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Abstract

Consider a scenario where Alice stores some secret data s on n servers using a t-out-of-n
secret sharing scheme. Trudy (the collector) is interested in the secret data of Alice and is willing
to pay for it. Trudy publishes an advertisement on the internet which describes an elaborate
cryptographic scheme to collect the shares from the n servers. Each server who decides to submit
its share is paid a hefty monetary reward and is guaranteed “immunity” from being caught or
prosecuted in a court for violating its service agreement with Alice. Bob is one of the servers
and sees this advertisement. On examining the collection scheme closely, Bob concludes that
there is no way for Alice to prove anything in a court that he submitted his share. Indeed, if
Bob is rational, he might use the cryptographic scheme in the advertisement and submit his
share since there are no penalties and no fear of being caught and prosecuted. Can we design a
secret sharing scheme which Alice can use to avoid such a scenario?

We introduce a new primitive called as Traceable Secret Sharing to tackle this problem. In
particular, a traceable secret sharing scheme guarantees that a cheating server always runs the
risk of getting traced and prosecuted by providing a valid evidence (which can be examined
in a court of law) implicating its dishonest behavior. We explore various definitional aspects
and show how they are highly non-trivial to construct (even ignoring efficiency aspects). We
then give an efficient construction of traceable secret sharing assuming the existence of a secure
two-party computation protocol. We also show an application of this primitive in constructing
traceable protocols for multi-server delegation of computation.

1 Introduction

Secret sharing [Sha79,Bla79] allows a client to store a secret on n servers such that an authorized
subset of the servers can recover the secret, while any unauthorized set learns no information about
the secret. Now, consider a scenario where the client Alice stores her secret s (some proprietary
dataset) across n different servers (or cloud providers) using secret sharing to enhance privacy.
Alice divides her secret into n shares using (say) a t-out-of-n secret sharing scheme and stores one
share on each server. Let us call these shares share1, . . . , sharen.

Trudy (the collector) is highly interested in learning Alice’s secret and is willing to pay for it.
Therefore, Trudy publishes an advertisement on the internet. The advertisement has an elaborate
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cryptographic scheme to collect shares from the servers. Each server who decides to submit its
share is paid $100. The collection scheme guarantees “cryptographic immunity” from being caught
or prosecuted in a court (e.g., for violating its service agreement with Alice). The elaborate collec-
tion scheme has the following components: (1) a description of functions f1, . . . , fn (called as the
collector’s functions), and (2) description of a pirate reconstruction box Rec?. The i-th server Pi
is supposed to submit fi(sharei) to the collector (in exchange for $100).1 If enough such fi(sharei)
are collected, the reconstruction box Rec? would output the secret s (or some information about
s). The functions {fi}i∈[n] and pirate reconstruction box Rec? are constructed very carefully to
guarantee that even if Alice gets her hands on them (and even on fi(sharei) for all i), it would not
be possible for Alice to prove anything in a court and seek damages from any of the servers.

Bob is one of the servers and sees this advertisement. Competition from bigger cloud providers
is tough, and, at this point, $100 could really help Bob keep the service afloat and pay the staff
salaries. Bob is worried however that if he gives out fi(sharei) and somehow it reaches Alice, she
will be able to trace him and sue him in a court for damages. This would surely mean bankruptcy
given Bob’s service agreement with Alice. However, upon examining the collection scheme and the
reconstruction box closely, Bob concludes that there is no way for Alice to prove anything in a
court even if he submitted fi(sharei) (and it falls into Alice’s hands). After all, Alice could have
computed fi(sharei) even on her own.

What if sharei was generated using a secure 2-party computation between Alice and Bob s.t.
Alice doesn’t know sharei? sharei could potentially even have identifying information about Bob.
However we note that the function fi may have been cleverly designed to remove this identifying
information and only leave the “essence” of the share intact. In general, the function fi might even
encrypt sharei with a public key (s.t. only the reconstruction box has the corresponding secret key).
The reconstruction box code may even be “obfuscated” in some way. Indeed if Bob is rational, he
might submit fi(sharei) to the collector to get $100 since there are no penalties and no fear of being
caught and prosecuted. After all, if he was the only one submitting the share, the collector anyway
can get no information about Alice’s secret. On the other hand, if a large number of servers are
participating in the collection, Bob’s does not want to be the one missing out on $100.

The main goal of our paper is to try to design a secret sharing scheme in which the servers are
held accountable for cheating. In particular, any server which cheats should run the risk of giving
out a “proof of cheating” to the outside world. Given any collection scheme consisting of f1, . . . , fn,
the reconstruction box Rec?, and the collected shares {fi(sharei)}i∈M where M is the set of malicious
servers, Alice should be able to prove in front of a Judge that, for some i, Pi leaked its share. In
other words, there does not exist a collection scheme which guarantees immunity to the cheating
servers. We call such a secret sharing scheme a traceable secret sharing. The notion of traceable
secret sharing seems to be relevant in natural scenarios such as secure multi-party computation in
the client server model [IK00], and, in threshold cryptosystems [DF90,Fra90,DDFY94].

1.1 Our Results

We initiate the study of traceable secret sharing (TSS) and explore various definitional aspects.
TSS schemes turn out to be highly non-trivial to construct even ignoring efficiency aspects. We
first start with the high-level description of this primitive.

1To ensure that the server cannot claim a false reward by submitting fi evaluated on some dummy value, the
collector can presumably check the correctness of all the submitted values by, e.g., checking that they lie on a single
polynomial.
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Definition. In a traditional threshold secret sharing scheme, there is a sharing phase where the
dealer generates a set of n shares of his secret and distributes it to the servers. The reconstruction
algorithm allows any set of t servers to come together to get back the secret. In a traceable secret
sharing scheme, there are two additional algorithms, namely, Trace and Judge. At a high-level, the
Trace algorithm uses the set of n collector functions f1, . . . , fn, the collected shares fi(sharei) (for
all i), the pirate reconstruction box and the view of the dealer during the sharing phase. It outputs
the identity of a traitor along with an evidence that this is indeed a traitor. This evidence is later
analyzed by the Judge algorithm which pronounces whether the server is guilty or not. We assume
that the honest servers never submit their shares and the malicious servers submit fi(sharei). A way
to model this (which we follow in this work) is to consider the collector’s function corresponding
to an honest server to be a constant function.

In addition to correctness and statistical privacy properties of a threshold secret sharing, we
require a traceable secret sharing scheme to satisfy two additional properties. The first property is
traceability which roughly states that if the pirate reconstruction box is able to distinguish between
the shares of two different secrets with non-negligible advantage (where the probability is over the
random coins of the sharing phase, random coins of the collectors functions and the internal coins
of the reconstruction box), then the Trace algorithm, with non-negligible probability, outputs the
identity of a traitor along with a valid evidence that is accepted by the Judge algorithm. The
second property, called as non-imputability , protects an honest server against a cheating dealer.
Roughly, this property requires that a cheating dealer, even if it colludes with every other party,
cannot produce a valid evidence that implicates an honest server.

On the Model. We now make a couple of comments on the model.

• We require the Trace algorithm to take the description of the collector functions, the recon-
struction box Rec∗ as well as {fi(sharei)}i∈M submitted by the malicious servers as input.
These components might be available to Alice if Trudy was Alice’s agent, or if Trudy later
sells them anonymously to Alice, or if Trudy gets caught by the law enforcement authori-
ties and these are submitted as evidence in the court of law. We note that if, for instance,
{fi(sharei)}i∈M is not available to the trace algorithm, then there is no hope of identifying a
traitor. Indeed, the reconstruction box does not have any secrets, and it is useless unless it
is run on {fi(sharei)}i∈[M ]. This is, in fact, a key difference between traitor tracing (where
the trace algorithm only requires access to the decryption box) and our notion of traceable
secret sharing. We elaborate more on the differences between these two notions in Section 2.

• In this work, we consider a model where the collector specifies a set of functions (f1, . . . , fn)
and asks the servers to submit fi(sharei). However, it is possible to consider more general
cases where the collector may ask the servers to run a distributed protocol and get the output
of the protocol. Specifically, the collector and the servers might run a general MPC protocol
that computes the reconstruction function and gives the output to the collector. We leave the
study of such stronger models for future work. We note that in general, any tracing system
(including broadcast encryption with traitor tracing) has its limitations and serves more as a
deterrence rather than providing “foolproof security”. In broadcast encryption with traitor
tracing, the traitor might decrypt the broadcast and stream on an anonymous channel and
then there is no hope of tracing the traitor. In spite of these limitations, traitor tracing
has been widely deployed in practice (see, Fiat and Naor’s ACM Paris Kanellakis Theory
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and Practice Award citation [ACM17]) and we take the first direction towards defining and
constructing a similar primitive for the case of secret sharing.

Construction. In this work, we provide an efficient construction of traceable secret sharing
scheme under standard cryptographic assumptions. Specifically, we show the following theorem:

Informal Theorem 1.1 Assuming the existence of a secure two-party computation protocol, there
exists an explicit construction of t-out-of-n threshold traceable secret sharing scheme for t ≥ 4 in
the PKI model.2 In particular, for secrets of length λ,

• The construction satisfies statistical privacy.

• If there exists a set of n collector functions and a pirate reconstruction box that can distinguish
between shares of two different secrets with advantage at least ε, then there exists a tracing
algorithm that makes poly(λ, 1/ε) oracle calls to the pirate reconstruction box and outputs the

identity of a traitor along with a valid evidence with probability Ω( nε/(n−t+1)
1+(n−1)ε/(n−t+1)).

• With all but negligible probability, a (polynomially bounded) cheating dealer cannot provide a
valid evidence against an honest party even if it colludes with every other party.

Extensions. We also consider a couple of extensions to our setting of traceable secret sharing.
The first extension is the collusion-resistant setting. Here, we consider a scenario where a group
of upto t − 1 servers could come together and pool in their shares, apply a collector’s function
on their pooled shares and then submit the output. (Note that if we allow more than t servers
to come together, then the servers could just reconstruct the secret without any collection, and
TSS becomes meaningless.) We show that a simple modification to the construction from the
above theorem actually satisfies this stronger definition. The second extension is that the tracing
algorithm is now required to output the identities of multiple traitors along with a valid evidence
implicating each of them. We note that in this case, it not possible to output the identities of more
than t traitors as the reconstruction box can simply ignore the collected shares from some of the
parties if more than t parties submit their shares. We are able to design a tracing algorithm that
outputs the identities of at least t− 1 traitors (which is nearly optimal) along with a valid evidence
against each one of them.

Going Beyond Storage: Delegating Computation. We show an application of our traceable
secret sharing in constructing offline-online multi-server delegation of computation on private data.
In this setting, there is a single client who wants to delegate an expensive computation on a private
input to a set of n servers. We are specifically interested in constructing offline-online secure
computation protocols for this task. In the offline phase, the client learns the circuit that it wants
to evaluate and engages in a protocol with the n servers. In the online phase, the client learns its
private input and runs the online phase of the protocol. At the end of the online phase, the client
can reconstruct the output of the computation. We require the online computation cost of the client
to only grow with the input and output length of the computation and is otherwise independent of
the size of the circuit.

2See Remark 4.3 on why PKI is necessary for traceable secret sharing.
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Now, consider a scenario as before where there is a collector who is interested in learning the
secret data of the client and publishes an advertisement describing a set of collector functions f1,
. . . , fn and a reconstruction box Rec∗. The servers can submit the output of the collector functions
applied on their entire view (as opposed to just the shares) during the protocol execution and the
reconstruction box outputs some information about the client’s input. We would like to design a
protocol such that any server who submits this information always runs a risk of getting traced
and prosecuted. This means that there are two additional algorithms (Trace, Judge) (that have
the same semantics as in the traceable secret sharing scheme) that are respectively able to trace
and verify the identities of the cheating servers. Specifically, given a set of n collector functions
f1, . . . , fn, the collected views of the servers f1(view1), . . . , fn(viewn) and a pirate reconstruction
box Rec∗ that is able to distinguish two different client inputs x0, x1 (that may not even lead to
the same output), we require the Trace algorithm to output a valid evidence (that is accepted by
the Judge algorithm) against a cheating server. We show the following theorem.

Informal Theorem 1.2 Assuming the existence of a secure two-party computation protocol, there
exists an explicit construction of n servers offline-online, delegation of computation protocol toler-
ating t passive server corruptions in the PKI model. In particular,

• For any two client inputs x0, x1, the views of any set of t− 1 servers when the client’s input
is x0 is statistically close to their views when the client’s input is x1.

• For any two client inputs x0, x1, if there exists a set of n collector functions and a pirate
reconstruction box that can distinguish the views where the client’s inputs are x0 and x1 with
advantage at least ε, then there exists a tracing algorithm that makes poly(|C|, λ, 1/ε) (where
C is the circuit to be evaluated) oracle calls to the pirate reconstruction box and outputs the

identity of a traitor along with a valid evidence with probability Ω( nε/(n−t+1)
|C|+(n−1)ε/(n−t+1)).

• With all but negligible probability, a (polynomially bounded) cheating client cannot provide a
valid evidence against an honest server even if it colludes with every other server.

We note that this theorem statement does not follow as a direct consequence of traceable secret
sharing (more on this in the next section) and in fact, the main challenge is to ensure that the shares
of the intermediate wire values are also traceable. Indeed, if the starting shares of the inputs are
traceable while the shares that the servers receive of the intermediate wire values are non-traceable,
the servers can safely submit these intermediate shares to a collector (which still leaks non-trivial
information).

1.2 Related Work

To the best of our knowledge, the notion of traceable secret sharing has never been studied directly.
We discuss a few related notions that have appeared before in the literature. In the next subsection,
we argue why techniques developed in the context of these problems fail in the TSS setting.

Traitor Tracing in Broadcast Encryption. A closely related notion to traceable secret sharing
is that of traitor tracing [CFN94]. In the setting of traitor tracing [CFN94], there is a central party
(also called as the broadcaster) who samples a set of public parameters along with n secret keys and
distributes the secret keys to a set of parties (also called as subscribers). The broadcaster can use
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the public parameters to encrypt some message to a set of authorized parties and the authorized
parties can use their secret key to decrypt this ciphertext. Now, when a group of subscribers come
together to create a pirate decryption box that allows even an unauthorized party to decrypt the
broadcast, a tracing algorithm can trace a party which was involved in creating this decryption
box. There has been a long line of work focusing on obtaining efficient constructions of traitor
tracing [BS95,KD98,NP98,BF99,FT99,NP01,SW00,KY01,NNL01,KY02,DF03,CPP05,BSW06,
BW06, BN08, BZ14, NWZ16, GKW18] and several works which considered the setting where the
broadcaster could be malicious [Pfi96,PS96,PW97]. Broadcast encryption with traitor tracing has
been widely used in practice to protect digital content.

Fingerprinting Codes. Fingerprinting codes, introduced by Boneh and Shaw [BS95] are infor-
mation theoretic objects used in the construction of traitor tracing schemes. It consists of a code
generator that outputs a set of codewords along with a tracing key. We assign each codeword in the
set to a different party. If a group of parties collude and create a new word (using some restricted
operations) then the trace algorithm takes the tracing key and this new word and outputs a subset
of the parties that were used in constructing this word. Subsequent to their introduction, more
efficient constructions of fingerprinting codes have been proposed in [KD98, SSW01, Tar03]. The
main difference between this notion and that of traceable secret sharing is that it doesn’t allow to
share a secret and additionally, the operations that are allowed to create a new word are somewhat
restricted.

Accountable Authority IBE. An Accountable-Authority Identity based Encryption [Goy07]
was introduced by Goyal to reduce the trust on the private key generator (PKG) in a IBE scheme.
Specifically, if the PKG was behaving dishonestly and was leaking information of individual party’s
secret key, then there is an algorithm that can produce a proof that is accepted by a judge im-
plicating the dishonest behavior of the PKG. There have been some extensions to this notion like
Black-Box Accountable Authority IBE [GLSW08].

2 Technical Overview

In this section, we will give a high-level overview of our construction of traceable secret sharing and
also give details of the proof. We will also give an overview of our traceable delegation protocol.
Before describing our construction of traceable secret sharing, we will first explain why existing
secret sharing schemes are not traceable.

Limitations of Existing Secret Sharing Schemes. Existing secret sharing schemes (such as
Shamir secret sharing) do not satisfy non-imputability property. In these constructions, the dealer
knows the entire share that is given to a party and hence, a malicious dealer will be able to easily
implicate an honest party by coming up with his own collector functions, collected shares and a
reconstruction box which serve as valid evidence against this party. To prevent this attack, we may
try to run a secure multiparty computation protocol between the dealer and the parties where the
dealer provides his secret and the parties receive the shares at the end. This prevents the dealer
from learning the shares that the parties receive. It turns out if the underlying secret sharing scheme
has some additional properties such as each share having sufficient min-entropy even conditioned
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on the other shares3, then this modification can be proved to satisfy non-imputability. However,
in this case it is not clear if the traceability holds.

Comparison with Related Notions. A major difference between related notions such as traitor
tracing and a traceable secret sharing is in the restrictions placed on the tracing algorithm. In a
traceable secret sharing, we are not trying to extract some secret from the pirate box but rather,
we are trying to extract some information from (possibly obfuscated/encrypted) input given to the
pirate box. This means we are only given a single sample and we must work with this sample.
Indeed, we can produce fresh samples on our own and try to run the reconstruction box on these
samples but in this case, the secret we are trying to extract is lost. Hence, its not even clear apriori
how invoking the pirate box multiple times can help. One way to get around this issue would
be to use the given input sample to produce multiple (correlated) samples s.t. the target secret
is somehow present in all of them. However, this makes the construction and the analysis more
subtle. We also note that a simple construction for broadcast encryption with traitor tracing exists
based on any public key encryption. The problem becomes interesting only while considering the
efficiency aspects. On the other hand, for traceable secret sharing, even getting a feasibility result
is an interesting problem because of the above mentioned reason.

In the next subsection, we give details of our construction of traceable secret sharing scheme.

2.1 Our First Construction

The main idea behind our first construction is to partition the share of each party into two parts.
The first part is a secret that is known only to this party and is unknown to the dealer and the
second part is a share of a secret such that the secret is known only to the dealer (unknown to any
individual party). Intuitively, the first part which is unknown to the dealer prevents a cheating
dealer from implicating an honest party and the secret in the second part enables a dealer to trace
a traitor. With this insight, let us now give details of our construction.

• To share a secret s, the dealer uses Shamir sharing to split s into n shares, namely, ssh1, . . . ,
sshn ∈ {0, 1}λ. The threshold t used here is the same as the required threshold for TSS.

• For every j ∈ [λ], the dealer chooses a random mask Rj uniformly from {0, 1}λ and splits Rj
into n Shamir shares R1,j , . . . , Rn,j (again using threshold t).

• Now, the party Pi and the dealer engage in a secure two-party computation protocol that
computes the following function. The function takes the i-th Shamir share sshi, the shares
{Ri,j}j∈[λ], and all masks {Rj}j∈[λ] from the dealer. It then samples Li,j for each j ∈ [λ]
randomly such that 〈Li,j , Rj〉 = sshi,j where sshi,j refers to the j-th bit of sshi and 〈·, ·〉
denotes the inner product. It finally provides owf(Li,j) as output to the dealer and {Li,j ,
Ri,j}j∈[λ] to Pi. Here, owf is an one-way function.

• The share of Pi (denoted by sharei) consists of {Li,j , Ri,j}j∈[λ]. The view of the dealer at the
end of the sharing phase includes the Shamir shares ssh1, . . . , sshn, the shares {Ri,j}i∈[n],j∈[λ]

and {owf(Li,j)}i∈[n],j∈[λ].
4

3The constructions of leakage-resilient secret sharing schemes given in [SV19,ADN+19] satisfies this property.
4We note that our construction satisfies statistical privacy even though we rely on secure two party computation
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• In order to implicate the party Pi, the tracing algorithm is required to output any Li,j that
is a valid pre-image.

Notice that the dealer’s secrets {Rj}j∈[λ] are in fact secret shared among the parties. This
means that even if you fix sharei for a party Pi, the value of Rj can still be freely decided by
sampling {sharek}k 6=i appropriately. This observation would be very useful when we design the
tracing algorithm.

Non-Imputability. It can be easily shown that the above construction protects an honest party
from a cheating dealer. In particular, it follows from the security of two-party computation that the
dealer learns no information about a party’s Li,j except learning that the inner-product of Li,j and
Rj is sshi,j . Thus, one can argue from the one-wayness property of owf (which hold even if there
is a single bit of leakage) that the probability that a malicious dealer provides a valid pre-image
is negligible and hence the probability that an honest party is implicated by a malicious dealer is
negligible.

Tracing Algorithm Overview. Recall that the tracing algorithm receives the collector’s func-
tions f1, . . . , fn, the collected shares f1(share1), . . . , fn(sharen), the view of the dealer, and a pirate
reconstruction box that is guaranteed to distinguish between the secret shares of s0 and s1 with
noticeable advantage. The goal of the tracing algorithm is to extract one of Li,j that serves as
a valid evidence against party Pi. However, to extract this evidence, the tracing algorithm must
overcome the following challenges.

Challenge-1: Extraction from Single-Bit of Information. The first challenge is that the
reconstruction box only gives a single bit of information about the evidence against Pi. However,
recall that a valid evidence against Pi is one of {Li,j}j∈[λ] where each Li,j is λ bits long. Furthermore,
the reconstruction box is guaranteed to distinguish between the shares of s0 and s1 only with
noticeable advantage and this means that the answer that the reconstruction box gives could
sometimes be erroneous. So, the tracing algorithm must somehow use this single bit of information
(which could further be erroneous) to extract a λ-bit long string.

To overcome this challenge, we rely on Goldreich-Levin decoding [GL89]. Indeed, our con-
struction is designed to be able to use Goldreich-Levin decoding from the start. Before we go
into the details of our solution, we first recall the setting of Goldreich-Levin decoding. Suppose
there exists an oracle Ora that has a secret input x ∈ {0, 1}λ hard-wired in its description. The
oracle accepts queries y ∈ {0, 1}λ and produces an output z ∈ {0, 1}. If for a uniformly chosen
query y, the probability that the oracle’s output z is equal to 〈x, y〉 is noticeably more than 1/2,
Goldreich-Levin decoding algorithm gives a way of obtaining x hardwired in the oracle’s descirp-
tion with overwhelming probability. Coming back to our setting, we will treat Li,j as the secret
input x and use the pirate reconstruction box to simulate the working of the oracle Ora. The trace
algorithm will then run the Goldreich-Levin decoder to extract out the secret Li,j . However, for
this task to be possible, we need the ability to set the query y to be equal to Rj so that we can
use the reconstruction box to predict 〈Li,j , y〉 = 〈Li,j , Rj〉. But the tracing algorithm only gets

protocol. This is because the dealer’s inputs to any set of t− 1 of these secure two-party computation corresponds to
t − 1 Shamir shares and it follows from the perfect privacy of Shamir secret sharing that these shares do not reveal
anything about the secret that was shared.
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f1(share1), . . . , fn(sharen) which could contain “encrypted” versions of Li,j and the shares of Rj
and it is not clear upfront on how to set the Rj to be equal to the query y. This is where we use
an earlier observation about our construction where we showed that is possible to fix sharei (that
contains Li,j) and resample the other shares in such a way that Rj is fixed to the oracle query y. We
will then run the pirate reconstruction box on the fixed fi(sharei) along with outputs of the other
collector functions applied on the freshly sampled shares and use the output of the reconstruction
box to predict 〈Li,j , y〉.

A subtle but an important point that was ignored in the above paragraph is how does the
tracing algorithm determine which Li,j to extract. The above description assumed that the tracing
algorithm already knows which party is the traitor and then tries to extract the Li,j from this party.
This brings us to the second challenge.

