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Abstract. Code-based public key cryptosystems are one of the main techniques available
in the area of Post-Quantum Cryptography. This work aims to propose a key encapsulation
mechanism (KEM) with short ciphertext and secret key. Our goal is achieved in two steps.
We first present a public key encryption (PKE) scheme, basicPKE, using a parity check matrix
of Maximum Distance Separable (MDS) code as the public key matrix. In our construction,
we exploit the structure of a companion matrix to obtain an MDS code which significantly
reduces the storage of the secret key. The scheme basicPKE provides security against In-
distinguishability under Chosen Plaintext Attacks (IND-CPA). Secondly, following the design
framework of basicPKE, we construct another PKE scheme, fullPKE, that leads us to design
our KEM scheme, fullKEM. We have shown that the scheme fullPKE is secure against One-
Wayness under Plaintext and Validity Checking Attacks (OW-PCVA) and the scheme fullKEM
achieves security against Indistinguishability under Chosen Ciphertext Attacks (IND-CCA) in
the random oracle model. Moreover, our KEM can be shown to accomplish post-quantum
security in the quantum random oracle model.

Keywords: Public key encryption · Key encapsulation mechanism ·MDS code · Companion
matrix.

1 Introduction

The security of widely used classical cryptosystems depends on the hardness of
number theory based problems like factorization and the discrete logarithm prob-
lem. Due to Shor’s algorithm [39], most of these cryptosystems can be broken when
sufficiently strong quantum computers become available. Therefore, designing al-
ternatives is essential to survive against quantum attacks while offering reasonable
performance with solid security guarantees. Cryptography based on error-correcting
codes is one of the main post-quantum techniques as they are usually very fast
and can be implemented on several platforms. The security relies on the follow-
ing two computational assumptions: (i) the hardness of generic decoding which is
NP-complete and also believed to be hard even against quantum attackers (ii) the
pseudorandomness of the underlying code C for the scheme which says that distin-
guishing a random matrix from a generator (or parity check) matrix of C used as a
part of the public key of the scheme is hard. The important fact in devising code-
based cryptosystems is to employ an error-correcting code in such a way that the
public key is indistinguishable from a random key. A codeword is used as ciphertext
to which random errors are added. The decryptor, knowing a trapdoor, performs
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decoding, eliminates the errors and recovers the plaintext. Adversaries are reduced
to a generic decoding problem and the system remains safe against a quantum at-
tacker.
In 1978, R. J. McEliece [33] devised the first approach to design a public key encryp-
tion scheme using binary Goppa code that has resisted all cryptanalytic attempts so
far. It suffers from a large public key size. Later in 1986, Niederreiter [36] proposed
a scheme that provides slightly improved efficiency with equivalent security using
a parity check matrix as the public key. Several proposals were already endeavored
to solve the problem of large key size by replacing binary Goppa codes although
they could not last due to their weak security. The scheme McBits [15] is one of
the earlier KEM constructions based on the McEliece structure with binary Goppa
codes and provides large public key. A number of proposals for KEM are offered to
NIST call in 2016 for standardization of quantum-safe cryptography ([10], [42], [14],
[30], [1], [2], [3], [4], [9], [7], [40], [41], [5], [35], [6] , [5], [35] , [6], [34]).

Although there have been several secure KEMs based on error-correcting codes,
a major concern is still there regarding key size and ciphertext size. The use of the
quasi-cyclic and the quasi-dyadic property has been effective to reduce the public
key sizes in the schemes ([10], [9]) while the efficient encapsulation techniques in
([10], [2], [14]) offer compact ciphertexts. But, most of the schemes provide a much
larger secret key. Therefore, it is essential to search for a way so that the size of the
secret key can be greatly reduced.
Our Contribution. In this paper, we aim to devise an IND-CCA secure efficient
code-based KEM based on the hardness of the syndrome decoding problem. More
specifically, our focus is to design a KEM with relatively short ciphertext and short
secret key.

To fulfil the goal of achieving IND-CCA secure KEM, we first design a PKE
scheme where we use the structure of a companion matrix to form an MDS code.
We employ the Niederreiter framework to design our PKE scheme, basicPKE, using
a syndrome as ciphertext and obtain IND-CPA security. Informally, the notion of
Indistinguishability against Chosen Plaintext Attacks (IND-CPA) requires that no
efficient adversary can recognize which of two messages is encrypted in a ciphertext.
In our PKE, we use the parity check matrix of the MDS code as the public key
matrix. We exploit the structure of the companion matrix to get an MDS code and
keep the last row of the companion matrix as secret key which helps to reduce the
size of the secret key significantly. The syndrome of a vector is considered as the
ciphertext where the vector is set by parsing two vectors – the first vector is an error
vector which is generated by a deterministic error vector derivation algorithm and
the second vector is constructed from a random vector. This reduces the ciphertext
size, making the scheme useful in applications with limited communication band-
width. Also, utilizing the parity check matrix directly in computing the ciphertext
is fast and efficient. For decryption, we form the companion matrix using the secret
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key, get a parity check matrix to decode the ciphertext and proceed to recover the
message. Note that, MDS codes satisfy the Singleton bound and have the benefits
of an efficient decoding algorithm.

Next, following the framework of basicPKE, we design another PKE scheme,
fullPKE, which is proven to be OW-PCVA secure in the random oracle model. The
notion of One-Wayness under Plaintext and Validity Checking Attacks (OW-PCVA)
is a non-standard security notion where the adversary can not obtain any informa-
tion about the encrypted message, having access to plaintext checking oracle and
ciphertext validity oracle. In the scheme, the ciphertext is the syndrome of a vector
that is formed by concatenating an error vector and a vector which is formed from a
hash value of the message. During decryption, the ciphertext is decoded by setting
a parity check matrix using the secret key to obtain the message.

Finally, we build fullKEM, a KEM scheme from fullPKE. In the encapsulation
phase, we consider the syndrome of a vector as the ciphertext header where the vec-
tor is composed by concatenating two vectors. The first vector is an error vector and
the second vector is formed from a hash value of a randomly chosen message. In the
decapsulation phase, we decode the ciphertext header by forming a parity check ma-
trix from the secret key and then proceed to get the decapsulation key. The scheme
fullKEM provides IND-CCA security in random oracle model. Intuitively. the secu-
rity notion of Indistinguishability under Chosen Ciphertext Attacks (IND-CCA) for a
KEM claims that no efficient adversary, with access to the decapsulation oracle, can
recognize whether the key is randomly chosen or obtained from the encapsulation.

Technical Overview. Let us first discuss our basic techniques in constructing the
IND-CPA secure public key encryption scheme basicPKE = (Setup,KeyGen,Enc,Dec).
In Setup, the global public parameters ppbasicPKE = (k, k′, w, q,m, γ) are generated
and published by a trusted authority taking security parameter λ as input. Here,
q = 2m, m being a positive integer. In key generation, a companion matrix associated
to the polynomial g(X) = z0 + z1X + z2X

2 + · · · + zk−1Xk−1 + Xk ∈ GF(q)[X] is
utilized by a user to generate a parity check matrix H ∈ (GF(q))(n−k)×n of an
[n, k, k + 1] MDS code C where n = 2k. Then two random permutation matrices
P ∈ (GF(q))(n−k)×(n−k) and Q ∈ (GF(q))n×n are selected to compute a parity check
matrix H ′ = PHQ ∈ (GF(q))(n−k)×n of code C′ which is equivalent to the MDS code
C with parity check matrix H. The matrix H ′ is then transformed into a matrix
Ĥ = [M̂ |I(n−k)m] ∈ (GF(2))(n−k)m×nm where M̂ is an (n − k)m × km matrix. Then

the user sets its public key as pk = M̂ and the secret key as sk = (z0, z1, . . . , zk−1).
For encrypting a message m ∈ (GF(2))k

′m, an encryptor chooses r randomly from
(GF(2))km, parses it as r = (ρ||σ) and sets µ = (ρ||m) ∈ (GF(2))km with ρ ∈
(GF(2))(k−k′)m, σ ∈ (GF(2))k

′m. From the public key pk = M̂ , it constructs the

matrix Ĥ = (M̂ |I(n−k)m) which is indistinguishable from a random matrix over

GF(2). Finally, the encryptor computes the ciphertext c = Ĥ(e′)T with e′ = (e||µ)
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where the binary vector e having length (n−k)m and weight w−wt(µ) is generated
deterministically using σ as a seed. In the decryption phase, the ciphertext c is
decoded to get error vector e′′ using the decoding technique for MDS codes where the
parity check matrix H over GF(q) is formed by the decryptor using its secret key sk =
(z0, z1, . . . , zk−1). Then the message is recovered by parsing the error vector e′′ as
e′′ = (e0||µ′) where µ′=(ρ′||m′) with e0 ∈ (GF(2))(n−k)m, ρ′ ∈ (GF(2))(k−k′)m, m′ ∈
(GF(2))k

′m. The parity check matrix Ĥ over GF(2) derived from the public key pk
is a parity check matrix of the MDS code and does not provide any benefits to
decode c as the syndrome decoding problem is hard over GF(2). To apply decoding
procedure for the MDS code, one needs a parity check matrix H over GF(q) which
requires the knowledge of the secret key sk.

Next we present the basic ideas in designing our OW-PCVA secure public key en-
cryption scheme fullPKE = (Setup,KeyGen,Enc,Dec). In Setup, the global public pa-
rameters ppfullPKE = (k, k′, w, q,m, γ,H,H1) are generated by running basicPKE.Setup
and choosing two cryptographically secure hash functionsH : (GF(2))∗ −→ (GF(2))km

and H1 : (GF(2))∗ −→ (GF(2))k
′m on input a security parameter λ. Here q = 2m and

m is a positive integer. The public key pk = M̂ and secret key sk = (z0, z1, . . . , zk−1)
are obtained by executing the same steps as in basicPKE.KeyGen. In the encryption
procedure, an encryptor computes r = H(m) ∈ (GF(2))km,d = H1(m) ∈ (GF(2))k

′m

for a message m ∈ (GF(2))k
′m, parses it as r = (ρ||σ) and sets µ = (ρ||m) with

ρ ∈ (GF(2))(k−k′)m, σ ∈ (GF(2))k
′m. The ciphertext component c is computed as

c = Ĥ(e′)T where Ĥ = (M̂ |I(n−k)m) is constructed using the public key pk = M̂ ,
e′ = (e||µ) and the binary vector e of length (n − k)m and weight w − wt(µ) is
generated deterministically using σ as a seed. The encryptor sets the ciphertext
as CT = (c,d). In the decryption phase, the ciphertext component c is decoded
by the decryptor to get error vector e′′ using the decoding procedure for the MDS
code where H is the parity check matrix over GF(q) formed using the secret key
sk = (z0, z1, . . . , zk−1). Then the decryptor parses the vector e′′ as e′′ = (e0||µ′)
where µ′ = (ρ′||m′) with e0 ∈ (GF(2))(n−k)m, ρ′ ∈ (GF(2))(k−k′)m, m′ ∈ (GF(2))k

′m

and computes r′ = H(m′) = (ρ′′||σ′) ∈ (GF(2))km and d′ = H1(m′) ∈ (GF(2))k
′m

where ρ′′ ∈ (GF(2))(k−k′)m, σ′ ∈ (GF(2))k
′m. A binary error vector e′0 of length

(n− k)m and weight w− wt(µ′) is then generated in a deterministic way taking σ′

as seed. The decryptor outputs the symbol ⊥ if (e0 6= e′0) ∨ (ρ′ 6= ρ′′) ∨ (d 6= d′),
indicating a decryption failure; otherwise it outputs m′ as the recovered message.

Finally, let us make a primary discussion of our IND-CCA secure KEM proto-
col fullKEM = (Setup,KeyGen,Encaps,Decaps). In Setup, the global public parame-
ters ppfullKEM = (k, k′, w, r, q,m, γ,H,H1,H2) are generated and published by run-
ning fullPKE.Setup algorithm and choosing additionally a cryptographically secure
hash function H2 : (GF(2))∗ −→ (GF(2))r where λ is a security parameter and the
positive integer r is the desired key length. The algorithm fullKEM.KeyGen follows
the same steps as in fullPKE.KeyGen. The encapsulator selects a random message
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m ∈ (GF(2))k
′m, runs the steps as in fullPKE.Enc and outputs a ciphertext header

CT = (c,d) along with an encapsulation key K = H2(m). On input the public
parameters ppfullKEM, secret key sk = (z0, z1, . . . , zk−1) and ciphertext header CT, the
decapsulation procedure outputs the encapsulation key K = H2(m′) after obtaining
m′ by executing the steps as in fullPKE.Dec.

