·, seed) sampled the internal value xi∗,j = x∗i∗,j for all j ∈ [jmax].

We now set b′ ← {0, 1} if BAD occurs (and no modification otherwise).
Hybrids 0 and 1 are indistinguishable. This is because the probability that BAD occurs is

negligible, by PRF security of F and PRG security of G, and where we crucially use 2i∗ ≥ 2q.
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Hybrid H2. We now sample j∗ ← [jmax] and x∗ ← {0, 1}i∗ in the beginning of the experiment,
where we recall i∗ = i∗ = dlog qe + 1. Let GUESS denote the event that (1) BAD does not occur
and (2) j∗ is the least element in [jmax] such that no oracle call from S to EDExt(·, seed) sampled
the internal value xi∗,j∗ = x∗i∗,j∗ (which is well-defined if BAD does not occur) and (3) x∗ = xi∗,j∗ .

We now set b′ ← {0, 1} if ¬GUESS occurs (and no modification otherwise).
GUESS occurs with probability at least 1

2·q·jmax −negl(λ), and thus any distinguisher in H1 with
advantage Adv induces a distinguisher in H2 with advantage Adv/p−negl(λ), where p = 2 · q · jmax.
Note that we crucially use the fact that GUESS occurring is independent of the view of the adversary.

Hybrid H3. We switch how the seed is generated. After sampling j∗ ← [jmax] and setting
i∗ = dlog qe+ 1 and sampling x∗ ← {0, 1}i∗ , we now generate ki∗,j∗ ← LossyGen(1λ, x∗).

Hybrids 2 and 3 are indistinguishable by security of the PEF.

Hybrid H4. We now sample r ← {0, 1}m regardless of b.
This is indistinguishable by security of 2Ext. The proof is almost identical to the one of [DVW20,

Claims 5.11.1 and 5.11.2]. The only difference is how we argue that Yi∗,j∗ = fk(x∗) has min-entropy
conditioned on L = (fk(x))x 6=x∗ , Z = FK(s) the seed of the PRG G, and E which denotes whether
¬BAD and GUESS hold simultaneously.

We have:

H∞(Yi∗,j∗ |L,Z,E) ≥ H∞(Yi∗,j∗ |L)− v − 1
≥ `− v − 1,

where the first inequality follows from the fact that Z and E have size v and 1 respectively, and
the second from `-lossiness of the PEF.

Wrapping up. We show how to setup the parameters to obtain Theorem 5.4. We can set
α = λΩ(1), n = max(α, λ), imax = jmax = λ.1, v = min{α/2, λ.1}, and use PEFs with input size i,
where i ∈ [imax], and lossiness and output lengths k = ` = n (Theorem 5.2).

This makes use of the Raz 2-source extractor with e1 = α − v − 1 ≥ α/2 − 1 = λΩ(1) and
e2 = `− v − 1 = (1− o(n)) · n, δ = 2−λΩ(1) and output size m = λΩ(1) (Theorem 5.6). This overall
proves Theorem 5.4.

5.3 Deterministic Leakage-Resilient MACs

We note here, as already observed by [BHK11], that PEFs with super-logarithmic lossiness ` directly
give deterministic, leakage-resilient MACs with selective unforgeability security. Leakage resilience
here denotes the fact that the adversary can learn any efficiently computable function of the secret
key, as long as the output size of the function is bounded by some leakage-size parameter L.
Selective unforgeability security means that the adversary chooses the message m∗ on which it
will produce a forgery ahead of time, before seeing the leakage or seeing any authentication tags
for chosen messages. We refer the reader to [HLWW13] for a formal definition of leakage-resilient
MACs.

Theorem 5.8 (Deterministic Leakage-Resilient MACs from OWFs). Let m = poly(λ) be any
message length and t ≥ ω(log λ) be any tag length. Assuming one-way functions, there exists a
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deterministic MAC with message length m and tag length t that satisfies selective unforgeability
even given leakage of size L, as long as t− L = ω(log λ). The key length of the MAC is t · λ.

Note that the amount of tolerated leakage in the above theorem is optimal relative to the tag
size: if t−L = O(log λ) then the adversary can just leak the first L bits of the tag for some message
m∗ and guess the remaining t − L bits with inverse polynomial probability. On the other hand,
the tolerated leakage is not optimal relative to the key size since the ratio of leakage L to key size
is ≤ 1/λ. Under the DDH assumption, [BHK11] shows how to get leakage to key size ratio of
(1− o(1)).

Note that, by using complexity leveraging, one can obtain a fully-secure, leakage-resilient MAC
with the same parameters, if we suppose the underlying PEF is sub-exponentially secure. This, in
turn, can be based on the existence of sub-exponentially secure one-way functions.

We can build the MAC of Theorem 5.8 from any PEF, by viewing the PEF key k as the MAC
key (generated using Gen for the actual scheme) and fk(x) as the MAC of message x. More formally,
if (Gen, LossyGen, f) is a PEF, we define the MAC as follows:

• KeyGen(1λ): Output k ← Gen(1λ);

• Sign(k, x): Output fk(x);

• Verify(k, t, x): Output 1 if t = fk(x), and 0 otherwise.

For security, if k were generated as k ← LossyGen(x∗), then fk(x∗) still would have (at least)
` − L bits of (min-)entropy given the MAC of all other messages x 6= x∗ and any leakage on k
of size L, and would in particular be unpredictable whenever ` − L ≥ ω(log λ). Moreover such a
k is indistinguishable from the MAC key by indistinguishability of the PEF. Note here that we
crucially need the reduction to know the target message x∗ during the key generation, so that
the above only yields a selectively secure MAC, where the adversary declares ahead of time the
message over which he wants to produce a forgery. One can generically achieve full security using
complexity leveraging, thus relying on stronger sub-exponential security of the PEF (which follows
by sub-exponentially secure PRGs).

Theorem 5.8 follows by combining the construction above with Theorem 5.2.

5.4 Leakage-Resilient Symmetric Encryption

Next, we remark that any PEF also yields a leakage-resilient symmetric encryption scheme. In
a leakage-resilient scheme, the adversary can get some leakage of the secret key, potentially after
making some CPA-encryption queries but before seeing the challenge ciphertext. As in the case of
MACs, we assume the leakage consists of an arbitrary efficiently computable function applied to the
secret key, as long as the outut size of the function is at most L bits for some leakage parameter L.
Our scheme is public-coin, meaning that all the internal randomness of the encryption procedure
is explicitly contained in the ciphertext. We refer the reader to [HLWW13] for a formal definition
of leakage-resilient symmetric-key encryption.