Challenge-2: A Careful Hybrid Argument. To determine the identity of a cheating party, the
tracing algorithm will define a sequence of distributions or hybrids starting from the distribution
where the shares correspond to the secret s0 and ending with a distribution where the shares
correspond to the secret s1. Specifically, for every i ∈ [n] and j ∈ [λ + 1], the tracing algorithm
defines Hybi,j as the distribution where {sshi′}i′<i are valid Shamir shares of s1 and {sshi′}i′>i
are valid Shamir shares of s0. Further, the first j − 1 bits of the i-th share are changed from a
share of s0 to a share of s1. Now, via a standard averaging argument, it follows that if the pirate
reconstruction box can distinguish between shares of s0 and s1 with advantage ε, then there exists
an i ∈ [n], j ∈ [λ+ 1] such that the reconstruction box can distinguish between Hybi,j and Hybi,j+1

with advantage ε/O(nλ). This means that party Pi is a traitor (as otherwise, Hybi,j ≡ Hybi,j+1)
and the tracing algorithm tries to extract an incriminating evidence against Pi. However, in order
to determine if the reconstruction box can distinguish between Hybi,j and Hybi,j+1 with noticeable
advantage, we need the tracing algorithm to generate samples from both these distributions. To
generate a sample from Hybi,j or Hybi,j+1, we need to change the inner product of Li,j with Rj .
However, we do not know {Li,j}j∈[λ] that is available in sharei (recall that it only gets fi(sharei))
and hence, there does not seem to be a way for it to sample Rj such that the inner product of Li,j
with Rj is a particular value.

To solve this issue, we slightly change the sequence of hybrids by introducing a “fine-grained
structure”. Specifically, instead of defining λ hybrids for changing the i-th Shamir share, we define
2λ + 1 small hybrids Hybi,j indexed by j ∈ {0, . . . , 2λ}. These hybrids first change sshi from a
valid Shamir sharing of s0 (associated with sshi+1, . . . , sshn) to a random string one bit at a time,
then change the random string to a valid Shamir sharing of s1 (associated with ssh1, . . . , sshi−1)
again one bit at a time. Now, via a similar averaging argument we can show that there exists
a i ∈ [n], j ∈ [0, 2λ − 1] such that the pirate reconstruction box can distinguish between Hybi,j
and Hybi,j+1 with advantage ε/O(nλ). For simplicity, assume that such a j ∈ [0, λ − 1]. The key
advantage of this fine-grained hybrid structure is that it additionally allows the tracing algorithm
to sample from Hybi,j or Hybi,j+1. We now give the details below.

In a thought experiment, the tracing algorithm first fixes sharei. This means that all {Li,j}j∈[λ]

are fixed but these values are unknown to the tracing algorithm. For every k > j, it fixes Rk as in
the sharing phase. This means that the inner product of Li,k with Rk remains the same as the k-th
bit of the i-th share of s0. For every k < j, we sample an independent R′k and this is possible due
to an earlier observation that conditioned on fixing any share, the dealer’s secrets are uniformly
distributed. This means that for every k < j, the inner product of Li,k with the new R′k is an
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uniformly chosen random bit. Now, if we fix Rj as in the sharing phase, we get an sample from
Hybi,j ; else, if we sample R′j uniformly at random, we get a sample from Hybi,j+1.

Completing the tracing. The tracing algorithm will go over every i, j and determine if the
pirate reconstruction box can distinguish between Hybi,j and Hybi,j+1 with noticeable advantage.
Eventually, it will reach Hybi,j and Hybi,j+1 such that the pirate reconstruction box can distinguish
between these two hybrids with probability at least ε/O(nλ). It will now use Goldreich-Levin
decoder to extract Li,j . For completeness, we provide the details below.

• The tracing algorithm starts running the Goldreich-Levin decoder and simulates the access
to the oracle Ora.

• When the decoder queries the oracle on a uniform y, the tracing algorithm does the following:

– It fixes the collected share of party Pi, i.e., fi(sharei). In addition to this, it also fixes
the random masks {Rk}k>j which are available from the view of the dealer. By fixing
these random masks, the tracing algorithm has fixed the inner product of Li,k and Rk
for k > j to be the same as the bits of the initial Shamir share sshi that was used in the
sharing phase.

– It then randomly samples ssh′i+1, . . . , ssh
′
n such that these correspond to the last n − i

shares of a Shamir sharing of the secret s0. It also samples ssh′1, . . . , ssh
′
i−1 such that

(ssh′1, . . . , ssh
′
i−1) correspond to the first (i− 1) shares of a Shamir sharing of s1.

– It sets R′j = y (where y is the query) and samples R′1,j , . . . , R
′
i−1,j , R

′
i+1,j , . . . , R

′
n,j such

that these values together with Ri,j corresponds to a valid Shamir sharing of R′j .

– For k < j, it samples Rk uniformly from {0, 1}λ. Then the shares of {Rk}k 6=j are
randomly sampled such that they are consistent with the fixed sharei and it samples
share′1, . . . , share

′
i−1, share

′
i+1, . . . , share

′
n that are consistent with the above sampled val-

ues.

– The tracing algorithm then runs the pirate reconstruction box on f1(share′1), . . . , fi−1(share′i−1),
fi(sharei), fi−1(share′i−1), . . . , fn(share′n)). We show that using the output of the recon-
struction box, one can predict the value of the inner-product between Li,j and y with
probability noticeably better than half.

A minor subtlety that arises because of fixing (sharei, {Rk}k>j) is that for the Goldreich-Levin
decoding to work, we require that conditioned on fixing these values, the reconstruction box still
distinguishes between Hybi,j and Hybi,j+1 with non-negligible advantage. We note that we can
rely on Markov’s inequality to show that for ε

O(nλ) fraction of values of (sharei, {Rk}k>j), the

reconstruction box still distinguishes between Hybi,j+1 and Hybi,j with probability at least ε
O(nλ)

conditioned on fixing these values. This allows the tracing algorithm to use the pirate reconstruction
box to simulate the oracle and thus, enabling the Goldreich-Levin decoder to extract Li,j .

2.2 Boosting Tracing Probability

The analysis explained before shows us how to trace a traitor with overwhelming probability con-
ditioned on sharei, {Rk}k>j belonging to a “good” set. Also, we argued via Markov’s inequality
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that the probability that this value is “good” is at least ε
O(λn) . Thus, the probability of tracing

a traitor is roughly, ε
O(λn) . We now show how to increase the success probability of the tracing

algorithm in a sequence of steps. The first step will show how to increase it to O(ε/n), the second
step will increase the tracing probability to O(ε) and the final step will show how to increase it to

O( nε/(n−t+1)
1+(n−1)ε/(n−t+1)). In this informal overview, we will focus only on the first two steps and leave

the third step to the main body.

First Step: O(ε/n). We note that to implicate Pi, it is sufficient to extract one of {Li,j}j∈[λ] as
the evidence. The above analysis tried to extract one specific Lij and hence, suffered from a bad
success probability. In the first boosting step, we analyze the success probability of the tracing
algorithm in extracting any one of the {Lij}j∈[λ]. Since the tracing algorithm has more “slots” to
extract a valid evidence, this increases the success probability by a proportional factor.

Towards this goal, we define (sharei, {Rk}k∈[λ]) output in the initial sharing phase to be traceable
if there exists j ∈ [λ] (or j ∈ {λ+1 . . . , 2λ}) such that (sharei, {Rk}k>j) (or (sharei, {Rk}k>2λ−j+1))
is “good”. In this case, we note that we can use the strategy mentioned above to extract Li,j (or
Li,2λ−j+1).

The main technical lemma that we show in this step is the following. Let us consider two large
hybrids Hybi and Hybi+1, and if εi is the advantage of the pirate reconstruction box in distinguishing
between Hybi and Hybi+1, then with probability O(εi − ε/(Cn)), (sharei, {Rk}k∈[λ]) output in the
initial sharing phase is traceable (where C is a some large enough constant). By observing that
there exists an i ∈ [n] such that, εi ≥ ε/n (via an averaging argument), we show that probability of
tracing is O(ε/n). We now give an overview of this lemma by assuming without loss of generality
that that the distinguishing advantage between Hybi,0 and Hybi,λ is at least εi/2.

The main idea in the proof of the lemma is the following (informal) duality condition. We
show that for every j ∈ [λ], we can either use (sharei, {Rk}k>j) to extract Li,j or the distinguishing
advantage between Hybi,j−1 and Hybi,j is “small”. Since we know that that the distinguishing
advantage between Hybi,0 and Hybi,λ is at least εi/2, we get a lower bound on the probability that
there exists a j ∈ [λ], such that (sharei, {Rk}k>j) can be used to extract Li,j . The actual proof is
involved and uses a delicate partitioning argument. We refer the reader to the main body for the
full details.

Second Step: O(ε) : We note that the previous analysis showed that the probability that (sharei,
{Rk}k∈[λ]) is traceable is at least O(εi − ε/(Cn)). This in particular means that Pi can be traced
with probability at least O(εi − ε/(Cn)). The key trick in this step is that if any two parties can
be traced independently, then we may take advantage of the pairwise independence and boost the
success probability. However, to trace a party, we need (sharei, {Rk}k∈[λ]) to be traceable, which
means the event that one party can be traced is correlated with the event that another party can
be traced.

To break the above mentioned correlation, we modify our construction as follows. In the sharing
phase, instead of sampling Rj and using Shamir secret sharing to split it, the dealer samples a
polynomial pj(·) of degree at most t − 1 and sets Ri,j to be pj(αi) (for some fixed element αi).
Furthermore, instead of sampling Li,j such that sshi,j = 〈Li,j , Rj〉, the sharing protocol samples
Li,j such that sshi,j = 〈Li,j , pj(βi)〉 (for some fixed element βi). In this new construction, to trace
a party Pi, we need (sharei, {pk(βi)}k∈[λ]) to be traceable. We observe that if t ≥ 4, the random
variables (sharei, {pk(βi)}k∈[λ]) and (sharei′ , {pk(βi′)}k∈[λ]) for any i 6= i′ are pairwise independent.
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We rely on this observation and make use of standard inequalities like Cauchy-Schwartz to get
a lower bound on the probability that at least for one i ∈ {1, . . . , n}, (sharei, {pk(βi)}k∈[λ]) is
traceable. This allows us to get an improved analysis and thus improving the success probability
to O(ε).

2.3 Traceable Delegation

In this subsection, we show an application of traceable secret sharing to constructing traceable
multi-server delegation of computation in the offline-online setting.

The Setting. In our model, there is a single client and n servers. The client wants to delegate
the computation of a circuit C on some private input x to the n servers. We consider the offline-
online setting where the client gets the circuit to be computed in the offline phase but learns the
private input in the online phase. The offline computational cost of the client can grow with the
size of the circuit C but we require the online computation of the client to be extremely fast. In
particular, it should only grow proportional to the input length x and the output length of C and
is otherwise, independent of the size of C. We require the standard correctness and the privacy
properties from the protocol, meaning that the client always reconstructs the correct output and
the views of t servers provide no information about the client’s private input x. Additionally, we
require the protocol to be traceable, meaning that given any set of collector functions f1, . . . , fn
and a pirate reconstruction box that can distinguish between the cases where the client’s input
was x0 and x1 with noticeable advantage, then we require a tracing algorithm to output a valid
evidence (accepted by a judge) against one of the cheating servers.

Why natural approaches fail? A natural approach to construct such a traceable MPC protocol
is for the client to use our traceable secret sharing scheme to secret share its private input x
among the n servers. Then, the servers can run standard MPC protocols like BGW [BOGW88]
or GMW [GMW87] to compute a secret share of the output which can finally be reconstructed by
the client. However, this approach fails in our setting because these protocols crucially rely on the
secret sharing scheme to be linear whereas our traceable secret sharing scheme is non-linear. To
get around this problem of non-linearity, one might think that for every gate, we might run a mini
MPC protocol that takes the traceable shares of the inputs, reconstructs the input values, computes
the output of the gate and then reshares it using a traceable secret sharing scheme. However, this
requires the mini MPC protocol itself to be traceable and we are back to square one. In conclusion,
the main difficulty we face is in making the shares of the intermediate wire values to be traceable.

Our protocol. The main idea behind our protocol is to “secret share” the circuit rather than
secret sharing the input. Towards building the main intuition behind the protocol, let us start with
a trivial case where the circuit is just a single gate g that takes in two input values and has a single
output value. In the offline phase of our computation, the client “garbles the truth table” of this
gate. Specifically, for every input wire and the output wire, the client chooses a random masking
bit. Let us call these masking bits to be r1, r2 corresponding to the input wires and r3 corresponding
to the output wire. Further, the client generates a table with 4 entries where the (a, b)-th entry of
the table for a ∈ {0, 1} and b ∈ {0, 1} is given by g(a ⊕ r1, b ⊕ r2) ⊕ r3. After generating all the
entries of the “garbled table”, the client uses our traceable secret sharing to secret share each entry
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of the garbled truth table to the n servers. This completes the offline phase of the protocol and at
the end of the offline phase, each of the servers hold a secret share for every entry of the garbled
truth table. In the online phase, the client learns its input (x1, x2) ∈ {0, 1} × {0, 1} and it sends
to each of the servers (x1 ⊕ r1, x2 ⊕ r2). Now, each of the servers hold the masked values of the
input wires, and they just choose the share corresponding to the entry given by (x1 ⊕ r1, x2 ⊕ r2)
in the truth table, and reconstruct this particular value by broadcasting the chosen shares. It is
easy to see that the reconstructed value will be the actual output of the gate masked with r3. Now,
this value will be sent back to the client who can unmask this value and learn the output of the
computation.

To give the main idea behind tracing, notice that in the online evaluation phase executed by the
servers, there are three secret shares that are left untouched. Further, the entry of the gate table
that is reconstructed does not give any information about the client’s input due to the one-time
pad security. This means that if we change any one of the untouched shares to a secret sharing of
the revealed value and if the reconstruction box is able to detect this change, then we are back to
the standard setting of traceable secret sharing. With this intuition in mind, let us now give the
details about tracing. Towards this, let us first assume that we have a set of n collector functions
f1, . . . , fn and a pirate reconstruction box that can distinguish between the cases where the input of
the client was (x1, x2) from the case the input was (x′1, x

′
2) with noticeable advantage. The tracing

algorithm defines a sequence of 6 hybrids starting from the case where the input was (x1, x2) and
ending with the case where the input was (x′1, x

′
2). The first three hybrids change each entry of the

garbled truth table to be g(x1 ⊕ r1, x2 ⊕ r2) ⊕ r3. That is, at the end of these changes, all the 4
secrets that were shared during the offline phase are equal to g(x1 ⊕ r1, x2 ⊕ r2)⊕ r3. Notice that
once we have done this change, we can rely on the one-time pad security to make the views of all
the servers to be independent of the input. In particular, we can change the masked inputs which
were sent during the online phase to be (x′1 ⊕ r1, x

′
2 ⊕ r2) and the entries of the garbled table to

be g(x′1 ⊕ r1, x
′
2 ⊕ r2)⊕ r3 . The next sequence of 3 hybrids will just reverse these changes ending

with the actual view of the servers when the client’s input was (x′1, x
′
2). If the reconstruction box

distinguishes between the cases where the client’s inputs were (x1, x2) from (x′1, x
′
2) with advantage

ε, then via a standard averaging argument, it follows that there exists two intermediate hybrids Hyb
and Hyb′ in this sequence such that the reconstruction box is able to distinguish between these two
hybrids with advantage ε/6. Notice that the only difference between any two subsequent hybrids
is the secret that was shared in a particular gate entry. Thus, fixing all other gate entries and their
corresponding shares, we can now directly rely on our tracing algorithm to catch a specific traitor.

An astute reader might have noticed the similarities between our approach and the point-
and-permute trick in garbled circuits [BMR90]. Indeed, we can extend the toy example in a
straightforward way to computing an arbitrary circuit C composed of many gates via the point-
and-permute trick. Specifically, we ask the client to choose an independent random masking bit for
each wire of the circuit (including the output wires) and generate the garbled truth table for each
gate as explained above. In the offline phase, the client secret shares each entry of each garbled
table using our traceable secret sharing scheme and sends it over to the servers. In the online phase,
the client sends the masked values of its input. Then, the servers compute the masked output of
each gate in the topological order, starting from the input gates and ending in the output gates
exactly as explained above. Once the servers have the masked value of the output, then can simply
send this to the client who unmasks this and reconstructs the actual output.
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A subtlety. A minor subtlety that arises with the above approach is in proving the non-imputability
property. Let us once again consider the toy example above where there is a single gate. In the
online phase, when the servers broadcast the shares corresponding to the (x1⊕ r1, x2⊕ r2)-th entry
of the garbled truth table, they also need to broadcast the {Li,j}j∈[λ] corresponding to these shares.
However, broadcasting these values allow a cheating client that colluded with one other server to
easily implicate an honest server. To prevent this attack, we make use of the specific structure
of our shares. Recall that the share corresponding to the i-th server comprises of {Li,j , Ri,j}j∈[λ].
Instead of asking the servers to naively broadcast this share in its entirety, we first ask the servers
to broadcast {Ri,j}j∈[λ]. This allows the servers to first reconstruct {Rj}j∈[λ]. Once this is done,
the servers can take the inner produce of each Li,j with Rj to reconstruct the i-th Shamir share
sshi. The servers then broadcast this value and this allows them to reconstruct the actual secret
without revealing {Li,j}j∈[λ] to any party.

2.4 Extensions

Trace t-1 Parties. In this extension, we are interested in tracing many traitors. By using the
construction in the previous step, we note that (share1, {p1,k(0)}k∈[λ]), . . . , (sharen, {pn,k(0)}k∈[λ])
are (t−1)-wise independent. We use the trick of explained before to identify t−1 “special” parties
such that each of them can be traced with probability O(ε/(n − t + 1)). Therefore, we can trace
t− 1 parties with probability O((ε/(n− t+ 1))t−1).

Disjoint Collusion Setting. We also consider the setting where up to t− 1 parties can collude.
We focus on the disjoint collusion setting where each party can be in at most one collusion. We
model the collusion by allowing the collector to specify functions fi1,...,ik for collusion of k ≤ t− 1
parties, where fi1,...,ik takes sharei1 , . . . , shareik as input.

The main idea of the tracing algorithm would be the same as before. However, to generate a
valid random sample which is either in Hybi,j or Hybi,j−1, in addition to fixing (sharei, {pk(βi)}k>j),
we also need to fix {sharei′ , {pk(βi′)}k∈[λ]}i′∈Ci , where Ci denotes the set of parties which collude
with Pi. Because we need to use the collected share sent by Pi, which requires that the shares
of Pi and all parties who collude with Pi should be the same as that generated in the initial
phase. Furthermore, since the tracing algorithm does not know {Li′,k}i′∈Ci,k∈[λ], we need to also
reuse {pk(βi′)}i′∈Ci,k∈[λ] so that the inner product between Li′,j and pk(βi′) is known to the tracing
algorithm. However, for pj(·), we need to fix 2t− 3 values, which has already determined pj(·). It
disables us to change the value of pj(βi).

To solve this issue, we modify the construction as follows. In the sharing phase, for j ∈ [λ]
instead of only using one polynomial pj(·), the dealer samples n polynomials p1,j(·), . . . , pn,j(·) of
degree at most t−1. Every party will receive R1

i,j = p1,j(αi), . . . , R
n
i,j = pn,j(αi). Instead of sampling

Li,j such that sshi,j = 〈Li,j , pj(βi)〉, the sharing protocol samples Li,j such that sshi,j = 〈Li,j ,
pi,j(0)〉. In this way, we only fix t − 1 values of pi,j(·) and therefore can still change the value of
pi,j(0). The first step of boosting success probability still works in the new construction. Therefore,
we can trace a party with probability O(ε/(n− t+ 1)) in the collusion setting.
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3 Preliminaries

Let λ denote the security parameter. A function µ(·) : N → R+ is said to be negligible if for any
polynomial poly(·) there exists λ0 such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . We will use

negl(·) to denote an unspecified negligible function and poly(·) to denote an unspecified polynomial
function.

3.1 Digital Signature

Definition 3.1 A digital signature scheme consists of three PPT algorithms, (Gen,Sign,Verify),
with the following syntax:

• Gen(1λ) : On input the security parameter 1λ, it generates a pair of keys (sk, vk) where sk
denotes the signing key and vk denotes the verification key.

• Sign(m, sk) : On input a message m and a signing key sk, it outputs a string (signature) σ.

• Verify(m,σ, vk) : On input a message m, a string (signature) σ and a verification key vk, it
outputs either ACCEPT or REJECT.

such that it satisfies the following two properties:

• Correctness: For all message m,

Pr[(sk, vk)← Gen(1λ) : Verify(m,Sign(m, sk), vk) = ACCEPT] = 1.

• Unforgeability: For all non-uniform PPT adversary A,

Pr[(sk, vk)← Gen(1λ), (m′, σ′)← ASign(?,sk)(vk, 1λ) :

m′ 6∈ Q,Verify(m′, σ′, vk) = ACCEPT] < negl(λ),

where Q is the set of all queries to Sign(?, sk) made by A.

3.2 Goldreich-Levin Lemma

Lemma 3.2 Suppose owf is a one-way function. If there is an oracle Ora(X, ?) with X hard-coded
where X ∈ {0, 1}λ such that

Pr
Y∼{0,1}λ

[Ora(X,Y ) = 〈X,Y 〉] ≥ 1/2 + η(λ),

then there exists a probabilistic algorithm Inv, which takes owf and owf(X) as input, has the access
to Ora(X, ?), runs in poly(1/η(λ), λ) and makes poly(1/η(λ), λ) oracle queries, such that

Pr[X ′ ← InvOra(X,?)(owf(·), owf(X)) : owf(X ′) = owf(X)] ≥ 1− negl(λ).

We use InvOra(X,?)(owf(X)) for simplicity and ignore the input of the description of owf when
it is evident from the context.
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4 Traceable Secret Sharing

In Section 4.1, we give the definition of a traceable secret sharing. In Section 4.2, we give our
construction and in Section 4.3 we give the proof of security.

4.1 Definition

A traceable secret sharing scheme consists of four algorithms (Share,Rec,Trace, Judge). The (Share,
Rec) have the same syntax as that of a normal secret sharing scheme. The algorithm Trace takes
in a set of n collector functions f1, . . . , fn, the set of collected shares, a pirate reconstruction box,
the view of the dealer during the sharing phase and outputs the identity of a traitor party i? who
has submitted its share to the collector along with a proof πi? . The Judge algorithm takes in this
proof and pronounces whether i? is guilty or not. Apart from requiring the standard correctness
and privacy properties from this secret sharing scheme, we additionally require a traceable secret
sharing scheme to satisfy two properties, namely traceability and non-imputability. Informally,
traceability requires that when given a pirate reconstruction box that can distinguish between the
shares of two different secrets, the Trace algorithm outputs the identity of a corrupt party along
with a proof that is accepted by the judge. Non-imputability stipulates that a malicious dealer
cannot implicate an honest party who has never submitted his share to a collector. We give the
formal definition below.

Definition 4.1 A Traceable Secret Sharing (TSS) is a tuple of four algorithms (Share,Rec,Trace,
Judge) with the following syntax:

• Share(1λ, s, t, n) : On input the security parameter 1λ, a secret s, the threshold t and the
number of players n, the dealer D runs the Share protocol with n players P1, . . . , Pn. At the
end of the protocol, the player Pi outputs its share sharei and the dealer outputs its view viewD.
We will ignore the security parameter when it is evident from the context.

• Rec(sharei1 , . . . , shareit) : This is a deterministic algorithm such that given any set of t shares,
denoted by sharei1 , . . . , shareit, outputs a secret s.

• TraceRec
?

(f1, . . . , fn, f1(share1), . . . , fn(sharen), viewD, s0, s1) : The collector publishes the de-
scription of the functions f1, . . . , fn along with a pirate reconstruction box Rec?. The collector
receives shares from a set of parties after applying the collector functions. If a party Pi is
honest and has not submitted its share, we will replace fi with a constant function. Formally,
if H is the set of honest parties, then fi is a constant function for i ∈ H. The Trace algo-
rithm takes the n collector functions f1, . . . , fn, the collected shares f1(share1), . . . , fn(sharen),
the view of D, two secrets s0, s1, and with oracle access to a pirate reconstruction box Rec?

outputs an index i? ∈ [n] and a proof πi?.

• Judge(i?, πi? , viewD) : This is a deterministic algorithm that takes the alleged traitor identity
i? ∈ [n], the proof πi? and the view viewD of the dealer and outputs guilty or not− guilty.

We say a scheme is a t-out-of-n δ-traceable secret sharing if it satisfies the following properties.