Table 1. Summary of IND-CCA secure KEMs using random oracles

Scheme pk size (in bits) sk size (in bits) CT size (in bits) Code used Cyclic/Dyadic Correctness error
NTS-KEM [2] (n− k)k 2(n− k + r)m+ nm+ r (n− k + r) Binary Goppa code – No

BIKE-1 [4] n n+ w · dlog2ke n MDPC code Quasi-cyclic Yes
BIKE-2 [4] k n+ w · dlog2ke k MDPC code Quasi-cyclic Yes
BIKE-3 [4] n n+ w · dlog2ke n MDPC code Quasi-cyclic Yes

Classic McEliece [14] k(n− k) n+mt+mn (n− k) + r Binary Goppa code – No

BIG QUAKE [10] k
`
(n− k) mt+mn (n− k) + 2r Binary Goppa code Quasi-cyclic No

DAGS [8] k
s
(n− k)) log2 q 2mn log2 q [n+ k′]log2q GS code Quasi-dyadic No

[18] k
s
(n− k) log2 q 2mn log2 q [k′ + (n− k)]log2q GS code Quasi-dyadic No

This work k2m2 km [k′ + k]m MDS code - No

pk=public key, sk=secret key, CT=ciphertext, k=dimension of the code, n=length of
the code, `=length of each blocks, t=error correcting capacity, k′ < k, s, r, w, p1, p2

are positive integers (` << s), s = 2p2 , q = 2p1 , λ=security parameter, m= the
degree of field extension, r=the desired key length, GS=Generalized Srivastava,
MDPC=Moderate Density Parity Check

In Table 1, we provide a theoretical comparison of our KEM construction, fullKEM,
with other recently proposed code-based KEMs ([2], [4],[14], [10], [8], [18]). All the
schemes use finite fields with characteristic 2. As exhibited in Table 1, we use MDS
code in our work, owning the binary structure. The use of the companion matrix
helps to reduce the secret key size. In our construction, the secret key size is com-
paratively shorter than the schemes ([2], [14], [10], [8], [18]). However, the size of the
public key remains large. Although the BIKE variants are efficient in terms of key
sizes and achieve IND-CCA security, they experience a small decoding failure rate.
For suitably chosen parameters, our KEM performs better in terms of ciphertext
size over DAGS [8]. Our construction uses parity check matrix which leads faster
encapsulation than schemes like DAGS and NTS-KEM. In fact, our encapsulation
procedure is closest to the work in [18]. The ciphertext size of our KEM is compara-
tively better than that of the scheme [18] for suitable parameters, more specifically
when k is very less than n.

In Table 1, we mainly highlight the KEMs based on error correcting codes from
the class of Alternant codes except BIKE variants which use quasi-cyclic (QC)
MDPC codes. We keep out the schemes like LEDAkem by Baldi et al. [7], Ramstake
by Szepieniec et al. [40], RLCE-KEM by Wang et al. [41], LAKE by Aragon et al.
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[5], Ouroboros-R by Melchor et al. [35], LOCKER by Aragon et al. [6], QC-MDPC
by Yamada et al. [42], McNie by Kim et al. [30] etc. In fact, the schemes LAKE,
Ouroboros-R, LOCKER are based on rank metric codes (Low Rank Parity Check
(LRPC) codes) while RLCE-KEM relies on a random linear code and McNie uses
any error-correcting code, specially QC-LRPC codes. LEDAkem features a small
little decoding failure rate as it uses QC-LDPC codes. Besides, it has risks of a re-
action attack by Fabšič et al. [19] for some particular cases. The schemes HQC and
RQC suggested by Melchor et al. [1] are also excluded as both the works utilize any
decodable linear code. Additionally, HQC has decryption failure issues and RQC is
based on rank metric codes. The protocol QC-MDPC has a high risk of GJS attack
by Guo et al. [22] as it suffers from a high decoding failure rate for some specific
parameters. Another KEM protocol CAKE by Barreto et al. [12] is merged with an
independent scheme Ouroboros by Deneuville et al. [17] to get the protocol BIKE.

To prove the security of our KEM, we follow the generic transformations by
Hofheinz et al. [27]. We show that our public key encryption scheme basicPKE ob-
tains IND-CPA security under the hardness of syndrome decoding problem and the
indistinguishability of the public key matrix from a random matrix. Then we show
that breaking OW-PCVA security of fullPKE would lead to breaking the IND-CPA
security of basicPKE considering H as a random oracle. Also, OW-PCVA security
always implies OW-VA (One-Wayness under Validity Attacks) security with zero
queries to the plaintext checking oracle. The OW-PCVA security and consequently
the OW-VA security of fullPKE follows from the IND-CPA security of basicPKE. Next
we show that the OW-VA security of fullPKE implies the IND-CCA security of ful-
lKEM consideringH2 as a random oracle. Therefore, we arrive at the following result.

Theorem 1. (Informal) Assuming the hardness of decisional syndrome decoding

problem and indistinguishability of the public key matrix Ĥ (derived from the public
key pk by running fullKEM.KeyGen(ppfullKEM) where ppfullKEM ←− fullKEM.Setup(λ),
λ being the security parameter), our scheme fullKEM = (Setup,KeyGen,Encaps,Decaps)
provides IND-CCA security in the random oracle model.

We can extend our security proof in the quantum random oracle following the
work by Hofheinz et al. [27] and get the following result.

Theorem 2. (Informal) Assuming the hardness of decisional syndrome decoding

problem and indistinguishability of the public key matrix Ĥ (derived from the public
key pk by running fullKEM.KeyGen(ppfullKEM) where ppfullKEM ←− fullKEM.Setup(λ),
λ being the security parameter), our scheme fullKEM = (Setup,KeyGen,Encaps,Decaps)
provides IND-CCA security when the hash functions are modeled as quantum random
oracles.

Organization of the Paper. The rest of the paper is organized as follows. In
Section 2, we explain the essential background related to our work. We illustrate
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our approach to design the IND-CPA secure PKE scheme basicPKE with a discussion
of its security in Section 3. In Section 4, we describe the construction and the security
of the PKE scheme fullPKE which is required in designing our KEM. We discuss the
KEM protocol fullKEM in Section 5. Lastly, we conclude in Section 6.

2 Preliminaries

In this section, we provide mathematical background and preliminaries that are
necessary to follow the discussion in the paper.

Notation. We use the notation x
U←− X for choosing a random element from a set

or distribution, a ←− A for the sampling according to some distribution A, wt(x)
to denote the weight of a vector x, (x||y) for the concatenation of the two vectors
x and y. The matrix In is the n × n identity matrix. We let GF(q) to denote the
Galois field of cardinality q and Z+ to represent the set {a ∈ Z|a ≥ 0} where Z is
the set of integers. We denote the transpose of a matrix A by AT and concatenation
of two matrices A and B by [A|B]. The uniform distribution over c×d random q-ary
matrices is denoted by Uc,d.

2.1 Public key encryption

Definition 1. (Public Key Encryption) A public key encryption (PKE) scheme is a
tuple PKE=(Setup, KeyGen, Enc, Dec) of four probabilistic polynomial time algo-
rithms (PPT) with the following specifications.

• PKE.Setup(λ) −→ pp : A trusted authority runs the Setup algorithm which takes
a security parameter λ as input and publishes the global public parameters pp.

• PKE.KeyGen(pp) −→ (pk, sk) : The key generation algorithm, run by a user, takes
pp as input and returns a public-secret key pair (pk, sk). The public key pk is
published while the secret key sk is kept secret to the user.

• PKE.Enc(pp, pk,m; r) −→ CT : The encryption algorithm, run by an encryptor,
outputs a ciphertext CT ∈ C using a randomness r ∈ R on input the public key
pk, a plaintext m ∈ M and the public parameters pp. Here M is the message
space, C is the ciphertext space and R is the space of randomness.

• PKE.Dec(pp, sk,CT) −→m∨⊥ : A decryptor runs the decryption algorithm that
takes the secret key sk, a ciphertext CT ∈ C and public parameters pp as input
and gets either a plaintext m ∈ M or ⊥ where the symbol ⊥ indicates the
decryption failure.

Correctness. A PKE scheme is δ-correct if for any security parameter λ, pp ←−
PKE.Setup(λ), (pk, sk) ←− PKE.KeyGen(pp) and CT ←− PKE.Enc(pp, pk,m; r), it
holds that Pr[PKE.Dec(pp, sk,CT) 6= m] ≤ δ. The PKE scheme is said to be correct
if δ = 0.
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Definition 2. (γ-uniformity of PKE [20]). For m ∈ M, pp ←− PKE.Setup(λ) and
(pk, sk) ←− PKE.KeyGen(pp), a PKE scheme is said to be γ-uniform if for every
possible ciphertext CT ∈ C, Prr←−R[CT ←− PKE.Enc(pp, pk,m; r)] ≤ γ for a real
number γ.

A PKE scheme is said to be γ-spread if it is 2−γ-uniform.

Definition 3. (Indistinguishability under Chosen Plaintext Attack (IND-CPA) [21]).
The IND-CPA game between a challenger S and a PPT adversary A for a public key
encryption scheme PKE=(Setup, KeyGen, Enc, Dec) is described below.

1. The challenger S generates pp ←− PKE.Setup(λ), (pk, sk) ←− PKE.KeyGen(pp)
where λ is a security parameter and sends pp, pk to A.

2. The adversary A sends a pair of messages m0,m1 ∈M of the same length to S.
3. The challenger S picks a random bit b ∈ {0, 1}, computes a challenge ciphertext

CT←− PKE.Enc(pp, pk,mb; rb) and sends it to A.
4. The adversary outputs a bit b′.

The adversary A wins the game if b′ = b. We define the advantage of A against the
above IND-CPA security game for the PKE scheme as

AdvIND-CPA
PKE (A) = |Pr[b′ = b]− 1/2|.

A PKE scheme is IND-CPA secure if AdvIND-CPA
PKE (A) is negligible.

We also define the following four security notions for PKE scheme that are (i)
One-Wayness under Chosen Plaintext Attacks (OW-CPA), (ii) One-Wayness under
Plaintext Checking Attacks (OW-PCA), (iii) One-Wayness under Validity Checking
Attacks (OW-VA) and (iv) One-Wayness under Plaintext and Validity Checking
Attacks (OW-PCVA).

Definition 4. (OW-ATK [27]). For ATK ∈ {CPA,PCA,VA,PCVA}, the OW-ATK
game between a challenger S and a PPT adversary A for a public key encryption
scheme PKE = (Setup, KeyGen, Enc, Dec) is outlined below where A can make
polynomially many queries to the oracle OATK given by

OATK =


− ATK = CPA

PCO(·, ·) ATK = PCA

CVO(·) ATK = VA

PCO(·, ·),CVO(·) ATK = PCVA

with the Plaintext Checking Oracle PCO(·, ·) and Ciphertext Validity Oracle CVO(·)
as described in Figure 1.

1. The challenger S generates pp ←− PKE.Setup(λ), (pk, sk) ←− PKE.KeyGen(pp)
where λ is a security parameter and sends pp, pk to A.
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2. The challenger S chooses a message m∗ ∈M, computes the challenge ciphertext
CT∗ ←− PKE.Enc(pp, pk,m∗; r∗) and sends it to A.

3. The adversary A having access to the oracle OATK, outputs m′.

The adversary A wins the game if m′ = m∗. We define the advantage of A against
the above OW-ATK security game for PKE scheme as AdvOW-ATK

PKE (A) = Pr[m′ = m∗].
The PKE scheme is said to be OW-ATK secure if AdvOW-ATK

PKE (A) is negligible.

PCO(m ∈M,CT)

1. if PKE.Dec(pp, sk,CT) −→m
2. return 1;
3. else
4. return 0;
5. end if

CVO(CT 6= CT∗)

1. m←− PKE.Dec(pp, sk,CT);
2. if m ∈M
3. return 1;
4. else
5. return 0;
6. end if

Fig. 1. Plaintext Checking Oracle PCO(·, ·) and Ciphertext Validity Oracle CVO(·) for OW-ATK security
game, ATK ∈ {CPA,PCA,VA,PCVA}

Remark 1. [27] For any adversary B there exists an adversary A with the same
running time as that of B such that AdvOW-CPA

PKE (B) ≤ AdvIND-CPA
PKE (A) + 1/|M| where

M is the message space.

