
Dynamic Probabilistic Input Output Automata1

(Extended Version)2

Pierre Civit #3

Sorbonne Université, CNRS, LIP6, France4

Maria Potop-Butucaru #5

Sorbonne Université, CNRS, LIP6, France6

Abstract7

We present probabilistic dynamic I/O automata, a framework to model dynamic probabilistic systems.8

Our work extends dynamic I/O Automata formalism of Attie & Lynch [2] to probabilistic setting.9

The original dynamic I/O Automata formalism included operators for parallel composition, action10

hiding, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion.11

They can model mobility by using signature modification. They are also hierarchical: a dynamically12

changing system of interacting automata is itself modeled as a single automaton. Our work extends13

to probabilistic settings all these features. Furthermore, we prove necessary and sufficient conditions14

to obtain the implementation monotonicity with respect to automata creation and destruction. Our15

construction uses a novel proof technique based on homomorphism that can be of independent16

interest. Our work lays down the foundations for extending composable secure-emulation of Canetti et17

al. [5] to dynamic settings, an important tool towards the formal verification of protocols combining18

probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure19

distributed computation, cybersecure distributed protocols etc).20

2012 ACM Subject Classification Theory of computation Distributed algorithms21

Keywords and phrases Automata, Distributed Computing, Formal Verification, Dynamic systems22

1 Introduction23

Distributed computing area faces today important challenges coming from modern applica-24

tions such as peer-to-peer networks, cooperative robotics, dynamic sensor networks, adhoc25

networks and more recently, cryptocurrencies and blockchains which have a tremendous26

impact in our society. These newly emerging fields of distributed systems are characterized27

by an extreme dynamism in terms of structure, content and load. Moreover, they have to28

offer strong guaranties over large scale networks which is usually impossible in deterministic29

settings. Therefore, most of these systems use probabilistic algorithms and randomized30

techniques in order to offer scalability features. However, the vulnerabilities of these systems31

may be exploited with the aim to provoke an unforeseen execution that diverges from the32

understanding or intuition of the developers. Therefore, formal validation and verification of33

these systems has to be realized before their industrial deployment.34

It is difficult to attribute the first formalization of concurrent systems to some particular35

authors [18, 9, 1, 17, 10, 14, 8]. Lynch and Tuttle [11] proposed the formalism of Input/Output36

Automata to model deterministic asynchronous distributed systems. Relationship between37

process algebra and I/O automata are discussed in [21, 16]. Later, this formalism is extended38

by Segala in [20] with Markov decision processes [19]. In order to model randomized39

distributed systems Segala proposes Probabilistic Input/Output Automata. In this model40

each process in the system is an automaton with probabilistic transitions. The probabilistic41

protocol is the parallel composition of the automata modeling each participant.42

The modelisation of dynamic behavior in distributed systems has been addressed by43

Attie & Lynch in [2] where they propose Dynamic Input Output Automata formalism. This44

formalism extends the Input/Output Automata with the ability to change their signature45

mailto:pierre.civit@lip6.fr
mailto:maria.potop-butucaru@lip6.fr

2 Dynamic Probabilistic Input Output Automata (Extended Version)

dynamically (i.e. the set of actions in which the automaton can participate) and to create46

other I/O automata or destroy existing I/O automata. The formalism introduced in [2] does47

not cover the case of probabilistic distributed systems and therefore cannot be used in the48

verification of recent blockchains such as Algorand [6].49

In order to respond to the need of formalisation in secure distributed systems, Canetti50

& al. proposed in [3] task-structured probabilistic Input/Output automata (TPIOA) spe-51

cifically designed for the analysis of cryptographic protocols. Task-structured probabilistic52

Input/Output automata are Probabilistic Input/Output automata extended with tasks that53

are equivalence classes on the set of actions. The task-structure allows a generalisation of54

"off-line scheduling" where the non-determinism of the system is resolved in advance by a55

task-scheduler, i.e. a sequence of tasks chosen in advance that trigger the actions among56

the enabled ones. They define the parallel composition for this type of automata. Inspired57

by the literature in security area they also define the notion of implementation for TPIOA.58

Informally, the implementation of a Task-structured probabilistic Input/Output automata59

should look "similar" to the specification whatever will be the external environment of60

execution. Furthermore, they provide compositional results for the implementation relation.61

Even thought the formalism proposed in [5] (built on top of the one of [3]) has been already62

used in the formal proof of various cryptographic protocols [4, 22], this formalism does not63

capture the dynamicity of probabilistic dynamic systems such as peer-to-peer networks or64

blockchains systems where the set of participants dynamically changes.65

Our contribution. In order to cope with dynamicity and probabilistic nature of66

modern distributed systems we propose an extension of the two formalisms introduced in67

[2] and [3]. Our extension uses a refined definition of probabilistic configuration automata68

in order to cope with dynamic actions. The main result of our formalism is as follows: the69

implementation of probabilistic configuration automata is monotonic to automata creation70

and destruction. That is, if systems XA and XB differ only in that XA dynamically creates71

and destroys automaton A instead of creating and destroying automaton B as XB does, and72

if A implements B (in the sense they cannot be distinguished by any external observer),73

then XA implements XB. This result enables a design and refinement methodology based74

solely on the notion of externally visible behavior and permits the refinement of components75

and subsystems in isolation from the rest of the system. In our construction, we exhibit the76

need of considering only creation-oblivious schedulers in the implementation relation, i.e.77

a scheduler that, upon the (dynamic) creation of a sub-automaton A, does not take into78

account the previous internal actions of A to output (randomly) a transition. Surprisingly,79

the task-schedulers introduced by Canetti & al. [3] are not creation-oblivious. Interestingly,80

an important contribution of the paper of independent interest is the proof technique we used81

in order to obtain our results. Differently from [2] and [3] which build their constructions82

mainly on induction techniques, we developed an elegant homomorphism based technique83

which aim to render the proofs modular. This proof technique can be easily adapted in order84

to further extend our framework with cryptography and time.85

It should be noted that our work is an intermediate step before extending composable86

secure-emulation [5] to dynamic settings. This extension is necessary for formal verification87

of secure dynamic distributed systems (e.g. blockchain systems).88

Paper organization. The paper is organized as follow. Section 3 is dedicated to89

a brief introduction of the notion of probabilistic measure and recalls notations used in90

defining Signature I/O automata of [2]. Section 4 builds on the frameworks proposed in91

[2] and [3] in order to lay down the preliminaries of our formalism. More specifically, we92

introduce the definitions of probabilistic signed I/O automata and define their composition93

P. Civit and M. Potop-Butucaru 3

and implementation. In Section 5 we extend the definition of configuration automata proposed94

in [2] to probabilistic configuration automata then we define the composition of probabilistic95

configuration automata and prove its closeness in Section 7. Section 6 contains definitions96

related to the behavioural semantic of automata, e.g. executions, traces, etc. Section 897

introduces implementation relationship, which allows to formalise the idea that a concrete98

system is meeting the specification of an abstract object. The key result of our formalisation,99

the monotonicity of PSIOA implementations with respect to creation and destruction, is100

presented in the end of Section 9 and demonstrated in the remaining sections, up to Section101

14). Section 15 explains why the off-line scheduler introduced by Canetti & al. [5] is not102

creation-oblivious and therefore cannot be used to obtain our key result.103

2 Warm up104

In this section we describe the paper in a very informal way, giving some intuitions on the105

role of each section. The section 3 gives some preliminaries on probability and measure,106

while a glossary can be found at the end of the document, section 17.107

2.1 Probabilistic Signature Input/Output Automata (PSIOA)108

The section 4 defines the notion of probabilistic signature Input/Output automata (PSIOA).109

A PSIOA A is an automaton that can move from one state to another through actions. The110

set of states of A is then denoted QA, while we note q̄A ∈ QA the unique start state of A. At111

each state q ∈ QA some actions can be triggered in its signature sig(A)(q). Such an action112

leads to a new state with a certain probability. The measure of probability triggered by an113

action a in a state q is denoted η(A,q,a). The model aims to allow the composition of several114

automata (noted A1||...||An) to capture the idea of an interaction between them. That is115

why a signature is composed by three categories of actions: the input actions, the output116

actions and the internal actions. In practice the input actions of an automaton potentially117

aim to be the ouput action of another automaton and vice-versa. Hence an automaton can118

influence another one through a shared action. The comportment of the entire system is119

formalised by the automaton issued from the compostion of the automata of the system.120

After this, we can speak about an execution of an automaton, which is an alternating121

sequence of states and actions. We can also speak about a trace of an automaton, which122

is the projection of an execution on the external actions uniquely. This allows us to speak123

about external behaviour of a system, that is, what can we observe from an outside point of124

view.125

2.2 Scheduler126

We remarked in the example of figure 2 that an inherent non-determinism has to be solved127

to be able to define a measure of probability on the executions. This is the role of the128

scheduler which is a function σ : Frags∗(A)→ SubDisc(DA) that (consistently) maps an129

execution fragment to a discrete sub-probability distributions on set of discrete transitions of130

the concerned PSIOA A. Loosely speaking, the scheduler σ decides (probabilistically) which131

transition to take after each finite execution fragment α. Since this decision is a discrete132

sub-probability measure, it may be the case that σ chooses to halt after α with non-zero133

probability: 1− σ(α)(DA) > 0.134

A scheduler σ generate a measure ϵσ on the sigma-field FExecs(A) generated by cones of135

executions (of the form Cαx = {αx⌢αy|αy ∈ Frags(A)}), and so a measure on the measurable136

4 Dynamic Probabilistic Input Output Automata (Extended Version)

Figure 1 A representation of two automata U and V . In the top line, we see the PSIOA U in
a state q1

U , s.t. sig(U)(q1
U) = (out(U)(q1

U), in(U)(q1
U), int(U)(q1

U)) = ({b, c}, {d}, {g}), the PSIOA
V in a state q1

V , s.t. sig(V)(q1
V) = (out(V)(q1

V), in(V)(q1
V), int(V)(q1

V)) = ({d, e}, {c, f}, {h}) and
the result of their composition, the PSIOA U ||V in a state (q1

U , q1
V), s.t. sig(U ||V)((q1

U , q1
V)) =

(out(U ||V)((q1
U , q1

V)), in(U ||V)((q1
U , q1

V)), int(U ||V)((q1
U , q1

V) = ({b, c, d, e}, {f}, {g, h}). In the
second line we see the same PSIOA but in different states, with different signatures.

space (G,FG) for any measurable function f from (Execs(A),FExecs(A)) to (G,FG). Hence,137

when a scheduler is made explicit, we can state the probability that a cone of execution138

is reached and that a property holds. We denote by ϵσ : Execs(A) → [0, 1] the execution139

distribution generated by the scheduler σ.140

2.3 Environment, external behavior, implementation141

Now it is possible to define the crucial concept of implementation that captures the idea142

that an automaton A "mimics" another automaton B. To do so, we define an environment143

E which takes on the role of a "distinguisher" for A and B. In general, an environment144

of an automaton A is just an automaton compatible with A but some additional minor145

technical properties can be assumed. The set of environments of the automaton A is denoted146

env(A). The information used by an environment to attempt a distinction between two147

automata A and B s.t. E ∈ env(A) ∩ env(B) is captured by a function f(.,.) that we call148

insight function. In the literature, we very often deal with (i) f(E,A) = trace(E,A) or (ii)149

proj(E,A) : α ∈ Execs(E||A) 7→ α ↾ E , the function that maps every execution to its projection150

on the environment. The philosophy of the two approaches are the same ones, but we proved151

monotonicity of external behaviour inclusion only for proj(.,.).152

For any insight function f(.,.), we denote by f -distE,A(σ) the image measure of ϵσ153

under f(E,A). From here, this is classic to define the f -external behaviour of A, denoted154

ExtBehf
A : E ∈ env(A) 7→ {f -distA,E(σ)|σ ∈ schedulers(E||A)}. Such an object capture all155

the possible measures of probability on the external interaction of the concerned automaton156

