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Abstract. We introduce a new key generation mechanism where users
can generate a “back up key”, securely nested inside the secret key of
a signature scheme. Our main motivation is that in case of leakage of
the secret key, established techniques based on zero-knowledge proofs of
knowledge are void since the key becomes public. On the other hand,
the “back up key”, which is secret, can be used to generate a “proof
of ownership”, i.e., only the real owner of this secret key can generate
such a proof. To the best of our knowledge, this extra level of security
is novel, and could have already been used in practice, if available, in
digital wallets for cryptocurrencies that suffered massive leakage of ac-
count private keys. In this work, we formalize the notion of “Proof of
Ownership” and “Fallback” as new properties. Then, we introduce our
construction, which is compatible with major designs for wallets based
on ECDSA, and adds a W-OTS+ signing key as a “back up key”. Thus
offering a quantum secure fallback. This design allows the hiding of any
quantum secure signature key pair, and is not exclusive to W-OTS+. Fi-
nally, we briefly discuss the construction of multiple generations of proofs
of ownership.

Keywords: Digital currencies · Hash-based signatures · Post-Quantum
Cryptography.

1 Introduction

Digital wallets allow users to securely store secret cryptographic keys
which can be used to spend cryptocurrency funds. These wallets, and cor-
responding keys, are becoming increasingly important as hackers attempt
to exploit eventual security flaws and, as a result, steal funds controlled
by such wallets. In practice, users rely on a few approaches. The most
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straightforward technique is to resort to secure hardware, i.e. hardware
wallets [1]. Another popular practice among practitioners is the technique
of hot/cold wallets [11], where, briefly, there is a hot wallet permanently
connected to the network, typically initiated with the public key and can
generate addresses for receiving funds. The cold wallet, on the other hand,
stores the secret key and is kept without network connection. This separa-
tion ensures that it is harder for attackers to gain access to secret keys as
they are kept offline. Despite these security enhanced wallets, we observe
that in the case of massive key leakage, including in the cold wallet, any
attempt of confirming the ownership of the leaked key is impractical, if
possible.

Massive leaks have already happened. We showcase our work by
highlighting the hack involving the Trinity wallet [24], which resulted in
the theft of roughly 1.5M USD. Trinity, an open-source software wallet
which enables users to manage their IOTA tokens, suffered from a hack
so severe that the IOTA Foundation decided to halt the coordinator node
and, as a result, temporarily stopped the confirmations of all transactions
on the network. To perform this attack, the adversary gained the ability to
load malicious code into the local Trinity wallet instances running on the
computers of the target users and retrieved the secret seeds—along with
the encryption passwords—to a malicious server owned by the attacker.
The adversary then waited for the release of a new software update, which
when installed resulted in overwriting the local cache of each compromised
user and cleaned the traces of the exploit. After performing this attack,
the adversary effectively gained access to secret keys that were—at least
temporarily—on hot storage, resulting in a massive leakage without a
practical solution for the users to prove ownership of their secret keys.

On a different threat vector, attacks against cold wallets storing el-
liptic curve secret keys are believed to be possible with the uprising of
quantum computing. Major cryptocurrencies are based heavily on the
ECDSA signature scheme. Therefore, an adversary capable of breaking
the elliptic curve discrete logarithm problem (ECDLP) can extract the
secret keys behind a wallet address, even though such keys never left the
cold storage.

Structure in the ECDSA secret key. In both attacks mentioned
earlier, the target is the secret key, i.e. the secret information kept by
the wallet. Prior to the leakage, standard technique to prove ownership
can be constructed by employing Zero Knowledge Proof of Knowledge
(ZKPK) Protocols. The security derives directly from the zero knowledge
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and soundness properties of ZKPK. However, in the case of a massive
leakage, any party can generate such proof. Therefore new techniques
should be developed.

The main technical challenge is to combine two cryptographic schemes
by adding the creation of “some structure” in the ECDSA secret key,
which allows for the introduction of some sort of “proof of ownership”
that prevents or at least minimizes the damage of situations like the IOTA
Hack, while also providing quantum resistance, in the case of the massive
leakage. Ideally, this new design should also be compatible with the cur-
rent address system of cryptocurrencies by not significantly changing the
ECDSA design.

We address the issue of guaranteeing backward compatibility with
ECDSA based wallets by adding a nested “back up key” to generate
a quantum secure “proof of ownership”. In other words, we propose a
technique to embed a nested private key (in addition to the ordinary
private key) to be used only in situations when it is necessary to prove
ownership.

1.1 Previous Work: Hash-based Signatures

We briefly describe hash-based signatures and focus on the one-time use
constructions, since these are the ones most closely related to our proposal
and offer quantum resistance.

Typically, every signature scheme requires the use of a cryptographic
hash function. Hash-based signature schemes rely solely on hash func-
tions and, as a result, do not require any additional cryptographic or
computational assumption. Since there are cryptographically-secure hash
functions that are considered unfeasible to invert (later we review a more
formal definition), users can provide a preimage that serves as proof of
ownership of a specific public key.

Lamport [20] proposed a signature scheme that relies only on the
security of one-way functions and can be used to sign multiple bits at
once. For simplicity, we illustrate the example of the signing of a single
bit, where the signer first generates two secret key values (x, y), and
publishes the corresponding pair of hash values as the public key PK =
(H(x),H(y)). The signer then releases the secret value x in case the bit
to be signed is 0, or releases the secret value y in case the bit is 1. One of
the main limitations of this scheme, however, is the fact that it can only
produce one-time signatures (OTS).

Shortly after Lamport’s publication, Winternitz [21] proposed a scheme
known as the Winternitz one-time signature (W-OTS), that allowed the
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signing of several bits at once as opposed to individual bits. In this scheme,
the public key is Hw(x) instead of the pair (H(x),H(y)). If the message
byte to be signed is, for example, 20, then the signature output is H20(x),
such that Hi(x) means i nested hashes of x. Moreover, to prevent an at-
tacker from modifying the signature, the signer also releases a checksum
value associated with the signed byte. This checksum is designed to pre-
vent the adversary to attempt to produce a forgery by increasing any of
the bytes without invalidating the resulting signature.

Hülsing [16] published an upgrade called W-OTS+ that shortens the
signatures size and increases the security of the original Winternitz scheme.
This construction uses a chaining function in addition to a family of keyed
functions, along with the XOR of a random value (or mask) before ap-
plying the one-way function to a specific ladder height.

1.2 Our Contribution

We start by defining two new properties we introduce. They are fallback
and proof of ownership. These properties extend the functionality of a
signature scheme by (1) allowing, considering a ECDSA scheme, the con-
tinued use of a signature scheme despite the leakage of the secret key,
albeit using a different scheme (i.e. variant of W-OTS+), and (2) prove
the ownership of a leaked key, even when it becomes public.