Remark 2. The OW-PCVA security is also OW-VA security with zero queries to the
PCO(·, ·) oracle.

2.2 Key encapsulation mechanism

Definition 5. (Key Encapsulation Mechanism). A key encapsulation mechanism (KEM)
is a tuple of four PPT algorithms KEM = (Setup,KeyGen,Encaps,Decaps) with the
following requirements.

• KEM.Setup(λ) −→ pp : A trusted authority runs the Setup algorithm which takes
a security parameter λ as input and publishes the global public parameters pp.

• KEM.KeyGen(pp) −→ (pk, sk) : The key generation algorithm, run by a user, takes
public parameters pp as input and outputs a public-secret key pair (pk, sk). The
public key pk is published while the secret key sk is kept secret to the user.

• KEM.Encaps(pp, pk) −→ (CT, K) : An encapsulator runs the encapsulation algo-
rithm that takes the public key pk and public parameters pp as input and outputs
a ciphertext header CT ∈ C together with a key K ∈ K. The ciphertext header
CT is broadcasted publicly and the encapsulation key K is kept secret to the
encapsulator. Here C is the ciphertext space and K is the key space.

• KEM.Decaps(pp, sk,CT) −→ K ∨⊥ : A decapsulator runs the decapsulation algo-
rithm on inputs the secret key sk, a ciphertext header CT and public parameters
pp. It returns the key K or ⊥ where ⊥ is a designated symbol indicating failure.
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Correctness. A KEM is δ-correct if for any security parameter λ, pp←− KEM.Setup(λ),
(pk, sk) ←− KEM.KeyGen(pp) and (CT, K) ←− KEM.Encaps(pp, pk), it holds that
Pr[KEM.Decaps(pp, sk,CT) 6= K] ≤ δ. The KEM is correct if δ = 0.

Definition 6. (Indistinguishability under Chosen Ciphertext Attack (IND-CCA) [38]).
The IND-CCA game between a challenger S and a PPT adversary A for a key
encapsulation mechanism KEM=(Setup, KeyGen, Encaps, Decaps) is described below.

1. The challenger S generates pp←− KEM.Setup(λ) and (pk, sk)←−
KEM.KeyGen(pp) where λ is a security parameter and sends pp, pk to A.

2. The PPT adversary A has access to the decapsulation oracle KEM.Decaps to
which A can make polynomially many ciphertext queries CTi and gets the cor-
responding key Ki ∈ K from S.

3. The challenger S chooses a random bit b from {0, 1}, runs KEM.Encaps(pp, pk)
to generate a ciphertext-key pair (CT∗, K∗0) with CT∗ 6= CTi, selects randomly
K∗1 ∈ K and sends the pair (CT∗, K∗b ) to A.

4. The adversary A having the pair (CT∗, K∗b ) keeps submitting polynomially many
decapsulation queries on CTi 6= CT∗ and finally outputs b′.

The adversary succeeds the game if b′ = b. We define the advantage of A against
the above IND-CCA security game for the KEM as

AdvIND-CCA
KEM (A) = |Pr[b′ = b]− 1/2|.

A KEM is IND-CCA secure if AdvIND-CCA
KEM (A) is negligible.

2.3 MDS codes

Definition 7. (MDS Code [31]). An [n, k, d] linear code with length n, dimension
k and minimum distance d is said to be a maximum distance separable (MDS) code
if k = n− d+ 1.

Definition 8. (MDS Matrix [26]). Let GF(q) be a finite field and m, n be two
integers. Let x → M × x be a mapping from (GF(q))m to (GF(q))n defined by the
n×m matrix M . We say that M is an MDS matrix if the set of all pairs (x,M ×x)
is an MDS code, i.e. a linear code of dimension m, length m + n and minimum
distance n+ 1.

Theorem 3. ([31]) An [n, k, d] code with generator matrix G = [I|M ] ∈ (GF(q))k×n

is MDS code if and only if every square submatrix of M is nonsingular where M is
a k× (n− k) matrix over GF(q). We say M is an MDS matrix if the corresponding
code is MDS.
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Definition 9. (Companion Matrix [23]). Let g(X) = z0+z1X+· · ·+zk−1X
k−1+

Xk be a monic polynomial over GF(q) of degree k. The k× k companion matrix Cg

associated to the polynomial g is given by Cg =


0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1
−z0 −z1 · · · −zk−1

.

Theorem 4. ([16]) Let GF(q) be the finite field containing q elements with charac-
teristic 2, Mat(m,GF(q)) be the ring of m×m matrices over GF(q) and Mat(n,m)
be the set of n×n block matrices over Mat(m,GF(2)). A matrix M ∈ Mat(n,GF(q))
is MDS if and only if every square submatrix of M is nonsingular. Similarly, a block
matrix M ∈ Mat(n,m) is MDS if and only if every square block submatrix of M is
nonsingular.

The following results follows easily from the above theorem.

Lemma 1. A block matrix M ∈ Mat(n,m) is MDS if and only if its transpose MT

is MDS.

Lemma 2. A block matrix M ∈ Mat(n,m) is MDS if and only if its inverse M−1

is MDS.

The order of a polynomial g(X) ∈ GF(q)[X] (g(0) 6= 0), denoted by ord(g), is the
least positive integer n such that g(X) divides Xn − 1. The weight of a polynomial
is the number of its coefficients that are nonzero.

Theorem 5. [23] Let g(X) ∈ GF(q)[X] be a monic polynomial of degree k with
ord(g) ≥ 2k. Then the matrix M = (Cg)

k is MDS if and only if the weight of any
nonzero multiple of degree ≤ 2k − 1 of the polynomial g(X) is greater than k.

Definition 10. (Permutation Equivalent Matrices [28]) Two matrices M and
M ′ are said to be permutation equivalent, denoted by M ∼pe M ′, if there exist two
permutation matrices P,Q such that M ′ = PMQ.

Lemma 3. [28] Suppose that two matrices M and M ′ are permutation equiva-
lent.Then M is MDS if and only if M ′ is MDS.

Definition 11. (Expanded Codes [29]). Let n, k be positive integers with k ≤ n,
q be a prime power and m be an integer. Let C be a linear code of length n and
dimension k over GF(qm). The expanded code of C with respect to a primitive element

γ ∈ GF(qm) is a linear code over the base field GF(q) defined as Ĉ = {φn(c) : c ∈ C}
where φn : (GF(qm))n −→ (GF(q))mn is the GF(q)-linear isomorphism defined by γ
as

φn(α0, α1, . . . , αn−1) = (φ(α0), φ(α1), . . . , φ(αn−1))

and φ : GF(qm) −→ (GF(q))m is given by

φ(a0 + a1γ + · · ·+ am−1γ
m−1) = (a0, a1, . . . , am−1).
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Lemma 4. ([29]). Let C be a linear code in (GF(qm))n, γ ∈ GF(qm) be a primitive
element and φn : (GF(qm))n −→ (GF(q))mn be the GF(q)-linear isomorphism defined
by γ as in Definition 11.

(i) If G = [g1, g2, . . . , gk]
T is a generator matrix of C where g1, g2, . . . , gk are vectors

in (GF(qm))n, then the expanded code Ĉ of C over GF(q) with respect to the
primitive element γ ∈ GF(qm) has the expanded generator matrix

Ĝ = [φn(g1), φn(γg1), . . . , φn(γm−1g1), φn(g2), φn(γg2), . . . , φn(γm−1g2),

. . . , φn(gk), φn(γgk), . . . , φn(γm−1gk)]
T .

(ii) If H = [hT1 , h
T
2 , . . . , h

T
n ] is a parity check matrix of C where h1, h2, . . . , hn are

vectors in (GF(qm))n−k, then the expanded code Ĉ of C over GF(q) with respect
to the primitive element γ ∈ GF(qm) has the expanded parity check matrix

Ĥ = [φn−k(h1)T , φn−k(γh1)T , . . . , φn−k(γ
m−1h1)T , φn−k(h2)T , φn−k(γh2)T , . . . ,

φn−k(γ
m−1h2)T , . . . , φn−k(hn)T , φn−k(γhn)T , . . . , φn−k(γ

m−1hn)T ].

(iii) φn(xG) = φk(x)Ĝ for all x ∈ (GF(qm))k,

(iv) φn−k(Hy
T ) = Ĥ(φn(y))T for all y ∈ (GF(qm))n.

2.4 Decoding procedure for MDS codes

Reed-Solomon (RS) and extended Reed-Solomon (RS) codes are the most important
classes of MDS codes. RS codes are special cases of Bose Chaudhuri Hocquenghem
(BCH) codes and can be decoded by the decoding technique of BCH codes. The
decoding procedure of MDS codes is similar to that of BCH codes. In case of RS
codes or MDS codes, the designed distance δ = d where d is the minimum distance
of the code. Any [n, k, d] linear code satisfies the Singleton bound d ≤ n − k + 1
where n is the length of the code and k is the dimension of the code. For MDS codes,
the Singleton bound is attained, i.e., d = n− k + 1.

• Decoding of BCH code. [31] Let C be an [n, k, d] binary BCH code of odd
designed distance δ. Suppose the codeword c = (c0, c1, . . . , cn−1) ∈ Zn2 is transmitted
and the vector y = c + e is received where e = (e0, e1, . . . , en−1) ∈ Zn2 is the error

vector. Let c(x) =
n−1∑
i=0

cix
i, e(x) =

n−1∑
i=0

eix
i, y(x) =

n−1∑
i=0

yix
i. Suppose

H =


1 α α2 · · · αn−1

1 α3 α6 · · · α3(n−1)

· · · · · · · · · · · · · · ·
1 αδ−2 α2(δ−2) · · · α(δ−2)(n−1)


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be a parity check matrix of the binary BCH code where α is a primitive n-th root
of unity. Then, α, α3, . . . , αδ−2 are the zeros of BCH code and c(αl) = 0 for 1 ≤
l ≤ δ − 1 as c = (c0, c1, . . . , cn−1) is a codeword. Suppose w errors have occurred in
locations X1 = αi1 , X2 = αi2 , . . . , Xw = αiw and the error values are Y1 = ei1 , Y2 =
ei2 , . . . , Yw = eiw . For binary BCH code, ei1 = ei2 ,= · · · = eiw = 1 and ei = 0
for i ∈ {0, 1, . . . , n − 1} \ {i1, i2, . . . , iw}. The decoding procedure completes in the
following three steps:

Step 1. Find the syndrome: The syndrome S is

S = HyT =


1 α α2 · · · αn−1

1 α3 α6 · · · α3(n−1)

· · · · · · · · · · · · · · ·
1 αδ−2 α2(δ−2) · · · α(δ−2)(n−1)



y0

y1
...

yn−1



=



n−1∑
i=0

yiα
i

n−1∑
i=0

yiα
3i

...
n−1∑
i=0

yiα
(δ−2)i


=


y(α)
y(α3)

...
y(α(δ−2))

 =


A1

A3
...

Aδ−2



where Al = y(αl). Note that A2r = y(α2r) = y(αr)2 = A2
r. Alternatively,

compute Al from y(x) as follows using the minimal polynomial M (l)(x) of αl

i.e. M (l)(x) is the lowest degree polynomial over Z2 having αl as its zero. Let
y(x) = Q(x)M (l)(x) + R(x), degR(x) < degM (l)(x). Then Al = y(αl) =R(αl) as
M (l)(αl) = 0, l = 1, 3, . . . , δ−2. Note that A2 = A2

1, A4 = A2
2, . . . , Aδ−1 = A2

(δ−1)/2

are easily found if needed.

Step 2. Find the error locator polynomials and error evaluator polynomials : The
error locator polynomial

σ(z) =
w∏
i=1

(1−Xiz) =
w∑
i=0

σiz
i, σ0 = 1
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which has reciprocal of error locations ( 1
Xi
, i = 1, 2, . . . , w) at its zeros. As c(αl) =

0 for 1 ≤ l ≤ δ − 1, we have

Al = y(αl)

= c(αl) + e(αl)

= e(αl)

= ei1(α
l)i1 + ei2(α

l)i2 + · · ·+ eiw(αl)iw

= Y1(αi1)l + Y2(αi2)l + · · ·+ Yw(αiw)l

= Y1(X1)l + Y2(X2)l + · · ·+ Yw(Xw)l

=
w∑
i=1

YiX
l
i .

For binary BCH code, we have Yl = 1 for 1 ≤ l ≤ w and so Al =
w∑
i=1

X l
i .

