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Abstract. One of the finalists in the NIST post-quantum cryptogra-
phy competition is the Classic McEliece cryptosystem. Unfortunately, its
public key size represents a practical limitation. One option to address
this problem is to use different families of error-correcting codes. Most
of such attempts failed as those cryptosystems were proved not secure.
In this paper, we propose a McEliece type cryptosystem using high min-
imum distance self-dual codes and punctured codes derived from them.
To the best of our knowledge, such codes have not been implemented in
a code-based cryptosystem until now. For the 80-bit security case, we
construct an optimal self-dual code of length 1 064, which, as far as we
are aware, was not presented before. Compared to the original McEliece
cryptosystem, this allows us to reduce the key size by about 38.5%.

Keywords: Post-quantum cryptography · McEliece cryptosystem · Self-
dual codes.

1 Introduction

The process initiated by NIST to standardize one or more quantum-resistant
public-key cryptographic algorithms is ongoing, and currently, in round 3 1 [37].
One of the four finalists for the public-key encryption and key-establishment
algorithms standard is the Classic McEliece cryptosystem. This fact indicates
that after a long time of research on the original encryption scheme [31], it
remains one of the most proven secure public-key cryptosystems.

Still, there is a major drawback, namely the size of its public key. This is
a practical limitation for broad use in the current communication systems. For
comparison, for the 128 bits security level of the McEliece cryptosystem, the size
of its public key is around 187.69 Kb [8], whereas the public key of RSA for the
same bit security is 3 Kb (or equivalently, 3 072 bits) [36, Table 2].

A significant number of studies aim to minimize the key size of the McEliece
cryptosystem by using different families of error-correcting codes. Most of the
proposed cryptosystems in the short term have been proven not secure. One
common characteristic of these systems, in contrast with the original one, is
that they use codes with a low error-correction capability [22,3,34].

1 As of June 2021.
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This paper proposes a McEliece type cryptosystem using codes with error-
correction capability higher than the capability of the codes adopted until now.
As such, this work can be seen as a study on the trade-off between the error-
correction capability and the size of the public key. More specifically, we use high
minimum distance self-dual codes and punctured codes derived from them. To
the best of our knowledge, such codes have not been implemented in a code-based
cryptosystem until now. The reason is most likely twofold: first, self-dual codes
are known up to length 130, which is too small for current security requirements.
Second, there is no fast hard-decision decoding algorithm for such codes, an
exception being the extended Golay code [40].

Our Contributions. This work studies the trade-off between the error-
correcting capability and the size of the implemented code in a McEliece type
cryptosystem. We use high minimum distance binary self-dual codes and their
punctured codes with a high error-correction capability. We call this encryption
scheme a McEliece type cryptosystem as it uses a different type of codes from
the binary Goppa codes as used in McEliece’s proposal.

A small example of the cryptosystem using a code obtained from an optimal
self-dual code of length 104 is implemented in SageMath. For the decryption pro-
cess, an appropriate decoding algorithm is adapted and implemented. Security
analysis shows that the resulting cryptosystem has at least a 22-bit security level
using a key of size 0.3251 Kb, whereas the key of the original McEliece cryp-
tosystem with the same bit security level is at least 0.462 Kb, i.e., our example
reduces the key size by about 30%.

Next, we determine the parameters of a putative optimal self-dual code,
which, if implemented in a McEliece type cryptosystem, would provide a classic
security level of 80, 128, and 256 (quantum 67, 101, and 183) bits, respectively.
Moreover, for the 80-bit security case, we construct an optimal self-dual code
of length 1 064. To the best of our knowledge, such a code is presented for the
first time. We further derive a punctured code from this example to be used as
a private key for decryption.

Our theoretical analysis estimates that the security level of the complete
system is 80 and 67 bits against classical and quantum attacks, respectively. The
size of the resulting public key is 276.39 Kb, whereas the best-known example of a
binary Goppa code providing the same bit security level in the original McEliece
cryptosystem is 449.85 Kb [8]. Therefore, in this case, we achieve a reduction of
the key size around 38.5%. The results on the 80-bit security case suggest that
self-dual codes can be used in practice in a McEliece type cryptosystem to reduce
the key size for the same security level.

2 Background

Let Fn2 be the n-dimensional vector space over the binary field F2, and let D ⊆ Fn2
be a k-dimensional subspace of Fn2 . The Hamming distance between two vectors
in Fn2 is the number of coordinates where they differ, while the Hamming weight
(or only weight) wt(v) of a vector v ∈ Fn2 is the number of the nonzero coordinates
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of v. A subspace D of Fn2 is called a binary linear code [n, k, d] where d is the
minimum Hamming distance between any pair of vectors (also called codewords)
of D. Equivalently, d is the minimum weight among all nonzero codewords of
D. The inner product in Fn2 is given by 〈u, v〉 = u1v1 + u2v2 + · · · + unvn for
u, v ∈ F2

n, and u and v are orthogonal if such product is equal to 0. Then,
D⊥ = {v ∈ Fn2 : 〈u, v〉 = 0, ∀u ∈ D} is the orthogonal of the code D.

The code D is called self-orthogonal if D ⊂ D⊥, and self-dual if D = D⊥, D.
It is known that the weight of any codeword of a binary self-dual code is even. If
an error-correcting code is a linear [n, k, d] code then it can correct t ≤ (d−1)/2
errors. Let C be a linear code and Ci the set of all words of C without the i-th
coordinate. Then, Ci is the punctured code of C on the i-th position.

2.1 McEliece Cryptosystem

The McEliece Cryptosystem is the first code-based cryptosystem proposed by
Robert McEliece in 1978 [31]. The original cryptosystem uses a binary [1 024, 524]
code with an error-correcting capability of 50 errors. The steps of the encryption
scheme are as follows:
1. Define the system parameters: k - the length of the message block, n - the

length of the ciphertext, t - the number of the intentionally added errors
(equal to the error-correcting capability of the implemented linear code).

2. Key generation: define: G - a generating matrix of an [n, k, 2t + 1] code for
which there is a fast decoding algorithm; P - a random n × n permutation
matrix and S - a random dense k × k non-singular matrix and, compute
G′ = SGP , S−1 and P−1 - the inverse of P and S. Note that G′ generates
a linear code with the same n, k and t. Then, (G′, t) - Public key, (G,P, S)
or (DecG, P, S) - Private key, where DecG is the fast decoding algorithm.

3. Encryption: split the data for encryption into k-bit blocks. Then each block
m is encrypted as r = G′m+ e, where e is a random vector of length n and
weight t.

4. Decryption: The received vector r is decrypted as follows:
(a) Compute r′ = rP−1, which is mSG+ eP−1.
(b) Decode r′ into a codeword c′ using the efficient decoding algorithm for

the code with generator matrix G, c′ = mSG.
(c) Compute c such that cG = c′ (If G is in a systematic form, then c is the

first k bits of c′).
(d) Compute m = cS−1.
The scheme above can be applied with any linear code for which a fast

decoding algorithm is known. In particular, the original system in [31] employs
a binary [1 024, 524, 101] Goppa code.