A and an arbitrary environment E . Finally we can say that A f -implements B if ∀E ∈157

env(A) ∩ env(B), ExtBehf
A(E) ⊆ ExtBehf

B(E), i.e. for any "distinguisher" E for A and B,158

for any possible distribution f -dist(E,A)(σ) of the interaction between E and A generated159

by a scheduler σ ∈ schedulers(E||A), there exists a scheduler σ′ ∈ schedulers(E||B) s.t. the160

distribution f -dist(E,B)(σ′) of the interaction between E and B generated by σ′ is the same,161

i.e. for every external perception ζ ∈ range(f(E,A)) ∪ range(f(E,B)), f -dist(E,A)(σ)(ζ) = f -162

P. Civit and M. Potop-Butucaru 5

Figure 2 The figure represents a tree of possible executions for a PSIOA A. The red dots
(q0, q1,., q2,., q3,.) represents some states of the PSIOA. The PSIOA can move from on state to
another through actions (a, b, c, d, e, f, ...) represented with colored solid arrows. Such an action
act, triggered from a specif state q does not lead directly to another state q′ but to a probabilistic
distribution on states η(A,q,act) represented by a white dot and as many dashed black arrows as
states in the support of η(A,q,act).For example, the PSIOA A can be in state q0, trigger the action a

that leads him to η(A,q,a) and hence to q1,u with probability 1/4 and to q1,v with probability 3/4.
The sequence q0, a, q1,v, b, q2,w is an example of execution. If b is an internal actions, then a, c is an
example of trace. A non-determinism is appearing since the choice of an action at a particular state
is not determined a priori (e.g. between a and d at state q0). This non-determinism will be solved
by the scheduler, introduced later.

dist(E,B)(σ′)(ζ), noted f -dist(E,A)(σ) ≡ f -dist(E,B)(σ′). This a way to formalise that there is163

no way to distinguish A from B. (see figure 3).164

However, as already mentioned in [20], the correctness of an algorithm may be based on165

some specific assumptions on the scheduling policy that is used. Thus, in general, we are166

interested only in a subset of schedulers(E||A). A function that maps any automaton W to a167

subset of schedulers(W) is called a scheduler schema. Among the most noteworthy examples168

are the fair schedulers, the off-line, a.k.a. oblivious schedulers, defined in opposition with169

the online-schedulers. So, we note ExtBehf,S
A : E ∈ env(A) 7→ {f -distA,E(σ)|σ ∈ S(E||A)}170

where S is a scheduler schema and we say that A f -implements B according to a scheduler171

schema S if ∀E ∈ env(A) ∩ env(B), ExtBehf,S
A (E) ⊆ ExtBehf,S

B (E) . In the remaining, we172

will have a great interest for two certain classes of oblivious schedulers, i.e. i) the creation-173

oblivious scheduler (introduced later) and ii) the task-scheduler: an off-line scheduler already174

introduced in [3], which is relevant for cryptographic analysis. The previous notions can be175

adapted with a particular class of scheduler schema.176

2.4 Probabilistic Configuration Automata (PCA)177

The section 5 introduces the notion of probabilistic configuration automata (PCA). (see178

figure 4). A PCA is very closed to a PSIOA, but each state is mapped to a configuration179

C = (A, S) which is a pair constituted by a set A of PSIOA and the current states of each180

member of the set (with a mapping function S : A ∈ A 7→ qA ∈ QA. The idea is that the181

composition of the attached set can change during the execution of a PCA, which allows us182

to formalise the notion of dynamicity, that is the potential creation and potential destruction183

of a PSIOA in a dynamic system. Some particular precautions have to be taken to make it184

consistent.185

6 Dynamic Probabilistic Input Output Automata (Extended Version)

Figure 3 An environment E , which is nothing more than a PSIOA compatible with both A
and B, tries to distinguish A from B. We say that A implements B if no environment E is able
to distinguish A from B, that is ∀σ ∈ schedulers(E||A) ∃σ′ ∈ schedulers(E||B) (linked by pink
arrow) s.t. every pair of corresponding classes of equivalence of executions, related to the same
perception by the environment (e.g. (Cζ

A, Cζ
B) in blue for perception ζ) are equiprobable, i.e.

f -dist(E,A)(σ)(ζ) = f -dist(E,B)(σ′)(ζ).

2.5 Road to monotonicity186

The rest of the paper is dedicated to the proof of implementation monotonicity. We show that,187

under certain technical conditions, automaton creation is monotonic with respect to external188

behavior inclusion, i.e. if a system X creates automaton A instead of (previously) creating189

automaton B and the external behaviors of A are a subset of the external behaviors of B,190

then the set of external behaviors of the overall system is possibly reduced, but not increased.191

Such an external behavior inclusion result enables a design and refinement methodology192

based solely on the notion of externally visible behavior, and which is therefore independent193

of specific methods of establishing external behavior inclusion. It permits the refinement194

of components and subsystems in isolation from the entire system. To do so, we develop195

different mathematical tools.196

2.5.1 Execution-matching197

First, we define in section 10, the notion of executions-matching (see figure 5) to capture the198

idea that two automata have the same "comportment" along some corresponding executions.199

Basically an execution-matching from a PSIOA A to a PSIOA B is a morphism fex :200

Execs′
A → Execs(B) where Execs′

A ⊆ Execs(A) . This morphism preserves some properties201

along the pair of matched executions: signature, transition, ... in such a way that for every202

pair (α, α′) ∈ Execs(A) × Execs(B) s.t. α′ = fex(α), ϵσ(α) = ϵσ′(α′) for every pair of203

scheduler (σ, σ′) (so-called alter ego) that are "very similar" in the sense they take into204

account only the "structure" of the argument to return a sub-probability distribution, i.e.205

α′ = fex(α) implies σ(α) = σ′(α′). When the executions-matching is a bijection function206

from Execs(A) to Execs(B), we say A and B are semantically-equivalent (they differ only207

syntactically).208

P. Civit and M. Potop-Butucaru 7

Figure 4 The figure represents an execution fragment (q1
X , c, q2

X , h, q3
X , b, q4

X) of a PCA X. In the
left column, we see different states q1

X , q2
X , q3

X and q4
X of the PCA X, represented with white diamonds

(⋄). Each of these states qi
X is mapped through the mapping config(X) (represented with right dotted

arrows) to a configuration Ci
X , represented with a white triangle (▷). For example the state q1

X is
mapped with the configuration C1

X = (A1, S1) with A1 = {U, V }, S1(U) = q1
U and S1(V) = q1

V . The
signature of the PCA X at state qi

X is the one of the composition of automata, in their current states
in the attached configuration Ci

X , modulo some external actions hidden-actions(X)(qi
X) for Ci

X that
are hidden and become internal for X. For example, the configuration C1

X has a signature sig(C1
X) =

(out(C1
X), in(C1

X), int(C1
X)) = ({b, e, c, d}, {a, f}, {g, h}), while the signature of X at corresponding

state is sig(X)(q1
X) = (out(X)(q1

X), in(X)(q1
X), int(X)(C1

X)) = ({b, e, c}, {a, f}, {g, h, d}) since the
unique action d ∈ hidden-actions(X)(q1

X) is hidden and hence becomes an internal action. We can
define discrete transitions for configurations in a similar way as what we do for PSIOA, but adding
some tools (formally defined in section 5) to allow the creation and the destruction of automata. For
example, the automaton V is destroyed during the step (q2

X , h, q3
X), while W is created during the

step (q3
X , b, q4

X) which is made explicit by the fact that created(X)(q3
X)(b) = {X} where created(X)

is a mapping function defined for any PCA X. Some intuitive consistency rules have to be respected
by pair of "corresponding transitions" ((qi

X , act, η(X,qi
X

,act)); (Ci
X , act, η(Ci

X
,qi

X
,act))) represented by

pair of parallel downward arrows (one between two diamonds ⋄ and one between two triangles ▷) .
For example, the probability η(X,q1

X
,c)(q2

X) of reaching q2
X by triggering c from q1

X is equal to the
probability η(C1

X
,q1

X
,act)(C2

X) of reaching C2
X by triggering c from C1

X . Moreover, a configuration
transition has to respect some of other consistency rules with respect to the sub-automata that
compose the configuration. Typically, the destruction of V in step (C2

X , h, C3
X) comes from the

fact that the triggering the action h from state q2
V of sub-automaton V leads to a probabilistic

states distribution η(V,q2
V

,h) equal to δ
q

ϕ
V

which is a Dirac distribution for a special state qϕ
V with

sig(V)(qϕ
V) = (∅, ∅, ∅) that means V "has been destroyed".

8 Dynamic Probabilistic Input Output Automata (Extended Version)

Figure 5 The figure represents the respective executions tree of two automata A and B with
some strong similarities. The states of A (resp. B) are represented with red (resp. blue) dots. The
actions are represented with solid arrows. An action leads to a discrete probability distribution
on states η, represented with a white dot and dashed arrows reaching the different states of the
support of η. In section 10, we define these strong similarities with what we call an executions-
matching (f, f tr, fex) where f : Q′

A → QB, f tr : D′
A → DB, fex : Execs′

A → Execs(B) with
Q′

A ⊆ QA, D′
A ⊆ DA, Execs′

A ⊆ Execs(A). The mappings f, f tr and fex preserves the important
properties: signature for corresponding states, name of the action and measure of probability of
corresponding states for corresponding transitions, etc. In the example the similarities exist until
the states q6, q8 and q9, hence we have Q′

A = {q0, q1, ..., q9} ⊊ QA . The states-matching f is then
defined s.t. ∀k ∈ [1, 9], f(qk) = q̃k. Thereafter, we define define Act = {a, b, c, d, e, f, h} and f trans,
s.t. ∀k ∈ [1, 9], ∀act ∈ Act, for every transition (qk, act, η(A,qk,act)), f trans((qk, act, η(A,qk,act)))
= (q̃k, act, η(B,qk,act)). Each pair of mapped transition gives the same probability to pair of mapped
states, e.g. η(A,q2,d)(q4) = η(B,q̃2,d)(q̃4). Then we can define Execs′

A ⊂ Execs(A) the set of
executions composed only with states in Q′

A and actions in Act. Finally fex : α = q0a1...anqn ∈
Execs′

A 7→ f(q0)a1...anf(qn) is an execution-matching. The point is that if two schedulers σ and σ′

only look at the preserved properties to output a measure of probability on the actions to take, the
attached measures of probability will be equal, i.e. ϵσ(α) = ϵσ′ (α′)

P. Civit and M. Potop-Butucaru 9

2.5.2 A PCA XA deprived from a PSIOA A209

Second, we define in section 11 the notion of a PCA XA deprived from a PSIOA A noted210

(XA \ {A}) . Such an automaton corresponds to the intuition of a similar automaton where211

A is systematically removed from the configuration of the original PCA (see figure 6a and212

6b).213

2.5.3 Reconstruction: (XA \ {A})||Ãsw
214

Thereafter we show in section 12 that under technical minor assumptions XA \ {A} and Ãsw
215

are composable where Ãsw and A are semantically equivalent in the sense loosely introduced216

in the section 2.5.1 . In fact Ãsw is the simpleton wrapper of A, that is a PCA that only217

owns A in its attached configuration (see figure 7). Let us note that if A implements B, then218

Ãsw implements B̃sw.219

Then we show that there is an (incomplete) execution-matching from XA to (XA \220

{A})||Ãsw (see figure 8). The domain of this executions-matching is the set of executions221

where A is not (re-)created.222

After this, we always try to reduce any reasoning on XA (resp. XB) on a reasoning on223

(XA \ {A})||Ãsw (resp. (XB \ {B})||B̃sw).224

2.5.4 Corresponding PCA225

We show in section 13 that, under certain reasonable technical assumptions (captured in the226

definition of corresponding PCA w.r.t. A, B), (XA \ {A}) and (XB \ {B}) are semantically-227

equivalent. We can note Y an arbitrary PCA semantically-equivalent to (XA \ {A}) and228

(XB \ {B}) . Finally, a reasoning on E||XA (resp. E||XB) can be reduced to a reasoning on229

E ′||Ãsw (resp. E ′||B̃sw) with E ′ = E||Y . Since Ãsw implements B̃sw, we have already some230

results on E ′||Ãsw and E ′||B̃sw and so on E||XA and E||XB. However, these results are a231

priori valid only for the subset of executions without creation of neither A nor B before very232

last action). This reduction is represented in figures 9a and 9b.233

2.5.5 Cut-paste execution fragments creation at the endpoints234

The reduction roughly described in figures 9a and 9b holds only for executions fragments235

that do not create the automata A and B after their destruction (or at very last action).236

Some technical precautions have to be taken to be allowed to paste these fragments together237

to finally say that A implements B implies XA implements XB. In fact, such a pasting is238

generally not possible for a fully information online scheduler. This observation motivated us239

to introduce the creation-oblivious scheduler that outputs (randomly) a transition without240

taking into account the internal actions and internal states of a sub-automaton A preceding241

its last destruction. We prove monotonicity of external behaviour inclusion for schema242

of creation oblivious scheduler in section 14. Surprisingly, the fully-offline task-scheduler243

introduced in [3] (slightly modified to be adapted to dynamic setting) is not creation-oblivious244

(see section 15) and so does not allow monotonicity of external behaviour inclusion. The245

figure 10 represents the issue with non-creation-oblivious scheduler.246

10 Dynamic Probabilistic Input Output Automata (Extended Version)

(a) Projection on PCA, part 1/2: The figure represents a PCA X like in figure 4. A sub-automaton T (in
purple) appears in the configurations attached to the states visited by X. The PCA Y = X \ {T } where
the sub-automaton T is systematically removed is represented in figure 6b.