Assuming that w errors occurred, the σi’s and Al’s are related by the recurrence

Aj+w + σ1Aj+w−1 + σ2Aj+w−2 + · · ·+ σwAj = 0 (1)

for all j. Taking j = 1, 2, . . . , w in Equation 1, we get
Aw Aw−1 · · · A1

Aw+1 Aw · · · A2

· · · · · · · · · · · ·
A2w−1 A2w−2 · · · Aw



σ1

σ2
...
σw

 = −


Aw+1

Aw+2
...

A2w

 . (2)

The recurrence relation in Equation (1) can be interpreted as saying that the Al’s
are the output from a Linear Feedback Shift Register(LFSR) of w stages with
initial contents A1, A2, . . . , Aw as shown in Figure 2. The register is shown at the
instant when it contains A1, A2, . . . , Aw and Aw+1 = −σ1Aw−σ2Aw−1−· · ·−σwA1

is being formed.
The decoder’s problem is: given the sequence A1, A2, . . . , Aδ−1 find that linear
feedback shift register of shortest length w which produces A1, A2, . . . , Aδ−1 as
output when initially loaded with A1, A2, . . . , Aw. There is an efficient algorithm
due to Berlekamp–Massey [32] for finding such a shift register and hence the
error locator polynomial σ(z).

Step 3. Find the locations, values of the errors and correct them: To find the error
locations Xi, compute the reciprocals of the roots of σ(z) for i = 1, 2, . . . , w.

• Decoding non-binary BCH codes.
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Fig. 2. The Al’s are produced by a shift register.

Algorithm 1 Berlekamp–Massey Algorithm
Input : A sequence s = {s0, s1, . . . , sn−1} of n elements of GF(q).
Output : The feedback polynomial P of an LFSR of length L which generates s.

1: P (X)←− 1, Q(X)←− 1, L←− 0,m←− −1, d1 ←− 1;
2: for (t = 0 to n− 1) do

3: d← st +
L∑
i=1

pist−i; // pi’s are coefficients of P (X)

4: if d 6= 0 then
5: T (X)←− P (X);
6: P (X)←− P (X)− d(d1)−1Q(X)Xt−m;
7: if L ≤ t/2 then
8: L←− t+ 1− L;
9: m←− t;

10: Q(X)←− T (X);
11: d1 ←− d;

12: end if
13: end if
14: end for
15: return P

1. Find A1, A2, . . . , Aδ−1 as in Step 1 above.
2. Use Equation 2 to find the error locator polynomial σ(z). The error evaluator
polynomial

ω(z) = σ(z) +
w∑
ν=1

zXνYν

w∏
j=1,ν 6=j

(1−Xjz)

satisfies

ω(z) = (1 + S(z))σ(z)

where S(z) =
∞∑
i=1

Aiz
i and Yν = eiν is the error values for ν = 1, 2, . . . , w.

3. Finally, find the roots X−1
γ of σ(z) for γ = 1, 2, . . . , w and compute the value of

errors Yν = eiν using the ω(z) as Yν = ω(X−1
ν )∏

ν 6=j
(1−XjX−1

ν )
.
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2.5 Hardness assumptions

Definition 12. ((Search) (q-ary) Syndrome Decoding (SD) Problem [11]). Given a
full-rank matrix H(n−k)×n over GF(q), a vector c ∈ (GF(q))n−k and a non-negative
integer w, the search version of q-ary SD problem is to find a vector e ∈ (GF(q))n

of weight w such that the syndrome HeT of e satisfies HeT = c.

More formally, suppose D is a PPT algorithm and U(n−k),n is the uniform distribu-
tion over (n− k)× n random q-ary matrices. For every positive integer λ, we define
the advantage of D in solving the SD problem by

AdvsearchD,SD (λ) = Pr[D(H, c) = e ∈ (GF(q))n,wt(e) = w and HeT = c|H U←−
U(n−k),n, c ∈ (GF(q))n].

Also, we define AdvsearchSD (λ) = max
D

[AdvsearchD,SD (λ)] where the maximum is taken over

all D. The SD problem is said to be hard if AdvsearchSD (λ) is negligible.
The corresponding decision problem is proven to be NP-complete [13] in case of
binary codes. Later, Barg [11] proved that this result holds for codes over all finite
fields.

Definition 13. ((Decision) (q-ary) Syndrome Decoding (SD) Problem [11]). Given
a full-rank matrix H(n−k)×n over GF(q), a vector e ∈ (GF(q))n and a non-negative
integer w, the decision version of q-ary SD problem is to decide whether it is possible
to distinguish between a random vector s ∈ (GF(q))n−k from the syndrome HeT

associated to a w-weight vector e?

Suppose D is a probabilistic polynomial time algorithm and U(n−k),n be the uniform
distribution over (n − k) × n random q-ary matrices. For every positive integer λ,
we define the advantage of D in solving the decisional SD problem by

AdvdecisionD,SD (λ) = |Pr[D(H,HeT ) = 1 | e ∈ (GF(q))n with wt(e) = w,H
U←− U(n−k),n]

− Pr[D(H, s) = 1 | s U←− U(n−k),1, H
U←− U(n−k),n]|

Also, we define AdvdecisionSD (λ) = max
D

[AdvdecisionD,SD (λ)] where the maximum is taken over

all D. The decisional SD problem is said to be hard if AdvdecisionSD (λ) is negligible.
By running key generation algorithm, most of the code-based PKE schemes output
a public key that is either a generator matrix or a parity check matrix and require
the following computational assumption.

Assumption 1 .The public key matrix, output by the key generation algorithm
of a code-based PKE scheme, is computationally indistinguishable from a uniformly
chosen matrix of the same size.

Definition 14. (Indistinguishability of public key matrix H [37]). Let D be a proba-
bilistic polynomial time algorithm and PKE = (Setup,KeyGen,Enc,Dec) be a public
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key encryption scheme that uses an (n − k) × n matrix H as a public key over
GF(q). For every positive integer λ, we define the advantage of D in distinguishing
the public key matrix H from a random matrix R as
AdvIND

D,H(λ) = Pr[D(H) = 1|(pk = H, sk)←− PKE.KeyGen(pp), pp←− PKE.Setup(λ)]

− Pr[D(R) = 1|R U←− U(n−k),n]
where U(n−k),n is the uniform distribution over (n−k)×n random q-ary matrices. We

define AdvINDH (λ) = max
D

[AdvINDD,H(λ)] where the maximum is over all D. The matrix

H is said to be indistinguishable if AdvINDH (λ) is negligible.

3 basicPKE : an IND-CPA secure public key encryption

We now present the details of our public key encryption scheme basicPKE = (Setup,
KeyGen,Enc,Dec) following the specifications of Definition 1.

• basicPKE.Setup(λ)−→ ppbasicPKE: Taking security parameter λ as input, a trusted
authority proceeds as follows to generate the global public parameters ppbasicPKE.

(i) Sample k (≥ 2),m ∈ Z+, set q = 2m. Let γ ∈ GF(q) be a primitive element of
GF(q).

(ii) Set w ≤ k/2 and sample k′ ∈ Z+ with k′ < k.
(iii) Publish the global parameters ppbasicPKE = (k, k′, w, q,m, γ).

• basicPKE.KeyGen(ppbasicPKE) −→ (pk, sk): A user on input ppbasicPKE, performs the
following steps to generate the public key pk and secret key sk.

(i) Select z0, z1, . . . , zk−1 ∈ GF(q) where q = 2m. Let g(X) ∈ GF(q)[X] be a monic
polynomial of degree k ≥ 2 given by g(X) = z0+z1X+z2X

2+· · ·+zk−1X
k−1+Xk

with ord(g) ≥ 2k such that g(X) has no nonzero multiple of degree ≤ 2k−1 with
weight ≤ k. Such polynomials can be constructed using the approaches proposed
by Gupta et al. ([24], [25]).

(ii) The companion matrix associated with the polynomial g(X) is

Cg =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
z0 z1 z2 · · · zk−1

 ∈ (GF(q))k×k

(iii) Compute M̃ = (Cg)
k which is MDS by Theorem 5 as g(X) satisfies the con-

ditions stated in this theorem. Therefore, every square submatrix of M̃ is non-
singular by Theorem 4. Hence by Theorem 3, the matrix G = [I|M̃ ] ∈ (GF(q))k×n

is a generator matrix of an MDS code C having code length n = 2k, dimension
k and minimum distance k + 1. Then the parity check matrix of the code C is
H = [M̃T |In−k] ∈ (GF(q))(n−k)×n.
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(iv) Select two permutation matrices P of order (n− k)× (n− k) and Q of order
n×n and computeH ′ = PHQ ∈ (GF(q))(n−k)×n. ThenH andH ′ are permutation
equivalent (see Definition 10). Let C′ be the code with parity check matrix H ′.
Then C′ and C are equivalent codes.

(v) Let Ĥ be the expanded parity check matrix of the expanded code Ĉ of C′ with
respect to the primitive element γ of GF(q) where q = 2m and the isomorphism
φn : (GF(2m))n −→ (GF(2))mn defined by

φn(α0, α1, . . . , αn−1) = (φ(α0), φ(α1), . . . , φ(αn−1))

and φ : GF(2m) −→ (GF(2))m is given by

φ(a0 + a1γ + · · ·+ am−1γ
m−1) = (a0, a1, . . . , am−1).

Here Ĥ is an (n− k)m× nm matrix over GF(2) by Lemma 4 (ii).

(vi) Write Ĥ ∈ (GF(2))(n−k)m×nm in systematic form [M̂ |I(n−k)m] where M̂ is an
(n− k)m× km matrix and n− k = k.

(vi) Publish the public key pk = M̂ and keep the secret key sk = (z0, z1, . . . , zk−1)
secret to itself.

Algorithm 2 Error vector derivation
Input : A binary seed vector σ of length k, integers n, t.
Output : A binary error vector e = (e0, e1, . . . , en−1) of length n and weight t.

1: Set e←− 1t||0n−t;
2: b← σ;
3: for (i = 0 to t− 1) do
4: j ← F(b) mod (n− i− 1);// see Remark 3
5: Swap entries ei and ei+j in e;
6: b← Hsh(b); // Hsh:{0, 1}∗ −→ {0, 1}k is a hash function

7: end for
8: return e = (e0, e1, . . . , en−1)

• basicPKE.Enc(ppbasicPKE, pk,m; r)−→ c : Given system parameters ppbasicPKE =

(k, k′, w, q,m, γ), public key pk = M̂ and a message m ∈ (GF(2))k
′m, an encryptor

proceeds as follows to generate a ciphertext c ∈ (GF(2))km.

(i) Select r
U←− (GF(2))km. Parse r as r = (ρ||σ) where ρ ∈ (GF(2))(k−k′)m, σ ∈

(GF(2))k
′m. Set µ = (ρ||m) ∈ (GF(2))km.

(ii) Run Algorithm 2 to generate a unique binary error vector e of length (n−k)m
and weight w−wt(µ) using σ ∈ (GF(2))k

′m as a seed. Set e′ = (e||µ) ∈ (GF(2))nm

which has weight w.
(iii) Using the public key M̂ , construct the parity check matrix Ĥ = (M̂ |I(n−k)m)

for the the MDS code where n− k = k.
(iv) Compute the syndrome c = Ĥ(e′)T ∈ (GF(2))(n−k)m.
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(v) Publish the ciphertext c.

• basicPKE.Dec(ppbasicPKE, sk,c)−→ m′ : On receiving a ciphertext c, a decryptor
executes the following steps using public parameters ppbasicPKE = (k, k′, w, q,m, γ)
and its secret key sk = (z0, z1, . . . , zk−1).

(i) First proceed as follows to decode c and find binary error vector e′′ of length
nm and weight w :
(a) Use sk = (z0, z1, . . . , zk−1) to form k × k companion matrix

Cg =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
z0 z1 z2 · · · zk−1


associated with the monic polynomial g(X) = z0 + z1X + z2X

2 + · · · +
zk−1X

k−1 + Xk ∈ GF(q)[X] of degree k ≥ 2 and ord(g) ≥ 2k that has
no nonzero multiple of degree ≤ 2k − 1 with weight ≤ k. Then compute
M̃ = (Cg)

k and the parity check matrix H = [M̃T |In−k] ∈ (GF(q))(n−k)×n for
n = 2k.