2.2 Cryptanalysis

As with any other public encryption scheme, the McEliece cryptosystem gives the
following information to the attacker: the encryption parameters, the encryption
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and decryption algorithms, and the public key. Hence, the adversary can also
select any plaintext and compute the corresponding ciphertext.

Concerning the adversary goals (total break, partial break, and distinguishing
break), there are three main categories of attacks:

– Key-recovery attack : the attacker deduces the private key.
– Message-recovery attack : the attacker obtains a part or complete plaintext

corresponding to a ciphertext without knowing the private key.
– Distinguishing attack : the attacker can distinguish the cipher from a random

message without knowledge about the private key.
Next, we consider a few of the known attacks towards the McEliece encryp-

tion scheme. For each attack, we evaluate the probability of success or the inverse
problem of evaluating the average number of attempts of the attack until the
attacker achieves its target.

For algorithmic attacks the security level of a system is defined as a mini-
mum work factor. The work factor is the average number of elementary (binary)
operations needed to perform a successful attack [2, p.72].

In the following sections, we describe the main attacks published in the rel-
evant literature, assuming that a McEliece cryptosystem is defined by a private
key (G,P, S), where G is a generator k×n matrix of a binary [n, k, 2t+ 1] code,
P is a random n×n permutation matrix, S is a random dense k×k non-singular
matrix, and a public key (G′, t) where G′ = SGP . Further, we assume that the
attacker has access to a ciphertext c produced by the encryption scheme. Thus,
we start by first recalling the components over which brute-force attacks can be
mounted. Then, we describe the basic ISD attack and its work factor, along with
some of its improved versions, particularly Stern’s ISD attack.

Brute-force Attacks. A brute-force attack can be mounted towards different
components of the encryption system:

– Towards the message: the attacker takes a random message m1 of length
k, encrypts it to c1 = m1 · G′, and computes the difference e1 = c − c1. If
the difference e1 has weight ≤ t, then the plaintext corresponding to the
ciphertext c is exactly m1 and the attack succeeds. Then the probability of
success is 1/2k since the number of all possible messages of length k is 2k.

– Towards the coset leaders of the code generated by G′: the attacker computes
the syndrome of all coset leaders. The coset leader with syndrome equal
to the syndrome of the ciphertext c is the error vector. Knowing the error
vector, one can compute the codeword and then the message. The number
of the coset leaders is |Fn2 |/|C ′| = 2n−k. Therefore, the work factor of this
attack is at least 2n−k.

– Towards the error-vector : the attacker searches among the vectors e of length
n and weight t such that the syndrome of e is equal to the syndrome of
the received vector c (the ciphertext). Thus, it is a search on e such that
S(e) = e · HT equals S(c), where H represents the parity-check matrix
corresponding to G′. This problem is equivalent to the problem of finding a
linear combination of t columns of H, which results in a column vector with
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weight S(c). Since there are
(
n
t

)
possible choices for the vector e, then the

work factor of the brute force attack towards the error vector is
(
n
t

)
.

Information Set Decoding Attacks (ISD). The Information Set Decoding
(ISD) technique was introduced by Prange in 1962 [41] as an efficient decoding
method for cyclic codes. Several works (e.g., [28,39,25]) considered increasingly
improved versions of the ISD decoding algorithm to attack the original McEliece
cryptosystem described in [31].

An information set for a [n, k] code C is any subset A = {i1, · · · , ik} of k
coordinates such that, for any given set of values bi ∈ F2, with i ∈ A, there is a
unique codeword c ∈ C. The information set thus consists of any k indices such
that the corresponding k columns of a generator matrix of C have rank k.

Let v = mG′ + e, where G′ is a generator matrix of an [n, k, 2t + 1] code C
and e is an error vector of weight t. Let A be an information set of k coordinates
such that all entries of the error vector indexed by A are 0. In summary, the
algorithm for the ISD attack works as follows:
1. Choose k out of n indices for the information set. These k columns of G′ are

permuted to the first k positions, which is G′P = [Ak|An−k], where Ak are
the chosen k columns and An−k is the rest of G′;

2. Transform the matrix [Ak|An−k] in systematic form, which takes O(k3) op-
erations [31], since it entails solving k linear equations in k unknowns. This
is equivalent to transforming G′P into [Ik|A′n−k] = UG′P , where U is the
transformation matrix;

3. Compute m as the multiplication of v by the inverse matrix G−1S . Then
e = v−mG′. If wt(e) = t, then m is the encrypted message. The possibilities
for the error vector e to have 0 coordinates in the information set are k out
of n− t coordinates, i.e.,

(
n−t
k

)
;

4. Estimate how many of the choices for k out of n columns have rank k of the
generator matrices of the family of [n, k, 2t+ 1]2 codes. In the original code-
based cryptosystem, Goppa codes were used and for these codes, around
29% of the choices of k columns are invertible.

Therefore, the work factor for the ISD attack is
k3(n

k)
β(n−t

k )
, where β is the pro-

portion of the invertible k columns out of n for the generator matrices of the
family of [n, k, 2t+ 1] codes. Note that β depends on the specific family.

Stern’s ISD Attack. Stern [47] proposed a refinement of the ISD attack, which
is based on the following result:

Lemma 1. [2, p.76] The (n, k + 1) linear code generated by

G′′ =

(
G′

x

)
=

(
G′

u ·G′ + e

)
. (1)

has only one minimum weight codeword, which coincides with e.
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The idea behind the attack is to use the extended code generated by G′′

and find the corresponding unique codeword e of weight t. Stern’s algorithm is
probabilistic, using two input parameters p and l together with the parity check
matrix of the extended code.

The work factor of one iteration of the attack is B = f1 +f2 +f3, where [47]:

f1 =
1

2
(n− k)3 + k(n− k)2 , (2)

f2 = 2pl

(
k/2

p

)
, (3)

f3 = 2p(n− k)

(
k/2
p

)2
2l

. (4)

The total work factor of the attack is B
Pt

, where Pt is the probability of finding
a codeword of weight t in one iteration. In particular, Pt is estimated in [47] as:

Pt =

(
t
2p

)(
n−t
k−2p

)(
n
k

) ·
(
2p
p

)
4p
·
(
n−k−t+2p

l

)(
n−k
l

) . (5)

Quantum Basic Information Set Decoding Attack. Let v = mG + e, G
and e be defined as before. We give the Basis Quantum Information Set Decoding
function in Algorithm 1.