(b) Projection on PCA, part 2/2: the figure represents the PCA Y = X \ {T } while the original PCA
X is represented in figure 6a. We can see that the sub-automaton T (in purple in figure 6a) has been
systematically removed from the configurations attached to the states visited by Y .

Figure 6 PCA deprived of a sub-PSIOA

P. Civit and M. Potop-Butucaru 11

Figure 7 The figure represents the simpleton wrapper Ãsw of an automaton A. The automaton
Ãsw is a PCA that only encapsulates one unique sub-automaton which is A. We can confuse A and
Ãsw without impact. Intuitively, we can see Ãsw as a wrapper of A that does not provide anything.

3 Preliminaries on probability and measure247

We assume our reader is comfortable with basic notions of probability theory, such as σ-248

algebra and (discrete) probability measures. A measurable space is denoted by (S,FS), where249

S is a set and FS is a σ-algebra over S that is FS ⊆ P(S), is closed under countable union250

and complementation and its members are called measurable sets (P(S) denotes the power251

set of S). The union of a collection {Si}i∈I of pairwise disjoint sets indexed by a set I is252

written as
⊎

i∈I Si. A measure over (S,FS) is a function η : FS → R≥0, such that η(∅) = 0253

and for every countable collection of disjoint sets {Si}i∈I in FS , η(
⊎

i∈I Si) = Σi∈Iη(Si). A254

probability measure (resp. sub-probability measure) over (S,FS) is a measure η such that255

η(S) = 1 (resp. η(S) ≤ 1). A measure space is denoted by (S,FS , η) where η is a measure256

on (S,FS).257

The product measure space (S1,Fs1 , η1) ⊗ (S2,Fs2 , η2) is the measure space (S1 ×258

S2,Fs1 ⊗ Fs2 , η1 ⊗ η2), where Fs1 ⊗ Fs2 is the smallest σ-algebra generated by sets of259

the form {A × B|A ∈ Fs1 , B ∈ Fs2} and η1 ⊗ η2 is the unique measure s.t. for every260

C1 ∈ Fs1 , C2 ∈ Fs2 , η1⊗η2(C1×C2) = η1(C1) ·η2(C2). If S is countable, we note P(S) = 2S .261

If S1 and S2 are countable, we have 2S1 ⊗ 2S2 = 2S1×S2 .262

A discrete probability measure on a set S is a probability measure η on (S, 2S), such that,263

for each C ⊂ S, η(C) =
∑

c∈C η({c}). We define Disc(S) and SubDisc(S) to be respectively,264

the set of discrete probability and sub-probability measures on S. In the sequel, we often omit265

the set notation when we denote the measure of a singleton set. For a discrete probability266

measure η on a set S, supp(η) denotes the support of η, that is, the set of elements s ∈ S267

such that η(s) ̸= 0. Given set S and a subset C ⊂ S, the Dirac measure δC is the discrete268

probability measure on S that assigns probability 1 to C. For each element s ∈ S, we note269

δs for δ{s}.270

If {mi}i∈I is a countable family of measures on (S,FS), and {pi}i∈I is a family of non-271

negative values, then the expression
∑

i∈I pimi denotes a measure m on (S,FS) such that,272

for each C ∈ FS , m(C) =
∑

i∈I mifi(C). A function f : X → Y is said to be measurable273

from (X,FX) → (Y,FY) if the inverse image of each element of FY is an element of FX ,274

that is, for each C ∈ FY , f−1(C) ∈ FX . In such a case, given a measure η on (X,FX),275

12 Dynamic Probabilistic Input Output Automata (Extended Version)

Figure 8 The figure shows the similarities between two PCA X and Z = (X \ {V })||Ṽ sw

represented in the top line. The two components of Z, i.e. (X \ {V }) and Ṽ sw are represented in
the bottom line like in figure 6b and 7. These similarities are captured by the notions of executions-
matching and hold as long as the the sub-automaton V is not created by X after a destruction. The
idea is to reduce any reasoning on X to a reasoning on (X \ {V })||Ṽ sw.

P. Civit and M. Potop-Butucaru 13

(a) The figure represents successive steps to reduce the problem of an environment E that tries to
distinguish two PCA XA and XB (represented at first column) to a problem of an environment ED that
tries to distinguish the automata A and B (represented at last column).

(b) The figure represents the homomorphism enabling the reduction reasoning, for set of executions that
do not create neither A nor B before last action. For every environment E , For every scheduler σA,
there exists a corresponding scheduler σB (mapped with pink arrow) s.t. for every possible perception
ζ (represented in light blue), the probability to observe ζ is the same for E in each world. There is an
homomorphism µA,+

e (orange arrow) between Ẽ ||XA and E||Ãsw (and similarly for XB and B̃sw) s.t. for
every scheduler σ̃A, alter-ego of σA, the measure of each corresponding perception is preserved. Hence,
for every environment Ẽ , for every scheduler σ̃A, there exists a corresponding scheduler σ̃B s.t. for every
possible perception ζ̃ (represented in dark blue), the probability to observe ζ̃ is the same for Ẽ in each
world.

Figure 9 homomorphism-based-proof

14 Dynamic Probabilistic Input Output Automata (Extended Version)

Figure 10 Necessity of creation oblivious scheduler. The reduction described before holds only
for set of executions that do not create neither A nor B before last action (represented on the left).
What if the scheduler σ12

A break independence of probabilities between executing α1 and executing
α2 after α1 ? In that case, we cannot cut-paste the different reductions and the monotonicity of
implementation does not hold, i.e. there is no reason there exists a scheduler counterpart σ12

B s.t.
that observing ζ⌢ζ′ (represented in blue and green) has the same probability to occur in A-world
and in B-world.

the function f(η) defined on FY by f(η)(C) = η(f−1(C)) for each C ∈ Y is a measure on276

(Y,FY) and is called the image measure of η under f .277

Let (Q1, 2Q1) and (Q2, 2Q2) be two measurable sets. Let (η2, η2) ∈ Disc(Q1)×Disc(Q2).278

Let f : Q1 → Q2. We note η1
f↔ η2 if the following is verified: (1) the restriction f̃ of f to279

supp(η1) is a bijection from supp(η1) to supp(η2) and (2) ∀q ∈ supp(η), η(q1) = η2(f(q1)).280

4 Probabilistic Signature Input/Output Automata (PSIOA)281

This section aims to introduce the first brick of our formalism: the probabilistic signature282

input/output automata (PSIOA).283

4.1 Background284

Here, we quickly survey the literature on I/O automata that led to PSIOA. We first present285

the very well known Labeled Transition Systems (LTS). Then we briefly discuss the new286

features brought by I/O Automata, probabilistic I/O Automata and signature I/O Automata.287

4.1.1 Labeled Transition System (LTS)288

Roberto Segala describes LTS as follows ([20], section 3.2, p. 37): "A Labeled Transition289

System is a state machine with labeled transitions. The labels, also called actions, are used to290

model communication between a system and its external environment." A possible definition291

of an LTS, using notation of [13], is A = (QA, q̄A, ˇsig(A), steps(A)) where QA represents292

P. Civit and M. Potop-Butucaru 15

the states of A, q̄A represents the start state of A, ˇsig(A) = (ˇext(A), ˇint(A)) represents the293

signature of A, i.e. the set of actions that can be triggered, that are partitioned into external294

and internal actions, and steps(A) ⊆ QA × acts(A)×QA represent the possible transition295

of the transition with acts(A) = ˇext(A) ∪ ˇint(A). We can note enabled(A) : q ∈ QA 7→ {a ∈296

acts(A)|∃(q, a, q′) ∈ steps(A)} to model the actions enabled at a certain state. "The external297

actions model communication with the external environment; the internal actions model298

internal communication, not visible from the external environment."299

It is possible to make several LTS communicate with each others through shared external300

actions in CSP [8] style. Typically, if A and B are two LTS s.t. the compatibility condition301

acts(A) ∩ ˇint(B) = acts(B) ∩ ˇint(A) = ∅ is verified, we can define their composition, A||B302

with303

QA||B = QA ×QB,304

q̄A||B = (q̄A, q̄B),305

ˇsig(A||B) = (ˇext(A) ∪ ˇext(B), ˇint(A) ∪ ˇint(B)),306

steps(A||B) = {((qA, qB), a, (q′
A, qB)′) ∈ QA||B × ×acts(A||B)QA||B|a ∈ enabled(A) ∪307

enabled(B) ∧ ∀K ∈ {A,B}, (qK, a, q′
K) /∈ steps(K) =⇒ (a /∈ enabled(K) ∧ q′

K = qK)}).308

An execution of an LTS A is an alternating sequence of states and actions q0a1q1a2...309

such that each (qi−1, ai, qi) ∈ steps(A). A trace is the restriction to external actions of an310

execution. A LTS A implements another LTS B if Traces(A) ⊆ Traces(B), where Traces(K)311

represents the set of traces of K.312

4.1.2 I/O Automata313

The input output Automata (IOA) [12] are LTS with the following additional points:314

(I/O partitioning) There is a partition (ǐn(A), ˇout(A)) of ˇext(A) where ǐn(A) denotes315

the input actions and ˇout(A) denotes the output actions. Moreover, ˇloc(A) denotes the316

local actions.317

(Output compatibility) The compatibility condition requires out(A) ∩ out(B) = ∅ in318

addition.319

(I/O composition) After composition, we have in addition out(A||B) = out(A) ∪ out(B)320

and in(A||B) = in(A) ∪ in(B) \ out(A||B)321

(Input enabling) ∀q ∈ QA, in(A) ⊆ enabled(A)(q)322

The interests of this additional restrictions for formal verification are subtle (e.g. input323

enabling can avoid trivial liveness property implementation, locality allows simple definitions324

of fairness and oblivious scheduler, I/O partitioning allows intuitive definition of forwarding,325

...). However, they do not add complexity in the analysis of this paper. Typically, they are326

never required in the key results of this paper. Adapting this paper to LTS is straightforward.327

We have kept I/O automata to be as close as possible from [2] and [3].328

4.1.3 PIOA329

The probabilistic input output automata (PIOA) [20] are kind of I/O automata where330

transitions are randomized, i.e. triggering an action leads to a probability measure on states331

instead to a particular state. The transitions are then elements of DA ⊆ QA × acts(A)×332

Disc(QA). Now, the set of steps is steps(A) = {(q, a, q′)|∃(q, a, η) ∈ DA ∧ q′ ∈ supp(η)}.333

To define a measure of probability on the set of executions, it is convenient to call on a334

scheduler σ that will resolve the non-determinism and enable the construction of a measure of335

probability ϵσ on executions. The notion of implementation has to be adapted to probabilistic336

setting to be relevant.337

16 Dynamic Probabilistic Input Output Automata (Extended Version)

4.1.4 SIOA338

The signature I/O automata (SIOA) [2] are kind of I/O automata where the signature339

is evolving during the time. This feature is particularly convenient to model dynamicity.340

The signature of the automaton A becomes a function mapping each state q to a signature341

sig(A)(q).342

4.1.5 PSIOA343

A PSIOA is the result of the generalization of probabilistic input/output automata (PIOA)344