• Correctness. For any secret s and any T = {i1, . . . , it} where each ij ∈ [n], we require that

Pr
Share(s,t,n)

[Rec(sharei1 , . . . , shareit) = s] = 1
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• Statistical Privacy. For any two secrets s0, s1 and any T ⊆ [n] with |T | ≤ t− 1, we require
that

{(share1, . . . , sharen)← Share(s0, t, n) : shareT } ≈s {(share1, . . . , sharen)← Share(s1, t, n) : shareT }

• Traceability. If there exists a set of n collector functions f1, . . . , fn (where fi is a constant
function if Pi is honest) and a pirate reconstruction box Rec? such that for two secrets s0, s1,

| Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]− Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]| ≥ ε

then,

Pr[(share1, . . . , sharen, viewD)← Share(s0, t, n);

(i?, πi?)← TraceRec
?

(f1, . . . , fn, f1(share1), . . . , fn(sharen), viewD, s0, s1) :

Judge(i?, πi? , viewD) = guilty] ≥ δ(ε)

Furthermore, the number of queries that Trace makes to the pirate reconstruction box Rec? is
poly(λ, 1/ε).

• Non-imputability. For any secret s, honest player Pi? and any computationally bounded
algorithm D̃,

Pr
share(1λ,s,t,n)

[(view′D, i
?, πi?)← D̃(viewD, share[n]\{i?}) : Judge(i?, πi? , view

′
D) = guilty] ≤ negl(λ)

Remark 4.2 We can consider a stronger definition wherein the parties apply the collector’s func-
tions on not only the shares received but also on its entire view during the execution of the sharing
protocol. In fact, our construction satisfies this stronger definition.

Tracing More Traitors. In the previous definition, it was sufficient for the Trace algorithm
to output the identity of one of the traitors i? along with a proof πi? . It is natural to consider
a stronger formulation where Trace is required to output the identities of all the traitors along
with a valid proofs against each one of them. We note that it is generally impossible to output
the identities of more than t traitors as the reconstruction box could simply ignore some of the
collected shares. So, the best we could hope for from a tracing algorithm is to output the identities
along with valid evidence of at most t traitors.

Collusion-Resistant Setting. In the previous formulation, we considered the setting where the
individual parties submit their shares without colluding. Here, we consider a stronger formulation
where the collector publishes the description of the functions which can take a set of shares as
input. To be more precise, we consider the disjoint collusion setting (though stronger formulations
are indeed possible) where each party can appear in at most one collusion. We model this collusion
by allowing the collector to specify functions f{i1,...,ik} for collusion of k ≤ t − 1 players, where
f{i1,...,ik} takes sharei1 , . . . , shareik as input. The trace algorithm takes in the description of these
collector’s functions, collected shares and the view of the dealer and outputs the identity of a traitor
along with a proof by making oracle access to the reconstruction box. We note that if t or more
parties collude together they can then recover the secret and submit some information about the
secret to the collector. Thus, we restrict the size of the collusions to be at most t− 1.
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4.2 Construction

Setting. Let n denote the number of players and λ denote the security parameter. We further
set the length of the secret to be λ. In Section 7, we will show that our construction is traceable
under parallel composition so that larger length secrets can be chopped into blocks of length λ bits
each. We use Pi to represent the i-th player. Let F = GF(2λ). Let owf be an one-way function.
Let α1, . . . , αn, β1, . . . , βn ∈ F \ {0} be 2n distinct fixed elements. The pair of elements (αi, βi) is
assigned to Pi. Each Pi also has a pair of keys (ski, vki) generated by Gen of a digital signature
scheme and we assume that vki is public and is known to every other party including the judge
algorithm (similar to the PKI infrastructure). Alternatively, we may assume that at the end of the
sharing protocol, the dealer and the server come together and sign on the transcript of the sharing
protocol. In this way, the transcript available with the dealer’s view can be verified by the judge.

Remark 4.3 We note that the PKI assumption seems a necessary condition for a traceable secret
sharing scheme. Intuitively, if without the PKI assumption, a corrupted server can simply deny
the messages and the corresponding signatures sent to the client when this sever is caught by the
tracing algorithm. Essentially, there would be no way for the judge to check whether the messages
are sent by the server or not.

For k ∈ [n] and k ≥ t, we say a vector (or a set) of pairs of values ((αi1 , vi1), . . . , (αik , vik)) are
valid t-Shamir shares of secret s, if there exists a polynomial f(·) ∈ F[X] of degree at most t − 1,
such that f(αij ) = vij for all j ∈ [k] and f(0) = s.

Theorem 4.4 Assume the existence of one-way functions, the PKI infrastructure and secure two-
party computation protocols. For t ≥ 4, n ≥ t and any C = poly(λ), there exists an explicit t-out-of-
n δ-traceable secret sharing scheme with the size of each share O(λ2) where δ(ε) = p(ε)/(n−1

n p(ε) +
1)− negl(λ), and

p(ε) =
nε

2(n− t+ 1)
− (

t− 1

2
+ nλ)

ε

Cnλ
.

Without loss of generality, for t ≥ 4, n ≥ t, a set of n collector functions f1, . . . , fn and a pirate
reconstruction box Rec? such that for two secrets s0, s1,

| Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]| ≥ ε,

we assume

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0] ≥ ε.

To handle the case

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0] ≤ −ε,
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one can first design a new R̃ec
?

which always outputs the opposite bit of Rec? and then run Trace

with access to R̃ec
?
.

Our construction works as below.

• Share(1λ, s, t, n) : The dealer D first randomly generates ((α1, ssh1), . . . , (αn, sshn)) which are
valid t-Shamir shares of secret s. For each j ∈ [λ], D repeatedly samples a random polynomial
pj(·) ∈ F[X] of degree at most t− 1 until pj(·) satisfies that pj(βi) 6= 0 for all i ∈ [n].5 Here,
pj(βi) is used as “Rj” for Pi. See more discussion in the second step of Section 2.2. We
require pj(βi) 6= 0 to ensure that the inner-product 〈Li,j , pj(βi)〉 in Figure 1 is not a constant
0.

For every player Pi, let sshi = (sshi,1, . . . , sshi,λ) where sshi,j ∈ {0, 1}. The dealer D and Pi
query Fshare which is described in Figure 1.

Let viewD = ({vki}i∈[n], {(owf(Li,j),Sign(owf(Li,j), ski))}i∈[n],j∈[λ], {(αi, sshi)}i∈[n], {pj(·)}j∈[λ],
{βi}i∈[n]).

• Rec(sharei1 , . . . , shareit) : For k ∈ [t], parse shareik as (αik , βik , (Lik,1, Rik,1), . . . , (Lik,λ, Rik,λ)).
For j ∈ [λ], compute the polynomial pj(·) ∈ F[X] of degree at most t− 1 such that pj(αik) =
Rik,j for all k ∈ [t]. For k ∈ [t] and j ∈ [λ], let sshik,j = 〈Lik,j , pj(βik)〉 and sshik = (sshik,1,
. . . , sshik,λ). Then reconstruct the secret s by using the reconstruction of the Shamir secret
sharing scheme on (αi1 , sshi1), . . . , (αit , sshit).

1. Fshare receives sshi, {pj(·)}j∈[λ] from D and (ski, vki) from Pi.

2. For every j ∈ [λ], Fshare samples a random Li,j such that sshi,j = 〈Li,j , pj(βi)〉.
– Let Ri,j = pj(αi). Fshare sets sharei = (αi, βi, (Li,1, Ri,1), . . . , (Li,λ, Ri,λ)) and sends

sharei to Pi.

– For every j ∈ [λ], Fshare sends (owf(Li,j), Sign(owf(Li,j), ski)) to D.

Figure 1: Description of Fshare

• TraceRec
?

(f1, . . . , fn, f1(share1), . . . , fn(sharen), viewD, s0, s1) : Recall that:

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0] ≥ ε.

For i ∈ {t, . . . , n} and j ∈ {0, . . . , 2λ}, we define the distribution Hybi,j as follows:6

– If j ≤ λ, ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are sam-

pled randomly such that ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1)) are valid t-Shamir shares of s1 and

5We note that Share(1λ, s, t, n) is an expected probabilistic polynomial time algorithm. However, it can be made
strict polynomial time with negligible error probability.

6We intentionally choose the index i starting from t since the first t− 1 shares in the Shamir sharing of s0 and s1
are identical and uniformly distributed.
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((α1, ssh
′
1), . . . , (αt−1, ssh

′
t−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are valid t-Shamir

shares of s0. Then the first j bits of ssh′′i are replaced by random bits. Let ssh′i be ssh′′i af-
ter replacement. p′1, . . . , p

′
λ are then sampled in the same way as that in Share(1λ, s, t, n).

(share′1, . . . , share
′
n) are generated in the same way as that in Fshare.

– If j > λ, ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are sam-

pled randomly such that ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i )) are valid t-Shamir shares

of s1 and ((α1, ssh
′
1), . . . , (αt−1, ssh

′
t−1), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are valid t-Shamir

shares of s0. Then the first 2λ − j bits of ssh′′i are replaced by random bits. Let ssh′i
be ssh′′i after replacement. p′1, . . . , p

′
λ are then sampled in the same way as that in

Share(1λ, s, t, n). (share′1, . . . , share
′
n) are generated in the same way as that in Fshare.

Let η(ε) = ε
Cnλ where C = poly(λ). Let InvOra(X,?) be the algorithm in the Goldreich-Levin

Lemma, where Ora(X, ?) is an oracle with X hard-coded and X is an element in F, such that
Pr[Y ∼ F : Ora(X,Y ) = 〈X,Y 〉] ≥ 1/2 + η(ε)/2.

For every i ∈ {t, . . . , n} and j ∈ {1, . . . , λ}, Trace starts running InvOra(Li,j ,?)(owf(Li,j)) by
simulating the access to Ora(Li,j , ?) as below:

– On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace randomly generates
(share′1, . . . , share

′
i−1, share

′
i+1, . . . , share

′
n) such that, after combining with sharei (which

is unknown to Trace), it is a sample in Hybi,j and p′j(βi) = Y , p′k(βi) = pk(βi) for k > j.

To this end, Trace randomly samples ssh′′i such that ssh′′i,k = sshi,k for k > j. Then ran-
domly sample (ssh′1, . . . , ssh

′
t−1, ssh

′
i+1, . . . , ssh

′
n) such that ((α1, ssh

′
1), . . . , (αt−1, ssh

′
t−1),

(αi, ssh
′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are valid t-Shamir shares of s0, and after that,

generate (ssh′t, . . . , ssh
′
i−1) such that ((α1, ssh

′
1), . . . , (αi−1, ssh

′
i−1)) are valid t-Shamir

shares of s1.

For k < j, it repeatedly samples a random polynomial p′k(·) ∈ F[X] of degree at most
t− 1 such that p′k(αi) = pk(αi) (recall that Ri,k = pk(αi) is a component in sharei) until
p′k(·) satisfies that p′k(β1), . . . p′k(βn) are non-zero.

For k = j, it repeatedly samples a random polynomial p′k(·) ∈ F[X] of degree at most t−1
such that p′k(αi) = pk(αi) and p′k(βi) = Y 6= 0 until p′k(·) satisfies that p′k(β1), . . . p′k(βn)
are non-zero.

For k > j, it repeatedly samples a random polynomial p′k(·) ∈ F[X] of degree at most
t− 1 such that p′k(αi) = pk(αi) and p′k(βi) = pk(βi) 6= 0 until p′k(·) satisfies that p′k(β1),
. . . p′k(βn) are non-zero.

Then, share′1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n are generated in the same way as that in

Fshare.

– Let share′i = sharei. Note that fi(share
′
i) = fi(sharei) is known to Trace. Let b =

Rec?(f1(share′1), . . . , fn(share′n)). Intuitively, b indicates whether the sharing is in Hybi,j−1

or Hybi,j . See the formal analysis in Section 4.3. Output b ⊕ ssh′′i,j , where ssh′′i,j is the
j-th bit of ssh′′i which was generated in the last step.

Then Trace receives the output of L′i,j = InvOra(Li,j ,?)(owf(Li,j)) and checks that whether
owf(Li,j) = owf(L′i,j). If they are the same, Trace adds (i, (j, L′i,j)) into the output list.

For every i ∈ {t, . . . , n} and j ∈ {λ, . . . , 2λ−1}, Trace starts running InvOra(Li,2λ−j ,?)(owf(Li,2λ−j))
by simulating the access to Ora(Li,2λ−j , ?) as below:
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– On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace randomly generates
(share′1, . . . , share

′
i−1, share

′
i+1, . . . , share

′
n) such that, after combining with sharei (which

is unknown to Trace), it is a sample in Hybi,j and p′2λ−j(βi) = Y , p′k(βi) = pk(βi) for
k > 2λ− j.
To this end, Trace randomly samples ssh′′i such that ssh′′i,k = sshi,k for k > 2λ− j. Then
randomly sample (ssh′1, . . . , ssh

′
i−1) such that ((α1, ssh

′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i )) are

valid t-Shamir shares of s1, and after that, generate (ssh′i+1, . . . , ssh
′
n) such that ((α1,

ssh′1), . . . , (αt−1, ssh
′
t−1), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are valid t-Shamir shares of s0.

For k < 2λ − j, repeated sample a random polynomial p′k(·) ∈ F[X] of degree at most
t− 1 such that p′k(αi) = pk(αi) (recall that Ri,k = pk(αi) is a component in sharei) until
p′k(·) satisfies that p′k(β1), . . . p′k(βn) are non-zero.

For k = 2λ−j, repeated sample a random polynomial p′k(·) ∈ F[X] of degree at most t−1
such that p′k(αi) = pk(αi) and p′k(βi) = Y 6= 0 until p′k(·) satisfies that p′k(β1), . . . p′k(βn)
are non-zero.

For k > 2λ − j, repeated sample a random polynomial p′k(·) ∈ F[X] of degree at most
t− 1 such that p′k(αi) = pk(αi) and p′k(βi) = pk(βi) 6= 0 until p′k(·) satisfies that p′k(β1),
. . . p′k(βn) are non-zero.

Then, share′1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n are generated in the same way as that in

Fshare.

– Let share′i = sharei. Note that fi(share
′
i) = fi(sharei) is known to Trace. Let b =

Rec?(f1(share′1), . . . , fn(share′n)). Intuitively, b indicates whether the sharing is in Hybi,j
or Hybi,j+1. See the formal analysis in Section 4.3. Output b̄⊕ ssh′′i,2λ−j , where ssh′′i,2λ−j
is the (2λ− j)-th bit of ssh′′i which was generated in the last step.

Then Trace receives the output of L′i,2λ−j = InvOra(Li,2λ−j ,?)(owf(Li,2λ−j)) and checks that
whether owf(Li,2λ−j) = owf(L′i,2λ−j). If they are the same, Trace adds (i, (2λ − j, L′i,2λ−j))
into the output list.

In the end, if the output list is empty, Trace outputs ⊥. Otherwise, Trace outputs the first
pair (i, (j, L′i,j)) in the output list.

• Judge(i?, πi? , viewD) : Judge first parses πi? as (j, L′i?,j). Then output Verify(owf(L′i?,j), σi?,j ,
vki?) where σi?,j is the signature available from viewD.

4.3 Proof

We show that the construction given in Section 4.2 satisfies the correctness, statistical privacy,
non-imputability. We show the traceability property in Section 4.3.1.

Correctness. The correctness follows directly from the correctness of the underlying Shamir
secret sharing scheme.

Statistical Privacy. We show an even stronger statement:

{(share1, . . . , sharen)← Share(s0, t, n) : shareT ◦ {pj(·)}j∈[λ]}
≡ {(share1, . . . , sharen)← Share(s1, t, n) : shareT ◦ {pj(·)}j∈[λ]}.
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To see this, note that in Share(s, t, n), {pj(·)}j∈[λ] are generated independent of {sshi}i∈T and the
secret s. Thus, the distribution of {pj(·)}j∈[λ] generated by Share(s0, t, n) is the same as that
generated by Share(s1, t, n). By the privacy of the Shamir secret sharing scheme, we have

{(share1, . . . , sharen)← Share(s0, t, n) : {sshi}i∈T }
≡ {(share1, . . . , sharen)← Share(s1, t, n) : {sshi}i∈T }

Therefore,

{(share1, . . . , sharen)← Share(s0, t, n) : {pj(·)}j∈[λ] ◦ {sshi}i∈T }
≡ {(share1, . . . , sharen)← Share(s1, t, n) : {pj(·)}j∈[λ] ◦ {sshi}i∈T }.

Note that the set of values {Ri,j}i∈T,j∈[λ] are completely determined by {pj(·)}j∈[λ]. We only need
to consider the distribution of {Li,j}i∈T,j∈[λ]. Since, for each i ∈ T, j ∈ [λ], Li,j was sampled
independently and randomly with the only constrain that sshi,j = 〈Li,j , pj(βj)〉, we have

{(share1, . . . , sharen)← Share(s0, t, n) : {(Li,j , Ri,j)}i∈T,j∈[λ] ◦ {pj(·)}j∈[λ] ◦ {sshi}i∈T }
≡ {(share1, . . . , sharen)← Share(s1, t, n) : {(Li,j , Ri,j)}i∈T,j∈[λ] ◦ {pj(·)}j∈[λ] ◦ {sshi}i∈T },

which completes the proof of statistical privacy.

Non-imputability. We prove this by contradiction. Assume there exists t, n ∈ N, a secret s, an
honest player Pi? and an efficient algorithm D̃ such that

Pr
share(1λ,s,t,n)

[(view′D, i
?, πi?)← D̃(viewD, share[n]\{i?}) : Judge(i?, πi? , view

′
D) = guilty] ≥ 1

poly(λ)
.

By the security of the underlying digital signature scheme, we have

Pr
share(1λ,s,t,n)

[(view′D, i
?, (j, L′i?,j))← D̃(viewD, share[n]\{i?}) : owf(L′i?,j) = owf(Li?,j)]

≥ 1

poly(λ)
− negl(λ)

=
1

poly(λ)
.

We construct an adversary A which can invert owf with noticeable probability. A works as that
in Figure 2.
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1. A receives a challenge owf(x).

2. A simulates the dealer and all players, runs Share(1λ, s, t, n) faithfully, and gets viewD,
(share1, . . . , sharen).

3. A randomly samples j′ ∈ [λ], and then replaces (owf(Li?,j′),Sign(owf(Li?,j′), ski?)) in

viewD by (owf(x), Sign(owf(x), ski?)). Let ṽiewD be viewD after the replacement.

4. A calls D̃(ṽiewD, share[n]\{i?}) and receives (i?, πi?). A parses πi? as (j, L′i?,j). If j′ = j,
A outputs L′i?,j . Otherwise, A outputs ⊥.

Figure 2: Description of adv for owf

Then

Pr
x∼F

[x′ ← A(owf(x)) : owf(x) = owf(x′)]

≥ Pr
x∼F,j′∼[λ]

[(view′D, i
?, (j, L′i?,j))← D̃(ṽiewD, share[n]\{i?}) :

j = j′ and owf(L′i?,j) = owf(x) and 〈x, pj(βi?)〉 = sshi?,j ]

= Pr
x∼F,j′∼[λ]

[(view′D, i
?, (j, L′i?,j))← D̃(ṽiewD, share[n]\{i?}) :

owf(L′i?,j) = owf(x)| j = j′, 〈x, pj(βi?)〉 = sshi?,j ] ·

Pr
x∼F,j′∼[λ]

[(view′D, i
?, (j, L′i?,j))← D̃(ṽiewD, share[n]\{i?}) : j = j′, 〈x, pj(βi?)〉 = sshi?,j ]

≥ Pr
x∼F,j′∼[λ]

[(view′D, i
?, (j, L′i?,j))← D̃(ṽiewD, share[n]\{i?}) :

owf(L′i?,j) = owf(x)| j = j′, 〈x, pj(βi?)〉 = sshi?,j ] ·
1

2λ

≥ 1

poly(λ)
,

where the last step follows because if 〈x, pj(βi?)〉 = sshi?,j , the distribution of ṽiewD is the same as
that of viewD.

4.3.1 Traceability

Recall from the description of Trace in Section 4.2, our definition of Hybi,j for i ∈ {t, . . . , n}, j ∈ {0,
. . . , 2λ} and set η(ε) = ε

Cnλ . The main theorem that we prove here is the following:

Theorem 4.5 For a set of n collector functions f1, . . . , fn, a pirate reconstruction box Rec?, secrets
s0, s1 and i ∈ {t, . . . , n}, if

Pr
Hybi,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hybi,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0] ≥ εi,
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then, with probability at least εi/2− λη(ε)− negl(λ), there exists j ∈ [λ] such that (i, (j, L′i,j)) is in
the output list of Trace and is a valid evidence against Pi.

Note that by a standard averaging argument, there exists i ∈ {t, . . . , n} such that εi ≥ ε/(n−
t+1). Therefore, Theorem 4.5 shows that the tracing probability is at least O(ε/(n− t+1)), which
corresponds to the first step in Section 2.2.

This theorem follows directly from the following two lemmas.

Lemma 4.6 For a set of n collector functions f1, . . . , fn, a pirate reconstruction box Rec?, secrets
s0, s1 and i ∈ {t, . . . , n}, if

Pr
Hybi,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hybi,λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0] ≥ εi,left,

then, with probability at least εi,left − λη(ε) − negl(λ), there exists j ∈ [λ] such that (i, (j, L′i,j)) is
in the output list of Trace and is a valid evidence against Pi.

Lemma 4.7 For a set of n collector functions f1, . . . , fn, a pirate reconstruction box Rec?, secrets
s0, s1 and i ∈ {t, . . . , n}, if

Pr
Hybi,λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hybi,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0] ≥ εi,right,

then, with probability at least εi,right − λη(ε)− negl(λ), there exists j ∈ [λ], such that (i, (j, L′i,j)) is
in the output list of Trace and is a valid evidence against Pi.

Proof of Theorem 4.5. Note that εi = εi,left+εi,right and thus either εi,left ≥ εi/2 or εi,right ≥ εi/2.
Combining Lemma 4.6 and Lemma 4.7, Theorem 4.5 follows.

We now give the proof of Lemma 4.6 and Lemma 4.7 follows via an identical argument.

Proof of Lemma 4.6. The proof of Lemma 4.6 follows directly from the claims 4.8, 4.11.

Claim 4.8 With probability at least εi,left − λη(ε), (sharei, {pk(βi)}k∈[λ]) output by Share(s0, t, n)
satisfies that, there exists j ∈ {1, . . . , λ} such that

Pr
Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)]−

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)] ≥ η(ε).

Proof
We first prove the following proposition which states that the joint distribution of sharei and

the values {pk(βi)}k∈[λ] in the real sharing of a secret s0 is in fact identical to its distribution in
Hybi,j .
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Proposition 4.9 For every i ∈ {t, . . . , n}, j ∈ {0, . . . , 2λ} and secrets s0, s1,

{(share′1, . . . , share′n)← Hybi,j : share′i ◦ {p′k(βi)}k∈[λ]}
≡ {(share1, . . . , sharen)← Share(s0, t, n) : sharei ◦ {pk(βi)}k∈[λ]}.

Proof Recall from the description of Hybi,j , the sampling procedure for (ssh′1, . . . , ssh
′
n) and ssh′′i .

We prove a stronger statement:

{(share′1, . . . , share′n)← Hybi,j : share′i ◦ {p′k(·)}k∈[λ]}
≡ {(share1, . . . , sharen)← Share(s, t, n) : sharei ◦ {pk(·)}k∈[λ]}.

To see this, note that {p′k(·)}k∈[λ] and {pk(·)}k∈[λ] are generated in the same way and independent
of ssh′i and sshi respectively. By the privacy of the Shamir secret sharing scheme, ssh′′i and sshi are
uniformly random. Since ssh′i is obtained from ssh′′i by replacing its first j bits by random bits, ssh′i
is also uniformly random. Therefore, we have

{(share′1, . . . , share′n)← Hybi,j : ssh′i ◦ {p′k(·)}k∈[λ]}
≡ {(share1, . . . , sharen)← Share(s, t, n) : sshi ◦ {pk(·)}k∈[λ]}.

Finally, {R′i,k}k∈[λ] are determined by {p′k(·)}k∈[λ] and {Ri,k}k∈[λ] are determined by {pk(·)}k∈[λ].