Theorem 5.9 (Leakage-Resilient Symmetric Encryption from OWFs). For any polynomial leakage
parameter L = L(λ) and message length m = m(λ), assuming one-way functions exists, there exists
a public-coin, leakage-resilient symmetric encryption scheme with message length m, ciphertext size
m+O(λ), and key size O((L+ λ)λ).
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We recall the definition of a (strong) seeded extractor.

Definition 5.10 (Strong Seeded Extractors). An efficient function Ext : {0, 1}n×{0, 1}d → {0, 1}m
is a strong (k, ε)-extractor if for every (n, k)-source X,

SD((Ud,Ext(X,Ud)), (Ud, Um)) ≤ ε.

Theorem 5.11 ( [GUV07]). For every constant α > 0, and all positive integers n, k and all
ε > 0, there is an explicit construction of a (k, ε)-extractor with input length n, output length
m = (1− α)k −O(logn+ log(1/ε)) and seed length d = O(logn+ log(1/ε)).

Construction. Fix a polynomial L = L(λ) for the amount of tolerated leakage. Let ` = L+ 3λ
and let (Gen, LossyGen, f) be a PEF with input length λ, lossiness parameter `, output size ` and key
length L ·λ. Let Ext be a (2λ,negl(λ))-extractor with input length ` output length λ as guaranteed
by Theorem 5.11, and let G : {0, 1}λ → {0, 1}m be a PRG. The encryption scheme is defined as:

• KeyGen(1λ): Output k ← Gen(1λ),

• Enc(k,msg): Sample a uniform seed for Ext, a uniform PEF input x← {0, 1}λ and output

ct = (seed, x,G(Ext(fk(x); seed))⊕msg),

• Dec(k, ct = (seed, x, y): Output msg = G(Ext(fk(x); seed))⊕ y.

Claim 5.11.1. Assuming the security of the underlying building blocks, the above construction gives
a public-coin, symmetric encryption scheme with message length m and leakage bound L.

Proof. We switch to an indistinguishable hybrid where we select the value x∗ for the challenge
ciphertext at the very beginning and set k ← LossyGen(x∗). This is indistinguishable even given k
in full and therefore certainly given leakage on k. We also choose the values x in all other encryption
queries uniformly at random from {0, 1}n \ {x∗}, which is statistically indistinguishable. Now we
argue that fk(x∗) has (at least) ` − L bits of (min-)entropy conditioned on the outputs of all the
encryption queries and any leakage on k of size L. As a result, Ext(seed, fk(x)) is statistically close
to uniformly random. Therefore, we can rely on PRG security to switch G(Ext(seed, fk(x∗))) in
the challenge ciphertext to a uniformly random value. In this case the adversary does not learn
anything about msg which concludes the proof.

Combining the above with Theorem 5.2 and Theorem 5.11 gives the parameters of Theorem 5.9.

5.5 Symmetric-Key Encryption Secure against Selective Opening Attacks

The goal of this section is to prove the following:

Theorem 5.12 (Selective Opening Security from OWFs). Assuming one-way functions exist, there
exists a symmetric-key encryption scheme that achieves simulation-security against selective open-
ing of keys and randomness (Definition 5.13).

In Section 5.5.1, we recall the notion of security against selective opening attacks, and provide
a simulation-security definition in the context of symmetric-key encryption (Definition 5.13). In
Section 5.5.2, we consider a strengthened version of PEFs featuring some equivocability, and provide
a construction based on one-way functions (Theorem 5.12).
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5.5.1 Selective Opening Security.

We first define selective opening security in the symmetric-key setting. In the public-key encryption
setting, an adversary, given ciphertexts encrypting correlated messages under different public keys,
can adaptively request so-called openings of a subset of these ciphertexts. This allows the adversary
to obtain either the randomness used to encrypt the subset of ciphertexts (sometimes refered to as
sender corruptions) or subset of secret keys allowing to decrypt (sometimes refered to as receiver
corruptions).

In the symmetric-key setting, an adversary receives ciphertexts of correlated messages encrypted
under different secret keys. We focus on the setting where openings correspond to secret keys,
which allow the adversary to decrypt the associated subset of ciphertexts. In fact, we will also
handle randomness opening for free, as our scheme is public-coin, namely, all the randomness of
the encryption is included as part of the ciphertext. In other words, we are able to provide security
against both kinds of openings.

In terms of definitions, there are mainly two ways of formalizing selective opening security, either
through a weaker indistinguishability-based definition, or a stronger simulation-based definition.
The main drawback of the indistinguishability-based definition is that it significantly restricts the
possible correlations of the encrypted messages. Fortunately, we manage to construct the stronger
notion of simulation-based selective opening security against openings of both keys and randomness,
which the notion we focus on in this paper.

One drawback of our simulation-based definition is that we only allow a single opening query
per secret key in the experiment. This is essentially inherent: a secret key sk cannot explain more
than sk ciphertexts to any arbitrary messages, or would otherwise violate entropy lower bounds.

Definition 5.13 (Selective Opening Simulation Security in the Symmetric-Key Setting). Let d =
d(λ) be a polynomial. Let (KeyGen,Enc,Dec) be a symmetric-key encryption scheme. For PPT
algorithms A = (A1,A2,A3) and S = (S1,S2,S3) and P, we consider the following experiments:

Experiment Expreal
Sim−SOA(A, 1λ):

1. Sample, for all i ∈ [d], ski ← KeyGen(1λ).

2. The adversary computes (D, state1)← AEnc(sk1,·),...,Enc(skd,·)
1 (1λ), where D is a distribution over

Mn, where M is the message space of the encryption scheme.

