
Fault-Injection Attacks against NIST’s Post-Quantum Cryptography
Round 3 KEM Candidates

Keita Xagawa3, Akira Ito1, Rei Ueno12, Junko Takahashi3, and Naofumi Homma1

1 Tohoku University
2–1–1 Katahira, Aoba-ku, Sendai-shi, 980-8577, Japan

ito@riec.tohoku.ac.jp,rei.ueno.a8@tohoku.ac.jp,homma@riec.tohoku.ac.jp
2 PRESTO, Japan Science and Technology Agency

4–1–8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
3 NTT Social Informatics Laboratories

3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585 Japan
junko.takahashi.fc@hco.ntt.co.jp,keita.xagawa.zv@hco.ntt.co.jp

Abstract. We investigate all NIST PQC Round 3 KEM candidates from the viewpoint of fault-injection
attacks: Classic McEliece, Kyber, NTRU, Saber, BIKE, FrodoKEM, HQC, NTRU Prime, and SIKE. All KEM
schemes use variants of the Fujisaki-Okamoto transformation, so the equality test with re-encryption in de-
capsulation is critical.
We survey effective key-recovery attacks when we can skip the equality test. We found the existing key-
recovery attacks against Kyber, NTRU, Saber, FrodoKEM, HQC, one of two KEM schemes in NTRU Prime,
and SIKE. We propose a new key-recovery attack against the other KEM scheme in NTRU Prime. We also
report an attack against BIKE that leads to leakage of information of secret keys.
The open-source pqm4 library contains all KEM schemes except Classic McEliece and HQC. We show that
giving a single instruction-skipping fault in the decapsulation processes leads to skipping the equality test
virtually for Kyber, NTRU, Saber, BIKE, and SIKE. We also report the experimental attacks against them. We
also report the implementation of NTRU Prime allows chosen-ciphertext attacks freely and the timing side-
channel of FrodoKEM reported in Guo, Johansson, and Nilsson (CRYPTO 2020) remains, while there are no
such bugs in their NIST PQC Round 3 submissions.
keywords: post-quantum cryptography, NIST PQC standardization, KEM, the Fujisaki-Okamoto transfor-
mation, fault-injection attacks.

Table of Contents

Fault-Injection Attacks against NIST’s Post-Quantum Cryptography Round 3 KEM Candidates 1
Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma

1 Introduction . 2
1.1 Background . 2
1.2 Our Contribution . 4
1.3 Related Works . 6
1.4 Organization . 6

2 Preliminaries . 6
2.1 Notation . 6
2.2 Public-Key Encryption (PKE) . 7
2.3 Key Encapsulation Mechanism (KEM) . 7

3 Variants of the Fujisaki-Okamoto Transformation . 7
3.1 FO with implicit rejection . 8

4 Key-Recovery Plaintext-Checking Attack against ntrulpr of NTRU Prime . 8
4.1 Key-Recovery Attack . 9
4.2 Trade-Off . 10

5 Skipping the Equality Test by Skipping a Single Instruction . 11
5.1 NTRU Prime – CCA Bug . 11
5.2 FrodoKEM – Timing Attack . 11
5.3 Kyber, Saber, and NTRU – cmov . 11
5.4 BIKE – For loop . 14
5.5 SIKE – Simple If . 14

6 Experimental Attacks . 18
6.1 Setup . 18
6.2 Results . 18

7 Countermeasure . 19
8 Conclusion . 19
A Missing Definitions . 27
B The variants of FO . 27

B.1 Other FO with implicit rejection . 27
B.2 FO with additional hash . 28
B.3 SXY . 29
B.4 HU with implicit rejection . 30

C Survey of Key-Recovery Plaintext-Checking Attacks . 30
C.1 Classic McEliece . 30
C.2 Kyber . 31
C.3 NTRU . 33
C.4 Saber . 34
C.5 BIKE . 36
C.6 FrodoKEM . 37
C.7 HQC . 38
C.8 NTRU Prime . 40
C.9 SIKE . 41

1 Introduction

1.1 Background

Key encapsulation mechanism: Public-key encryption (PKE in short) allows us to send a message secretly
without a pre-shared secret key [DH76, RSA78, Sin99], which is a fundamental task of cryptography. PKE consists
of three algorithms; a key-generation algorithm that generates a public key and a secret key, an encryption

algorithm that takes a message and a public key as input and outputs a ciphertext, and a decryption algorithm
that takes a secret key and a ciphertext as input and outputs a message.

Key encapsulation mechanism (KEM in short) is also fundamental cryptographic primitive [Sho00, CS03,
ISO06], which can be considered as a variant of public-key encryption (PKE). KEM’s encryption algorithm,
which we call the encapsulation algorithm, takes a public key as input and outputs a ciphertext and a key (or an
ephemeral key). KEM’s decryption algorithm, which we call the decapsulation algorithm, takes a secret key and
a ciphertext as input and outputs a key instead of a message. KEM’s sender and receiver share a key instead of a
message in the case of PKE. KEM is a versatile primitive and has a lot of applications, e.g., key exchange, hybrid
encryption, secure authentication, and authenticated key exchange.

The most standard security notion of KEM is indistinguishability against chosen-ciphertext attacks (IND-
CCA-security) [RS92, CS03]. Since it is hard to construct efficient IND-CCA-secure KEMs directly, cryptogra-
phers often use the transformations from weakly-secure PKE/KEM into IND-CCA-secure KEM. The Fujisaki-
Okamoto (FO) transformation [FO99, FO13, Den03] is one of the transformations often used in the design of
IND-CCA-secure PKE/KEM in the random oracle model (ROM). Roughly speaking, the FO transformation trans-
forms an underlying PKE scheme into KEM as follows: Let G and H be two random oracles. A key-generation
algorithm of KEM is that of PKE. An encapsulation algorithm on input a public key pk chooses a message 𝑚 ran-
domly, encrypts it into ct = Enc(pk, 𝑚;G(𝑚)), where Enc is an encryption algorithm of PKE and the randomness
of encryption is computed as G(𝑚), and outputs a ciphertext ct and a key 𝐾 = H(𝑚). A decapsulation algorithm
on input sk and ct decrypts ct into 𝑚′ = Dec(sk, ct), where Dec is a decryption algorithm of PKE, re-encrypts
𝑚′ into ct′ = Enc(pk, 𝑚′;G(𝑚′)), and outputs a key 𝐾 = H(𝑚′) if ct = ct′ and a rejection symbol otherwise.

Post-quantum cryptography: Scalable quantum computers will threaten classical public-key cryptography since
Shor’s algorithm on a quantum machine solves factorization and discrete logarithms efficiently [Sho94]. The
recent progress in developing quantummachines motivates us to replace classical public-key cryptography with
post-quantum cryptography (PQC). Hence, in the past decade, the security proofs of the FO transformation and
its variants have been extended to those in the quantum random oracle model (QROM) [BDF+11] to show the
security against quantum polynomial-time adversary. See e.g., [TU16, HHK17, SXY18, JZC+18, BHH+19, JZM19,
KSS+20].

Moreover, in 2016, NIST PQC standardization called for proposals on PKE/KEM and signatures as the basic
primitives 4. In 2020, NIST selected four finalists and five alternate candidates for KEM in Round 3 [AAA+20].
All use the FO-like transformations to construct IND-CCA-secure KEMs in the (Q)ROM.

Fault-injection attacks: In the real world, the decapsulation algorithm is implemented physically. Hence,
investigations into side-channel attacks (SCA) [Koc96, KJJ99] and fault-injection attacks (FIA) [BS97, BDL01]
against proposed KEMs are strongly promoted by NIST. The attacks’ targets are recovery of an ephemeral key of
a given ciphertext or a secret key of a given public key. We call the former and the latter ephemeral-key-recovery
attack and key-recovery attack, respectively.

We focus on FIA against KEM and review the scenario of it. Suppose that an adversary can inject faults into
a decapsulation machine that contains a secret key. In this situation, it is natural to think the adversary has the
machine itself (e.g., decapsulation machines in card, sensor, robot, and TV box) and uses it freely because the
adversary can physically access the machine. Hence, the adversary can decrypt any ciphertexts and recover the
corresponding ephemeral key of the target ciphertext. Thus, if we consider FIA, ephemeral-key-recovery attacks
are not so important.

On the other hand, recovery of secret key via FIA is non-trivial and interesting, because the key-recovery
attack logically breaks a tamper-resilient memory by extracting the secret from it. In addition, once one obtains
a secret key from a decapsulation machine, one can copy the machine. Thus, we examine how FIA leads to a
key-recovery attack.

There are a lot of techniques tomake decapsulation faulty; shooting a LASER to set/reset a bit of SRAM [SA03],
injecting a clock or power glitch [SMR09, ?, ESH+11, BBPP09], using electromagnetic (EM) pulses [HHS+11].
(Un)fortunately, an injection of fault often fails to obtain an expected result, say, a skip of an instruction of the
assembly code. Thus, the less number of faults in a single run of decapsulation an attack requires, the better.
Especially, we are interested in single-fault key-recovery attacks.

4 https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/
Call-for-Proposals

3

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals

Skipping-the-equality-test attack: In the FO-like transformations, the decapsulation algorithm given a ciphertext
ct first decrypts the ciphertext into 𝑚′, re-encrypts it into ct′, and returns 𝐾 = H(𝑚′, aux) if ct = ct′ and
pseudorandom value 𝐾 = H(𝑠, aux) or the rejection symbol ⊥ otherwise, where H is a hash function modeled by
a random oracle, aux depends on pk and ct , and 𝑠 is a secret value.

By injecting a fault carefully, we could force the decapsulation machine to skip the equality test ct = ct′ and
return 𝐾 = H(𝑚′, aux) always, where𝑚′ = Dec(sk, ct). This enables us to implement a plaintext-checking oracle
on input guess 𝑚guess and ciphertext ct by checking if 𝐾 = H(𝑚guess, aux) or not and a key-mismatch oracle on
input guess 𝐾guess and ciphertext ct by checking if 𝐾 = 𝐾guess or not. Such oracles would enable an adversary
to mount a key-recovery attack against KEM.

Fault-injection attack against pre-quantum KEMs: Factoring/RSA-based PKE/KEM is vulnerable against FIA. For
example, safe-error attacks [YJ00, YKLM02] are effective to guess a bit of secret key. They are also applicable to
Discrete-logaritm (DL)-based PKE/KEM. DL-based PKE/KEM has several attack surfaces vulnerable to FIA. See,
for example, invalid point/curve attacks [BMM00, BG15, ABM+03, TT19].

We note that the existing key-recovery FIAs do not target the equality test of the FO transformation. It
is not known whether this plaintext-checking/key-mismatch oracle (or even decryption oracle) enables us to
recover the secret key of the underlying PKE, say, the textbook RSA. (See e.g., [BV98] and [AM09].) Thus, the
key-recovery FIA against pre-quantum KEMs that skips the equality test are not so explored.

Fault-injection attack against post-quantum KEMs: This situation is changed in post-quantum KEMs. Unfortu-
nately, underlying PKEs in the post-quantum PKE/KEMs are often vulnerable to key-recovery chosen-ciphertext
attacks. For example, Hall, Goldberg, and Schneier [HGS99] pointed out message-recovery and key-recovery
chosen-ciphertext attacks against the McEliece PKE [McE78, Nie86] and the Ajtai-Dwork PKE [AD97], respec-
tively. Fluhrer pointed out that a simple key-exchange scheme based on ring learning with errors (RLWE) is
vulnerable to the key-mismatch attack if a user fixes its secret [Flu16]. Galbraith, Petit, Shani, and Ti [GPST16]
gave a key-recovery key-mismatch attack against SIDH [JD11, DJP14] with fixed secret. Therefore, the equality
test is an important target of FIA.

Although Pessl and Prokop [PP21] pointed out that the equality test is ‘an obvious faulting target,’ we do
not know how easily we can mount a skipping-the-equality-test attack by injecting a single fault against the
implementations in the wild and how effective the skipping-the-equality-test attack is against the NIST PQC
Round 3 KEM candidates.

1.2 Our Contribution

We systematically study how effective fault-injection attacks that lead to the skip of the equality test of FO-like
transformations are against all KEMs in theNIST PQCRound 3 finalists and the alternates: ClassicMcEliece [ABC+20],
Kyber [SAB+20], NTRU (ntruhps and ntruhrss) [CDH+20], Saber [DKR+20], BIKE [ABB+20], FrodoKEM [NAB+20],
HQC [AAB+20], NTRU Prime (sntrupr and ntrulpr) [BBC+20], and SIKE [JAC+20]. We summarize our findings
in Table 1.

Theoretical analysis: We study whether the underlying PKEs of KEMs are resilient to key-recovery plaintext-
checking attacks (KR-PCA) or not, since skipping the equality test enables an adversary to obtain𝐾 = H(Dec(sk, ct), aux)
instead of pseudorandom string or ⊥ and to implement a plaintext-checking oracle easily.

We found that almost all PKEs except the underlying PKE of Classic McEliece leaks information of the de-
cryption key in the presence of plaintext-checking oracle in vitro. Our findings are summarized as follows (see
also Table 2):

Kyber, NTRU, Saber, FrodoKEM, HQC, sntrupr of NTRU Prime, and SIKE: We survey the literature and
found that there are KR-PCAs against the underlying PKEs of Kyber, ntruhps and ntruhrss of NTRU, Saber,
FrodoKEM, HQC, sntrupr of NTRU Prime, and SIKE.

ntrulpr of NTRU Prime: We propose a KR-PCA against the underlying PKE of NTRU LPRime (ntrulpr of
NTRU Prime) by mimicking the KR-PCAs against the underlying PKEs of Saber and Kyber [HV20]. See sec-
tion 4.

BIKE: The underlying PKE of BIKE in round 3 also leaks the secret key’s information from the plaintext-
checking oracle as QC-MDPC [MTSB13] is vulnerable to the KR-PCA proposed by Guo, Johansson, and
Stankvoski [GJS16]. However, the change of a decoder algorithm in round 3 makes key-recovery attacks
difficult. See subsection C.5.

4

Table 1: Summary of our findings on NIST PQC Round 3 KEM Candidates (finalists and alternates) and their
implementations in pqm4: PCA implies plaintext-checking attack.

Name Effect of PCA Attack Surface in pqm4 Effect of FIA in pqm4

Classic McEliece [ABC+20] Unknown N/A N/A
Kyber [SAB+20] Key recovery Skip Key recovery
NTRU – ntruhps [CDH+20] Key recovery Skip Key recovery
NTRU – ntruhrss [CDH+20] Key recovery Skip Key recovery
Saber [DKR+20] Key recovery Skip Key recovery

BIKE [ABB+20] Key leakage (New) Skip Key leakage
FrodoKEM [NAB+20] Key recovery Timing bug Key recovery
HQC [AAB+20] Key recovery N/A N/A
NTRU Prime – sntrupr [BBC+20] Key recovery CCA bug Key recovery
NTRU Prime – ntrulpr [BBC+20] Key recovery (New) CCA bug Key recovery
SIKE [JAC+20] Key recovery Skip Key recovery

Table 2: Theoretical plaintext-checking attacks and key-mismatch attacks against the underlying PKEs of NIST
PQC Round 3 KEM Candidates.

Name Results

Classic McEliece [ABC+20] Unknown
Kyber [SAB+20] Key recovery [QCD19, RRCB20, HV20, QCZ+21]
NTRU – ntruhps [CDH+20] Key recovery [DDS+19]
NTRU – ntruhrss [CDH+20] Key recovery [ZCQD21]
Saber [DKR+20] Key recovery [HV20, QCZ+21]

BIKE [ABB+20] Key leakage (New, adapted KR-PCA against QC-MDPC [GJS16])
FrodoKEM [NAB+20] Key recovery [BDH+19, RRCB20, VV20, QCZ+21]
HQC [AAB+20] Key recovery [HV20]
NTRU Prime – sntrupr [BBC+20] Key recovery [REB+21]
NTRU Prime – ntrulpr [BBC+20] Key recovery (New, adapted KR-PCA against Kyber, Saber, and FrodoKEM)
SIKE [JAC+20] Key recovery [GPST16]

Classic McEliece: There are no known KR-PCAs against the underlying PKE of Classic McEliece if the decoder
in a decryption algorithm rejects invalid plaintexts 5 (We note that the specifications seem to allow the use
of any decoder that decodes binary Goppa codes.)

Trade-off: Skipping the equality test enables the adversary to obtain 𝐾 = KDF(𝑚, aux) with 𝑚 = Dec(sk, ct)
rather than the plaintext-checking oracle. Thus, the adversary can check if 𝑚 = 𝑚guess by checking 𝐾 =
KDF(𝑚guess, aux) from a single faulty experiment. If the number of candidates of𝑚 is small, thenwe can determine
the value of 𝑚 by an exhaustive search. By using this property, there are trade-offs between the computational
cost and the number of faulty experiments in the cases of Kyber, Saber, FrodoKEM, and ntrulpr of NTRU Prime.
See the details in section 4 for the case of ntrulpr of NTRU Prime.

Investigation of KEMs in pqm4: We investigate implementation of KEMs in pqm4 [KRSS], which include
Kyber, NTRU (ntruhps and ntruhrss), Saber, BIKE, FrodoKEM, NTRUPrime (sntrupr and ntrulpr), and SIKE 6

NTRU Prime: In the pqm4 implementation of NTRU Prime (sntrupr and ntrulpr), a decapsulation program
contains a fatal bug that forces the result of the equality test to be true. 7 Thus, we can mount a chosen-
ciphertext attack against them freely. See subsection 5.1.

FrodoKEM: In 2020, Guo et al. [GJN20] pointed out that the implementation of FrodoKEM (and HQC) contains
a leaky equality test that leaks information of the secret key from the timing side channel and succeeded

5 The plaintext space is a set of 𝑛-dimensional vectors whose Hamming weight is 𝑡.
6 We use 2021 Jun. 5 version. https://github.com/mupq/pqm4/commit/8d3384d879b10619c8c36947e4be6ab13ec6d268.
7 We report it in https://github.com/mupq/pqm4/issues/195

5

https://github.com/mupq/pqm4/commit/8d3384d879b10619c8c36947e4be6ab13ec6d268
https://github.com/mupq/pqm4/issues/195

in mounting a key-recovery attack using the timing information. Although FrodoKEM in Round 3 repaired
this leaky equality test, the bug still remains in the pqm4 implementation.8 See subsection 5.2.

Kyber, NTRU, and Saber: They shared a same structure to compute a key. Roughly speaking, decapsulation
programs use a flag for the equality test and overwrite the decrypted result 𝑚′ by a secret seed 𝑠 if the flag
is set. This overwriting is done by a single function call of ‘cmov’ (conditional-move). (Un)fortunately, we
can skip this function call by a single fault and mount FIA. See subsection 5.3

BIKE: The decapsulation program of BIKE in pqm4 computes mask, which is −1 or 0 depending on the re-
encryption check, and overwrites the decryption result 𝑚′ by a secret seed 𝑠 or keep it as “𝑚′ ← (𝑚′ ∧
¬mask) ∨ (𝑠 ∧ mask)”. 9 (Un)fortunately, we identify a single operation such that if we skip the operation,
then mask is set to 0 always. Thus, we can skip the overwrite procedure virtually by a single fault. See
subsection 5.4.

SIKE: The implementation of SIKE in pqm4 simply uses an ‘if’ statement to overwrite the decrypted result 𝑚′

by a secret seed 𝑠. In the assembly code, this if-then-overwrite is implemented as ‘compare’ and ‘conditional
jump’. (Un)fortunately, we can skip this ‘conditional jump’ by a single fault. See subsection 5.5.

Experimental results: On the basis of our findings, we conduct the experimental skip attacks on Kyber, NTRU,
Saber, BIKE, and SIKE. The target is STM32F415 whose core is ARM Cortex-M4, which is a de-facto standard
platform asNIST suggested.We run 100 fault injections to each scheme and succeeded in injecting faults correctly
with 15–50%. See section 6.

1.3 Related Works

For PQC candidates and their implementation, we recommend the reader to read an exhaustive surveywritten by
Howe, Prest, and Apon [HPA21]. Ravi and Roy gave a lecture on SCAs and FIAs against lattice-based PQC can-
didates [RR21]. Costello wrote a survey of isogeny-based cryptography [Cos21]. For SCA, FIA, and key-recovery
plaintext-checking/key-mismatch attacks against NIST PQC KEM Candidates, see our survey in Appendix C.

1.4 Organization

Section 2 reviews basic notions and notations. Section 3 reviews the variants of the FO transformation. Section 4
gives a key-recovery attack against ntrulpr of NTRU Prime using plaintext-checking oracle and discusses a trade-
off between efficiency and the number of queries if we consider the fault-injection attack. Section 5 describes
the equality test of KEMs and how we can mount skipping attack. Section 6 reports our experimental results.
Appendix A contains missing definitions, say, security notions of PKE and KEM. Appendix B also reviews the
variants of the FO transformation. Appendix C reviews the KEM schemes and KR-PCAs against all of them and
includes our report of key-leakage PCAs against BIKE.

2 Preliminaries

2.1 Notation

A security parameter is denoted by 𝜆.We use the standard𝑂-notations. DPT, PPT, andQPT stand for deterministic
polynomial-time, probabilistic polynomial-time, and quantum polynomial-time, respectively. A function 𝑓 (𝜆) is
said to be negligible if 𝑓 (𝜆) = 𝜆−𝜔(1). We denote a set of negligible functions by negl(𝜆). For a statement 𝑃 (e.g.,
𝑟 ∈ [0, 1]), we define boole(𝑃) = 1 if 𝑃 is satisfied and 0 otherwise.

For a distribution 𝜒, we often write “𝑥 ← 𝜒,” which indicates that we take a sample 𝑥 in accordance with 𝜒. For
a finite set 𝑆, 𝑈 (𝑆) denotes the uniform distribution over 𝑆. We often write “𝑥 ← 𝑆” instead of “𝑥 ← 𝑈 (𝑆).” If inp
is a string, then “out ← A(inp)” denotes the output of algorithm A when run on input inp. If A is deterministic,
then out is a fixed value and we write “out ∶= A(inp).” We use the notation “out ∶= A(inp; 𝑟)” to make the
randomness 𝑟 explicit.

For an odd positive integer 𝑞, we define 𝑟 ′ ∶= 𝑟 mod± 𝑞 to be the unique element 𝑟 ′ ∈ [−(𝑞 − 1)/2, (𝑞 − 1)/2]
with 𝑟 ′ ≡ 𝑟 (mod 𝑞).
8 pqm4 noticed this issue. See https://github.com/mupq/pqm4/issues/161.
9 If mask = 0, then we have 𝑚′ ← 𝑚′. Otherwise, we have 𝑚′ ← 𝑠.

6

https://github.com/mupq/pqm4/issues/161

2.2 Public-Key Encryption (PKE)

The model for PKE schemes is summarized as follows:

Definition 2.1. A PKE scheme PKE consists of the following triple of polynomial-time algorithms (Gen, Enc,Dec):

– Gen(1𝜆; 𝑟𝑔) → (pk, sk): a key-generation algorithm that takes as input 1𝜆, where 𝜆 is the security parameter,
and randomness 𝑟𝑔 ∈ ℛGen and outputs a pair of keys (pk, sk). pk and sk are called the encryption key and
decryption key, respectively.

– Enc(pk, 𝑚; 𝑟𝑒) → ct : an encryption algorithm that takes as input encryption key pk, message 𝑚 ∈ ℳ, and
randomness 𝑟𝑒 ∈ ℛEnc and outputs ciphertext ct ∈ 𝒞.

– Dec(sk, ct) → 𝑚/⊥: a decryption algorithm that takes as input decryption key sk and ciphertext ct and outputs
message 𝑚 ∈ ℳ or a rejection symbol ⊥ ∉ ℳ.