Algorithm 1: Basis Quantum Information Set Decoding function

1 Choose k coordinates S = {i1, i2, ..., ik} and form the matrix GS .
If det(GS) 6= 0 then find GS

−1 else, giving up
2 Compute (vi1 , vi2 , ..., vik) ·GS−1 = m, m ∈ Fk2
3 Compute mG ∈ Fn2
4 Compute e = v −mG. If wt(e) 6= t then giving up
5 Returns 0.

Regarding [7], searching randomly a root of the function in Algorithm 1 can
succeed in approximately

(
n
k

)
/0.29

(
n−t
k

)
iterations, where one iteration of this

function has around O(n3) bit operations. Grover’s algorithm uses about square

root of the number of iterations, i.e.,
√(

n
k

)
/0.29

(
n−t
k

)
.

Then the work factor for the Basis Quantum Information Set Decoding at-
tack, which is the complete number of qubit operations for finding a solution, is

O(n3)
√(

n
k

)
/0.29

(
n−t
k

)
. Note that the meaning of 0.29 is that, on overage, 29%

of the selected matrices GS are non-singular when G is a generator matrix of
the Goppa code.

2.3 Codes Implemented in McEliece type Cryptosystems

After the publication of the original McEliece encryption scheme [31], researchers
investigated numerous variants that modify it with different types of codes. In
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Table 1. Codes used in McEliece type cryptosystems. Symbols used for current status
∗: only specific instances are broken; †: NIST submission; ‡: NIST finalist.

N Code Proposed by Current status

1 Binary Goppa codes McEliece, 1978 [31] Unbroken as of 2021

Bernstein et al., 2019 [6] Classic McEliece‡

2 GRS codes Niederreiter, 1986 [35] Broken in 1992 [46]

3 MRD codes Gabidulin, 1991 [21] Broken in 1995 [23]
Gabidulin et al., 1995 [20] Broken in 1996 [24]

4 Reed-Muller codes Sidelnikov, 1994 [45] Broken in 2007 [33]

5 QC-BCH subcodes Gaborit, 2005 [22] Broken in 2010 [38]

6 QC-LDPC codes Baldi et al., 2007 [3] Broken in 2008 [16]

7 Wild McEliece Bernstein et al., 2010 [9] Broken∗ in 2014 [14]

8 Wild McEliece Incognito Bernstein et al., 2011 [10] Broken∗ in 2014 [18]

9 Convolutional codes Löndahl et al., 2012 [30] Broken in 2013 [27]

10 QC-MDPC codes Misoczki et al., 2013 [34] Unbroken as of 2021

Aragon et al., 2019 [1] BIKE†

11 Random linear codes Wang, 2016 [48] Broken∗ in 2019 [15]

RLCE† [49]

12 Rank-Metric codes Aguilar Melchor et al., 2019 [32] Reduced security 2020 [4]

ROLLO†

13 Specific self-dual codes Domosi et al., 2019 [17] Not studied

this section, we summarize the main proposals of McEliece type cryptosystems,
mentioning the corresponding attacks and security analyses where present.

The summary in Table 1 shows that most of the implementations are broken.
The attacks used in the security analysis are mainly structural attacks, which suc-
ceeded in revealing the private key. The common problems in the broken systems
are 1) the use of codes with too much structure and 2) the structure of the public
key is not well hidden. The hardness assumption upon which code-based cryp-
tosystems ground their security is the intractability of the problem of Decoding
Random Linear Codes (DRLC). Research on the computational complexity of
this problem dates back to the seminal paper by Berlekamp et al. [5], who proved
that DRLC is NP−complete in the worst case. Later works (see, e.g., [11,12,19])
showed that DRLC is closely connected with the problem of learning parity with
noise. This leads to the widely held belief that DRLC is intractable also in the
average case and subsequently to the security assumption underlying code-based
cryptosystems. However, when the public key is distinguishable from a random
code, such an assumption is no longer true.

From the summarized results, besides the original cryptosystem based on
Goppa codes, there is one more unbroken system, BIKE, based on Quasi-Cyclic
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Moderate Density Parity Check (QC-MDPC) codes. The other two implemen-
tations (11 and 12 in Table 1) have some problems. In 11, there are six pro-
posed codes for private keys claimed as random codes, but they have a special
structure. In three of these cases, the private key has been retrieved from the
public key in polynomial time. Thus, only half of the proposed codes remain for
further studies. In 12, the authors of the proposed rank-metric codes have also
reported/published an attack that reduces the security level from 256 bits to 200
bits. After this new finding, there is no exact mapping between the parameters
of the rank-metric codes and the actual system security level.

Finally, as far as we know, entry 13 is the only published example of a self-
dual code implemented in a McEliece type cryptosystem. This code has a very
small minimum weight and cannot be considered optimal in this sense. Moreover,
there is no extensive cryptanalysis and no defined security of the system. We
include it here because we did not find any other examples of a McEliece type
cryptosystem based on self-dual codes.

3 McEliece type Cryptosystem using a Binary [104,52,18]
Code

We implement an example of a binary [104, 52, 18] self-dual code in a McEliece
type cryptosystem. The code is one of the 18 codes given in [26] that has 23 700
codewords of weight 18. The code is denoted by C.

3.1 Cryptosystem

To define the implementation, we follow the description of the McEliece cryp-
tosystem as given in Section 2.
1. System parameters:

(a) k = 52 length of the message m.
(b) n = 104 the length of the ciphertext.
(c) t = 8 the number of the intentionally added errors.

2. Key generation: let G be a generator matrix of the [104, 52, 18] self-dual
code. Since the public key G′ = SGP is expected to be in a systematic form,
P is randomly chosen, whereas S is calculated, e.g., from [GP | I52] after
Gaussian elimination.

– Choose a random 104 × 104 permutation matrix P and compute GP .
Compute a 52×52 invertible matrix S such that SGP is in a systematic
form.

– Compute G′ = SGP and, S−1 and P−1 - the inverse of P and S.
– Public key : (G′, t).
– Private key : (G,P, S).

3. Encryption: split the data for encryption into k-bit blocks. Then each block
m is encrypted as r = G′m+ e, where e is a random vector of length n and
weight t. Stated differently, the message m is encrypted with the public key
(G′, t) with t errors intentionally introduced by adding the error vector e.
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4. Decryption: the decryption steps for the received vector r are:
(a) Compute r′ = rP−1, which is mSG+ eP−1.
(b) Decode r′ into a codeword c′ using the decoding Algorithm 2, which is

discussed in Section 3.2.
(c) Compute c′ ∈ C as c′ = mSG, and denote by c the first k bits of c′ (since

G is in systematic form).
(d) Return m = cS−1.

3.2 Decoding Algorithm

The decoding algorithm that we apply in the second step of the decryption
phase described in Section 3.1 combines the two algorithms presented in [13]
and [29]. From [13], we choose one of the hard-decision deterministic decoding
schemes, namely Algorithm II, which uses the set of minimum weight codewords
of the orthogonal code. This algorithm is generalized in [29] by using any other
set of fixed weight dual codewords or a combination of such sets instead of the
minimum weight codewords.