(b) Compute c′ = φ−1
n−k(c) where c is a column vector of length (n − k)m

over GF(2), c′ is a column vector of length (n − k) over GF(q) and φn−k is
the GF(2)-linear isomorphism defined by γ (Definition 11). The (n − k) × n
parity check matrix H is used to decode c by first computing the syndrome
S = H(c′||0)T where 0 is a vector consisting of k zeros and then by running
the decoding algorithm for MDS codes described in Section 2.4 to find the
vector ẽ ∈ (GF(q))n.

(c) Apply φn to get e′′ = φn(ẽ) ∈ (GF(2))nm.
(ii) Let e′′ = (e0||µ′) ∈ (GF(2))nm and µ′=(ρ′||m′) ∈ (GF(2))km where e0 ∈

(GF(2))(n−k)m, ρ′ ∈ (GF(2))(k−k′)m, m′ ∈ (GF(2))k
′m.

(iii) Return m′.

Remark 3. Algorithm 2 uses a hash function Hsh : {0, 1}∗ −→ {0, 1}k in line 6 and
F in line 4. The subroutine F(b) mod (n− i−1) −→ j outputs an integer j on input
a binary vector b of length k as follows.
Step 1. Truncate Hsh(b) to a string of s bytes where s is larger than the byte size
of n.
Step 2. Convert this s–bytes string to an integer A.

(a) If A > 28s − (28s mod (n− i− 1)) then go to Step 1.
(b) else set j = A mod (n− i− 1).

Correctness: While decoding c, we form an (n − k) × n parity check matrix H
over GF(q), q = 2m using the secret key sk = (z0, z1, . . . , zk−1) and find the syndrome
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H(c′||0)T to estimate the error vector e′′ ∈ (GF(2))nm with wt(e′′) = w. Note that,

the ciphertext component c = Ĥ(e′)T is the syndrome of e′ where the matrix Ĥ is
a parity check matrix in the systemetic form over GF(2) which is indistinguishable
from a random matrix over GF(2). At the time of decoding c, we need a parity check

matrix over GF(q), q = 2m. The matrix Ĥ, a parity check matrix of MDS code in the
systemetic form derived from the public key pk, does not help to decode c as the SD
problem is hard over GF(2). The decoding algorithm in our decryption procedure
uses the parity check matrix H derived from the secret key sk. This procedure can
correct upto k/2 errors. In our scheme, the error vector e′ used in the procedure
basicPKE.Enc satisfies wt(e′) = w ≤ k/2. Consequently, the decoding procedure will
recover the correct e′ by Lemma 4 (iv).

Theorem 6. If the decisional SD problem (Definition 13 in Subsection 2.5) is hard,

the public key matrix Ĥ (derived from the public key pk which is generated by run-
ning basicPKE.KeyGen(ppbasicPKE) where ppbasicPKE ←− basicPKE.Setup(λ)) is indis-
tinguishable (Definition 14 in Subsection 2.5), then the public key encryption scheme
basicPKE = (Setup,KeyGen,Enc,Dec) described above is IND-CPA secure (Definition
3 in Subsection 2.1).

Proof. In basicPKE, a ciphertext c is computed using the (n− k)m×nm public key

matrix Ĥ = [M̂ |I(n−k)m] that is generated from the public key pk=M̂ .

The ciphertext is computed as c = Ĥ(e′)T where e′ = (e||µ) = (e||ρ||m) = (r1||m)
and m ∈ (GF(2))k

′m, r1 = (e||ρ) ∈ (GF(2))(n−k′)m,ρ ∈ (GF(2))(k−k′)m satisfying
r = (ρ||σ), σ ∈ (GF(2))k

′m. Here we use σ as a seed to generate the error vector

e ∈ (GF(2))(n−k)m satisfying wt(e) = w − wt(µ). Let Ĥ = [H1|H2] where H1 is

(n−k)m× (n−k′)m sub-matrix and H2 is (n−k)m×k′m sub-matrix of Ĥ. Hence,

c = Ĥ[r1||m]T = H1r
T
1 +H2m

T .

Suppose that there exists a PPT algorithm D such that

|Pr[D(Ĥ,H1r
T
1 ) = 1 | r1

U←− (GF(2))(n−k′)m, Ĥ = [H1|H2]]

− Pr[D(Ĥ, s) = 1 | s U←− U(n−k)m,1, Ĥ = [H1|H2]]| ≥ δ

for a small positive δ and the uniform distribution Uc,d over c × d random binary

matrices. Let suc be the event that D(Ĥ,H1r
T
1 ) = 1 where Ĥ is the public key matrix

and r1
U←− (GF(2))(n−k′)m. Then we construct an adversary D′ (see Figure 3) which

distinguishes a random matrix from Ĥ. The adversary D′ takes as input a matrix R.
Let Eran be the event that the matrix R is chosen randomly from uniform distribution
U(n−k)m,nm and Ere be the event that R be the public key matrix Ĥ constructed as
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D′(R)

1. R(n−k)m×nm = [(R1)(n−k)m×(n−k′)m|(R2)(n−k)m×k′m];

2. p
U←− {0, 1};

3. if p = 1
4. s1 = R1rT1 ;
5. p′ ←− D(R, s1);
6. else

7. s0
U←− U(n−k)m,1;

8. p′ ←− D(R, s0);
9. end if
10. if p = p′

11. return 1;
12. else
13. return 0;
14. end if

Fig. 3. Adversary D′ in the proof of Theorem 6

stated above using the public key pk generated by basicPKE.KeyGen(ppbasicPKE). Then

|Pr[p = p′|Ere]− Pr[p = p′|Eran]|
=|Pr[D′(Ĥ) = 1|public key matrix Ĥ = [M̂ |I(n−k)m] ∈ (GF(2))(n−k)m×nm]

− Pr[D′(R) = 1|R U←− U(n−k)m,nm]|
=AdvINDD′,Ĥ(λ) ≤ AdvIND

Ĥ
(λ) (see Definition 14).

When the event Ere occurs, we have R = Ĥ. Since D′ outputs 1 if and only if D
succeeds, we have Pr[p = p′|Ere] = Pr[suc]. When Eran occurs, the matrix R was
chosen randomly from uniform distribution U(n−k)m,nm. Therefore,

|Pr[p = p′|Eran]− 1/2|

=|Pr[D′(R) = 1|R U←− U(n−k)m,nm]− 1/2|

=|Pr[D(R, s1) = 1|R U←− U(n−k)m,nm]− Pr[D(R, s0) = 1|R U←− U(n−k)m,nm]|
=AdvdecisionD,SD (λ) ≤ AdvdecisionSD (λ)

as Pr[D(R, s0) = 1|R U←− U(n−k)m,nm] = 1/2. Note that when the algorithm D takes

uniformly distributed inputs, it outputs 1 with probability 1/2, i.e. Pr[D(Ĥ, s) =

1 | s
U←− U(n−k)m,1, Ĥ = [H1|H2]] = 1/2. Combining all the probabilities together,
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we have

δ ≤ |Pr[D(Ĥ,H1r
T
1 ) = 1 | r1

U←− (GF(2))(n−k′)m, Ĥ = [H1|H2]]

− Pr[D(Ĥ, s) = 1 | s U←− U(n−k)m,1, Ĥ = [H1|H2]]|
= |Pr[suc]− 1/2|
= |Pr[p = p′|Ere]− 1/2|
= |Pr[p = p′|Ere]− Pr[p = p′|Eran] + Pr[p = p′|Eran]− 1/2|
≤ AdvIND

Ĥ
(λ) + |Pr[p = p′|Eran]− 1/2|

≤ AdvdecisionSD (λ) + AdvIND
Ĥ

(λ).

This yields a contradiction since decisional SD problem is hard and Ĥ is indistin-
guishable. Hence,

|Pr[D(Ĥ,H1r
T
1 ) = 1 | r1

U←− (GF(2))(n−k′)m, Ĥ = [H1|H2]]

− Pr[D(Ĥ, s) = 1 | s U←− U(n−k)m,1, Ĥ = [H1|H2]]| ≤ δ (1)

Now, we construct a distinguisher B from an IND-CPA adversary A against the
scheme basicPKE as in Figure 4 where B distinguishes s̃1 = H1r

T
1 from the same

length random value s̃0 where r1
U←− (GF(2))(n−k′)m. In Figure 4, H2 is extracted

B(ppbasicPKE, pk, s̃)

1. (m0,m1) ←− A(ppbasicPKE, pk);

2. b
U←− {0, 1};

3. c = s̃ +H2mT
b ;

4. b′ ←− A(c);
5. if b = b′

6. return 1;
7. else
8. return 0;
9. end if

Fig. 4. A distinguisher B from the IND-CPA adversary A in the proof of Theorem 6

by B from Ĥ = [H1|H2] which is derived from pk = M̂ . Let RAN be the event that
s̃ (= s̃0) was chosen from the uniform distribution U(n−k)m,1 while RE be the event
that s̃ (= s̃1) is H1r

T
1 . We will say that A succeeds if b = b′ when the event RE

occurs and we call this event WIN. We get

|Pr[B(ppbasicPKE, pk, s̃) = 1|RE]− Pr[B(ppbasicPKE, pk, s̃) = 1|RAN]| ≤ AdvINDH1rT1
(λ).

(2)
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Note that when event RE occurs, we have s̃ = s̃1 = H1r
T
1 which is distributed exactly

as in the real execution as c = s̃ + H2m
T
b = H1r

T
1 + H2m

T
b = Ĥ[r1||mb]

T . Since
B outputs 1 if and only if A succeeds, we have Pr[B(ppbasicPKE, pk, s̃) = 1|RE] =
Pr[WIN]. On the other hand, when event RAN occurs, s̃ is distributed uniformly.
Therefore, s̃+H2m

T
b given to A is uniformly distributed as well. This means that A

obtains no information related to b. Since B outputs 1 if and only if A succeeds, we
can conclude that Pr[B(ppbasicPKE, pk, s̃) = 1|RAN] = 1/2. combining these results,
we obtain

|Pr[B(ppbasicPKE, pk, s̃) = 1|RE]− Pr[B(ppbasicPKE, pk, s̃) = 1|RAN]|
=|Pr[WIN]− 1/2| = AdvIND-CPA

basicPKE(A). (3)

From equations (2) and (3), we can say that the distinguisher B distinguishes s̃1 =
H1r

T
1 from the random value s̃0 of the same length with non-negligible probability if

the adversary A breaks the IND-CPA security with non-negligible probability. More
specifically, if AdvINDH1rT1

(λ) ≤ δ, then AdvIND-CPA
basicPKE(A) ≤ δ. From Equation (1), we can

conclude that the scheme basicPKE is IND-CPA secure if the decisional SD problem
is hard and the public key matrix Ĥ is indistinguishable. �

4 fullPKE: an OW-PCVA secure public key encryption

We now discuss a public key encryption fullPKE = (Setup,KeyGen,Enc,Dec) that is
constructed from the framework of basicPKE.

• fullPKE.Setup(λ) −→ ppfullPKE : A trusted authority runs basicPKE.Setup(λ),
chooses two cryptographic hash functions H : (GF(2))∗ −→ (GF(2))km, H1 :
(GF(2))∗ −→ (GF(2))k

′m and sets global parameters ppfullPKE = (k, k′, w, q,m, γ,H,H1)
taking security parameter λ as input.
• fullPKE.KeyGen(ppfullPKE) −→ (pk, sk) : A user generates public-secret key pair

(pk, sk) by running basicPKE.KeyGen(ppfullPKE) where pk = M̂ and sk = (z0, z1, . . . , zk−1).
• fullPKE.Enc(ppfullPKE, pk,m; r) −→ CT : An encryptor encrypts a message m ∈
M = (GF(2))k

′m using public parameters ppfullPKE and its public key pk as input
and produces a ciphertext CT as follows.

(i) Compute r = H(m) ∈ (GF(2))km, d = H1(m) ∈ (GF(2))k
′m.

(ii) Parse r = (ρ||σ) where ρ ∈ (GF(2))(k−k′)m, σ ∈ (GF(2))k
′m.

(iii) Set µ = (ρ||m) ∈ (GF(2))km.
(iv) Run Algorithm 2 using σ as a seed to obtain an error vector e of length

(n− k)m and weight w − wt(µ) and set e′ = (e||µ) ∈ (GF(2))nm.

(v) Use the public key pk = M̂ to construct the matrix Ĥ = (M̂ |I(n−k)m).

(vi) Compute c = Ĥ(e′)T .
(vii) Return the ciphertext CT = (c, d) ∈ C = (GF(2))(k+k′)m.
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• fullPKE.Dec(ppfullPKE, sk,CT) −→ m′ : On receiving the ciphertext CT, the de-
cryptor executes the following steps using public parameters ppfullPKE and its
secret key sk = (z0, z1, . . . , zk−1).