Definition 2.2. We say a PKE scheme PKE is deterministic if Enc is deterministic, that is, it takes pk and 𝑚 and
does not take a randomness 𝑟𝑒. DPKE stands for deterministic public-key encryption.

Plaintext-checking oracle: Since we review and propose key-recovery attacks using plaintext-checking oracle
(PCO), we formally review the definition of the plaintext-checking oracle [OP01, ABP15].

Definition 2.3 (Plaintext-Checking Oracle). A plaintext-checking oracle PCO takes as input a plaintext𝑚 and
a ciphertext ct and outputs 1 if and only if 𝑚 is equal to the decrypted result Dec(sk, ct). That is, PCO(𝑚, ct) ∶=
boole(𝑚 = Dec(sk, ct)).

2.3 Key Encapsulation Mechanism (KEM)

The model for KEM schemes is summarized as follows:

Definition 2.4. AKEM schemeKEM consists of the following triple of polynomial-time algorithms (Gen, Encaps,Decaps):

– Gen(1𝜆; 𝑟𝑔) → (pk, sk): a key-generation algorithm that takes as input 1𝜆, where 𝜆 is the security parameter,
and randomness 𝑟𝑔 ∈ ℛGen and outputs a pair of keys (pk, sk). pk and sk are called the encapsulation key and
decapsulation key, respectively.

– Encaps(pk; 𝑟𝑒) → (ct , 𝐾): an encapsulation algorithm that takes as input encapsulation key pk and randomness
𝑟𝑒 ∈ ℛEncaps and outputs ciphertext ct ∈ 𝒞 and key 𝐾 ∈ 𝒦.

– Decaps(sk, ct) → 𝐾/⊥: a decapsulation algorithm that takes as input decapsulation key sk and ciphertext ct
and outputs key 𝐾 or a rejection symbol ⊥ ∉ 𝒦.

Key-mismatch oracle: We review the key-mismatch oracle, which is an analogue of the plaintext-checking oracle
for PKE.

Definition 2.5 (Key-Mismatch Oracle). A key-mismatch oracle KMO takes as input a key 𝐾 and a ciphertext ct
and outputs 1 if and only if 𝐾 is equal to the decapsulated result Decaps(sk, ct). That is, KMO(𝐾, ct) ∶= boole(𝐾 =
Decaps(sk, ct)).

3 Variants of the Fujisaki-Okamoto Transformation

We review the variants of the FO transformation that are used by NIST PQC Round 3 candidate KEMs: FO ̸⊥ in
this section and FO ̸⊥′, FO ̸⊥′′, HFO⊥, HFO ̸⊥, SXY, and HU ̸⊥ in section B.

Let PKE = (Gen, Enc,Dec) be a PKE, whose ciphertext space is 𝒞PKE. If PKE is probabilistic, then ℛEnc
denotes the randomness space of Enc. Let {0, 1}𝑘(𝜆) be the key space of KEM.

7

Gen(1𝜆)

(pk, sk) ← Gen(1𝜆)

𝑠 ← {0, 1}ℓ(𝜆)

sk ∶= (sk, pk, 𝑠)

return (pk, sk)

Encaps(pk)

𝑚 ← {0, 1}ℓ(𝜆)

𝑟 ∶= G(𝑚) // for BIKE
𝑟 ∶= G(𝑚, pk) // for SIKE
ct ∶= Enc(pk, 𝑚; 𝑟)
𝐾 ∶= H(𝑚, ct)
return (𝐾, ct)

Decaps(sk, ct), where sk = (sk, pk, 𝑠)

𝑚′ ∶= Dec(sk, ct)
𝑟 ′ ∶= G(𝑚′) // for BIKE
𝑟 ′ ∶= G(𝑚′, pk) // for SIKE
ct ′ ∶= Enc(pk, 𝑚′; 𝑟 ′)
if ct = ct ′, then return 𝐾 ∶= H(𝑚′, ct)
else return 𝐾 ∶= H(𝑠, ct)

Fig. 1: KEM ∶= FO ̸⊥[PKE,G,H] for BIKE and SIKE.

3.1 FO with implicit rejection

FO ̸⊥ transforms a weakly-secure probabilistic PKE into IND-CCA-secure KEM, where the identifier “ ̸⊥” implies
implicit rejection [HHK17]. This variant is used by BIKE and SIKE.

Let {0, 1}ℓ(𝜆) be the plaintext space of PKE. Let G∶ {0, 1}∗ → ℛEnc and H∶ {0, 1}ℓ(𝜆) × 𝒞PKE → {0, 1}𝑘(𝜆) be
hash functions modeled by the random oracles. The FO ̸⊥ is summarized as Figure 1. Assuming the IND-CPA
security of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM (see e.g., [KSS+20]).

Remark 3.1. BIKE and SIKE do not test whole re-encryption check. Roughly speaking, their encryption algorithm
Enc is separable into two algorithms Enc1 and Enc2. Enc1 takes pk and randomness 𝑟 and outputs 𝑐1 and 𝑘 ∈
{0, 1}ℓ(𝜆). Enc2 takes 𝑚 and 𝑘 and outputs 𝑐2 ∶= 𝑘 ⊕ 𝑚.

Using this property, BIKE omits the re-encryption check. Concretely speaking, 𝑘 in BIKE’s Enc1 is computed
as 𝑘 ∶= H(𝑟), where H is a hash function modeled by the random oracle. BIKE’s Dec internally obtains 𝑟 ′ and
checks the validity of 𝑐1. It then retrieves 𝑚′ ∶= 𝑐2 ⊕H(𝑟 ′) and checks the validity of the ciphertext by checking
𝑟 ′ = G(𝑚′) or not.

SIKE’s Decaps performs the test 𝑐′1 = 𝑐1 but omits the test 𝑐′2 = 𝑐2. Since Dec retrieves 𝑚′ ∶= 𝑐2 ⊕ 𝑘 determin-
istically, we do not need to check the equality of 𝑐2 and 𝑐′2.

4 Key-Recovery Plaintext-Checking Attack against ntrulpr of NTRU Prime

Wepropose a new key-recovery attack using plaintext-checking oracle against ntrulpr of NTRUPrime [BBC+20].
NTRU LPRime (ntrulpr) is a variant of the LPR PKE [LPR10], which is also based on the Lindner–Peikert
PKE [LP11], and has a similar structure to Kyber and Saber. We mimic the KR-PCA against Kyber and Saber
proposed by Băetu et al. [BDH+19] and Huguenin-Dumittan and Vaudenay [HV20].

ntrulpr of NTRU Prime: NTRU LPRime has parameter sets 𝑝, 𝑞, 𝑤, 𝛿, 𝜏0, 𝜏1, 𝜏2, and 𝜏3. We note that 𝑞 = 6𝑞′ + 1 for
some 𝑞′ and 𝑞 ≥ 16𝑤 + 2𝛿 + 3. For concrete values, see Table 3.

Table 3: Parameter sets of ntrulpr of NTRU Prime

parameter sets 𝑝 𝑞 𝑤 𝛿 𝜏0 𝜏1 𝜏2 𝜏3
ntrulpr653 653 4621 252 289 2175 113 2031 290
ntrulpr761 761 4591 250 292 2156 114 2007 287
ntrulpr857 857 5167 281 329 2433 101 2265 324
ntrulpr953 953 6343 345 404 2997 82 2798 400
ntrulpr1013 1013 7177 392 450 3367 73 3143 449
ntrulpr1277 1277 7879 429 502 3724 66 3469 496

Let ℛ ∶= ℤ[𝑥]/(𝑥𝑝 − 𝑥 − 1) and ℛ𝑞 ∶= ℤ𝑞[𝑥]/(𝑥𝑝 − 𝑥 − 1). Let 𝒮 ∶= {𝑎 = ∑𝑝−1
𝑖=0 𝑎𝑖𝑥 𝑖 ∈ ℛ ∣ 𝑎𝑖 ∈

{−1, 0, +1},HW(𝑎) = 𝑤}, a set of “short” polynomials.

8

Table 4: The PCO’s behaviors
sk 𝑖 PCO(1⃗256, ct0) PCO(1⃗256, ct1)

1 1 1
0 1 0
−1 0 0

For 𝑎 ∈ [−(𝑞 − 1)/2, (𝑞 − 1)/2], define Round(𝑎) = 3 ⋅ ⌈𝑎/3⌋.10 For a polynomial 𝐴 = ∑𝑖 𝑎𝑖𝑥 𝑖 ∈ ℛ𝑞, we define
trunc(𝐴, 𝑙) = (𝑎0, … , 𝑎𝑙−1) ∈ ℤ𝑙

𝑞. For 𝐶 ∈ [0, 𝑞), define Top(𝐶) = ⌊(𝜏1(𝐶 + 𝜏0) + 214)/215⌋. For 𝑇 ∈ [0, 16), define
Right(𝑇) = 𝜏3𝑇 − 𝜏2 ∈ ℤ𝑞. For 𝑎 ∈ ℤ, define Sign(𝑎) = 1 if 𝑎 < 0, 0 otherwise.

The underlying CPA-secure PKE scheme11 works as follows:

– Gen(pp): Generate 𝐴 ← ℛ𝑞 and sk ← 𝒮. Compute 𝐵 ∶= Round(𝐴 ⋅ sk). Output pk ∶= (𝐴, 𝐵) and sk.
– Enc(pk, 𝜇 ∈ {0, 1}256): Choose 𝑡 ← 𝒮 and output

(𝑈 , 𝑉) ∶= (Round(𝑡 ⋅ 𝐴), Top(trunc(𝑡 ⋅ 𝐵, 256) + 𝜇(𝑞 − 1)/2)).

– Dec(sk, (𝑈 , 𝑉)): Compute 𝑟 ∶= Right(𝑉) − trunc(sk ⋅ 𝑈 , 256) + (4𝑤 + 1) ⋅ 1⃗256 ∈ ℤ256 and outputs 𝑚 ∶=
Sign(𝑟mod± 𝑞).

4.1 Key-Recovery Attack

We mainly follow the KR-PCAs against Kyber and Saber in Baetu et al. [BDH+19] and Huguenin-Dumittan and
Vaudenay [HV20], but we need some tweaks. Roughly speaking, to determine the 𝑖-th coefficient of sk, their
attack queries (𝑎, 𝑏 ⋅ 𝑥 𝑖) with constant 𝑎 and 𝑏 and a candidate plaintext, because in the case of Kyber and Saber,
the dimension of 𝑉 is the same as that of the base ring. However, ntrulpr truncates 𝑡𝐵 to reduce redundancy,
so we need to modify the query ciphertext. Note that we can shift the effect of sk𝑖 into constant coefficient by
multiplying 𝑥𝑝−𝑖. That is, for 𝑖 = 1, … , 𝑝 − 1 and sk = sk0 + sk1𝑥 + … sk𝑝−1𝑥𝑝−1 ∈ ℛ, we have

𝑥𝑝−𝑖 ⋅ sk = sk𝑖 + (sk𝑖 + sk𝑖+1)𝑥 + (sk𝑖+1 + sk𝑖+2)𝑥2 + ⋯ + (sk𝑝−2 + sk𝑝−1)𝑥𝑝−𝑖−1 + (sk𝑝−1 + sk0)𝑥𝑝−𝑖

+ sk1𝑥𝑝−𝑖+1 + sk2𝑥𝑝−𝑖+2 + ⋯ + sk𝑖−1𝑥𝑝−1.

Using this relation, we show the following two lemmas:

Lemma 4.1 (For general 𝑖 ∈ [1, 𝑝)). Let 𝑐 = 𝜏2 − (4𝑤 + 1), 𝑏 = ⌊(𝑐 − 1)/6⌋ ⋅ 3 and 𝑡𝛽 = ⌊(𝛽𝑏 + 𝑐 − 1)/𝜏3⌋ for
𝛽 ∈ {0, 1}. Let us consider our test ciphertext ct𝛽 = (𝑏 ⋅ 𝑥𝑝−𝑖, (𝑡𝛽, 0, … , 0)) for 𝛽 ∈ {0, 1} and candidate plaintext 1⃗256.
Then, we have the relations between the 𝑖-th coordinate of decryption key and the behavior of PCO as in Table 4.

Proof. The decryption algorithm computes 𝑟 = Right((𝑡𝛽, 0, … , 0)) − trunc(sk ⋅ 𝑏 ⋅ 𝑥𝑝−𝑖, 256) + (4𝑤 + 1) ⋅ 1⃗256.
Expanding this, we have

⎧

⎨
⎩

𝑟0 = 𝜏3𝑡𝛽 − 𝑏 ⋅ sk𝑖 − 𝑐,
𝑟𝑗 = −𝑏 ⋅ (sk𝑖+𝑗−1 mod 𝑝 + sk𝑖+𝑗 mod 𝑝) − 𝑐 (𝑗 = 1, 2, … ,min{256, 𝑝 − 𝑖})
𝑟𝑗 = −𝑏 ⋅ sk𝑗−(𝑝−𝑖) mod 𝑝 − 𝑐 (𝑗 = 𝑝 − 𝑖 + 1, … ,min{256, 𝑝 − 1}).

Recall that sk𝑖 ∈ {−1, 0, +1} for all 𝑖 since sk is in 𝒮. Thus, we have 𝑟𝑗 ∈ {−2𝑏 − 𝑐, −𝑏 − 𝑐, −𝑐, 𝑏 − 𝑐, 2𝑏 − 𝑐} for
𝑗 = 1, … , 256. Since we set 𝑏 = ⌊(𝑐 − 1)/6⌋ ⋅ 3 ≤ (𝑐 − 1)/2, we have −2𝑏 − 𝑐 > −2𝑐 and 2𝑏 − 𝑐 < 0. Fortunately, we
have −2𝑐 = −2𝜏2 − 8𝑤 − 2 ≥ −(𝑞 − 1)/2 for all parameter sets. Thus, 𝑟𝑗’s are decoded into 1 for 𝑗 = 1, … , 256.

Let us consider 𝑟0. We have

𝑟0 = 𝜏3𝑡𝛽 − 𝑏 ⋅ sk𝑖 − 𝑐 > 0 ⟺ (𝜏3𝑡𝛽 − 𝑐)/𝑏 > sk𝑖

By our setting, if 𝑡𝛽 = 𝑡0 (and 𝑡1), then (𝜏3𝑡𝛽 − 𝑐)/𝑏 is slightly smaller than 0 (and 1) for all parameter sets,
respectively. In addition, we have 𝜏3𝑡1 + 𝑏 − 𝑐 ≤ (𝑞 − 1)/2 for all parameter sets. Therefore, 𝑟0 for 𝑡0 is decoded
into 0 if and only if sk𝑖 < 0 and 𝑟0 for 𝑡1 is decoded into 0 if and only if sk𝑖 < 1. This completes the proof. ⊓⊔
10 When 𝑞 = 6𝑞′ + 1, Round([−(𝑞 − 1)/2, (𝑞 − 1)/2]) ∈ [−(𝑞 − 1)/2, (𝑞 − 1)/2].
11 ‘NTRU LPRime Core’ in the specification.

9

By a similar argument, we have the following lemma on sk0.

Lemma 4.2 (𝑖 = 0). Let 𝑐 = 𝜏2 − (4𝑤 + 1), 𝑏 = ⌈(𝑐 − 1)/6⌉ ⋅ 3 and 𝑡𝛽 = ⌊(𝛽𝑏 + 𝑐 − 1)/𝜏3⌋ for 𝛽 ∈ {0, 1}. Let us
consider our test ciphertext ct𝛽 = (𝑏, (𝑡𝛽, 0, … , 0)) and candidate plaintext 1⃗256. Then, we have the relations between
the constant term of decryption key and the behavior of PCO as in Table 4.

Using the above lemmas, we can determine sk𝑖 for 𝑖 = 0, … , 𝑝 − 1 by testing 2𝑝 queries with the PCO.

4.2 Trade-Off

We observe that an adversary can obtain 𝐾 ′ = H(𝑚′, ct) by skipping the equality test instead of the equality
of 𝐾 ′ and 𝐾guess or the equality of 𝑚′ and 𝑚guess. Therefore, the adversary can check if 𝑚′ = 𝑚guess or not by
computing 𝐾guess = H(𝑚guess, ct) by itself. This enables the adversary to determine ℓ coefficients of the secret
key at once by sacrificing the computational efficiency.

For simplicity, we let ℓ = 2𝑘 < 256.

Determine sk𝑦ℓ, … , sk𝑦ℓ+ℓ−1 for 𝑦 = 0, … , 256/ℓ−1: Let us determine ℓ coefficients sk𝑦ℓ, … , sk𝑦ℓ+ℓ−1 of sk at once,
where 𝑦 = 0, … , 256/ℓ − 1. Suppose that we query two ciphertexts

ct𝛽 = (𝑈 , 𝑉𝛽) = (𝑏, (
𝑦ℓ

⏞⏞⏞⏞⏞⏞⏞0, … , 0,
ℓ

⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑡𝛽, … , 𝑡𝛽,
256−(𝑦+1)ℓ
⏞⏞⏞⏞⏞⏞⏞0, … , 0))

for 𝛽 ∈ {0, 1}. The decryption algorithm computes 𝑟 = Right(𝑉𝛽) − trunc(sk ⋅ 𝑏, 256) + (4𝑤 + 1) ⋅ 1⃗256. Expanding
this, we have

𝑟𝑗 = {
𝜏3𝑡𝛽 − 𝑏 ⋅ sk𝑗 − 𝑐 (𝑗 = 𝑦ℓ, … , 𝑦ℓ + ℓ − 1)
−𝑏 ⋅ sk𝑗 − 𝑐 (𝑗 = 0, … , 𝑦ℓ − 1, (𝑦 + 1)ℓ, … , 256).

By using the argument in the proof of Lemma 4.1, 𝑟𝑗’s are decoded into 1 for 𝑗 = 0, … , 𝑦ℓ − 1, (𝑦 + 1)ℓ, … , 256. We
also have, for 𝑗 = 𝑦ℓ, … , 𝑦ℓ + ℓ − 1, 𝑟𝑗 for 𝑡1 is decoded into 0 if and only if sk𝑖 < 0 and 𝑟𝑗 for 𝑡2 is decoded into 0 if
and only if sk𝑖 < 1.

Seeing𝐾 = H(𝑚′, ct𝛽)where𝑚′ = Dec(sk, ct𝛽), we compute𝐾guess = H(𝑚guess, ct𝛽) for𝑚guess = 1⃗𝑦ℓ‖𝑚″‖1⃗256−(𝑦+1)ℓ
for all 𝑚″ ∈ {0, 1}ℓ and determine sk𝑗 for 𝑗 = 𝑦ℓ, … , 𝑦ℓ + ℓ − 1.

Determine sk𝑦ℓ, … , sk𝑦ℓ+ℓ−1 for 𝑦 = 256/ℓ, … , ⌊𝑝/ℓ⌋: Suppose thatwe have determined 𝑦ℓ coefficients sk0, … , sk𝑦ℓ−1
for some 𝑦 ∈ {256/ℓ, … , ⌊𝑝/ℓ⌋}. Let us determine ℓ coefficients sk𝑦ℓ, … , sk𝑦ℓ+ℓ−1 at once: Let 𝑡𝛽 = ⌊(𝛽𝑏 + 𝑐 − 1)/𝜏3⌋
for 𝛽 ∈ {−1, 0, 1, 2}. Suppose that we query four ciphertexts

ct𝛽 = (𝑈 , 𝑉𝛽) = (𝑏 ⋅ 𝑥𝑝−𝑦ℓ−1, (0,
ℓ

⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑡𝛽, … , 𝑡𝛽,
256−ℓ−1
⏞⏞⏞⏞⏞⏞⏞0, … , 0))

for 𝛽 ∈ {−1, 0, 1, 2}. The decryption algorithm computes 𝑟 = Right(𝑉𝛽)− trunc(sk ⋅ 𝑏𝑥𝑝−𝑦ℓ−1, 256)+ (4𝑤 +1) ⋅ 1⃗256.
Expanding this, we have

𝑟𝑗 =
⎧
⎪

⎨
⎪
⎩

−𝑏 ⋅ sk𝑦ℓ−1 − 𝑐 (𝑗 = 0)
𝜏3𝑡𝛽 − 𝑏 ⋅ (sk𝑦ℓ+𝑗−2 mod 𝑝 + sk𝑦ℓ+𝑗−1 mod 𝑝) − 𝑐 (𝑗 = 1, 2, … , ℓ)
−𝑏 ⋅ (sk𝑦ℓ+𝑗−2 mod 𝑝 + sk𝑦ℓ+𝑗−1 mod 𝑝) − 𝑐 (𝑗 = ℓ + 1, … ,min{256, 𝑝 − 𝑦ℓ})
−𝑏 ⋅ sk𝑗−(𝑝−𝑖) mod 𝑝 − 𝑐 (𝑗 = min{256, 𝑝 − 𝑦ℓ + 1}, … , 256).

By using the argument in the proof of Lemma 4.1, 𝑟𝑗’s are decoded into 1 for 𝑗 = 0 and 𝑗 = ℓ + 1, … , 256.
Let us consider 𝑟𝑗 for 𝑗 = 1, … , ℓ. We have

𝑟𝑗 = 𝜏3𝑡𝛽 − 𝑏 ⋅ (sk𝑗 + sk𝑗+1) − 𝑐 > 0 ⟺ (𝜏3𝑡𝛽 − 𝑐)/𝑏 > sk𝑗 + sk𝑗+1.

By our setting, (𝜏3𝑡𝛽 − 𝑐)/𝑏 is slightly smaller than 𝛽 for all parameter sets, respectively. In addition, we have
−(𝑞 − 1)/2 ≤ 𝜏3𝑡𝛽 − 2𝑏 − 𝑐 and 𝜏3𝑡𝛽 + 2𝑏 − 𝑐 ≤ (𝑞 − 1)/2 for all parameter sets. Therefore, 𝑟𝑗 for 𝑡𝛽 is decoded into
0 if and only if sk𝑖 < 𝛽.

Seeing𝐾 ′ = H(𝑚′, ct𝛽)where𝑚′ = Dec(sk, ct𝛽), we compute𝐾guess = H(𝑚guess, ct𝛽) for𝑚guess = 1‖𝑚″‖1⃗256−ℓ−1
for all 𝑚″ ∈ {0, 1}ℓ and determine sk𝑦ℓ+𝑗−2 + sk𝑦ℓ+𝑗−1 ∈ {−2, −1, 0, 1, 2} for 𝑗 = 1, … , ℓ. Since we know sk𝑦ℓ−1, we
can determine sk𝑦ℓ, … , sk𝑦ℓ+ℓ−1 sequentially.

10

5 Skipping the Equality Test by Skipping a Single Instruction

In this section, we describe the fault-injection attack on the equality checking of each KEM implementation.
First, we examine the implementation of pqm4 [KRSS] for each scheme and discuss the possibility of skipping
the equivalence test. To identify the instructions to be skipped, we cross-compiled the C code in pqm4 with GCC
8.3.1 running on Debian bullseye. The compilation options were basically according to pqm4, with “-O3” as an
optimization option.

We do not mention the attacks on Classic McEliece and HQC in this section because pqm4 does not include
their ARM Cortex M4-optimized code. Hereafter, we describe the possibility of skip attacks on NTRU Prime,
FrodoKEM, Kyber, Saber, NTRU, BIKE, and SIKE.

If the reader is unfamiliar to Arm Cortex M4, please see the manual 12.

5.1 NTRU Prime – CCA Bug

The functions in the C code related to the FO-like transformation are crypto_kem_dec, Decap, and
Ciphertexts_diff_mask.13 Figure 2 shows the source code of NTRU Prime’s comparison in pqm4. Note that
we omit the crypto_kem_dec function as it just calls Decap.