3. Sample −−→msg∗ ← D.

4. Compute for all i ∈ [d]: ct∗i = Enc(ski,msg∗i ; r∗i ) where r∗i are the random coins used to
encrypt.

5. The adversary computes (I, state2)← AEnc(sk1,·),...,Enc(skd,·)
2 (state1, ct∗1, · · · , ct∗d), where I ⊆ [d].

6. The adversary computes output← AEnc(sk1,·),...,Enc(skd,·)
3 (state2, (msg∗i , r∗i , ski)i∈I).

7. The output of the experiment is the bit P(D,−−→msg∗, I, output).

Experiment Expideal
Sim−SOA(S, 1λ):

1. The simulator samples (D, state1)← S1(1λ).

2. Sample −−→msg∗ ← D.
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3. The simulator computes (I, state2)← S2(state1, 1|msg∗1|, . . . , 1|msg∗d|).

4. The simulator computes output← S3(state2, (msg∗i )i∈I).

5. The output of the experiment is the bit P(D,−−→msg∗, I, output).

We say that (KeyGen,Enc,Dec) is Sim− SOA-secure if for all polynomial d = d(λ), for all
PPT adversary A in Expreal

Sim−SOA(A, 1λ) and for all distinguisher P, there exists a simulator D in
Expideal

Sim−SOA(S, 1λ) such that:∣∣∣Pr[Expreal
Sim−SOA(A, 1λ) = 1] Pr[Expideal

Sim−SOA(S, 1λ) = 1]
∣∣∣ ≤ negl(λ).

5.5.2 Equivocal T-ALBOs and PEFs

Our main building block to achieve selective opening security is a stronger notion of PEFs that we
call equivocal PEFs.
Definition 5.14 (Equivocable Pseudo-Entropy Functions). The syntax of an equivocal PEF with
input size n and output size m is similar to the one of a PEF (Definition 5.1), except that
LossyGen(1λ, x∗) outputs (k, state) where state is some secret state. We require an additional PPT
algorithm

• Equivocate(state, y)→ k∗sim: on input y ∈ {0, 1}m (in the output space of the PEF) and state,
output k∗sim (in the key of the PEF).

We require the following properties:

• Consistency: For any x∗ ∈ {0, 1}t, y ∈ {0, 1}m: if (k∗, state) ← LossyGen(1λ, tag∗, x∗) and
k∗sim ← Equivocate(state, y) then fk(x) = fk∗sim(x) for all x 6= x∗. Furthermore, fk∗sim(x∗) = y.

• Indistinguishability: The following distributions are computationally indistinguishable for all
x∗ ∈ {0, 1}n:

(x∗, k) c≈ (x∗, k∗sim),
where x∗ ← {0, 1}n, k ← Gen(1λ), (k∗, state) ← LossyGen(1λ, tag∗, x∗), y ← {0, 1}m, and
k∗sim ← Equivocate(state, y).

Remark 5.1 (Relation with Somewhere Equivocable PRFs ( [HJO+16])). We note, perhaps sur-
prisingly, that the notion of equivocable PEFs exactly matches the notion of (1-point equivocable)
somewhere equivocable PRFs (SEPRFs) [HJO+16]. In fact, [HJO+16] builds SEPRFs from one-
way functions using techniques very similar to the distributed point function of [BGI15], which,
as previously discussed, are connected to our notion of T-ALBO and therefore PEFs. Interest-
ingly, [HJO+16] introduced SEPRFs in a yet different context from our other applications (but not
entirely unrelated to selective opening security), that is, adaptive security of Yao’s garbled circuits.
Indeed, it was used to construct a form of (somewhere) non-committing symmetric-key encryption,
and non-committing public-key encryption is known to imply selective key-opening security in the
public-key setting [HPW15].

Next, we show the following:
Theorem 5.15 (Equivocal PEFs from OWFs). Let ` = `(λ) and t = t(λ) be any polynomials, and
let m ≤ 3λ + t. Assuming the existence of one-way functions, there exists an equivocal PEF with
input length t, output length ` and lossiness `.
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Construction. We build an equivocal PEF by building an associate form of equivocal T-ALBO,
and seeing the resulting T-ALBO as a PEF (as in Claim 5.2.1).

Definition 5.16 (Equivocal T-ALBO). The syntax of an equivocal T-ALBO is similar to the one
of a T-ALBO (Definition 3.2), except that LossyGen(1λ, tag∗, x∗) outputs (fk, state) where state is
some secret state. We require an additional PPT algorithm

• Equivocate(state, y)→ x∗sim: on input y ∈ {0, 1}m (that is, the output space of the T-ALBO)
and state, output x∗sim ∈ {0, 1}n (that is, the input space of the T-ALBO).

We require the following properties:

• Consistency: For any x∗ ∈ {0, 1}n, tag∗ ∈ {0, 1}t, y ∈ {0, 1}m: if (fk, state) ← LossyGen(1λ,
tag∗, x∗) and x∗sim ← Equivocate(state, y) then Ffk,tag(x∗) = Ffk,tag(x∗sim) for all tag 6= tag∗.
Furthermore, Ffk,tag∗(x∗sim) = y.

• Indistinguishability: The following distributions are computationally indistinguishable for all
tag∗ ∈ {0, 1}t:

(tag∗, fkinj , x∗)
c≈ (tag∗, fklos, x∗sim),

where x∗ ← {0, 1}n, fkinj ← InjectiveGen(1λ), (fklos, state) ← LossyGen(1λ, tag∗, x∗), y ←
{0, 1}m, and x∗sim ← Equivocate(state, y).

Our construction of an equivocal T-ALBO with one-bit output follows directly from our con-
struction of entropy-preserving T-ALBO with one-bit output (Theorem 4.4). We only slightly
modify the key generation in lossy mode to output a state, and define our new equivocation algo-
rithm:

• ˜LossyGen(1λ, tag∗, x∗): Sample fk ← LossyGen(1λ, tag∗, x∗), which also internally samples
x∗1 ← {0, 1}λ. If Ffk,tag∗(x∗) = Ffk,tag∗(x∗1), repeat the above. Otherwise, compute y∗ =
F fk,tag∗(x∗) and y1 = F fk,tag∗(x∗1). Set a = e · (y∗ − y1)−1 and state = (tag∗, x∗, x∗1). Output
(fk, a, state).

• Equivocate(state, y): On input state = (tag∗, x∗, x∗1) and y ∈ {0, 1}, compute b0 = F̃fk,tag∗(x∗),
b1 = F̃fk,tag∗(x∗1). If b0 = y, output x∗, and output x∗1 otherwise.