[20] and signature input/output automata (SIOA) [2]. A PSIOA is thus an automaton that345

can randomly move from one state to another in response to some actions. The set of possible346

actions is the signature of the automaton and is partitioned into input, output and internal347

actions. An action can often be both the input of one automaton and the output of another348

one to captures the idea that the behavior of an automaton can influence the behavior of349

another one. As for the SIOA [2], the signature of a PSIOA can change according to the350

current state of the automaton, which allows us to formalise dynamicity later. The figure 11351

gives a first intuition of what is a PSIOA.352

Figure 11 A representation of two automata U and V . In the top line, we see the PSIOA U in
a state q1

U , s.t. sig(U)(q1
U) = (out(U)(q1

U), in(U)(q1
U), int(U)(q1

U)) = ({b, c}, {d}, {g}), the PSIOA
V in a state q1

V , s.t. sig(V)(q1
V) = (out(V)(q1

V), in(V)(q1
V), int(V)(q1

V)) = ({d, e}, {c, f}, {h}) and
the result of their composition, the PSIOA U ||V in a state (q1

U , q1
V), s.t. sig(U ||V)((q1

U , q1
V)) =

(out(U ||V)((q1
U , q1

V)), in(U ||V)((q1
U , q1

V)), int(U ||V)((q1
U , q1

V) = ({b, c, d, e}, {f}, {g, h}). In the
second line we see the same PSIOA but in different states. We see the PSIOA U in a state
q2

U , s.t. sig(U)(q2
U) = (out(U)(q2

U), in(U)(q2
U), int(U)(q2

U)) = ({b}, {a, j}, {g}), the PSIOA V

in a state q2
V , s.t. sig(V)(q2

V) = (out(V)(q2
V), in(V)(q2

V), int(V)(q2
V)) = ({e, j}, {c}, {h, i}) and

the result of their composition, the PSIOA U ||V in a state (q2
U , q2

V), s.t. sig(U ||V)((q2
U , q2

V)) =
(out(U ||V)((q2

U , q2
V)), in(U ||V)((q2

U , q2
V)), int(U ||V)((q2

U , q2
V) = ({b, e, j}, {a, c}, {g, h, i}).

4.2 Action Signature353

We use the signature approach from [2]. We assume the existence of a countable set Autids354

of unique probabilistic signature input/output automata (PSIOA) identifiers, an underlying355

universal set Auts of PSIOA, and a mapping aut : Autids→ Auts. aut(A) is the PSIOA with356

identifier A. We use "the automaton A" to mean "the PSIOA with identifier A". We use the357

letters A,B, possibly subscripted or primed, for PSIOA identifiers. The executable actions of358

P. Civit and M. Potop-Butucaru 17

a PSIOA A are drawn from a signature sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q)), called359

the state signature, which is a function of the current state q of A.360

in(A)(q), out(A)(q), int(A)(q) are pairwise disjoint sets of input, output, and internal361

actions, respectively. We define ext(A)(q), the external signature of A in state q, to be362

ext(A)(q) = (in(A)(q), out(A)(q)).363

We define loc(A)(q), the local signature ofA in state q, to be loc(A)(q) = (out(A)(q), int(A)(q)).364

For any signature component, generally, the .̂ operator yields the union of sets of actions365

within the signature, e.g., ŝig(A) : q ∈ Q 7→ ŝig(A)(q) = in(A)(q) ∪ out(A)(q) ∪ int(A)(q).366

Also we define acts(A) =
⋃

q∈Q ŝig(A)(q), that is acts(A) is the "universal" set of all actions367

that A could possibly trigger, in any state. In the same way UI(A) =
⋃

q∈Q in(A)(q),368

UO(A) =
⋃

q∈Q out(A)(q), UH(A) =
⋃

q∈Q int(A)(q), UL(A) =
⋃

q∈Q l̂oc(A)(q), UE(A) =369 ⋃
q∈Q êxt(A)(q).370

4.3 PSIOA371

We combine the SIOA of [2] with the PIOA of [20]:372

▶ Definition 1 (PSIOA). A PSIOA A = (QA, q̄A, sig(A), DA), where:373

QA is a countable set of states, (QA, 2QA) is the state space,374

q̄A is the unique start state.375

sig(A) : q ∈ QA 7→ sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q)) is the signature function376

that maps each state to a triplet of mutually disjoint countable set of actions, respectively377

called input, output and internal actions.378

DA ⊂ QA × acts(A) × Disc(QA) is the set of probabilistic discrete transitions where379

∀(q, a, η) ∈ DA : a ∈ ŝig(A)(q). If (q, a, η) is an element of DA, we write q
a→ η and380

action a is said to be enabled at q. We note enabled(A) : q ∈ QA 7→ enabled(A)(q) where381

enabled(A)(q) denotes the set of enabled actions at state q. We also note steps(A) ≜382

{(q, a, q′) ∈ QA × acts(A)×QA|∃(q, a, η) ∈ DA, q′ ∈ supp(η)}.383

In addition A must satisfy the following conditions384

E1 (input enabling) ∀q ∈ QA, in(A)(q) ⊆ enabled(A)(q).1385

T1 (Transition determinism): For every q ∈ QA and a ∈ ŝig(A)(q) there is at most one386

η(A,q,a) ∈ Disc(QA), such that (q, a, η(A,q,a)) ∈ DA.387

Later, we will define execution fragments as alternating sequences of states and actions388

with classic and natural consistency rules. But a subtlety will appear with the composability389

of set of automata at reachable states. Hence, we will define execution fragments after "local390

composability" and "probabilistic configuration automata".391

4.4 Local composition392

The main aim of a formalism of concurrent systems is to compose several automata A =393

{A1, ...,An} and provide guarantees by composing the guarantees of the different elements394

of the system. Some syntactical rules have to be satisfied before defining the composition395

operation.396

1 Since the signature is dynamic, we could require ŝig(A) = enabled(A)

18 Dynamic Probabilistic Input Output Automata (Extended Version)

▶ Definition 2 (Compatible signatures). Let S = {sigi}i∈I be a set of signatures. Then S is397

compatible iff, ∀i, j ∈ I, i ≠ j, where sigi = (ini, outi, inti), sigj = (inj , outj , intj), we have:398

1. (ini ∪ outi ∪ inti) ∩ intj = ∅, and 2. outi ∩ outj = ∅.399

▶ Definition 3 (Composition of Signatures). Let Σ = (in, out, int) and Σ′ = (in′, out′, int′) be400

compatible signatures. Then we define their composition Σ×Σ = (in∪ in′− (out∪out′), out∪401

out′, int ∪ int′)2.402

Signature composition is clearly commutative and associative. Now we can define the403

compatibility of several automata at a state with the compatibility of their attached signatures.404

First we define compatibility at a state, and discrete transition for a set of automata for a405

particular compatible state.406

▶ Definition 4 (compatibility at a state). Let A = {A1 , ...,An} be a set of PSIOA. A state407

of A is an element q = (q1, ..., qn) ∈ QA ≜ QA1 × ...×QAn . We note q ↾ Ai ≜ qi. We say408

A1, ...,An are (or A is) compatible at state q if {sig(A1)(q1), ..., sig(An)(qn)} is a set of409

compatible signatures. In this case we note sig(A)(q) ≜ sig(A1)(q1)× ...× sig(An)(qn) as410

per definition 3 and we note η(A,q,a) ∈ Disc(QA), s.t. ∀a ∈ ŝig(A)(q), η(A,q,a) = η1⊗ ...⊗ηn411

where ∀j ∈ [1 , n], ηj = η(Aj ,qj ,a) if a ∈ sig(Aj)(qj) and ηj = δqj otherwise. Moreover, we412

note steps(A) = {(q, a, q′)|q, q′ ∈ QA, a ∈ sig(A)(q), q′ ∈ supp(η(A,q,a))}. Finally, we note413

q̄A = (q̄A1 , ..., q̄An
).414

Let us note that an action a shared by two automata becomes an output action and not an415

internal action after composition. First, it permits the possibility of further communication416

using a. Second, it allows associativity. If this property is counter-intuitive, it is always417

possible to use the classic hiding operator that "hides" the output actions transforming them418

into internal actions.419

▶ Definition 5 (hiding operator). Let sig = (in, out, int) be a signature and H a set of actions.420

We note hide(sig, H) ≜ (in, out \H, int ∪ (out ∩H)).421

Let A = (QA, q̄A, sig(A), DA) be a PSIOA. Let h : q ∈ QA 7→ h(q) ⊆ out(A)(q). We422

note hide(A, h) ≜ (QA, q̄A, sig′(A), DA), where sig′(A) : q ∈ QA 7→ hide(sig(A)(q), h(q)).423

Clearly, hide(A, h) is a PSIOA.424

▶ Lemma 6 (hiding and composition are commutative). Let siga = (ina, outa, inta), sigb =425

(inb, outb, intb) be compatible signature and Ha, Hb some set of actions, s.t.426

(Ha ∩ outa) ∩ ŝigb = ∅ and427

(Hb ∩ outb) ∩ ŝigb = ∅,428

then sig′
a ≜ hide(sig, Ha) ≜ (in′

a, out′
a, int′

a) and sig′
b ≜ hide(sigb, Hb) ≜ (in′

b, out′
b, int′

b)429

are compatible. Furthermore, if430

outb ∩Ha = ∅ ,and431

outa ∩Hb = ∅432

then sig′
a × sig′

b = hide(siga × sigb, Ha ∪Hb).433

Proof. compatibility: After hiding operation, we have:434

in′
a = ina, in′

b = inb435

out′
a = outa \Ha, out′

b = outb \Hb436

2 not to be confused with Cartesian product. We keep this notation to stay as close as possible to the
literature.

P. Civit and M. Potop-Butucaru 19

int′
a = inta ∪ (outa ∩Ha), int′

b = intb ∪ (outb ∩Hb)437

Since outa∩outb = ∅, a fortiori out′
a∩out′

b = ∅. inta∩ŝigb = ∅, thus if (outa∩Ha)∩ŝigb = ∅,438

then int′
a ∩ ŝigb = ∅ and with the symetric argument, int′

b ∩ ŝiga = ∅. Hence, sig′
a and439

sig′
b are compatible.440

commutativity:441

After composition of sig′
c = sig′

a × sig′
b operation, we have:442

out′
c = out′

a ∪ out′
b = (outa \Ha) ∪ (outb \Hb). If outb ∩Ha = ∅ and outa ∩Hb = ∅,443

then out′
c = (outa ∪ outb) \ (Ha ∪Hb).444

in′
c = in′

a ∪ in′
b \ out′

c = ina ∪ inb \ out′
c445

int′
c = int′

a ∪ int′
b = inta ∪ (outa ∩Ha)intb ∪ (outb ∩Hb) = inta ∪ intb ∪ (outa ∩Ha)∪446

(outb ∩Hb). If outb ∩Ha = ∅ and outa ∩Hb = ∅, then int′
c = inta ∪ intb ∪ ((outa ∪447

outb) ∩ (Ha ∪Hb).448

and after composition of sigd = siga × sigb449

outd = outa ∪ outb450

ind = ina ∪ inb \ outd451

intd = inta ∪ intb452

Finally, after hiding operation sig′
d = hide(sigd, Ha ∪Hb) we have :453

in′
d = ind454

out′
d = outd \Ha ∪Hb = (outa ∪ outb) \ (Ha ∪Hb)455

int′
d = intd ∪ (outd ∩ (Ha ∪Hb)) = (inta ∪ intb) ∪ (outd ∩ (Ha ∪Hb))456

Thus, if outb ∩Ha = ∅ and outa ∩Hb = ∅457

in′
d = in′

c458

out′
d = out′

c459

int′
d = int′

c460

◀461

▶ Remark 7. We can restrict hiding operation to set of actions included in the set of output462

actions of the signature (H ⊆ out). In this case, since we alreay have outa ∩ outb = ∅463

by compatibility, we immediatly have outa ∩ Hb = ∅ and outb ∩ Ha = ∅. Thus to obtain464

compatibility, we only need inb ∩Ha = ∅ and ina ∩Hb = ∅. Later, the compatibility of PCA465

will implicitly assume this predicate (otherwise the PCA could not be compatible).466

4.5 Renaming operators467

We introduce some classic, and sometimes useful operators.468

4.5.1 State renaming469

We anticipate the definition of isomorphism between PSIOA that differs only syntactically.470