Let us consider how Ciphertexts_diff_mask computes the return value. It initializes the uint16 variable
differentbits as 0. After some computations, it outputs ((-1)-((differentbits-1)»31)) in line 17. The
value is initialized as 0 and unchanged before the return value is computed; these computations only involve
differentbits2. Thus, we eventually obtain 0 as the result of (-1)-((0-1)»31) and ciphertexts_diff_mask
always outputs 0.

Decap first decrypts 𝑟 ∶= Dec(sk, 𝑐) in line 13 and encodes it into r_enc and re-encrypts it into cnew in line 14.
In line 15, mask is always 0, since Ciphertexts_diff_mask always returns 0 aswe explained. Thus, r_enc, which
is the result of faulty decryption, is unchanged, and Decap always sets k as the result of H(1,r_enc,c). This
means that there is no re-encryption check and the implementation opens the attack surface of chosen-ciphertext
attacks.

5.2 FrodoKEM – Timing Attack

The decapsulation of FrodoKEM is performed in the crypto_kem_dec function.14 Figure 3 shows the source
code of the equality test in the function. From the source code, this function uses the memcmp function with &&
to compare the ciphertext and the re-encryption result. This indicates that the current implementation is still
vulnerable to the timing attack by Guo et al. [GJN20].

5.3 Kyber, Saber, and NTRU – cmov

In this subsection, we describe the skip attacks on Kyber, Saber, and NTRU among the finalists. The basic idea of
the skip attacks on these implementations is identical, and thus we describe the case of Saber as an example to
explain the skip attack procedure. Figure 4 shows the crypto_kem_dec function that performs the decapsulation
of FO transformation15.

The crypto_kem_dec function performs re-encryption using the indcpa_kem_enc_cmp function at line 13
and stores the comparison results of the ciphertext and the re-encryption result into a variable fail. If these
ciphertexts are not the same, fail becomes 1 and, if they are the same, fail becomes 0. At line 15, the cmov
substitutes a random value for kr when fail is 1. Note here that the hash value calculated from the decrypted
result is stored in the variable kr before cmov is called, and this means that we can perform a key-recovery attack
by skipping the call of cmov even when fail is 1.

Figure 5 shows the assembly code corresponding to the call of cmov. This program first calls the sha3_256
function at line 1, prepares the arguments of cmov at line 4–7, calls cmov at line 8, and finally prepares the
arguments and call the sha3_256 function at line 10–14. From this code, we notice that Saber can be attacked
by skipping bl cmov at line 8 using fault injection. In addition to Saber, NTRU and Kyber also use cmov in the
same manner, and therefore, this attack can be applied to all of them.
12 https://developer.arm.com/documentation/100166/0001. See https://developer.arm.com/documentation/100166/0001/

Programmers-Model/Instruction-set-summary/Table-of-processor-instructions?lang=en for instruction set.
13 The source code of these functions is https://github.com/mupq/pqm4/blob/master/crypto_kem/sntrup761/m4f/kem.c.
14 https://github.com/mupq/pqm4/blob/master/crypto_kem/frodokem640shake/m4/kem.c
15 https://github.com/mupq/pqm4/blob/master/crypto_kem/saber/m4f/kem.c

11

https://developer.arm.com/documentation/100166/0001
https://developer.arm.com/documentation/100166/0001/Programmers-Model/Instruction-set-summary/Table-of-processor-instructions?lang=en
https://developer.arm.com/documentation/100166/0001/Programmers-Model/Instruction-set-summary/Table-of-processor-instructions?lang=en
https://github.com/mupq/pqm4/blob/master/crypto_kem/sntrup761/m4f/kem.c
https://github.com/mupq/pqm4/blob/master/crypto_kem/frodokem640shake/m4/kem.c
https://github.com/mupq/pqm4/blob/master/crypto_kem/saber/m4f/kem.c

1 static int Ciphertexts_diff_mask(const unsigned char *c,
2 const unsigned char *c2)
3 {
4 uint16 differentbits = 0;
5 int len = Ciphertexts_bytes+Confirm_bytes;
6
7 int *cc = (int *)(void *)c;
8 int *cc2 = (int *)(void *)c2;
9 int differentbits2 = 0;

10 for (len -=4 ;len >=0; len -=4) {
11 differentbits2 = __USADA8 ((*cc++) ,(*cc2++), differentbits2);
12 }
13 c = (unsigned char *)(void *) cc;
14 c2 = (unsigned char *)(void *) cc2;
15 for (len &= 3; len > 0; len --)
16 differentbits2 =__USADA8 ((*c++),(*c2++), differentbits2);
17 return ((-1)-((differentbits -1) > >31));
18 }

1 static void Decap(unsigned char *k,const unsigned char *c,
2 const unsigned char *sk)
3 {
4 const unsigned char *pk = sk + SecretKeys_bytes;
5 const unsigned char *rho = pk + PublicKeys_bytes;
6 const unsigned char *cache = rho + Inputs_bytes;
7 Inputs r;
8 unsigned char r_enc[Inputs_bytes];
9 unsigned char cnew[Ciphertexts_bytes+Confirm_bytes];

10 int mask;
11 int i;
12
13 ZDecrypt(r,c,sk);
14 Hide(cnew ,r_enc ,r,pk,cache);
15 mask = Ciphertexts_diff_mask(c,cnew);
16 for (i = 0;i < Inputs_bytes ;++i) r_enc[i] ^= mask&(r_enc[i]^rho[i]);
17 HashSession(k,1+mask ,r_enc ,c);
18 }

Fig. 2: NTRU Prime’s comparison in pqm4.

// Is (Bp == BBp & C == CC) = true
if (memcmp(Bp, BBp , 2 * PARAMS_N * PARAMS_NBAR) == 0 &&

memcmp(C, CC, 2 * PARAMS_NBAR * PARAMS_NBAR) == 0) {
// Load k ' to do ss = F(ct || k ')
memcpy(Fin_k , kprime , CRYPTO_BYTES);

} else {
// Load s to do ss = F(ct || s)
memcpy(Fin_k , sk_s , CRYPTO_BYTES);

}
shake(ss, CRYPTO_BYTES , Fin , CRYPTO_CIPHERTEXTBYTES + CRYPTO_BYTES);

Fig. 3: FrodoKEM’s comparison in pqm4

12

1 int crypto_kem_dec(uint8_t *k, const uint8_t *c, const uint8_t *sk)
2 {
3 uint8_t fail;
4 uint8_t buf [64];
5 uint8_t kr[64]; // Will contain key , coins
6 const uint8_t *pk = sk + SABER_INDCPA_SECRETKEYBYTES;
7 const uint8_t *hpk = sk + SABER_SECRETKEYBYTES - 64;
8 // Save hash by storing h(pk) in sk
9

10 indcpa_kem_dec(sk, c, buf);
11 memcpy(buf + 32, hpk , 32);
12 sha3_512(kr, buf , 64);
13 fail = indcpa_kem_enc_cmp(buf , kr + 32, pk , c);
14 sha3_256(kr + 32, c, SABER_BYTES_CCA_DEC);
15 cmov(kr, sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES ,
16 SABER_KEYBYTES , fail);
17 sha3_256(k, kr, 64);
18 return (0);
19 }
20

Fig. 4: Saber’s comparison in pqm4

1 bl sha3_256
2 .LVL26:
3 .loc 1 79 3 is_stmt 1 view .LVU62
4 uxtb r3, r7
5 add r1, r4, #1536
6 add r0, sp, #64
7 movs r2, #32
8 bl cmov
9 .LVL27:

10 .loc 1 82 3 view .LVU63
11 movs r2, #64
12 mov r0, r6
13 add r1, sp, r2
14 bl sha3_256

Fig. 5: Assembly code of Saber’s comparison in pqm4

13

5.4 BIKE – For loop

We describe the skip attack on BIKE in this subsection. Figure 6 shows the C code of BIKE’s comparison in the
decapsulation16. We also show secure_cmp function and secure_l32_mask function in Figure 7. Line 4–5 in
Figure 6 compares the hash value of the original message and that of the decrypted message from the ciphertext.
Then, if they are equal, the for block at line 9–12 stores the decrypted message into m_prime.raw[i]. Therefore,
the goal of the fault-injection attack is to store the decrypted message even when these hash values differ. For
this purpose, we need to force the variable mask to be 0.

Figure 8 shows the assembly code corresponding to the line 5–7 in the C code to explain the position of a
fault injection. Line 1–30 and line 31–44 in the assembly code correspond to line 5 and line 7 in the C code,
respectively. The operation we need to skip for a key-recovery attack is “ldr r2, [sp, #20]” at line 33 in this
assembly code for the following reason.

Before line 33 in the assembly code, the r2 register is used in “cmp r2, #0” at line 26. This corresponds
to “return (0 == res);” at line 11 in secure_cmp function (Figure 7). Therefore, at this time, the r2 register
contains the value of the res variable. The value of the r2 register does not become 0 from the attack assumption
because the value of the res variable is not 0 when the two arguments of secure_cmp are not equal. Thus, the
r2 register must be a non-zero value if line 33 in the assembly code is skipped. After line 33, the value of the
r2 register is used at line 41. This line corresponds to line 8 in the secure_l32_mask function (Figure 7). The
secure_l32_mask function compares the two arguments v1 and v2 and returns 0 when v1 < v2 holds. mask
becomes 0 when v2 is not 0 because v1 is 0 as shown in Figure 6. Meanwhile, we note that the variable v2 does
not become 0 when we skip line 33 in the assembly code because the r2 register corresponds to the v2 variable.
From the above, we can fix mask to 0 by the fault injection, and thus the key-recovery attack is possible.

1 // Check if H(m ') is equal to (e0 ' , e1 ')
2 // (in constant -time)
3 GUARD(function_h (&e_tmp , &m_prime));
4 success_cond = secure_cmp(PE0_RAW (& e_prime), PE0_RAW (& e_tmp), R_BYTES);
5 success_cond &= secure_cmp(PE1_RAW (& e_prime), PE1_RAW (& e_tmp), R_BYTES);
6
7 // Compute either K(m ' , C) or K(sigma , C) based on the success condition
8 mask = secure_l32_mask (0, success_cond);
9 for(size_t i = 0; i < M_BYTES; i++) {

10 m_prime.raw[i] &= u8_barrier (~mask);
11 m_prime.raw[i] |= (u8_barrier(mask) & l_sk.sigma.raw[i]);
12 }

Fig. 6: BIKE’s comparison in pqm4.

5.5 SIKE – Simple If

This subsection describe the skip attack on SIKE. Figure 9 and Figure 10 shows the C code and its assembly of
the comparison process in the FO transformation17.

The target of fault injection in C code is the if statement at line 3–4. The assembly code in Figure 10 cor-
responds to the if statement. The process of condition in the if statement at line 3 in the C code corresponds
to line 1-4 in the assembly code. In the assembly code, “bl memcmp” compares the variables c0_ and ct. If they
differ, “cbnz r0, .L500” performs a jump to line 28. Note that, even if we jump to line 28, the procedure comes
back to line 5 because of “b .L495” at line 40. In other words, line 28–40 in the assembly code correspond to the
process in the if block at line 4 in the C code. Thus, we can perform the skip attack on SIKE by injecting a fault
into “cbnz r0, .L500” at line 3.

16 https://github.com/mupq/pqm4/blob/master/crypto_kem/bikel1/m4f/kem.c
17 https://github.com/mupq/pqm4/blob/master/crypto_kem/sikep434/m4/sike.inc

14

https://github.com/mupq/pqm4/blob/master/crypto_kem/bikel1/m4f/kem.c
https://github.com/mupq/pqm4/blob/master/crypto_kem/sikep434/m4/sike.inc

1 _INLINE_ uint32_t secure_cmp(IN const uint8_t *a,
2 IN const uint8_t *b,
3 IN const uint32_t size)
4 {
5 volatile uint8_t res = 0;
6
7 for(uint32_t i = 0; i < size; ++i) {
8 res |= (a[i] ^ b[i]);
9 }

10
11 return (0 == res);
12 }

1 // Return 0 if v1 < v2 , (-1) otherwise
2 _INLINE_ uint32_t secure_l32_mask(IN const uint32_t v1,
3 IN const uint32_t v2)
4 {
5 // If v1 >= v2 then the subtraction result is 0^32||(v1 -v2).
6 // else it is 1^32||(v2-v1+1). Subsequently , negating the upper
7 // 32 bits gives 0 if v1 < v2 and otherwise (-1).
8 return ~((uint32_t)(((uint64_t)v1 - (uint64_t)v2) >> 32));
9 }

Fig. 7: secure_cmp and secure_l32_mask function of BIKE in pqm4.

15

1 .L26:
2 .loc 1 69 5 is_stmt 1 view .LVU627
3 ldrb r2, [r5, #1]!
4 .LVL169:
5 .loc 1 69 9 view .LVU629
6 ldrb r4, [r1, #1]!
7 ldrb r3, [sp, #18]
8 eors r2, r2, r4
9 orrs r3, r3, r2

10 .loc 1 68 3 view .LVU630
11 cmp r0, r5
12 .loc 1 69 9 view .LVU631
13 strb r3, [sp, #18]
14 .LVL170:
15 .loc 1 68 3 view .LVU632
16 bne .L26
17 .LBE629:
18 .loc 1 72 3 is_stmt 1 view .LVU633
19 .LVL171:
20 .loc 1 72 13 is_stmt 0 view .LVU634
21 ldrb r2, [sp, #18]
22 .LBE628:
23 .LBE627:
24 .loc 2 278 16 view .LVU635
25 ldr r3, [sp, #20]
26 cmp r2, #0
27 ite ne
28 movne r3, #0
29 andeq r3, r3, #1
30 str r3, [sp, #20]
31 .loc 2 282 3 is_stmt 1 view .LVU636
32 .loc 2 282 10 is_stmt 0 view .LVU637
33 ldr r2, [sp, #20]
34 .LVL172:
35 .LBB630:
36 .LBI630:
37 .loc 1 113 19 is_stmt 1 view .LVU638
38 .LBB631:
39 .loc 1 140 3 view .LVU639
40 .loc 1 140 37 is_stmt 0 view .LVU640
41 rsbs r2, r2, #0
42 sbc r3, r3, r3
43 .loc 1 140 10 view .LVU641
44 mvns r5, r3

Fig. 8: Assembly code of BIKE’s comparison in pqm4

1 // Generate shared secret ss <- H(m||ct) or output ss <- H(s||ct)
2 EphemeralKeyGeneration_A(ephemeralsk_ , c0_);
3 if (memcmp(c0_ , ct, CRYPTO_PUBLICKEYBYTES) != 0) {
4 memcpy(temp , sk, MSG_BYTES);
5 }
6 memcpy (&temp[MSG_BYTES], ct, CRYPTO_CIPHERTEXTBYTES);
7 shake256(ss, CRYPTO_BYTES , temp , CRYPTO_CIPHERTEXTBYTES+MSG_BYTES);

Fig. 9: SIKE’s comparison in pqm4

16

1 bl memcmp
2 .loc 5 88 8 view .LVU4945
3 cbnz r0, .L500
4 .LVL1930:
5 .L495:
6 .loc 5 91 5 is_stmt 1 view .LVU4946
7 mov r1, r4
8 add r0, sp, #508
9 mov r2, #346

10 bl memcpy
11 .LVL1931:
12 .loc 5 92 5 view .LVU4947
13 mov r0, r8
14 add r2, sp, #492
15 mov r3, #362
16 movs r1, #16
17 bl shake256
18 .LVL1932:
19 .loc 5 94 5 view .LVU4948
20 .loc 5 95 1 is_stmt 0 view .LVU4949
21 movs r0, #0
22 add sp, sp, #856
23 .LCFI116:
24 .cfi_remember_state
25 .cfi_def_cfa_offset 24
26 pop {r4, r5, r6, r7, r8, pc}
27 .LVL1933:
28 .L500:
29 .LCFI117:
30 .cfi_restore_state
31 .loc 5 89 9 is_stmt 1 view .LVU4950
32 ldr r0, [r5]
33 ldr r1, [r5, #4]
34 ldr r2, [r5, #8]
35 ldr r3, [r5, #12]
36 add r5, sp, #492
37 .LVL1934:
38 .loc 5 89 9 is_stmt 0 view .LVU4951
39 stmia r5!, {r0, r1, r2, r3}
40 b .L495

Fig. 10: Assembly code of SIKE’s comparison in pqm4

17

Fig. 11: Experimental setup overview.

Table 5: Numbers of failures and successes when we conducted 100 skip attacks on each scheme

Name # failures # Successes Expected # required queries Expected time [s]

Kyber – Kyber512 60 52 5908 626
NTRU – ntruhps2048509 74 46 2235 384
Saber – LightSaber 33 33 15515 1, 567

BIKE – Bikel1 49 34 - -
SIKE – sikep434 30 15 1787 19, 478

6 Experimental Attacks

In this section, we conduct the experimental skip attacks on the pqm4 implementation of the above mentioned
KEM schemes. The target schemes in this section are Kyber, NTRU, Saber, BIKE, and SIKE, which were shown
to be attackable by a single fault injection in the previous section. In this experiment, we used the parameters of
the security level 1 for all schemes.

6.1 Setup

Figure 11 shows the experimental environment. The target chip under attack is an STM32F415 microcontroller
with an ARM Cortex M4 core, which is a de-facto standard platform to evaluate software implementation of
schemes running in NIST’s PQC process. The target device is mounted on a ChipWhisperer cw308 UFO base-
board, which enables us to perform fault-injection attacks using a glitchy clock. The ChipWhisperer cw1200
capture box is used to generate the base clock, and the clock frequency was set to 24MHz. The glitch parameters
for instruction skipping were searched by sweeping the parameters to find the one that successfully skips the in-
struction. We use the implementation in pqm4 for each KEM scheme, and “O3” was specified as an optimization
option during compilation.

6.2 Results

Table 5 reports the experimental results of the proposed skip attacks. In Table 5, we show the number of times
when a fault occurred on the device and the number of successful instruction skips when we performed 100
fault injections for each scheme. Also, the table shows the number of required queries to recover the secret key

18

from each scheme using fault injection.1819 These required query numbers are calculated by multiplying the
minimum required number of queries for a key-recovery attack and the inverse of the success rate of a skip
attack. We only omitted the number of required queries for the case of BIKE in this table because it is difficult
to fully recover the secret key. We also show the expected time to recover the secret key for each scheme. From
the table, we confirm that the probability of a successful attack was about 15-50%, and there is a difference in
the probability of successful attacks among Saber, Kyber, and NTRU, although the fault-injection capability is
almost the same. This would be because of the difference in instructions before and after the call of the cmov
function that affects the state of pipeline registers in the microcontroller.

In addition, in this experiment, the injected faults did not always cause a single instruction skip as expected
and sometimes crashed the device, which led to a non-negligible cost for an oracle access. A similar phenomenon
was also observed in [PP21] in fault-injection attacks on lattice KEMs using ChipWhisperer, and more sophisti-
cated equipment for fault injection should achieve higher attack stability.

7 Countermeasure

Default fail: The one of major countermeasures is the ‘default fail’ technique, which initiates a variable with the
fail result and if a condition is satisfied then the variable is overwritten by the sensitive data [EHiH+14].

Recall Saber’s decapsulation in Figure 4: We want to compute 𝐾 = H(̄𝐾 ′,H(ct)) or H(𝑠,H(ct)) depending on
the re-encryption test result, where ̄𝐾 ′ is computed from the decrypted result 𝑚′ and pk and 𝑠 is a secret seed
(see Figure 14 in Appendix B.1). If we skip the function call of cmov, then ̄𝐾 ′ in kr is unchanged and we obtain
𝐾 = H(̄𝐾 ′,H(ct)) as the faulty decapsulation result. According to the ’default fail’ technique, we put a secret
seed 𝑠 as the default value of kr and apply cmov to overwrite 𝑠 by ̄𝐾 ′ depending on the value flag. (In addition,
we will need to clear the original ̄𝐾 ′.) If it was, then skipping cmov results in 𝐾 = H(𝑠,H(ct)) irrelevant to the
decrypted result 𝑚′.

Moreover, a concrete assembly-level implementation of conditional branch resistant to single instruction
skipping by default fail was presented in [EHiH+14]. Their countermeasure enables that sensitive instruction(s)
should be performed only if a condition is surely tested and satisfied. In other words, if the condition test is
skipped by a single-fault attack, the implementation with their countermeasure always outputs the rejection.

Instruction duplication: The other major countermeasures is the ‘assembly-level instruction duplication’ tech-
nique: If every instructions are duplicated carefully, then a single-fault instruction skipping attack is ineffective.
See, e.g., [BBK+10] for the effectiveness and cost.

Random delay: Random delays are yet another major countermeasure of fault-injection analysis. If a random
delay is inserted, then it is hard to determine the timing for injecting a fault. See, e.g., [CK09] for such technique.

8 Conclusion

From the viewpoint of fault-injection attacks, we have investigate all NIST PQC Round 3 KEM candidates, which
use variants of the FO transformation. We survey effective key-recovery attacks if we can skip the equality test.

We found the existing key-recovery attacks against Kyber, NTRU, Saber, FrodoKEM, HQC, and SIKE (Table 2).
We have proposed a new key-recovery attack against ntrulpr of NTRU Prime. We also pointed out trade-offs
between the number of queries and computational costs when the target is Kyber, Saber, or ntrulpr. We also
reported attacks against sntrupr of NTRU Prime and BIKE that lead to leakage of information of secret keys.

The open-source pqm4 library contains Kyber, NTRU, Saber, BIKE, FrodoKEM, NTRU Prime, and SIKE. We
show that giving a single instruction-skipping fault in the decapsulation processes leads to skipping the equal-
ity test virtually for Kyber, NTRU, Saber, BIKE, and SIKE. We also report the implementation of NTRU Prime
allows chosen-ciphertext attacks freely and the timing side-channel of FrodoKEM reported in Guo et al. [GJN20]
remains.

Finally, we have reported the experimental attacks against Kyber, NTRU, Saber, BIKE, and SIKE on pqm4.
We also discuss possible countermeasures.

18 In practice, we may need more queries than the values shown in the table, because the value of the secret key may
occasionally carry an error due to an inserted fault. For simplicity, we ignore such situations here.

19 On Saber and Kyber, we have trade-offs between the number of expected queries and efficiency. In this table, we use ℓ = 1.

19

Table 6: Summary of our findings on NIST PQC Round 3 KEM Candidates (finalists and alternates) and their
implementations in pqm4: PCA implies plaintext-checking attack.

Name Effect of PCA Attack Surface in pqm4 Effect of FIA in pqm4

Classic McEliece [ABC+20] Unknown N/A N/A
Kyber [SAB+20] Key recovery Skip Key recovery
NTRU – ntruhps [CDH+20] Key recovery Skip Key recovery
NTRU – ntruhrss [CDH+20] Key recovery Skip Key recovery
Saber [DKR+20] Key recovery Skip Key recovery

BIKE [ABB+20] Key leakage (New) Skip Key leakage
FrodoKEM [NAB+20] Key recovery CCA bug (Timing) Key recovery
HQC [AAB+20] Key recovery N/A N/A
NTRU Prime – sntrupr [BBC+20] Key recovery CCA bug Key recovery
NTRU Prime – ntrulpr [BBC+20] Key recovery (New) CCA bug Key recovery
SIKE [JAC+20] Key recovery Skip Key recovery

Acknowledgment

The authors would like to thank to anonymous reviewers of Asiacrypt 2021 for their helpful and insightful
comments.