We keep the algorithms ˜InjectiveGen and F̃ unchanged, as in the construction of Claim 4.4.1. Note
that Equivocate is well-defined as b0 6= b1 by construction, so that either y = b0 or y = b1.

Consistency follows by the proof of lossiness of Claim 4.4.1, where we proved that Ffk,tag(x∗) =
Ffk,tag(x∗1) for all tag 6= tag∗. The equality Ffk,tag∗(x∗sim) = y is by construction.

For indistinguishability, we have by indistinguishability of the entropy-preserving T-ALBO that
for all tag∗ ∈ {0, 1}t, (tag∗, fkinj , x∗)

c≈ (tag∗, fklos, x∗) where x∗ ← {0, 1}n, fkinj ← InjectiveGen(1λ),
and fklos ← LossyGen(1λ, tag∗, x∗). Then, we showed in the proof of Claim 4.4.1 that the views
(tag∗, fklos, x∗) and (tag∗, fklos, x∗1) are identically distributed. Therefore, the distribution (tag∗, fk,
x∗sim), where x∗ ← {0, 1}n, (fk, state)← LossyGen(1λ, tag∗, x∗), y ← {0, 1}m, x∗sim ← Equivocate(state,
y), which picks a random element of {x∗, x∗1}, is also indistinguishable from (tag∗, fkinj , x∗).

Finally, output size can be amplified by concatenating the output of many such equivocal T-
ALBOs with 1-bit output. Combined with the above, this gives the following:
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Theorem 5.17. Let k = k(λ) and t = t(λ) be any polynomials. Assuming the existence of one-way
functions, there exists an equivocal T-ALBO with input size {0, 1}kλ, tag space {0, 1}t, and output
space {0, 1}k.

As in Claim 5.2.1, equivocable PEFs can be readily constructed from any equivocable T-ALBO
by defining inputs of the PEF as T-ALBO tags, and PEF keys as T-ALBO inputs. This yields
Theorem 5.15.

5.5.3 Selective Opening Security from Equivocal PEFs

We now describe our construction of a symmetric-key encryption scheme which is secure against
selective opening of keys and randomness, thus proving Theorem 5.12.

Our main idea will be to use an equivocal PEF to construct a symmetric-key encryption scheme
which enjoys a (weak) key-equivocation property. Achieving security against selective opening of
randomness will be for free as our scheme is public-coin.

Construction. Let (Gen, LossyGen, f) be an equivocable PEF (Definition 5.14) with input size n
and output size m. We define the following encryption scheme:

• KeyGen(1λ): Sample k ← Gen(1λ), and output sk = k.

• Enc(sk,msg): Sample x← {0, 1}n and output

ct = (x, fk(x)⊕msg).

• Dec(sk, ct): Parse ct as ct = (x, y), compute

msg = y ⊕ fk(x).

Theorem 5.18. Suppose (Gen, LossyGen, f) is an equivocable PEF (Definition 5.14). Then (KeyGen,
Enc,Dec) is simulation-secure against selective openings of keys and randomness (Definition 5.13).
Proof. Let A = (A1,A2,A3) be any PPT adversary in Expreal

Sim−SOA, and P be a distinguisher. We
define our simulator S = (S1,S2,S3) for Expideal

Sim−SOA as follows.
• S1(1λ): For all i ∈ [d], sample x∗i ← {0, 1}n, and compute (k∗i , statePEFi )← LossyGen(1λ, x∗i ).

Compute (D, stateA1 )← AEnc(sk1,·),...,Enc(skd,·)
1 (1λ) where encryptions queries as answered using

k∗i , as:
Enc(ski,m) = (x, fk∗i (x)⊕msg),

where x← {0, 1}n. Set state1 = (stateA1 , (statePEFi , x∗i )i∈[d]). Output (D, state1).

• S2(state1, 1|msg1|, . . . , 1|msgd|): Compute, for all i ∈ [d]:

ct∗i = (x∗i , y∗i ),

where y∗i ← {0, 1}m.

Compute (I, stateA2 )← AEnc(sk1,·),...,Enc(skd,·)
2 (stateA1 , ct∗1, · · · , ct∗d) where again encryption queries

are answered using k∗i , as:

Enc(ski,m) = (x, fk∗i (x)⊕msg).

Output (I, state2 = (stateA2 , state1)).
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• S3(state2, {msg∗i }i∈I) : Compute, for all i ∈ I, k∗i,sim ← Equivocate(statePEFi , y∗i ⊕msg∗i ).

Compute and output output← AEnc(sk1,·),...,Enc(skd,·)
3 (state2, (msg∗i , x∗i , k∗i,sim)i∈I).

We show that the distribution of Expreal
Sim−SOA(A, 1λ) and Expideal

Sim−SOA(S, 1λ) are computationally
indistinguishable by considering a series of hybrid distributions.

Hybrid H0. This is the distribution induced by Expreal
Sim−SOA(A, 1λ).

Hybrid H1. We make the following changes:

• We change the way the randomness used to compute the challenge ciphertexts is sampled.
We now sample, for all i ∈ [d], x∗i ← {0, 1}n before sampling secret keys.

• We change how we answer encryption queries. We abort the experiment if any encryption
query for secret key i samples x∗i as randomness.

Hybrid H2,i, i ∈ [d]. We make the following changes:

• We change the way the setup of the experiment is performed. We now sample x∗i ← {0, 1}n
and set (k∗i , statePEFi )← LossyGen(1λ, x∗i ). All the encryption queries throughout the exper-
iment are now answered using k∗i .

• We change the way the challenge ciphertext for index i is computed. We now compute

ct∗i = (x∗, y∗i ⊕msg∗i ),

where y∗i ← {0, 1}m.

• We change the way the values r∗i , ski given to A3 are computed. Given (msg∗i )i∈I , we now
compute, if i ∈ I:

k∗i,sim ← Equivocate(statePEFi , y∗i ),

and A3 is now given as input (x∗i , k∗i,sim).

Hybrid H3. We make the following changes:

• We do not abort anymore if an encryption query for secret key i samples x = x∗i .

• We change again the way the challenge ciphertexts are computed. We now compute for all
i ∈ [d]

ct∗i = (x∗, y∗i ),

where y∗i ← {0, 1}m.