▶ Definition 8. (State renaming for PSIOA) Let A be a PSIOA with QA as set of states, let471

QA′ be another set of states and let r : QA → QA′ be a bijective mapping. Then r(A) (we472

abuse the notation) is the automaton given by:473

q̄r(A) = r(q̄A)474

Qr(A) = r(QA)475

∀qA′ ∈ Qr(A), sig(r(A))(qA′) = sig(A)(r−1(qA′))476

∀qA′ ∈ Qr(A),∀a ∈ sig(r(A))(qA′), if (r−1(qA′), a, η) ∈ DA, then (qA′ , a, η′) ∈ Dr(A)477

where η′ ∈ Disc(QA′ ,FQA′) and for every qA′′ ∈ Qr(A), η′(qA′′) = η(r−1(qA′′)).478

20 Dynamic Probabilistic Input Output Automata (Extended Version)

▶ Definition 9. (State renaming for PSIOA execution) Let A and A′ be two PSIOA s.t.479

A′ = r(A′). Let α = q0a1q1... be an execution fragment of A. We note r(α) the sequence480

r(q0)a1r(q1)....481

▶ Lemma 10. Let A and A′ be two PSIOA s.t. A′ = r(A) with r : QA → QA′ being a482

bijective map. Let α be an execution fragment of A. The sequence r(α) is an execution483

fragment of A.484

Proof. Let qjaj+1qj+1 be a subsequence of α. r(qj) ∈ QA′ by definition, aj ∈ sig(A′)(r(qj))485

since sig(A′)(r(qj)) = sig(A)(qj), and η(A′,r(qj),aj+1)(r(qj+1)) = η(A,qj ,aj+1)(qj+1) > 0. ◀486

4.5.2 Action renaming487

Action renaming is useful to make automata compatible. This operator is used in the proof488

of theorem 48 of transitivity of implementation relationship .489

▶ Definition 11 (Action renaming for PSIOA). Let A be a PSIOA and let r be a partial490

function on QA × acts(A), s.t. ∀q ∈ QA, r(q) is an injective mapping with ŝig(A)(q) as491

domain. Then r(A) is the automata given by:492

1. q̄r(A) = q̄A.493

2. Qr(A) = QA.494

3. ∀q ∈ QA, sig(r(A))(q) = (in(r(A))(q) , out(r(A)) (q) , int(r(A))(q)) with495

out(r(A))(q) = r(out(A)(q)),496

in(r(A))(q) = r(in(A)(q)),497

int(r(A))(q) = r(int (A)(q)) .498

4. Dr(A) = {(q, r(a), η)|(q, a, η) ∈ DA} (we note η(r(A),q,r(a)) the element of Disc(Qr(A))499

which is equal to η(A,q,a).500

▶ Lemma 12 (PSIOA closeness under action-renaming). Let A be a PSIOA and let r be a501

partial function on QA × acts(A), s.t. ∀q ∈ QA, r(q) is an injective mapping with ŝig(A)(q)502

as domain. Then r(A) is a PSIOA.503

Proof. We need to show (1) ∀(q, a, η), (q, a, η′) ∈ DA, η = η′ and a ∈ ŝig(A)(q), (2)504

∀q ∈ QA,∀a ∈ ŝig(A)(q), ∃η ∈ Disc(QA), (q, a, η) ∈ DA and (3) ∀q ∈ QA : in(A)(q) ∩505

out(A)(s) = in(A)(q) ∩ int(A)(q) = out(A)(q) ∩ int(A)(q) = ∅.506

Constraint 1: From definition 11, we have, for any q ∈ Qr(A): ŝig(r(A))(q) = out(r(A))(q)∪507

in(r(A)) (q) ∪ int(r(A))(q) = r(out(A)(q)) ∪ r(in(A)(q)) ∪ r(int(A)(q)) = r(ŝig(A)(q)).508

Since A is a PSIOA, we have ∀(q, a, η), (q, a, η′) ∈ DA : a ∈ ŝig(A)(q) and η = η′. From509

definition 11, Dr(A) = {(q, r(a), η)| (q, a, η) ∈ DA} Hence, if (q, r(a), η), (q, r(a), η′)510

are arbitrary element of Dr(A), then (q, a, η), (q, a, η′) ∈ DA, and so η = η′ and511

a ∈ ŝig(A)(q). Hence r(a) ∈ r(ŝig(A)(q)). Since r(ŝig(A)(q)) = ŝig(r(A))(q), we con-512

clude r(a) ∈ ŝig(r(A))(q). Hence, ∀(q, r(a), η), (q, r(a), η′) ∈ Dr(A) : r(a) ∈ ŝig(r(A))(q)513

and η = η′. Thus, Constraint 1 holds for r(A).514

Constraint 2: From definition 11, Dr(A) = {(q, r(a), η)|(q, a, η) ∈ DA}, Qr(A) = QA,515

and for all q ∈ Qr(A), in(r(A))(q) = r(in(A)(q)). Let q be any state of r(A), and let516

q ∈ ŝig(r(A))(q). Then b = r(a) for some a ∈ ŝig(A)(q). We have (q, a, η) ∈ DA517

for some η, by Constraint 2 of action enabling for A. Hence (q, a, η) ∈ Dr(A). Hence518

(q, b, η) ∈ Dr(A). Hence Constraint 2 holds for r(A).519

Constraint 3: A is a PSIOA and so satisfies Constraint 3. From this and definition 11 and520

the requirement that r be injective, it is easy to see that r(A) also satisfies Constraint 3.521

◀522

P. Civit and M. Potop-Butucaru 21

5 Probabilistic Configuration Automata523

We combine the notion of configuration of [2] with the probabilistic setting of [20]. A524

configuration is a set of automata attached with their current states. This will be a very525

useful tool to define dynamicity by mapping the state of an automaton of a certain "layer" to526

a configuration of automata of lower layer, where the set of automata in the configuration527

can dynamically change from on state of the automaton of the upper level to another one.528

5.1 configuration529

▶ Definition 13 (Configuration). A configuration is a pair (A, S) where530

A = {A1, ...,An} is a finite set of PSIOA identifiers and531

S maps each Ak ∈ A to a state of Ak.532

In distributed computing, configuration usually refers to the union of states of all the533

automata of the "system". Here, there is a subtlety, since it captures a set of some automata534

(A) in their current state (S), but the set of automata of the systems will not be fixed in the535

time.536

We note Qconf the (countable) set of configurations.537

▶ Proposition 14. The set Qconf of configurations is countable.538

Proof. (1) {A ∈ P(Autids)|A is finite} is countable, (2) ∀A ∈ Autids, QA is countable by539

definition 1 of PSIOA and (3) the cartesian product of countable sets is a countable set. ◀540

▶ Definition 15 (Compatible configuration). A configuration (A, S), with A = {A1, ...,An},541

is compatible iff the set A is compatible at state (S(A1), ..., S(An)) as per definition 4542

▶ Definition 16 (Intrinsic attributes of a configuration). Let C = (A, S) be a compatible543

configuration. Then we define544

auts(C) = A represents the automata of the configuration,545

map(C) = S maps each automaton of the configuration with its current state,546

TS(C) = (S(A1), ..., S(An)) yields the tuple of states of the automata of the configuration.547

sig(C) = (in(C), out(C), int(C)) = sig(auts(C), TS(C)) in the sense of definition 4, is548

called the intrinsic signature of the configuration549

Here we define a reduced configuration as a configuration deprived of the automata550

that are in the very particular state where their current signatures are the empty set. This551

mechanism will be used later to capture the idea of destruction of an automaton.552

▶ Definition 17 (Reduced configuration). reduce(C) = (A′, S′), where A′ = {A|A ∈553

A and sig(A)(S(A)) ̸= ∅} and S′ is the restriction of S to A′, noted S ↾ A′ in the re-554

maining.555

A configuration C is a reduced configuration iff C = reduce(C).556

We will define some probabilistic transition from configurations to others where some557

automata can be destroyed or created. To define it properly, we start by defining "preserving558

transition" where no automaton is neither created nor destroyed and then we define above559

this definition the notion of configuration transition.560

▶ Definition 18 (From preserving distribution to intrinsic transition).561

22 Dynamic Probabilistic Input Output Automata (Extended Version)

(preserving distribution) Let ηp ∈ Disc(Qconf). We say ηp is a preserving distribution562

if it exists a finite set of automata A, called family support of ηp, s.t. ∀(A′, S′) ∈563

supp(ηp), A = A′.564

(preserving configuration transition C
a

⇀ ηp) Let C = (A, S) be a compatible configuration,565

a ∈ ŝig(C). Let ηp be the unique preserving distribution of Disc(Qconf) such that (1)566

the family support of ηp is A and (2) ηp
T S↔ η(A,T S(C),a). We say that (C, a, ηp) is a567

preserving configuration transition, noted C
a

⇀ ηp.568

(ηp ↑ φ) Let ηp ∈ Disc(Qconf) be a preserving distribution with A as family support. Let569

φ be a finite set of of PSIOA identifiers with A ∩ φ = ∅. Let Cφ = (φ, Sφ) ∈ Qconf with570

∀Aj ∈ φ, Sφ(Aj) = q̄Aj
. We note ηp ↑ φ the unique element of Disc(Qconf) verifying571

ηp
u↔ (ηp ↑ φ) with u : C ∈ supp(ηp) 7→ (C ∪ Cφ).572

(distribution reduction) Let η ∈ Disc(Qconf). We note reduce(η) the element of Disc(Qconf)573

verifying ∀c ∈ Qconf , (reduce(η))(c) = Σ(c′∈supp(η),c=reduce(c′))η(c′)574

(intrinsic transition C
a=⇒φ η) Let C = (A, S) be a compatible configuration, let a ∈575

ŝig(C), let φ be a finite set of of PSIOA identifiers with A ∩ φ = ∅. We note C
a=⇒φ η,576

if η = reduce(ηp ↑ φ) with C
a

⇀ ηp. In this case, we say that η is generated by ηp and φ.577

Preserving configuration transition (C, a, ηp) is the intuitive transition for configurations,578

corresponding to the transition (TS(C), a, η(auts(C),T S(C),a)) (see figure 12). The operator579

↑ φ describes the deterministic creation of automata in φ, who will be appear at their580

respective start states. The reduce operator enables to remove "destroyed" automata from581

the possibly returned configurations (see figure 13).582

Figure 12 There is a trivial homomorphism between the preserving distribution ηp with C =
(A, S) a

⇀ ηp and the distribution η(A,T S(C),a).

5.2 probabilistic configuration automata (PCA)583

Now we are ready to define our probabilistic configuration automata (see figure 14). Such an584

automaton define a strong link with a dynamic configuration.585

▶ Definition 19 (Probabilistic Configuration Automaton). A probabilistic configuration auto-586

maton (PCA) X consists of the following components:587

1. A probabilistic signature I/O automaton psioa(X). For brevity, we define QX =588

Qpsioa(X), q̄X = q̄psioa(X), sig(X) = sig(psioa(X)), steps(X) = steps(psioa(X)), and589

likewise for all other (sub)components and attributes of psioa(X).590

P. Civit and M. Potop-Butucaru 23

Figure 13 An intrinsic transition where A1 is destroyed deterministically and A4 is created
deterministically. First, we have the preserving disribution ηp s.t. C

a
⇀ ηp with ηp

T S↔ η(A,T S(C),a).
Second, we take into account the created automata φ = {A}, captured by the distribution ηp ↑ φ.
Third, we remove the automata in a particular state with associated empty signature. This is
captured by distribution reduce(ηp ↑ φ).