References

AAA+20. Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu, Carl
Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status report on
the second round of the NIST post-quantum cryptography standardization process, July 2020. https://csrc.nist.
gov/publications/detail/nistir/8309/final. 3

AAB+20. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville,
Philippe Gaborit, Edoardo Persichetti, Gilles Zémor, and Jurjen Bos. HQC. Technical report, National Insti-
tute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions. 4, 5, 20, 38

ABB+20. Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Phillipe
Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nico-
las Sendrier, Jean-Pierre Tillich, Gilles Zémor, Valentin Vasseur, and Santosh Ghosh. BIKE. Technical
report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions. 4, 5, 20, 36

ABC+20. Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange, Varun Maram, Ingo
vonMaurich, Rafael Misoczki, Ruben Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters,
Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. Classic
McEliece. Technical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions. 4, 5, 20, 30

ABGV08. Ali C. Atıcı, Lejla Batina, Benedikt Gierlichs, and Ingrid Verbauwhede. Power analysis on NTRU implementa-
tions for RFIDs: First results. The 4th Workshop on RFID Security – RFIDSec 2008, July 9th–11th, Budapest,
2008. https://www.esat.kuleuven.be/cosic/publications/article-1134.pdf. 34

ABM+03. Adrian Antipa, Daniel R. L. Brown, Alfred Menezes, René Struik, and Scott A. Vanstone. Validation of elliptic
curve public keys. In Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 211–223. Springer, Heidelberg,
January 2003. 4

ABP15. Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Public-key encryption indistinguishable under
plaintext-checkable attacks. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 332–352. Springer,
Heidelberg, March / April 2015. 7

ACLZ20. Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden. Defeating NewHope with a single
trace. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020, pages 189–205. Springer, Heidelberg, 2020. 32

AD97. Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In
29th ACM STOC, pages 284–293. ACM Press, May 1997. 4

AM09. Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to factoring. In Antoine Joux, editor,
EUROCRYPT 2009, volume 5479 of LNCS, pages 36–53. Springer, Heidelberg, April 2009. 4

20

https://csrc.nist.gov/publications/detail/nistir/8309/final
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://www.esat.kuleuven.be/cosic/publications/article-1134.pdf

AR21. Amund Askeland and Sondre Rønjom. A side-channel assisted attack on NTRU. Cryptology ePrint Archive,
Report 2021/790, 2021. https://eprint.iacr.org/2021/790. 34

BBC+20. Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok Chuengsatiansup, Tanja Lange, Adrian
Marotzke, Bo-Yuan Peng, Nicola Tuveri, Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime. Tech-
nical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions. 4, 5, 8, 20

BBK+10. Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi, and Francesco Regazzoni. Countermea-
sures against fault attacks on software implemented AES: Effectiveness and cost. In Proceedings of the 5th
Workshop on Embedded Systems Security - WESS 2010, 2010. 19

BBPP09. Alessandro Barenghi, Guido Bertoni, Emanuele Perrinello, and Gerardo Pelosi. Low voltage fault attacks on the
RSA cryptosystem. In 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2009, Lausanne,
Switzerland, September 6, 2009, pages 71–84. IEEE Computer Society, 2009. 3

BCDR17. Dominic Bucerzan, Pierre-Louis Cayrel, Vlad Dragoi, and Tania Richmond. Improved timing attacks against the
secret permutation in the mceliece PKC. Int. J. Comput. Commun. Control, 12(1):7–25, 2017. http://univagora.
ro/jour/index.php/ijccc/article/view/2780. 31

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry. Random
oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of
LNCS, pages 41–69. Springer, Heidelberg, December 2011. 3

BDH+19. Ciprian Băetu, F. Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talayhan, and Serge Vaudenay. Misuse
attacks on post-quantum cryptosystems. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II,
volume 11477 of LNCS, pages 747–776. Springer, Heidelberg, May 2019. 5, 8, 9, 38, 39

BDH+21. Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and Michiel Van Beirendonck. At-
tacking and defending masked polynomial comparison. IACR TCHES, 2021(3):334–359, 2021. https://tches.iacr.
org/index.php/TCHES/article/view/8977. 32

BDK+21. Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede.
A side-channel-resistant implementation of SABER. ACM J. Emerg. Technol. Comput. Syst., 17(2):10:1–10:26,
2021. See also https://eprint.iacr.org/2020/733. 35

BDL01. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating errors in cryptographic
computations. Journal of Cryptology, 14(2):101–119, March 2001. 3

Bel00. Mihir Bellare, editor. CRYPTO 2000, volume 1880 of LNCS. Springer, Heidelberg, August 2000. 21, 23
BG15. Johannes Blömer and Peter Günther. Singular curve point decompression attack. In Naofumi Homma and

Victor Lomné, editors, 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2015, Saint Malo,
France, September 13, 2015, pages 71–84. IEEE Computer Society, 2015. 4

BHH+19. Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Persichetti. Tighter proofs
of CCA security in the quantum random oracle model. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part II, volume 11892 of LNCS, pages 61–90. Springer, Heidelberg, December 2019. 3, 29

BMM00. Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks on elliptic curve cryptosystems. In
Bellare [Bel00], pages 131–146. 4

BP18. Daniel J. Bernstein and Edoardo Persichetti. Towards KEM unification. Cryptology ePrint Archive, Report
2018/526, 2018. https://eprint.iacr.org/2018/526. 29

BS97. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In Burton S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 513–525. Springer, Heidelberg, August 1997. 3

BV98. Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring. In Kaisa Nyberg,
editor, EUROCRYPT’98, volume 1403 of LNCS, pages 59–71. Springer, Heidelberg, May / June 1998. 4

CCD+21. Pierre-Louis Cayrel, Brice Colombier, Vlad-Florin Dragoi, Alexandre Menu, and Lilian Bossuet. Message-
recovery laser fault injection attack on the classic McEliece cryptosystem. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 438–467. Springer, Heidelberg,
October 2021. 31

CDH+20. Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld, John M. Schanck, Peter
Schwabe,WilliamWhyte, Zhenfei Zhang, Tsunekazu Saito, Takashi Yamakawa, andKeita Xagawa. NTRU. Tech-
nical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions. 4, 5, 20, 33

CEvMS15. Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt. Differential power analysis of a
McEliece cryptosystem. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, andMichalis Polychronakis,
editors, ACNS 15, volume 9092 of LNCS, pages 538–556. Springer, Heidelberg, June 2015. 37

Cho16. Tung Chou. QcBits: Constant-time small-key code-based cryptography. In Benedikt Gierlichs and Axel Y.
Poschmann, editors, CHES 2016, volume 9813 of LNCS, pages 280–300. Springer, Heidelberg, August 2016. 37

CK09. Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random delay generation in embedded soft-
ware. In Christophe Clavier and Kris Gaj, editors, CHES 2009, volume 5747 of LNCS, pages 156–170. Springer,
Heidelberg, September 2009. 19

Cos21. Craig Costello. The case for SIKE: A decade of the supersingular isogeny problem. 2021. https://eprint.iacr.org/
2021/543. 6, 41

21

https://eprint.iacr.org/2021/790
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
http://univagora.ro/jour/index.php/ijccc/article/view/2780
http://univagora.ro/jour/index.php/ijccc/article/view/2780
https://tches.iacr.org/index.php/TCHES/article/view/8977
https://tches.iacr.org/index.php/TCHES/article/view/8977
https://eprint.iacr.org/2020/733
https://eprint.iacr.org/2018/526
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2021/543
https://eprint.iacr.org/2021/543

CS03. Ronald Cramer andVictor Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003. 3

CT16. Jung Hee Cheon and Tsuyoshi Takagi, editors. ASIACRYPT 2016, Part I, volume 10031 of LNCS. Springer, Hei-
delberg, December 2016. 22

DDS+19. Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng Zhang. A simple and practical key reuse attack
on NTRU cryptosystem. Cryptology ePrint Archive, Report 2019/1022, 2019. https://eprint.iacr.org/2019/1022.
5, 34, 41

Den03. Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor, 9th IMA International Confer-
ence on Cryptography and Coding, volume 2898 of LNCS, pages 133–151. Springer, Heidelberg, December 2003.
3, 30

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976. 2

DJP14. Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from supersingular elliptic
curve isogenies. Journal of Mathematical Cryptology, 8(3):209–247, 2014. 4, 41

DK20. Julian Danner and Martin Kreuzer. A fault attack on the Niederreiter cryptosystem using binary irreducible
Goppa codes. Journal of Groups, Complexity, Cryptology, 12(1), March 2020. https://gcc.episciences.org/6212. 31

DKR+20. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, Jose Maria Bermudo Mera,
Michiel Van Beirendonck, andAndrea Basso. SABER. Technical report, National Institute of Standards and Tech-
nology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 4,
5, 20, 27, 34

EHiH+14. Sho Endo, Naofumi Homma, Yu ichi Hayashi, Junko Takahashi, Hitoshi Fuji, and Takafumi Aoki. A multiple-
fault injection attack by adaptive timing control under black-box conditions and a countermeasure. In Em-
manuel Prouff, editor, COSADE 2014, volume 8622 of LNCS, pages 214–228. Springer, Heidelberg, April 2014.
19

EOS07. Daniela Engelbert, Raphael Overbeck, and Arthur Schmidt. A summary of mceliece-type cryptosystems and
their security. J. Math. Cryptol., 1(2):151–199, 2007. 30, 31

ESH+11. Sho Endo, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki, and Akashi Satoh. An on-chip glitchy-clock
generator for testing fault injection attacks. Journal of Cryptographic Engineering, 1(4):265–270, 2011. 3

FH17. Wieland Fischer and Naofumi Homma, editors. CHES 2017, volume 10529 of LNCS. Springer, Heidelberg,
September 2017. 23, 25

Flu16. Scott Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse. Cryptology ePrint Archive,
Report 2016/085, 2016. https://eprint.iacr.org/2016/085. 4

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes.
In Wiener [Wie99], pages 537–554. 3

FO13. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes.
Journal of Cryptology, 26(1):80–101, January 2013. 3

GJN20. Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing attack on post-quantum primi-
tives using the Fujisaki-Okamoto transformation and its application on FrodoKEM. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 359–386. Springer, Heidelberg,
August 2020. 5, 11, 19, 38, 39

GJS16. Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on MDPC with CCA security using
decoding errors. In Cheon and Takagi [CT16], pages 789–815. 4, 5, 37

GLdGK21. Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović. Full key recovery side-channel attack
against ephemeral SIKE on the Cortex-M4. Cryptology ePrint Archive, Report 2021/858, 2021. https://eprint.
iacr.org/2021/858. To appear in COSADE 2021. 42

gm20. goulov and mandlebro. Writeup: sidhe – PlaidCTF 2020, April 2020. https://sectt.github.io/writeups/Plaid20/
crypto_sidhe/README. 41, 42

GMP21. Paul Grubbs, VarunMaram, and Kenneth G. Paterson. Anonymous, robust post-quantum public key encryption.
Cryptology ePrint Archive, Report 2021/708, 2021. https://eprint.iacr.org/2021/708. 28

GN07. Nicolas Gama and Phong Q. Nguyen. New chosen-ciphertext attacks on NTRU. In Tatsuaki Okamoto and
Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS, pages 89–106. Springer, Heidelberg, April 2007. 34

GPST16. Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security of supersingular isogeny
cryptosystems. In Cheon and Takagi [CT16], pages 63–91. 4, 5, 41, 42

Gun19. Stjin Gunter. Timing attacks and the NTRU public-key cryptosystem, July 2019. Bachelor Thesis. https://
research.tue.nl/en/studentTheses/timing-attacks-and-the-ntru-public-key-cryptosystem. 34

GW17. Alexandre Gélin and Benjamin Wesolowski. Loop-abort faults on supersingular isogeny cryptosystems. In
Lange and Takagi [LT17], pages 93–106. 41

HCY19. Wei-Lun Huang, Jiun-Peng Chen, and Bo-Yin Yang. Power analysis on NTRU prime. IACR TCHES,
2020(1):123–151, 2019. https://tches.iacr.org/index.php/TCHES/article/view/8395. 41

HGS99. Chris Hall, Ian Goldberg, and Bruce Schneier. Reaction attacks against several public-key cryptosystems. In Vi-
jay Varadharajan and Yi Mu, editors, ICICS 99, volume 1726 of LNCS, pages 2–12. Springer, Heidelberg, Novem-
ber 1999. 4, 31

22

https://eprint.iacr.org/2019/1022
https://gcc.episciences.org/6212
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2021/858
https://eprint.iacr.org/2021/858
https://sectt.github.io/writeups/Plaid20/crypto_sidhe/README
https://sectt.github.io/writeups/Plaid20/crypto_sidhe/README
https://eprint.iacr.org/2021/708
https://research.tue.nl/en/studentTheses/timing-attacks-and-the-ntru-public-key-cryptosystem
https://research.tue.nl/en/studentTheses/timing-attacks-and-the-ntru-public-key-cryptosystem
https://tches.iacr.org/index.php/TCHES/article/view/8395

HHHK03. Daewan Han, Jin Hong, Jae Woo Han, and Daesung Kwon. Key recovery attacks on NTRU without ciphertext
validation routine. In Reihaneh Safavi-Naini and Jennifer Seberry, editors, ACISP 03, volume 2727 of LNCS,
pages 274–284. Springer, Heidelberg, July 2003. 34

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. Amodular analysis of the Fujisaki-Okamoto transforma-
tion. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Heidelberg, November 2017. 3, 8, 28

HHS+11. Yu-ichi Hayashi, Naofumi Homma, Takeshi Sugawara, Takaaki Mizuki, Takafumi Aoki, and Hideaki Sone. Non-
invasive trigger-free fault injection method based on intentional electromagnetic interference. In Proceedings
of The Non-Invasive Attack Testing Workshop – NIAT 2011, September 2011. 3

HMP10. Stefan Heyse, Amir Moradi, and Christof Paar. Practical power analysis attacks on software implementations
of McEliece. In Sendrier [Sen10], pages 108–125. 31

HNP+03. Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph H. Silverman, Ari Singer,
and William Whyte. The impact of decryption failures on the security of NTRU encryption. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 226–246. Springer, Heidelberg, August 2003. 34

HPA21. James Howe, Thomas Prest, and Daniel Apon. SoK: How (not) to design and implement post-quantum cryptog-
raphy. In Kenneth G. Paterson, editor,CT-RSA 2021, volume 12704 of LNCS, pages 444–477. Springer, Heidelberg,
May 2021. 6

HPS98. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosystem. In Third
Algorithmic Number Theory Symposium (ANTS), volume 1423 of LNCS, pages 267–288. Springer, Heidelberg,
June 1998. 33

HRSS17. Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe. High-speed key encapsulation from
NTRU. In Fischer and Homma [FH17], pages 232–252. 33

HS00. Jeffrey Hoffstein and Joseph H. Silverman. Reaction attacks against the NTRU public key cryptosystem. Ntru
tech report, 2000. #015v2. Available at https://ntru.org/resources.shtml. 34

HV20. Loïs Huguenin-Dumittan and Serge Vaudenay. Classical misuse attacks on NIST round 2 PQC - the power
of rank-based schemes. In Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi, editors,
ACNS 20, Part I, volume 12146 of LNCS, pages 208–227. Springer, Heidelberg, October 2020. 4, 5, 8, 9, 32, 33, 35,
37, 39

ISO06. ISO/IEC 18033-2:2006 information technology — security techniques — encryption algorithms — part 2: Asym-
metric ciphers, 2006. https://www.iso.org/standard/37971.html. 3

JAC+20. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Amir Jalali,
Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, David Ur-
banik, Geovandro Pereira, Koray Karabina, and Aaron Hutchinson. SIKE. Technical report, National Insti-
tute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions. 4, 5, 20, 41

JD11. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic curve iso-
genies. In Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011, pages
19–34. Springer, Heidelberg, November / December 2011. 4, 41

JJ00. Éliane Jaulmes and Antoine Joux. A chosen-ciphertext attack against NTRU. In Bellare [Bel00], pages 20–35.
34, 41

JZC+18. Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure key encapsulation
mechanism in the quantum random oracle model, revisited. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 96–125. Springer, Heidelberg, August 2018. 3, 28

JZM19. Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Key encapsulation mechanism with explicit rejection in the
quantum random oracle model. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of
LNCS, pages 618–645. Springer, Heidelberg, April 2019. 3, 28, 30

KAJ17. Brian Koziel, Reza Azarderakhsh, and David Jao. Side-channel attacks on quantum-resistant supersingular
isogeny Diffie-Hellman. In Carlisle Adams and Jan Camenisch, editors, SAC 2017, volume 10719 of LNCS, pages
64–81. Springer, Heidelberg, August 2017. 41

KJJ99. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Wiener [Wie99], pages 388–397.
3

Koc96. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Neal
Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 104–113. Springer, Heidelberg, August 1996. 3

KPHS18. Philipp Koppermann, Eduard Pop, Johann Heyszl, and Georg Sigl. 18 seconds to key exchange: Limitations of
supersingular isogeny Diffie-Hellman on embedded devices. Cryptology ePrint Archive, Report 2018/932, 2018.
https://eprint.iacr.org/2018/932. 41

KRSS. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. Pqm4: Post-quantum crypto library
for the ARM Cortex-M4. https://github.com/mupq/pqm4. 5, 11

KSS+20. Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng Sun. Measure-rewind-measure:
Tighter quantum random oracle model proofs for one-way to hiding and CCA security. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 703–728. Springer, Heidelberg,
May 2020. 3, 8, 29

23

https://ntru.org/resources.shtml
https://www.iso.org/standard/37971.html
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2018/932
https://github.com/mupq/pqm4

KY11. Abdel Alim Kamal and AmrM. Youssef. Fault analysis of the NTRUEncrypt cryptosystem. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., 94-A(4):1156–1158, 2011. 34

KY12. Abdel Alim Kamal and Amr M. Youssef. A scan-based side channel attack on the NTRUEncrypt cryptosystem.
In 2012 Seventh International Conference on Availability, Reliability and Security – ARES 2012, pages 402–409,
2012. 34

LNPS20. Norman Lahr, Ruben Niederhagen, Richard Petri, and Simona Samardjiska. Side channel information set de-
coding using iterative chunking - plaintext recovery from the “classic McEliece” hardware reference implemen-
tation. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages
881–910. Springer, Heidelberg, December 2020. 31

LP11. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption. In Aggelos Kiayias,
editor, CT-RSA 2011, volume 6558 of LNCS, pages 319–339. Springer, Heidelberg, February 2011. 8

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In
Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg, May / June
2010. 8

LSCH10. Mun-Kyu Lee, Jeong Eun Song, Dooho Choi, and Dong-Guk Han. Countermeasures against power analysis
attacks for the NTRU public key cryptosystem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 93-
A(1):153–163, 2010. 34

LT17. Tanja Lange and Tsuyoshi Takagi, editors. Post-Quantum Cryptography - 8th International Workshop, PQCrypto
2017. Springer, Heidelberg, 2017. 22, 25

Mas69. J. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory, 15(1):122–127,
1969. 31

McE78. Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. The deep space network
progress report 42-44, Jet Propulsion Laboratory, California Institute of Technology, January/February 1978.
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF. 4, 30

MTSB13. Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. MDPC-McEliece: New
McEliece variants from moderate density parity-check codes. In Proceedings of the 2013 IEEE International
Symposium on Information Theory (ISIT), Istanbul, Turkey, July 7-12, 2013, pages 2069–2073. IEEE, 2013. 4, 36

MY08. Petros Mol and Moti Yung. Recovering NTRU secret key from inversion oracles. In Ronald Cramer, editor,
PKC 2008, volume 4939 of LNCS, pages 18–36. Springer, Heidelberg, March 2008. 34

NAB+20. Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook, Brian LaMacchia, Patrick Longa,
Ilya Mironov, Valeria Nikolaenko, Christopher Peikert, Ananth Raghunathan, and Douglas Stebila. FrodoKEM.
Technical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions. 4, 5, 20, 27, 37, 38

NDGJ21. Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-channel attack on a masked IND-CCA
secure Saber KEM. IACR TCHES, 2021(4):676–707, 2021. https://tches.iacr.org/index.php/TCHES/article/view/
9079. 35

NDJ21. Kalle Ngo, Elena Dubrova, and Thomas Johansson. Breaking masked and shuffled CCA secure Saber KEM by
power analysis. Cryptology ePrint Archive, Report 2021/902, 2021. https://eprint.iacr.org/2021/902. 35

Nie86. H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information
Theory, 15(2):159–166, 1986. 4, 30

OP01. Tatsuaki Okamoto and David Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryptosystem Trans-
form. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS, pages 159–175. Springer, Heidelberg, April
2001. 7

OUKT21. Yuki Osumi, Shusaku Uemura, Momonari Kudo, and Tsuyoshi Takagi. Key mismatch attack on SABER. In SCIS
2021, January 2021. In Japanese. 35

Pat75. N. Patterson. The algebraic decoding of Goppa codes. IEEE Transactions on Information Theory, 21(2):203–207,
1975. 31

PP21. Peter Pessl and Lukas Prokop. Fault attacks on CCA-secure lattice KEMs. IACR TCHES, 2021(2):37–60, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8787. 4, 19, 32

PRD+16. Martin Petrvalsky, Tania Richmond, Milos Drutarovsky, Pierre-Louis Cayrel, and Viktor Fischer. Differential
power analysis attack on the secure bit permutation in the mceliece cryptosystem. In 2016 26th International
Conference Radioelektronika (RADIOELEKTRONIKA), pages 132–137, 2016. 31

PT18. Thales Bandiera Paiva and Routo Terada. Improving the efficiency of a reaction attack on the QC-MDPC
mceliece. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 101-A(10):1676–1686, 2018. 37

PT19. Thales Bandiera Paiva and Routo Terada. A timing attack on the HQC encryption scheme. In Kenneth G.
Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS, pages 551–573. Springer, Heidelberg,
August 2019. 39

PV17. Kenneth G. Paterson and Ricardo Villanueva-Polanco. Cold boot attacks on NTRU. In Arpita Patra and Nigel P.
Smart, editors, INDOCRYPT 2017, volume 10698 of LNCS, pages 107–125. Springer, Heidelberg, December 2017.
34

QCD19. Yue Qin, Chi Cheng, and Jintai Ding. An efficient key mismatch attack on the NIST second round candidate
Kyber. Cryptology ePrint Archive, Report 2019/1343, 2019. https://eprint.iacr.org/2019/1343. 5, 32

24

https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/9079
https://tches.iacr.org/index.php/TCHES/article/view/9079
https://eprint.iacr.org/2021/902
https://tches.iacr.org/index.php/TCHES/article/view/8787
https://eprint.iacr.org/2019/1343

QCZ+21. Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, and Jintai Ding. A systematic approach and analysis
of key mismatch attacks on CPA-secure lattice-based NIST candidate KEMs. Cryptology ePrint Archive, Report
2021/123, 2021. https://eprint.iacr.org/2021/123. 5, 32, 34, 38

RBRC20. Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay. Drop by drop you break the rock
- exploiting generic vulnerabilities in lattice-based PKE/KEMs using EM-based physical attacks. Cryptology
ePrint Archive, Report 2020/549, 2020. https://eprint.iacr.org/2020/549. 32

REB+21. Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam Chattopadhyay, and Sujoy Sinha Roy.
Will you cross the threshold for me? – generic side-channel assisted chosen-ciphertext attacks on NTRU-based
KEMs. 2021. https://eprint.iacr.org/2021/718. 5, 41

RHHM17. Melissa Rossi, Mike Hamburg, Michael Hutter, and Mark E. Marson. A side-channel assisted cryptanalytic
attack against QcBits. In Fischer and Homma [FH17], pages 3–23. 37

RR21. Prasanna Ravi and Sujoy Sinha Roy. Side-channel analysis of lattice-based PQC candidates. NIST PQC
Round 3 Seminars, 2021. https://csrc.nist.gov/projects/post-quantum-cryptography/workshops-and-timeline/
round-3-seminars. 6, 32, 38