First, we define the elements used in the decoding scheme and then the
steps of the algorithms. Let D ⊂ Fn2 be an [n, k, d] binary code and D⊥ be its
dual code with minimum distance d⊥. Denote by B the set of all codewords
in D⊥ with weight dB such that dB ≥ d⊥ (dB close to d⊥ as in [13]), i.e.,
B = {b ∈ D⊥ | wt(b) = dB}.

Let r = c+e be the received vector, where c ∈ D and e ∈ Fn2 is an error vector.
Then, for all bi ∈ B it follows that 〈r, bi〉 = 〈c+ e, bi〉 = 〈c, bi〉+ 〈e, bi〉 = 〈e, bi〉,
due to the fact that c and bi are orthogonal codewords, hence 〈c, bi〉 = 0.

Consider WTB(r) =
∑
bi∈B 〈r, bi〉 as the sum of all scalar products 〈e, bi〉,

with bi ∈ B. Stated differently, we count how many codewords in B are not
orthogonal to the received vector. Algorithm II in [13] is based on the following
observation: given two error vectors e1 and e2 with weight wt(e1) ≤ wt(e2) ≤ d

2 ,
then WTB(e1) ≤ WTB(e2) is valid in most cases (according to [13]). The steps
of this decoding scheme are given in Algorithm 2.

In [29], the considered function is a linear combination of functions asWTB(r).
The dual code D⊥ is split into sets of codewords with the same weight: B0, B,
. . . , Bn for di = 0, 1, . . . , n. The counting function equals:

U(r) =

n∑
di=0

Udi(r), where Udi(r) = αdiWTBi
(r), (6)

and where αdi ∈ R, called weighted factor, can be assumed to be only dependent
of the weight di of the dual codewords in Bdi . The function U(r) is called poten-
tial function and Udi subpotentials. According to [29], for efficient decoding it is
not necessary to use all subpotentials in the potential function but only some of
them. A decoding example presented in [29] is only using the subpotentials of
the maximum and minimum weight vectors in D⊥.

The decoding schemes that we implement are from Algorithm 2, where in-
stead of WTB(r), we are using U(r) with only one or two subpotentials and with
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Algorithm 2: Hard-decision decoding using a set of dual codewords.

1 Denote v = r, r-received vector
Calculate
X = WTB(v)

2 if X = 0 then
go to 6)

else
3 Calculate

εi = WTB(v + ei) for i = 1, 2, . . . , n,

where ei = (0, 0, . . . , 0, 1, 0, . . . , 0) with 1 in the i−th coordinate
4 Find j ∈ {1, 2, . . . , n} with

εj = min{εi | i = 1, 2, . . . , n}
5 v = v + εj

X = εj
go to 2)

6 Decode r as the codeword v. Exit.

weighted factors always equal to 1. The number of subpotentials and the value
for the factors are determined by experimental evaluation.

3.3 Decoding of the [104, 52, 18] Self-dual Code C

Let B18 be the set of all codewords in C⊥ = C of weight 18. The cardinality of
B18 is 23 700. Moreover, rank(B18) = 52, which means that the set B18 spans
the entire code.

For decoding, we use Algorithm 2 with potential function U(r) = U18(r) =
WTB18(r). A programming implementation is tested on 2 000 random examples
of received vectors r, where r = mG + e with m a random message of length
52 and e a random error vector of length 104 and wt(e) = 8. All vectors r are
correctly decoded.

In the setup, the self-dual [104, 52, 18] code C is a private key of a McEliece
type cryptosystem. Then:

1. The rows of a generator matrix G of C are orthogonal.
2. The matrix GP , P permutation matrix, generates an equivalent to C self-

dual code.
3. The matrix G′ = SGP , S being the non-singular matrix, consists of rows

which are linear combinations of rows in GP , i.e., SGP generates self-dual
code with the same minimum weight as in C.
From the last step, it follows that Algorithm 2 can be applied directly on

the public key G′ and it will decrypt any ciphertext into a message without any
additional knowledge. In order to do it, the set of minimum weight codewords
generated by G′ are required. This set can be obtained for a self-dual code by
computing all linear combinations of 1, 2, . . . , d/2 rows in G′ and in the parity-
check matrix of G′ when both matrices are in a systematic form.
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An attacker to reveal the structure of the public key only needs to check the
self orthogonality of G′ and when k = n/2, then G′ generates a self-dual code.
Self orthogonality check includes only computing k(k − 1)/2 inner products.
Generating the set of minimum weight codewords in the public key and in the
private key takes the same effort, i.e., the attacker has the work equal to the
work of the creator of the encryption system.

The number of all linear combinations is:

Lnb = 2

d/2∑
i=1

(
k

i

)
= 2

9∑
i=1

(
52

i

)
≈ 233.

We will see later that 33 bits security is much higher than the security level of
this system but this approach breaks the system entirely. Therefore, a McEliece
type cryptosystem using self-dual codes directly as a private key is vulnerable
to a key-recovery attack 2.

To avoid this vulnerability, we consider a [102, 51, 17] punctured code of the
code C for the private key, instead of the complete code C. Let matrix Gshort
be obtained from G by removing two columns and one row. Let also Cshort be
the punctured code of C generated by Gshort. The aim is to preserve the error-
correcting capability of 8 errors for Cshort. To achieve this, the set B18 must have
in the deleted columns only combinations of [0, 0], [0, 1], or [1, 0]. The particular
set B18, B18 ⊂ C, has 6 column pairs with this property. Gshort is obtained from
G particularly by removing the first two columns and the first row.

To decode the punctured [102, 51, 17] code Cshort with generator matrix
Gshort, we present two strategies: A1 and A2. Strategy A1 is a known proce-
dure to directly decode the punctured code, which is applicable for codes of a
small length,. The strategy A2 is new, applicable only when the number of er-
rors is known, and it decodes the punctured code via the complete code. If there
exists a fast decoding scheme for the complete code, the strategy A2 is suitable
for codes of any length.

A1 Decoding. This strategy performs the decoding via the Algorithm 2, using
the potential function U(r) = U17(r) + U18(r). The set B18 with the first two
columns removed is denoted by B18 short. The elements of B18 short, which are
orthogonal to Cshort and have weight 17 and weight 18, form the setsB′17 andB′18,
respectively. These two sets are used to calculate the subpotentials as U17(r) =
WTB′17(r) and U18(r) = WTB′18(r).

We obtained |B′17| = 5 929, |B′18| = 11 850, rank(B′17) = 49, rank(B′18) = 50
and together, rank(B′17∪B′18) = 51. Using B′17∪B′18 in the decoding algorithm,
we guarantee that each received vector that is orthogonal to this set will be a
codeword of the punctured code.