(i) Use the secret key sk = (z0, z1, . . . , zk−1) to form a parity check matrix H
and then find error vector e′′ of weight w and length nm as in the procedure
basicPKE.Dec.

(ii) Parse e′′ = (e0||µ′) ∈ (GF(2))nm and µ′=(ρ′||m′) ∈ (GF(2))km where e0 ∈
(GF(2))(n−k)m, ρ′ ∈ (GF(2))(k−k′)m, m′ ∈ (GF(2))k

′m.
(iii) Compute r′ = H(m′) ∈ (GF(2))km and d′ = H1(m′) ∈ (GF(2))k

′m.
(iv) Parse r′ = (ρ′′||σ′) where ρ′′ ∈ (GF(2))(k−k′)m, σ′ ∈ (GF(2))k

′m.
(v) Generate error vector e′0 of length (n− k)m and weight w−wt(µ′) by running

Algorithm 2 with σ′ as seed.
(vi) If (e0 6= e′0)∨ (ρ′ 6= ρ′′)∨ (d 6= d′), output ⊥ that indicates decryption failure.

Otherwise, return m′.

Correctness. The decoding algorithm in fullPKE.Dec uses the parity check matrix
H (derived from the secret key sk) and can correct upto k/2 errors. In our scheme,
the error vector e′ used in the procedure fullPKE.Enc satisfies wt(e′) = w ≤ k/2.
Consequently, the decoding procedure will recover the correct e′ as Lemma 4 (iv)
holds. We regenerate e′0 and ρ′′ and compare it with e0 and ρ′ obtained after de-
coding. Since the error vector generation uses a deterministic function to get a fixed
low weight error vector, e0 = e′0 and ρ′ = ρ′′ occurs.

Theorem 7. If the public key encryption scheme basicPKE =(Setup, KeyGen, Enc,
Dec) as described in Section 3 is IND-CPA secure (Definition 3 in Subsection 2.1),
then the public key encryption scheme fullPKE = (Setup,KeyGen,Enc,Dec) as de-
scribed above provides OW-PCVA security (Definition 4 in Subsection 2.1) when the
hash function H is modeled as a random oracle.

Proof. Let A be a PPT adversary against the OW-PCVA security of the encryption
scheme fullPKE with at most nH queries to the hash oracle H, nP queries to the
oracle PCO (Figure 1) and nV queries to oracle CVO (Figure 1). We show that
a PPT adversary against the IND-CPA security of the scheme basicPKE can be
constructed. First we define the sequence of games Gj, j = 0, 1, 2, 3, 4 in Figure 5
and Figure 6. The view of the PPT adversary A is shown to be computationally
indistinguishable in any of the consecutive games. Let Ej be the event that m′ = m∗

in game Gj, j = 0, 1, 2, 3, 4.
Game G0: Game G0 (Figure 5) is the standard OW-PCVA game (Definition 4). So

we have
Pr[E0] = AdvOW-PCVA

fullPKE (A).

Game G1: In the game G1, c∗ is computed by running basicPKE.Enc(ppbasicPKE, pk,
m∗; r∗) for the message m∗ and the queries to the oracles PCO and CVO are an-
swered as in Figure 7. When a query (m, c) is submitted to the oracle PCO, the
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• The challenger S generates ppfullPKE ←− fullPKE.Setup(λ) and (pk, sk) ←−
fullPKE.KeyGen(ppfullPKE) for a security parameter λ and sends ppfullPKE, pk to adversary A.

• The challenger S chooses a message m∗ ∈ M, computes the challenge ciphertext CT∗ =

(c∗,d∗)←− fullPKE.Enc(ppfullPKE, pk,m
∗; r∗) and sends it to A.

• The adversary A having access to the oracle OPCVA i.e. the oracle PCO(·, ·) and the ora-

cle CVO(·) (see Figure 1), outputs m′. Note that the oracle PCO takes a message m and a

ciphertext CT as input and checks if the message recovered from CT is m or not while the

oracle CVO takes a ciphertext CT as input distinct from the challenge ciphertext CT∗ and

checks whether the message recovered from CT belongs to the message space or not.

Fig. 5. Game G0 in the proof of the Theorem 7

challenger S decrypts c to recover m′ ←− basicPKE.Dec(ppbasicPKE, sk, c) and re-
turns 1 if m′ = m with basicPKE.Enc(ppbasicPKE, pk,m

′;H(m′)) −→ c. The condition
basicPKE.Enc(ppbasicPKE, pk,m

′;H(m′)) −→ c actually addresses the checking steps
(ii)-(iv) (described in Section 4) in fullPKE.Dec(ppfullPKE, sk,CT = (c,d)). On query
c 6= c∗ to the oracle CVO, the challenger computes m′ ←− basicPKE.Dec(ppbasicPKE, sk,
c) and returns 1 if basicPKE.Enc(ppbasicPKE, pk,m

′;H(m′)) −→ c with m′ ∈ M.
The challenger S maintains hash list QH (initially empty) to record random oracle
queries made to the hash oracle H with the convention that r = H(m) if and only if
(m, r) ∈ QH. Note that both the games G0 and G1 proceed identically. Therefore,
we get

Pr[E0] = Pr[E1].

Game G2: In game G2, a query c 6= c∗ to the CVO oracle is responded by first

• The challenger S generates ppbasicPKE ←− basicPKE.Setup(λ) and (pk, sk) ←−
basicPKE.KeyGen(ppbasicPKE) for a security parameter λ and sends ppbasicPKE, pk to ad-

versary A.

• The challenger S chooses a message m∗ ∈ M, computes c∗ ←−
basicPKE.Enc(ppbasicPKE, pk,m

∗; r∗) and sends it to A.

• The adversary A having access to the oracle OPCVA (the oracle PCO(·, ·) and the oracle

CVO(·)) along with the hash oracle H(·) (described in Figure 7), outputs m′.

Fig. 6. Sequence of games Gj , j = 1, 2, 3, 4 in the proof of the Theorem 7

decrypting c as with one which computes m′ ←− basicPKE.Dec(ppbasicPKE, sk, c) and
returning 1 if there exists a previous record (m, r) ∈ QH with basicPKE.Enc
(ppbasicPKE, pk,m; r) −→ c and m = m′.



26 Jayashree Dey and Ratna Dutta

PCO(m, c)

1. for games G1,G2 do
2. m′ ←− basicPKE.Dec(ppbasicPKE, sk, c);
3. if m′ = m and

basicPKE.Enc(ppbasicPKE, pk,m
′;H(m′))

−→ c
4. return 1;
5. else
6. return 0;
7. end if
8. end for
9. for games G3,G4 do
10. if basicPKE.Enc(ppbasicPKE, pk,m;H(m))

−→ c
11. return 1;
12. else
13. return 0;
14. end if
15. end for

H(m)

1. for game Gj , j = 1, 2, 3, 4 do
2. if ∃ r such that (m, r) ∈ QH
3. return r;
4. end if
5. end for
6. for game G4 do
7. if m = m∗;
8. QUERY = true;
9. abort;
10. end if
11. end for
12. for game Gj , j = 1, 2, 3, 4 do

13. r
U←− R;

14. QH = QH ∪ {(m, r)};
15. return r;
16. end for

CVO(c 6= c∗)

1. for game G1 do
2. m′ ←− basicPKE.Dec(ppbasicPKE, sk, c);
3. if m′ ∈M and

basicPKE.Enc(ppbasicPKE, pk,m
′;H(m′))

−→ c
4. return 1;
5. else
6. return 0;
7. end if
8. end for
9. for games G2 do
10. m′ ←− basicPKE.Dec(ppbasicPKE, sk, c);
11. if ∃(m, r) ∈ QH and m′ = m and

basicPKE.Enc(ppbasicPKE, pk,m; r) −→ c
12. return 1;
13. else
14. return 0;
15. end if
16. end for
17. for games G3,G4 do
18. if ∃(m, r) ∈ QH and

basicPKE.Enc(ppbasicPKE, pk,m; r) −→ c
19. return 1;
20. else
21. return 0;
22. end if
23. end for

Fig. 7. The Plaintext Checking Oracle PCO(·, ·), Ciphertext Validity Oracle CVO(·, ·) and hash oracle H(·)
for games Gj , j = 1, 2, 3, 4

Now we prove that the scheme basicPKE is γ-uniform.

Lemma 5. The scheme basicPKE is γ-uniform (Definition 2) with γ =
2−(k−k′)m(

(n−k)m
w−wt(µ)

) .

Proof of Lemma 5. Let c be a generic vector of the basicPKE ciphertext space
(GF(2))(n−k)m. Then either c is a word at distance w from the code, or it is not.
If it is not, the probability of c being a valid ciphertext is exactly 0. On the other
hand, suppose c is at distance w from the code. Then there is only one choice of
ρ with probability 1/2(k−k′)m and one choice of e with probability 1/

(
(n−k)m
w−wt(µ)

)
that

satisfy the equation (see steps (i) and (ii) in procedure basicPKE.Enc in Section 3),
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i.e. the probability of c being a valid basicPKE ciphertext is exactly γ = (1/2(k−k′)m)·
(1/
(

(n−k)m
w−wt(µ)

)
). Therefore, Prr←−R[c = basicPKE.Enc(ppbasicPKE, pk,m; r)] ≤ γ for any

c ∈ (GF(2))(n−k)m which completes the proof. � (of Lemma 5)

Now consider a query CVO(c). Let m′ ←− basicPKE.Dec(ppbasicPKE, sk, c). If
CVO(c) −→ 1 in game G2, then ∃ (m, r) ∈ QH with m′ = m and basicPKE.Enc
(ppbasicPKE, pk,m; r) −→ c (see line 11 in oracle CVO in Figure 7). Hence H(m′) =
H(m) = r and basicPKE.Enc(ppbasicPKE, pk,m

′;H(m′)) −→ c. This means CVO(c)
−→ 1 in game G1. If CVO(c) −→ 1 in game G1, then we can have CVO(c) −→ 0 in
game G2 ifH(m′) was not queried before in game G2. Let L be the event thatH(m′)
was not queried before the CVO oracle query. Games G1 and G2 are exactly the
same unless L occurs. Suppose that c is a valid ciphertext with respect to ppbasicPKE,
pk i.e., there exists m and r such that basicPKE.Enc(ppbasicPKE, pk,m; r) −→ c. Then
the probability of the event L for a single query is 2−γ where γ is the parameter
defined in Lemma 5. On the contrary, if c is an invalid ciphertext with respect to
ppbasicPKE and pk, the event L does not occur. As the adversary A can make at most
nV queries to the oracle CVO, we obtain

|Pr[E1]− Pr[E2]| ≤ nV · 2−γ.

Game G3: In game G3, the oracles PCO(m, c) and CVO(c) are simulated by the
challenger S without checking m = m′ where m′ ←− basicPKE.Dec(ppbasicPKE, sk, c)
(see line 10 of PCO oracle and line 18 of CVO oracle in Figure 7). In games G2

and G3, it can be noted that the adversary makes at most nH distinct queries
H(m1), H(m2), . . . ,H(mnH) to the hash oracle H. We consider such a query
H(mi) problematic if and only if it exhibits a correctness error in the scheme
basicPKE. As there is no correctness error in basicPKE, no query H(mi) is prob-
lematic. Consequently, games G2 and G3 are identical. Indeed, games G2 and G3

differ if the adversary A submits a PCO oracle query on (m, c) or a CVO oracle
query on c together with a H oracle query on m such that H(m) is problematic
and basicPKE.Enc(ppbasicPKE, pk,m;H(m)) −→ c. In this case, the challenger S will
answer the query with 0 in game G2 as m′ 6= m, while S will response the query
with 1 in game G3. Therefore, we have

Pr[E3] = Pr[E2].

Game G4: In game G4, the challenger S sets a flag QUERY=true and aborts (with
uniform random output), when the adversary A submits query to the hash oracle
H on m∗. Thus, games G3 and G4 differ if the flag QUERY=true is raised, meaning
that A made a query H on m∗, or, equivalently, (m∗, ·) ∈ QH. Hence, the games G3

and G4 behave identically unless QUERY = true occurs. So,

|Pr[E3]− Pr[E4]| ≤ Pr[QUERY = true].
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To get the bound for Pr[E4], we construct an adversary A′ against the OW-CPA
security of the scheme basicPKE simulating game G4 for A (see Figure 8). The
adversary A′ takes ppbasicPKE, pk, c

∗ as input, perfectly simulates game G4 for A and
finally outputs m′ = m∗ if A wins in game G4. Here, A uses the same PCO,CVO
oracles for game G4 in Figure 7 with the same hash oracle H for game G3 in Figure
7. Therefore, we get

Pr[E4] = AdvOW-CPA
basicPKE(A′).