For each k ∈ [λ], L′i,k was sampled independently and random with the only constrain that ssh′i,k =
〈L′i,k, p′k(βi)〉, and Li,k was sampled independently and random with the only constrain that sshi,k =
〈Li,k, pk(βi)〉. Therefore,

{(share′1, . . . , share′n)← Hybi,j : {(L′i,k, R′i,k)}k∈[λ] ◦ ssh′i ◦ {p′k(·)}k∈[λ]}
≡ {(share1, . . . , sharen)← Share(s, t, n) : {(Li,k, Ri,k)}k∈[λ] ◦ sshi ◦ {pk(·)}k∈[λ]},

which completes the proof of the proposition.

We first fix sharei. Let

εshareii,left = Pr
Hybi,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei]−

Pr
Hybi,λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei]

εshareii,λ = Pr
Hybi,λ−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei]−

Pr
Hybi,λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei]

We show that,

Proposition 4.10 For a fixed sharei, with probability at least εshareii,left − λη(ε), {pk(βi)}k∈[λ] output
by Share(s0, t, n) satisfies that, there exists j ∈ {1, . . . , λ} such that

Pr
Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)]−

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)] ≥ η(ε).
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Proof We note that, if

Pr
Hybi,λ−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei]−

Pr
Hybi,λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei] ≥ η(ε),

i.e., εshareii,λ ≥ η(ε), then we are done since every {pk(βi)}k∈[λ] output by Share(s0, t, n) satisfies the

condition. In the following analysis, we assume εshareii,λ < η(ε).
For j ∈ {1, . . . , λ− 1}, we say {pk(βi)}k>j is good w.r.t. (sharei,Hybi,j−1,Hybi,j), if

Pr
Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)]−

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)] ≥ η(ε).

From j = λ−1 to 1, let Sj = {{pk(βi)}k>j | {pk(βi)}k>j is good w.r.t. (sharei,Hybi,j−1,Hybi,j) but ∀j′ >
j, {pk(βi)}k>j′ 6∈ Sj′}. Let S′j = {{pk(βi)}k>j | ∀j′ ≥ j, {pk(βi)}k>j′ 6∈ Sj′}. We point out two im-
portant properties of S1, . . . , Sλ−1 and S′1, . . . , S

′
λ−1.

1. For all {pk(βi)}k>j , either {pk(βi)}k>j ∈ S′j or there exists some j′ ≥ j such that {pk(βi)}k>j′ ∈
Sj′ .

2. If {pk(βi)}k>j ∈ S′j , then by definition, for all j′ ≥ j, {pk(βi)}k>j′ 6∈ Sj′ . For every j′1 > j′2 ≥ j,
if {pk(βi)}k>j′2 ∈ Sj′2 , then by definition, {pk(βi)}k>j′1 6∈ Sj′1 .

Thus, S′j , Sj , . . . , Sλ−1 define a partition of all {pk(βi)}k>j .
Recall that we have assumed εshareii,λ < η(ε). We use (sharei ← Share(s0, t, n)) to denote the

event that Share(s0, t, n) outputs sharei. Therefore, it is equivalent to show

Pr
Share(s0,t,n)

[{pk(βi)}k∈[λ] : ∃j ∈ {1, . . . , λ− 1}, {pk(βi)}k>j ∈ Sj | sharei ← Share(s0, t, n)]

≥ εshareii,left − λη(ε).

By the properties of S1, . . . , Sλ−1,

Pr
Share(s0,t,n)

[{pk(βi)}k∈[λ] : ∃j ∈ {1, . . . , λ− 1}, {pk(βi)}k>j ∈ Sj | sharei ← Share(s0, t, n)]

=

λ−1∑
j=1

Pr
Share(s0,t,n)

[{pk(βi)}k>j ∈ Sj | sharei ← Share(s0, t, n)]. (4.1)

For simplicity, we use (Hybi,j1 − Hybi,j2)|sharei to represent

Pr
Hybi,j1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei]−

Pr
Hybi,j2

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei],

and (Hybi,j1 − Hybi,j2)|sharei,{pk(βi)}k>j′∈S to represent

Pr
Hybi,j1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and {p′k(βi)}k>j′ ∈ S]−

Pr
Hybi,j2

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and {p′k(βi)}k>j′ ∈ S],
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According to Proposition 4.9, the distribution of (share′i, {p′k(β)}k∈[λ]) generated by Hybi,j is the
same as that of (sharei, {pk(β)}k∈[λ]) generated by Share(s0, t, n). Therefore,

Pr
Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei]

= Pr
Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and {p′k(βi)}k>j ∈ S′j ] ·

Pr
Hybi,j−1

[{p′k(βi)}k>j ∈ S′j | share′i = sharei] +∑
j′≥j

Pr
Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and {p′k(βi)}k>j′ ∈ Sj′ ] ·

Pr
Hybi,j−1

[{p′k(βi)}k>j′ ∈ Sj′ | share′i = sharei]

= Pr
Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and {p′k(βi)}k>j ∈ S′j ] ·

Pr
Share(s0,t,n)

[{pk(βi)}k>j ∈ S′j | sharei ← Share(s0, t, n)] +∑
j′≥j

Pr
Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and {p′k(βi)}k>j′ ∈ Sj′ ] ·

Pr
Share(s0,t,n)

[{pk(βi)}k>j′ ∈ Sj′ | sharei ← Share(s0, t, n)],

and similarly,

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei]

= Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and {p′k(βi)}k>j ∈ S′j ] ·

Pr
Share(s0,t,n)

[{pk(βi)}k>j ∈ S′j | sharei ← Share(s0, t, n)] +∑
j′≥j

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and {p′k(βi)}k>j′ ∈ Sj′ ] ·

Pr
Share(s0,t,n)

[{pk(βi)}k>j′ ∈ Sj′ | sharei ← Share(s0, t, n)].

We have,

(Hybi,j−1 − Hybi,j)|sharei
= (Hybi,j−1 − Hybi,j)|sharei,{pk(βi)}k>j∈S′j Pr

Share(s0,t,n)
[{pk(βi)}k>j ∈ S′j | sharei ← Share(s0, t, n)] +∑

j′≥j
(Hybi,j−1 − Hybi,j)|sharei,{pk(βi)}k>j′∈Sj′ Pr

Share(s0,t,n)
[{pk(βi)}k>j′ ∈ Sj′ | sharei ← Share(s0, t, n)].

According to the definition of S′j , (Hybi,j−1−Hybi,j)|sharei,{pk(βi)}k>j∈S′j < η(ε). Recall that εshareii,λ <

η(ε). We have

εshareii,left =
λ∑
j=1

(Hybi,j−1 − Hybi,j)|sharei
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= εshareii,λ +
λ−1∑
j=1

(Hybi,j−1 − Hybi,j)|sharei,{pk(βi)}k>j∈S′j ·

Pr
Share(s0,t,n)

[{pk(βi)}k>j ∈ S′j | sharei ← Share(s0, t, n)] +

λ−1∑
j=1

∑
j′≥j

(Hybi,j−1 − Hybi,j)|sharei,{pk(βi)}k>j′∈Sj′ ·

Pr
Share(s0,t,n)

[{pk(βi)}k>j′ ∈ Sj′ | sharei ← Share(s0, t, n)]

< η(ε) +

λ−1∑
j=1

η(ε) · 1 +

λ−1∑
j′=1

Pr
Share(s0,t,n)

[{pk(βi)}k>j′ ∈ Sj′ | sharei ← Share(s0, t, n)] ·

j′∑
j=1

(Hybi,j−1 − Hybi,j)|sharei,{pk(βi)}k>j′∈Sj′ (Change the order of indices of summations.)

= λη(ε) +

λ−1∑
j′=1

Pr
Share(s0,t,n)

[{pk(βi)}k>j′ ∈ Sj′ | sharei ← Share(s0, t, n)] ·

(Hybi,0 − Hybi,j′)|sharei,{pk(βi)}k>j′∈Sj′

≤ λη(ε) +

λ−1∑
j′=1

Pr
Share(s0,t,n)

[{pk(βi)}k>j′ ∈ Sj′ | sharei ← Share(s0, t, n)]

= Pr
Share(s0,t,n)

[{pk(βi)}k∈[λ] : ∃j ∈ {1, . . . , λ− 1}, {pk(βi)}k>j ∈ Sj | sharei ← Share(s0, t, n)] +

λη(ε),

where the last step follows from the Equation 4.1. Therefore,

Pr
Share(s0,t,n)

[{pk(βi)}k∈[λ] : ∃j ∈ {1, . . . , λ− 1}, {pk(βi)}k>j ∈ Sj | sharei ← Share(s0, t, n)]

≥ εshareii,left − λη(ε).

According to Proposition 4.9, for every sharei,

Pr
Hybi,0

[share′i = sharei] = Pr
Share(s0,t,n)

[sharei ← Share(s0, t, n)] = Pr
Hybi,λ

[share′i = sharei]

Therefore,

εi,left =
∑
sharei

εshareii,left · Pr
Share(s0,t,n)

[sharei ← Share(s0, t, n)].

According to Proposition 4.10, for every sharei, under the condition that sharei is output by
Share(s0, t, n), with probability at least εshareii,left −λη(ε), {pk(βi)}k∈[λ] output by Share(s0, t, n) satisfies
that, there exists j ∈ {1, . . . , λ} such that

Pr
Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)]−

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)] ≥ η(ε).
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Therefore, the probability that (sharei, {pk(βi)}k∈[λ]) output by Share(s0, t, n) satisfies the above
property is at least∑

sharei

(εshareii,left − λη(ε)) · Pr
Share(s0,t,n)

[sharei ← Share(s0, t, n)] = εi,left − λη(ε).

This completes the proof of the claim.

Claim 4.11 For a set of n collector functions f1, . . . , fn, a pirate reconstruction box Rec?, secrets
s0, s1 and i ∈ {t, . . . , n}, j ∈ {1, . . . , λ}, if (sharei, {pk(βi)}k>j), output by Share(s0, t, n), satisfies
that,

Pr
Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)]−

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)] ≥ η(ε),

then, with probability 1− negl(λ), (i, (j, L′i,j)) is in the output list of Trace and is a valid evidence
against Pi.

Proof Recall from the description of Hybi,j , the sampling procedure for (ssh′1, . . . , ssh
′
n) and ssh′′i .

For ease of notation, we use Ei,j to represent the event (share′i = sharei and ∀k > j, p′k(βi) = pk(βi)).
We first show that

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = ssh′i,j ⊕ ssh′′i,j | Ei,j ] ≥
1

2
+ η(ε).

Note that ssh′i is obtained from ssh′′i by replacing its first j bits by random bits. Therefore
PrHybi,j [ssh

′
i,j = ssh′′i,j | Ei,j ] = 1/2. We have,

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = ssh′i,j ⊕ ssh′′i,j | Ei,j ]

=
1

2
Pr

Hybi,j
[Rec?(f1(share′1), . . . , fn(share′n)) = 0| ssh′i,j ⊕ ssh′′i,j = 0, Ei,j ] +

1

2
Pr

Hybi,j
[Rec?(f1(share′1), . . . , fn(share′n)) = 1| ssh′i,j ⊕ ssh′′i,j = 1, Ei,j ]

=
1

2
Pr

Hybi,j
[Rec?(f1(share′1), . . . , fn(share′n)) = 0| ssh′i,j ⊕ ssh′′i,j = 0, Ei,j ] +

1

2

(
1− Pr

Hybi,j
[Rec?(f1(share′1), . . . , fn(share′n)) = 0| ssh′i,j ⊕ ssh′′i,j = 1, Ei,j ]

)
=

1

2
+ Pr

Hybi,j
[Rec?(f1(share′1), . . . , fn(share′n)) = 0| ssh′i,j ⊕ ssh′′i,j = 0, Ei,j ]−

1

2

(
Pr

Hybi,j
[Rec?(f1(share′1), . . . , fn(share′n)) = 0| ssh′i,j ⊕ ssh′′i,j = 0, Ei,j ]+

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| ssh′i,j ⊕ ssh′′i,j = 1, Ei,j ]

)
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=
1

2
+ Pr

Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| Ei,j ]−

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| Ei,j ]

≥ 1

2
+ η(ε),

where the second last step follows because that, under the condition ssh′i,j = ssh′′i,j , (share′1, . . . ,
share′n)← Hybi,j has the same distribution as that sampled in Hybi,j−1.

Let b be the output of Rec?. Recall that Trace uses b ⊕ ssh′′i,j as the result of ssh′i,j = 〈Li,j ,
p′j(βi)〉. Let Y denote an oracle query made by InvOra(Li,j ,?)(owf(Li,j)). Therefore, in the case that
(sharei, {pk(βi)}k>j) is output by Share(s0, t, n) (denoted by (sharei, {pk(βi)}k>j)← Share(s0, t, n)),

Pr
Y∼F

[Trace correctly outputs the result 〈Li,j , Y 〉| (sharei, {pk(βi)}k>j)← Share(s0, t, n)]

=
1

2λ
+

1

2λ

∑
Y ∈F\{0}

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = ssh′i,j ⊕ ssh′′i,j | p′j(βi) = Y,Ei,j ].

Recall that Ei,j denotes the event (share′i = sharei and ∀k > j, p′k(βi) = pk(βi)). Note that, in
Hybi,j , p

′
j(·) is sampled independent of {p′k(·)}k 6=j and ssh′i. By the definition of Hybi,j , for every

Y ∈ F \ {0},
Pr

Hybi,j
[p′j(βi) = Y | Ei,j ] = Pr

Hybi,j
[p′j(βi) = Y | p′j(αi) = pj(αi)]

Let F[X]<t denote all polynomials of degree at most t− 1 in F[X]. Then,

Pr
Hybi,j

[p′j(βi) = Y | p′j(αi) = pj(αi)] = Pr
p′j(·)∼F[X]<t

[p′j(βi) = Y | p′j(αi) = pj(αi) and ∀` ∈ [n], p′j(β`) 6= 0].

We have

Pr
p′j(·)∼F[X]<t

[p′j(βi) = Y | p′j(αi) = pj(αi) and ∀` ∈ [n], p′j(β`) 6= 0]

=
Prp′j(·)∼F[X]<t [p

′
j(βi) = Y and p′j(αi) = pj(αi) and ∀` ∈ [n], p′j(β`) 6= 0]

Prp′j(·)∼F[X]<t [p
′
j(αi) = pj(αi) and ∀` ∈ [n], p′j(β`) 6= 0]

≤
Prp′j(·)∼F[X]<t [p

′
j(βi) = Y and p′j(αi) = pj(αi)]

Prp′j(·)∼F[X]<t [p
′
j(αi) = pj(αi)]− Prp′j(·)∼F[X]<t [p

′
j(αi) = pj(αi) and ∃` ∈ [n], p′j(β`) = 0]

≤ 2−2λ

2−λ −
∑n

`=1 Prp′j(·)∼F[X]<t [p
′
j(αi) = pj(αi) and p′j(β`) = 0]

=
2−2λ

2−λ − n2−2λ

=
1

2λ − n
.

We have

1

2λ

∑
Y ∈F\{0}

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = ssh′i,j ⊕ ssh′′i,j | p′j(βi) = Y,Ei,j ]
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≥ 2λ − n
2λ

∑
Y ∈F\{0}

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = ssh′i,j ⊕ ssh′′i,j | p′j(βi) = Y,Ei,j ] ·

Pr
Hybi,j

[p′j(βi) = Y | Ei,j ]

=
2λ − n

2λ
Pr

Hybi,j
[Rec?(f1(share′1), . . . , fn(share′n)) = ssh′i,j ⊕ ssh′′i,j | Ei,j ]

≥ 2λ − n
2λ

(
1

2
+ η(ε)

)
≥ 1

2
+
η(ε)

2
.

Therefore,

Pr
Y∼F

[Trace correctly outputs the result 〈Li,j , Y 〉| (sharei, {pk(βi)}k>j)] ≥
1

2
+
η(ε)

2
.

By the Goldreich-Levin Lemma, with probability 1 − negl(λ), InvOra(Li,j ,?)(owf(Li,j)) is able to
output L′i,j such that owf(Li,j) = owf(L′i,j).

4.4 Improvement

Theorem 4.5 focused on the probability that Trace can trace a specific player. Now we consider the
probability that Trace is able to trace at least one player, i.e., the output list of Trace is not empty.
The following theorem shows that the tracing probability is at least O(ε), which corresponds to the
second step in Section 2.2.

Theorem 4.12 For t ≥ 4, a set of n collector functions f1, . . . , fn, a pirate reconstruction box
Rec? and secrets s0, s1, if

Pr
Share(s0,t,n)

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share′1), . . . , fn(share′n)) = 0] ≥ ε,

then, with probability at least δ(ε) = p(ε)/( n−t
n−t+1p(ε) + 1)− negl(λ), where p(ε) = ε/2− λ(n− t+

1)η(ε), there exists i ∈ {t, . . . , n}, j ∈ [λ], such that (i, (j, L′i,j)) is in the output list of Trace and is
a valid evidence against Pi.

Proof For i ∈ {t, . . . , n}, let

εi = Pr
Hybi,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hybi,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0].

Let Ti be the set of all (sharei, {pk(βi)}k∈[λ]) such that there exists j ∈ {1, . . . , 2λ} such that

Pr
Hybi,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)]−

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)] ≥ η(ε).
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Note that εi = εi,left + εi,right. Without loss of generality, assume εi,left ≥ εi/2. Then, according
to Claim 4.8, with probability at least εi,left − λη(ε), (sharei, {pk(βi)}k∈[λ]) ∈ Ti. Thus, we have
PrShare(s0,t,n)[(sharei, {pk(βi)}k∈[λ]) ∈ Ti] ≥ εi/2− λη(ε).

When Share(s0, t, n) outputs (sharei, {pk(βi)}k∈[λ]) ∈ Ti, by Claim 4.11, with probability 1 −
negl(λ), Trace is able to output a valid evidence against Pi. Thus, it is sufficient to show

Pr
Share(s0,t,n)

[∃i ∈ {t, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti] ≥
p(ε)

1 +
n− t

n− t+ 1
p(ε)

− negl(λ),

where p(ε) = ε/2− λ(n− t+ 1)η(ε).

We define a new distribution S̃hare(s, t, n) as follows,

• S̃hare(s, t, n) : First, randomly generate ((α1, ssh1), . . . , (αn, sshn)) which are valid t-Shamir
shares of secret s.

Second, for each j ∈ [λ], randomly sample a polynomial pj(·) ∈ F[X] of degree at most t− 1.

Finally, for every player Pi, let sshi = (sshi,1, . . . , sshi,λ) where sshi,j ∈ {0, 1}. For every
j ∈ [λ], if pj(βi) 6= 0, randomly sample Li,j such that sshi,j = 〈Li,j , pj(βi)〉; otherwise,
randomly sample Li,j ∈ F. Let Ri,j = pj(αi). Set sharei = (αi, βi, (Li,1, Ri,1), . . . , (Li,λ, Ri,λ)).

The output is (share1, . . . , sharen).

The main difference between Share(s, t, n) and S̃hare(s, t, n) is that, for each pj(·) in S̃hare(s, t,
n), we do not require pj(β1), . . . , pj(βn) to be non-zero. Note that if pj(βi) = 0, 〈Li,j , pj(βj)〉 is
always 0. In this case, Li,j is sampled uniformly from F.

We say a polynomial p(·) ∈ F[X] is valid if for every i ∈ [n], p(βi) 6= 0. For a random p(·)
of degree at most t − 1, the probability that p(βi) = 0 is 2−λ. By union bound, the probability
that a random p(·) is valid is at least 1 − n2−λ = 1 − negl(λ). Therefore, by union bound,
Pr

S̃hare(s,t,n)
[p1(·), . . . , pλ(·) are valid] ≥ 1− λnegl(λ) = 1− negl(λ). Note that

Pr
Share(s0,t,n)

[(sharei, {pk(βi)}k∈[λ]) ∈ Ti]

= Pr
S̃hare(s0,t,n)

[(sharei, {pk(βi)}k∈[λ]) ∈ Ti| p1(·), . . . , pλ(·) are valid]

=
Pr

S̃hare(s0,t,n)
[(sharei, {pk(βi)}k∈[λ]) ∈ Ti and p1(·), . . . , pλ(·) are valid]

Pr
S̃hare(s0,t,n)

[ p1(·), . . . , pλ(·) are valid]

≤
Pr

S̃hare(s0,t,n)
[(sharei, {pk(βi)}k∈[λ]) ∈ Ti]

1− negl(λ)

Let δi = PrShare(s0,t,n)[(sharei, {pk(βi)}k∈[λ]) ∈ Ti] and δ̃i = Pr
S̃hare(s0,t,n)

[(sharei, {pk(βi)}k∈[λ]) ∈
Ti]. Then δ̃i ≥ (1− negl(λ))δi = δi − negl(λ).

Now we compute the probability that Pr
S̃hare(s0,t,n)

[∃i ∈ {t, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti].
We note that, in the case that t ≥ 4, (share1, {pk(β1)}k∈[λ]), . . . , (sharen, {pk(βn)}k∈[λ]) output

by S̃hare(s0, t, n) are pairwise independent.
To see this, consider the distribution of (sharei, {pk(βi)}k∈[λ]) when (sharei′ , {pk(βi′)}k∈[λ]) is

fixed, where i 6= i′. Note that (sharei′ , {pk(βi′)}k∈[λ]) constrains the value that sshi′ can take.
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However, by the privacy of the Shamir secret sharing scheme, sshi is still uniformly random. Since
p1(·), . . . , pλ(·) are sampled uniformly from all possible polynomials in F[X] of degree at most
t − 1 ≥ 3, for each k ∈ [λ], pk(αi), pk(βi) are uniformly random given pk(αi′) (i.e., Ri′,k) and
pk(βi′). For each k ∈ [λ], Li,k only depends on pk(βi) and sshi,k and therefore, is independent of
(sharei′ , {pk(βi′)}k∈[λ]). Thus (sharei, {pk(βi)}k∈[λ]) and (sharei′ , {pk(βi′)}k∈[λ]) are independent.

For i ∈ {t, . . . , n}, let Zi be a Bernoulli random variable where Zi = 1 when (sharei, {pk(βi)}k∈[λ]) ∈
Ti and Zi = 0 otherwise. Recall that δ̃i = Pr

S̃hare(s0,t,n)
[(sharei, {pk(βi)}k∈[λ]) ∈ Ti]. Then Pr[Zi =

1] = δ̃i and Zt, . . . , Zn are pairwise independent. Let Z =
∑n

i=t Zi and P` = Pr[Z = `] where
` ∈ {0, . . . , n− t+ 1}. Therefore, we want to compute the probability that Pr[Z ≥ 1] =

∑n−t+1
`=1 P`.

Note that

E[Z] =
n−t+1∑
`=0

` · P` =
n∑
i=t

E[Zi] =
n∑
i=t

δ̃i,

and, by pairwise independence,

E[Z2] =
n−t+1∑
`=0

`2 · P` =

n∑
i1=t

n∑
i2=t

E[Zi1Zi2 ] =
n∑
i=t

E[Zi] +
∑
i1 6=i2

E[Zi1 ]E[Zi2 ] =

n∑
i=t

δ̃i +
∑
i1 6=i2

δ̃i1 δ̃i2

According to Cauchy-Schwarz inequality,

(

n−t+1∑
`=1

P`)(

n−t+1∑
`=1

`2 · P`) ≥ (

n−t+1∑
`=1

` · P`)2.

We have

Pr[Z ≥ 1] ≥ (E[Z])2

E[Z2]

=
(
∑n

i=t δ̃i)
2∑n

i=t δ̃i +
∑

i1 6=i2 δ̃i1 δ̃i2

=
(
∑n

i=t δ̃i)
2∑n

i=t δ̃i + (
∑n

i=t δ̃i)
2 −

∑n
i=t δ̃

2
i

≥
(
∑n

i=t δ̃i)
2∑n

i=t δ̃i + (
∑n

i=t δ̃i)
2 −

(
∑n

i=t δ̃i)
2

n− t+ 1

=

∑n
i=t δ̃i

1 +
n− t

n− t+ 1
(
∑n

i=t δ̃i)
,

where the second last step is due to the well-known inequality

n∑
i=1

X2
i ≥

1

n
(

n∑
i=1

Xi)
2.