RRCB20. Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. Generic side-channel attacks
on CCA-secure lattice-based PKE and KEMs. IACR TCHES, 2020(3):307–335, 2020. https://tches.iacr.org/index.
php/TCHES/article/view/8592. 5, 32, 35, 38

RS92. Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen cipher-
text attack. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 433–444. Springer, Heidelberg,
August 1992. 3

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures and public-
key cryptosystems. Communications of the Association for Computing Machinery, 21(2):120–126, 1978. 2

SA03. Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks. In Burton S. Kaliski Jr., Çetin
Kaya Koç, and Christof Paar, editors, CHES 2002, volume 2523 of LNCS, pages 2–12. Springer, Heidelberg, August
2003. 3

SAB+20. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical report, National Insti-
tute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions. 4, 5, 20, 27, 31

Sch18. John M. Schanck. A comparison of NTRU variants. Cryptology ePrint Archive, Report 2018/1174, 2018. https:
//eprint.iacr.org/2018/1174. 29

Sen10. Nicolas Sendrier, editor. The Third International Workshop on Post-Quantum Cryptography, PQCRYPTO 2010.
Springer, Heidelberg, May 2010. 23, 25

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th FOCS, pages
124–134. IEEE Computer Society Press, November 1994. 3

Sho00. Victor Shoup. Using hash functions as a hedge against chosen ciphertext attack. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 275–288. Springer, Heidelberg, May 2000. 3

Sin99. Simon Singh. The Code Book. Fourth Estate, 1999. 2
SKL+20. Bo-Yeon Sim, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Tae-Ho Lee, Jaeseung Han, Hyojin Yoon, Jihoon Cho, and

Dong-Guk Han. Single-trace attacks onmessage encoding in lattice-based KEMs. IEEE Access, 8:183175–183191,
2020. 32, 35, 38

SMR09. Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita RoyChowdhury. A diagonal fault attack on the ad-
vanced encryption standard. Cryptology ePrint Archive, Report 2009/581, 2009. https://eprint.iacr.org/2009/581.
3

Str10. Falko Strenzke. A timing attack against the secret permutation in the McEliece PKC. In Sendrier [Sen10], pages
95–107. 31

Str13. Falko Strenzke. Timing attacks against the syndrome inversion in code-based cryptosystems. In Philippe Ga-
borit, editor, Post-Quantum Cryptography - 5th International Workshop, PQCrypto 2013, pages 217–230. Springer,
Heidelberg, June 2013. 31

SW07. Joseph H. Silverman and William Whyte. Timing attacks on NTRUEncrypt via variation in the number of
hash calls. In Masayuki Abe, editor, CT-RSA 2007, volume 4377 of LNCS, pages 208–224. Springer, Heidelberg,
February 2007. 34

SXY18. Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mechanism in the
quantum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III,
volume 10822 of LNCS, pages 520–551. Springer, Heidelberg, April / May 2018. 3, 29, 30

TDFEMP21. Élise Tasso, Luca De Feo, Nadia El Mrabet, and Simon Pontié. Resistance of isogeny-based cryptographic imple-
mentations to a fault attack. Cryptology ePrint Archive, Report 2021/850, 2021. https://eprint.iacr.org/2021/850.
To appear in COSADE 2021. 42

Ti17. Yan Bo Ti. Fault attack on supersingular isogeny cryptosystems. In Lange and Takagi [LT17], pages 107–122.
41, 42

25

https://eprint.iacr.org/2021/123
https://eprint.iacr.org/2020/549
https://eprint.iacr.org/2021/718
https://csrc.nist.gov/projects/post-quantum-cryptography/workshops-and-timeline/round-3-seminars
https://csrc.nist.gov/projects/post-quantum-cryptography/workshops-and-timeline/round-3-seminars
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2018/1174
https://eprint.iacr.org/2018/1174
https://eprint.iacr.org/2009/581
https://eprint.iacr.org/2021/850

TT19. Akira Takahashi and Mehdi Tibouchi. Degenerate fault attacks on elliptic curve parameters in openssl. In IEEE
European Symposium on Security and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019, pages 371–386.
IEEE, 2019. 4

TU16. Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the Fujisaki-Okamoto and OAEP
transforms. InMartin Hirt and AdamD. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 192–216.
Springer, Heidelberg, October / November 2016. 3, 28

VV20. Jan Vacek and Jan Václavek. Key mismatch attack on ThreeBears, frodo and Round5. In Deukjo Hong, editor,
ICISC 20, volume 12593 of LNCS, pages 182–198. Springer, Heidelberg, December 2020. 5, 38

Wie99. Michael J. Wiener, editor. CRYPTO’99, volume 1666 of LNCS. Springer, Heidelberg, August 1999. 22, 23
WTBB+20. Guillaume Wafo-Tapa, Slim Bettaieb, Loïc Bidoux, Philippe Gaborit, and Etienne Marcatel. A practicable tim-

ing attack against HQC and its countermeasure. Advances in Mathematics of Communications, 2020. On-
line First. Available at https://www.aimsciences.org/article/doi/10.3934/amc.2020126. See also https://eprint.
iacr.org/2019/909. 39

XPRO20. Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magnifying side-channel leakage of lattice-
based cryptosystems with chosen ciphertexts: The case study of kyber. Cryptology ePrint Archive, Report
2020/912, 2020. https://eprint.iacr.org/2020/912. 32

YJ00. Sung-Ming Yen and M. Joye. Checking before output may not be enough against fault-based cryptanalysis.
IEEE Transactions on Computers, 49(9):967–970, 2000. 4

YKLM02. Sung-Ming Yen, Seungjoo Kim, Seongan Lim, and Sang-JaeMoon. A countermeasure against one physical crypt-
analysis may benefit another attack. In Kwangjo Kim, editor, ICISC 01, volume 2288 of LNCS, pages 414–427.
Springer, Heidelberg, December 2002. 4

YZ17. Yu Yu and Jiang Zhang. Lepton. Technical report, National Institute of Standards and Technology, 2017. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions. 39

ZCQD21. Xiaohan Zhang, Chi Cheng, Yue Qin, and Ruoyu Ding. Small leaks sink a great ship: An evaluation of key
reuse resilience of PQC third round finalist NTRU-HRSS. Cryptology ePrint Archive, Report 2021/168, 2021.
https://eprint.iacr.org/2021/168. To appear in ICICS 2021. 5, 34, 41

ZWW13. Xuexin Zheng, An Wang, and Wei Wei. First-order collision attack on protected NTRU cryptosystem. Micro-
processors and Microsystems, 37(6–7):601–609, 2013. 34

ZYD+20. Fan Zhang, Bolin Yang, Xiaofei Dong, Sylvain Guilley, Zhe Liu, Wei He, Fangguo Zhang, and Kui Ren. Side-
channel analysis and countermeasure design on ARM-based quantum-resistant SIKE. IEEE Transactions on
Computers, 69(11):1681–1693, 2020. 41

26

https://www.aimsciences.org/article/doi/10.3934/amc.2020126
https://eprint.iacr.org/2019/909
https://eprint.iacr.org/2019/909
https://eprint.iacr.org/2020/912
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2021/168

Exptow-cpa
PKE,𝒟ℳ,𝒜(𝜆)

(pk, sk) ← Gen(1𝜆)
𝑚∗ ← 𝒟ℳ

ct∗ ← Enc(pk, 𝑚∗)
𝑚′ ← 𝒜(pk, ct∗)

return boole(𝑚′ ?= Dec(sk, ct∗))

Exptind-cpaPKE,𝒜 (𝜆)

𝑏 ← {0, 1}
(pk, sk) ← Gen(1𝜆)
(𝑚0, 𝑚1, 𝑠𝑡) ← 𝒜1(pk)
ct∗ ← Enc(pk, 𝑚𝑏)
𝑏′ ← 𝒜2(ct∗, 𝑠𝑡)

return boole(𝑏′ ?= 𝑏)

Fig. 12: Games for PKE schemes

Supplementary Materials

A Missing Definitions

Notation: For a statement 𝑃 (e.g., 𝑟 ∈ [0, 1]), we define boole(𝑃) = 1 if 𝑃 is satisfied and 0 otherwise.
For a positive integer 𝑞, we define 𝑟 ′ ∶= 𝑟 mod+ 𝑞 to be the unique element 𝑟 ′ ∈ [0, 𝑞) with 𝑟 ′ ≡ 𝑟 (mod 𝑞).

For an even positive integer 𝑞, we define 𝑟 ′ ∶= 𝑟 mod±↑ 𝑞 (and 𝑟 ′ ∶= 𝑟 mod±↓ 𝑞, resp.) to be the unique element 𝑟 ′ ∈
(−𝑞/2, 𝑞/2] (and 𝑟 ′ ∈ [−𝑞/2, 𝑞/2), resp.) with 𝑟 ′ ≡ 𝑟 (mod 𝑞). For an element 𝑥 ∈ ℝ, we define ⌈𝑥⌋ = ⌈𝑥−1/2⌉ ∈ ℤ,
which is the nearest integer.

Security Notions of PKE: We define onewayness under chosen-plaintext attacks (OW-CPAsecurity) and indistin-
guishability under chosen-plaintext attacks (IND-CPAsecurity) for a PKE.

Definition A.1 (Security notions for PKE). Let 𝒟ℳ be a distribution over the message space ℳ. For any ad-
versary 𝒜, we define its OW-CPA and IND-CPA advantages against a PKE scheme PKE = (Gen, Enc,Dec) as
follows:

Advow-cpaPKE,𝒟ℳ,𝒜(𝜆) ∶= Pr[Exptow-cpaPKE,𝒟ℳ,𝒜(𝜆) = 1],

Advind-cpaPKE,𝒜 (𝜆) ∶= |Pr[Exptind-cpaPKE,𝒜 (𝜆) = 1] − 1/2|,

where Exptow-cpaPKE,𝒟ℳ,𝒜(𝜆) and Exptind-cpaPKE,𝒜 (𝜆) are experiments described in Figure 12. We say that PKE is OW-CPA-

secure and IND-CPA-secure ifAdvow-cpaPKE,𝒟ℳ,𝒜(𝜆) andAdvind-cpaPKE,𝒜 (𝜆) is negligible for any PPT adversary𝒜, respectively.
We omit 𝒟ℳ from OW-CPA security if 𝒟ℳ is the uniform distribution over ℳ.

Security Notions of KEM: We define indistinguishability under chosen-ciphertext attacks (IND-CCA security) for
KEM.

Definition A.2. For any adversary 𝒜, we define its IND-CCA advantage against a KEM scheme KEM =
(Gen, Encaps,Decaps) as follows:

Advind-ccaKEM,𝒜(𝜆) ∶= |Pr[Exptind-ccaKEM,𝒜(𝜆) = 1] − 1/2|,

where Exptind-ccaKEM,𝒜(𝜆) is an experiment described in Figure 13. We say that KEM is IND-CCA-secure if Advind-ccaKEM,𝒜(𝜆)
is negligible for any PPT adversary 𝒜.

B The variants of FO

B.1 Other FO with implicit rejection

FO ̸⊥′ and FO ̸⊥′′ are slightly modified versions of FO ̸⊥, which are used by Kyber [SAB+20, Section 1] and
Saber [DKR+20, Section 8], and FrodoKEM [NAB+20, Section 2], respectively. The differences from FO ̸⊥ are
how to generate 𝐾 in Encaps and Decaps.

27

Exptind-ccaKEM,𝒜(𝜆)

𝑏 ← {0, 1}
(pk, sk) ← Gen(1𝜆)
(ct∗, 𝐾 ∗

0) ← Encaps(pk)
𝐾 ∗

1 ← 𝒦

𝑏′ ← 𝒜Decct∗(⋅)(pk, ct∗, 𝐾 ∗
𝑏)

return boole(𝑏′ ?= 𝑏)

Decct∗(ct)

if ct = ct∗, return ⊥
𝐾 ∶= Decaps(sk, ct)
return 𝐾

Fig. 13: Games for KEM schemes

Let {0, 1}ℓ(𝜆) be the plaintext space of PKE. Let G∶ {0, 1}∗ → {0, 1}ℓ(𝜆) × ℛEnc, H′∶ {0, 1}∗ → {0, 1}ℓ(𝜆), and
H∶ {0, 1}ℓ(𝜆) × {0, 1}ℓ(𝜆) → {0, 1}𝑘(𝜆) be hash functions modeled by the random oracles. FO ̸⊥′ and FO ̸⊥′′ are
summarized as Figure 14 and Figure 15, respectively.

Onemight consider assuming the IND-CPA security of PKE, the obtained KEM schemes are IND-CCA-secure
in the QROM. Unfortunately, Grubbs, Maram, and Paterson [GMP21] pointed out that we cannot directly apply
the existing security proof in the QROM to those variants, because computing 𝐾 requires nested applications of
random oracles G and H to 𝑚. Grubbs et al. overcome this barrier for the case of FO ̸⊥′′ in [GMP21, Section 5.2].
However, they failed to apply their technique to the case of FO ̸⊥′ which computes 𝐾 = H(̄𝐾 ,H′(ct)) instead of
𝐾 = H(̄𝐾 , ct). They left the IND-CCA security of FO ̸⊥′ in the QROM as an open problem [GMP21, Section 5.3].

Gen(1𝜆)

(pk, sk) ← Gen(1𝜆)
ℎ ← H′(pk)

𝑠 ← {0, 1}ℓ(𝜆)

sk ∶= (sk, pk, ℎ, 𝑠)

return (pk, sk)

Encaps(pk)

𝑚 ← {0, 1}ℓ(𝜆)

𝑚 ∶= H′(𝑚)
(̄𝐾 , 𝑟) ∶= G(𝑚,H′(pk))
ct ∶= Enc(pk, 𝑚; 𝑟)
𝐾 ∶= H(̄𝐾 ,H′(ct))
return (𝐾, ct)

Decaps(sk, ct), where sk = (sk, pk, ℎ, 𝑠)

𝑚′ ∶= Dec(sk, ct)
(̄𝐾 ′, 𝑟 ′) ∶= G(𝑚′, ℎ)
ct ′ ∶= Enc(pk, 𝑚′; 𝑟 ′)
if ct = ct ′, then return 𝐾 ∶= H(̄𝐾 ′,H′(ct))
else return 𝐾 ∶= H(𝑠,H′(ct))

Fig. 14: KEM ∶= FO ̸⊥′[PKE,G,H′,H] in Kyber and Saber.

Gen(1𝜆)

(pk, sk) ← Gen(1𝜆)
ℎ ← H′(pk)

𝑠 ← {0, 1}ℓ(𝜆)

sk ∶= (sk, pk, ℎ, 𝑠)

return (pk, sk)

Encaps(pk)

𝑚 ← {0, 1}ℓ(𝜆)

(̄𝐾 , 𝑟) ∶= G(𝑚,H′(pk))
ct ∶= Enc(pk, 𝑚; 𝑟)
𝐾 ∶= H(̄𝐾 , ct)
return (𝐾, ct)

Decaps(sk, ct), where sk = (sk, pk, ℎ, 𝑠)

𝑚′ ∶= Dec(sk, ct)
(̄𝐾 ′, 𝑟 ′) ∶= G(𝑚′, ℎ)
ct ′ ∶= Enc(pk, 𝑚′; 𝑟 ′)
if ct = ct ′, then return 𝐾 ∶= H(̄𝐾 ′, ct)
else return 𝐾 ∶= H(𝑠, ct)

Fig. 15: KEM ∶= FO ̸⊥′′[PKE,G,H′,H] in FrodoKEM.

B.2 FO with additional hash

HFO⊥ and HFO ̸⊥ (as known as QFO⊥ and QFO ̸⊥) [TU16, HHK17, JZC+18, JZM19] transform a weakly-secure
probabilistic PKE into IND-CCA-secure KEM like FO and add hash value of the message. Those variants are used
by HQC and ntrulpr of NTRU Prime, respectively.

28

Let {0, 1}ℓ(𝜆) be the plaintext space of PKE. Let G∶ {0, 1}∗ → ℛEnc, F∶ {0, 1}ℓ(𝜆) × {0, 1}∗ → {0, 1}ℓ
′(𝜆),

H∶ {0, 1}ℓ(𝜆) ×(𝒞PKE ×{0, 1}ℓ
′(𝜆)) → {0, 1}𝑘(𝜆), andH0∶ {0, 1}ℓ(𝜆) ×(𝒞PKE ×{0, 1}ℓ

′(𝜆)) → {0, 1}𝑘(𝜆) be hash functions
modeled by the random oracles. The HFO⊥ and HFO ̸⊥′ is summarized as Figure 16. Assuming the IND-CPA
security of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM. See e.g., [KSS+20]. For the case of
explicit rejection HFO⊥, we need to invoke [BHH+19, Theorem 4].

Gen(1𝜆)

(pk, sk) ← Gen(1𝜆)

sk ∶= (sk, pk) // for HQC

𝑠 ← {0, 1}ℓ(𝜆) // for ntrulpr

sk ∶= (sk, pk, 𝑠) // for ntrulpr

return (pk, sk)

Encaps(pk)

𝑚 ← {0, 1}ℓ(𝜆)

𝑟 ∶= G(𝑚)
ct0 ∶= Enc(pk, 𝑚; 𝑟)
ct1 ∶= F(𝑚) // for HQC

ct1 ∶= F(𝑚, pk) // for ntrulpr
ct ∶= (ct0, ct1)
𝐾 ∶= H(𝑚, ct)
return (𝐾, ct)

Decaps(sk, ct), where sk = (sk, pk[, 𝑠])

𝑚′ ∶= Dec(sk, ct)
𝑟 ′ ∶= G(𝑚′)
ct ′0 ∶= Enc(pk, 𝑚′; 𝑟 ′)
ct ′1 ∶= F(𝑚′) // for HQC

ct ′1 ∶= F(𝑚′, pk) // for ntrulpr
ct ′ ∶= (ct ′0, ct ′1)
if ct = ct ′, then return 𝐾 ∶= H(𝑚′, ct)
else return 𝐾 ∶= ⊥ // for HQC

else return 𝐾 ∶= H0(𝑠, ct) // for ntrulpr

Fig. 16: KEM ∶= HFO ̸⊥′[PKE,G, F,H,H0] for ntrulpr of NTRU Prime and HFO⊥[PKE,G, F,H] for HQC.

B.3 SXY

SXY transforms a weakly-secure deterministic PKE into IND-CCA-secure KEM. This variant is employed by
NTRU (ntruhps and ntruhrss).

Let ℳ be the plaintext space of PKE. Let H∶ ℳ → {0, 1}𝑘(𝜆) and H0∶ {0, 1}ℓ(𝜆) × 𝒞PKE → {0, 1}𝑘(𝜆) be
hash functions modeled by the random oracles. The SXY is summarized as Figure 17. Assuming ‘disjoint-
simulatability’20 of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM [SXY18].

Gen(1𝜆)

(pk, sk) ← Gen(1𝜆)
𝑠 ← {0, 1}𝑙

sk ∶= (sk, pk, 𝑠)

return (pk, sk)

Encaps(pk)

𝑚 ← ℳ
ct ∶= Enc(pk, 𝑚)
𝐾 ∶= H(𝑚)
return (𝐾, ct)

Decaps(sk, ct), where sk = (sk, pk, 𝑠)

𝑚′ ∶= Dec(sk, ct)
if 𝑚′ = ⊥, then return 𝐾 ∶= H0(𝑠, ct)
ct ′ ∶= Enc(pk, 𝑚′)
if ct = ct ′, then return 𝐾 ∶= H(𝑚′)
else return 𝐾 ∶= H0(𝑠, ct)

Fig. 17: KEM ∶= SXY[PKE,H,H0] in NTRU (ntruhps and ntruhrss).

Remark B.1. NTRU also omits an explicit re-encryption check invoking Enc. In NTRU, a ciphertext is 𝑐 = ℎ𝑟 +𝑚,
where ℎ is a public key and (𝑟 , 𝑠) ∈ ℛ × ℳ is a plaintext. The decryption algorithm first computes 𝑟 ′ ∈ ℛ,
computes𝑚′ = 𝑐−ℎ𝑟 ′, and checks if (𝑟 ′, 𝑚′) is inℛ×ℳ or not. This check is equivalent to checking 𝑐 = ℎ𝑟 ′+𝑚′,
because ℎ is invertible. See [Sch18, Section 5.1] for the details. Bernstein and Persichetti dubbed this property
rigidity [BP18].

20 Roughly speaking, disjoint-simulatability means that a random ciphertext is indistinguishable from a random string in
𝒞PKE, that is, Enc(pk, 𝑈 (ℳ)) ∼𝑐 𝑈 (𝒞PKE), and #(Enc(pk,ℳ) ∩ 𝒞PKE) ≪ #𝒞PKE.

29

B.4 HU with implicit rejection

The final one is a transformation that transforms a weakly-secure deterministic PKE into IND-CCA-secure KEM,
employed by Classic McEliece and sntrupr of NTRU Prime. We interpret the transformation as a variant of
HU [JZM19] (Or, we can interpret it as a variant of Dent4 ̸⊥ [Den03] or SXY-KC [SXY18]).

Let ℳ be the plaintext space of PKE. Let F∶ ℳ → {0, 1}ℓ
′(𝜆). Let H∶ ℳ × (𝒞PKE × {0, 1}ℓ

′(𝜆)) → {0, 1}𝑘(𝜆)
and H0∶ {0, 1}ℓ(𝜆) × (𝒞PKE × {0, 1}ℓ

′(𝜆)) → {0, 1}𝑘(𝜆) be hash functions modeled by the random oracles. HU ̸⊥′ is
summarized as Figure 18. Assuming ‘disjoint-simulatability’ of PKE, the obtained KEM scheme is IND-CCA-
secure in the QROM [SXY18, JZM19, ABC+20].

Gen(1𝜆)

(pk, sk) ← Gen(1𝜆)
𝑠 ← {0, 1}ℓ

sk ∶= (sk, pk, 𝑠)

return (sk, sk)

Encaps(pk)

𝑚 ← ℳ
ct0 ∶= Enc(pk, 𝑚)
ct1 ∶= F(𝑚) // CM
ct1 ∶= F(𝑚, pk) // sntrupr
ct ∶= (ct0, ct1)
𝐾 ∶= H(𝑚, ct)
return (𝐾, ct)

Decaps(sk, ct), where sk = (sk, pk, 𝑠) and ct = (ct0, ct1)

𝑚′ ∶= Dec(sk, ct0)
if 𝑚′ = ⊥, then return 𝐾 ∶= H0(𝑠, ct)
ct ′0 ∶= Enc(pk, 𝑚′)
ct ′1 ∶= F(𝑚′) // CM
ct ′1 ∶= F(𝑚′, pk) // sntrupr
ct ∶= (ct ′0, ct ′1)
if ct = ct ′, then return 𝐾 ∶= H(𝑚′, ct)
else return 𝐾 ∶= H0(𝑠, ct)

Fig. 18: KEM ∶= HU ̸⊥′[PKE, F,H,H0] in Classic McEliece and sntrupr of NTRU Prime.

Remark B.2. One might wonder Decaps in Classic McEliece has no explicit re-encryption check ([ABC+20,
Sec.2.3.3]). In their specification, Dec in Classic McEliece internally checks ct′0 = Enc(pk, 𝑚′) or not ([ABC+20,
Sec.2.2.4]).

C Survey of Key-Recovery Plaintext-Checking Attacks

C.1 Classic McEliece

On the McEliece and Niederreiter PKE, we recommend to read an excellent servery by Engelbert, Overbeck, and
Schmidt [EOS07]. To the best of the authors’ knowledge, there are no key-recovery plaintext-checking attack
against the McEliece and Niederreiter PKE [McE78, Nie86].