2. A configuration mapping config(X) with domain QX and such that, for all q ∈ QX ,591

config(X)(q) is a reduced compatible configuration.592

3. For each q ∈ QX , a mapping created(X)(q) with domain sig(X)(q) and such that593

∀a ∈ sig(X)(q), created(X)(q)(a) ⊆ Autids with created(X)(q)(a) finite.594

4. A hidden-actions mapping hidden-actions(X) with domain QX and such that hidden-595

actions(X)(q) ⊆ out(config(X)(q)).596

and satisfies the following constraints, for every q ∈ QX , C = config(X)(q), H = hidden-597

actions(q).598

1. (start states preservation) If config(X)(q̄X) = (A, S), then ∀Ai ∈ A, S(Ai) = q̄Ai
.599

2. (top/down transition preservation) If (q, a, η(X,q,a)) ∈ DX , then ∃η′ ∈ Disc(Qconf) s.t.600

η(X,q,a)
c↔ η′ with C

a=⇒φ η′, where φ = created(X)(q)(a) and c = config(X).601

3. (bottom/up transition preservation) If q ∈ QX and C
a=⇒φ η′ for some action a,602

φ = created(X)(q)(a), and reduced compatible probabilistic measure η′ ∈ Disc(Qconf),603

then (q, a, η(X,q,a)) ∈ DX , and η(X,q,a)
c↔ η′ where c = config(X).604

4. (signature preservation modulo hiding) ∀q ∈ QX , sig(X)(q) = hide(sig(C), H).605

This definition, proposed in a deterministic fashion in [2], captures dynamicity of the606

system. Each state is linked with a configuration. The set of automata of the configuration607

can change during an execution. A sub-automaton A is created from state q by the608

action a if A ∈ created(X)(q)(a). A sub-automaton A is destroyed if the non-reduced609

attached configuration distribution leads to a configuration where A is in a state qϕ
A s. t.610

ŝig(A)(qϕ
A) = ∅. Then the corresponding reduced configuration will not hold A. The last611

constraint states that the signature of a state q of X must be the same as the signature of its612

corresponding configuration config(X)(q), except for the possible effects of hiding operators,613

so that some outputs of config(X)(q) may be internal actions of X in state q.614

As for PSIOA, we can define hiding operator applied to PCA.615

24 Dynamic Probabilistic Input Output Automata (Extended Version)

Figure 14 A PCA life cycle.

▶ Definition 20 (hiding on PCA). Let X be a PCA. Let h : q ∈ QX 7→ h(q) ⊆ out(X)(q).We616

note hide(X, h) the PCA X ′ that differs from X only on617

psioa(X ′) = hide(psioa(X), h)618

sig(X ′) = hide(sig(X), h) and619

∀q ∈ QX = QX′ , hidden-actions(X ′)(q) = hidden-actions(X)(q) ∪ h(q).620

The notion of local compatibility can be naturally extended to set of PCA.621

▶ Definition 21 (PCA compatible at a state). Let X = {X1, ..., Xn} be a set of PCA. Let622

q = (q1, ..., qn) ∈ QX1 × ...×QXn
. Let us note Ci = (Ai, Si) = config(Xi)(qi), ∀i ∈ [1, n].623

The PCA in X are compatible at state q iff3:624

1. PSIOA compatibility: psioa(X1), ..., psioa(Xn) are compatible at qX.625

2. Sub-automaton exclusivity: ∀i, j ∈ [1 : n], i ̸= j : Ai ∩Aj = ∅.626

3. Creation exclusivity: ∀i, j ∈ [1 : n], i ̸= j,∀a ∈ ŝig(Xi)(qi) ∩ ŝig(Xj)(qj) :627

created(Xi)(qi)(a) ∩ created(Xj)(qj)(a) = ∅.628

If X is compatible at state q, for every action a ∈ ŝig(psioa(X))(q), we note η(X,q,a) =629

η(psioa(X),q,a) and we extend this notation with η(X,q,a) = δq if a /∈ ŝig(psioa(X))(q).630

6 Executions, reachable states, partially-compatible automata631

6.1 Executions, reachable states, traces632

In previous sections, we have described how to model probabilistic transitions that might633

lead to the creation and destruction of some components of the system. In this section, we634

3 We can remark that the conjunction of PSIOA compatibility and sub-automata exclusivity implies the
compatibility of respective configurations as defined later in definition 27

P. Civit and M. Potop-Butucaru 25

will define pseudo execution fragments of a set of automata to model the run of a set A635

of several dynamic systems interacting with each others. With such a definition, we will636

kill two birds with one stone, since it will allow to define reachable states of A and then637

compatibility of A as compatibility of A at each reachable state.638

▶ Definition 22 (pseudo execution, reachable states, partial-compatibility). Let A = {A1, ...,An}639

be a finite set of PSIOA (resp. PCA). A pseudo execution fragment of A is a finite or640

infinite sequence α = q0a1q1a2... of alternating states and actions, such that:641

1. If α is finite, it ends with a state. In that case, we note lstate(α) the last state of α.642

2. A is compatible at each state of α, with the potential exception of lstate(α) if α is finite.643

3. for ever action ai, (qi−1, ai, qi) ∈ steps(A).644

The first state of a pseudo execution fragment α is noted fstate(α). A pseudo execution645

fragment α of A is a pseudo execution of A if fstate(α) = q̄A. The length |α| of a finite646

pseudo execution fragment α is the number of actions in α. A state q of A is said reachable647

if there is a pseudo execution α s.t. lstate(α) = q. We note Reachable(A) the set of reachable648

states of A. If A is compatible at every reachable state q, A is said partially-compatible.4649

▶ Definition 23 (executions, concatenations). Let A be an automaton. An execution fragment650

(resp. execution) of A is a pseudo execution fragment (resp. pseudo execution) of {A}. We651

use Frags(A) (resp., Frags∗(A)) to denote the set of all (resp., all finite) execution fragments652

of A. Execs(A) (resp. Execs∗(A)) denotes the set of all (resp., all finite) executions of A.653

We define a concatenation operator ⌢ for execution fragments as follows:654

If α = q0 a1 q1 ...anqn ∈ Frags∗(A) and α′ = q0 ′a1 ′q1 ′... ∈ Frags∗(A), we define α⌢α′ ≜655

q0a1q1...anqn a1′q1′... only if s0 = qn, otherwise α⌢α′ is undefined. Hence the notation656

α⌢α′ implicitly means fstate(α′) = lstate(α).657

Let α, α′ ∈ Frags(A), then α is a proper prefix of α′ iff ∃α′′ ∈ Frags(A) such that658

α′ = α⌢α′′ with α ̸= α′. In that case, we note α < α′. We note α ≤ α′ if α < α′ or α = α′
659

and say that α is a prefix of α′. Finally, α, α′ are said comparable if either α ≤ α′ or α′ ≤ α.660

▶ Definition 24 (traces). The trace of an execution α represents its externally visible part,661

i.e. the external actions. Let A be a PSIOA (resp. PCA). Let q0 ∈ QA, (q, a, q′) ∈ steps(A),662

α, α′ ∈ Execs∗(A)× Execs(A) with fstate(α′) = lstate(α).663

traceA(q0) is the empty sequence, noted λ,664

traceA(qaq′)
{

a if a ∈ êxt(A)(q)
λ otherwise. ,665

traceA(α⌢α′) = traceA(α)⌢traceA(α′)666

We say that β is a trace of A if ∃α ∈ Execs(A) with β = traceA(α). We note Traces(A)667

(resp. Traces∗(A), resp. Tracesω(A)) the set of traces (resp. finite traces, resp. infinite668

traces) of A. When the automaton A is understood from context, we write simply trace(α).669

The projection of a pseudo-execution α on an automaton Ai, noted α ↾ Ai, represents670

the contribution of Ai to this execution.671

▶ Definition 25 (projection). Let A be a set of PSIOA (resp. PCA), let Ai ∈ A. We define672

projection operator ↾ recursively as follows: For every (q, a, q′) ∈ steps(A), for every α, α′
673

being two pseudo executions of A with fstate(α′) = lstate(α).674

4 In [2], compatible set of PCA are compatible at every (potentially non-reachable) state of the associated
Cartesian product.

26 Dynamic Probabilistic Input Output Automata (Extended Version)

(q, a, q′) ↾ Ai =
{

(q ↾ Ai), a, (q′ ↾ Ai) if a ∈ ŝig(Ai)(q ↾ Ai)
(q ↾ Ai) = (q′ ↾ Ai) otherwise.

,675

(α⌢α′) ↾ Ai = (α ↾ Ai)⌢(α′ ↾ Ai)676

6.2 PSIOA and PCA composition677

We are ready to define composition operator, the most important operator for concurrent678

systems.679

▶ Definition 26 (PSIOA partial-composition). If A = {A1, ...,An} is a partially-compatible680

set of PSIOA, with Ai = (QAi , q̄Ai , sig(Ai), DAi), then their partial-composition A1||...||An,681

is defined to be A = (QA, q̄A, sig(A), DA), where:682

QA = Reachable(A)683

q̄A = (q̄A1 , ..., q̄An
)684

sig(A) : q ∈ QA 7→ sig(A)(q) = sig(A)(q)685

DA = {(q, a, η(A,q,a))|q ∈ QA, a ∈ ŝig(A)(q)}686

▶ Definition 27 (Union of configurations). Let C1 = (A1, S1) and C2 = (A2, S2) be con-687

figurations such that A1 ∩ A2 = ∅. Then, the union of C1 and C2, denoted C1 ∪ C2,688

is the configuration C = (A, S) where A = A1 ∪ A2 and S agrees with S1 on A1, and689

with S2 on A2. Moreover, if C1 ∪ C2 is a compatible configuration, we say that C1 and690

C2 are compatible configurations. It is clear that configuration union is commutative691

and associative. Hence, we will freely use the n-ary notation C1 ∪ ... ∪ Cn, whenever692

∀i, j ∈ [1 : n], i ̸= j, auts(Ci) ∩ auts(Cj) = ∅.693

▶ Lemma 28. Let C1 = (A1, S1) and C2 = (A2, S2) be configurations such that A1∩A2 = ∅.694

Let C = (A, S) = C1 ∪ C2 be a compatible configuration. Then sig(C) = sig(C1)× sig(C2)695

(in the sense of definition 3).696

Proof.697

698

out(C) =
⋃

Ak∈A

out(Ak)(S(Ak))699

= (
⋃

Ai∈A1

out(Ai)(S(Ai))) ∪ (
⋃

Aj∈A2

out(Aj)(S(Aj)))700

= (
⋃

Ai∈A1

out(Ai)(S1(Ai))) ∪ (
⋃

Aj∈A2

out(Aj)(S2(Aj)))701

= out(C1) ∪ out(C2)702
703

in(C) =
⋃

Ak∈A

in(Ak)(S(Ak)) \ out(C)704

= (
⋃

Ai∈A1

in(Ai)(S(Ai))) ∪ (
⋃

Aj∈A2

in(Aj)(S(Aj))) \ out(C)705

= (
⋃

Ai∈A1

in(Ai)(S1(Ai))) ∪ (
⋃

Aj∈A2

in(Aj)(S2(Aj))) \ out(C)706

= in(C1) ∪ in(C2) \ (out(C1) ∪ out(C2))707
708

P. Civit and M. Potop-Butucaru 27

int(C) =
⋃

Ak∈A

int(Ak)(S(Ak))709

= (
⋃

Ai∈A1

int(Ai)(S(Ai))) ∪ (
⋃

Aj∈A2

int(Aj)(S(Aj)))710

= (
⋃

Ai∈A1

int(Ai)(S1(Ai))) ∪ (
⋃

Aj∈A2

int(Aj)(S2(Aj)))711

= int(C1) ∪ int(C2)712
713

◀714

▶ Definition 29 (PCA partial-composition). If X = {X1, ..., Xn} is a partially-compatible set715

of PCA, then their partial-composition X1||...||Xn, is defined to be the PCA X (proved in716

theorem 38 in section 7) s.t. psioa(X) = psioa(X1)||...||psioa(Xn) and ∀q ∈ QX :717

config(X)(q) =
⋃

i∈[1,n] config(Xi)(q ↾ Xi)718

∀a ∈ ŝig(X)(q), created(X)(q)(a) =
⋃

i∈[1,n] created(Xi)(q ↾ Xi)(a), with the convention719

created(Xi)(qi)(a) = ∅ if a /∈ ŝig(Xi)(qi)720

hidden-actions(q) =
⋃

i∈[1,n] hidden-actions(Xi)(q ↾ Xi)721

7 Toolkit for configurations & PCA closeness under composition722

In this section, we define some tools to manipulate measure preserving bijections between723

probability distributions (relations of the form η
f↔ η′). This tools will be used to prove (1)724

the closeness of PCA under parallel composition (theorem 38) and some intermediate results725

in the proof of monotonicity of implementation relationship w.r.t. creation/destruction of726