Therefore,

Pr
S̃hare(s0,t,n)

[∃i ∈ {t, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti] ≥
∑n

i=t δ̃i

1 +
n− t

n− t+ 1
(
∑n

i=t δ̃i)
.
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Now we come back to using Share(s0, t, n). We have

Pr
Share(s0,t,n)

[∃i ∈ {t, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti]

= Pr
S̃hare(s0,t,n)

[∃i ∈ {t, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti| p1(·), . . . , pλ(·) are valid]

=
Pr

S̃hare(s0,t,n)
[∃i ∈ {t, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti and p1(·), . . . , pλ(·) are valid]

Pr
S̃hare(s0,t,n)

[p1(·), . . . , pλ(·) are valid]

≥ Pr
S̃hare(s0,t,n)

[∃i ∈ {t, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti]−

Pr
S̃hare(s0,t,n)

[∃i ∈ {t, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti and ∃k ∈ [λ], pk(·) is not valid]

≥ Pr
S̃hare(s0,t,n)

[∃i ∈ {t, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti]− negl(λ)

≥
∑n

i=t δ̃i

1 +
n− t

n− t+ 1
(
∑n

i=t δ̃i)
− negl(λ)

Note that
∑n

i=t δ̃i ≥
∑n

i=t δi − negl(λ) ≥ ε/2 − λ(n − t + 1)η(ε) − negl(λ) = p(ε) − negl(λ).
Therefore,

Pr
Share(s0,t,n)

[∃i ∈ {t, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti]

≥
∑n

i=t δ̃i

1 +
n− t

n− t+ 1
(
∑n

i=t δ̃i)
− negl(λ)

≥ p(ε)

1 +
n− t

n− t+ 1
p(ε)

− negl(λ).

5 Generalization

In Theorem 4.12, we showed that, the success probability that Trace (constructed in Section 4.2)
is able to trace a traitor is O(ε) when

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0] ≥ ε.

However, Trace only focuses on the players with indices i ∈ {t, . . . , n}, namely Pt, . . . , Pn, and does
not even try to trace P1, . . . Pt−1. Therefore, a natural question is whether we can construct Trace
such that it can also try to trace P1, . . . , Pt−1.

To this end, we review the construction of Trace in Section 4.2. For i ∈ {t, . . . , n}, to trace Pi, we
define Hybi,0, . . . ,Hybi,2λ. For every two adjacent hybrids Hybi,j−1,Hybi,j , we use Goldreich-Levin
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Lemma to try to reconstruct Li,j if j ≤ λ, or Li,2λ−j+1 if j > λ. Therefore, for i ∈ {1, . . . , t− 1}, if
we can define Hybi,0, . . . ,Hybi,2λ properly, the same idea can be used to trace Pi.

We first generalize the definition of Hybi,j .

Definition 5.1 For i ∈ {1, . . . , n}, j ∈ {0, . . . , 2λ}, three disjoint sets Pi,Pi,0,Pi,1 ⊆ [n] such that

|Pi| = t − 1 and Pi
⋃
Pi,0

⋃
Pi,1 = [n] \ {i}, and two secrets s0, s1, Hyb

Pi,Pi,0,Pi,1
i,j [s0, s1] is defined

as follows,

1. If j ≤ λ, ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are sampled

randomly such that {(αk, ssh′k)}k∈Pi⋃Pi,1 are valid t-Shamir shares of s1 and {(αi, ssh′′i )}
⋃
{(αk,

ssh′k)}k∈Pi⋃Pi,0 are valid t-Shamir shares of s0. Then the first j bits of ssh′′i are replaced by
random bits. Let ssh′i be ssh′′i after replacement. p′1, . . . , p

′
λ are then sampled in the same

way as that in Share(1λ, s, t, n). (share′1, . . . , share
′
n) are generated in the same way as that in

Fshare.

2. If j > λ, ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are sampled

randomly such that {(αi, ssh′′i )}
⋃
{(αk, ssh′k)}k∈Pi⋃Pi,1 are valid t-Shamir shares of s1 and

{(αk, ssh′k)}k∈Pi⋃Pi,0 are valid t-Shamir shares of s0. Then the first 2λ − j bits of ssh′′i are
replaced by random bits. Let ssh′i be ssh′′i after replacement. p′1, . . . , p

′
λ are then sampled in

the same way as that in Share(1λ, s, t, n). (share′1, . . . , share
′
n) are generated in the same way

as that in Fshare.

We will simply use Hyb
Pi,Pi,0,Pi,1
i,j and ignore s0, s1 when they are evident from the context.

For i ∈ {t, . . . , n}, if we set Pi = {1, . . . , t − 1},Pi,0 = {i + 1, . . . , n},Pi,1 = {t, . . . , i − 1}, we

have Hyb
Pi,Pi,0,Pi,1
i,j = Hybi,j .

We note that the probability that Trace is able to catch Pi depends on the value

εi = Pr
Hyb
Pi,Pi,0,Pi,1
i,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hyb
Pi,Pi,0,Pi,1
i,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0].

And the success probability depends on the summation of all εi. Thus, our goal is to find Pi,Pi,0,
Pi,1 for all i ∈ {1, . . . , n} to maximize the summation of all εi.

We first construct an algorithm EvalRec
?

(f1, . . . , fn, i,Pi,Pi,0,Pi,1) (described in Figure 3), which
is used to estimate εi for given Pi,Pi,0,Pi,1. Recall that η(ε) = ε

Cnλ where C = poly(λ).

Claim 5.2 For a set of n collector functions f1, . . . , fn, a pirate reconstruction box Rec?, secrets
s0, s1 and three disjoint sets Pi,Pi,0,Pi,1 ⊆ [n] such that |Pi| = t−1 and Pi

⋃
Pi,0

⋃
Pi,1 = [n]\{i},

let

εi = Pr
Hyb
Pi,Pi,0,Pi,1
i,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hyb
Pi,Pi,0,Pi,1
i,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0],

δi = EvalRec
?

(f1, . . . , fn, i,Pi,Pi,0,Pi,1).

Then, with probability 1− negl(λ), |εi − δi| ≤ η(ε)/2.
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1. EvalRec
?

receives f1, . . . , fn and (i,Pi,Pi,0,Pi,1).

2. Set cnt = 0. From j = 1 to 8λ/η2(ε),

(1) Randomly sample b ∈ {0, 1}. If b = 0, randomly sample (share′1, . . . , share
′
n) ←

Hyb
Pi,Pi,0,Pi,1
i,0 , otherwise, (share′1, . . . , share

′
n)← Hyb

Pi,Pi,0,Pi,1
i,2λ .

(2) Let b′ = Rec?(f1(share′1), . . . , fn(share′n)). If b′ = b, cnt = cnt + 1.

3. Output 2( cnt
8λ/η2(ε)

− 1/2).

Figure 3: Description of EvalRec
?

Proof Let Z1, . . . , Z8λ/η2(ε) be i.i.d. Bernoulli random variables, where Zj = 1 represents that
Rec? gives the correct guess in the j-th iteration of Step 2 in Figure 3. Note that,

Pr[Z1 = 1] = Pr[b← {0, 1}, (share′1, . . . , share′n)← Hyb
Pi,Pi,0,Pi,1
i,2λb :

Rec?(f1(share′1), . . . , fn(share′n)) = b]

=
1

2
Pr[(share′1, . . . , share

′
n)← Hyb

Pi,Pi,0,Pi,1
i,0 : Rec?(f1(share′1), . . . , fn(share′n)) = 0] +

1

2
Pr[(share′1, . . . , share

′
n)← Hyb

Pi,Pi,0,Pi,1
i,2λ : Rec?(f1(share′1), . . . , fn(share′n)) = 1]

=
1

2

 Pr
Hyb
Pi,Pi,0,Pi,1
i,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]+

1− Pr
Hyb
Pi,Pi,0,Pi,1
i,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]


=

1 + εi
2

Therefore E[Zj ] = (1 + εi)/2. Let Z = 1
8λ/η2(ε)

∑8λ/η2(ε)
j=1 Zj . By Chernoff Bound,

Pr[|Z − E[Z]| > η(ε)

4
] ≤ 2e

−2· 8λ
η2(ε)

·
(
η(ε)
4

)2
= 2e−λ = negl(λ).

Therefore, with probability 1−negl(λ), |Z− (1+εi)/2| ≤ η(ε)/4. Note that cnt =
∑8λ/η2(ε)

j=1 Zj .

Therefore, with probability 1− negl(λ), | cnt
8λ/η2(ε)

− (1 + εi)/2| ≤ η(ε)/4, which is

|2(
cnt

8λ/η2(ε)
− 1/2)− εi| ≤ η(ε)/2.
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Now, we introduce another algorithm SelectRec
?

(f1, . . . , fn) (described in Figure 4). The main
objective of Select is to select a set of (t − 1) parties, namely, (i?1, . . . , i

?
t−1) along with sets {(Pi?k ,

Pi?k,0,Pi?k,1)}k∈[t−1] such that the pirate reconstruction box can distinguish between Hyb
Pi?
k
,Pi?

k
,0,Pi?

k
,1

i?k,0

and Hyb
Pi?
k
,Pi?

k
,0,Pi?

k
,1

i?k,2λ
with probability at least ε/(n − t + 1) − η(ε) for every k ∈ [t − 1]. Once we

have identified such “special” parties, we will move those parties to the first t− 1 positions and the
Trace algorithm will first try to extract a valid evidence against these parties. This in fact, helps
us in boosting the success probability.

We now give an overview of the Select procedure. We will start with the ordering (1, . . . , n). For
every k ∈ {t, . . . , n}, we will define P ′k = {1, . . . , t− 1},P ′k,0 = {k + 1, . . . , n},P ′k,1 = {t, . . . , k − 1}
and we will check if k is a “special” party by running EvalRec

?

using these sets. If EvalRec
?

returns
a value which is greater than certain threshold, we will deem k to be a “special” party and swap it
with the 1. So, the ordering will now be (k, 2, . . . , k − 1, 1, k + 1, . . . , n). We now repeat the same
process to find a second “special” party and then swap it with 2 and continue until we find (t− 1)
special parties.

1. SelectRec
?

receives f1, . . . , fn.

2. Initially, set (i1, . . . , in) = (1, . . . , n). From j = 1 to t− 1,

(1) For k ∈ {t, . . . , n}, set P ′ik = {i1, . . . , it−1},P ′ik,0 = {ik+1, . . . , in},P ′ik,1 = {it, . . . ,
ik−1}.

(2) From k = t to n,

i. Set δik = EvalRec
?

(f1, . . . , fn, ik,P ′ik ,P
′
ik,0

,P ′ik,1).

ii. If δik ≥ ε/(n − t + 1) − η(ε)/2, set (ik,Pik ,Pik,0,Pik,1) := (ik,P ′ik ,P
′
ik,0

,P ′ik,1).
Swap ij with ik and break.

iii. If k = n, output FAIL and terminate.

3. Let (i1, . . . , in) be the permutation after Step 2.

4. For k ∈ {t, . . . , n}, set Pik = {i1, . . . , it−1},Pik,0 = {ik+1, . . . , in},Pik,1 = {it, . . . , ik−1}.

5. Output ((1,P1,P1,0,P1,1), . . . , (n,Pn,Pn,0,Pn,1)).

Figure 4: Description of SelectRec
?

Claim 5.3 For a set of n collector functions f1, . . . , fn, a pirate reconstruction box Rec?, secrets
s0, s1, if

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0] ≥ ε,
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then, with probability 1−negl(λ), ((1,P1,P1,0,P1,1), . . . , (n,Pn,Pn,0,Pn,1)), output by SelectRec
?

(f1,
. . . , fn), satisfies that,

1. there exists (i?1, . . . , i
?
t−1) such that for k ∈ {1, . . . , t− 1},

Pr

Hyb
Pi?
k
,Pi?

k
,0,Pi?

k
,1

i?
k
,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr

Hyb
Pi?
k
,Pi?

k
,0,Pi?

k
,1

i?
k
,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0] ≥ ε

n− t+ 1
− η(ε).

2.

n∑
k=1

 Pr
Hyb
Pik ,Pik,0,Pik,1
ik,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hyb
Pik ,Pik,0,Pik,1
ik,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]

 ≥ nε

n− t+ 1
− (t− 1)η(ε).

Proof We say Eval outputs a successful estimation if |εi−δi| ≤ η(ε)/2 (where εi, δi are defined in
Claim 5.2). By Claim 5.2, with probability 1− negl(λ), Eval outputs a successful estimation. Since
Select calls Eval (t−1)(n−t+1) times, by union bound, with probability 1−(t−1)(n−t+1)negl(λ) =
1−negl(λ), Eval outputs a successful estimation on each call made by Select. In this case, we show
that Select will output ((1,P1,P1,0,P1,1), . . . , (n,Pn,Pn,0,Pn,1)) and two properties in Claim 5.3
hold.

For j ∈ {1, . . . , t − 1}, let (i1, . . . , in) be the permutation of (1, . . . , n) in the j-th iteration of
Step 2 in Figure 4. It follows from our description of (P ′ik ,P

′
ik,0

,P ′ik,1) for k ∈ {t, . . . , n} that,

Hyb
P ′it ,P

′
it,0

,P ′it,1
it,0

is the same as Share(s0, t, n), Hyb
P ′in ,P

′
in,0

,P ′in,1
in,2λ

is the same as Share(s1, t, n) and for

k ∈ {t+ 1, . . . , n}, Hyb
P ′ik−1

,P ′ik−1,0
,P ′ik−1,1

ik−1,2λ
= Hyb

P ′ik ,P
′
ik,0

,P ′ik,1
ik,0

. Therefore,

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]

=

n∑
k=t

 Pr

Hyb
P′
ik
,P′
ik,0

,P′
ik,1

ik,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr

Hyb
P′
ik
,P′
ik,0

,P′
ik,1

ik,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]

 .
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Then, there exists k′ ∈ {t, . . . , n} such that

Pr

Hyb
P′
ik′

,P′
ik′ ,0

,P′
ik′ ,1

ik′ ,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr

Hyb
P′
ik′

,P′
ik′ ,0

,P′
ik′ ,1

ik′ ,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0] ≥ ε

n− t+ 1
.

And δik′ = EvalRec
?

(f1, . . . , fn, ik′ ,P ′ik′ ,P
′
ik′ ,0

,P ′ik′ ,1) satisfies that δik′ ≥ ε/(n − t + 1) − η(ε)/2.
Therefore, Select will not output FAIL in Step 2.(3) in Figure 4. Now suppose ik? is the first one
that satisfies δik? ≥ ε/(n− t+ 1)− η(ε)/2. By Claim 5.2, εik? ≥ δik? − η(ε)/2. Thus

Pr
Hyb
Pik?

,Pik? ,0
,Pik? ,1

ik? ,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hyb
Pik?

,Pik? ,0
,Pik? ,1

ik? ,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0] ≥ ε

n− t+ 1
− η(ε).

Note that ik? is then swapped with ij . Therefore, after Step 2 in Figure 4, (i1, . . . , it−1) satisfies
the first property.

Let (i1, . . . , in) be the permutation of {1, . . . , n} in Step 3 in Figure 4. For the second property,
note that, for k ∈ {1, . . . , t− 1},

Pr
Hyb
Pik ,Pik,0,Pik,1
ik,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hyb
Pik ,Pik,0,Pik,1
ik,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0] ≥ ε

n− t+ 1
− η(ε),

and

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]

=
n∑
k=t

 Pr
Hyb
Pik ,Pik,0,Pik,1
ik,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hyb
Pik ,Pik,0,Pik,1
ik,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]

 .

Now we construct a new Trace as follows:
TraceRec

?

(f1, . . . , fn, f1(share1), . . . , fn(sharen), viewD, s0, s1) : Recall that:

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]− Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0] ≥ ε
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Let η(ε) = ε
Cnλ where C = poly(λ). Trace first calls SelectRec

?

(f1, . . . , fn). If FAIL is output, Trace
outputs ⊥ and halts. Otherwise, parse the output as ((1,P1,P1,0,P1,1), . . . , (n,Pn,Pn,0,Pn,1)).

Let InvOra(X,?) be the algorithm in the Goldreich-Levin Lemma where Ora(X, ?) is an oracle with
X hard-coded and X is an element in F such that Pr[Y ∼ F : Ora(X,Y ) = 〈X,Y 〉] ≥ 1/2 + η(ε)/2.

For every i ∈ {1, . . . , n} and j ∈ {1, . . . , λ}, Trace starts running InvOra(Li,j ,?)(owf(Li,j)) by
simulating the access to Ora(Li,j , ?) as below:

• On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace randomly generates
(share′1, . . . , share

′
i−1, share

′
i+1, . . . , share

′
n) such that, after combining with sharei (which is un-

known to Trace), it is a sample in Hyb
Pi,Pi,0,Pi,1
i,j and p′j(βi) = Y , p′k(βi) = pk(βi) for k > j.

To this end, Trace randomly samples ssh′′i such that ssh′′i,k = sshi,k for k > j. Then randomly
sample {ssh′k}k∈Pi⋃Pi,0 such that {(αi, ssh′′i )}

⋃
{(αk, ssh′k)}k∈Pi⋃Pi,0 are valid t-Shamir shares

of s0, and after that, generate {ssh′k}k∈Pi,1 such that {(αk, ssh′k)}k∈Pi⋃Pi,1 are valid t-Shamir
shares of s1.

For k < j, repeatedly sample a random polynomial p′k(·) ∈ F[X] of degree at most t− 1 such
that p′k(αi) = pk(αi) (recall that Ri,k = pk(αi) is a component in sharei) until p′k(·) satisfies
that p′k(β1), . . . p′k(βn) are non-zero.

For k = j, repeatedly sample a random polynomial p′k(·) ∈ F[X] of degree at most t − 1
such that p′k(αi) = pk(αi) and p′k(βi) = Y 6= 0 until p′k(·) satisfies that p′k(β1), . . . p′k(βn) are
non-zero.

For k > j, repeatedly sample a random polynomial p′k(·) ∈ F[X] of degree at most t− 1 such
that p′k(αi) = pk(αi) and p′k(βi) = pk(βi) 6= 0 until p′k(·) satisfies that p′k(β1), . . . p′k(βn) are
non-zero.

Then, share′1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n are generated in the same way as that in Fshare.

• Let share′i = sharei. Note that fi(share
′
i) = fi(sharei) is known to Trace. Let b = Rec?(f1(share′1),

. . . , fn(share′n)). Output b⊕ ssh′′i,j , where ssh′′i,j is the j-th bit of ssh′′i which was generated in
the last step.

Then Trace receives the output of L′i,j = InvOra(Li,j ,?)(owf(Li,j)) and checks that whether owf(Li,j) =
owf(L′i,j). If they are the same, Trace adds (i, (j, L′i,j)) into the output list.

For every i ∈ {1, . . . , n} and j ∈ {λ, . . . , 2λ−1}, Trace starts running InvOra(Li,2λ−j ,?)(owf(Li,2λ−j))
by simulating the access to Ora(Li,2λ−j , ?) as below:

• On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace randomly generates
(share′1, . . . , share

′
i−1, share

′
i+1, . . . , share

′
n) such that, after combining with sharei (which is un-

known to Trace), it is a sample in Hyb
Pi,Pi,0,Pi,1
i,j and p′2λ−j(βi) = Y , p′k(βi) = pk(βi) for

k > 2λ− j.
To this end, Trace randomly samples ssh′′i such that ssh′′i,k = sshi,k for k > 2λ − j. Then
randomly sample {ssh′k}k∈Pi⋃Pi,1 such that {(αi, ssh′′i )}

⋃
{(αk, ssh′k)}k∈Pi⋃Pi,1 are valid t-

Shamir shares of s1, and after that, generate {ssh′k}k∈Pi,0 such that {(αk, ssh′k)}k∈Pi⋃Pi,0 are
valid t-Shamir shares of s0.

For k < 2λ− j, repeatedly sample a random polynomial p′k(·) ∈ F[X] of degree at most t− 1
such that p′k(αi) = pk(αi) (recall that Ri,k = pk(αi) is a component in sharei) until p′k(·)
satisfies that p′k(β1), . . . p′k(βn) are non-zero.
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For k = 2λ− j, repeatedly sample a random polynomial p′k(·) ∈ F[X] of degree at most t− 1
such that p′k(αi) = pk(αi) and p′k(βi) = Y 6= 0 until p′k(·) satisfies that p′k(β1), . . . p′k(βn) are
non-zero.

For k > 2λ− j, repeatedly sample a random polynomial p′k(·) ∈ F[X] of degree at most t− 1
such that p′k(αi) = pk(αi) and p′k(βi) = pk(βi) 6= 0 until p′k(·) satisfies that p′k(β1), . . . p′k(βn)
are non-zero.

Then, share′1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n are generated in the same way as that in Fshare.

• Let share′i = sharei. Note that fi(share
′
i) = fi(sharei) is known to Trace. Let b = Rec?(f1(share′1),

. . . , fn(share′n)). Output b̄⊕ ssh′′i,2λ−j , where ssh′′i,2λ−j is the (2λ− j)-th bit of ssh′′i which was
generated in the last step.

Then Trace receives the output of L′i,2λ−j = InvOra(Li,2λ−j ,?)(owf(Li,2λ−j)) and checks that whether
owf(Li,2λ−j) = owf(L′i,2λ−j). If they are the same, Trace adds (i, (2λ− j, L′i,2λ−j)) into the output
list.

In the end, if the output list is empty, Trace outputs ⊥. Otherwise, Trace outputs the first pair
(i, (j, L′i,j)) in the output list.

Theorem 5.4 shows that the tracing probability of the new constructed Trace is at leastO( nε/(n−t+1)
1+(n−1)ε/(n−t+1)),

which corresponds to the third step in Section 2.2.

Theorem 5.4 For t ≥ 4, a set of n collector functions f1, . . . , fn, a pirate reconstruction box Rec?

and secrets s0, s1, if

Pr
Share(s0,t,n)

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share′1), . . . , fn(share′n)) = 0] ≥ ε,

then, with probability at least δ(ε) = p(ε)/(n−1
n p(ε) + 1)− negl(λ), where

p(ε) =
nε

2(n− t+ 1)
− (

t− 1

2
+ nλ)η(ε),

there exists i ∈ {1, . . . , n}, j ∈ [λ], such that (i, (j, L′i,j)) is in the output list of Trace and is a valid
evidence against Pi.

Proof For i ∈ {1, . . . , n}, let

εi = Pr
Hyb
Pi,Pi,0,Pi,1
i,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hyb
Pi,Pi,0,Pi,1
i,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0].

Let Ti be the set of all (sharei, {pk(βi)}k∈[λ]) such that there exists j ∈ {1, . . . , λ} such that

Pr
Hyb
Pi,Pi,0,Pi,1
i,j−1

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)]−

Pr
Hyb
Pi,Pi,0,Pi,1
i,j

[Rec?(f1(share′1), . . . , fn(share′n)) = 0| share′i = sharei and ∀k > j, p′k(βi) = pk(βi)] ≥ η(ε).
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Note that εi = εi,left + εi,right. Without loss of generality, assume εi,left ≥ εi/2. With the
same argument, we can show that Claim 4.8 and Claim 4.11 holds for generalized hybrids defined
in Definition 5.1. Then, according to Claim 4.8, with probability at least εi,left − λη(ε), (sharei,
{pk(βi)}k∈[λ]) ∈ Ti. Thus, we have PrShare(s0,t,n)[(sharei, {pk(βi)}k∈[λ]) ∈ Ti] ≥ εi/2− λη(ε).

When Share(s0, t, n) outputs (sharei, {pk(βi)}k∈[λ]) ∈ Ti, by claim 4.11, with probability 1 −
negl(λ), Trace is able to output a valid evidence against Pi. Thus, it is sufficient to show

Pr
Share(s0,t,n)

[∃i ∈ {1, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti] ≥
p(ε)

1 +
n− 1

n
p(ε)

− negl(λ),

where p(ε) = nε
2(n−t+1) − ( t−1

2 + nλ)η(ε).

We define a new distribution S̃hare(s, t, n) as follows,

• S̃hare(s, t, n) : First, randomly generate ((α1, ssh1), . . . , (αn, sshn)) which are valid t-Shamir
shares of secret s.