A′(ppbasicPKE, pk, c∗)

1. m′ ←− AH(·),PCO(·,·),CVO(·)(ppbasicPKE, pk, c
∗);

2. return m′;

Fig. 8. Adversary A′ against OW-CPA security of basicPKE

Combining all the probabilities, we have

AdvOW-PCVA
fullPKE (A) = |Pr[E0]| = |Pr[E1]|

= |Pr[E1]− Pr[E2] + Pr[E2]|
≤ |Pr[E1]− Pr[E2]|+ |Pr[E2]|
≤ nV · 2−γ + |Pr[E3]|
= nV · 2−γ + |Pr[E3]− Pr[E4] + Pr[E4]|
≤ nV · 2−γ + |Pr[E3]− Pr[E4]|+ |Pr[E4]|
≤ nV · 2−γ + Pr[QUERY = true] + AdvOW-CPA

basicPKE(A′)

Now we consider the following relation between OW-CPA security and IND-CPA
security of a public key encryption scheme (see Remark 1).

Lemma 6. [27] Let PKE be a public key encryption scheme. Then, for any OW-
CPA adversary B, there exists an IND-CPA adversary A with the same running time
as that of B such that

AdvOW-CPA
PKE (B) ≤ AdvIND-CPA

PKE (A) + 1/|M|

where M is the message space.

As M = (GF(2))k
′m in basicPKE, we have by Lemma 6, we have

AdvOW-PCVA
fullPKE (A) ≤ nV · 2−γ + Pr[QUERY = true] + AdvIND-CPA

basicPKE(A′′) +
1

2k′m

for an IND-CPA adversary A′′. Now we construct another adversary D (Figure 9)
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D(ppbasicPKE, pk)

1. (m∗0,m
∗
1)

U←−M×M;

2. m′ ←− AH(·),PCO(·,·),CVO(·)(ppbasicPKE, pk, c
∗ ←− basicPKE.Enc(ppbasicPKE, pk,m

∗
b ; r∗b ));

3. b
′

=


0 for |QH(m∗0)| = 1, |QH(m∗1)| = 0;

1 for |QH(m∗0)| = 0, |QH(m∗1)| = 1;
U←− {0, 1} for |QH(m∗0)| = |QH(m∗1)|;

4. return b
′
;

Fig. 9. Adversary D against IND-CPA security of basicPKE

against the IND-CPA security of the scheme basicPKE which wins when the flag
QUERY=true is set in game G4. The adversaryD picks two random messages m∗0,m

∗
1

and runs A on (ppbasicPKE, pk, c
∗) where c∗ ←− basicPKE.Enc(ppbasicPKE, pk,m

∗
b ; r
∗
b),

b
U←− {0, 1}, is generated and sent by the IND-CPA challenger Ch in the IND-CPA

security game between Ch and D. Now consider the IND-CPA security game for
the adversary D with random challenge bit b. Let Z be the event that A queries
random oracle H on m∗1−b. Since the message m∗1−b is taken uniformly fromM and

independent from A’s view, we have Pr[Z] ≤ nH
2k′m

. Now let us assume the event that

Z did not happen which leads |QH(m∗1−b)| = 0. Here |QH(m)| denotes the number
of all (m, r) ∈ QH for a fixed m ∈M. Here, |QH(m)| is either 1 or 0 for a message
m. When QUERY=true occurs, the adversary A queries the random oracle H on m∗b .
Thus, |QH(m∗b)| = 1, |QH(m∗1−b)| = 0 (as Z did not happen) and therefore b = b′.
When QUERY=true does not occur, adversary A did not query the hash oracle H
on m∗b . So, |QH(m∗b)| = QH(m∗1−b)| = 0 and Pr[b = b′] = 1/2 as D chooses a random
bit b′. From all of these relations we can write

|Pr[b = b′|Z]− 1/2|+ |Pr[b = b′|Z]| ≥ |Pr[b = b′|Z] + Pr[b = b′|Z]− 1/2|
≥ |Pr[b = b′|Z]− 1/2|

which yields

AdvIND-CPA
basicPKE(D) +

nH
2k′m

≥ |Pr[b = b′|Z]− 1/2|

= |Pr[b = b′|QUERY = true] · Pr[QUERY = true]

+ Pr[b = b′|QUERY = true] · Pr[QUERY = true]− 1/2|
= |Pr[QUERY = true] + 1/2 Pr[QUERY = true]− 1/2|
= |Pr[QUERY = true] + 1/2(1− Pr[QUERY = true])− 1/2|
= 1/2 Pr[QUERY = true].

From the above relation and combining two IND-CPA adversaries A′′ and D to a
new IND-CPA adversary B we have

AdvOW-PCVA
fullPKE (A) ≤ nV · 2−γ + (2nH + 1)/2k

′m + 3 · AdvIND-CPA
basicPKE(B)
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which completes the proof. �

The OW-PCVA security for a PKE scheme (Definition 4 in Subsection 2.1) trivially
implies the OW-VA security of the scheme considering zero queries to the PCO(·, ·)
oracle. Therefore, the following corollary is an immediate consequence of Theorem
7.

Corollary 1. If the scheme basicPKE =(Setup, KeyGen, Enc, Dec) as described in
Section 3 is IND-CPA secure (Definition 3 in Subsection 2.1), then the public key en-
cryption scheme fullPKE = (Setup,KeyGen,Enc,Dec) as described in Section 4 pro-
vides OW-VA security (Definition 4 in Subsection 2.1) considering the hash function
H as a random oracle.

5 fullKEM: an IND-CCA secure key encapsulation
mechanism

We now present the details of our key encapsulation mechanism fullKEM = (Setup,
KeyGen,Encaps,Decaps) following the specifications of Definition 5.

• fullKEM.Setup(λ)−→ ppfullKEM: A trusted authority runs fullPKE.Setup(λ), chooses
another cryptographic hash function H2 : {0, 1}∗ −→ {0, 1}r and sets public pa-
rameters ppfullKEM = (k, k′, w, r, q,m, γ,H,H1,H2) taking security parameter λ
as input.

• fullKEM.KeyGen(ppfullKEM) −→ (pk, sk): A user generates public-secret key pair

(pk, sk) by running fullPKE.KeyGen(ppfullKEM) where pk = M̂ and sk = (z0, z1, . . . , zk−1).

• fullKEM.Encaps(ppfullKEM, pk)−→ (CT, K) : Given system parameters ppfullKEM
= (k, k′, w, r, q,m, γ,H,H1,H2) and public key pk = M̂ , an encapsulator pro-
ceeds as follows to generate a ciphertext header CT ∈ (GF(2))(k+k′)m and an
encapsulation key K ∈ {0, 1}r.

(i) Sample m
U←− (GF(2))k

′m and compute r = H(m) ∈ (GF(2))km, d = H1(m) ∈
(GF(2))k

′m.

(ii) Parse r as r = (ρ||σ) where ρ ∈ (GF(2))(k−k′)m, σ ∈ (GF(2))k
′m. Set µ =

(ρ||m) ∈ (GF(2))km.

(iii) Run Algorithm 2 to generate a unique error vector e of length (n − k)m and
weight w − wt(µ) using σ ∈ (GF(2))k

′m as a seed. Set e′ = (e||µ) ∈ (GF(2))nm.

(iv) Using the public key M̂ , construct the parity check matrix Ĥ = (M̂ |I(n−k)m)
for the the MDS code where n− k = k.

(v) Compute the syndrome c = Ĥ(e′)T ∈ (GF(2))(n−k)m and the encapsulation key
K = H2(m) ∈ {0, 1}r where H2 is the hash function given in ppfullKEM.

(vi) Publish the ciphertext header CT = (c,d) and keep K as secret.
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• fullKEM.Decaps(ppfullKEM, sk,CT)−→ K : On receiving a ciphertext header CT =
(c,d), a decapsulator executes the following steps using public parameters ppfullKEM
= (k, k′, w, r, q,m, γ,H,H1,H2) and its secret key sk = (z0, z1, . . . , zk−1).

(i) Using the secret key sk, form a parity check matrix H and then proceed to find
error vector e′′ of weight w and length nm as in the procedure fullPKE.Dec (i.e
as in basicPKE.Dec).

(ii) Let e′′ = (e0||µ′) ∈ (GF(2))nm and µ′=(ρ′||m′) ∈ (GF(2))km where e0 ∈
(GF(2))(n−k)m, ρ′ ∈ (GF(2))(k−k′)m, m′ ∈ (GF(2))k

′m.
(iii) Compute r′ = H(m′) ∈ (GF(2))km and d′ = H1(m′) ∈ (GF(2))k

′m extracting
H and H1 from ppfullKEM.

(iv) Parse r′ as r′ = (ρ′′||σ′) where ρ′′ ∈ (GF(2))(k−k′)m, σ′ ∈ (GF(2))k
′m.

(v) Run Algorithm 2 to generate an error vector e′0 ∈ (GF(2))(n−k)m determin-
istically of length (n − k)m and weight w − wt(µ′) using σ′ ∈ (GF(2))k

′m as
seed.

(vi) If (e0 6= e′0) ∨ (ρ′ 6= ρ′′) ∨ (d 6= d′), output ⊥ indicating decapsulation failure.
Otherwise, compute the encapsulation key K = H2(m′) where H2 is the hash
function given in ppfullKEM.

Correctness. Correctness of fullKEM follows from that of fullPKE.

Theorem 8. If the public key encryption scheme fullPKE = (Setup,KeyGen,Enc,Dec)
as described in Section 4 is OW-VA secure (Definition 4 in Subsection 2.1), then
the key encapsulation mechanism fullKEM = (Setup,KeyGen,Encaps,Decaps) as de-
scribed above provides IND-CCA security (Definition 6 in Subsection 2.2) when the
hash function H2 is modeled as a random oracle.

• The challenger S generates ppfullKEM ←− fullKEM.Setup(λ) and (pk, sk) ←−
fullKEM.KeyGen(ppfullKEM) for a security parameter λ and sends ppfullKEM, pk to the adver-

sary B.

• The PPT adversary B has access to the decapsulation oracle fullKEM.Decaps to which

B can make polynomially many ciphertext queries CTi and receives the corresponding key

Ki ∈ K = {0, 1}r from S.

• The challenger S chooses a random bit b from {0, 1}, runs fullKEM.Encaps(ppfullKEM, pk)

to generate a ciphertext-key pair (CT∗,K∗0 ) with CT∗ 6= CTi, selects randomly K∗1 ∈ K and

sends the pair (CT∗,K∗b ) to B.

• The adversary B having the pair (CT∗,K∗b ) keeps submitting polynomially many decap-

sulation queries on CTi 6= CT∗ and finally outputs b′.

Fig. 10. Game G0 in the proof of Theorem 8

Proof. Let B be a PPT adversary against the IND-CCA security of the fullKEM
providing at most nD queries to the oracle fullKEM.Decaps and at most nH2 queries to
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the hash oracleH2. We show that there exists a PPT adversaryA against the OW-VA
security of fullPKE. We begin with a sequence of games and the view of the adversary
B is shown to be computationally indistinguishable in any of the consecutive games.
Finally, we finish up in a game that statistically hides the challenge bit as needed.
The games are described in Figure 10 and Figure 11. Let Ej be the event that b = b′

in game Gj, j = 0, 1, 2, 3.
Game G0: As usual, game G0 (Figure 10) is the standard IND-CCA security game
for the fullKEM as in Definition 6 in Subsection 2.2 and we have

|Pr[E0]− 1/2| = AdvIND-CCA
fullKEM (B).

Game G1: In game G1, the challenger S chooses a message m∗ randomly and

• The challenger S generates ppfullPKE ←− fullPKE.Setup(λ), (pk, sk) ←−
fullPKE.KeyGen(ppfullPKE) for a security parameter λ and sends ppfullPKE, pk to B.

• The PPT adversary B has access to the decapsulation oracle Decaps (see Figure 12) to

which B can make polynomially many ciphertext queries CTi and gets the corresponding

key Ki ∈ K from S.