PSIOA.727

Merge, join, split728

▶ Definition 30 (join). Let η̃ = (η1, ..., ηn) ∈ Disc(Q1)× ...×Disc(Qn) with each Qi being a729

set. We define, join(η̃):
{

Q1 × ...×Qn → [0, 1]
q̃ 7→ (η1 ⊗ ...⊗ ηn)(q̃)730

▶ Lemma 31 (Joint preserving probability distribution for union of configuration). Let n ∈ N,731

let {Ck}k∈[1:n] be a set of compatible configurations and C0 =
⋃

k∈[1:n] Ck. Let (η0
p, ..., ηn

p) ∈732

Disc(Qconf)n+1 s.t. ∀k ∈ [0 : n], Ck
a

⇀ ηk
p if a ∈ ŝig(Ck) and ηk

p = δCk
otherwise.733

Then, ∀(C ′
1, ..., C ′

n) ∈ Qn
conf , s.t. ∀k ∈ [1 : n], aut(C ′

k) = aut(Ck),734

η0
p(

⋃
k∈[1:n] C ′

k) = (η1
p ⊗ ...⊗ ηn

p)(C ′
1, ..., C ′

n) .735

Proof. We note {Ck = (Ak, Sk)}k∈[1:n], C0 = (A0, S0), qk = TS(Ck) for every k ∈ [0 : n].736

We note (I,J) the partition of [1 : n] s.t. ∀i ∈ I, a ∈ ŝig(Ci) and ∀j ∈ J , a /∈ ŝig(Cj).737

Since A0 =
⋃

k∈[1:n] Ak and S0 agrees with Sk on A ∈ Ak for every k ∈ [1 : n], we738

have ηA0,q0,a = η(A1,q1,a) ⊗ ... ⊗ η(An,qn,a) with the convention η(Aj ,qj ,a) = δqj
, ∀j ∈ J .739

Furthermore, for every k ∈ [1, n], ηk
p

T S↔ η(Ak,qk,a), that is for every (C ′
k, q′

k) ∈ Qconf ×QAk
740

with q′
k = TS(C ′

k), ηk
p(C ′

k) = η(Ak,qk,a)(q′
k). Hence for every ((C ′

1, ..., C ′
n), (q′

1, ..., q′
n)) ∈741

Qn
conf ×QA0 with q′

1 = TS(C ′
1), ..., q′

n = TS(C ′
n), η(A0,q0,a)((q′

1, ..., q′
n)) = (η(A1,q1,a) ⊗ ...⊗742

η(An,qn,a)))((q′
1, ..., q′

n)) = (η1
p ⊗ ...⊗ ηn

p ((C ′
1, ..., C ′

n)) (*).743

By definition of η0
p, ∀(C ′

0, q′
0) ∈ Qconf × QA0 , with q′

0 = TS(C ′
0), η(A0,q0,a)(q′

0) = η0
p(C ′

0).744

28 Dynamic Probabilistic Input Output Automata (Extended Version)

Since we deal with preserving distribution and A0 =
⋃

k∈[1:n] Ak, q′
0 is of the form (q′

1, ..., q′
n)745

with q′
k ∈ QAk

and verifies C ′
0 = C ′

1 ∪ ... ∪ C ′
n with auts(C ′

k) = Ak and TS(C ′
k) = q′

k (**).746

Hence we compose (*) and (**) to obtain for every configuration C ′
0 = (A0, S′

0), for every747

finite set of configurations {C ′
k = (Ak, S′

k)}k∈[1:n], s.t. C ′
0 =

⋃
k∈[1:n] C ′

k, then η0
p(C ′

0) =748

(η1
p ⊗ ...⊗ ηn

p)((C ′
1, ..., C ′

n)).749

◀750

▶ Definition 32 (merge). Let η̃ = (η1, ...ηn) ∈ Disc(Qconf)n. We define751

merge(η̃):
{

Qconf → [0, 1]
C 7→

∑
(C′

1,...,C′
n)∈Qn

conf
join(η̃)((C ′

1, ..., C ′
n)) · 1(C′

1∪...∪C′
n)=C

752

▶ Lemma 33 (Preserving-merging). Let n ∈ N, let {Ck}k∈[1:n] be a set of compatible con-753

figurations. Let η̃p = (η1
p, ..., ηn

p) ∈ Disc(Qconf)n. Assume ∀k ∈ [1 : n], if a ∈ ŝig(Ck), then754

Ck
a

⇀ ηk
p and otherwise, ηk

p = δCk
.755

Then, ∀C ′
0 ∈ supp(merge(η̃p)), it exists a unique (C ′

1, ..., C ′
n), noted split η̃(C ′

0), s.t.756

(a) C ′
0 =

⋃
k∈[1:n] C ′

k and (b) ∀k ∈ [1, n], C ′
k ∈ supp(ηk

p).757

We note split η̃ :
{

supp(merge(η̃p)) → supp(η1
p)× ...× supp(ηn

p)
C ′

0 7→ split η̃p
(C ′

0)758

Moreover, merge(η̃p) s↔ join(η̃p) with s = split η̃p
759

Proof. (Uniqueness) Let us imagine two candidates (C ′
1, ..., C ′

n) and (C ′′
1 , ..., C ′′

n) verifying760

both (a) and (b). Let k, ℓ ∈ [1 : n], k ̸= ℓ. First, by compatibility of C0, φk ∩ φℓ =761

∅. Hence auts(C ′
k) ∩ auts(C ′′

ℓ) = auts(Ck) ∩ auts(Cℓ) = ∅. Since auts(
⋃

k∈[1:n] C ′
k) =762

auts(
⋃

k∈[1:n] C ′
k), ∀k ∈ [1 : n], auts(C ′

k) = auts(C ′′
k). By equality, ∀k ∈ [1 : n], map(C ′

k) =763

map(C ′′
k) and so ∀k ∈ [1 : n], C ′

k = C ′′
k . (Existence) By construction of merge. By764

uniqueness and existence properties, s = split η̃p
is then a bijection from supp(merge(η̃p))765

and supp(η1
p)× ...× supp(ηn

p). Let C ′
0 ∈ supp(merge(η̃p)). By definition merge(η̃p)(C ′

0) =766 ∑
(C′

1,...,C′
n)∈Qn

conf
join(η̃p)((C ′

1, ..., C ′
n)) · 1(C′

1∪...∪C′
n)=C′

0
. By bijectivity, merge(η̃p)(C ′

0) =767

join(η̃p)(split η̃p
(C ′

0)). ◀768

▶ Definition 34 (deter-dest, base). Let C = (A, S) be a configuration. For every A ∈ A, we769

note q = S(A). Let φ ∈ P(Autids). We define770

deter-dest(C, a) = {A ∈ A|ηA,qA,a = δqϕ
A
} if a ∈ ŝig(A)(q) and ∅ otherwise. It represents771

the set of automata that will be deterministically destroyed.772

base(C, a, φ) = A ∪ φ \ deter-dest(C, a). It represents the automata present in supp(η)773

with C
a=⇒φ η.774

▶ Lemma 35 (Merging). Let n ∈ N, Let (φ1, ..., φn) ∈ P(Autids)n with ∀k, ℓ ∈ [1 : n],775

φk ∩ φℓ = ∅. Let {Ck}k∈[1:n] be a set of compatible configurations. Let η̃ = (η1, ..., ηn)776

∈ Disc(Qconf)n. Assume ∀k ∈ [1 : n], if a ∈ ŝig(Ck), then Ck
a=⇒φk

ηk and otherwise,777

ηk = δCk
and φk = ∅. We note φ0 =

⋃
k∈[1:n] φk and C0 =

⋃
k∈[1:n] Ck.778

1. Assume, ∀k, ℓ ∈ [1 : n], k ̸= ℓ, φk ∩ auts(Cℓ) ⊆ deter-dest(Cℓ, a).779

a. ∀C ′
0 ∈ supp(merge(η̃)), it exists a unique (C ′

1, ..., C ′
n), noted split η̃(C ′

0), s.t.780

(a) C ′
0 =

⋃
k∈[1:n] C ′

k and (b) ∀k ∈ [1, n], C ′
k ∈ supp(ηk).781

We note split η̃ :
{

supp(merge(η̃)) → supp(η1)× ...× supp(ηn)
C ′

0 7→ split η̃(C ′
0)782

b. merge(η̃) s↔ join(η̃) with s = split η̃783

c. merge(η̃) = reduce(merge(η̃p) ↑ φ0).784

d. C0
a=⇒φ0 merge(η̃) if a ∈ ŝig(C0) and merge(η̃) = δC0 otherwise.785

P. Civit and M. Potop-Butucaru 29

2. Assume ∀C ′
0 ∈ supp(merge(η̃)), C ′

0 is compatible. Then, ∀k, ℓ ∈ [1 : n], k ̸= ℓ, φk ∩786

auts(Cℓ) ⊆ deter-dest(Cℓ, a).787

Proof. 1.788

a. Indeed, let us imagine two candidates (C ′
1, ..., C ′

n) and (C ′′
1 , ..., C ′′

n) verifying both (a)789

and (b). Let k, ℓ ∈ [1 : n], k ̸= ℓ. By contradiction, let A ∈ auts(C ′
k) ∩ auts(C ′′

ℓ).790

By compatibility, A /∈ auts(Ck) ∩ auts(Cℓ). W.l.o.g., A ∈ φk ∩ auts(Cℓ). By as-791

sumption A ∈ deter-dest(Cℓ, a) and so mathcalA /∈ auts(C ′′
ℓ) which leads to a con-792

tradiction. Hence, ∀k ∈ [1 : n], auts(C ′
k) = auts(C ′′

k). Since auts(
⋃

k∈[1:n] C ′
k) =793

auts(
⋃

k∈[1:n] C ′
k), ∀k ∈ [1 : n], auts(C ′

k) = auts(C ′′
k). By equality, ∀k ∈ [1 : n],794

map(C ′
k) = map(C ′′

k) and so ∀k ∈ [1 : n], C ′
k = C ′′

k . The existence is by construction795

of join.796

b. The fact that s = split η̃ is a bijection from supp(merge(η̃)) and supp(η1)×...×supp(η1)797

comes from the existence and the uniqueness of pre-image proved in item 1a. Let C ′
0 ∈798

supp(merge(η̃)). By definition merge(η̃)(C ′
0) =

∑
(C′

1,...,C′
n)∈Qn

conf
join(η̃)((C ′

1, ..., C ′
n))·799

1(C′
1∪...∪C′

n)=C′
0
. By bijectivity, merge(η̃)(C ′

0) = join(η̃)(split η̃(C ′
0)).800

c. We want to show that merge(η̃) ≜ merge((reduce(η1
p ↑ φ1), ..., (reduce(ηn

p ↑ φn)) =801

reduce(merge(η̃p) ↑
⋃

k∈[1:n] φk) ≜ reduce(merge(η̃p) ↑ φ0). Intuitively, it comes from802

1b that gives merge(η̃) s↔ join(η̃) with s = split η̃ and ∀k ∈ [1 : n], ηk = reduce(ηk
p ↑803