Second, for each j ∈ [λ], randomly sample a polynomial pj(·) ∈ F[X] of degree at most t− 1.

Finally, for every player Pi, let sshi = (sshi,1, . . . , sshi,λ) where sshi,j ∈ {0, 1}. For every
j ∈ [λ], if pj(βi) 6= 0, randomly sample Li,j such that sshi,j = 〈Li,j , pj(βi)〉; otherwise,
randomly sample Li,j ∈ F. Let Ri,j = pj(αi). Set sharei = (αi, βi, (Li,1, Ri,1), . . . , (Li,λ, Ri,λ)).

The output is (share1, . . . , sharen).

The main difference between Share(s, t, n) and S̃hare(s, t, n) is that, for each pj(·) in S̃hare(s, t,
n), we do not require pj(β1), . . . , pj(βn) to be non-zero. Note that if pj(βi) = 0, 〈Li,j , pj(βj)〉 is
always 0. In this case, Li,j is sampled uniformly from F.

We say a polynomial p(·) ∈ F[X] is valid if for every i ∈ [n], p(βi) 6= 0. For a random p(·)
of degree at most t − 1, the probability that p(βi) = 0 is 2−λ. By union bound, the probability
that a random p(·) is valid is at least 1 − n2−λ = 1 − negl(λ). Therefore, by union bound,
Pr

S̃hare(s,t,n)
[p1(·), . . . , pλ(·) are valid] ≥ 1− λnegl(λ) = 1− negl(λ). Note that

Pr
Share(s0,t,n)

[(sharei, {pk(βi)}k∈[λ]) ∈ Ti]

= Pr
S̃hare(s0,t,n)

[(sharei, {pk(βi)}k∈[λ]) ∈ Ti| p1(·), . . . , pλ(·) are valid]

=
Pr

S̃hare(s0,t,n)
[(sharei, {pk(βi)}k∈[λ]) ∈ Ti and p1(·), . . . , pλ(·) are valid]

Pr
S̃hare(s0,t,n)

[ p1(·), . . . , pλ(·) are valid]

≤
Pr

S̃hare(s0,t,n)
[(sharei, {pk(βi)}k∈[λ]) ∈ Ti]

1− negl(λ)

Let δi = PrShare(s0,t,n)[(sharei, {pk(βi)}k∈[λ]) ∈ Ti] and δ̃i = Pr
S̃hare(s0,t,n)

[(sharei, {pk(βi)}k∈[λ]) ∈
Ti]. Then δ̃i ≥ (1− negl(λ))δi = δi − negl(λ).

Now we compute the probability that Pr
S̃hare(s0,t,n)

[∃i ∈ {1, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti].
We note that, in the case that t ≥ 4, (share1, {pk(β1)}k∈[λ]), . . . , (sharen, {pk(βn)}k∈[λ]) output

by S̃hare(s0, t, n) are pairwise independent.
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To see this, consider the distribution of (sharei, {pk(βi)}k∈[λ]) when (sharei′ , {pk(βi′)}k∈[λ]) is
fixed, where i 6= i′. Note that (sharei′ , {pk(βi′)}k∈[λ]) constrains the value that sshi′ can take.
However, by the privacy of the Shamir secret sharing scheme, sshi is still uniformly random. Since
p1(·), . . . , pλ(·) are sampled uniformly from all possible polynomials in F[X] of degree at most
t − 1 ≥ 3, for each k ∈ [λ], pk(αi), pk(βi) are uniformly random given pk(αi′) (i.e., Ri′,k) and
pk(βi′). For each k ∈ [λ], Li,k only depends on pk(βi) and sshi,k and therefore, is independent of
(sharei′ , {pk(βi′)}k∈[λ]). Thus (sharei, {pk(βi)}k∈[λ]) and (sharei′ , {pk(βi′)}k∈[λ]) are independent.

For i ∈ {1, . . . , n}, let Zi be a Bernoulli random variable where Zi = 1 when (sharei, {pk(βi)}k∈[λ]) ∈
Ti and Zi = 0 otherwise. Recall that δ̃i = Pr

S̃hare(s0,t,n)
[(sharei, {pk(βi)}k∈[λ]) ∈ Ti]. Then

Pr[Zi = 1] = δ̃i and Z1, . . . , Zn are pairwise independent. Let Z =
∑n

i=1 Zi and P` = Pr[Z = `]
where ` ∈ {0, . . . , n}. Therefore, we want to compute the probability that Pr[Z ≥ 1] =

∑n
`=1 P`.

Note that

E[Z] =

n∑
`=0

` · P` =

n∑
i=1

E[Zi] =

n∑
i=1

δ̃i,

and, by pairwise independence,

E[Z2] =

n∑
`=0

`2 · P` =

n∑
i1=1

n∑
i2=1

E[Zi1Zi2 ] =

n∑
i=1

E[Zi] +
∑
i1 6=i2

E[Zi1 ]E[Zi2 ] =

n∑
i=1

δ̃i +
∑
i1 6=i2

δ̃i1 δ̃i2

According to Cauchy-Schwarz inequality,

(

n∑
`=1

P`)(

n∑
`=1

`2 · P`) ≥ (

n∑
`=1

` · P`)2.

We have

Pr[Z ≥ 1] ≥ (E[Z])2

E[Z2]

=
(
∑n

i=1 δ̃i)
2∑n

i=1 δ̃i +
∑

i1 6=i2 δ̃i1 δ̃i2

=
(
∑n

i=1 δ̃i)
2∑n

i=1 δ̃i + (
∑n

i=1 δ̃i)
2 −

∑n
i=1 δ̃

2
i

≥
(
∑n

i=1 δ̃i)
2∑n

i=1 δ̃i + (
∑n

i=1 δ̃i)
2 −

(
∑n

i=1 δ̃i)
2

n

=

∑n
i=1 δ̃i

1 +
n− 1

n
(
∑n

i=1 δ̃i)
,

where the second last step is due to the well-known inequality

n∑
i=1

X2
i ≥

1

n
(

n∑
i=1

Xi)
2.
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Therefore,

Pr
S̃hare(s0,t,n)

[∃i ∈ {1, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti] ≥
∑n

i=1 δ̃i

1 +
n− 1

n
(
∑n

i=1 δ̃i)
.

Now we come back to using Share(s0, t, n). We have

Pr
Share(s0,t,n)

[∃i ∈ {1, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti]

= Pr
S̃hare(s0,t,n)

[∃i ∈ {1, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti| p1(·), . . . , pλ(·) are valid]

=
Pr

S̃hare(s0,t,n)
[∃i ∈ {1, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti and p1(·), . . . , pλ(·) are valid]

Pr
S̃hare(s0,t,n)

[p1(·), . . . , pλ(·) are valid]

≥ Pr
S̃hare(s0,t,n)

[∃i ∈ {1, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti]−

Pr
S̃hare(s0,t,n)

[∃i ∈ {1, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti and ∃k ∈ [λ], pk(·) is not valid]

≥ Pr
S̃hare(s0,t,n)

[∃i ∈ {1, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti]− negl(λ)

≥
∑n

i=1 δ̃i

1 +
n− 1

n
(
∑n

i=1 δ̃i)
− negl(λ)

By Claim 5.3,

n∑
i=1

δ̃i ≥
n∑
i=1

δi − negl(λ)

≥
nε

n−t+1 − (t− 1)η(ε)

2
− nλη(ε)− negl(λ)

= p(ε)− negl(λ).

Therefore,

Pr
Share(s0,t,n)

[∃i ∈ {1, . . . , n}, (sharei, {pk(βi)}k∈[λ]) ∈ Ti]

≥
∑n

i=1 δ̃i

1 +
n− 1

n
(
∑n

i=1 δ̃i)
− negl(λ)

≥ p(ε)

1 +
n− 1

n
p(ε)

− negl(λ).
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6 Collusion and Tracing More Players

So far, we focus on the individual corruption case and tracing a single player. In this section, we
consider two independent scenarios.

We first consider the setting where up to t − 1 players can collude. We focus on the disjoint
collusion setting where each player can be in at most one collusion. We model the collusion by
allowing the collector to specify functions f{i1,...,ik} for collusion of k ≤ t−1 players, where f{i1,...,ik}
takes sharei1 , . . . , shareik as input.

The bottleneck of the construction in Section 4.2 is that, for each polynomial pj(·) ∈ F[X], the
degree of pj(·) is at most t − 1. When we want to trace Pi, we need to fix the share of Pi and in
addition, fix all shares of players who collude with Pi. In the meantime, for every player Pi′ who
colludes with Pi, since sharei′ is not known to Trace, we need to fix the value of pj(βi′) to make sure
〈Li′,j , pj(βi′)〉 is known to Trace. Note that, to trace Pi, Trace needs to generate a random sample
in Hybi,j (for some j ∈ {1, . . . , 2λ−1}) and it is crucial for Trace to know the value of 〈Li′,j , pj(βi′)〉
to generate a correct sample. Then, we need to fix 2t − 3 values of each pj(·), which has already
determined pj(·). However, it disables Trace to change pj(βi) and use Goldreich-Levin Lemma to
extract an evidence against Pi.

The similar bottleneck appears when we want to trace t−1 traitors. Recall that in Theorem 4.12,
we relied on the pairwise independence of {(sharei, {pj(βi)}j∈[λ])}i∈[n]. To trace t − 1 traitors, we
need (t− 1)-wise independence of {(sharei, {pj(βi)}j∈[λ])}i∈[n]. However, each (sharei, {pj(βi)}j∈[λ])
fixes two values of pj(·) for all j ∈ [λ].

To overcome this difficulty, for every j ∈ [λ], instead of just using one polynomial pj(·), we use n
polynomials {p`,j(·)}`∈[n] of degree at most t− 1. For every Li,j , instead of randomly sampling Li,j
such that sshi,j = 〈Li,j , pj(βi)〉, the sharing protocol samples Li,j such that sshi,j = 〈Li,j , pi,j(0)〉.
In this way, even if we fix sharei and (sharei′ , {pi′,j(0)}j∈[λ]) for all Pi′ who colludes with Pi, we can
still change the value of pi,j(0) because only t− 1 values of pi,j(·) are fixed.

More explicitly, the new Share(s, t, n) works as follows:

• Share(1λ, s, t, n) : The dealer D first randomly generates ((α1, ssh1), . . . , (αn, sshn)) which are
valid t-Shamir shares of secret s. For each ` ∈ [n], j ∈ [λ], D samples a random polynomial
p`,j(·) ∈ F[X] of degree at most t− 1 such that p`,j(0) 6= 0.

For every player Pi, let sshi = (sshi,1, . . . , sshi,λ) where sshi,j ∈ {0, 1}. The dealer D and Pi
query Fnew share which is described in Figure 5.

Let viewD = ({vki}i∈[n], {(owf(Li,j), Sign(owf(Li,j), ski))}i∈[n],j∈[λ], {(αi, sshi)}i∈[n], {p`,j(·)}`∈[n],j∈[λ]).

• Rec(sharei1 , . . . , shareit) : For k ∈ [t], parse shareik as (αik , βik , (Lik,1, {R`ik,1}`∈[n]), . . . , (Lik,λ,

{R`ik,λ}`∈[n])). For ` ∈ [n], j ∈ [λ], compute the polynomial p`,j(·) ∈ F[X] of degree at most

t − 1 such that p`,j(αik) = R`ik,j for all k ∈ [t]. For k ∈ [t] and j ∈ [λ], let sshik,j =
〈Lik,j , pik,j(0)〉 and sshik = (sshik,1, . . . , sshik,λ). Then reconstruct the secret s by using the
reconstruction of the Shamir secret sharing scheme on (αi1 , sshi1), . . . , (αit , sshit).

6.1 Secure Against Collusion

In this part, we describe a new Trace in the setting where up to t−1 players can collude. The main
difference from the individual corruption case is that, to trace a player Pi, we need to fix sharei and
in addition, {sharei′ , {pi′,j(0)}j∈[λ]} for all Pi′ who colludes with Pi.
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1. Fnew share receives sshi, {p`,j(αi)}`∈[n],j∈[λ] and {pi,j(0)}j∈[λ] from D and (ski, vki) from Pi.

2. For every j ∈ [λ], Fnew share samples a random Li,j such that sshi,j = 〈Li,j , pi,j(0)〉.
– Let R`i,j = p`,j(αi) for all ` ∈ [n], j ∈ [λ]. Fnew share sets sharei = (αi, βi, (Li,1,

{R`i,1}`∈[n]), . . . , (Li,λ, {R`i,λ}`∈[n])) and sends sharei to Pi.

– For every j ∈ [λ], Fnew share sends (owf(Li,j), Sign(owf(Li,j), ski)) to D.

Figure 5: Description of Fnew share

For simplicity, let F be the set of all functions specifies by the collector. We use {f{i1,...,ik}(sharei1 ,
. . . , shareik)}f{i1,...,ik}∈F to represent the collected shares. The new Trace works as follows:

TraceRec
?

(F, {f{i1,...,ik}(sharei1 , . . . , shareik)}f{i1,...,ik}∈F , viewD, s0, s1) : Recall that:

Pr
Share(s0,t,n)

[Rec?({f{i1,...,ik}(sharei1 , . . . , shareik)}f{i1,...,ik}∈F ) = 0]−

Pr
Share(s1,t,n)

[Rec?({f{i1,...,ik}(sharei1 , . . . , shareik)}f{i1,...,ik}∈F ) = 0] ≥ ε

For i ∈ {t, . . . , n} and j ∈ {0, . . . , 2λ}, we define the distribution Hybi,j as follows:

• If j ≤ λ, ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are sampled

randomly such that ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1)) are valid t-Shamir shares of s1 and ((α1,

ssh′1), . . . , (αt−1, ssh
′
t−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are valid t-Shamir shares of

s0. Then the first j bits of ssh′′i are replaced by random bits. Let ssh′i be ssh′′i after replace-
ment. {p′`,1}`∈[n], . . . , {p′`,λ}`∈[n] are then sampled in the same way as that in Share(1λ, s, t, n).

(share′1, . . . , share
′
n) are generated in the same way as that in Fnew share.

• If j > λ, ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are sampled

randomly such that ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i )) are valid t-Shamir shares of s1

and ((α1, ssh
′
1), . . . , (αt−1, ssh

′
t−1), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are valid t-Shamir shares of

s0. Then the first 2λ − j bits of ssh′′i are replaced by random bits. Let ssh′i be ssh′′i after
replacement. p′1, . . . , p

′
λ are then sampled in the same way as that in Share(1λ, s, t, n). (share′1,

. . . , share′n) are generated in the same way as that in Fnew share.

Let η(ε) = ε
Cnλ where C = poly(λ). Let InvOra(X,?) be the algorithm in the Goldreich-Levin

Lemma where Ora(X, ?) is an oracle with X hard-coded and X is an element in F such that
Pr[Y ∼ F : Ora(X,Y ) = 〈X,Y 〉] ≥ 1/2 + η(ε). Let Ci denote the set of parties who collude with Pi.
We assume Pi ∈ Ci.

For every i ∈ {t, . . . , n} and j ∈ {1, . . . , λ}, Trace starts running InvOra(Li,j ,?)(owf(Li,j)) by
simulating the access to Ora(Li,j , ?) as below.

• On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace randomly generates
{share′`} 6̀∈Ci such that, after combining with {share`}`∈Ci (which are unknown to Trace), it
is a sample in Hybi,j and p′i,j(0) = Y , p′i,k(0) = pi,k(0) for k > j, p′`,k(0) = p`,k(0) for
` ∈ Ci \ {i}, k ∈ [λ].
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To this end, Trace randomly samples ssh′′i such that ssh′′i,k = sshi,k for k > j. For ` ∈ Ci \ {i},
set ssh′` = ssh`. Now we want to randomly sample two polynomials g0(·), g1(·) ∈ F[X] of
degree at most t− 1, such that they satisfy that

g0(0) = s0 and g0(αi) = ssh′′i and ∀` ∈ Ci
⋂
{1, . . . , t− 1, i+ 1, . . . , n}, g0(α`) = ssh′`,

g1(0) = s1 and ∀` ∈ Ci
⋂
{1, . . . , i− 1}, g1(α`) = ssh′`,

∀` ∈ {1, . . . , t− 1}, g0(α`) = g1(α`).

Compute the polynomial g2(·) = g1(·) − g0(·) ∈ F[X] of degree at most t − 1 such that
g2(0) = s1 − s0 and g2(α`) = 0 for all ` ≤ t− 1. Then randomly sample g0(·) such that

g0(0) = s0 and g0(αi) = ssh′′i and ∀` ∈ Ci
⋂
{1, . . . , t− 1, i+ 1, . . . , n}, g0(α`) = ssh′`

and ∀` ∈ Ci
⋂
{t, . . . , i− 1}, g0(α`) = ssh′` − g2(α`).

After that, g1(·) = g2(·) + g0(·). For ` 6∈ Ci, if ` ∈ {1, . . . , t− 1, i+ 1, . . . , n}, set ssh′` = g0(α`);
otherwise, set ssh′` = g1(α`).

For k < j, it samples a random polynomial p′i,k(·) ∈ F[X] of degree at most t − 1 such that

p′i,k(α`) = pi,k(α`) for all ` ∈ Ci (recall that R`i,k = pi,k(α`) is a component in share`) and
p′i,k(0) 6= 0.

For k = j, it samples a random polynomial p′i,k(·) ∈ F[X] of degree at most t − 1 such that
p′i,k(α`) = pi,k(α`) for all ` ∈ Ci and p′i,k(0) = Y 6= 0.

For k > j, it samples a random polynomial p′i,k(·) ∈ F[X] of degree at most t − 1 such that
p′i,k(α`) = pi,k(α`) for all ` ∈ Ci and p′i,k(0) = pi,k(0) 6= 0.

For s ∈ Ci \{i}, k ∈ [λ], it samples a random polynomial p′s,k(·) ∈ F[X] of degree at most t−1
such that p′s,k(α`) = ps,k(α`) for all ` ∈ Ci and p′s,k(0) = ps,k(0) 6= 0.

For s 6∈ Ci, k ∈ [λ], it samples a random polynomial p′s,k(·) ∈ F[X] of degree at most t − 1
such that p′s,k(α`) = ps,k(α`) for all ` ∈ Ci and p′s,k(0) 6= 0.

Then, {share′`} 6̀∈C′ are generated in the same way as that in Fnew share.

• Let share′i = sharei. Note that fCi({share′`}`∈Ci) = fCi({share`}`∈Ci) is known to Trace. Let
b = Rec?({f{i1,...,ik}(share

′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ). Output b⊕ssh′′i,j , where ssh′′i,j is the j-th

bit of ssh′′i which was generated in the last step.

Then Trace receives the output of L′i,j = InvOra(Li,j ,?)(owf(Li,j)) and checks that whether owf(Li,j) =
owf(L′i,j). If they are the same, Trace adds (i, (j, L′i,j)) into the output list.

For every i ∈ {t, . . . , n} and j ∈ {λ, . . . , 2λ−1}, Trace starts running InvOra(Li,2λ−j ,?)(owf(Li,2λ−j))
by simulating the access to Ora(Li,2λ−j , ?) as below:

• On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace randomly generates
{share′`} 6̀∈Ci such that, after combining with {share`}`∈Ci (which are unknown to Trace), it is
a sample in Hybi,j and p′i,2λ−j(0) = Y , p′i,k(0) = pi,k(0) for k > 2λ − j, p′`,k(0) = p`,k(0) for
` ∈ Ci\{i}, k ∈ [λ].

47



To this end, Trace randomly samples ssh′′i such that ssh′′i,k = sshi,k for k > 2λ − j. For
` ∈ Ci \ {i}, set ssh′` = ssh`. Now we want to randomly sample two polynomials g0(·),
g1(·) ∈ F[X] of degree at most t− 1, such that they satisfy that

g0(0) = s0 and ∀` ∈ Ci
⋂
{1, . . . , t− 1, i+ 1, . . . , n}, g0(α`) = ssh′`,

g1(0) = s1 and g1(αi) = ssh′′i and ∀` ∈ Ci
⋂
{1, . . . , i− 1}, g1(α`) = ssh′`,

∀` ∈ {1, . . . , t− 1}, g0(α`) = g1(α`).

Compute the polynomial g2(·) = g1(·) − g0(·) ∈ F[X] of degree at most t − 1 such that
g2(0) = s1 − s0 and g2(α`) = 0 for all ` ≤ t− 1. Then randomly sample g0(·) such that

g0(0) = s0 and ∀` ∈ Ci
⋂
{1, . . . , t− 1, i+ 1, . . . , n}, g0(α`) = ssh′`

and g0(αi) = ssh′′i − g2(αi) and ∀` ∈ Ci
⋂
{t, . . . , i− 1}, g0(α`) = ssh′` − g2(α`).

After that, g1(·) = g2(·) + g0(·). For ` 6∈ Ci, if ` ∈ {1, . . . , t− 1, i+ 1, . . . , n}, set ssh′` = g0(α`);
otherwise, set ssh′` = g1(α`).

For k < 2λ − j, it samples a random polynomial p′i,k(·) ∈ F[X] of degree at most t − 1 such

that p′i,k(α`) = pi,k(α`) for all ` ∈ Ci (recall that R`i,k = pi,k(α`) is a component in share`) and
p′i,k(0) 6= 0.

For k = 2λ − j, it samples a random polynomial p′i,k(·) ∈ F[X] of degree at most t − 1 such
that p′i,k(α`) = pi,k(α`) for all ` ∈ Ci and p′i,k(0) = Y 6= 0.

For k > 2λ − j, it samples a random polynomial p′i,k(·) ∈ F[X] of degree at most t − 1 such
that p′i,k(α`) = pi,k(α`) for all ` ∈ Ci and p′i,k(0) = pi,k(0) 6= 0.

For s ∈ Ci \{i}, k ∈ [λ], it samples a random polynomial p′s,k(·) ∈ F[X] of degree at most t−1
such that p′s,k(α`) = ps,k(α`) for all ` ∈ Ci and p′s,k(0) = ps,k(0) 6= 0.

For s 6∈ Ci, k ∈ [λ], it samples a random polynomial p′s,k(·) ∈ F[X] of degree at most t − 1
such that p′s,k(α`) = ps,k(α`) for all ` ∈ Ci and p′s,k(0) 6= 0.

Then, {share′`} 6̀∈C′ are generated in the same way as that in Fnew share.

• Let share′i = sharei. Note that fCi({share′`}`∈Ci) = fCi({share`}`∈Ci) is known to Trace. Let
b = Rec?({f{i1,...,ik}(share

′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ). Output b̄ ⊕ ssh′′i,2λ−j , where ssh′′i,2λ−j is

the (2λ− j)-th bit of ssh′′i which was generated in the last step.

Then Trace receives the output of L′i,2λ−j = InvOra(Li,2λ−j ,?)(owf(Li,2λ−j)) and checks that whether
owf(Li,2λ−j) = owf(L′i,2λ−j). If they are the same, Trace adds (i, (2λ− j, L′i,2λ−j)) into the output
list.

In the end, if the output list is empty, Trace outputs ⊥. Otherwise, Trace outputs the first pair
(i, (j, L′i,j)) in the output list.

Theorem 6.1 Assume the existence of one-way functions and the PKI infrastructure. For t ≥ 4,
n ≥ t and any C = poly(λ), there exists an explicit t-out-of-n δ-traceable secret sharing scheme
with the size of each share O(nλ2) against disjoint collusions where each collusion contains at most
t− 1 parties, where δ(ε) = ε/2n− ε/(Cn)− negl(λ).
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6.1.1 Proof

We show that the construction given in the previous subsection satisfies the correctness, statistical
privacy, non-imputability. We show the traceability property in Section 6.1.2.

Correctness. The correctness follows directly from the correctness of the underlying Shamir
secret sharing scheme.

Statistical Privacy. We show an even stronger statement:

{(share1, . . . , sharen)← Share(s0, t, n) : shareT ◦ {p`,j(·)}`∈[n],j∈[λ]}
≡ {(share1, . . . , sharen)← Share(s1, t, n) : shareT ◦ {p`,j(·)}`∈[n]j,∈[λ]}.