More concretely, regarding (1), in addition to the verification and
secret key, the generation algorithm of our constructions also outputs
the “back up key” which can be used with the secret key as a separate
(quantum secure) signature scheme for the fallback situation. In such sit-
uation, our construction is usable for existing wallets, and relies solely on
symmetric primitives which, when instantiated with the correct security
parameter, are conjectured secure even against adversaries with quantum
capabilities or adversaries with access to elliptic curve secret key material
stored on hot wallets. Our construction is easily extendable and relevant
in a hot/cold wallet setting where the hot wallet—permanently connected
to the network—contains the elliptic curve public key and, if needed, the
actual elliptic curve key pair. The cold wallet, on the other hand, is kept
without any network connection and stores the quantum-secure key pair,
including the “back up key”.

Regarding (2), we observe that a variant of the W-OTS+ signature
scheme nested into the main signature scheme can be used to prove the
ownership of an ECDSA secret key. Briefly, by design, the “back up key”
is the secret key of the internally nested scheme, i.e., W-OTS+, while
the ECDSA secret key is derived from the public key of the W-OTS+
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variant. Given that we have an internal signature scheme, the proof of
ownership for the, potentially leaked ECDSA secret key, is the W-OTS+

like signature. We emphasize that the combination of two different signa-
ture schemes is the main technical challenge of this work, and required
a new breakthrough which is the new signature variant we propose: the
Extended W-OTS+, i.e. eW-OTS+. Note that, likewise we adapt the
W-OTS+ signature scheme, other hash based signature schemes can also
be adapted in a similar fashion.

The ECDSA secret key is generated by combining the eW-OTS+ ver-
ification key ` tuple into a L-tree structure, similarly to other existing
proposals for other hash based signatures [10]. The resulting value is then
treated as the ECDSA secret key, making our practical key generation
mechanism especially suited for digital wallets, requiring no change on
existing blockchain system designs currently in use. We analyze the se-
curity of our construction starting by studying our proposed signature
scheme eW-OTS+ in the light of the existing attacks against symmetric
cryptographic primitives, including quantum ones as described in [15,23].
Finally, we implemented a prototype with full test coverage and compared
our results with reference implementations.

In summary, in this work we:

– introduce new properties for a digital scheme named fallback and proof
of ownership;

– propose a new variant of the W-OTS+ based signature scheme: Ex-
tended W-OTS+;

– construct a protocol, named Sleeve, for generation and verification of
a (single) proof of ownership π and formalize its security based on the
Extended W-OTS+;

– report on the results of the experiments of our prototype, which im-
plements the main routines of our construction;

– discuss how to extend our Sleeve construction for multiple proofs of
ownership.

We showcase our protocol Sleeve as a tool for a catastrophic scenario as
a massive leak of private information. As already happened [24], in order
to minimize the damage, the system could be halted, until all the honest
users are confirmed. The proof of ownership via Sleeve allows the users to
confirm their authenticity, and its addresses, using a back up key stored
separately (as will be formally introduced later when describing Sleeve)
and used only in situations like this. Furthermore, it is worth mentioning
that although it does not help in the return of the potentially already
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stolen funds, once the system is stopped, Sleeve allows the quick and safe
identification of the honest owners of the addresses.

2 Preliminaries

It is convenient to quickly review the ECDSA construction for digital
signature and W-OTS+ signature construction from [16].

Definition 1 (ECDSA). Given a hash function H, the ECDSA signa-
ture scheme is the tuple (Gen, Sign,Verify), defined as in Table 1:

Gen(1λ) SignH(m, sk) VerifyH(m, vk, σ)

x
$← Zp z ← H(m) Parse: (r, s)

p← σ

sk← x t
$← Zp If (r, s) /∈ Zp

vk← gx (ex, ey)← gt Return 0
return (vk, sk) r ← ex mod p w ← s−1

If r = 0 mod p z ← H(m)
Pick another t u1 ← zw mod p
and start again u2 ← rw mod p
s← t−1 · (z + r · sk) (ex, ey)← gu1 · vku2

If s = 0 mod p If (ex, ey) = (0, 0)
Pick another t Return 0
and start again Return r = ex mod p

Return σ = (r, s)

Table 1. ECDSA construction.

The W-OTS+ Construction. The Winternitz-OTS+ signature schemes
introduced by Hülsing [18] introduces an alternative signature scheme
with quantum resistance. Their construction relies on a hash family and
a chaining function which we now review.

Definition 2 (Family of Functions). Given the security and the Win-
ternitz parameters, respectively, λ ∈ N and w ∈ N, w > 1, let a family of
functions Hλ be {hk : {0, 1}λ → {0, 1}λ|k ∈ Kλ} with key space Kλ.

Definition 3 (Chaining Function). Given a family of functions Hλ,
x ∈ {0, 1}λ, an iteration counter i ∈ N, a key k ∈ Kλ, for j λ−bit strings
r = (r1, . . . , rj) ∈ {0, 1}λ×j with j ≥ i, then we have the chaining function
as follows

cik(x, r) =

{
hk(c

i−1
k (x, r)⊕ ri), 1 ≤ i ≤ j;

x, i = 0.
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GenkW (1λ) SignkW (m, sk)

Pick (`+ w − 1) λ-bit strings ri Compute m→ (m1, . . . ,m`1),
Set ski ← ri, for 1 ≤ i ≤ ` for mi ∈ {0, . . . , w − 1}
Set sk = (sk1, . . . , sk`) Compute checksum C =

∑`1
i=1(w − 1−mi),

Set r = (r`+1, . . . , r`+w−1) and its base w representation (C1, . . . , C`2),
Set vk0 = (r, k) for Ci ∈ {0, . . . , w − 1}
Set vki = cw−1

k (ski, r), 1 ≤ i ≤ ` Parse B = m‖C as (b1, . . . , b`1+`2)

Set vk = (vk0, vk1, . . . , vk`) Set σi = cbik (ski, r), for 1 ≤ i ≤ `1 + `2
Return (sk, vk) Return σ = (σ1, . . . , σ`1+`2)

VerifykW (m, vk, σ)

Compute m→ (m1, . . . ,m`1),
for mi ∈ {0, . . . , w − 1}

Compute checksum C =
∑`1
i=1(w − 1−mi),

and the base w representation (C1, . . . , C`2),
for Ci ∈ {0, . . . , w − 1}

Parse B = m||C as (b1, . . . , b`1+`2)
Return 1, if the following equations hold
vk0 = (r, k)

vki = cw−1−bi
k (σi, rbi+1,w−1) for 1 ≤ i ≤ `1 + `2

Table 2. W-OTS+ construction.

Additionally, we review the notation for the subset of randomness
vector r = (r1, . . . , r`). We denote by ra,b the subset of (ra, . . . , rb).