Review of Classic McEliece: Classic McEliece [ABC+20] is based on the Niederreiter PKE, in which a public key
is a scrambled parity-check matrix, a plaintext is an error vector, and a ciphertext is a syndrome.

Table 7: Parameter sets of Classic McEliece in Round 3. Note that 𝑞 = 2𝑚 and 𝑘 = 𝑛 − 𝑚𝑡. (We omit the semi-
systematic forms.)

parameter sets 𝑚 𝑛 𝑡 𝑘

kem/mceliece348864 12 3488 64 2720
kem/mceliece460896 13 4608 96 3360
kem/mceliece6688128 13 6688 128 5024
kem/mceliece6960119 13 6960 119 5413
kem/mceliece8192128 13 8192 128 6528

Define 𝒮 = {𝑒 ∈ 𝔽𝑛2 ∣ HW(𝑒) = 𝑡}, which is a plaintext space. The underlying PKE of Classic McEliece is
summarized as follows, where we only consider the systematic form and omit the details for the semi-systematic
form:

30

– Gen(pp): Choose a monic irreducible polynomial 𝑔 in 𝔽𝑞[𝑥] of degree 𝑡 and distinct 𝛼1, … , 𝛼𝑛 ← 𝔽𝑞. Compute
a parity-check matrix 𝐻̂ ∈ 𝔽𝑛×𝑘2 of the Goppa code generated by 𝑔 and 𝛼1, … , 𝛼𝑛. Reduce 𝐻̂ to systematic form
[𝐼𝑛−𝑘 ∣ 𝑇]. (If this fails, return ⊥). Output pk ∶= 𝑇 ∈ 𝔽(𝑛−𝑘)×𝑘2 and sk ∶= (𝑇 , 𝛤), where 𝛤 ∶= (𝑔, 𝛼1, … , 𝛼𝑛). We
note that using 𝛤, one can correct an error of the codeword up to 𝑡, because the minimum distance of the
Goppa code is at least 2𝑡 + 1 by design.

– Enc(pk, 𝑒): Define 𝐻 ∶= [𝐼𝑛−𝑘 ∣ 𝑇] ∈ 𝔽(𝑛−𝑘)×𝑛2 . Compute 𝑐 ∶= 𝐻𝑒 ∈ 𝔽𝑛−𝑘2 . Output 𝑐.
– Dec(sk, 𝑐): Extend 𝑐 to 𝑣 ∶= (𝑐, 0, … , 0) ∈ 𝔽𝑛2. Find the unique codeword ̃𝑐 in the Goppa code defined by 𝛤 ′

that satisfies HW(̃𝑐 − 𝑣) ≤ 𝑡. Set 𝑒 ∶= 𝑣 + ̃𝑐. If HW(𝑒) = 𝑡 and 𝑐 = 𝐻𝑒, then return 𝑒. Otherwise, return ⊥.

Notice that there are no specification on the decoding algorithm and we can choose it from existing decod-
ing algorithms: The submitted implementation uses the Berlekamp-Massey decoding algorithm [Mas69], which
corrects the error up to 𝑡. We can use the Patterson decoding algorithm [Pat75] which sometimes corrects a
(𝑡 + 1)-error. However, the decryption algorithm checks the Hamming weight of 𝑒 and such (𝑡 + 1)-error will be
rejected.

Review of key-recovery attacks against the McEliece/Niederreiter PKE:

Review of KR-PCA: There are few key-recovery attacks against the McEliece/Niederreiter PKE exploiting a
plaintext-checking oracle. Hall, Goldberg, and Schneier [HGS99] gave amessage-recovery reaction attack against
the McEliece PKE. The attack queries a ciphertext plus an 𝑖-th unit vector and determines the 𝑖-th bit of error by
seeing the decryption error occurs or not (this corresponding to 𝑡 +1 error or 𝑡 −1 error). They also pointed out if
the unpermuted code is public and the decryption oracle internally decodes 𝑡 + 1 errors sometimes, then it could
be used to determine the secret permutation matrix by calculating decryption failure rate on each bits. Engelbert,
Overbeck, and Schmidt [EOS07] surveyed the security of the McEliece and Niederreiter PKEs. They pointed out
that, when the support of the Goppa code is known, if one can obtain the permutation matrix, then one can
recover the whole secret key. Thus, we have a key-recovery plaintext-checking attack against the McEliece and
Niederreiter PKEs with certain conditions by combining them.

However, there are no known key-recovery plaintext-checking attacks against the McEliece/Niederreiter
PKEs with the weight check. We leave investigating such key-recovery plaintext-checking attack as a long-
standing open problem.

Review of key-recovery SCA/FIA: Strenzke [Str10] gave a timing attack against the McEliece PKE using Pat-
terson’s decoding algorithm which retrieves the secret permutation. Heyse, Moradi, and Paar [HMP10] gave
key-recovery SCAs against the McEliece PKE using Patterson’s decoding algorithm based on power consump-
tion. Strenzke [Str13] improve his previous attack and gave practical key-recovery timing attack which exploits
the secret permutation of the McEliece PKE using Patterson’s decoding algorithm. Petrvalsky, Richmond, Dru-
tarovsky, Cayrel, and Fischer [PRD+16] gave a DPA-based SCA against the McEliece PKE with the Patterson
decoder which retrieves a secret permutation. Bucerzan, Cayrel, Dragoi, and Richmond [BCDR17] improved
timing attack against the McEliece PKE with the Patterson decoder. Danner and Kreuzer [DK20] gave a key-
recovery FIA against the Niederreiter PKE with a binary irreducible Goppa code.

Lahr, Niederhagen, Petri, Samardjiska [LNPS20] adapted a message-recovery SCA against the McEliece PKE
with the Patterson decoder by Heyse et al. [HMP10] to Classic McEliece with a constant-time Berlekamp-Massey
decoder. Cayrel, Colombier, Drăgoi, Menu, and Bossuet [CCD+21] recently gave a practical message-recovery
FIA against Classic McEliece, in which the attacker can inject faults to replace instruction of the computation
and obtain a faulty syndrome. Those might lead to key-recovery SCA/FIA in the future.

C.2 Kyber

Review of Kyber in Round 3: Kyber [SAB+20] is a KEM scheme based on the Module LWE problem. We briefly
review the underlying PKE scheme of Kyber.

Define ℛ = ℤ[𝑥]/(𝑥𝑛 + 1) and ℛ𝑞 = ℤ𝑞[𝑥]/(𝑥𝑛 + 1). For a positive integer 𝜂, we define a central-binomial
distribution 𝛹𝜂 as (𝑎1, 𝑏1, … , 𝑎𝜂, 𝑏𝜂) ← {0, 1}2𝜂 and return ∑𝜂

𝑖=1(𝑎𝑖 − 𝑏𝑖). For a polynomial 𝑃 ∈ ℛ, 𝑃 ← 𝛹𝜂 implies
each coefficient of the polynomial is chosen from 𝛹𝜂 independently.

31

Table 8: Parameter sets of Kyber in Round 3.

parameter sets 𝑛 𝑘 𝑞 𝜂1 𝜂2 𝑑𝑈 𝑑𝑉
Kyber512 256 2 3329 3 2 10 4
Kyber768 256 3 3329 2 2 10 4
Kyber1024 256 4 3329 2 2 11 5

For 𝑥 ∈ ℤ, we define two functions: comp𝑞(𝑥, 𝑑) ∶= ⌈(2𝑑/𝑞) ⋅ 𝑥⌋ mod± 2𝑑 and decomp𝑞(𝑥, 𝑑) ∶= ⌈(𝑞/2𝑑) ⋅ 𝑥⌋.
For 𝑥 = (𝑥1, … , 𝑥𝑘) ∈ ℤ𝑘 with some 𝑘, we define comp𝑞(𝑥, 𝑑) ∶= (comp𝑞(𝑥1, 𝑑), … , comp𝑞(𝑥𝑘, 𝑑)) and
decomp𝑞(𝑥, 𝑑) ∶= (decomp𝑞(𝑥1, 𝑑), … , decomp𝑞(𝑥𝑘, 𝑑))

We have |(𝑥 − decomp𝑞(comp𝑞(𝑥, 𝑑), 𝑑)) mod± 𝑞| ≤ ⌈𝑞/2𝑑+1⌋. We also note that comp𝑞(𝑥, 1) = 1 if |𝑥 mod±

𝑞| ≤ ⌈𝑞/4⌋ and 0 otherwise.
The underlying PKE scheme of Kyber is summarized as follows:

– Gen(pp): 𝐴 ← ℛ𝑘×𝑘
𝑞 and (sk, 𝑑) ← (𝛹 𝑘

𝜂1)
2. Compute 𝐵 ∶= 𝐴 ⋅ sk + 𝑑. Output pk ∶= (𝐴, 𝐵) and sk.

– Enc(pk, 𝜇): Sample 𝑡 ← 𝛹 𝑘
𝜂1 , 𝑒 ← 𝛹 𝑘

𝜂2 , and 𝑓 ← 𝛹𝜂2 . Compute (𝑈 , 𝑉) ∶= (𝑡𝐴+ 𝑒, 𝑡𝐵 + 𝑓 + ⌈𝑞/2⌋ ⋅ 𝜇) ∈ ℛ𝑘
𝑞 ×ℛ𝑞.

Output (𝑈 ′, 𝑉 ′) ∶= (comp𝑞(𝑈 , 𝑑𝑈), comp𝑞(𝑉 , 𝑑𝑉)).
– Dec(sk, (𝑈 ′, 𝑉 ′)): Compute (𝑈 , 𝑉) ∶= (decomp𝑞(𝑈

′, 𝑑𝑈), decomp𝑞(𝑉
′, 𝑑𝑉)). Output 𝜇′ ∶= comp𝑞(𝑉 −𝑈 ⋅sk, 1).

Review of key-recovery attacks against Kyber:

Review of KR-PCA: There are key-recovery attacks against Kyber exploiting a plaintext-checking oracle or key-
mismatch oracle: Qin, Cheng, and Ding [QCD19], Ravi, Roy, Chattopadhyay, and Bhasin [RRCB20], Huguenin-
Dumittan and Vaudenay [HV20], Ravi, Bhasin, Roy, and Chattopadhyay [RBRC20], and Qin, Cheng, Zhang, Pan,
Hu, and Ding [QCZ+21].

We will follow the KR-PCA against Kyber512 in Huguenin-Dumittan and Vaudenay [HV20]. Kyber has three
parameter sets Kyber512, Kyber756, and Kyber1024. In Round 3, the submitter changed some parameters for
Kyber512 from those of Round 2.21 Since Huguenin-Dumittan and Vaudenay [HV20] (and Qin et al. [QCD19])
targets the Round 2 version of Kyber512, we need to adjust parameters in the attack.

Review of key-recovery SCA/FIA: Ravi et al. [RRCB20] implemented a plaintext-checking oracle by using SCA
against the PRF of Kyber and proposed a key-recovery SCA against Kyber. Sim et al. [SKL+20] gave a single-
trace message-recovery SCA against an encryption program of the underlying PKE of Kyber, which is an ex-
tension of a single-trace message-recovery SCA against NewHope proposed by Amiet, Curiger, Leuenberger,
and Zbinden [ACLZ20]. Their technique could be used to implement a plaintext-checking oracle, since the FO
transformation checks the re-encryption test. (See, e.g., Ravi and Roy [RR21].) Xu, Pemberton, Roy, and Os-
wald [XPRO20] gave a key-recovery SCA exploiting inverse NTT and improved the key-recovery SCA using the
message encoding/decoding of Kyber. Ravi, Bhasin, Roy, and Chattopadhyay [RBRC20] gave message recovery
SCAs exploiting the message decoding or the PRF and turned them into key-recovery SCAs against Kyber.

Bhasin, D’Anvers, Heinz, Pöppelmann, and Van Beirendonck ... [BDH+21].
Pessl and Prokop [PP21] gave key-recovery FIA which skips an instruction of message decoding.

Key-recovery attack against Kyber512 in Round 3: Let 𝜇 = 0 ∈ ℛ and let 𝜌 = ⌈𝑞/4⌋ = 832. Suppose
that we query (𝑈 ′, 𝑉 ′) to the plaintext-checking oracle with candidate plaintext 𝜇 = 0. For ease of notation, we
define 𝛿 = (𝛿0, … , 𝛿𝑛−1) ∶= 𝑉 − 𝑈 ⋅ sk − encode(pt), where 𝑈 = decomp𝑞(𝑈

′, 𝑑𝑈) and 𝑉 = decomp𝑞(𝑉
′, 𝑑𝑉). The

plaintext-checking oracle returns T if and only if |𝛿𝑖 mod± 𝑞| ≤ 𝜌 for all 𝑖 ∈ [𝑛]. (If so, (𝑈 ′, 𝑉 ′) is decrypted into
0.)

21 See “Increase noise parameter for Kyber512” and “Reduce ciphertext compression of Kyber512” in Changes to the core
Kyber design. Kyber512 has parameters (𝑛, 𝑞, 𝜂1, 𝜂2, 𝑑𝑈, 𝑑𝑉) = (256, 3329, 2, 2, 10, 3) in Round 2 and = (256, 3329, 3, 2, 10, 4) in
Round 3

32

Table 9: The behavior of 𝑚′
𝑖 of 𝑚′ = Dec(sk, (𝑈 ′, 𝑉 ′)) on a ciphertext (𝑈 ′, 𝑉 ′) with 𝑈 = (−276, 0𝑘−1) and 𝑉 =

208𝑡 ⋅ 𝑥 𝑖.

(a) Kyber512

sk 𝑖

𝑡 −3 −2 −1 0 1 2 3

−3 1 1 1 0 0 0 0
−2 1 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
+1 0 0 0 0 0 0 1
+2 0 0 0 0 0 1 1
+3 0 0 0 0 1 1 1

(b) Kyber768 and Kyber1024

sk 𝑖

𝑡 −3 −2 −1 0 1 2 3

−2 1 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
+1 0 0 0 0 0 0 1
+2 0 0 0 0 0 1 1

Lemma C.1. Let 𝑈 = (−276, 0) and 𝑈 ′ = comp𝑞(𝑈 , 𝑑𝑈). Let 𝑡 ∈ {−5, −4, −3, … , 4, 5}. Let 𝑉 = 208𝑡 ⋅ 𝑥 𝑖 =
(0, … , 208 ⋅ 𝑡 , … , 0) be a polynomial with 208𝑡 in the 𝑖-th coefficient and 0 elsewhere and 𝑉 ′ = comp𝑞(𝑉 , 𝑑𝑉). Let
𝑚′ = Dec(sk, (𝑈 ′, 𝑉 ′)). We have 𝑚′

𝑗 = 0 for all 𝑗 but 𝑖 and

𝑚′
𝑖 = 0 ⟺ |276 ⋅ sk𝑖 + 208 ⋅ 𝑡| ≤ 𝜌.

The proof is very similar to that of Huguenin-Dumittan and Vaudenay [HV20, Lemma 1] and we omit it.
See the pattern in Table 9a for sk𝑖 = 𝑠 and 𝑡 ∈ {−5, −4, … , 4, 5}. According to the table, we examine 𝑡 ∈

{−3, −2, −1, 1, 2, 3} to determine sk𝑖 ∈ {−3, −2, … , 2, 3}.

Trade-off: In the case of the skipping-equality-test attack, we can reduce the number of queries as in the case
of ntrulpr. For example, we can determine sk0, … , skℓ−1 by six faulty decapsulation results as follows:

1. For 𝑡 ∈ {−3, −2, −1, 1, 2, 3}, we prepare ciphertext (𝑈 ′, 𝑉 ′
𝑡)with 𝑈 = (−276, 0) and 𝑉𝑡 = ∑ℓ−1

𝑖=0 208𝑡𝑥 𝑖 and obtain
faulty decapsulation results 𝐾 ′

𝑡 = H(𝑚′
𝑡 , (𝑈 ′, 𝑉 ′

𝑡)) where 𝑚′
𝑡 = Dec(sk, (𝑈 ′, 𝑉 ′

𝑡)).
2. We then compute 𝐾guess,𝑡 = H(𝑚guess, (𝑈 ′, 𝑉 ′

𝑡)) for all 𝑚guess = 𝑚″‖0256−ℓ with 𝑚″ ∈ {0, 1}ℓ and 𝑡.
3. We determine the 𝑖-th coefficient of 𝑚′

𝑡 by comparing 𝐾guess,𝑡 with 𝐾𝑡.
4. We determine sk𝑖 by using the table and the 𝑖-th coefficients of all 𝑚′

𝑡

Key-recovery attack againstKyeber768 andKyber1024: Weexamine 𝑈 = (−276, 0𝑘−1)with 𝑉 = 208⋅𝑡 ⋅𝑥 𝑖 and
obtain the same table as Kyber512, while sk𝑖 ∈ [−2, +2] because 𝜂1 = 2 in Kyber768 and Kyber1024. See Table 9b
for the behavior of 𝑚′

𝑖 of 𝑚′ = Dec(sk, (𝑈 ′, 𝑉 ′)) with 𝑈 = (−276, 0𝑘−1) and 𝑉 = 208 ⋅ 𝑡 ⋅ 𝑥 𝑖 for 𝑡 ∈ {−3, −2, … , 2, 3}.
According to the table, we can determine dk𝑖 by querying (𝑈 ′, 𝑉 ′) for 𝑡 ∈ {−3, −2, +2, +3}.

Again, in the case of the skipping-equality-test attack, we can reduce the number of queries as in the case of
ntrulpr. We can determine ℓ coefficients of sk by four faulty decapsulation results as in the case of Kyber512.

C.3 NTRU

Review of NTRU: NTRU [CDH+20] is based on NTRU [HPS98] and NTRU-HRSS [HRSS17]. We here briefly
review NTRU [HPS98].

Defineℛ = ℤ[𝑥]/(𝑥𝑛−1) andℛ𝑎 = ℤ𝑎[𝑥]/(𝑥𝑛−1) for 𝑎 = 𝑞 = 2𝜖𝑞 and 3. Let𝒯 = {∑𝑛−1
𝑖=0 𝑡𝑖𝑥 𝑖 ∣ 𝑡𝑖 ∈ {−1, 0, +1}}.

Let ℒ𝑓, ℒ𝑔, ℒ𝑟, ℒ𝑚 ⊆ 𝒯 be carefully-chosen subsets of 𝒯.
The underlying PKE scheme of NTRU is summarized as follows:

– Gen(pp): (𝑓 , 𝑔) ← ℒ𝑓×ℒ𝑔. Compute 𝑓𝑞 ∶= 𝑓 −1 ∈ ℛ𝑞 and ℎ ∶= 3𝑔𝑓𝑞 ∈ ℛ𝑞. Output pk ∶= ℎ and sk ∶= (𝑓 , ℎ).
– Enc(pk, (𝑟 , 𝑚)): Output 𝑐 ∶= ℎ𝑟 + 𝑚 ∈ ℛ𝑞.
– Dec(sk, 𝑐): Compute 𝑎 ∶= 𝑐𝑓 mod±↓ 𝑞. 𝑚 ∶= 𝑎 ⋅ 𝑓 −1 mod± 3. 𝑟 ∶= (𝑐 − 𝑚) ⋅ ℎ−1 mod±↓ 𝑞. If (𝑟 , 𝑚) ∈ ℒ𝑟 × ℒ𝑚

then return (𝑟 , 𝑚); else, return ⊥.

Review of key-recovery attacks against NTRU:

33

Review of KR-PCA and more: Hoffstein and Silverman [HS00], Jaulmes and Joux [JJ00], Han, Hong, Han, and
Kwon [HHHK03], and Mol and Yung [MY08] gave key-recovery reaction attacks against unpadded NTRU. We
note that the key-recovery attack of Hoffstein and Silverman [HS00] and one of key-recovery attacks in Jaul-
mes and Joux [JJ00] can be used in the key-recovery plaintext-checking attacks. Howgrave-Graham, Nguyen,
Pointcheval, Proos, Silverman, Singer, and Whyte [HNP+03] and Gama and Nguyen [GN07] gave key-recovery
chosen-ciphertext attacks against padded NTRUs.

Ding, Deaton, Schmidt, Vishakha, and Zhang [DDS+19] gave a KR-PCA against NTRU. Since the target of
their attack [DDS+19] is old-school unpddded NTRU, we need to adjust their attack in order to make ntruhps
of NTRU in Round 3 as a target but the adjustmen is subtle and we omit the detail. Zhang, Cheng, Qin, and
Ding [ZCQD21] recently gave a KR-PCA against ntruhrss of NTRU.

Review of key-recovery SCA/FIA against NTRU: There are a lot of key-recovery SCA/FIA against NTRU. Silver-
man and Whyte [SW07] proposed a key-recovery timing attack against padded NTRUEncrypt. Atici, Batina,
Gierlichs, and Verbauwhede [ABGV08] gave key-recovery differential power analysis attack against NTRU on
FPGA. Lee, Song, Choi, and Han [LSCH10] also gave key-recovery attack using the correlation power anal-
ysis against software implementaiton of NTRU. Kamal and Youssef gave key-recovery reaction attakc using
fault [KY11] and scan-based key-recovery SCA [KY12]. Zheng, Wang, and Wei [ZWW13] gave another key-
recovery attack using power analysis against NTRU. Paterson and Villanueva-Polanco gave a cold-boot attack
against NTRU [PV17]. Gunter discussed timing attacks against reference implementations of NTRU [Gun19].
Askeland and Rønjom [AR21] proposed a key-recovery side-channel attack exploiting EM leakage of unpack of
the secret key. All of them do not exploit the plaintext-checking/key-mismatch oracle.

KR-PCA against NTRU: We review how their KR-PCA [DDS+19] works against old-school NTRU here. We
omit the details of their KR-PCAs [DDS+19, QCZ+21] against NTRU-HPS and NTRU-HRSS.

Notice that there are equivalent keys (̂𝑓 , 𝑔̂) = (±𝑓 𝑥 𝑖, ±𝑔𝑥−𝑖) such that ℎ = 3𝑔̂ ̂𝑓 −1 mod 𝑞. It is enough to get
one of such 𝑔̂ to recover whole secret key ̂𝑓 and 𝑔̂, since we can obtain ̂𝑓 = 3𝑔̂ ⋅ ℎ−1 mod 𝑞.

Determine the longest chain: We call 𝑔’s sequential coefficients as chain if they are 1’s ore −1’s: A chain in 𝑔 is
(𝑠, 𝑙) ∈ [𝑛]2 such that 𝑔𝑠 mod 𝑛 = 𝑔𝑠+1 mod 𝑝 = ⋯ = 𝑔𝑠+𝑙−1 mod 𝑝 = 𝑣 ∈ {−1, +1}. The length of chain (𝑠, 𝑙) is 𝑙. Their
key-recovery attack first find the length of the longest chain of 𝑔 and assume that 𝑔0 = 𝑔1 = ⋯ = 𝑔𝑙−1 = 1.

The attack first determine the length of the longest chain as follows: Let us consider 𝑟 = ∑𝑗−1
𝑖=0 𝑡𝑗 ⋅ 𝑥 𝑖, where 𝑡𝑗

is carefully chosen. We query a ciphertext ℎ𝑟 + 0 and a corresponding plaintext. In the decryption, we will have
𝑎 ≡ 𝑐𝑓 ≡ 𝑝𝑔𝑟 (mod 𝑞) and 𝑎𝑖 ≡ 𝑝𝑡𝑗(𝑔𝑖 mod 𝑛 + 𝑔𝑖−1 mod 𝑛 + ⋯ + 𝑔𝑖−(𝑗−1) mod 𝑛) (mod 𝑞). For 𝑗 = 1, … , 𝑘 − 1, we
will get ‘mismatch’ because 𝑡𝑗 is chosen asmax{|𝑎𝑖|} > 𝑞/2 and, for 𝑗 = 𝑘, we get ‘match’ becausemax{|𝑎𝑖|} < 𝑞/2.
The mismatch occurs a result of wrap failure in attacks against NTRU [HNP+03]. (We note that we can obtain
the same result by setting 𝑐 = ℎ ⋅ 0 + 𝑚 with 𝑚 = ∑𝑗−1

𝑖=0 𝑡𝑗 ⋅ 𝑥 𝑖. In the case, we obtain 𝑎 = 𝑚𝑓 (mod 𝑞).)