We tested an implementation of Algorithm 2 with the aforementioned po-
tential function U(r) on a sample of 2 000 random received vectors r. In this

2 The private key structure is revealed, and this fact can be used for direct decoding
via the public key.
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case r = mG + e with m a random message of length 51 and e a random error
vector of length 102 with wt(e) = 8. All vectors r are correctly decoded. An
experiment shows that using the Algorithm 2 only with B17 or only with B18

instead of both does not always decode. For B17, there are 238 received vectors
out of 2 000 which are not decoded, whereas for B18, there are 9 out of 2 000
also not decoded. It is confirmed that all 347 not decoded vectors are correctly
decoded using the Algorithm 2 with B′17 ∪B′18.

A2 Decoding. Let m be a message of length 51 and (0 | m) be m padded with
one zero from the left. Denote by Pshort and Sshort the permutation and the
non-singular matrices used for the public key G′short = SshortGshortPshort. The
matrix Gshort is the punctured matrix of G, defined as:

G =


g1,1 g1,2 g1,3 . . . g1,104
g2,1 g2,2
g3,1 g3,2 Gshort

...
...

g52,1 g52,2

 . (7)

One can show that:

(0 | m) · S ·G · P = (0 | m · Sshort) ·G · P =

= (m∗1,m
∗
2 | mG′short) ,

(8)

where S includes Sshort, P includes Pshort and both are given in Appendix A.
Thus, we can decode r′ of length 102 via decoding a padded (∗, ∗ | r′) of length
104 by the initial self-dual code C. The decryption including this decoding strat-
egy is described in Algorithm 3. An experiment for Algorithm 3 with 2 000
random examples of received vectors r shows that all of vectors r are correctly
decoded and decrypted.

3.4 Cryptanalysis

The attacks described in Section 2.2 are considered against the punctured code
of the [104, 52, 18] self-dual code and against the Goppa codes, which would
provide a bit security of the McEliece cryptosystem close to the bit security
provided by the first code. The chosen Goppa codes are small, only with length
n = 2m, m = 6, 7 and a number of errors from 4 till 10. The choice of parameters
for Goppa codes is also restricted by the information rate R > 0.4, R = k/n,
since the code has to be efficient, i.e., n− k check bits do not exceed much the
k information bits.
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Algorithm 3: Decryption using padded ciphertext.

1 Denote
s = [[0, 0], [0, 1], [1, 0], [1, 1]],
i = 1, t = 8, k = 51, n = 102

2 Compute
r′ = rP−1, r-received vector of length k

3 while i < 5
4 Pad

r′ into (s[i] | r′)
5 Decode

(s[i] | r′) into c1, c1 ∈ C, by Algorithm 2 with decoding set B18.
6 if 5) successful then
7 Denote

c2 = c1[3 : n+ 2], m2 = c2[1 : k]
8 Compute

m1 = m2 ∗ S−1

9 if (m1 ∈ C′short ∧ weight(m1 ∗G′short − r′) == t) then
Decrypt r as m1. Exit.

10 i = i+ 1 increase the index
11 if i == 5 then

return ’Unsuccessful decryption’. Exit.

Name Attack
A1 Brute force attack towards the message
A2 Brute force attack towards the coset leaders of the private key
A3 Brute force attack on the error-vector
A4 Basis Information Set Decoding attack
A5 Stern’s attack
A6 Basis Quantum Information Set Decoding attack
The total cost for each attack is defined in Section 2.2. In Table 2, we list

the values of log2 of the total cost for each of the attacks. The notations in
Table 2 are defined in the list above. For the attacks A4 and A6, the value of
the parameter β equals 29, 05%.

As discussed in the previous section, using a self-dual code for a private
key in a McEliece type cryptosystem is not secure. Instead, a punctured code
is considered. The values in Table 2 show that the classical bit security of the
[102, 51, 17] code Cii is 22.25 bits and the Goppa codes with the closest security
level are C3 and C4. For the quantum security level our code example is closest
to the code C8. Comparing the size of Cii with the sizes of all three Goppa codes,
C3, C4, and C8, one can show that the size of Cii is at least 28% smaller than
the sizes of C3, C4, and C8.

Remark 1. Structural attacks are not considered because both the public and
the private keys do not have any specific structure. In order to reconstruct the
private key to the initial self-dual code, 2k + (n + 2) bits have to be restored,
which has a much higher work factor than the claimed security level requires.
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Table 2. log2(Work factor) of different attacks.

Goppa codes

code n k t k(n-k) A1 A2 A3 A4 A5 A6 min(A1, ..., A5)

C1 128 100 4 2 800 100 28 23.3468 30.7427 20.2171 25.3371 20.5533
C2 128 93 5 3 255 93 35 27.9791 31.074 21.1199 25.3457 21.1199
C3 128 86 6 3 612 86 42 32.3366 31.0785 21.9873 25.1787 21.9873
C4 128 79 7 3 871 79 49 36.46 30.801 22.6618 24.8562 22.6618
C5 128 72 8 4 032 72 56 40.3789 30.2708 23.19 24.3903 23.3368
C6 128 65 9 4 095 65 63 44.1158 29.5066 23.5314 23.7869 23.5629
C7 128 58 10 4 060 58 70 47.6887 28.5193 23.7787 23.0466 23.7787
C8 128 51 11 3 927 51 77 51.1119 27.3117 23.8866 22.1645 23.8866
C9 64 52 2 624 52 12 10.9773 23.8201 14.7128 20.4607 10.9773
C10 64 46 3 828 46 18 15.3465 24.0306 16.7361 20.3007 15.3465
C11 64 40 4 960 40 24 19.2773 23.6536 17.9063 19.8097 17.9063
C12 64 34 5 1 020 34 30 22.8622 22.7898 18.5835 19.0261 18.5835
C13 64 28 6 1 008 28 36 26.1599 21.4744 18.9469 17.9482 18.9469

The self-dual code with a punctured code derived from it

Ci 104 52 8 2 704 52 52 37.9062 27.3062 22.3401 22.2038 22.3401
Cii 102 51 8 2 601 51 51 37.6741 27.2311 22.253 22.1242 22.253

4 Parameters Estimation for Self-dual Codes with Bit
Security 80, 128, and 256

To estimate parameters for the self-dual codes, which would provide a security
level of 80, 128, and 256 bits, we apply the upper bounds for the work factor of
the attacks in the previous section to the known recently proposed Goppa codes
with these security levels. Since our attacks are not the best known, we expect
to obtain higher values for the upper bounds. These higher values we use further
for the estimation of the parameters of the self-dual codes.