Definition 4 (W-OTS+). Given the security parameter λ, a chaining
function c, and k ← K from the key space K, the W-OTS+ signature
scheme is the tuple (GenW ,SignW ,VerifyW ), defined as in Table 2:

The Security of W-OTS+. The standard security notion for digital
signature schemes is existential unforgeability under adaptive chosen mes-
sage attacks (EU-CMA) which is defined using the following experiment.
By Dss(1λ) we denote a digital signature scheme (Dss) with security pa-
rameter λ, then we model the security by defining the security experiment
ExpEU-CMA

Dss(1λ) (A), as follows:

Experiment ExpEU-CMA
Dss(1λ) (A)

(sk, pk)←− keygen(1λ)
(M∗, σ∗)←− ASign(sk,·)(pk)
Let {Mi, σi}q1 be the query-answer pairs of Sign(sk, ·)
Return 1 iff Verify(pk,M∗, σ∗) = 1 and M∗ /∈ {Mi}1q
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We define the success probability of the adversary A in the above
EU-CMA experiment as

SuccEU-CMA
Dss(1λ) (A) = Pr[ExpEU-CMA

Dss(1λ) (A) = 1].

Definition 5 (EU-CMA). Let λ, t, q ∈ N, t, q = poly(λ), Dss a digital
signature scheme. We call Dss EU-CMA-secure, if the maximum success
probability InSecEU-CMA(Dss(1λ); t, q) of all possibly probabilistic adver-
saries A, running in time ≤ t, making at most q queries to Sign in the
above experiment, is negligible in λ:

InSecEU-CMA(Dss(1λ); t, q) = max {SuccEU-CMA
Dss(1λ) (A)} = negl(λ).

We note that our construction relies on the W-OTS+ signature scheme,
which is EU-CMA secure as long as the number of oracle queries of A is
limited to one (i.e., q = 1).

Finally, we review a crucial property for the hash function which is a
building block of the W-OTS+ signature scheme.

Definition 6 (Second preimage resistance). Given a hash function
family Hn, we define the success probability of an adversary A against
the second-preimage resistance of Hn as

SuccSPRHn (A) = Pr[K
$←−− {0, 1}k;M $←−− {0, 1}m;

M ′
$←−− A(K,M) : M ′ 6= M ∧HK(M) = HK(M ′)].

3 New Properties: Proof of Ownership and Fallback

Our protocol relies on a Digital Signature. We assume there is a genera-
tion algorithm Genπ(1λ) which outputs the pairs of keys, vk and sk, and
backup information bk. Whereas the pair is the regular verification key,
used for verifying a signature, and the secret-key used for issuing a signa-
ture, that allows the issuing of a ownership proof π, with the backup in-
formation bk, with respect to vk. More concretely, we require adding two
extra algorithms, (Proof,Verify-proof), to the tuple (Genπ, Sign,Verify),
turning into our protocol named Sleeve. Given Genπ(1λ) → (vk, sk, bk),
we have

– Proof(bk, c) → π: it is a PPT algorithm that on input of the backup
information bk and the challenge c, it outputs the ownership proof π;
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– Verify-proof(vk, sk, π, c)→ {0, 1}: it is a deterministic algorithm that
on input of a public-key vk, secret-key sk, a ownership proof π and a
challenge c, it outputs either 0, for an invalid proof, or 1 for a valid
one.

We remark that sk is used as a regular secret key with Sign and Verify.
Given the earlier formulation, we now introduce the property of Proof of
Ownership.

Definition 7 (Proof of Ownership). For any probabilistic polynomial
time (PPT) algorithm A, it holds

Pr[(vk, sk, bk)← Genπ(1λ) : (c∗, π∗)← A(sk, vk)

∧Verify-proof(vk, sk, π∗, c∗) = 1] < negl(λ)

for all the probabilities are computed over the random coins of the gener-
ation and proof verification algorithms and the adversary.

Remark 1 (Prove of knowledge is not enough). Note that an alternative
method to prove ownership of a secret-key, fairly straightforward in dis-
crete logarithm based signatures, relies on regular Zero Knowledge Proof
of Knowledge Protocol (ZKP), when the signer simply proves the knowl-
edge of the secret key. However we argue that, in the case where the secret
key is leaked, the security guarantees are voided in such method. On the
other hand, the early introduced definition requires a proof of ownership,
despite the secret key being already in possession of the adversary, thus
showing that knowledge of the secret key is not enough.

We now formally introduce the property which allows the permanent
switch from the secret key sk, e.g. in the case it is hopelessly public, to a
brand new “back up secret key” bk, that is, the new, and still protected,
secret key is only known to the signer. In addition to the new secret key
bk, there is also a brand new signature scheme where the new verification
key is the assumed leaked secret key sk.

Remark 2 (Informal meaning of proof). Our earlier definition for Proof of
Ownership is formally not a “proof” in the sense of ZKP. For example, it
is easy to see we skip completeness and zero-knowledge like security prop-
erties. Still following the analogy, our introduced property is equivalent
to the ZKP “soundness”, and that is enough for our purposes.

Definition 8 (Fallback). We say that the scheme (Genπ, Sign,Verify),
with secret and verification key respectively sk and vk such that Genπ(1λ)→
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(vk, sk, bk), has fallback if there are sign and verification algorithms Signπ
and Verifyπ such that sk and bk can be used as verification and secret keys
respectively, along with Signπ and Verifyπ to satisfy Definition 5.

Remark 3 (Use case for current blockchains-Tranfer of funds). It is worth
mention that the current blockhain designs are not compatible with hash
based signatures such as W-OTS+. However our design could be used to
authenticate to a third party, as, for example, in the case of [24]. Another
alternative is to rely on the fallback feature, and the proof of ownership,
to transfer the potentially endangered funds to an address or account of a
newly created public/private key. Note in such a case, the ECDSA secret
key could be exposed since the fund would be securely transferred to a
new and safe pair of keys.

4 Protocol Design Overview

Our construction for the Proof of Ownership as presented in Section 3
is heavily based on the W-OTS+ Signature Scheme. Before presenting
how to construct such proofs, we detail the adaptation of the original
construction, described in Definition 4, in order to introduce the Extended
W-OTS+ which will be used in combination with ECDSA.

4.1 Adaptation of W-OTS+

Roughly speaking, our construction allows users to generate a quantum
secure key pair and, from those values, derive an elliptic curve wallet to
be used for cryptocurrency transactions. For simplicity of explanation, we
assume the quantum-secure key material to be a W-OTS+ key pair and
the elliptic curve wallet to use the ECDSA algorithm. We note, however,
that our construction can be easily extended to use other cryptographic
primitives.