Determine the rest: Once we assume 𝑔̂ = (1, 1, … , 1, ?, … , ?), we can determine rest coefficients by querying two
ciphertexts for each coefficients. For simplicity, we assume that the longest chain is unique.

In order to determine 𝑗-th coefficient for 𝑗 ≥ 𝑘, we query two ciphertexts ℎ𝑟+ and ℎ𝑟−, where 𝑟± = ∑𝑘−1
𝑖=0 𝑡𝑥 𝑖 ±

𝑡 ⋅ 𝑥 𝑗, with corresponding plaintexts.

Number of queries: In order to determine the length 𝑘 of the longest chain, we need 𝑘 faulty decapsulation results.
In order to determine the rest coefficients, we need 2 faulty-decapsulation results on each coefficients. Thus, we
need at most 3𝑛 to recover a whole key. (2𝑛 + 10 may be enough for 99% secret keys.)

C.4 Saber

Review of Saber: Saber [DKR+20] is a KEM scheme based on theModule LWR problem. Saber has three parameter
sets LightSaber (lv.1), Saber (lv.3), and FireSaber (lv.5). See Table 10.

Defineℛ = ℤ[𝑥]/(𝑥𝑛+1) andℛ𝑎 = ℤ𝑎[𝑥]/(𝑥𝑛+1) for 𝑎 = 𝑞, 𝑝, 𝑇 , 2. Let 𝜖𝑞 = lg(𝑞), 𝜖𝑝 = lg(𝑝), and 𝜖𝑇 = lg(𝑇).
For an even positive integer 𝜇, we define a central-binomial distribution 𝛽𝜂 as (𝑎1, 𝑏1, … , 𝑎𝜇/2, 𝑏𝜇2) ← {0, 1}𝜇 and

return ∑𝜇/2
𝑖=1 (𝑎𝑖 − 𝑏𝑖) ∈ [−𝜇/2, 𝜇/2]. For a polynomial 𝑃 ∈ ℛ, 𝑃 ← 𝛽𝜇 implies each coefficient of the polynomial

is chosen from 𝛽𝜇 independently. For a positive integer 𝑥, we define shiftright(𝑥, 𝑑) as ⌊𝑥/2𝑑⌋, the result of 𝑑 bit

34

Table 10: Parameter sets of Saber in Round 3.

parameter sets 𝑛 𝑘 𝑞 𝑝 𝑇 𝜇

LightSaber 256 2 8192 1024 8 10
Saber 256 3 8192 1024 16 8
FireSaber 256 4 8192 1024 64 6

shift of 𝑥 to right. We define ℎ1 ∶= ∑𝑛−1
𝑖=0 2𝜖𝑞−𝜖𝑝−1𝑥 𝑖 ∈ ℛ𝑞, ℎ2 ∶= ∑𝑛−1

𝑖=0 (2
𝜖𝑝−2 − 2𝜖𝑝−𝜖𝑇−1 + 2𝜖𝑞−𝜖𝑝−1)𝑥 𝑖 ∈ ℛ𝑞, and

ℎ ∶= (ℎ1, … , ℎ1) ∈ ℛ𝑘
𝑞 .

The underlying PKE scheme of Saber is summarized as follows:

– Gen(pp): 𝐴 ← ℛ𝑘×𝑘
𝑞 and sk ← 𝛽𝑘𝜇 . Compute 𝐵 ∶= shiftright(𝐴 ⋅ sk + ℎ, 𝜖𝑞 − 𝜖𝑝) Output pk ∶= (𝐴, 𝐵) and sk.

– Enc(pk, 𝜇): Sample 𝑡 ← 𝛽𝑘𝜇 . Output (𝑈 , 𝑉) ∶= (shiftright(𝑡𝐴+ℎ, 𝜖𝑞−𝜖𝑝), shiftright(𝑡 ⋅𝐵+ℎ1−2𝜖𝑝−1𝜇 mod 𝑝, 𝜖𝑝−
𝜖𝑇)) ∈ ℛ𝑘

𝑝 × ℛ𝑇.
– Dec(sk, (𝑈 , 𝑉)): Return 𝜇′ ∶= shiftright(𝑈 ⋅ sk − 2𝜖𝑝−𝜖𝑇 ⋅ 𝑉 + ℎ2 mod 𝑝, 𝜖𝑝 − 1) ∈ ℛ2.

Review of key-recovery attacks against Saber:

Review of KR-PCA: For LightSaber, we follow the key-recovery attack exploiting a plaintext-checking oracle pro-
posed by Huguenin-Dumittan and Vaudenay [HV20]. For Saber and FireSaber, we follow the key-recovery attack
exploiting a plaintext-checking oracle proposed by Osumi, Uemura, Kudo, and Takagi [OUKT21]. Ravi et al. gave
a key-recovery side-channel attack against Saber [RRCB20] while they omit the details because Saber is very
similar to Kyber. Ngo, Dubrova, Guo, and Johansson [NDGJ21] proposed a key-recovery side-channel attacks
against first-order masked Saber [BDK+21] and gave a KR-PCA as the building block.

Although their attacks target the Round 2 version, we can mount them against the Round 3 versions since
Saber has no changes in Round 3.

Review of key-recovery SCA/FIA: Ravi et al. [RRCB20] gave a key-recovery SCA against Saber. Sim et al. [SKL+20]
gave a single-trace message-recovery SCA against an encryption program of the underlying PKE of Saber, which
could be used to implement a PCO of Saber. Ngo, Dubrova, Guo, and Johansson [NDGJ21] gave key-recovery
higher-order SCAs againstmasked Saber. Ngo, Dubrova, and Johansson [NDJ21] also gave key-recovery higher-
order SCAs against masked and shuffled Saber.

KR-PCA against LightSaber: We follow Huguenin-Dumittan and Vaudenay [HV20, Section 6]. We first de-
termine sk𝑖 = −5, −4, −3, −2, +2, +3, +4, +5 or some of −1, 0, +1 by querying (𝑈 , 2𝑥 𝑖) with 𝑈 = (𝑢, 0) and
𝑢 = {−60/5, −60/4, −60/3, −60/2, +60/2, +60/3, +60/4, +60/5} with guessing plaintext 0. We define 𝑉+ =
∑𝑖∈[0,𝑛)∶sk 𝑖 = 4 or 5 5𝑥 𝑖 and 𝑉− = ∑𝑖∈[0,𝑛)∶sk 𝑖 = −4 or −5 5𝑥 𝑖 and determine whether sk𝑖 = −1, 0, +1 by checking
((60, 0), 2𝑥 𝑖 + 𝑉+) and ((−60, 0), 2𝑥 𝑖 + 𝑉−) with guessing plaintext 0. Thus, we can determine a coefficient of sk
by ten non-adaptive queries to plaintext-checking oracle for LightSaber.

KR-PCA against Saber and FireSaber: Since the principle of the attack is very similar to the KR-PCA against
Kyber, we omit the detail of them. Adapting and summarizing the result of Osumi, Uemura, Kudo, and Tak-
agi [OUKT21], we obtain the table of the behavior of decrypted messages in special ciphertexts in Table 11.22

We can determine a coefficient of sk by eight and six non-adaptive queries to plaintext-checking oracle for Saber
and FireSaber, respectively.

Trade-Off: In the case of the skipping-equality-test attack, we can reduce the number of queries as in the case
of ntrulpr and Kyber. For example, we can determine first ℓ coefficient by querying (𝑈 , 𝑉) with 𝑉 = ∑ℓ

𝑖=0 2𝑥 𝑖
instead of 𝑉 = 2𝑥 𝑖. We can determine ℓ coefficients of sk by ten, eight, and six faulty decapsulation results for
LightSaber, Saber, and FireSaber, respectively.

22 They used 𝑈 = (𝑢 ⋅ 𝑥𝑛−𝑖, 0𝑘−1) and 𝑉 = 𝑡 to determine sk 𝑖. We adapt it in the form of 𝑈 = (𝑢, 0𝑘−1) and 𝑉 = 𝑡 ⋅ 𝑥 𝑖.

35

Table 11: Saber and FireSaber: The behavior of𝑚′
𝑖 of𝑚′ = Dec(sk, (𝑈 , 𝑉)) on a ciphertext (𝑈 , 𝑉)with 𝑈 = (𝑢, 0𝑘−1)

and 𝑉 = 𝑡 ⋅ 𝑥 𝑖.

(a) Saber with 𝑢 = 54 and 57

𝑢 = 54 𝑢 = 57

sk 𝑖

𝑡 0 1 0 1 2 3 4 5 6 7

−4 0 1 0 1 1 1 1 1 1 1
−3 0 0 0 1 1 1 1 1 1 1
−2 0 0 0 0 1 1 1 1 1 1
−1 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1
+1 0 0 0 0 0 0 0 1 1 1
+2 0 0 0 0 0 0 0 0 1 1
+3 0 0 0 0 0 0 0 0 0 1
+4 0 0 0 0 0 0 0 0 0 0

(b) FireSaber with 𝑢 = 15

sk 𝑖

𝑡 0 13 14 15 16 17 18

−3 0 1 1 1 1 1 1
−2 0 0 1 1 1 1 1
−1 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
+1 0 0 0 0 0 1 1
+2 0 0 0 0 0 0 1
+3 0 0 0 0 0 0 0

C.5 BIKE

Review of BIKE: BIKE in round 3 [ABB+20] is a KEM scheme based on QC-MDPC [MTSB13], which is a variant of
the McEliece PKE upon a code with quasi-cyclic (QC) moderate density parity-check (MDPC) matrix. BIKE can
be considered as the Niederreiter PKE scheme upon a code with the QC-MDPC matrix. Let ℛ ∶= 𝔽[𝑥]/(𝑥 𝑟 − 1).
Let ℋ𝑤 ∶= {(ℎ0, ℎ1) ∈ ℛ2 ∣ HW(ℎ0) = HW(𝑒1) = 𝑤/2}. Let ℰ𝑡 ∶= {(𝑒0, 𝑒1) ∈ ℛ2 ∣ HW(𝑒0, 𝑒1) = 𝑡}.

Table 12: Parameter sets of BIKE in Round 3.

parameter sets 𝑟 𝑤 𝑡

BIKE-1 12, 323 142 134
BIKE-3 24, 659 206 199
BIKE-5 40, 973 274 264

We first review a simplified version of QC-MDPC.

– Gen(pp): sk ∶= (ℎ0, ℎ1) ← ℋ𝑤, which defines a parity-check matrix 𝐻 = [𝐻0 ∣ 𝐻1] ∈ 𝔽𝑟×2𝑟2 with companion
matrices 𝐻0 and 𝐻1 of ℎ0 and ℎ1, respectively, and its systematic form is [𝐼𝑟 ∣ 𝐻̃] with an identity matrix 𝐼𝑟 of
dimension 𝑟 and 𝐻̃ = 𝐻−1

0 ⋅ 𝐻1. Output pk = ℎ ∶= ℎ−10 ⋅ ℎ1 ∈ ℛ and sk.
– Enc(pk, 𝑚; (𝑒0, 𝑒1) ∈ ℰ𝑡): Construct a generator matrix 𝐺 = [𝐻⊤ ∣ 𝐼𝑟] ∈ 𝔽𝑟×2𝑟2 from a companion matrix 𝐻 of ℎ.

Output 𝑐 ∶= 𝑚𝐺 + (𝑒0, 𝑒1) ∈ 𝔽2𝑟.
– Dec(sk, 𝑐): Output (𝑒0, 𝑒1) ← decode(𝑐, (ℎ0, ℎ1)), where decode is a decoding algorithm of the QC-MDPC

code. Compute 𝑚𝐺 ∶= 𝑐 − (𝑒0, 𝑒1). Extract 𝑚 from 𝑚𝐺 by taking the last 𝑟 position of 𝑚𝐺.

The underlying CPA-secure PKE scheme of BIKE is summarized as follows:

– Gen(pp): sk ∶= (ℎ0, ℎ1) ← ℋ𝑤. Output pk = ℎ ∶= ℎ1 ⋅ ℎ−10 ∈ ℛ and sk.
– Enc(pk, (𝑒0, 𝑒1) ∈ ℰ𝑡): Output 𝑐 ∶= 𝑒0 + 𝑒1ℎ ∈ ℛ.
– Dec(sk, 𝑐): Output (𝑒0, 𝑒1) ← decode(𝑐ℎ0, (ℎ0, ℎ1)).

Notice that 𝑐ℎ0 = 𝑒0ℎ0 + 𝑒1ℎ1, which is the syndrome of (𝑒0, 𝑒1) with the parity-check matrix spanned by ℎ0 and
ℎ1.

Review of key-recovery attacks against QC-MDPC/BIKE:

36

Review of KR-PCA: Guo, Johansson, and Stankovski [GJS16] gave a key-recovery reaction attack against QC-
MDPC, which is a variant of the McEliece encryption scheme. They observed that 1) the decryption-failure
rates (DFR) for carefully crafted ciphertexts are strongly related to the distances between 1’s in the decryption
key and 2) one can reconstruct the decryption key from the knowledge of the distances between 1’s. Paiva and
Terada [PT18] also gave a faster key-reconstruction algorithm for 2) while it requires the computation of DFRs
approximately twice. (There is a trade off.)

Review of key-recovery SCA/FIA: Chen, Eisenbarth, von Maurich, and Steinwantdt [CEvMS15] gave DPA-based
key-recovery attack against QC-MDPC implemented in a FPGA board. Rossi, Hamburg, Hutter, and Mar-
son [RHHM17] gave DPA-based key-recovery attack against QcBits [Cho16], which is an instantiation of QC-
MDPC.

Applicability to BIKE: Huguenin-Dumittan and Vaudenay [HV20] suggested that the GJS attack against QC-
MDPC may be applicable to BIKE. However, we do not know whether the GJS attack is applicable to Round-3
BIKE or not, because Round-3 BIKE is different from QC-MDPC in two points: The one is that BIKE is based on
the Niederreiter PKE, while QC-MDPC is based on the McEliece PKE. The other is that BIKE in Round 3 uses the
Black-Gray-Flip (BGF) decoder instead of the Black-Gray (BG) decoder. The former difference is not essential,
but the latter difference of the decoder would affect the power of the GJS attack.

We here report how the GJS attack is effective for round-3 BIKE.

The GJS attack against QC-MDPC: Suppose that 𝜏 is even and chosen carefully slightly larger than 𝑡 to
increase the decryption failure. Let

𝒫𝜏 ,𝑑 ∶= {(𝑒, 0) ∈ ℛ2 ∣ HW(𝑒) = 𝜏 ∧ ∃ distinct 𝑠1, … , 𝑠𝜏 s.t. 𝑒𝑠𝑖 = 1 with 𝑠2𝑖 = (𝑠2𝑖−1 + 𝑑) mod 𝑟 for 𝑖 = 1, … , 𝜏/2} .

The adversary sends a ciphertext crafted by a random sample from 𝒫𝜏 ,𝑑 to the decryption oracle and it sees the
reaction (yes or no). It can estimate DFR for each 𝑑 = 1, … , 𝑈 for the upper bound 𝑈 < 𝑟/2. Moreover, they infer
𝜇(ℎ0), which is defined as follows: Let 𝑠1, … , 𝑠𝜏 be the indices such that ℎ0[𝑠𝑖] = 1. Let 𝑑𝑟(𝑠𝑖, 𝑠𝑗) be the distance
between 𝑠𝑖 and 𝑠𝑗, that is, 𝑑𝑟(𝑠𝑖, 𝑠𝑗) = min{|𝑠𝑗 − 𝑠𝑖|, 𝑟 − |𝑠𝑗 − 𝑠𝑖|}. Define distance profile as

𝜇(ℎ0) ∶= {(𝑑, 𝜇𝑑) ∣ 𝑑 ∈ [0, 𝑟), 𝜇𝑑 = #{(𝑠𝑖, 𝑠𝑗) ∶ 0 ≤ 𝑠𝑖 < 𝑠𝑗 < 𝑟, 𝑑𝑟(𝑠𝑖, 𝑠𝑗) = 𝑑}} .

Guo et al. gave a key-recovery algorithm from distance profile 𝜇(ℎ0) [GJS16, Alg.2]. Paiva and Terada [PT18]
also gave a faster key-recovery algorithm from distance profiles 𝜇(ℎ0) and 𝜇(ℎ1).

Applying the GJS attack to BIKE:

Experimental Result: We examine the behavior of DFRs with respect to BGF decoder. We use BIKE-1, where
𝑟 = 12323, 𝑤 = 142, and 𝑡 = 134. We pick a key and estimate DFR for random 𝑀 = 2000 plaintexts chosen
from 𝒫𝜏 ,𝑑 for 𝑈 = 1, 2, … , 6162 with 𝜏 = 161 rather than 𝑡 = 134. Figure 19 shows the behavior of DFR for
𝑑 = 1, … , 6162, which varies in the range 0.0–0.5. In figure, we depict the multiplicity 0–4 by blue circle, orange
tri-down, green tri-up, red tri-left, and purple tri-right, respectively. For 𝑑 = 1, … , 1500, we can see that the
multiplicities are well separated and determine them by estimating DFR for 𝒫𝜏 ,𝑑. However, they are mixed in the
right-hand side of figure and we cannot determine the multiplicity for large distances. Hence, it seems hard to
apply the key-recovery algorithm in the GJS attack (and that in Paiva and Terada [PT18]).

We leave further investigation of key-recovery attack using DFR’s behavior as an open problem.

C.6 FrodoKEM

Review of FrodoKEM: FrodoKEM [NAB+20] is an LWE-based KEM scheme in the alternates,
Let 𝑞 = 2𝐷 for some 𝐷 ≤ 16. For a positive integer 𝐵 < 𝐷, 𝑚̄, and ̄𝑛, they use encode∶ {0, 1}𝐵𝑚̄ ̄𝑛 → ℤ𝑚̄× ̄𝑛

𝑞
and decode∶ {0, 1}𝐵𝑚̄ ̄𝑛 → {0, 1}𝐵𝑚̄ ̄𝑛. (Roughly speaking, they compute ec∶ 𝑘 ∈ [0, 2𝐵) ↦ 𝑘 ⋅ 𝑞/2𝐵 ∈ ℤ𝑞 and
dc∶ 𝐾 ∈ ℤ𝑞 ↦ ⌈𝐾2𝐵/𝑞⌋ mod 2𝐵 and arrange the result.) Let ℓ = 𝐵𝑚̄ ̄𝑛 be amessage length. They use a distribution
𝜒𝑠 that is a centered symmetric distribution whose support is {−𝑠, −(𝑠 − 1), … , 𝑠 − 1, 𝑠}. (See [NAB+20, Sect.2.2.4
and Table 3] for the concrete distribution.)

The underlying PKE scheme of FrodoKEM [NAB+20] is summarized as follows:

37

Fig. 19: BIKE: DFR for 2000 plaintexts chosen from 𝒫𝜏 ,𝑑 with 𝜏 = 161 and 𝑑 = 1, 2, … , 6162.

Table 13: Parameter sets of FrodoKEM in Round 3.

parameter sets 𝑛 𝑞 𝜎 𝑠 𝐵 𝑚̄ ̄𝑛

Frodo-640 640 215 2.8 12 2 8 8
Frodo-976 976 216 2.3 10 3 8 8
Frodo-1344 1344 216 1.4 6 4 8 8

– Gen(pp): Choose 𝐴 ← ℤ𝑛×𝑛
𝑞 , 𝑆 ← 𝜒𝑛× ̄𝑛 and 𝐸 ← 𝜒𝑛× ̄𝑛. Compute 𝐵 ∶= 𝐴𝑆 + 𝐸. Output pk ∶= (𝐴, 𝐵) and

sk ∶= 𝑆.
– Enc(pk, 𝜇): Choose 𝑆′, 𝐸′ ← 𝜒 𝑚̄×𝑛 and 𝐸″ ← 𝜒 𝑚̄× ̄𝑛. Output 𝑐 = (𝑈 , 𝑉) ∶= (𝑆′𝐴 + 𝐸′, 𝑆′𝐵 + 𝐸″ + encode(𝜇)).
– Dec(sk = 𝑆, (𝑈 , 𝑉)): Compute 𝑀 ∶= 𝑉 − 𝑈 ⋅ 𝑆 and output 𝜇′ ∶= decode(𝑀).

Review of key-recovery attacks against FrodoKEM:

Review of KR-PCA: There are several KR-PCAs against FrodoKEM by Băetu et al. [BDH+19], Ravi et al. [RRCB20],
Vacek and Vàclavek [VV20], and Qin et al. [QCZ+21]. Guo et al.’s attack can be considered as KR-PCA [GJN20].

Review of key-recovery SCA/FIA: Ravi et al. [RRCB20] gave a message-recovery SCA exploiting the message de-
coding against FrodoKEM. They use it to implement a plaintext-checking oracle and proposed a key-recovery
SCA against FrodoKEM using the above KR-CPA. Guo et al. [GJN20] gave a key-recovery timing attack against
FrodoKEM. (See subsection 5.2.) Sim et al. [SKL+20] gave a single-trace message-recovery SCA against an en-
cryption program of the underlying PKE of FrodoKEM. Their technique could be used to implement a plaintext-
checking oracle, since the FO use the encryption algorithm for the re-encryption test. (See, e.g., Ravi and
Roy [RR21].)

KR-PCA against FrodoKEM: We only give a rough idea: We have 𝑉 − 𝑈𝑆 = encode(𝜇) + 𝛥, where 𝛥 =
𝐸″ + 𝑆′𝐸 − 𝐸′𝑆 ∈ ℤ𝑚̄× ̄𝑛. The decoding is correct if and only if −𝑞/2𝐵+1 ≤ 𝛥𝑖,𝑗 < 𝑞/2𝐵+1 for all 𝑖, 𝑗 [NAB+20,
Lamma 2.18]. Thus, we can craft 𝑈 and 𝑉 to check 𝑆’s value directly. For the detail of KR-PCA, see [BDH+19,
RRCB20, VV20, QCZ+21].

C.7 HQC

Review of HQC: HQC [AAB+20] is another code-based KEM scheme in the alternates.

38

Table 14: Parameter sets of HQC in Round 3.

parameter sets 𝑟 𝑛1 𝑘1 𝑑1 𝑛2 𝑘2 𝑑2 𝑤 𝑤𝑒 𝑤𝑟

hqc-128 17, 669 46 16 31 384 8 192 66 75 75
hqc-192 35, 851 56 24 32 640 8 320 100 114 114
hqc-256 57, 637 90 32 59 640 8 320 131 149 149

Let ℛ ∶= 𝔽2[𝑥]/(𝑥 𝑟 − 1). Let 𝒞 be a decodable [𝑛1𝑛2, 𝑘] code generated by 𝐺 ∈ 𝔽𝑘×𝑛1𝑛22 , where 𝑛1𝑛2 ≤ 𝑟.
Let decode be a decoder algorithm which corrects an error up to 𝛿. Let 𝒮𝑤 ∶= {𝑥 ∈ ℛ ∣ HW(𝑥) = 𝑤}. For a
polynomial 𝐴 = ∑𝑖 𝑎𝑖𝑥 𝑖 ∈ ℛ, we define trunc(𝐴, 𝑙) = (𝑎0, … , 𝑎𝑙−1) ∈ 𝔽𝑙2.