• We change the way the values ski given to A3 are computed. Given (msg∗i )i∈I , we now
compute for all i ∈ I:

k∗i,sim ← Equivocate(statePEFi , y∗i ⊕msg∗i ).
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Observe that the view generated by hybrid H3 now corresponds to the view generated by the
simulator S = (S1,S2,S3) in Expideal

Sim−SOA(S, 1λ).
We now prove that the successive hybrids are indistinguishable.

Claim 5.18.1. The views generated in hybrids H0 and H1 are within negligible statistical distance.

Proof. The only difference between the two hybrids occurs whenever an encryption query for index
i samples as randomness x = x∗i . This happens with probability 1/2n, and by union bound over
the polynomial number Q of encryption queries made by A in Expreal

Sim−SOA(A, 1λ), this occurs with
probability at most Q/2n = negl(λ).

Claim 5.18.2. Suppose the equivocal PEF (Gen, LossyGen, f) satisfies consistency and indistin-
guishability. Then, the views generated in hybrids H1 and H2,1 are indistinguishable. Similarly, the
views generated in hybrids H2,i and H2,i+1 are indistinguishable for all i ∈ {1, . . . , d− 1}.

Proof. Let us argue that H1 and H2,1 are indistinguishable: the proof for hybrids H2,i and H2,i+1,
i ∈ [d− 1] is identical.

By indistinguishability of (Gen, LossyGen, f), we have:

(x∗1, k1, fk1(x∗1)) c≈ (x∗, k∗1,sim, y1)

where x∗1 ← {0, 1}n, k1 ← KeyGen(1λ), (k∗1, statePEF1 )← LossyGen(1λ, x∗1) and k∗1,sim ← Equivocate(
statePEF1 , y). This is because one can compute the third element of the distributions (x, k, y) as
y = fk(x), by consistency in lossy mode.

It remains to argue that the distribution of the answers to the encryption queries are indis-
tinguishable. This follows by consistency, which ensures that (x, fk∗1 (x)) is identically distributed
to (x, fk∗1,sim(x)) over the randomness of x ← {0, 1}n, unless x = x∗1, but both hybrids abort the
experiment in that case.

Claim 5.18.3. The views generated in hybrids H2,d and H3 are identically distributed.

Proof. For all i ∈ [d] and all msg∗i ∈ {0, 1}m, the distributions ui ⊕msg∗i and u∗i are uniform over
{0, 1}m over the randomness of u∗i ← {0, 1}m alone. Setting y∗i = ui⊕msg∗i yields hybrid H2,d, and
y∗i = ui hybrid H3.

Finally, the probability of aborting because an encryption query samples x = x∗i is Q/2n (where
Q is the number of encryption queries made by A), which is negligible.

Combined with Theorem 5.15, we obtain Theorem 5.12.

6 Application of T-AIBOs to CCA Security

We prove in this section the following theorem:
Theorem 6.1 (CCA Encryption from Strong Trapdoor Functions). Let d = d(λ), n = n(λ) =
ω(log λ), ρ = d · n, and m = max(n + 1, λ). Let TDF be a trapdoor function with input length
ρ. Suppose that no time T = 2n · poly(λ) adversary can invert TDF with probability 2d

2ρ · ε for any
non-negligible ε. Assume furthermore the existence of an injective PRG G : {0, 1}n → {0, 1}m.

Then there exists a CCA-secure (public-key) encryption scheme.
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In Section 6.1, we recall the notion of encryption schemes with randomness recovery, and show
that a standard construction from trapdoor functions satisfies a special form of leakage resilience
Lemma 6.4. In Section 6.2, we show how to build a public-key CCA-secure encryption scheme
assuming the existence of strongly secure trapdoor functions, proving Theorem 6.1.

6.1 Encryption with Randomness Recovery

Another core component of our construction is a public-key encryption scheme with randomness
recovery, which we base on trapdoor functions (TDF). Informally, such an encryption has two
additional properties over standard public-key encryption, namely (1) the decryption algorithm
also recovers the random coins used to encrypt, and (2) one can alternatively decrypt ciphertexts
using the random coins used to encrypt (as opposed to traditionally with the secret key).

Definition 6.2 (Public-Key Encryption with Randomness Recovery). A public-key encryption
scheme with randomness recovery (KeyGen,Enc,Dec,Recover) has the following syntax:

• (pk, sk)← KeyGen(1λ): On input the security parameter, output a public pk and a secret key
sk.

• ct← Enc(pk,m)): On input a public key pk and a message m, samples some random coins r
and output a ciphertext ct = Enc(pk,m; r).

• (m, r) ← Dec(sk, ct): On input a secret key sk and a ciphertext ct, output a message m and
random coins r.

• m← Recover(pk, ct, r): On input a public key pk, a ciphertext ct and random coins r, output
a message m.

We require the following correctness properties:

Correctness. We require that correctness holds perfectly, except with negligible probability over
(pk, sk)← KeyGen(1λ), namely:

Pr[∃m, r, Dec(sk,Enc(pk,m; r) 6= (m, r) ∨ Recover(pk,Enc(pk,m; r)) 6= m] ≤ negl(λ),

over the probability of (pk, sk)← KeyGen(1λ).

Security. We require standard CPA security.

For our constructions, we will additionally need some form of leakage resilience, namely that
security holds even given some particular leakage on the random coins used to encrypt. Note that
even though one can generically add leakage resilience against randomness leakage by using strong
seeded extractors, this does not preserve randomness recovery.

Instead, we will directly show that the particular construction of public-key encryption with
randomness recovery from trapdoor functions of [HKW20] is resilient against a particular form of
leakage generated by a T-AIBO, assuming strong security of the underlying trapdoor function. We
first recall the definition of an injective trapdoor function.
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Definition 6.3 (Injective Trapdoor Functions (TDF)). An injective trapdoor function family TDF =
(TDF.Setup,TDF.Eval,TDF.Invert) with input length ρ = poly(λ) and output length m = poly(λ)
has the following syntax:

• TDF.Setup(1λ): on input the security parameter, output a public key pk and a secret key sk.

• TDF.Eval(pk, x): a deterministic algorithm, which, on input a public key pk and an input
x ∈ {0, 1}ρ, output y ∈ {0, 1}m.

• TDF.Invert(sk, y): on input a secret key sk and an output y ∈ {0, 1}m, output x ∈ {0, 1}ρ.