• The challenger S chooses a random bit b from {0, 1}, chooses a message m∗
U←−M, runs

fullPKE.Enc(ppfullPKE, pk,m
∗; r∗) to generate a ciphertext CT∗, computes K∗0 = H2(m∗),

selects randomly K∗1 ∈ K and sends the pair (CT∗,K∗b ) to B.

• The adversary B having the pair (CT∗,K∗b ) keeps submitting polynomially many

decapsulation queries on CTi 6= CT∗ to Decaps oracle and hash queries on mi to hash

oracle H2 and finally outputs b′ (see Figure 12 for hash oracle H2 and decapsulation oracle

Decaps).

Fig. 11. Sequence of games Gj , j = 1, 2, 3 in the proof of Theorem 8

computes the ciphertext CT∗ by running fullPKE.Enc(ppfullPKE, pk,m
∗; r∗). The chal-

lenger also maintains a hash list QH2 (initially empty) and records all entries of the
form (m, K) where hash oracle H2 is queried on some message m ∈ M. Here both
games G0 and G1 proceed identically and we get

Pr[E0] = Pr[E1].

Game G2: In game G2, the hash oracle H2 and the decapsulation oracle Decaps are
answered in such a way that they no longer use the secret key sk except for testing
whether fullPKE.Dec(ppfullPKE, sk,CT) ∈M for a given ciphertext CT (see line 12 of
Decaps oracle in Figure 12). The hash list QH2 stores all entries of the form (m, K)
where the hash oracle H2 is queried on some message m ∈ M. Another list QD

records entries of the form (CT, K) where either Decaps oracle is queried on some
ciphertext CT or the hash oracle H2 is queried on some message m ∈M satisfying
CT←− fullPKE.Enc(ppfullPKE, pk,m; r) with fullPKE.Dec(ppfullPKE, sk,CT) −→m.
Suppose ER denotes the event that a correctness error has occurred in the scheme
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H2(m)

1. for the game G1,G2,G3 do
2. if ∃K such that (m,K) ∈ QH2

3. return K;
4. end if
5. CT = (c,d)←− fullPKE.Enc(ppfullPKE, pk,m; r);

6. K
U←− K;

7. end for
8. for the game G3 do
9. if m = m∗ and CT∗ defined
10. Y = true;
11. abort;
12. end if
13. end for
14. for the game G2,G3 do
15. if ∃K′ such that (CT,K′) ∈ QD
16. K = K′;
17. else
18. QD = QD ∪ {(CT,K)};
19. end if
20. end for
21. for the game G1,G2,G3 do
22. QH2 = QH2 ∪ {(m,K)};
23. return K;
24. end for

Decaps(CT 6= CT∗)

1. for game G1 do
2. m′ ←− fullPKE.Dec(ppfullPKE, sk,CT);
3. if m′ = ⊥
4. return ⊥;
5. end if
6. return K = H2(m′);
7. end for
8. for games G2,G3 do
9. if ∃K such that (CT,K) ∈ QD
10. return K;
11. end if
12. if fullPKE.Dec(ppfullPKE, sk,CT) /∈M
13. return ⊥;
14. end if

15. K
U←− K ;

16. QD = QD ∪ {(CT,K)};
17. return K;
18. end for

Fig. 12. The hash oracles H2 and the decapsulation oracle Decaps for games Gj , j = 1, 2, 3 in the proof of
Theorem 8

fullPKE. More precisely, ER is the event where either the list QH2 contains an entry
(m, K) satisfying the condition fullPKE.Dec(ppfullPKE, sk, fullPKE.Enc(ppfullPKE, pk,m; r))
6= m or the list QD contains an entry (CT, K) satisfying the condition fullPKE.Enc
(ppfullPKE, pk, fullPKE.Dec(ppfullPKE, sk,CT); r) 6= CT or both.
Claim : In games G1 and G2, the view of B is identical unless the event ER occurs.
Proof of claim. To prove the claim, consider a fixed fullPKE ciphertext CT (placed as
a Decaps query) with m←− fullPKE.Dec(ppfullPKE, sk,CT). Note that when m /∈M,
the oracle Decaps(CT) returns ⊥ in both games G1 and G2. Let m ∈ M. Now we
prove that in game G2, Decaps(CT) −→ H2(m) for the fullPKE ciphertext CT of a
message m ∈ M with fullPKE.Enc(ppfullPKE, pk,m; r) −→ CT. We distinguish two
cases – B queries hash oracle H2 on m before querying the Decaps oracle on CT, or
the other way round.
Case 1: Let the oracle H2 be queried on m first by B before decapsulation query
on fullPKE ciphertext CT. Since Decaps oracle was not yet queried on CT, no en-
try of the form (CT, K) exist in the current list QD yet. Hence, besides adding

(m, K
U←− K) to the list QH2 (see line 22 of H2 oracle in Figure 12), the challenger

S also adds (CT, K) to the list QD (see line 18 of H2 oracle in Figure 12), thereby
defining Decaps(CT) −→ K = H2(m).
Case 2: Let the oracle Decaps be queried on fullPKE ciphertext CT before the hash
oracle H2 is queried on message m. Therefore no entry of the form (CT, K) exists in
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QD yet. Otherwise, H2 already was queried on a message m′′ 6= m (as Decaps oracle
is assumed to be queried first on CT and the oracleH2 was not yet queried on m) sat-
isfying fullPKE.Enc(ppfullPKE, pk,m

′′; r′′) −→ CT with fullPKE.Dec(ppfullPKE, sk,CT) −→
m′′. So, a contradiction arises to the fact that the same fullPKE ciphertext CT
is obtained for two different messages m′′,m using randomness r, r

′′
respectively

where r = H(m) 6= H(m′′) = r′′ for a cryptographically secure hash function H.
The randomness r = H(m) used in the encryption algorithm of the fullPKE is
generated determinitically using the message m and the hash function H. Con-
sequently, two different messages (m′ 6= m) can not yield the same ciphertext

CT. Therefore, Decaps oracle adds (CT, K
U←− K) to the list QD, thereby defin-

ing Decaps(CT) −→ K. When queried on m afterwards for hash oracle H2, an entry
of the form (CT, K) already exists in the list QD (see line 15 of H2 oracle in Figure
12). By adding (m, K) to the list QH2 and returning K, the hash oracle H2 defines
H2(m) = K ←− Decaps(CT).
Hence, B’s view is identical in games G1 and G2 unless ER occurs. � (of Claim)

As Pr[ER] = 0 for our fullKEM, we have

Pr[E1] = Pr[E2].

Game G3: In game G3, the challenger S sets a flag Y = true and aborts immediately
with uniformly random output when B queries the oracle H2 on m∗. Hence, we get

|Pr[E2]− Pr[E3]| ≤ Pr[Y = true].

In game G3, H2(m∗) will never be given to B neither through a query on the hash
oracle H2 nor through a query on the decapsulation oracle Decaps, hence bit b is
independent from B’s view. Therefore, Pr[E3] = 1/2. Now it remains to achieve the
bound Pr[Y = true]. To get this, we construct an adversary A against the OW-VA
security of the scheme fullPKE simulating the game G3 for the adversary B as in
Figure 13. Here B uses Decaps oracle as in Figure 13 with the same hash oracle

ACVO(·)(ppfullPKE, pk,CT
∗)

1. K∗
U←− K;

2. b′ ←− BDecaps(·),H2(·)(ppfullPKE, pk,CT
∗,K∗);

3. if ∃(m′,K′) ∈ QH2 such that
fullPKE.Enc(ppfullPKE, pk,m

′; r′) −→ CT∗

4. return m′;
5. else
6. abort;
7. end if

Decaps(CT 6= CT∗)

1. if ∃K such that (CT,K) ∈ QD
2. return K;
3. end if
4. if CVO(CT) = 0
5. return ⊥;
6. end if

7. K
U←− K;

8. QD = QD ∪ {(CT,K)};
9. return K;

Fig. 13. Adversary A against OW-VA security of fullPKE
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H2 for the game G2 as in Figure 12. The ciphertext validity oracle CVO(·) used in
Figure 13 is shown in Figure 1 which does the same work as in the Decaps oracle
in Figure 11 for game G3. Consequently, the simulation is perfect until the event
Y = true happens. Moreover, Y = true ensures that B has queried H2(m∗), which
implies that (m∗, K ′) ∈ QH2 for some K ′ ∈ K where the list QH2 is maintained by A
simulating G3 for B. In this case, we have fullPKE.Enc(ppfullPKE, pk,m

∗; r∗) −→ CT∗

and therefore the adversary A returns m∗. Therefore,

Pr[Y = true] = AdvOW-VA
fullPKE(A)

Combining all the probabilities, we get

AdvIND-CCA
fullKEM (B) = |Pr[E0]− 1/2|

= |Pr[E1]− 1/2|
= |Pr[E2]− 1/2|
= |Pr[E2]− Pr[E3]|
≤ Pr[Y = true]

= AdvOW-VA
fullPKE(A)

which completes the proof. �

Theorem 9. Assuming the hardness of decisional SD problem (Definition 13 in

Subsection 2.5) and indistinguishability of the public key matrix Ĥ (derived from the
public key pk by running fullKEM.KeyGen(ppfullKEM) where ppfullKEM ←− fullKEM.Setup(λ),
λ being the security parameter), the scheme fullKEM = (Setup,KeyGen,Encaps,Decaps)
described in Section 5 provides IND-CCA security (Definition 6 in Subsection 2.2)
when the hash functions H and H2 are modeled as random oracles.

Proof. The proof of the above theorem is the immediate consequence of Theorem 6,
Corollary 1 and Theorem 8.

Remark 4. To prove security in quantum random oracle model, it is necessary to
show post-quantum security of a scheme where the adversary can submit queries to
the random oracle having quantum access. We consider the security games in the
quantum random oracle model along with the classical random oracle model. The
adversaries equipped with a quantum computer are provided quantum access to the
random oracles and classical access to some other oracles like plaintext checking
oracles, ciphertext validity checking oracles, decapsulation oracles, etc. The scheme
basicPKE provides IND-CPA security as the decisional SD problem is hard and the
public key matrix is indistinguishable (see Theorem 6). Note that IND-CPA secu-
rity always implies OW-CPA security. We can show that OW-CPA security of the
encryption scheme basicPKE indicates OW-PCA security of fullPKE considering H
as a quantum random oracle which follows from Theorem 10 stated below.
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Theorem 10. If the public key encryption scheme basicPKE =(Setup, KeyGen, Enc,
Dec) described in Section 3 is OW-CPA secure (Definition 4 in Subsection 2.1), then
the public key encryption scheme fullPKE = (Setup,KeyGen,Enc,Dec) as described
in Section 4 provides OW-PCA security (Definition 4 in Subsection 2.1) when the
hash function H is modeled as a quantum random oracle.

Then, we can prove that OW-PCA security of fullPKE implies the IND-CCA
security of the KEM modeling H1,H2 as quantum random oracles by Theorem 11.

Theorem 11. If the public key encryption scheme fullPKE = (Setup,KeyGen,Enc,Dec)
described in Section 4 is OW-PCA secure (Definition 4 in Subsection 2.1), then the
scheme fullKEM = (Setup,KeyGen,Encaps,Decaps) as described in Section 5 achieves
IND-CCA security (Definition 6 in Subsection 2.2) when the hash functions H1 and
H2 are modeled as quantum random oracles.

Therefore, combining Theorem 6, Remark 1, Theorem 10 and Theorem 11, Theorem
12 can be obtained.

Theorem 12. Depending on the hardness of decisional SD problem (Definition

13 in Subsection 2.5) and indistinguishability of the public key matrix Ĥ (derived
from the public key pk by running fullKEM.KeyGen(ppfullKEM) where ppfullKEM ←−
fullKEM.Setup(λ), λ being the security parameter), our scheme fullKEM = (Setup,
KeyGen,Encaps,Decaps) described in Section 5 provides IND-CCA security (Defini-
tion 6 in Subsection 2.2) when the hash functions H,H1 and H2 are modeled as
quantum random oracles.

6 Conclusion

In this work, we give a proposal to design a key encapsulation mechanism based on
MDS codes. We have shown that our KEM protocol provides IND-CCA security in
the random oracle model and quantum random oracle model. In terms of storage,
our work seems well with other protocols based on coding theory as shown in Table
1. More specifically, we are able to reduce the secret key size. The ciphertext size in
our case is also shorter than some schemes for suitable parameters. In our proposal,
we exploits MDS codes that does not involve a correctness error like some lattice-
based schemes. From all of these aspects, we believe that our proposal to design a
KEM will offer a promising alternative in the area of post-quantum cryptographic
primitives.
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