The L-Tree Data Structure. We rely on the data structure introduced
by Dahmen et al. [10] to keep the W-OTS+ public key. The L-Tree of
height h stores 2h leaves (such that 2h ≥ ` + 1, the size of W-OTS+

public key). Each node of the tree is denoted by yi[j], for node index
from left to right is j = 0, . . . , 2i − 1 and i = 0, . . . , h, and the root is
the node y0[0]. The nodes of the tree are computed using a hash function
Hx selected from a keyed hash family H = {Hx : {0, 1}2n → {0, 1}n}x∈K.
On a given level i and node j of the tree, each input is computed by the
concatenation of the left and right children nodes outputs, after each was
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bit wise XORed by the masks vi[0] and vi[1], for n-bit strings chosen at
uniformly at random. More formally, for i = h, . . . , 0 and j = 0, . . . , 2i−1,
we have

yi[j] = Hx((yi+1[2j]⊕ vi[0])‖(yi+1[2j + 1]⊕ vi[1])).

The Typical Combination of W-OTS+ and L-Tree. Since its intro-
duction in [10], L-Trees have been used in combination with hash based
signature schemes [17]. For simplicity, we describe a typical combina-
tion between W-OTS+ and L-Tree. Later we adapt this construction to
suit our Extended W-OTS+ proposal. The L-Tree construction introduces
three extra sets of values for the verification key W-OTS+

vk, in addition
to vk = (vk0, vk1, . . . , vk`) as given by Table 2. They are
– The hash family index x;
– The XOR masks vi[0] and vi[1] for i = 0, . . . , h;
– The root value y0[0].

In order to create a new wallet, a user randomly generates a cryp-
tographicaly secure seed value, to be used to derive the W-OTS+ public
seed, the W-OTS+ secret keys (sk1, ..., sk`), and the hash key x. Once the
derivation step is completed, clients use the chaining function to obtain
all the W-OTS+ ladder values. The top ladder values are the components
of the W-OTS+ public key, which are compressed into a single value using
the earlier described L-Trees. Let this value be Lv,x(vk0, vk1, . . . , vk`) for
the set of h XOR masks and hash family index x.

L-Tree and Extended W-OTS+. We now propose a new construction
for W-OTS+, denoted Extended W-OTS+ (eW-OTS+). The motivation
of the novel design is to allow the nesting of the W-OTS+ public key into
a regular ECDSA secret key, and yet allow the construction of proofs of
ownership. This combination of keys will be presented later. The main
differences between W-OTS+ and the eW-OTS+ designs are (1) the key
generation algorithm incorporates the typical construction with L-Tree
earlier described into the key generation, (2) the regular W-OTS+ public
key is changed to pk, and (3) the secret key tuple has an extra term, i.e.
sk0, instead of the regular terms sk1, . . . , sk`. eW-OTS+ is introduced
because we assume that the nested W-OTS+ public key is in the public
domain and, without this extension, any adversary would be able to ob-
tain the ECDSA secret key value by simply hashing the W-OTS+ public
key. The full construction is given by Definition 9.

Definition 9 (eW-OTS+). Given the security parameter λ, a chaining
function c, and k ← K from the key space K, an unkeyed hash function H,
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GenkeW (1λ) SignkeW (m, sk)

Pick (`+ w − 1) λ-bit strings ri Parse sk→ (sk0, sk1, . . . , sk`)
Pick a hash index family x Parse sk0 → (v, x)
Pick h pairs v = (v1[0], v1[1], . . . , vh[0], vh[1]) Set σ0 = sk0
sk0 = (v1[0], v1[1], . . . , vh[0], vh[1], x) Compute m→ (m1, . . . ,m`1),
Set ski ← ri, for 1 ≤ i ≤ ` for mi ∈ {0, . . . , w − 1}
Set sk = (sk0, sk1, . . . , sk`) Compute checksum C =

∑`1
i=1(w − 1−mi),

Set r = (r`+1, . . . , r`+w−1) w-base representation (C1, . . . , C`2),
Set vk0 = (r, k) for Ci ∈ {0, . . . , w − 1}
Set vki = cw−1

k (ski, r), 1 ≤ i ≤ ` Parse B = m‖C as (b1, . . . , b`1+`2)

Set L = Lv,x(vk1, . . . , vk`) Set σi = cbik (ski, r), for 1 ≤ i ≤ `1 + `2
Set pk = (vk0, L, sk0) Return σ = (σ0, σ1, . . . , σ`1+`2)
Return (sk, pk)

VerifykeW (m, pk, σ)

Parse pk→ (pk0, pk1, pk2)
Parse pk0 → (r, k)
Parse σ → (σ0, σ1, . . . , σ`1+`2), σ0 → (v, x)
Compute m→ (m1, . . . ,m`1),

for mi ∈ {0, . . . , w − 1}
Compute checksum C =

∑`1
i=1(w − 1−mi),

and the base w representation (C1, . . . , C`2),
for Ci ∈ {0, . . . , w − 1}

Parse B = m||C as (b1, . . . , b`1+`2)

Set vki = cw−1−bi
k (σi, rbi+1,w−1) for 1 ≤ i ≤ `1 + `2

Compute the L-Tree root as Lv,x(vk1, . . . , vk`1+`2)
Return 1, if the following equations hold
pk1 = Lv,x(vk1, . . . , vk`1+`2)
pk2 = σ0

Table 3. Extended W-OTS+ Signature Scheme with the changes from the original
W-OTS+ construction (Table 2) highlighted in blue. The changes introduced by our
construction are necessary in order to be used in combination with ECDSA signatures.

then the eW-OTS+ signature scheme is the tuple (GeneW ,SigneW ,VerifyeW ),
defined as in Table 3:

Note that the Extended W-OTS+ construction has as key pair (sk, pk)
which differs from the regular construction (sk, vk) of W-OTS+. The
reader will certainly notice the need for the notation change in the public
key from vk to pk in the next section, when the combination between
ECDSA and eW-OTS+ is described and we use both terms.

The ECDSA Key Pair from eW-OTS+. We assume that the elliptic
curve wallet is generated in a one-way manner, which means that if the
ECDSA wallet is compromised, then the user can prove ownership of the
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wallet by providing a signature from the eW-OTS+ key pair, which is
assumed secure. More formally pk = (vk0, L, sk0), as defined in Table 3,
is the input in a unkeyed hash function H, resulting in H(vk0,H(L, sk0)),
which is the ECDSA private key, sk, and can be used to calculate the pub-
lic key using the trapdoor function of the signature scheme. The ECDSA
public and secret key are, respectively, skECDSA = H(vk0,H(L, sk0))
and vkECDSA = gH(vk0,H(L,sk0)). Figure 1 illustrates a simplified dia-
gram of our construction. Typically cryptocurrencies, such as Bitcoin [22],
Ethereum [26], Cardano [2] and even general frameworks [19] for wallet
address are built by hashing the ECDSA public key. Therefore, to in-
tegrate our construction in certain settings, an additional hash of the
elliptic curve public key value is necessary, i.e. H(vkECDSA).