The underlying PKE scheme of HQC is summarized as follows:

– Gen(pp): ℎ0 ← ℛ. (𝑥, 𝑦) ← 𝒮 2
𝑤 . Compute ℎ1 ∶= 𝑥 + ℎ0𝑦. Output sk ∶= (𝑥, 𝑦) and pk ∶= (ℎ0, ℎ1).

– Enc(pk, 𝑚 ∈ 𝔽𝑘2; (𝑒, 𝑓 , 𝑡) ∈ 𝒮𝑤𝑒 × 𝒮𝑤𝑟 × 𝒮𝑤𝑟): Output

𝑐 = (𝑢, 𝑣) ∶= (ℎ0𝑡 + 𝑓 , trunc(ℎ1𝑡 + 𝑒, 𝑛1𝑛2) ⊕ 𝑚𝐺) ∈ ℛ × 𝔽𝑛1𝑛22 .

– Dec(sk, (𝑢, 𝑣)): Compute 𝑎 ∶= 𝑣 ⊕ trunc(𝑢𝑦, 𝑛1𝑛2) ∈ 𝔽𝑛1𝑛22 and output decode(𝑎).

Code in Round 3: In Round 3, the submitter changed the code 𝒞 from the BCH-Repetition code to the RS-RM
code: For 𝑚 ∈ 𝔽𝑘2 ≃ 𝔽𝑘128 , 𝑚 is encoded into 𝑚1 ∈ 𝔽𝑛128 with the Reed-Solomon codes with [𝑛1, 𝑘1, 𝑑1]28 , then each
𝑚1,𝑖 ∈ 𝔽28 ≃ 𝔽82 is encoded into 𝑚̃1,𝑖 ∈ 𝔽𝑛22 with the duplicated Reed-Muller code with [𝑛2, 𝑘2, 𝑑2]2.

Review of key-recovery attacks against HQC:

Review of KR-PCA: Wafo-Tapa, Bettaieb, Bidoux, Gaborit, and Marcatel [WTBB+20] gave KR-PCA using the
informationwhether a decryptedmessage is 0 or not. Huguenin-Dumittan and Vaudenay [HV20] gave a KR-PCA
against HQC, which is inspired by a KR-PCA against Lepton [YZ17] by Băetu et al. [BDH+19]. Unfortunately,
their targets are HQC with the BCH-Repetition code.

Review of key-recovery SCA/FIA: Paiva and Terada [PT19] gave a key-recovery timing attacks against HQC,
which exploits the relation between the timing information of the internal non-constant-time decoder and the
spectrum of the secret key (as the attack against QC-MDPC). Wafo-Tapa, Bettaieb, Bidoux, Gaborit, and Marca-
tel [WTBB+20] gave key-recovery timing attack against HQC as above. Guo et al. [GJN20] pointed out a potential
timing-leakage of the equality test of HQC. Again, unfortunately, their targets are HQCwith the BCH-Repetition
code.

KR-PCA against HQC in Round 3: We give a rough idea for HQC with the RS-RM code 𝒞: Let ̃𝑦 =
trunc(𝑦 , 𝑛1𝑛2), the first 𝑛1𝑛2 coefficients of 𝑦. Let us consider (1, 𝑣) as a ciphertext and 𝑚guess = 0256 and query
them to the plaintext-checking oracle. The decryption algorithm will compute 𝑎 ∶= 𝑣 ⊕ trunc(1 ⋅ 𝑦 , 𝑛1𝑛2) = 𝑣 ⊕ ̃𝑦
and decode it into decode(𝑎). Hence, the plaintext-checking oracle on input (1, 𝑣) and 0256 tells us if decode(𝑣⊕ ̃𝑦)
is decoded into 0256 or not.

Băetu et al. [BDH+19, Section 3.5] gave an efficient algorithm to learn 𝛿 ∈ {0, 1}𝑛 from the oracle BOO(𝑥)
which returns boole(HW(𝑥 ⊕ 𝛿) ≤ 𝜌), whose number of queries is at most 𝑛 + lg(𝑛). We note that we can use the
learning algorithm of Băetu et al. [BDH+19, Section 3.5] for {0, 1}𝑛, while we consider the Reed-Solomon code
over 𝔽28 .

We will mount a two-phase attack as the attacks in [BDH+19, HV20]. Let us consider a string of 𝑛1 packets
of 𝑛2 bits. Let 𝑡1 ∶= (𝑑1 − 1)/2 be the maximum Hamming weight of an error that the Reed-Solomon decoder
can correct.

1. At first, we learn which packets of ̃𝑦 contain an error using the learning algorithm of Băetu et al.with
𝑛1 + lg(𝑛1) queries.
Each packet represents 0 and 1 by 0𝑛2 and 1𝑛2 , which can be considered as the codeword of the duplicated
Reed-Muller code corresponding to 0 and 1 in 𝔽82, respectively. Notice that ̃𝑦’s Hamming weight is at most

39

𝑤, since 𝑦 is in 𝒮𝑤, and 𝑑2 are larger than the double of 𝑤. Thus, each packet of ̃𝑦 is decoded into 0 originally
and the packet xored by 1𝑛2 is decoded into 1. The Reed-Solomon decoder will fail to decode the received
word into 0 if the received word contains at least (𝑡1 + 1) 1’s. Thus, we can use the learning algorithm for
{0, 1}𝑛1 .

2. Next, for each packet, we modify ̃𝑦 to have exactly 𝑡1 − 1 incorrect other packets and apply the learning
algorithm on the packet with the threshold of the duplicate Reed-Muller codes. This requires 𝑛2 + lg(𝑛2)
queries on each packet. After that we know ̃𝑦.

3. Finally, we compute the last rest 𝑛 − 𝑛1𝑛2 bits of 𝑦 by checking if ℎ1 − ℎ0𝑦 ∈ 𝒮𝑤 or not. This is done by brute
force on 2𝑛−𝑛1𝑛2 candidates.

C.8 NTRU Prime

NTRULPRime (ntrulpr) of NTRUPrime: Since we already gave the key-recovery attack using the plaintext-
checking oracle in section 4, we omit the details.

Streamlined NTRU Prime (sntrupr) of NTRU Prime

Streamlined NTRU Prime (sntrupr) of NTRU Prime: Streamlined NTRU Prime (sntrupr) has parameter sets 𝑝, 𝑞,
and 𝑤. 𝑝 and 𝑞 are prime numbers and 𝑤 is a positive integer. We note that 2𝑝 ≥ 3𝑤 and 𝑞 ≥ 16𝑤 +1. They choose
𝑞 = 6𝑞′ + 1 for some 𝑞′. For concrete values, see Table 15.

Table 15: Parameter sets of sntrupr of NTRU Prime

parameter sets 𝑝 𝑞 𝑤

sntrupr653 653 4621 288
sntrupr761 761 4591 286
sntrupr857 857 5167 322
sntrupr953 953 6343 396
sntrupr1013 1013 7177 448
sntrupr1277 1277 7879 492

Let ℛ ∶= ℤ[𝑥]/(𝑥𝑝 − 𝑥 − 1) and ℛ𝑎 ∶= (ℤ/𝑎)[𝑥]/(𝑥𝑝 − 𝑥 − 1) for 𝑎 = 3, 𝑞. Let 𝒯 ∶= {𝑎 = ∑𝑝−1
𝑖=0 𝑎𝑖𝑥 𝑖 ∈ ℛ ∣

𝑎𝑖 ∈ {−1, 0, +1}}, a set of “small” polynomials. Let 𝒮 ∶= {𝑎 = ∑𝑝−1
𝑖=0 𝑎𝑖𝑥 𝑖 ∈ ℛ ∣ 𝑎𝑖 ∈ {−1, 0, +1},HW(𝑎) = 𝑤}, a set

of “short” polynomials. For 𝑎 ∈ [−(𝑞 − 1)/2, (𝑞 − 1)/2], define Round(𝑎) = 3 ⋅ ⌈𝑎/3⌋.23

The underlying CPA-secure PKE scheme24 works as follows:

– Gen(pp): Choose 𝑔 ← 𝒯 that satisfies 𝑔 ∈ ℛ×
3 at random. Compute 1/𝑔 ∈ ℛ3. Choose 𝑓 ← 𝒮. Compute

ℎ ∶= 𝑔/(3𝑓) ∈ ℛ𝑞. Output pk ∶= ℎ and sk ∶= (𝑓 , 1/𝑔).
– Enc(pk, 𝑟 ∈ 𝒮): Compute ℎ𝑟 ∈ ℛ𝑞 and output 𝑐 ∶= Round(ℎ𝑟 mod± 𝑞).
– Dec(sk = (𝑓 , 𝑣), 𝑐): Compute 𝑒 ∶= (3𝑓 𝑐 mod± 𝑞) mod± 3. Compute 𝑟 ′ ∶= 𝑒𝑣 mod± 3. Output 𝑟 ′ if HW(𝑟 ′) =

𝑤. Otherwise, output 𝑟 ′invalid ∶= (1, 1, … , 1, 0, … , 0) with HW(𝑟 ′invalid) = 𝑤.

Due to rounding, we have a ‘short’ error 𝑚 such that 𝑐 = ℎ𝑟 + 𝑚.

Review of key-recovery attacks against Streamlined NTRU Prime:

23 When 𝑞 = 6𝑞′ + 1, Round([−(𝑞 − 1)/2, (𝑞 − 1)/2]) ∈ [−(𝑞 − 1)/2, (𝑞 − 1)/2].
24 ‘Streamlined NTRU Prime Core’ in the specification.

40

Review of KR-PCA: One might consider that designing a key-recovery plaintext-checking attack for sntrupr
(Streamlined NTRU Prime)is easy by following the key-recovery plaintext-checking attacks for NTRU-
HPS [DDS+19] and that for NTRU-HRSS [ZCQD21]. However, there are several obstacles and we fail to design
the KR-PCA.

The first obstacle is that it is hard to fix 𝑚 = 0, since 𝑚 is determined by ℎ𝑟 and Round(ℎ𝑟).
Even if we could fix 𝑚 = 0, there are more obstacles. Notice that Dec checks the Hamming weight of 𝑟 ′. In

the KR-PCAs against NTRU, they use small-weight plaintext (𝑟 , 0) to check the information of the secret key.
The Hamming-weight check judges such plaintexts invalid.

Very recently, Ravi, Ezerman, Bhasin, Chattopadhyay, and Roy [REB+21] proposed a key-recovery plaintext-
checking attack against the underlying PKE of sntrupr by extending the key-recovery attack by Jaulmes and
Joux [JJ00], which they call a key-recovery attack using the decryption failure oracle. They mount their attack
against sntrupr761.

Review of key-recovery SCA/FIA: Huang, Chen, and Yang [HCY19] gave key-recovery SCAs against Streamlined
NTRU Prime. Ravi, Ezerman, Bhasin, Chattopadhyay, and Roy [REB+21] gave two key-recovery SCAs. The first
one exploits side-channel information whether 𝑟 ′ = 𝑒𝑣 mod± 3 is 0 or not in decryption [REB+21, Section 3]. The
second one exploits side-channel information whether 𝑟 ′ output by Dec is valid or invalid one 𝑟 ′invalid [REB+21,
Section 4].

C.9 SIKE

Brief Review of SIKE: SIKE [JAC+20] is KEM scheme based on SIDH [JD11, DJP14]. For a survey of isogeny-based
cryptography, we recommend reading [Cos21].

Let 𝑝 = 2𝑒23𝑒3−1. Let 𝐸 be a supersingular elliptic curve over𝔽𝑝2 . Let 𝑃2, 𝑄2 ∈ 𝐸[2𝑒2] and 𝑃3, 𝑄3 ∈ 𝐸[3𝑒3] linearly
independent points of order 2𝑒2 and 3𝑒3 respectively. Let {0, 1}𝑛 be a message space and let F ∶ 𝔽𝑝2 → {0, 1}𝑛 be a
random oracle.

Roughly speaking, the underlying PKE scheme [JAC+20, Algorithm 1] is summarized as follows (for the
details, see the specification):

– isogenℓ(skℓ) with (𝑚, ℓ) = (2, 3) or (3, 2): On input skℓ ∈ [0, ℓ𝑒ℓ), compute 𝑆 ∶= 𝑃ℓ + [skℓ]𝑄ℓ, compute isogeny
𝜙ℓ∶ 𝐸 → 𝐸/⟨𝑆⟩, and compute 𝐸′𝑚 ∶= 𝐸/⟨𝑆⟩ = 𝜙ℓ(𝐸). Compute 𝑃 ′𝑚 ∶= 𝜙ℓ(𝑃𝑚) and 𝑄′

𝑚 ∶= 𝜙ℓ(𝑄𝑚). Output
(𝐸′𝑚, 𝑃 ′𝑚, 𝑄′

𝑚).25
– isoexℓ(pk𝑚, skℓ) with (𝑚, ℓ) = (2, 3) or (3, 2): On input pk𝑚 = (𝐸′ℓ , 𝑃 ′ℓ , 𝑄′

ℓ) and skℓ ∈ [0, ℓ𝑒ℓ), compute 𝑆 ∶=
𝑃 ′ℓ + [skℓ]𝑄′

ℓ and compute 𝐸″ℓ ∶= 𝐸′ℓ/⟨𝑆⟩ = 𝐸′ℓ/⟨𝜙𝑚(𝑃ℓ + [skℓ]𝑄ℓ)⟩. Compute 𝑗ℓ as the 𝑗-invariant of 𝐸″ℓ .
– Gen(pp): Choose sk3 ← [0, 3𝑒3) and pk3 ∶= isogen3(sk3). Output pk3 and sk3.
– Enc(pk3, 𝜇): Choose sk2 ← [0, 2𝑒2) and 𝑐2 ∶= isogen2(sk2). Compute 𝑗 ∶= isoex2(pk3, sk2). Compute 𝑐′ ∶=

F(𝑗) ⊕ 𝜇. Output (𝑐2, 𝑐′).
– Dec(sk3, (𝑐2, 𝑐′)): Compute 𝑗′ ∶= isoex3(𝑐2, sk3) and output 𝜇′ ∶= 𝑐′ ⊕ F(𝑗′).

Review of key-recovery attacks against SIDH/SIKE:

Review of KR-PCA: Galbraith, Petit, Shani, and Ti [GPST16] gave a key-recovery key-mismatch against SIDH
with a fixed key. This can be easily converted into a key-recovery plaintext-checking attack against the under-
lying PKE of SIKE. See e.g., a writeup by goulov and mandlebro on the problem sidhe in PlaidCTF 2020 [gm20].

Review of key-recovery SCA/FIA: Ti [Ti17] gave a key-recovery FIA against SIDH with a fixed secret and sig-
nature schemes based on SIDH, which queries a random point 𝑋, obtains 𝜙(𝑋) for a secret isogeny 𝜙, and re-
covers 𝜙. Thus, it cannot be used in the context of a key-recovery attack against PKE. Koziel, Azarderakhsh,
and Jao [KAJ17] gave key-recovery SCAs against SIDH with a fixed key and a PKE version of SIDH, which is
equivalent to the underlying PKE of SIKE. Gélin andWesolowski [GW17] gave a key-recovery FIA against SIDH
with fixed key and the PKE version of SIDH, which uses loop-abort fault-injection to stop iterating computation
of elliptic curves. Koppermann, Pop, Heyszl, and Sigl [KPHS18] gave a key-recovery SCA against SIKE and dis-
cussed countermeasures. Zhang et al. [ZYD+20] also gave a key-recovery SCA against SIKE. Tasso, De Feo, El

25 Correctly speaking, this algorithm outputs (𝑃 ′
𝑚, 𝑄′

𝑚, 𝑅′
𝑚 ∶= 𝑃 ′

𝑚 − 𝑄′
𝑚) and omits 𝐸′

𝑚. We can reconstruct 𝐸′
𝑚 from 𝑃 ′

𝑚, 𝑄′
𝑚, and

𝑅′
𝑚.

41

pp = (𝐸, 𝑃2, 𝑄2, 𝑃3, 𝑄3)

𝑐2 = (𝐸′
3, 𝑃 ′

3 , 𝑄′
3):

𝐸′
3 = 𝐸/⟨𝑃2 + [sk2]𝑄2⟩ = 𝜙2(𝐸)

𝑃 ′
3 = 𝜙2(𝑃3), 𝑄′

3 = 𝜙2(𝑄3)

pk3 = (𝐸′
2, 𝑃 ′

2 , 𝑄′
2):

𝐸′
2 = 𝐸/⟨𝑃3 + [sk3]𝑄3⟩ = 𝜙3(𝐸)

𝑃 ′
2 = 𝜙3(𝑃2), 𝑄′

2 = 𝜙3(𝑄2)

𝐸″
3 = 𝐸′

3/⟨𝑃 ′
3 + [sk3]𝑄′

3⟩

𝐸″
2 = 𝐸′

2/⟨𝑃 ′
2 + [sk2]𝑄′

2⟩

𝑗 = 𝑗(𝐸″
2) = 𝑗(𝐸″

3)

isogen2(sk2)

isoex3(𝑐2, sk3)

isogen3(sk3)

isoex2(pk3, sk2)

Fig. 20: Diagram of the underlying KE scheme of SIKE.

Mrabet, and Pontié [TDFEMP21] implemented Ti’s attack [Ti17] against the SIKE round 3 implementation and
discussed countermeasures. Genêt, and Linard de Guertechin, and Kaluđerović [GLdGK21] gave a single-trace
SCA against SIKE. We note that all of them do not exploits the equality test of SIKE.

KR-PCA against the underlying PKE scheme of SIKE: We follow the GPST attack proposed by Galbraith,
Petit, Shani, and Ti [GPST16] and adapt it to the PKE scheme. They explicitly write down a key-recovery attack
using the key-mismatch oracle against SIDH, where its secret key is sk2. They confirmed their attack is easily
applicable to the case of sk3 in [GPST16, Remark 2]. For the case of sk3, see e.g., a writeup by goulov and
mandlebro on the problem sidhe in PlaidCTF 2020 [gm20]. We here review how the attack works, because there
are some differences. For example, we need the plaintext-checking oracle instead of the key-mismatch oracle;
we do not need the scale-up factor 𝜃 in the attacks, since the uncompressed SIKE does not involve the pairing
checks.

In order to count the number of queries, we briefly review how the attack extracts sk3. Suppose that we know
the first 𝑖 trits of sk3 and write sk3 as

sk3 = 𝑘𝑖 + 𝑠𝑖3𝑖 + 𝑠′3𝑖+1,

where 𝑘𝑖 ∈ [0, 3𝑖−1) is known, 𝑠𝑖 ∈ {0, 1, 2}, and 𝑠′ ∈ ℤ are unknown.
Let pk3 = (𝐸′2, 𝑃 ′2 , 𝑄′

2). We generate 𝑐2 = (𝐸′3, 𝑃 ′3 , 𝑄′
3), where 𝐸′3 ∶= 𝐸/⟨𝑃 ′2 + [sk2]𝑄′

2⟩, 𝑃 ′3 = 𝜙2(𝑃3), and
𝑄′
3 = 𝜙2(𝑄3). We also generate 𝐸″2 ∶= 𝐸′2/⟨𝑃 ′2 + [sk2]𝑄′

2⟩, and its 𝑗-invariant 𝑗𝑘 ∶= 𝑗(𝐸′2/⟨𝑃 ′2 + [sk2]𝑄′
2⟩), and

𝑘 ∶= F(𝑗𝑘) as the encryption. In order to recover 𝑠𝑖 ∈ {0, 1, 2}, we compute

𝑐(𝑧) = (𝐸′3, 𝑃 (𝑧), 𝑄(𝑧)) = (𝐸′3, 𝑃 ′3 − [3𝑒3−𝑖−1(𝑘𝑖 + 𝑧3𝑖)]𝑄′
3, [1 + 3𝑒3−𝑖−1]𝑄′

3)

for 𝑧 = 0, 1, 2 and query (𝑐(𝑧), 𝑘) with guessing plaintext 0𝑛.
The decryption algorithm first computes

𝑆(𝑧) = 𝑃 (𝑧) + [sk3]𝑄(𝑧)

= 𝑃 ′3 − [3𝑒3−𝑖−1(𝑘𝑖 + 𝑧3𝑖)]𝑄′
3 + [sk3][1 + 3𝑒3−𝑖−1]𝑄′

3

= 𝑃 ′3 + [sk3]𝑄′
3 + [−3𝑒3−𝑖−1(𝑘𝑖 + 𝑧3𝑖) + 3𝑒3−𝑖−1(𝑘𝑖 + 𝑠𝑖3𝑖 + 𝑠′3𝑖+1)]𝑄′

3

= 𝑃 ′3 + [sk3]𝑄′
3 + [(𝑠𝑖 − 𝑧)3𝑒3−1]𝑄′

3,

where we used the fact that 𝑃 ′3 and 𝑄′
3 are of order 3𝑒3 . The subgroups ⟨𝑃 ′3+[sk3]𝑄′

3⟩, ⟨𝑃 ′3+[sk3]𝑄′
3+[3𝑒3−1]𝑄′

3⟩, and
⟨𝑃 ′3 + [sk3]𝑄′

3 + [2 ⋅ 3𝑒3−1]𝑄′
3⟩ are distinct and, (heuristically speaking), 𝑗𝑘 = 𝑗(𝐸/⟨𝑃 ′3 + [sk3]𝑄′

3 + [(𝑠𝑖 − 𝑧)3𝑒3−1]𝑄′
3⟩)

if and only if 𝑠𝑖 = 𝑧. If 𝑠𝑖 = 𝑧, then the decryption algorithm obtains the plaintext 0𝑛 and the PCO returns
1. Otherwise, it will obtain the plaintext F(𝑗𝑘) ⊕ F(𝑗(𝐸′3/⟨𝑃 ′3 + [sk3]𝑄′

3 + [(𝑠𝑖 − 𝑧)3𝑒3−1]𝑄′
3⟩)), which is not 0𝑛

heuristically, and the PCO returns 0.
In the context of the skipping-equality-test attack, we will check 𝐾 = H(0𝑘, ct) or not. Summarizing the

above, we can determine 𝑠𝑖 ∈ {0, 1, 2} for 𝑖 = 0, … , 𝑒3 − 1 by sending two queries with 𝑧 = 0 and 1 and guessing
key 𝐾 and checking the returned value.

42

	Fault-Injection Attacks against NIST's Post-Quantum Cryptography Round 3 KEM Candidates
	Introduction
	Background
	Our Contribution
	Related Works
	Organization

	Preliminaries
	Notation
	Public-Key Encryption (PKE)
	Key Encapsulation Mechanism (KEM)

	Variants of the Fujisaki-Okamoto Transformation
	FO with implicit rejection

	Key-Recovery Plaintext-Checking Attack against ntrulpr of NTRU Prime
	Key-Recovery Attack
	Trade-Off

	Skipping the Equality Test by Skipping a Single Instruction
	NTRU Prime – CCA Bug
	FrodoKEM – Timing Attack
	Kyber, Saber, and NTRU – cmov
	BIKE – For loop
	SIKE – Simple If

	Experimental Attacks
	Setup
	Results

	Countermeasure
	Conclusion
	Missing Definitions
	The variants of FO
	Other FO with implicit rejection
	FO with additional hash
	SXY
	HU with implicit rejection

	Survey of Key-Recovery Plaintext-Checking Attacks
	Classic McEliece
	Kyber
	NTRU
	Saber
	BIKE
	FrodoKEM
	HQC
	NTRU Prime
	SIKE