The private key of the original McEliece cryptosystem is a [1 024, 525] Goppa
code with the error-correcting capability of 50 errors. It is initially estimated to
provide security of 64 bits. Latter, via an improved version of Stern’s attack in [8]
the security of the system is reduced to 60.5 bits. In the same publication, the
authors proposed parameters for the Goppa codes, where implementation in the
McEliece cryptosystem would provide a security level of 80, 128, and 256 bits.
The proposed codes are listed in Table 3. The latest proposed codes providing
security levels of 128, 196, and 256 bits are in the NIST proposal [6].

From the results listed in Table 3, it follows that we have to search for codes
providing a bit security level of 83, 148, and 302 to ensure that they would
provide at least 80, 128, and 256 bits security concerning the latest attacks. In
Table 4, we list the parameters of a few such codes. A larger list is included in
Table 5 in Appendix B.

Note that these are the parameters of the punctured [n, k, 2t+ 1] codes. The
corresponding self-dual codes have to be with length n+ 2 and minimum weight
2t + 3 to ensure that the punctured codes are within the required parameters.
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Table 3. min(Log2(Workfactor)) of the attacks A1, . . . , A6 in Section 3.4.

Goppa codes

code security n k t k(n-k) min(A1, ..., A5) A6

D1 80 [8] 1 632 1 269 34 460 647 82.231 69.5887

D2 128 [8] 2 960 2 288 57 1 537 536 129.8371 96.7078

D3 128 [6] 3 488 2 720 64 2 088 960 147.4275 106.5127

D4 256 [8] 6 624 5 129 117 7 667 855 259.2255 166.1179

D5 256 [6] 6 688 5 024 128 8 359 936 265.2662 168.9545

D6 256 [6] 6 960 5 413 119 8 373 911 266.0612 169.8205

D7 256 [6] 8 192 6 528 128 10 862 592 302.1663 188.9797

The estimation for the self-dual codes is for the minimum weight with 15% less
than the upper bounds for the minimum weight of a putative self-dual code: d1 ≤
4bn1

24 c+ 4, if n1 6≡ 22 (mod 24), and d1 ≤ 4bn1

24 c+ 6, if n1 ≡ 22 (mod 24)
for a self-dual [n1, n1/2, d1] code [42].

This restriction increases the probability that such a code if it exists, is not
unique and could be constructed. The existence of a large number of codes of the
same family is a preliminary requirement for the security of the McEliece type
cryptosystem.

The size of the putative punctured codes B1, B9, and B31 is at least 38%
smaller than the size of the proposed smallest Goppa codes D1, D2, and D4

providing the security level of 80, 128, and 256 bits, correspondingly. In the next
section, we will present a possible construction of a self-dual code where the
punctured code has the parameters of B1.

Table 4. min(Log2(Workfactor)) of the attacks A1, . . . , A6 in Section 3.4.

Punctured codes

code n k t k(n-k) min(A1, ..., A5) A6

B1 1 062 531 75 281 961 87.3248 67.5796

B2 1 064 532 75 283 024 87.3264 67.5837

B8 1 076 538 75 289 444 87.2886 67.6079

B9 1 894 947 134 896 809 147.8721 101.2093

B10 1 896 948 134 898 704 147.869 101.2097

B30 1 940 970 136 940 900 149.8767 102.3316

B31 4 006 2 003 284 4 012 009 303.9682 183.5916

B32 4 008 2 004 284 4 016 016 303.9619 183.5895

B42 4 028 2 014 284 4 056 196 303.8758 183.5694
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5 A New Example of McEliece type Cryptosystem with
80-bit Security

To construct a McEliece type cryptosystem, we first define an example of a binary
[1 064, 532, d ≥ 168] self-dual code, then a punctured code of it as a private key
for the scheme. At last, an efficient decoding scheme as a part of the decryption
process is discussed.

5.1 A Binary [1 064, 532, d ≥ 162] Self-dual Code

For constructing a binary [1 064, 532, d ≥ 162] self-dual code we use a known
algorithm presented in [43] and [44]. Details about it are included in Appendix C.
Here, we provide only a summary.

Let B be a self-dual [1 064, 532, d ≥ 162] code having an automorphism σ
of order 133 with 8 cycles of length 133 and no fixed points. Without loss of
generality σ can be represented as: σ = Ω1Ω2 . . . Ω8, where Ωi is a cycle of
length 133 for 1 ≤ i ≤ 8.

Then, for the code B the following holds [43]:
1. B = Fσ(B)⊕ Eσ(B),
2. the fixed subcode π(Fσ(B)) is a binary [8, 4] self-dual code, and
3. the vectors of image ϕ(Eσ(B)) are from P8, where P is the set of even weight

polynomials in F2/(x
133 − 1).

The sets Fσ(B), Eσ(B), and the images π and ϕ are defined in Appendix C.
First, generator matrices X and Y of Fσ(B) and Eσ(B) are constructed and
then a generator matrix of the code B as

G =

(
X
Y

)
. (9)

Both matrices X and Y in Eq. 9 are included in Appendix C.
Due to computation time, the minimum weight of the code is not confirmed

to be greater or equal to 162. All linear combinations of up to 8 vectors of G
and the corresponding parity-check matrix are computed. They all have a weight
greater than or equal to 168. A random linear combination of a random number
of rows of G on a single 16 RAM Intel7 PC for 30 days did not result in a vector
with a smaller weight than 168.

5.2 McEliece Type Cryptosystem Using the New Code Example

Let B1 be a punctured [1 062, 531, d′ ≥ 160] code obtained from the self-dual
code B1 by removing the first two columns and the first row. Let us denote a
generator matrix of B1 by M . This matrix will be used for a private key of the
system.
1. System parameters:

(a) k = 531 length of the message m.
(b) n = 1 062 the length of the ciphertext.
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(c) t = 80 the number of the intentionally added errors.
2. Key generation: M - a generating matrix of code B1; P a random 1 031×1 031

permutation matrix; S - a non singular dense 531 × 531 matrix such that
G′ = SMP is in a systematic form. Compute G′ = SMP and, S−1 and P−1

- the inverse of P and S.
Public key (G′, t)
Private key (M,P, S).

3. Encryption: r = G′m+ e where m is a message block of length 531 and e is
the intentionally added random error vector of length 1 062 and weight 80.

4. Decryption: the decoding Algorithm 2 applied for the small example code of
length 102 is using the set of the minimum weight dual codewords or union
of sets with chosen weights from the dual code. For the code B1 to find
all the codewords with the minimum weight is a computationally difficult
problem. Additionally, the set can be very large, i.e., it requires a large
memory, which is a limitation for practical implementation in the current
communication systems. A decoding algorithm for self-dual codes with the
same construction as the code B is recently introduced in [50]. It uses a
smaller set of codewords with a weight equal to or slightly higher than the
minimum weight. This decoding scheme is used in Algorithm 3.

Remark 2. Due to time limitations, we could not complete the simulations to
determine an optimal decoding set of codewords.

An example of a self-dual [266, 133, 36] code, constructed via an automor-
phism of order 133 as the code B, is included in [50]. Using a set of only 2 614
codewords the mentioned decoding algorithm corrects up to t−2 errors in 100%
of the cases, where t = 17.