4.2 Ownership Proof Generation and Verification

As described in Section 3, the signature scheme that offers Proof of
Ownership is a tuple (Genπ,Sign,Verify,Proof,Verify-proof), such that
Genπ(1λ)→ (vk, sk, bk), Proof(bk, c)→ π and Verify-proof(vk, sk, π, c)→
{0, 1}. In order to construct such scheme we combine the ECDSA and
eW-OTS+ designs. The generation and verification of signatures are re-
spectively carried by Sign and Verify as regular ECDSA signatures. The
proof of ownership is put forth by the eW-OTS+ design via the Proof
and Verify-proof algorithms. Put simply, the tuple (vk, sk) is the reg-
ular ECDSA key pair, such that sk is generated from the underpin-
ning eW-OTS+ public key pk. Whereas bk is the eW-OTS+ secret key
(sk0, sk1, . . . , sk`) corresponding to pk.

It remains to introduce the Genπ algorithm to generate the tuple
(vk, sk, bk).

The Generation of the “back up key”. Intuitively, the proof of own-
ership of the key, requires similar properties of an identification scheme
between a prover and a verifier instantiated by a particular signature
scheme. In our construction, the identification scheme is based on the ear-
lier introduced eW-OTS+ design. More concretely, given a challenge as a
message provided by the verifier, the prover only needs to sign this mes-
sage with bk. As described earlier, let the ECDSA key pair be sk = H(pk),
for pk = (vk0, L, sk0), and vk = gH(vk0,H(L,sk0)) for an unkeyed hash
function H. Therefore the “back up secret key” bk is (sk0, sk1, . . . , sk`),
the eW-OTS+ secret-key, is illustrated in Table 3. For completeness, we
present the construction of algorithm Genπ(1λ)→ (vk, sk, bk). Note that
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in the following construction, the key pair (vk, sk) can be used as reg-
ular signature (i.e. for the ECDSA Signature), that is with algorithms
(Sign,Verify) as in Table 1.

Generation and Verification of the Proof π. Whereas the reg-
ular ECDSA signatures are generated and verified via the pair of al-
gorithms (Sign,Verify) and the keys (sk, vk) generated via construction
Table 4. The proof generation and verification are done via the algo-
rithms for W-OTS+ described by Table 3. More concretely, the algo-
rithm Proofk(bk, c), for a challenge c, is implemented by the algorithm
SigneW , whereas the proof verification Verify-proof(vk, sk, π, c) is based
on an adaptation of the signature verification VerifykeW (pk, σ,m). The full
description of the procedure is on Table 5.

We argue that the construction can be extended to provide multiple
proofs of ownership by adding more eW-OTS+ instances “underneath”
the main one presented in Table 4. For the purpose of this work and also
for page limitation, it is not necessary to fully describe the algorithms.
However we present an informal description of the construction later in
Section 9.

Practical Considerations. The back up key bk is not necessary to the
regular use in combination with the ECDSA scheme, i.e. the blockchain

Genkπ(1λ)

Pick uniform random strings (`+ w − 1) λ-bit strings ri
Set bki ← ri, for 1 ≤ i ≤ `
Pick a hash index family x
Pick n-bit random masks vi[0] and vi[1], for i = 0, . . . , log `
Set bk0 = (v1[0], v1[1], . . . , vlog `[0], vlog `[1], x)
Set bk = (bk0, bk1, . . . , bk`)
Set r = (r`+1, . . . , r`+w−1)
Set vk0 = (r, k)
Set vki = cw−1

k (bki, r), 1 ≤ i ≤ `
Set nodes yi[j] for j = 0, . . . , `− 1 and i = log `, . . . , 0 as

ylog `[0] = Hx(vk1), . . . , ylog `[`− 1] = Hx(vk`)
yi[j] = Hx((yi+1[2j]⊕ vi[0])‖(yi+1[2j + 1]⊕ vi[1]))

Set L = y0[0]
Set sk = (vk0, L, bk0)

Set vk = gH(vk0,H(L,bk0))

Return (sk, vk, bk)

Table 4. The algorithm Genπ, likewise the eW-OTS+ construction, adds a L data
structure into its procedure, and outputs also the “back up secret key” bk.
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Verify-proof(vk, sk, c, π)

Parse sk→ (sk0, sk1, sk2)
Parse sk0 → (r, k)
Parse π → (π0, π1, . . . , π`1+`2), π0 → (v, x)
Compute c→ (c1, . . . , c`1),

for ci ∈ {0, . . . , w − 1}
Compute checksum C =

∑`1
i=1(w − 1− ci),

and the base w representation (C1, . . . , C`2),
for Ci ∈ {0, . . . , w − 1}

Parse B = c||C as (b1, . . . , b`1+`2)

Set vki = cw−1−bi
k (πi, rbi+1,w−1) for 1 ≤ i ≤ `1 + `2

Compute the L-Tree root as L = Lv,x(vk1, . . . , vk`1+`2)
Return 1, if the following equations hold
sk1 = L
sk2 = π0

vk = gH(sk0,H(L,π0))

Table 5. The verification of the proof π adapts the verification procedure for eW-OTS+

by adding an extra check on the ECDSA verification key vk.

use. In order to guarantee a secure and legit use of the bk, that is the
generation of proof of ownership in case of a catastrophic leakage, bk

should be kept in a separate storage, i.e. cold storage.

5 Ownership, Fallback and eW-OTS+ Security

Here we argue about the properties of our construction for Sleeve, pro-
viding Fallback and generation of Proof of Ownership. However, first we
describe the security level provided by our design based on the eW-OTS+

construction of Table 3, and we consider it has a security level λ if a suc-
cessful attack is expected to require on average 2λ−1 evaluations of the
used hash function family.

Unforgeability of eW-OTS+. More concretely, we base the security of
the extended W-OTS+ on the existential unforgeability of the underlying
W-OTS+ signature scheme and the (multi-target) second preimage resis-
tance of the used hash function. Recall that the existential unforgeability
under chosen message attack (EU-CMA) for one-time signature schemes
is defined when the number of signature queries is limited to 1 [16]. Then
we have the following theorem.

Theorem 1. Given the EU-CMA security of W-OTS+, the Extended
W-OTS+ from Table 3 is existentially unforgeable under adaptive chosen
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message attacks, if Hn is from a second-preimage resistant hash function
family.

Proof. W-OTS+ uses a family of functions Fn : {fk : {0, 1}n → {0, 1}n|k ∈
Kn} with a key space Kn. We know from [16] that, to attack the EU-CMA
property, an adversary A must be able to break the following security
level, λ1, such that λ1 > n− log2(w

2`+ w).
Alternatively, A may attempt to subvert the underlying hash function

H we introduce in our construction.
To successfully attack this additional step introduced in the extended

W-OTS+ and produce a forged signature, A must break the second-
preimage resistance property of H and find a colliding L(W-OTS+

vk)
′ that

matches the target hash output.
We show in Appendix A that the cost of this attack for an n-bit hash is

2n. Additionally, we know that in a real-world cryptocurrency setting, the
adversary has the advantage of being able to perform multi-target attacks
on any of the existing d outputs, which results in the following security
level of λ2 6 n1 − log2(d). Given the above tight bounds, we obtain the
security level (λ) of the extended W-OTS+, which is λ ≤ min {λ1, λ2}.