We require the following properties:

Correctness. We require that:

Pr[∃x,TDF.Invert(sk,TDF.Eval(pk, x)) 6= x] ≤ negl(λ),

over the randomness of (pk, sk)← TDF.Setup(1λ), namely, that with overwhelming probability over
the setup alone, inversion is perfectly correct (which also implies that TDF.Eval(pk, ·) is injective).

Security. We say that TDF is hard to invert if for any PPT adversary A, there exists a negligible
function ε such that:

Pr[x← A(pk, y)] ≤ ε,

over the randomness of (pk, sk)← TDF.Setup, x← {0, 1}ρ, and where y = TDF.Eval(pk, x).
We will also consider strengthened forms of security where A is allowed to run in specific,

potentially super-polynomial time T , and require his success probability to be at most ε for some
specific function ε.

Next, we recall the construction of a randomness-recoverable PKE from any TDF [HKW20].
Let TDF = (TDF.Setup,TDF.Eval,TDF.Invert) be a trapdoor function with input space {0, 1}ρ.

Let hc denote the Goldreich-Levin hard-core bit [GL89]. We define the following encryption scheme:

• CPA.KeyGen(1λ): Sample (pk, sk) ← TDF.Setup. Sample some randomness coins for hc, and
output (CPA.pk = (pk, coins),CPA.sk = (sk, coins)).

• CPA.Enc(CPA.pk,m ∈ {0, 1}): Sample r ← {0, 1}ρ, and output

ct = (TDF.Eval(pk, r), hc(r; coins)⊕m).

• CPA.Dec(CPA.sk, ct): On input ct = (z, b), compute r = TDF.Invert(sk, z), and output m =
hc(r; coins)⊕ b.

• CPA.Recover(pk, ct, r): On input ct = (z, b), compute z′ = TDF.Eval(pk, r). Abort if z 6= z′.
Otherwise output m = hc(r; coins)⊕ b.

Note that the random coins used by CPA.Enc correspond exactly to a random input to TDF.
Next, we show that this particular encryption scheme satisfies a specific form of leakage-

resilience, provided the trapdoor function TDF is secure enough.
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Lemma 6.4 (Leakage-Resilience of CPA). Let n = n(λ), d = d(λ) and t = t(λ) and ` = `(λ) be
polynomials. Let ρ = d · n. Let TDF = (TDF.Setup,TDF.Eval,TDF.Invert) be a trapdoor function
with input space {0, 1}ρ. Let (InjectiveGen, LossyGen, F ) be the specific T-AIBO of Section 4.2 with
input space {0, 1}n and tag space {0, 1}t and lossiness `.

For all tag∗ ∈ {0, 1}t, consider the two following distributions:(
(fki)i∈[d], pk,TDF.Evalpk(r), (Ffki,tag∗(ri))i∈[d], coins, hc(r; coins)

)(
(fki)i∈[d], pk,TDF.Evalpk(r), (Ffki,tag∗(ri))i∈[d], coins, hc(r; coins)⊕ 1

)
,

where r = (r1‖ . . . , ‖rd) ← {0, 1}ρ, fki ← LossyGen(tag∗, ri), pk ← TDF.Setup, and hc denotes the
Goldreich-Levin hard-core bit [GL89] and coins uniformly sampled randomness for hc.

Suppose that no time T adversary can invert TDF with probability 2`d
2ρ · ε for any non-negligible

ε, and suppose that that the T-AIBO satisfies `-lossiness. Then no time T · poly(λ) adversary can
distinguish the two distributions above with non-negligible success probability.

Proof. Suppose there exists an PPT adversary with runtime T that distinguishes the two distribu-
tions above with non-negligible success probability ε. Then there exists a predictor P with runtime
poly(ρ) · T , which, on input

(
TDF.Evalpk(r), (Ffki,tag∗(r))i∈[d]), outputs r with non-negligible prob-

ability Ω(ε).
Given such a predictor P, we build an inverter for TDF as follows.

• I(TDF.Evalpk(r)): Sample, for i ∈ [d], r∗i ← {0, 1}n, and set

r∗ = P(
(
TDF.Evalpk(r), (Ffki,tag∗(r∗i ))i∈[d]).

Output r∗.

First, for any fixed i ∈ [d], the probability over r∗i ← {0, 1}n that Ffki,tag∗(r∗i ) = Ffki,tag∗(ri) is at
least 2`

2n . This is because in the construction of Theorem 4.2, each output Ffki,tag∗(ri) has at least
2` preimages for all ri ∈ {0, 1}n and all fki ← LossyGen(tag∗, ri).

As a result, the probability that this happens for all i ∈ [d] is at least 2`·d
2n·d = 2`·d

2ρ . In other words,
I correctly guesses all values (Ffki,tag∗(r∗i ))i∈[d]) with probability 2`·d

2ρ , and therefore, by correctness
of P, I correctly outputs r with probability at least 2`·d

2ρ · ε, contradicting the security of TDF.

Remark 6.1. One can interpret Lemma 6.4 as showing that the encryption scheme with ran-
domness recovery CPA of [HKW20] is resilient to some particular form of leakage, namely, leakage
generated by the T-AIBO F of Section 4.2 (in lossy mode). Most notably, we point out that (1)
the leakage is over the encryption randomness, which we can usually fix generically using strong
seeded extractors (but does not work here as it would not preserve randomness recovery) and (2)
it is a particular form of entropy-bounded leakage ( [NS09,DHLW10]) in the sense that the size of
the leakage is quite bigger than the entropy loss, namely, |Ffk,tag(r)| > `. This is as opposed to the
perhaps more common form of bounded-size leakage.

Remark 6.2 (Usage of a Specific T-AIBO). Lemma 6.4 is stated as using the specific leakage
function, defined by the specific T-AIBO of Section 4.2. In fact, the only property we use is that,
for all fixed input, the leakage function can be guessed with slightly better probability than trivial.
As a result, any T-AIBO satisfying this property can be used in Lemma 6.4, and consequently in
our construction Section 6.2.
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Remark 6.3 (Running Time VS Success Probability). Lemma 6.4 and its proof involve algorithms
that have low running time but small success probability, namely, we build a time T ·poly(λ) inverter
with success probability 2`·d

2ρ · ε. We note here that we can also build a time T · 2ρ
2`·d ·poly(λ) inverter

that succeeds with probability Ω(ε). This is by having the inverter attempt 2ρ
2`·d samples for the

values r∗i . Then, with constant probability (over the randomness of these samples alone), one of
them is right, conditioned on which the predictor P succeeds in inverting with probability ε.