Note that the minimum weight of the punctured code B1 is 160, which means
B1 has an error-correcting capability of up to 79 errors. According to the esti-
mation in Section 4 for security level of 80 bits, the code B1 needs to correct
75 errors, which is t − 4. As such, we expect that the algorithm will provide
decoding with the same or close to this efficiency when using a large enough
decoding set of codewords.

6 Conclusions

This paper proposes a McEliece type cryptosystem using high minimum distance
self-dual codes and punctured codes derived from them. First, we provide a small
example of the cryptosystem using a code obtained from an optimal self-dual
code of length 104. Next, we determine the parameters of a putative optimal self-
dual code, which, if implemented in a McEliece type cryptosystem, would provide
a classic security level of 80, 128, and 256 (quantum 67, 101, and 183) bits,
respectively. For the 80-bit security case, we construct an optimal self-dual code
of length 1 064, achieving a reduction of the key size of around 38.5% compared
to the original McEliece cryptosystem. Since we proposed a new McEliece type
cryptosystem, there are several directions to follow in future work. We believe
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the next step should include further investigation concerning efficient software
implementation and run-time analysis.
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A Defining P and S for Strategy A2

The matrices S and P referred in Section 3.3 for the A2 decoding strategy are
defined as follows:

S =


1 0 . . . 0
0
... Sshort

0

 ; P =



1 0 0 . . . 0
0 1 0 . . . 0
0 0
...

... Pshort

0 0


. (10)

B Parameters of Punctured Codes Derived from
Self-dual Codes for Bit Security 80, 128, and 256

In this section, we give work factors for the attacks A1, . . . , A5. The results are
given in Table 5.

C Generating a Binary [1 064, 532, d ≥ 162] Self-dual
Code

As already mentioned, for constructing a binary [1 064, 532, d ≥ 162] self-dual
code, we use a method presented in [43] and [44]. LetB be a self-dual [1 064, 532, d ≥
162] code having an automorphism σ of order 133 with 8 cycles of length 133
and no fixed points, i.e., σ has the form: σ = Ω1Ω2 . . . Ω8, where Ωi is a cycle
of length 133 for 1 ≤ i ≤ 8.

If v ∈ B, then v can be presented as v = (v|Ω1, v|Ω2, . . . , v|Ω8), where
v|Ωi = (v0, v1, . . . , v132) denotes the coordinates of v in the i−th cycle of σ.
Let further Fσ(B) and Eσ(B) be defined as Fσ(B) = {v ∈ B| vσ = v} and
Eσ(B) = {v ∈ B| wt(v|Ωi) ≡ 0 (mod 2), i = 1, . . . , 8}.
It is known that both, Fσ(B) and Eσ(B), are linear subcodes of B. Moreover,
B = Fσ(B)⊕Eσ(B), where ⊕ stands for the direct sum of linear subspaces [43].
Then a generator matrix of B can be decomposed as:

G =

(
X
Y

)
, (11)

where X is a generator matrices of Fσ(B) and Y is a generator matrix of Eσ(B).
The map π is defined as:

π : Fσ(B)→ F8
2, π(v|Ωi) = vj

https://arxiv.org/
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Table 5. min(Log2(Workfactor)) of the attacks A1, . . . , A5 in Section 3.4.
M = {A1, ..., A5}. The horizontal lines delimit 80, 128, and 256 bit security levels.

Punctured codes

code n k t k(n-k) min(M) code n k t k(n-k) min(M)

B1 1 062 531 75 281 961 87.3248 B22 1 924 962 136 925 444 149.9394

B2 1 064 532 75 283 024 87.3264 B23 1 926 963 136 927 369 149.9266

B3 1 066 533 75 284 089 87.3118 B24 1 928 964 136 929 296 149.9236

B4 1 068 534 75 285 156 87.3136 B25 1 930 965 136 931 225 149.9108

B5 1 070 535 75 286 225 87.299 B26 1 932 966 136 933 156 149.9078

B6 1 072 536 75 287 296 87.3009 B27 1 934 967 136 935 089 149.8952

B7 1 074 537 75 288 369 87.2865 B28 1 936 968 136 937 024 149.8922

B8 1 076 538 75 289 444 87.2886 B29 1 938 969 136 938 961 149.8796

B9 1 894 947 134 896 809 147.8721 B30 1 940 970 136 940 900 149.8767

B10 1 896 948 134 898 704 147.869 B31 4 006 2 003 284 4 012 009 303.9682

B11 1 898 949 134 900 601 147.8561 B32 4 008 2 004 284 4 016 016 303.9619

B12 1 900 950 134 902 500 147.853 B33 4 010 2 005 284 4 020 025 303.9509

B13 1 902 951 134 904 401 147.8402 B34 4 012 2 006 284 4 024 036 303.9446

B14 1 904 952 134 906 304 147.8371 B35 4 014 2 007 284 4 028 049 303.9336

B15 1 906 953 134 908 209 147.8244 B36 4 016 2 008 284 4 032 064 303.9273

B16 1 908 954 134 910 116 147.8214 B37 4 018 2 009 284 4 036 081 303.9163

B17 1 910 955 134 912 025 147.8088 B38 4 020 2 010 284 4 040 100 303.9101

B18 1 912 956 134 913 936 147.8058 B39 4 022 2 011 284 4 044 121 303.8991

B19 1 918 959 136 919 681 149.9586 B40 4 024 2 012 284 4 048 144 303.8929

B20 1 920 960 136 921 600 149.9554 B41 4 026 2 013 284 4 052 169 303.8819

B21 1 922 961 136 923 521 149.9425 B42 4 028 2 014 284 4 056 196 303.8758
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for some j ∈ Ωi, i = 1, 2, . . . , 8. According to [43], π(Fσ(B)) is a binary self-dual
code of length 8. Therefore, a possible generator matrix of Fσ(B) is the matrix:

X =


s o o o o s s s
o s o o s o s s
o o s o s s o s
o o o s s s s o

 ,

where s = (1, 1, . . . , 1) is the all ones vector and o is the zero vector in F133
2 .

Let P denote the set of even-weight polynomials in R = F2[x]/(x133−1) and
map ϕ be the following:

ϕ : Eσ(B) → P8, (12)

where v|Ωi = (v0, v1, . . . , v132) is identified with the polynomial ϕ(v|Ωi)(x) =
v0 + v1x+ · · ·+ v132x

132 in P for 1 ≤ i ≤ 8.