To see this, note that in Share(s, t, n), {p`,j(·)}`∈[n],j∈[λ] are generated independent of {sshi}i∈T and
the secret s. Thus, the distribution of {p`,j(·)}`∈[n],j∈[λ] generated by Share(s0, t, n) is the same as
that generated by Share(s1, t, n). By the privacy of the Shamir secret sharing scheme, we have

{(share1, . . . , sharen)← Share(s0, t, n) : {sshi}i∈T }
≡ {(share1, . . . , sharen)← Share(s1, t, n) : {sshi}i∈T }

Therefore,

{(share1, . . . , sharen)← Share(s0, t, n) : {p`,j(·)}`∈[n],j∈[λ] ◦ {sshi}i∈T }
≡ {(share1, . . . , sharen)← Share(s1, t, n) : {p`,j(·)}`∈[n],j∈[λ] ◦ {sshi}i∈T }.

Note that the set of values {R`i,j}`∈[n],i∈T,j∈[λ] are completely determined by {p`,j(·)}`∈[n],j∈[λ]. We
only need to consider the distribution of {Li,j}i∈T,j∈[λ]. Since, for each i ∈ T, j ∈ [λ], Li,j was
sampled independently and randomly with the only constrain that sshi,j = 〈Li,j , pi,j(0)〉, we have

{(share1, . . . , sharen)← Share(s0, t, n) : {(Li,j , {R`i,j}`∈[n])}i∈T,j∈[λ] ◦ {p`,j(·)}`∈[n],j∈[λ] ◦ {sshi}i∈T }
≡ {(share1, . . . , sharen)← Share(s1, t, n) : {(Li,j , {R`i,j}`∈[n])}i∈T,j∈[λ] ◦ {p`,j(·)}`∈[n],j∈[λ] ◦ {sshi}i∈T },

which completes the proof of statistical privacy.

Non-imputability. We prove this by contradiction. Assume there exists t, n ∈ N, a secret s, an
honest player Pi? and an efficient algorithm D̃ such that

Pr
share(1λ,s,t,n)

[(view′D, i
?, πi?)← D̃(viewD, share[n]\{i?}) : Judge(i?, πi? , view

′
D) = guilty] ≥ 1

poly(λ)
.

By the security of the underlying digital signature scheme, we have

Pr
share(1λ,s,t,n)

[(view′D, i
?, (j, L′i?,j))← D̃(viewD, share[n]\{i?}) : owf(L′i?,j) = owf(Li?,j)]

≥ 1

poly(λ)
− negl(λ)

=
1

poly(λ)
.
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1. A receives a challenge owf(x).

2. A simulates the dealer and all players, runs Share(1λ, s, t, n) faithfully, and gets viewD,
(share1, . . . , sharen).

3. A randomly samples j′ ∈ [λ], and then replaces (owf(Li?,j′),Sign(owf(Li?,j′), ski?)) in

viewD by (owf(x), Sign(owf(x), ski?)). Let ṽiewD be viewD after the replacement.

4. A calls D̃(ṽiewD, share[n]\{i?}) and receives (i?, πi?). A parses πi? as (j, L′i?,j). If j′ = j,
A outputs L′i?,j . Otherwise, A outputs ⊥.

Figure 6: Description of adv for owf

We construct an adversary A which can invert owf with noticeable probability. A works as that
in Figure 6.

Then

Pr
x∼F

[x′ ← A(owf(x)) : owf(x) = owf(x′)]

≥ Pr
x∼F,j′∼[λ]

[(view′D, i
?, (j, L′i?,j))← D̃(ṽiewD, share[n]\{i?}) :

j = j′ and owf(L′i?,j) = owf(x) and 〈x, pi?,j(0)〉 = sshi?,j ]

= Pr
x∼F,j′∼[λ]

[(view′D, i
?, (j, L′i?,j))← D̃(ṽiewD, share[n]\{i?}) :

owf(L′i?,j) = owf(x)| j = j′, 〈x, pi?,j(0)〉 = sshi?,j ] ·

Pr
x∼F,j′∼[λ]

[(view′D, i
?, (j, L′i?,j))← D̃(ṽiewD, share[n]\{i?}) : j = j′, 〈x, pi?,j(0)〉 = sshi?,j ]

≥ Pr
x∼F,j′∼[λ]

[(view′D, i
?, (j, L′i?,j))← D̃(ṽiewD, share[n]\{i?}) :

owf(L′i?,j) = owf(x)| j = j′, 〈x, pi?,j(0)〉 = sshi?,j ] ·
1

2λ

≥ 1

poly(λ)
,

where the last step follows because if 〈x, pi?,j(0)〉 = sshi?,j , the distribution of ṽiewD is the same as
that of viewD.

6.1.2 Traceability

Recall from the description of Trace in Section 6.1, our definition of Hybi,j for i ∈ {t, . . . , n}, j ∈ {0,
. . . , 2λ} and η(ε) = ε

Cnλ . The main theorem that we prove here is the following:
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Theorem 6.2 For a set of collector functions F , a pirate reconstruction box Rec?, secrets s0, s1

and i ∈ {t, . . . , n}, if

Pr
Hybi,0

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0]−

Pr
Hybi,2λ

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0] ≥ εi,

then, with probability at least εi/2− λη(ε)− negl(λ), there exists j ∈ [λ] such that (i, (j, L′i,j)) is in
the output list of Trace and is a valid evidence against Pi.

This theorem follows directly from the following two lemmas.

Lemma 6.3 For a set of collector functions F , a pirate reconstruction box Rec?, secrets s0, s1 and
i ∈ {t, . . . , n}, if

Pr
Hybi,0

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0]−

Pr
Hybi,λ

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0] ≥ εi,left,

then, with probability at least εi,left − λη(ε) − negl(λ), there exists j ∈ [λ] such that (i, (j, L′i,j)) is
in the output list of Trace and is a valid evidence against Pi.

Lemma 6.4 For a set of collector functions F , a pirate reconstruction box Rec?, secrets s0, s1 and
i ∈ {t, . . . , n}, if

Pr
Hybi,λ

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0]−

Pr
Hybi,2λ

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0] ≥ εi,right,

then, with probability at least εi,right − λη(ε)− negl(λ), there exists j ∈ [λ], such that (i, (j, L′i,j)) is
in the output list of Trace and is a valid evidence against Pi.

Proof of Theorem 6.2. Note that εi = εi,left+εi,right and thus either εi,left ≥ εi/2 or εi,right ≥ εi/2.
Combining Lemma 6.3 and Lemma 6.4, Theorem 6.2 follows.

We now give the proof of Lemma 6.3 and Lemma 6.4 follows via an identical argument.

Proof of Lemma 6.3. The proof of Lemma 6.3 follows directly from the claims 6.5, 6.8.

Claim 6.5 Let Ci be the set of players who collude with Pi and assume that Pi ∈ Ci. With
probability at least εi,left − λη(ε), ({share`}`∈Ci , {p`,k(0)}`∈Ci,k∈[λ]) output by Share(s0, t, n) satisfies
that, there exists j ∈ {1, . . . , λ} such that

Pr
Hybi,j−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| ∀` ∈ Ci, share′` = share`

and ∀k > j, p′i,k(0) = pi,k(0) and ∀` ∈ Ci \ {i}, k ∈ [λ], p′`,k(0) = p`,k(0)]−
Pr

Hybi,j
[Rec?({f{i1,...,ik}(share

′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| ∀` ∈ Ci, share′` = share`

and ∀k > j, p′i,k(0) = pi,k(0) and ∀` ∈ Ci \ {i}, k ∈ [λ], p′`,k(0) = p`,k(0)] ≥ η(ε).
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Proof
We first prove the following proposition which states that the joint distribution of {share`}`∈Ci

and the values {p`,k(0)}`∈Ci,k∈[λ] in the real sharing of a secret s0 is in fact identical to its distribution
in Hybi,j .

Proposition 6.6 For every i ∈ {t, . . . , n}, j ∈ {0, . . . , 2λ} and secrets s0, s1,

{(share′1, . . . , share′n)← Hybi,j : {share′`}`∈Ci ◦ {p
′
`,k(0)}`∈Ci,k∈[λ]}

≡ {(share1, . . . , sharen)← Share(s0, t, n) : {share`}`∈Ci ◦ {p`,k(0)}`∈Ci,k∈[λ]}.

Proof Recall from the description of Hybi,j , the sampling procedure for (ssh′1, . . . , ssh
′
n) and ssh′′i .

We prove a stronger statement:

{(share′1, . . . , share′n)← Hybi,j : {share′`}`∈Ci ◦ {p
′
`,k(·)}`∈[n],k∈[λ]}

≡ {(share1, . . . , sharen)← Share(s0, t, n) : {share`}`∈Ci ◦ {p`,k(·)}`∈[n],k∈[λ]}.

To see this, note that {p′`,k(·)}`∈[n],k∈[λ] and {p`,k(·)}`∈[n],k∈[λ] are generated in the same way and

independent of {ssh′`}`∈Ci and {ssh`}`∈Ci respectively. By the privacy of the Shamir secret sharing
scheme, {ssh′′i }

⋃
{ssh′`}`∈Ci\{i} and {ssh`}`∈Ci are uniformly random. Since ssh′i is obtained from

ssh′′i by replacing its first j bits by random bits, ssh′i is also uniformly random. Therefore, we have

{(share′1, . . . , share′n)← Hybi,j : {ssh′`}`∈Ci ◦ {p
′
`,k(·)}`∈[n],k∈[λ]}

≡ {(share1, . . . , sharen)← Share(s0, t, n) : {ssh`}`∈Ci ◦ {p`,k(·)}`∈[n],k∈[λ]}.

Finally, {(Rs`,k)′}s∈[n],`∈Ci,k∈[λ] are determined by {p′`,k(·)}`∈[n],k∈[λ] and {Rs`,k}s∈[n],`∈Ci,k∈[λ] are de-
termined by {p`,k(·)}`∈[n],k∈[λ]. For each ` ∈ Ci, k ∈ [λ], L′`,k was sampled independently and

random with the only constrain that ssh′`,k = 〈L′`,k, p′`,k(0)〉, and L`,k was sampled independently
and random with the only constrain that ssh`,k = 〈L`,k, p`,k(0)〉. Therefore,

{(share′1, . . . , share′n)← Hybi,j : {(L′`,k, {(Rs`,k)′}s∈[n])}`∈Ci,k∈[λ] ◦ {ssh′`}`∈Ci ◦ {p
′
`,k(·)}`∈[n],k∈[λ]}

≡ {(share1, . . . , sharen)← Share(s0, t, n) : {(L`,k, {Rs`,k}s∈[n])}`∈Ci,k∈[λ] ◦ {ssh`}`∈Ci ◦ {p`,k(·)}`∈[n],k∈[λ]},

which completes the proof of the proposition.

Let Vi = ({share`}`∈Ci , {p`,k(0)}`∈Ci\{i},k∈[λ]). We first fix Vi. Let Ei denote the event (∀` ∈ Ci,
share′` = share` and ∀` ∈ Ci \ {i}, k ∈ [λ], p′`,k(0) = p`,k(0)). Let

εVii,left = Pr
Hybi,0

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei]−

Pr
Hybi,λ

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei]

εVii,λ = Pr
Hybi,λ−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei]−

Pr
Hybi,λ

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei]

We show that,
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Proposition 6.7 For a fixed Vi, with probability at least εVii,left − λη(ε), {pi,k(0)}k∈[λ] output by
Share(s0, t, n) satisfies that, there exists j ∈ {1, . . . , λ} such that

Pr
Hybi,j−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and ∀k > j, p′i,k(0) = pi,k(0)]−

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and ∀k > j, p′i,k(0) = pi,k(0)] ≥ η(ε).

Proof We note that, if

Pr
Hybi,λ−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei]−

Pr
Hybi,λ

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei] ≥ η(ε),

i.e., εVii,λ ≥ η(ε), then we are done since every {pi,k(0)}k∈[λ] output by Share(s0, t, n) satisfies the

condition. In the following analysis, we assume εVii,λ < η(ε).
For j ∈ {1, . . . , λ− 1}, we say {pi,k(0)}k>j is good w.r.t. (Vi,Hybi,j−1,Hybi,j), if

Pr
Hybi,j−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and ∀k > j, p′i,k(0) = pi,k(0)]−

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and ∀k > j, p′i,k(0) = pi,k(0)] ≥ η(ε).

From j = λ−1 to 1, let Sj = {{pi,k(0)}k>j | {pi,k(0)}k>j is good w.r.t. (Vi,Hybi,j−1,Hybi,j) but ∀j′ >
j, {pi,k(0)}k>j′ 6∈ Sj′}. Let S′j = {{pi,k(0)}k>j | ∀j′ ≥ j, {pi,k(0)}k>j′ 6∈ Sj′}. We point out two im-
portant properties of S1, . . . , Sλ−1 and S′1, . . . , S

′
λ−1.

1. For all {pi,k(0)}k>j , either {pi,k(0)}k>j ∈ S′j or there exists some j′ ≥ j such that {pi,k(0)}k>j′ ∈
Sj′ .

2. If {pi,k(0)}k>j ∈ S′j , then by definition, for all j′ ≥ j, {pi,k(0)}k>j′ 6∈ Sj′ . For every j′1 > j′2 ≥
j, if {pi,k(0)}k>j′2 ∈ Sj′2 , then by definition, {pi,k(0)}k>j′1 6∈ Sj′1 .

Thus, S′j , Sj , . . . , Sλ−1 define a partition of all {pi,k(0)}k>j .
Recall that we have assumed εVii,λ < η(ε). We use (Vi ← Share(s0, t, n)) to denote the event that

Share(s0, t, n) outputs Vi. Therefore, it is equivalent to show

Pr
Share(s0,t,n)

[{pi,k(0)}k∈[λ] : ∃j ∈ {1, . . . , λ− 1}, {pi,k(0)}k>j ∈ Sj | Vi ← Share(s0, t, n)]

≥ εVii,left − λη(ε).

By the properties of S1, . . . , Sλ−1,

Pr
Share(s0,t,n)

[{pi,k(0)}k∈[λ] : ∃j ∈ {1, . . . , λ− 1}, {pi,k(0)}k>j ∈ Sj | Vi ← Share(s0, t, n)]

=

λ−1∑
j=1

Pr
Share(s0,t,n)

[{pi,k(0)}k>j ∈ Sj | Vi ← Share(s0, t, n)]. (6.1)
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For simplicity, we use (Hybi,j1 − Hybi,j2)|Vi to represent

Pr
Hybi,j1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei]−

Pr
Hybi,j2

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei],

and (Hybi,j1 − Hybi,j2)|Vi,{pi,k(0)}k>j′∈S to represent

Pr
Hybi,j1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and {p′i,k(0)}k>j′ ∈ S]−

Pr
Hybi,j2

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and {p′i,k(0)}k>j′ ∈ S],

According to Proposition 6.6, the distribution of (Vi, {p′i,k(0)}k∈[λ]) generated by Hybi,j is the
same as that of (Vi, {pi,k(0)}k∈[λ]) generated by Share(s0, t, n). Therefore,

Pr
Hybi,j−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei]

= Pr
Hybi,j−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and {p′i,k(0)}k>j ∈ S′j ] ·

Pr
Hybi,j−1

[{p′i,k(0)}k>j ∈ S′j | Ei] +∑
j′≥j

Pr
Hybi,j−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and {p′i,k(0)}k>j′ ∈ Sj′ ] ·

Pr
Hybi,j−1

[{p′i,k(0)}k>j′ ∈ Sj′ | Ei]

= Pr
Hybi,j−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and {p′i,k(0)}k>j ∈ S′j ] ·

Pr
Share(s0,t,n)

[{pi,k(0)}k>j ∈ S′j | Vi ← Share(s0, t, n)] +∑
j′≥j

Pr
Hybi,j−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and {p′i,k(0)}k>j′ ∈ Sj′ ] ·

Pr
Share(s0,t,n)

[{pi,k(0)}k>j′ ∈ Sj′ | Vi ← Share(s0, t, n)],

and similarly,

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei]

= Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and {p′i,k(0)}k>j ∈ S′j ] ·

Pr
Share(s0,t,n)

[{pi,k(0)}k>j ∈ S′j | Vi ← Share(s0, t, n)] +∑
j′≥j

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and {p′i,k(0)}k>j′ ∈ Sj′ ] ·

Pr
Share(s0,t,n)

[{pi,k(0)}k>j′ ∈ Sj′ | Vi ← Share(s0, t, n)],
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We have,

(Hybi,j−1 − Hybi,j)|Vi
= (Hybi,j−1 − Hybi,j)|Vi,{pi,k(0)}k>j∈S′j Pr

Share(s0,t,n)
[{pi,k(0)}k>j ∈ S′j | Vi ← Share(s0, t, n)] +∑

j′≥j
(Hybi,j−1 − Hybi,j)|Vi,{pi,k(0)}k>j′∈Sj′ Pr

Share(s0,t,n)
[{pi,k(0)}k>j′ ∈ Sj′ | Vi ← Share(s0, t, n)].

According to the definition of S′j , (Hybi,j−1−Hybi,j)|Vi,{pi,k(0)}k>j∈S′j < η(ε). Recall that εVii,λ < η(ε).

We have

εVii,left =

λ∑
j=1

(Hybi,j−1 − Hybi,j)|Vi

= εVii,λ +

λ−1∑
j=1

(Hybi,j−1 − Hybi,j)|Vi,{pi,k(0)}k>j∈S′j ·

Pr
Share(s0,t,n)

[{pi,k(0)}k>j ∈ S′j | Vi ← Share(s0, t, n)] +

λ−1∑
j=1

∑
j′≥j

(Hybi,j−1 − Hybi,j)|Vi,{pi,k(0)}k>j′∈Sj′ ·

Pr
Share(s0,t,n)

[{pi,k(0)}k>j′ ∈ Sj′ | Vi ← Share(s0, t, n)]

< η(ε) +
λ−1∑
j=1

η(ε) · 1 +
λ−1∑
j′=1

Pr
Share(s0,t,n)

[{pi,k(0)}k>j′ ∈ Sj′ | Vi ← Share(s0, t, n)] ·

j′∑
j=1

(Hybi,j−1 − Hybi,j)|Vi,{pi,k(0)}k>j′∈Sj′

= λη(ε) +

λ−1∑
j′=1

Pr
Share(s0,t,n)

[{pi,k(0)}k>j′ ∈ Sj′ | Vi ← Share(s0, t, n)] ·

(Hybi,0 − Hybi,j′)|Vi,{pi,k(0)}k>j′∈Sj′

≤ λη(ε) +

λ−1∑
j′=1

Pr
Share(s0,t,n)

[{pi,k(0)}k>j′ ∈ Sj′ | Vi ← Share(s0, t, n)]

= Pr
Share(s0,t,n)

[{pi,k(0)}k∈[λ] : ∃j ∈ {1, . . . , λ− 1}, {pi,k(0)}k>j ∈ Sj | Vi ← Share(s0, t, n)] +

λη(ε),

where the last step follows from the Equation 6.1. Therefore,

Pr
Share(s0,t,n)

[{pi,k(0)}k∈[λ] : ∃j ∈ {1, . . . , λ− 1}, {pi,k(0)}k>j ∈ Sj | Vi ← Share(s0, t, n)]

≥ εVii,left − λη(ε).
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According to Proposition 6.6, for every Vi,

Pr
Hybi,0

[Ei] = Pr
Share(s0,t,n)

[Vi ← Share(s0, t, n)] = Pr
Hybi,λ

[Ei]

Therefore,

εi,left =
∑
Vi

εVii,left · Pr
Share(s0,t,n)

[Vi ← Share(s0, t, n)].

According to Proposition 6.7, for every Vi, under the condition that Vi is output by Share(s0,
t, n), with probability at least εVii,left − λη(ε), {pi,k(0)}k∈[λ] output by Share(s0, t, n) satisfies that,
there exists j ∈ {1, . . . , λ} such that

Pr
Hybi,j−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and ∀k > j, p′i,k(0) = pi,k(0)]−

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and ∀k > j, p′i,k(0) = pi,k(0)] ≥ η(ε).

Therefore, the probability that ({share`}`∈Ci , {p`,k(0)}`∈Ci,k∈[λ]) output by Share(s0, t, n) satisfies
the above property is at least∑

Vi

(εVii,left − λη(ε)) · Pr
Share(s0,t,n)

[Vi ← Share(s0, t, n)] = εi,left − λη(ε).

This completes the proof of the claim.

Recall that Vi = ({share`}`∈Ci , {p`,k(0)}`∈Ci\{i},k∈[λ]) and Ei denote the event (∀` ∈ Ci, share′` =
share` and ∀` ∈ Ci \ {i}, k ∈ [λ], p′`,k(0) = p`,k(0)).

Claim 6.8 For a set of collector functions F , a pirate reconstruction box Rec?, secrets s0, s1 and
i ∈ {t, . . . , n}, j ∈ {1, . . . , λ}, if (Vi, {pi,k(0)}k>j), output by Share(s0, t, n), satisfies that,

Pr
Hybi,j−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and ∀k > j, p′i,k(0) = pi,k(0)]−

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei and ∀k > j, p′i,k(0) = pi,k(0)] ≥ η(ε),

then, with probability 1− negl(λ), (i, (j, L′i,j)) is in the output list of Trace and is a valid evidence
against Pi.

Proof Recall from the description of Hybi,j , the sampling procedure of (ssh′1, . . . , ssh
′
n) and ssh′′i .

For ease of notation, we use Ei,j to represent the event (Ei and ∀k > j, p′i,k(0) = pi,k(0)). We first
show that

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = ssh′i,j ⊕ ssh′′i,j | Ei,j ] ≥
1

2
+ η(ε).

Note that ssh′i is obtained from ssh′′i by replacing its first j bits by random bits. Therefore
PrHybi,j [ssh

′
i,j = ssh′′i,j | Ei,j ] = 1/2. We have,

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = ssh′i,j ⊕ ssh′′i,j | Ei,j ]
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=
1

2
Pr

Hybi,j
[Rec?({f{i1,...,ik}(share

′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| ssh′i,j ⊕ ssh′′i,j = 0, Ei,j ] +

1

2
Pr

Hybi,j
[Rec?({f{i1,...,ik}(share

′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 1| ssh′i,j ⊕ ssh′′i,j = 1, Ei,j ]

=
1

2
Pr

Hybi,j
[Rec?({f{i1,...,ik}(share

′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| ssh′i,j ⊕ ssh′′i,j = 0, Ei,j ] +

1

2

(
1− Pr

Hybi,j
[Rec?({f{i1,...,ik}(share

′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| ssh′i,j ⊕ ssh′′i,j = 1, Ei,j ]

)
=

1

2
+ Pr

Hybi,j
[Rec?({f{i1,...,ik}(share

′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| ssh′i,j ⊕ ssh′′i,j = 0, Ei,j ]−

1

2

(
Pr

Hybi,j
[Rec?({f{i1,...,ik}(share

′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| ssh′i,j ⊕ ssh′′i,j = 0, Ei,j ]+

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| ssh′i,j ⊕ ssh′′i,j = 1, Ei,j ]

)
=

1

2
+ Pr

Hybi,j−1

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei,j ]−

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = 0| Ei,j ]

≥ 1

2
+ η(ε),

where the second last step follows because that, under the condition ssh′i,j = ssh′′i,j , (share′1, . . . ,
share′n)← Hybi,j has the same distribution as that sampled in Hybi,j−1.

Let b be the output of Rec?. Recall that Trace uses b ⊕ ssh′′i,j as the result of ssh′i,j = 〈Li,j ,
p′i,j(0)〉. Let Y denote an oracle query made by InvOra(Li,j ,?)(owf(Li,j)). Therefore, in the case that
(Vi, {pi,k(0)}k>j) is output by Share(s0, t, n),

Pr
Y∼F

[Trace correctly outputs the result 〈Li,j , Y 〉| (Vi, {pi,k(0)}k>j)← Share(s0, t, n)]

=
1

2λ
+

1

2λ

∑
Y ∈F\{0}

Pr
Hybi,j

[Rec?(f1(share′1), . . . , fn(share′n)) = ssh′i,j ⊕ ssh′′i,j | p′i,j(0) = Y,Ei,j ].

By the definition of Hybi,j , for every Y ∈ F \ {0},

Pr
Hybi,j

[p′i,j(0) = Y | Ei,j ] =
1

2λ − 1
.