This, in turn allows to alternatively instantiate Theorem 6.1 with a TDF such that no time
T = 2ρ−(`d−n) adversary succeeds in inverting TDF with non-negligible probability.

6.2 CCA-secure Encryption from T-AIBOs and Trapdoor Functions

We now describe our construction of a CCA-secure encryption scheme. Let d = d(λ), n = n(λ),
t = t(λ), ρ = d · n. We will use the following components:

• the T-AIBO (InjectiveGen, LossyGen, F ) of Section 4.2 with input length n and tag space
{0, 1}t, satisfying `-lossiness from Theorem 4.2;

• the encryption scheme (CPA.KeyGen,CPA.Enc,CPA.Dec,CPA.Recover) of Section 6.1, with
encryption randomness space {0, 1}ρ and ciphertext size {0, 1}τ , which can be built from any
trapdoor function TDF with input length ρ. In particular it satisfies randomness recovery
(Definition 6.2), and satisfies some special form of leakage resilience with respect to the T-
AIBO above (Lemma 6.4). More precisely, we will assume that no time T = 2n · poly(λ)
adversary can invert the underlying TDF with probability 2d

2ρ · ε for any non-negligible ε.

• a one-time strongly unforgeable signature (Sig.KeyGen,Sig.Sign,Sig.Verify) with message space
{0, 1}τ+d·m, where τ is the size of ciphertexts from CPA, and with verification keys of size (at
most) t.

We now describe our CCA-secure encryption scheme:

• KeyGen(1λ): Set (CPA.pk,CPA.sk) ← CPA.KeyGen and compute, for all i ∈ [d]: fki ←
InjectiveGen. Set pk = (CPA.pk, (fk)i∈[d]) and sk = CPA.sk and output (pk, sk).

• Enc(pk,msg): Sample r ← {0, 1}ρ. Compute

C = CPA.Enc(CPA.pk,msg ; r).

Sample (Sig.vk,Sig.sk)← Sig.KeyGen. Parse r as r = (r1‖ · · · ‖rd) where ri ∈ {0, 1}n. Parsing
the verification key of the signature as a tag for the T-AIBO, compute, for i ∈ [d]:

yi = Ffki,Sig.vk(ri).

Compute
σ = Sig.Sign(Sig.sk, (C‖y1‖ · · · ‖yd)),

and output
ct = (Sig.vk, C, (yi)i≤d, σ).
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• Dec(sk, ct): Parse ct as (Sig.vk, C, (yi)i≤d, σ). Output⊥ if Sig.Verify(Sig.vk, (C‖y1‖ · · · ‖yt), σ) =
0.
Else compute (msg, r) ← CPA.Dec(ct), using the randomness recovery property of the CPA-
encryption scheme. Parse r as (r1‖ · · · ‖rd) where ri ∈ {0, 1}n for all i ∈ [d].
If CPA.Enc(msg, r) = C, and if Ffki,Sig.vk(ri) = yi, output msg. Otherwise output ⊥.

Claim 6.4.1. Suppose that no time T = 2n ·poly(λ) adversary can invert the TDF underlying CPA
with probability 2d

2ρ · ε for any non-negligible ε, that T-AIBO is the one constructed in Section 4.2,
and (Sig.KeyGen, Sig.Sign, Sig.Verify) is one-time strongly unforgeable. Then (KeyGen,Enc,Dec) is
CCA-secure.

As noted in Remark 6.2, one could replace the specific T-AIBO of Section 4.2 with one satisfying
a generic non-trivial guessing property in lossy mode.

Proof. We consider a sequence of hybrids.

Hybrid H0. This is the standard CCA experiment.

Hybrid H1. The challenger changes how it answers decryption queries and the challenge cipher-
text. It now picks (Sig.vk∗,Sig.sk∗)← Sig.KeyGen at the beginning of the experiment, and answers
⊥ to any decryption query whose first component is Sig.vk∗.

The challenge ciphertext is generated using (Sig.vk∗, Sig.sk∗), namely, the other components of
the challenge ciphertext are computed as:

C∗ = CPA.Enc(CPA.pk,msg∗b ; r∗),
y∗i = Ffki,Sig.vk∗(r∗i ),

σ∗ = Sig.Sign(Sig.sk∗, (C‖y∗1‖ · · · ‖y∗d),

where r∗ = (r∗1‖ · · · ‖r∗d)← {0, 1}ρ, and msg∗0,msg∗1 are the challenge messages sent by the adversary.
The challenge ciphertext is ct∗ = (Sig.vk∗, C∗, (y∗i )i∈[d], σ

∗).

Hybrid H2. The challenger changes how it generates the public key of the scheme, and more
precisely how it samples the T-AIBO keys fki. It now samples r∗ = (r∗1‖ . . . ‖r∗d) ← {0, 1}ρ and
computes fki as fki ← LossyGen(Sig.vk∗, r∗i ).

Hybrid H3. The challenger changes how it answers decryption queries. Given a ciphertext ct =
(Sig.vk, C, (yi)i≤d, σ), the challenger:

1. Checks that Sig.Verify(Sig.vk, (C‖y1‖ · · · ‖yd), σ) = 1, and outputs ⊥ otherwise;

2. For all i ∈ [d], it enumerates over all ri ∈ {0, 1}n the values Ffki,Sig.vk(ri), and outputs the
first such ri such that Ffki,Sig.vk(ri) = yi. Otherwise it outputs ⊥;

3. Using the randomness recovery property of (CPA.KeyGen,CPA.Enc,CPA.Dec), it recovers m←
Recover(pk, C, r) where r = (r1‖ · · · ‖rd), and checks that ct = CPA.Enc(CPA.pk,msg; r), and
outputs ⊥ otherwise;

4. Outputs msg.
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Hybrid H4. The challenger changes how it produces the challenge ciphertext. It now computes
C = CPA.Enc(CPA.pk,0; r∗).

We now prove that successive hybrids are indistinguishable.

Claim 6.4.2. Suppose Sig is one-time strongly unforgeable. Then the views of the adversary in H0
and H1 are indistinguishable.