For simplicity, we assume that n = n1. We, therefore, obtain that the
best attack against the extended W-OTS+ construction is the same attack
against the original W-OTS+. As a result, if the adversary is able to break
the EU-CMA property of the extended W-OTS+, then it can break the
unforgeability of the original W-OTS+. Therefore, our construction is no
weaker than the original as long as the output of the used hash function
H is n1 > n.

Security regarding Ownership and Fallback. Now we describe the
security of our scheme (Genπ, Sign,Verify, Proof, Verify-proof). Given the
eW-OTS+ construction from Table 9, let SigneW be the algorithm Proof,
Genπ is given by Table 4, while Verify-proof is given by Table 5, finally Sign
and Verify are the ECDSA algorithms for signing and verifying signatures,
respectively. For readability, let (Genπ, Sign,Verify, Proof, Verify-proof) be
known as Sleeve (as already mentioned in Section 3). Then we can claim
the following properties of Sleeve.

Corollary 1. Sleeve generates a single proof of ownership π as per Defi-
nition 7.

Proof. (Sketch) The proof π is an eW-OTS+ signature on a challenge c.
Given the security of eW-OTS+ stated by Theorem 1, thereby π generated
by Sleeve satisfies Definition 7.
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Now we show that tuple (Genπ, Sign,Verify), parsed from Sleeve pro-
vides a Fallback signature scheme.

Theorem 2. The tuple (Genπ,Sign,Verify), derived from Sleeve, has the
Fallback property as per Definition 8.

Proof. (Sketch) Following Definition 8, we need to show that there are
algorithms Signπ and Verifyπ, such that sk and bk can derive regular
verification and secret signatures. By considering the original construction
Sleeve, we have that Signπ = Proof and Verifyπ = Verify-proof, and this
ends the proof.

6 Applications

We divide this section into two parts. First, we describe a concrete exam-
ple of how to proceed upon the suspicion of the existence of a successful
attack against the computational assumptions that ensure the security
of the ECDSA algorithm. Secondly, we introduce different real-world use
cases that allow users to prove ownership of their wallet in the event
where the ECDSA secret key is leaked, but the Sleeve backup key remains
safe.

Hard Fork. If an attacker A is able to steal the secret keys behind a
cryptocurrency wallet, then A is able to steal all the funds associated
with that wallet. Since a Sleeve proof-of-ownership does not convince A
to return the stolen funds, at first glance it may appear that there is no
reason to have a fallback mechanism as all these funds are gone.
Sleeve is better suited for situations where the signature scheme associ-

ated with the quantum-secure backup can be used as a direct replacement
for the original scheme. In a blockchain, this signature transition is only
possible by making significant changes in the protocol, which create an
alternative blockchain. This process is known as a hard fork. Using our
construction, any blockchain can perform a signature scheme transition
and allow any user to claim ownership of potentially stolen funds. As
quantum algorithms become practical, blockchain platforms can recom-
mend their users to create new wallet addresses using the Sleeve structure
such that, when a hard fork is required, any user can produce a proof-
of-ownership to transfer the funds to an address containing a new public
key.
Sleeve becomes even more applicable in token sales settings where the

smart contracts enforce lockup periods to restrict buyers from selling
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purchased tokens. If there is evidence of a quantum attack against a
blockchain, users can utilize the Sleeve construction to prove ownership
of potentially compromised tokens and redeem them in an alternative
manner while the lockup period is still active, thus ensuring that no theft
occurs.

Revoking Wallet Addresses. It is extremely important for users to
have the ability to revoke a wallet address they own. Therefore, user Alice
should have the ability notify the network that a specific wallet address
is to be considered invalid and rejected by the nodes when attempting to
make a payment. Alice, in this example, has her ECDSA secret key stolen
and revokes her stolen wallet address by creating a proof-of-ownership,
using her backup key, to inform the network that her address is compro-
mised and, simultaneously introduce a new wallet address to contain the
funds associated with the initial wallet.

Insurance. An insurance company may, for example, need to refund
a group of protected customers after a set of ECDSA private keys are
leaked and the associated funds stolen. Any user whose key is present in
this leak, if in possession of their Sleeve backup key, can remotely prove
that they are the true owners of a specific wallet address and prove to the
insurance company that they are entitled to the refund. The insurance
company knows that an adversary is not able to produce such a forgery
unless both keys are compromised.

7 Discussion

In this section we briefly discuss selected issues and analyze open problems
as well as some future work challenges.

Fail-stop Signatures. Traditional digital signatures allow a user Alice
to produce signatures such that everyone who knows the public key of
the signer Alice can verify such signature. Such signatures are computa-
tionally secure for the signer as they can be forged by an adversary with
quantum capabilities. Once a signature is forged, it is difficult for the
honest signer Alice to convince third parties that she did not produce the
forged signature.

Fail-stop signatures [25] solve this problem by offering the signer a
method to prove that a forgery took place. After receiving such a proof,
the system should be stopped. As a result, the signer is protected from
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an arbitrarily powerful forgery since all participants, or an eventual sys-
tem operator, know the signature scheme is broken, and should halt the
system.

A possible enhancement for Sleeve is to alter the key generation to
support the the integration of fail-stop signatures. Instead of generating
an ECDSA keypair from a hash-based key, users can generate a fail-stop
keypair as this would allow a user to prove that a rogue signature is
indeed a forgery and therefore instantiate the backup key to prove the
true ownership of a key pair.

Tweakable Hash Functions. In hash-based signature schemes, it is
important to use constructions that use security notions such as second-
preimage and preimage resistance instead of collision resistance. Different
hash-based schemes focus on different ways to achieve these more specific
security notions as they substantially enhance the security level of the
produced signatures. However, the main idea behind the different con-
structions to achieve these specific security notions is similar enough that
it is possible to create an abstraction, such that it is not necessary to pro-
vide a new security analysis for each of the alternatives to move towards
(second) preimage resistance.

The work from [5] introduces an abstraction—called tweakable hash
functions—which allows protocol designers to unify the description of
hash-based signature schemes, separating the exact details of how the
scheme computes tree nodes typically used in hash-based constructions.
This division allows for the separation of the analysis of the high-level
construction from the analysis of how this computation is done. As a
result, changing the way nodes are computed in a hash-based signature
scheme only requires analyzing the hashing construction as a tweakable
hash function.

One optimization we introduce is the use of tweakable hash functions
to compress all the W-OTS+ top ladder values into a single root value,
which results in a more simplified implementation with better perfor-
mance.