An inner product in P8 is defined as:

〈g, h〉 = g1(x)h1(x−1) + · · ·+ g8(x)h8(x−1) (13)

for all g, h ∈ P8. The image ϕ(Eσ(C)) is a self-orthogonal code [44], i.e.,

u1(x)v1(x−1) + · · ·+ u8(x)v8(x−1) = 0, (14)

for all u, v ∈ ϕ(Eσ(B)).
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This orthogonality and the factorization of x133− 1 is used in constructing a
generator matrix Y ′ of ϕ(Eσ(B)). A possible variant is the following one:

Y ′ =



e1(x) 0 0 0 0 α1(x) α1(x) α1(x)
0 e1(x) 0 0 α1(x) 0 α2

1(x) α3
1(x)

0 0 e1(x) 0 α1(x) α2
1(x) 0 α2

1(x)
0 0 0 e1(x) 0 α2

1(x) α3
1(x) α4

1(x)
0 α2(x) α2(x) 0 e2(x) 0 0 0

α2(x) 0 α2
2(x) α2

2(x) 0 e2(x) 0 0
α2(x) α2

2(x) 0 α3
2(x) 0 0 e2(x) 0

α2(x) α3
2(x) α2

2(x) α4
2(x) 0 0 0 e2(x)

e3(x) 0 0 0 0 α3(x) α2
3(x) α3

3(x)
0 e3(x) 0 0 α2

3(x) 0 α3
3(x) α5

3(x)
0 0 e3(x) 0 α7

3(x) α13
3 (x) 0 α17

3 (x)
0 0 0 e3(x) α5

3(x) α21
3 (x) α23

3 (x) 0
0 α2

4(x) α7
4(x) α5

4(x) e4(x) 0 0 0
α4(x) 0 α13

4 (x) α21
4 (x) 0 e4(x) 0 0

α2
4(x) α3

4(x) 0 α23
4 (x) 0 0 e4(x) 0

α3
4(x) α5

4(x) α17
4 (x) 0 0 0 0 e4(x)

e5(x) 0 0 0 0 α5(x) α2
5(x) α3

5(x)
0 e5(x) 0 0 α2

5(x) 0 α3
5(x) α7

5(x)
0 0 e5(x) 0 α5

5(x) α11
5 (x) α13

5 (x) α17
5 (x)

0 0 0 e5(x) α7
5(x) α21

5 (x) α23
5 (x) 0

0 α2
6(x) α5

6(x) α7
6(x) e6(x) 0 0 0

α6(x) 0 α11
6 (x) α21

6 (x) 0 e6(x) 0 0
α2
6(x) α3

6(x) α13
6 (x) α23

6 (x) 0 0 e6(x) 0
α3
6(x) α7

6(x) α17
6 (x) 0 0 0 0 e6(x)

e7(x) 0 0 0 0 α7(x) α2
7(x) α7

7(x)
0 e7(x) 0 0 α13

7 (x) 0 α27
7 (x) α31

7 (x)
0 0 e7(x) 0 α3

7(x) α5
7(x) 0 α11

7 (x)
0 0 0 e7(x) α17

7 (x) α7
7(x) α7(x) 0

0 α13
8 (x) α3

8(x) α17
8 (x) e8(x) 0 0 0

α8(x) 0 α5
8(x) α7

8(x) 0 e8(x) 0 0
α2
8(x) α27

8 (x) 0 α8(x) 0 0 e8(x) 0
α7
8(x) α31

8 (x) α11
8 (x) 0 0 0 0 e8(x)

e9(x) 0 0 0 α9(x) α9(x) α319
9 (x) α233370

9 (x)
0 e9(x) 0 0 α2

9(x) α2
9(x) α9(x) α49

9 (x)
α512
9 (x) α1024

9 (x) α1139
9 (x) 0 e9(x) 0 0 0

α512
9 (x) α1024

9 (x) α149579
9 (x) α338

9 (x) 0 e9(x) 0 0


where the coefficients of the polynomials ei(x) and αi(x) for i = 1, 2, . . . , 9 are
given in Table 6. Each of the entry polynomials in Y ′ generates a right circulant
3 × 133 matrix for the first 8 rows in Y ′ and a 18 × 133 right circulant matrix
for the rest of 28 rows in Y ′. The corresponding matrix with the circulants is

the generator matrix Y of Eσ(B), i.e., Y =

 y1,1 y1,8
...

...
y36,1 y36,8

 , where yi,j are right-

circulant 3×133 cells for the first 8 rows in Y ′ and yi,j are right-circulant 18×133
cells for the next 28 rows.
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Table 6. The coefficients of a(x) = a0x
0 + a1x

1 + · · ·+ a132x
132 in F2[x]/(x133 − 1)

Pol. (a0, a1, a2, . . . , a132)

e1(x) 1110100111010011101001110100111010011101001110100111010011101001110
100111010011101001110100111010011101001110100111010011101001110100

α1(x) 1001110100111010011101001110100111010011101001110100111010011101001
110100111010011101001110100111010011101001110100111010011101001110

e2(x) 1001011100101110010111001011100101110010111001011100101110010111001
011100101110010111001011100101110010111001011100101110010111001011

α2(x) 1011100101110010111001011100101110010111001011100101110010111001011
100101110010111001011100101110010111001011100101110010111001011100

e3(x) 0001001101011110011001111010100100111001011111111101100110010111000
010111101011000101011111110101110001111000011100100110010101000000

α3(x) 0111110001010000001101110010011110001111101111011111110111100010101
101100010010101100100001100000101010000100110011001001100101111010

e4(x) 0000000101010011001001110000111100011101011111110101000110101111010
000111010011001101111111110100111001001010111100110011110101100100

α4(x) 0010111101001100100110011001000010101000001100001001101010010001101
101010001111011111110111101111100011110010011101100000010100011111

e5(x) 0111101110001111110001001110111010110100001000001110110010111001110
110100111010101001100000101001011100111110100110010111101001110100

α5(x) 1001110111001101110101010101001010011110100001000001001000011110011
001001010100101100101110110100110111010110010010000101110010000011

e6(x) 0001011100101111010011001011111001110100101000001100101010111001011
011100111010011011100000100001011010111011100100011111100011101111

α6(x) 1110000010011101000010010011010111011001011011101001101001010100100
110011110000100100000100001011110010100101010101011101100111011100

e7(x) 0110110110100010100011000101100111010000111001010110011110000111101
101100000010110111001011101100110110001101011110101010011111011011

α7(x) 1010100001010000001001110111001111011101000111100111110001001001111
001110110011111000000000111111010100010100011101110111111001111001

e8(x) 0110110111110010101011110101100011011001101110100111011010000001101
101111000011110011010100111000010111001101000110001010001011011011

α8(x) 110011110011111101110111000101000101011111100000000011111001101110
011110010010001111100111100010111011110011101110010000001010000101

e9(x) 0111111111111111111011111111111111111101111111111111111110111111111
111111111011111111111111111101111111111111111110111111111111111111

α9(x) 1011011000010100010101101100001010001010110110000101000101011011000
010100010101101100001010001010110110000101000101011011000010100010
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