Proof. The views in H0 and H1 differ exactly when the adversary makes a decryption query with
respect to the verification key of the challenge ciphertext Sig.vk∗ such that the associated signature
σ verifies. We distinguish several cases.

• The ciphertext of such a query uses the same signature σ∗ and message (C∗‖y∗1‖ · · · ‖y∗t ) as
the challenge ciphertext, namely queries the challenge ciphertext. By definition of the CCA
experiment, this corresponds to the case where the adversary guesses the challenge ciphertext
and queries it before receiving the actual challenge ciphertext from the challenger. This only
happens with negligible probability.

• Otherwise, the ciphertext of such a query uses a different signature σ 6= σ∗. We argue that
such an adversary then induces an adversary against the one-time strongly unforgeability
of Sig. A reduction samples the parameters (pk, sk) of the real scheme, and uses them to
answer decryption queries. It then receives msg0,msg1 from the adversary, and chooses a
random bit b ← {0, 1}. It interacts with the unforgeability experiment challenger to receive
a verification key vk∗. As in the real scheme, computes C∗ = CPA.Enc(CPA.pk,mb; r∗, and
y∗i = Ffki,Sig.vk(r∗i ) where r∗ = (r∗1‖ · · · ‖r∗d) ← {0, 1}ρ. It queries the challenger for the
unforgeability experiment with message m = (C∗‖y∗1‖ · · · ‖y∗d), and receives a signature σ∗. It
sets the challenge ciphertext as ct∗ = (Sig.vk∗, C∗, (yi)i∈[d], σ

∗).
Now whenever the adversary for the CCA game decryption query ct 6= ct∗ containing Sig.vk∗
such that the associated signature verifies, either the message or the signature differs from the
challenge ciphertext (by analysis of the previous case above). In either case, such a decryption
query then induces a forgery for Sig.

Claim 6.4.3. Suppose (InjectiveGen, LossyGen, F ) satisfies indistinguishability. Then the views of
the adversary in H1 and H2 are indistinguishable.

Proof. This follows by switching how the keys fki are generated, one by one, from InjectiveGen to
LossyGen(vk∗, r∗i ), over i ∈ [d]. The reduction between two consecutive sub-hybrids picks tag∗ =
Sig.vk∗, receives s∗ = r∗i ∈ {0, 1}n and fk, and uses fk in the public key and r∗i as the appropriate
randomness block to generate the challenge ciphertext.

Claim 6.4.4. Suppose (InjectiveGen, LossyGen, F ) satisfies injectivity on injective branches, and
that CPA is statistically correct. Then the views of the adversary in H2 and H3 are distributed
within negligible statistical distance.

Proof. First, note that in both hybrids, all queries of the form ct = (Sig.vk∗, C, (yi)i∈d, σ) are
answered with ⊥. By the injectivity on injective branches of the T-AIBO, one can check that in
both hybrids, a decryption query on ct = (Sig.vk, C, (yi)i∈[d], σ) where Sig.vk 6= Sig.vk∗ does not
output ⊥ if and only if:
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• Sig.Verify(vk, (C‖y1‖ · · · ‖yd), σ) = 1;

• ri is the only input such that Ffki,Sig.vk(ri) = yi (where Sig.vk 6= Sig.vk∗ ensures injectivity of
Ffki,Sig.vk(·) by injectivity on injective branches);

• msg is correctly recovered as msg← Recover(pk, C,m);

• C = CPA.Enc(CPA.pk,msg; r).

In particular, the hybrids differ whenever Ffki,Sig.vk is not injective or Recover is not correct, which
both happen with negligible probability by injectivity on injective branches of fki ← LossyGen(Sig.vk∗,
r∗i ) and correctness of (CPA.pk,CPA.sk)← CPA.KeyGen(1λ), respectively.

Claim 6.4.5. Suppose CPA = (CPA.KeyGen,CPA.Enc,CPA.Dec) is instantiated with a trapdoor
function TDF such that no time T = 2n · poly(λ) adversary can invert TDF with probability 2d

2ρ · ε
for any non-negligible ε. Then the views of the adversary in H3 and H4 are indistinguishable.

Proof. We show that any polynomial-time distinguisher between H3 and H4 induces a time d · 2n ·
poly(λ) against the distribution of Lemma 6.4. The intuition is that Lemma 6.4 ensures that CPA
is leakage resilient when the leakage is computed using the T-AIBO F (in lossy mode).

Our reduction samples (Sig.vk∗,Sig.sk∗) and sets tag∗ = Sig.vk∗. It receives a sample from the
distribution of Lemma 6.4(

(fki)i∈[d],CPA.pk,TDF.Evalpk(r∗), (Ffki,tag∗(r∗i ))i∈[d], b
)
,

where r = (r1‖ . . . , ‖rd)← {0, 1}ρ, fki ← LossyGen(tag∗, ri), pk← TDF.Setup, and b ∈ {0, 1}.
The reduction sets the public key as pk = (CPA.pk, (fk)i∈[d]), and sets the challenge ciphertext

as

C∗ = CPA.Enc(CPA.pk,msg∗ ; r∗) = (TDF.Evalpk(r∗), b),
y∗i = Ffki,Sig.vk∗(r∗i ),

σ∗ = Sig.Sign(Sig.sk∗, (C‖y∗1‖ · · · ‖y∗d),

It answers decryption queries as in Hybrid H3, so that each decryption query is answered in
time d · 2n. This simulates perfectly Hybrid H3 if b = hc(r) ⊕ m, and Hybrid H4 if b = hc(r),
and in particular any distinguisher between H3 and H4 induce a time d · 2n distinguisher for the
distribution of Lemma 6.4. Then, Lemma 6.4 implies that such a distinguisher implies a time
2n · poly(λ) inverter against TDF with success probability 2d

2ρ · ε for some non-negligible ε.

This finishes the proof of CCA-security of (KeyGen,Enc,Dec).

Theorem 6.1 follows from Claim 6.4.1, using the fact that one-time strongly unforgeable signa-
tures are implied by one-way functions (which are implied by either PRGs or trapdoor functions).
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[HLOV11] Brett Hemenway, Benôıt Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy en-
cryption: Constructions from general assumptions and efficient selective opening cho-
sen ciphertext security. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science,
pages 70–88. Springer, Heidelberg, December 2011.
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