Cold Storage. Using Sleeve does not necessarily imply that both the
ECDSA secret key and the backup key should be stored in different cold
storage units. For example, a quantum adversary can gain rogue access
to an ECDSA secret key by breaking the discrete log problem using only
public information such as the public keys that are present in a blockchain.
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In this setting, the fallback key remains securely stored and can be freely
used by the wallet owner.

To increase the security of Sleeve it is possible, however, to use different
storage for the secret key and the backup key to ensure that if a wallet
owner moves the ECDSA secret key to a hot wallet, and such a wallet
is compromised, then the owner remains protected as the adversary A
should not be able to gain access to the cold wallet containing the Sleeve
backup key.

Backwards Compatibility. Ideally, users should be able to use the
ideas behind Sleeve to use the seed phrase of a hierarchical deterministic
wallet and retroactively prove ownership of a specific wallet address. The
feasibility of this remains undefined and represents an interesting future
work challenge as it would allow any user to utilize this approach and
have the ability to prove ownership of wallet address with guaranteed
backwards compatibility with any wallet that supports the use of seed
phrases to generate hierarchical deterministic wallets.

We note that our construction preserves the structure of both the
ECDSA private and public keys, and if the user actually relies on two
different cold storage solutions—one for the ECDSA key and the other
for the Sleeve backup key—then it is possible to achieve backwards com-
patibility as the storage of the ECDSA key pair does not require any
particular or different treatment.

To support the Sleeve backup key, however, both the wallets and the
blockchain require protocol modifications. Wallets require modification to
have the ability to generate hash-based signatures, while the blockchain
needs to be modified to have the ability of verifying these hash-based
signatures.

Compatibility with different post-quantum signature schemes.
Sleeve is designed in a modular manner that allows the hiding of any
quantum secure signature key pair, and is not exclusive to W-OTS+. In
this paper, we particularly focus on W-OTS+ as a fallback for ECDSA
because it corresponds to the real-world use case that inspired the cre-
ation of this construction. Platforms, however, have the flexibility to use
different signature schemes accordingly.

Informal Multiple Proofs Construction. The construction intro-
duced in Section 4 allows only a single proof. The reason is that eW-OTS+
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signature scheme is one-time signature scheme. Here we informally de-
scribe a construction to allow the generation of several proofs. The ba-
sic change is in the generation of the secret-key tuple bk0, bk1, . . . , bk`.
Whereas in the previous constructions of Tables 3 and 4 the values in
the tuple are picked at random, the extended version computes t tu-

ples, where each set of values (bk
(j−1)
0 , bk

(j−1)
1 , . . . , bk

(j−1)
` ) is generated

from executing a Key Derivation Function (KDF) from the previous tuple

(bk
(j)
0 , bk

(j)
1 , . . . , bk

(j)
` ), for j ≤ t. More concretely, bk

(j−1)
1 = KDF (L(j)),

and bk
(j−1)
i = KDF (L(j)||salt(j−1)||i) for 1 < i ≤ `, randomly chosen

values salt(j−1) and the L-Tree root value L(j) of the underlying con-
struction i.e. eW-OTS+ instance with index j. Thus, for a t-backup key
value construction, the generation is as follows:

– Pick bk
(j)
0 = (x(j), v

(j)
1 [0], v

(j)
1 [1], . . . , v

(j)
log `[0], v

(j)
log `[1]), for 1 ≤ j ≤ t;

– Pick vk
(j)
0 = (r(j), k(j)), for 1 ≤ j ≤ t, and (r(j), k(j)) chosen as (r, k)

in Table 4;

– Pick random values (bk
(j)
1 , . . . , bk

(j)
` );

– Given bk
(j)
0 and (bk

(j)
1 , . . . , bk

(j)
` ), compute L(j);

– Compute bk
(j−1)
1 = KDF (L(i)), and bk

(j−1)
i = KDF (L(j)||salt(j−1)||i)

for 1 < i ≤ `, t ≥ j ≥ 1 and randomly chosen values salt(j−1).
The intuition is to add t − 1 eW-OTS+ constructions “underneath”

the upmost one. The public key of the underlying eW-OTS+ instance,
generates, via KDF (which can be constructed by a hash function), the

secret key of the next (i.e. bk
(j−1)
1 , the last line of the above description).

The verification algorithm for such multiple construction has to take
into account in which “level” (from t to 0, in the above description)
the signature was generated, and be continually updated on each new
signature generation. For comparison, the construction for a single proof
only has one level. The “multilevel” p-th proof is of the form

π = ((π0, . . . , π`1+`2), (vk
(1)
0 , sk

(1)
0 , L(1), salt(1)), . . . ,

(vk
(p+1)
0 , sk

(p+1)
0 , L(p+1), salt(p+1))),

for vk
(p)
0 = (v(p), x(p)) and sk

(p)
0 = (r(p), k(p)). Thus the verification pro-

cedure transverse the underneath structure of eW-OTS+ instances from
some point p, i.e. the p-th proof, up to the upmost one 1. Roughly the
procedure is as follows:

– Compute vk
(p−1)
i = cw−1−bik (πi, r

(p−1)
bi+1,w−1);

– Compute L(p−1) = Lv(p−1),x(p−1)(vk
(p−1)
1 , . . . , vk

(p−1)
`1+`2

).
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For p− 1 < j ≤ 1,

– Compute sk
(j)
i = KDF (L(j−1)||salt(j−1)||i);

– Compute vk
(j)
i = cw−1

k(j)
(sk

(j)
i , r

(j)
bi+1,w−1);

– Compute L(j) = Lv(j),x(j)(vk
(j)
1 , . . . , vk

(j)
`1+`2

),

at this point the verification boils down to the correctness of the value
L = L(1) as before.

8 Experimental Results

To validate our results, we implemented a single-threaded prototype in
Golang [13].

We note that this implementation does not combine the W-OTS+

public key values using an L-Tree structure. Instead, our implementation
uses a tweakable hash function to combine all the W-OTS+ ladder top
values into a single root value. Since our construction has a very concrete
application, we implemented an additional implementation variant that
includes the BIP 39 [6] standard to generate the hidden W-OTS+ fall-
back from a mnemonic seed. We verified the correctness of this code by
comparing it with reference BIP39 implementations [7,14].

We ran our experiments on a 2.8 GHz Quad-Core Intel Core i7 with
16GB of RAM, running 64-bit macOS 10.15.6. Below, we expose a table
containing the corresponding performance of our prototype.

Execution time (ms)
Algorithm Gen Sign Verify

Sleeve 3.87 0.024 1.472

Sleeve w/ BIP39 7.51 0.024 1.472

ECDSA (on secp256r1) 0.77 0.069 0.084

Table 6. Performance metrics of our custom implementation.