We have

1

2λ

∑
Y ∈F\{0}

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = ssh′i,j ⊕ ssh′′i,j | p′i,j(0) = Y,Ei,j ]

=
2λ − 1

2λ

∑
Y ∈F\{0}

Pr
Hybi,j

[Rec?({f{i1,...,ik}(share
′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = ssh′i,j ⊕ ssh′′i,j | p′i,j(0) = Y,Ei,j ] ·

Pr
Hybi,j

[p′i,j(0) = Y | Ei,j ]
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=
2λ − 1

2λ
Pr

Hybi,j
[Rec?({f{i1,...,ik}(share

′
i1 , . . . , share

′
ik

)}f{i1,...,ik}∈F ) = ssh′i,j ⊕ ssh′′i,j | Ei,j ]

≥ 2λ − 1

2λ

(
1

2
+ η(ε)

)
.

Therefore,

Pr
Y∼F

[Trace correctly outputs the result 〈Li,j , Y 〉| (Vi, {pi,k(0)}k>j)← Share(s0, t, n)] ≥ 1

2
+ η(ε).

By the Goldreich-Levin Lemma, with probability 1 − negl(λ), InvOra(Li,j ,?)(owf(Li,j)) is able to
output L′i,j such that owf(Li,j) = owf(L′i,j).

6.2 Tracing t− 1 Traitors

In this part, we consider the individual corruption scenario. We want Trace to trace as many
traitors as possible. By the statistical privacy of a traceable secret sharing scheme, any t−1 shares
are insufficient to distinguish two secrets. That means, if a pirate reconstruction box Rec? can
distinguish between the shares of two different secrets with non-negligible probability, then there
are at least t corrupted parties. On the other hand, one can not hope to catch more than t traitors
in general, since Rec? may only use specific t collected shares and ignore the rest.

We note that, the method we use to trace traitors focuses on each share individually. Since
any t shares should be able to reconstruct the secret, {sharei}i∈[n] can be at most (t − 1)-wise
independent. This fact disables us to trace t traitors since it could be possible that when t − 1
shares are “good” enough to trace, the rest of n − (t + 1) shares are all “bad” to trace. However,
we show that we can trace t− 1 traitors.

We first describe the new Trace to trace t− 1 traitors. The construction idea is similar to that
in Section 5. The only changes are the definition of the generalized hybrid and the way Trace
generates a random sample of a generalized hybrid since we need to make sure they are compatible
with the new construction in Section 6. To be more clear,

Definition 6.9 For i ∈ {1, . . . , n}, j ∈ {0, . . . , 2λ}, three disjoint sets Pi,Pi,0,Pi,1 ⊆ [n] such that

|Pi| = t − 1 and Pi
⋃
Pi,0

⋃
Pi,1 = [n] \ {i}, and two secrets s0, s1, Hyb

Pi,Pi,0,Pi,1
i,j [s0, s1] is defined

as follows,

1. If j ≤ λ, ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are sampled

randomly such that {(αk, ssh′k)}k∈Pi⋃Pi,1 are valid t-Shamir shares of s1 and {(αi, ssh′′i )}
⋃
{(αk,

ssh′k)}k∈Pi⋃Pi,0 are valid t-Shamir shares of s0. Then the first j bits of ssh′′i are replaced by
random bits. Let ssh′i be ssh′′i after replacement. {p′`,k(·)}`∈[n],k∈[λ] are then sampled in the

same way as that in Share(1λ, s, t, n). (share′1, . . . , share
′
n) are generated in the same way as

that in Fnew share.

2. If j > λ, ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are sampled

randomly such that {(αi, ssh′′i )}
⋃
{(αk, ssh′k)}k∈Pi⋃Pi,1 are valid t-Shamir shares of s1 and

{(αk, ssh′k)}k∈Pi⋃Pi,0 are valid t-Shamir shares of s0. Then the first 2λ − j bits of ssh′′i are
replaced by random bits. Let ssh′i be ssh′′i after replacement. {p′`,k(·)}`∈[n],k∈[λ] are then sampled

in the same way as that in Share(1λ, s, t, n). (share′1, . . . , share
′
n) are generated in the same

way as that in Fnew share.
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Two algorithms EvalRec
?

and SelectRec
?

are the same as that in Section 5.
The new Trace works as follows:
TraceRec

?

(f1, . . . , fn, f1(share1), . . . , fn(sharen), viewD, s0, s1) : Recall that:

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]− Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0] ≥ ε

Let η(ε) = ε
Cnλ where C = poly(λ). Trace first calls SelectRec

?

(f1, . . . , fn). If FAIL is output, Trace
outputs ⊥ and halts. Otherwise, parse the output as ((1,P1,P1,0,P1,1), . . . , (n,Pn,Pn,0,Pn,1)).

Let InvOra(X,?) be the algorithm in the Goldreich-Levin Lemma where Ora(X, ?) is an oracle with
X hard-coded and X is an element in F such that Pr[Y ∼ F : Ora(X,Y ) = 〈X,Y 〉] ≥ 1/2 + η(ε).

For every i ∈ {1, . . . , n} and j ∈ {1, . . . , λ}, Trace starts running InvOra(Li,j ,?)(owf(Li,j)) by
simulating the access to Ora(Li,j , ?) as below:

• On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace randomly generates
(share′1, . . . , share

′
i−1, share

′
i+1, . . . , share

′
n) such that, after combining with sharei (which is un-

known to Trace), it is a sample in Hyb
Pi,Pi,0,Pi,1
i,j and p′i,j(0) = Y , p′i,k(0) = pi,k(0) for k > j.

To this end, Trace randomly samples ssh′′i such that ssh′′i,k = sshi,k for k > j. Then randomly
sample {ssh′k}k∈Pi⋃Pi,0 such that {(αi, ssh′′i )}

⋃
{(αk, ssh′k)}k∈Pi⋃Pi,0 are valid t-Shamir shares

of s0, and after that, generate {ssh′k}k∈Pi,1 such that {(αk, ssh′k)}k∈Pi⋃Pi,1 are valid t-Shamir
shares of s1.

For k < j, sample a random polynomial p′i,k(·) ∈ F[X] of degree at most t − 1 such that

p′i,k(αi) = pi,k(αi) (recall that Rii,k = pi,k(αi) is a component in sharei) and p′i,k(0) 6= 0.

For k = j, sample a random polynomial p′i,k(·) ∈ F[X] of degree at most t − 1 such that
p′i,k(αi) = pi,k(αi) and p′i,k(0) = Y 6= 0.

For k > j, sample a random polynomial p′i,k(·) ∈ F[X] of degree at most t − 1 such that
p′i,k(αi) = pi,k(αi) and p′i,k(0) = pi,k(0) 6= 0.

For ` ∈ [n] \ {i}, k ∈ [λ], sample a random polynomial p′`,k(·) ∈ F[X] of degree at most t− 1
such that p′`,k(αi) = p`,k(αi) and p′`,k(0) 6= 0.

Then, share′1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n are generated in the same way as that in Fnew share.

• Let share′i = sharei. Note that fi(share
′
i) = fi(sharei) is known to Trace. Let b = Rec?(f1(share′1),

. . . , fn(share′n)). Output b⊕ ssh′′i,j , where ssh′′i,j is the j-th bit of ssh′′i which was generated in
the last step.

Then Trace receives the output of L′i,j = InvOra(Li,j ,?)(owf(Li,j)) and checks that whether owf(Li,j) =
owf(L′i,j). If they are the same, Trace adds (i, (j, L′i,j)) into the output list.

For every i ∈ {1, . . . , n} and j ∈ {λ, . . . , 2λ−1}, Trace starts running InvOra(Li,2λ−j ,?)(owf(Li,2λ−j))
by simulating the access to Ora(Li,2λ−j , ?) as below:

• On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace randomly generates
(share′1, . . . , share

′
i−1, share

′
i+1, . . . , share

′
n) such that, after combining with sharei (which is un-

known to Trace), it is a sample in Hyb
Pi,Pi,0,Pi,1
i,j and p′i,2λ−j(0) = Y , p′i,k(0) = pi,k(0) for

k > 2λ− j.
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To this end, Trace randomly samples ssh′′i such that ssh′′i,k = sshi,k for k > 2λ − j. Then
randomly sample {ssh′k}k∈Pi⋃Pi,1 such that {(αi, ssh′′i )}

⋃
{(αk, ssh′k)}k∈Pi⋃Pi,1 are valid t-

Shamir shares of s1, and after that, generate {ssh′k}k∈Pi,0 such that {(αk, ssh′k)}k∈Pi⋃Pi,0 are
valid t-Shamir shares of s0.

For k < 2λ− j, sample a random polynomial p′i,k(·) ∈ F[X] of degree at most t− 1 such that

p′i,k(αi) = pi,k(αi) (recall that Rii,k = pi,k(αi) is a component in sharei) and p′i,k(0) 6= 0.

For k = 2λ− j, sample a random polynomial p′i,k(·) ∈ F[X] of degree at most t− 1 such that
p′i,k(αi) = pi,k(αi) and p′i,k(0) = Y 6= 0.

For k > 2λ− j, sample a random polynomial p′i,k(·) ∈ F[X] of degree at most t− 1 such that
p′i,k(αi) = pi,k(αi) and p′i,k(0) = pi,k(0) 6= 0.

For ` ∈ [n] \ {i}, k ∈ [λ], sample a random polynomial p′`,k(·) ∈ F[X] of degree at most t− 1
such that p′`,k(αi) = p`,k(αi) and p′`,k(0) 6= 0.

Then, share′1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n are generated in the same way as that in Fnew share.

• Let share′i = sharei. Note that fi(share
′
i) = fi(sharei) is known to Trace. Let b = Rec?(f1(share′1),

. . . , fn(share′n)). Output b̄⊕ ssh′′i,2λ−j , where ssh′′i,2λ−j is the (2λ− j)-th bit of ssh′′i which was
generated in the last step.

Then Trace receives the output of L′i,2λ−j = InvOra(Li,2λ−j ,?)(owf(Li,2λ−j)) and checks that whether
owf(Li,2λ−j) = owf(L′i,2λ−j). If they are the same, Trace adds (i, (2λ− j, L′i,2λ−j)) into the output
list.

In the end, if the output list is empty, Trace outputs ⊥. Otherwise, Trace outputs all pairs
(i, (j, L′i,j)) in the output list.

Let

εi,left = Pr
Hyb
Pi,Pi,0,Pi,1
i,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hyb
Pi,Pi,0,Pi,1
i,λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]

εi,right = Pr
Hyb
Pi,Pi,0,Pi,1
i,λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hyb
Pi,Pi,0,Pi,1
i,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]

εi = Pr
Hyb
Pi,Pi,0,Pi,1
i,0

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]−

Pr
Hyb
Pi,Pi,0,Pi,1
i,2λ

[Rec?(f1(share′1), . . . , fn(share′n)) = 0]

Note that εi = εi,left + εi,right. Without loss of generality, assume εi,left ≥ εi/2. With similar
techniques, we can extend Claim 4.8 and Claim 4.11 to the new construction. Therefore, with
probability at least εi,left− λη(ε)− negl(λ) ≥ εi/2− λη(ε)− negl(λ), Trace is able to output a valid
evidence against Pi.
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By Claim 5.3, there exists (i?1, . . . , i
?
t−1) such that εi?k ≥ ε/(n− t+ 1)− η(ε) for k ∈ [t− 1]. Note

that we only use (sharei, {pi,k(0)}k∈[λ]) to trace Pi. And {(sharei, {pi,k(0)}k∈[λ])}i∈[n] are (t−1)-wise
independent, which directly follows from the underlying Shamir secret sharing scheme. Therefore,
we obtain

Theorem 6.10 Assume the existence of one-way functions and the PKI infrastructure. For t ≥ 4,
n ≥ t and any C = poly(λ), there exists an explicit t-out-of-n δ-traceable secret sharing scheme

with the size of each share O(nλ2), where δ(ε) = ( ε
2(n−t+1) −

(2λ+1)ε
2Cnλ )t−1, such that Trace is able to

output valid evidences against at least t− 1 players.

7 Parallel Composition

In this section, we show that the tracing probabilities of our constructions in Section 4.2 and
Section 6 remain unchanged under parallel composition. At a high-level, we will show that the
parallel composition of our constructions yield the same constructions with longer length of shares.

Recall that in the sharing phases of both constructions, the dealer first randomly generates
((α1, ssh1), . . . , (αn, sshn)) which are valid t-Shamir shares of secret s. Let ` denote the number of
parallel executions, and ((α1, ssh

k
1), . . . , (αn, ssh

k
n)) denote the shares generated in the k-th execution

(corresponding to secret sk). Let K be an extension field of F such that [K : F] = `. Then there
exists a linear bijection M : F` → K so that every vector (x1, x2, . . . , x`) ∈ F` maps to an element
σ ∈ K. Let sshKi = M(ssh1

i , ssh
2
i , . . . , ssh

`
i) for all i ∈ [n] and sK = M(s1, s2, . . . , s`). Then ((α1,

sshK1 ), . . . , (αn, ssh
K
n )) are valid t-Shamir shares of secret sK in K.

Note that Li,j , Ri,j (or {Rki,j}k∈[n]) are generated only based on the j-th bit of the i-th share.
Therefore, the composition of these ` executions can be seen as the dealer first randomly generates
((α1, ssh

K
1 ), . . . , (αn, ssh

K
n )) which are valid t-Shamir shares of secret sK and then generating the

rest of parts accordingly. We have the following corollaries.

Corollary 7.1 Assume the existence of one-way functions and the PKI infrastructure. For t ≥ 4,
n ≥ t, any C = poly(λ) and ` = poly(λ), there exists an explicit t-out-of-n δ-traceable secret
sharing scheme with the size of each share O(λ2) where δ(ε) = p(ε)/(n−1

n p(ε) + 1)− negl(λ), and

p(ε) =
nε

2(n− t+ 1)
− (

t− 1

2
+ nλ)

ε

Cnλ
,

such that there exists a tracing algorithm with tracing probability δ(ε) under ` parallel compositions.

Corollary 7.2 Assume the existence of one-way functions and the PKI infrastructure. For t ≥ 4,
n ≥ t, any C = poly(λ) and ` = poly)(λ), there exists an explicit t-out-of-n δ-traceable secret
sharing scheme with the size of each share O(nλ2) against disjoint collusions where each collusion
contains at most t−1 parties, where δ(ε) = ε/2n−ε/(Cn)−negl(λ), such that there exists a tracing
algorithm with tracing probability δ(ε) under ` parallel compositions.

Corollary 7.3 Assume the existence of one-way functions and the PKI infrastructure. For t ≥ 4,
n ≥ t, any C = poly(λ) and ` = poly(λ), there exists an explicit t-out-of-n δ-traceable secret

sharing scheme with the size of each share O(nλ2), where δ(ε) = ( ε
2(n−t+1) −

(2λ+1)ε
2Cnλ )t−1, such that

there exists a tracing algorithm which is able to output valid evidences against at least t− 1 players
under ` parallel compositions with probability δ(ε).
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8 Traceable Multi-server Delegation of Computation

In this section, we define and construct a traceable multi-server delegation of computation from
our traceable secret sharing. A traceable multi-server delegation of computation is an offline-online
protocol between a client and n servers denoted by P1, . . . , Pn. In the offline phase, the client’s
input is a circuit C and it engages in a protocol with the severs. In the online phase, the client learns
the input x and sends a single message to each of the servers. The servers engage in a protocol
and at the end of the protocol, each server sends a single message back to the client. The client
reconstructs C(x) from these messages. We require the online computational cost of the client to
only grow with the input and output length and is otherwise, independent of the size of the circuit.
Let us denote the view of the i-th server with viewi(C, x) and the view of the client as viewD(C, x).
When it is clear from the context, we use viewi to denote viewi(C, x). We say (Π,Trace, Judge)
(where Trace and Judge have the same semantics of the secret sharing scheme) to be a traceable
delegation of computation if it satisfies the following properties.

Definition 8.1 An offline-online multi-server delegation of computation protocol (Π,Trace, Judge)
with threshold t is said to be δ-traceable if it satisfies the following properties.

• Correctness. The correctness requirement states that for every circuit C and every input x,
the client reconstructs C(x) with probability 1.

• Security. For every circuit and any two inputs x0, x1 and for any subset T of the servers of
size at most t− 1, we require that

viewT (C, x0) ≈s viewT (C, x1)

• Traceability. If there exists a set of n collector functions f1, . . . , fn (where fi is a constant
function if Pi is honest) and a pirate reconstruction box Rec? such that for two inputs x0, x1,

| Pr
Π(C,x0)

[Rec?(f1(view1), . . . , fn(viewn)) = 0]− Pr
Π(C,x1)

[Rec?(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε

then,

Pr[(view1, . . . , viewn, viewD)← Π(C, x0);

(i?, πi?)← TraceRec
?

(f1, . . . , fn, f1(view1), . . . , fn(viewn), viewD, x0, x1) :

Judge(i?, πi? , viewD) = guilty] ≥ δ(ε)

Furthermore, the number of queries that Trace makes to the pirate reconstruction box Rec? is
poly(|C|, λ, 1/ε).

• Non-imputability. For any circuit C and input x, an honest server Pi? and any computa-
tionally bounded client D̃,

Pr
Π(C,x)

[(view′D, i
?, πi?)← D̃(viewD, view[n]\{i?}) : Judge(i?, πi? , view

′
D) = guilty] ≤ negl(λ)
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8.1 The Protocol

In this subsection, we give the details of our traceable delegation of computation.

• Offline Phase. In the offline phase, the client receives the circuit C and does the following.

1. For every wire w of the circuit C, the client chooses a random mask rw ← {0, 1}. We
assume the input wires are labeled from 1 to `.

2. For every gate g of the circuit with input wires i and j and the output wire k, the client
generates a table with 4 entries where each entry is labeled with (a, b) ∈ {0, 1} × {0, 1}.
The (a, b)-th entry of the gate table is given by g(a⊕ ri, b⊕ rj)⊕ rk.

3. For every gate g and every entry of the gate table, the client and the servers run the
sharing protocol of a t-out-of-n traceable secret sharing. Let shareg,a,bi be the i-th share
corresponding to the (a, b)-th entry of the gate g.

• Online Phase. In the online phase, the client receives its input x and sends x⊕ r[`] to each
of the servers. The servers now starting running the online protocol. For every gate g (in the
topological order),

1. The servers hold yi ⊕ rj and yj ⊕ rj where yi, yj are the values carried by the i and j-th
wires when the circuit C is evaluated on input x.

2. Now, the i-th server parses share
g,yi⊕ri,yj⊕rj
i as (αi, βi, (Li,1, Ri,1), . . . , (Li,λ, Ri,λ)). The

servers first exchange Ri,1, . . . , Ri,λ to each other. For j ∈ [λ], the servers compute the
polynomial pj(·) ∈ F[X] of degree at most t − 1 such that pj(αi) = Ri,j for all i ∈ [n].
For every j ∈ [λ], the i-th server computes sshi,j = 〈Li,j , pj(βi)〉 and sshi = (sshi,1, . . . ,
sshi,λ). The servers then broadcast the values of sshi and use the reconstruction of the
Shamir secret sharing scheme to obtain g(yi, yj)⊕ rk = yk ⊕ rk.

The servers finally send the masked values of the output to the client, who removes the output
masks to learn C(x).

• Tracing algorithm. Given f1, . . . , fn, f1(view1), . . . , fn(viewn), the view of the client viewC ,
two inputs x0, x1 and oracle access to a reconstruction box Rec∗, the tracing algorithm does
the following.

1. It defines a sequence of hybrid distributions Hybg,a,b (starting from Π(C, x0)) for every
gate g and (a, b) ∈ {0, 1} × {0, 1} such that every g′ < g (with input wires i′, j′ and
output wire k′), we change all the gate entries to g(yi′ ⊕ ri′ , yj′ ⊕ rj′)⊕ rk′ . Further, for
all entries that are less than (a, b) in the gate table of g (w.r.t. to some ordering), we
change those entries to g(yi⊕ ri, yj⊕ rj)⊕ rk. Notice that Hyb|C|,1,1 is independent of x0

and hence, symmetrically, it defines Hyb′g,a,b from Π(C, x1) where Hyb|C|,1,1 ≡ Hyb′|C|,1,1.

2. Notice that for any two intermediate hybrids in this sequence, the only difference is in the
value that was secret shared in a particular gate entry. Thus, the tracing algorithm fixes
the secret shares of all other gate entries and runs the corresponding tracing algorithm
for the secret sharing scheme where the two secrets are the two different values in the
subsequent hybrids corresponding to this gate table entry. It repeats this process for
every subsequent hybrid in the sequence. If in some iteration it succeeds in extracting a
valid evidence from a party, it stops and outputs the evidence.
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• Judge algorithm. The judge algorithm for the MPC runs the corresponding judge algorithm
of the secret sharing scheme and outputs whatever it outputs.

Theorem 8.2 If the protocol described above is instantiated with a δ-traceable secret sharing scheme,
then it is an offline-online δ(ε/8|C|)-traceable n server delegation protocol with threshold t for a
circuit C.

Proof The correctness of the protocol is easy to observe and we now show security, traceability
and non-imputability.

Security. To show security, we need to show that for any two inputs x0, x1 and for any subset
T ⊆ [n] of size at most t− 1, we have

viewT (C, x0) ≈s viewT (C, x1).

We show security through a hybrid argument.

• Hyb0 : This corresponds to viewT (C, x0).

• Hyb1 : In this hybrid, we generate the sharings of the gate entries differently. For every
gate g with input wires i, j and output wire k, we generate the (a, b)-th entry for every (a,
b) 6= (yi ⊕ ri, yj ⊕ rj) as a secret sharing of 0. We output the view of the T servers. We note
that Hyb0 ≈s Hyb1 from the privacy of traceable secret sharing scheme.

• Hyb2 : In this hybrid, for every wire i, we set yi⊕ri as an independently chosen random value.
Hyb2 is identically distributed to Hyb1. Notice Hyb2 is independent of the input x0.

Via an identical argument, we can show that viewT (C, x1) is computationally close to Hyb2. This
proves security.

Traceability. Let us fix the collector functions f1, . . . , fn and a pirate reconstruction box Rec∗

such that for two inputs x0, x1,

| Pr
Π(C,x0)

[Rec?(f1(view1), . . . , fn(viewn)) = 0]− Pr
Π(C,x1)

[Rec?(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε.

We now define a sequence of 4|C| hybrids starting from Π(C, x0). Specifically, for every gate g
(with input wires i, j and output wire k) and (a, b) ∈ {0, 1} × {0, 1}, we define Hybg,a,b where as a
distribution where for every g′ < g (with input wires i′, j′ and output wire k′), we change all the
gate entries to g(yi′ ⊕ ri′ , yj′ ⊕ rj′)⊕ r′k′ . Further, for all entries that are less than (a, b) in the gate
table of g (w.r.t. to some ordering), we change those entries to g(yi ⊕ ri, yj ⊕ rj) ⊕ rk. Note that
once we make this change for every gate entry, the final hybrid is independent of x0 and hence, we
can reverse these hybrids one by one to get Π(C, x1). Without loss of generality, let us assume that

| Pr
Π(C,x0)

[Rec?(f1(view1), . . . , fn(viewn)) = 0]− Pr
Hyb|C|,1,1

[Rec?(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε/2

By an averaging argument, we infer that there exists two intermediate hybrids, Hyb and Hyb′ in
the sequence such that
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| Pr
Hyb

[Rec?(f1(view1), . . . , fn(viewn)) = 0]− Pr
Hyb′

[Rec?(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε/(8|C|)

Notice that the only difference between Hyb and Hyb′ is the value that was secret shared in a
particular gate entry. Thus, it follows from the traceability of the underlying secret sharing scheme,
that the MPC tracing algorithm outputs a valid evidence against a party with probability at least
δ(ε/(8|C|)).

Non-imputability. Note that the offline view of the servers consists of the views of 4|C| different
sharings of our traceable secret sharing scheme. Further, observe that the messages sent during
step 2 of the online phase can be simulated using viewD. The non-imputability property follows
directly from the underlying traceable secret sharing, as we can correctly guess the particular secret
for which an adversarial dealer gives the correct evidence with 1/(4|C|λ) probability and hardcode
the one-way function challenge in this position.
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