These timings demonstrate that the key generation component of our
design is significantly slower than presently used key generation mech-
anisms. Depending on the protocol instantiation, our key generation is
between 5 to 10 times slower than a normal ECDSA key generation al-
gorithm. We highlight, however, that this is an expected result given
the amount of additional steps introduced by our construction. We also
note that the key generation can be easily accelerated by performing the
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W-OTS+ ladder calculations in parallel. Regarding key storage, our con-
struction utilizes the same storage space as a normal ECDSA private
key. For example, the wallet storage of a Bitcoin secret key would require
256-bits for both the Sleeve construction and for a normal wallet.

9 Conclusion

We proposed Sleeve as a new approach to integrate a quantum-secure fall-
back inside an elliptic curve private key. The core idea is to have a hidden
hash-based signing key pair. The users can show they are the rightful
owner of the cryptocurrency secret keys even in the presence of an ad-
versary capable of breaking the elliptic curve discrete logarithm problem,
which is not a possibility using any of the existing curve-based cryptocur-
rency wallets. Moreover in catastrophic scenarios, where a massive leakage
has potentially happened, and system is halted, users can show to trusted
third parties that they are the correct owners of the wallet.

Along with Sleeve, we presented also novel ideas for security guarantees
and security analysis, aspiring that they will stimulate additional discus-
sion, and potential improvements in the cryptocurrency wallet research
community. As another contribution to the above mentioned discussion,
we argue that the Sleeve construction can be changed to scale, in the sense
that it can be extended to provide multiples proofs of ownership, i.e. πi for
t ≥ i or to provide multiple signatures while in “fallback mode”, or even
Sleeve can be used combined with Fail-stop Signatures. As a final remark,
we recall that although we presented a construction based on W-OTS+

signature scheme, we believe other hash based signature schemes can be
adapted in similar fashion.
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A Generic Attacks

The early presented constructions are hash based ones, therefore in this
section we present an extensive list of computational complexities of var-
ious generic attacks against hash functions, while relating them with our
constructions. Later we rely on these complexities to analyse and prove
security of our proposed signature scheme.

Preimage resistance. The adversary A may obtain a hash digest and
attempt to invert the one-way property of the used hash function. Assum-
ing that the inputs are uniform random n-bit values, then this preimage
attack costs 2n in the classical setting. In the post-quantum setting, using
Grover’s algorithm, this attack costs 2n/2.

Second preimage resistance (SPR). The adversary may instead at-
tempt to find a second preimage of an n-bit message. Assuming a non-
compressing hash function, that is, there is at least an n-bit-to-n-bit
preimage to hash mapping, then this attack costs 2n in the classic setting,
and 2n/2 in the post-quantum setting.

Enhanced target collision resistance (eTCR). The notion of eTCR
implies that an adversary is allowed to choose a target message M . Upon
choosing this target message, A learns the function HK (by learning the
key K) and the adversary wins after presenting a new message M ′ and a
(possibly new) key K ′ such that HK(M) = HK′(M

′).

A possible application of the eTCR game in our setting involves the
adversary committing to a L(W-OTS+

vk) public key value and then ob-
taining the hash function key. There are two ways an adversary may
attempt to break the eTCR property of a hash function. First, A may
attempt to obtain a new L(W-OTS+

vk)
′ such that HK(L(W-OTS+

vk)) =
HK(L(W-OTS+

vk)
′). Second, A may attempt to obtain a new key K ′ and

L(W-OTS+
vk)
′ such that HK(L(W-OTS+

vk)) = HK′(L(W-OTS+
vk)
′).

If A owns the secret keys corresponding to the colliding L(W-OTS+
vk)
′,

then A can forge a proof of ownership of the target wallet. This forgery
costs at least 2n pre-quantum, 2n/2 post-quantum (Grover’s algorithm),
and results in the adversary having the ability to prove ownership of an
elliptic curve based wallet with a different fallback public key. We high-
light, however, that even if the adversary can find a second preimage, it is
not guaranteed that it corresponds to a L(W-OTS+

vk)
′ actually controlled

by A.
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Multi-target attacks. The previous definitions assume an adversary
attacking one single target. We assume a hash function with n-bit outputs
is used d times and each of these d outputs is publicly posted (e.g., on
a blockchain). The adversary A may, therefore, attempt to invert any of
these public d values, which results in an attack complexity of 2n−log2(d)

instead of 2n. In order to show the effectiveness of a multi-target attack,
we consider the case where all the secret keys associated with the wallet
addresses are publicly exposed and are generated using our hidden key
construction.

This setting results in a leakage of approximately 229 target wallet
addresses, for example [12] [8], which results in an attack complexity
cost of 2n−29. Typically, ECDSA secret keys of 256 bits. Therefore, a
multi-target attack in the setting we describe results in a direct loss of
29 bits in security, resulting in a cost of 2227 instead of 2256. In a post-
quantum setting4, however, the adversary must perform 2n/2/

√
d, where

d < 2n/3.

Decisional second-preimage resistance (DSPR). In [4], Bernstein
and Hülsing introduce DSPR, which defines the advantage in deciding,
given a random input x, whether x has a second preimage.

An adversary could potentially use this definition to determine in
advance whether or not it is worth attacking the SPR (or eTCR) of a hash
function. If the DSPR advantage is non-negligible, then the adversary
can choose a wallet target, and determine in advance whether or not
there is a second-preimage. For example, if there is not a second-preimage
associated with a target wallet address, then the adversary can select
another target address as opposed to spending unnecessary computational
resources trying to find a non-existent value. The paper, however, proves
that DSPR is at least as hard to break as preimage resistance (PRE)
or second preimage resistance (SPR) for uniform random hash functions
from {0, 1}n to {0, 1}n. This results in an attack cost of 2n in the classical
setting, and 2n/2 in the post-quantum setting.

The authors considered ways to attack DSPR for real hash functions,
and concluded that there is no obvious way for a fast attack to achieve
any advantage. Consequently, A cannot take advantage of the DSPR no-
tion to gain any non-negligible advantage in creating forged proof(s)-of-
ownership.

4 We highlight the work of Banegas and Bernstein [3] that studies the existing over-
head beyond the quantum queries and shows that even in a post-quantum setting,
the collision-finding algorithms costs at least 2n/2, even if it requires a smaller num-
ber of queries.
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B Simplified Description of the Construction

rng seed

· · ·sk2sk1 sk` xPublic Seed

H H H H

H H H H

vk0, vk1, . . . , vk`

(eW-OTS+)pk = (vk0, L, sk0)

ECDSAvk

ECDSAvk = gH(vk0,H(L,sk0))

KDF(seed)

Fig. 1. Hidden key construction for eW-OTS+. The dotted boxes are the potentially
public values, while the normal boxes are the secret values. The diagram shows the
commonly know as “ladders”,i.e. the sequence of hash function executions up to the
verification values, and “rng seed” generating randomness for the private hash key x.
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