φk), with ∀k, ℓ ∈ [1 : n], k ̸= ℓ, φk ∩ φℓ = ∅. Let us elaborate.804

Let C ′
0 ∈ supp(merge(η̃)). merge(η̃)(C ′

0) = join(η̃)(split η̃(C ′
0)) by 1b.805

Hence, merge(η̃)(C ′
0) = Πk∈[1:n](reduce(ηk

p ↑ φk)(C ′
k) with split η̃(C ′

0) = (C ′
1, ..., C ′

n).806

Thus, for every k ∈ [1, n], C ′
k = (A′

k, S′
k) with (i) A′

k = A′′
k ∪ φk, (ii) ∀A ∈807

φk, S′
k(A) = q̄A (iii) ∀A ∈ A′

k, S′
k(A) ̸= qϕ

A (*). This leads to merge(η̃)(C ′
0) =808

Πk∈[1:n](reduce(ηk
p))(C ′′

k) with C ′′
k = (A′′

k , S′′
k) where S′′

k = S′
k ↾ A′′

k .809

Hence, merge(η̃)(C ′
0) = Πk∈[1:n](

∑
C′′

k,ℓ
,reduce(C′′

k,ℓ
)=C′′

k
ηk

p(C ′′
k,ℓ)) where every C ′′

k,ℓ =810

(A′′
k,ℓ, S′′

k,ℓ) ∈ supp(ηk
p) with reduce(C ′′

k,ℓ) = C ′′
k verifies A′′

k,ℓ = Ak and S′′
k,ℓ ↾ A′′

k = S′′
k811

(**).812

Second, for every k ∈ [1 : n], we note Ad
k = deter-dest(Ck, a), ηk

p,d the unique813

preserving distribution such that ηk
p

destk

↔ ηk
p,d with destk : (A′

k, S′
k) 7→ (A′

k \Ad
k, S′

k ↾814

(A′
k \Ad

k)) and we note ηk
p,d,↑ = ηk

p,d ↑ φk . We note η̃p,d,↑ = (η1
p,d,↑, ..., ηn

p,d,↑). Clearly,815

(reduce(merge(η̃p) ↑ φ0)) = (reduce(merge(η̃p,d,↑)).816

(reduce(merge(η̃p,d,↑))(C ′
0) =

∑
C′

0,d,ℓ
,reduce(C′

0,d,ℓ
)=C′

0
(merge(η̃p,d,↑))(C ′

0,d,ℓ), where817

every C ′
0,d,ℓ = (A′

0,d,ℓ, S′
0,d,ℓ) ∈ supp((merge(η̃p,d,↑)) with reduce(C ′

0,d,ℓ) = C ′
0 verifies818

A′
0,ℓ = A0 \

⋃
k[1:n] Ad

k and S′
0,d,ℓ ↾ A′

0 = S′
0.819

By lemma 33, for each ℓ, (merge(η̃p,d,↑))(C ′
0,d,ℓ) = split η̃p,d,↑

(C ′
0,d,ℓ) = Πk∈[1:n]η

k
p,d,↑(C ′′

k,d,ℓ),820

with split η̃p,d,↑
(C ′

0,d,ℓ) ≜ (C ′
1,d,ℓ, ..., C ′

n,d,ℓ).821

Moreover, every C ′
k,d,ℓ ≜ (A′

k,d,ℓ, S′
k,d,ℓ) ∈ supp(ηk

p,d ↑ φk)) with reduce(C ′
k,d,ℓ) = C ′

k,d,822

A′
k,d,ℓ = (Ak \Ad

k) ∪ φk, S′
k,d,ℓ ↾ A′

k = S′
k. We obtain (reduce(merge(η̃p,d,↑))(C ′

0) =823 ∑
C′

0,d,ℓ
,reduce(C′

0,d,ℓ
)=C′

0
(join(η̃p,d,↑)(split η̃p,d,↑

(C ′
0,d,ℓ))) and so824

(reduce(merge(η̃p,d,↑))(C ′
0) =

∑
C′

0,d,ℓ
,reduce(C′

0,d,ℓ
)=C′

0
(Πk∈[1:n](ηk

p,d,↑)(C ′
k,d,ℓ)) (***).825

Clearly, for every k ∈ [1 : n], (ηk
p ↑ φk) destk

↔ ηk
p,d,↑.826

Combined with (**) and (***), we find merge(η̃)(C ′
0) = (reduce(merge(η̃p) ↑ φ))(C ′

0)827

for every C ′
0 ∈ supp(merge(η̃)), which ends the proof.828

30 Dynamic Probabilistic Input Output Automata (Extended Version)

d. If a /∈ ŝig(C0), the result is trivial. Assume a ∈ ŝig(C0) Let η̃p = (η1
p, ..., ηn

p) ∈829

Disc(Qconf)n s.t. ∀k ∈ [1 : n], Ck
a

⇀ ηk
p if a ∈ ŝig(Ck) and ηk

p = δCk
otherwise.830

For every k ∈ [1 : n], ηk = reduce(η1
p ↑ φk). By compatibility of C0, for every831

k, ℓ ∈ [1, n], k ≠ ℓ, Ap
k ∩ Ap

ℓ = ∅. Hence, we can apply lemma 31 and we have832

C0
a

⇀ merge(η̃p). Thus, C0
a=⇒φ0 reduce(merge(η̃p) ↑ φ0). Finally, merge(η̃) =833

reduce(merge(η̃p) ↑ φ0) by 1c.834

2. By contradiction. W.l.o.g., let us assume A ∈ φk ∩ auts(Cℓ) \ deter-dest(Cℓ, a). Since C835

is compatible, A /∈ Ak ∩Aℓ. By definition of deter-dest it exists (C ′
k, C ′

ℓ) ∈ supp(ηk)×836

supp(ηℓ), A ∈ auts(C ′
k)∩auts(C ′

ℓ) and C ′
k∪C ′

ℓ is not compatible. So it exists (C ′
1, ..., C ′

n) ∈837

supp(η1 ⊗ ...⊗ ηn) s.t. (C ′
1 ∪ ... ∪ C ′

n) is not compatible.838

◀839

trivial results about homomorphisms between probability measures840

▶ Lemma 36. Let (η1, η2, η3) ∈ Disc(Q1)×Disc(Q2)×Disc(Q3), with Qi being a set for each841

i ∈ {1, 2, 3}. Let f : Q1 ⇀ Q2 and g : Q1 ⇀ Q2 defined on supp(η1) and supp(η2) respectively.842

Let f̃ (resp. g̃) denotes the restriction of f (resp. g) on supp(η1) (resp. supp(η2)).843

If η1
f↔ η2 and η2

g↔ η3, then844

1. η1
h↔ η3 where the restriction h̃ of h on supp(η1) verifies h̃ = g̃ ◦ f̃ and845

2. η2
k↔ η1 where the restriction k̃ of k to supp(η2) verifies k̃ = f̃−1.846

Proof.847

(bijectivity) The composition of two bijection is a bijection and the reverse function of a848

bijection is a bijection.849

(measure preservation) In the first case, ∀q ∈ supp(η1), η1(q) = η2(f(q)) with f(q) ∈850

supp(η2) which means η2(f(q)) = η3(g(f(q))). In the second case ∀q′ ∈ supp(η2),∃!q ∈851

supp(η1), η1(q) = η2(q′ = f̃(q)) and hence ∀q′ ∈ supp(η2), η2(q′) = η1(q = f̃−1(q′)).852

◀853

▶ Lemma 37 (correspondence preservation for joint probability). Let η̃ = (η1, ..., ηn) ∈854

Disc(Q1)× ...×Disc(Qn), η̃′ = (η′
1, ..., η′

n) ∈ Disc(Q′
1)× ...×Disc(Q′

n) with each Qi (resp.855

Q′
i) being a set. For each i ∈ [1 : n], let fi : Qi ⇀ Q′

i, where dom(fi) ⊆ supp(ηi), with856

ηi
fi↔ η′

i.857

Then join(η̃) f↔ join(η̃′) with f :
{

Q1 × ...×Qn ⇀ range(f1)× ...× range(fn)
(x1, ..., xn) 7→ (f1(x1), ..., fn(xn)) .858

Proof. The restriction f̃ of f on supp(join(η̃)) = supp(η1)× ...× supp(ηn) is still a bijection859

and ∀x = (x1, ..., xn) ∈ dom(f1)×...×dom(fn), join(η̃)(x) = η1(x1)·...·ηn(xn) = η′
1(f1(x1))·860

... · η′
n(fn(xn)) = join(η̃′)(f(x1, ..., xn)). ◀861

PCA closeness under composition862

Now we are ready for the theorem that claims that a composition of PCA is a PCA.863

▶ Theorem 38 (PCA closeness under composition). Let X1, ..., Xn, be partially-compatible864

PCA. Then X = X1||...||Xn is a PCA.865

Proof. We need to show that X verifies all the constraints of definition 19.866

P. Civit and M. Potop-Butucaru 31

(Constraint) 1: The demonstration is the same as the one in [2], section 5.1, pro-867

position 21, p 32-33. Let q̄X and (A, S) = config(X)(q̄X). By the composition of868

psioa, then q̄X = (q̄X1 , ..., q̄Xn
). By definition, config(X)(q̄X) = config(X1)(q̄X1) ∪ ... ∪869

config(Xn)(q̄Xn). Since for every j ∈ [1 : n], Xj is a configuration automaton, we apply870

constraint 1 to Xj to conclude S(Aℓ) = q̄Aℓ
for every Aℓ ∈ auts(config(Xj)(q̄Xj

). Since871

(auts(config(X1)(q̄X1), ..., auts(config(Xn)(q̄Xn)) is a partition of A by definition of872

composition, S(Aℓ) = q̄Aℓ
for every Aℓ ∈ A which ensures X verifies constraint 1.873

(Constraint 2)874

Let (q, a, η(X,q,a)) ∈ DX . We will establish ∃η′ ∈ Disc(Qconf) s.t. η(X,q,a)
c↔ η′ where875

c = config(X) and config(X)(q) a=⇒φ η′ with φ = created(X)(q)(a).876

For brevity, let Pi = psioa(Xi) for every i ∈ [1 : n]. By definition 29 of PCA com-877

positon, psioa(X) = psioa(X1)||...||psioa(Xn) = P1||...||Pn. By definition 26 of PSIOA878

composition, q = (q1, ..., qn) ∈ QP1 × ... × QPn
, while a ∈

⋃
i∈[1:n] ŝig(Pi)(qi) and879

ηX,q,a = ηP1,q1,a ⊗ ...⊗ ηPn,qn,a with the convention ηPi,qi,a = δqi
if a /∈ ŝig(Pi)(qi).880

Let (I,J) be a partition of [1 : n] s.t. ∀i ∈ I, a ∈ ŝig(Pi)(qi) and ∀j ∈ J , a /∈881

ŝig(Pj)(qj). Then by PCA top/down transition preservation, it exists η′
i ∈ Disc(Qconf)882

s. t. ηXi,qi,a = ηPi,qi,a
ci↔ η′

i with ci = config(Xi) and config(Xi)(qi)
a=⇒φi

η′
i with883

φi = created(Xi)(qi)(a). For every j ∈ J , we note φj = ∅ and η′
j = δconfig(Xj)(qj) that884

verifies δqj

cj↔ η′
j with cj = config(Xj).885

We note η̃′ = (η′
1, ..., η′

n) and φ =
⋃

i∈[1:n] φi. By definition 29 of PCA composition,886

φ = created(X)(q)(a).887

We have ηX,q,a
c′

↔ η′ with c′ : q = (q1, ..., qn) 7→ (c1(q1), ..., cn(qn)) by lemma 37.888

Moreover merge(η̃′) s↔ join(η̃′) with s = split η̃ by lemma 35, item 1b.889

So ηX,q,a
c↔ merge(η̃′) with c = s−1 ◦ c′ = config(X).890

Moreover we have config(X)(q) a=⇒φ merge(η̃′) by lemma 35, item 1d.891

(Constraint 3)892

Let q ∈ QX , C = config(X)(q), a ∈ ŝig(X)(q), φ = created(X)(q)(a) that verify893

C
a=⇒φ η′. We need to show that it exists (q, a, η(X,q,a)) ∈ DX s.t. η(X,q,a)

c↔ η′ with894

c = config(X).895

For brevity, let Pi = psioa(Xi) for every i ∈ [1 : n]. By definition 29 of PCA com-896

position psioa(X) = psioa(X1)||...||psioa(Xn) = P1||...||Pn. By definition 26 of PSIOA897

composition, q = (q1, ..., qn) ∈ QP1 × ...×QPn
, while a ∈

⋃
i∈[1:n] ŝig(Pi)(qi).898

Let (I,J) be a partition [1 : n] s.t. ∀i ∈ I, a ∈ ŝig(Pi)(qi) and ∀j ∈ J , a /∈ ŝig(Pj)(qj).899

For every i ∈ I, we note φi = created(Xi)(qi)(a),while for every j ∈ J , we note φj = ∅900

and η′
j = δconfig(Xj)(qj) that verifies δqj

cj↔ η′
j with cj = config(Xj).901

We note φ = created(X)(q)(a). By pca-composition definition, φ =
⋃

k∈[1:n] φk. For902

every k ∈ [1 : n], we note Ck = config(Xk)(qk) and for every i ∈ I, η′
i ∈ Disc(Qconf) s.t.903

Ci
a=⇒φi

η′
i. We note η̃′ = (η′

1, ..., η′
n)904

By constraint 3 (bottom/up transition preservation), ∀i ∈ I, ∃(qi, a, ηXi,qi,a) ∈ DXi
s.t.905

ηXi,qi,a
ci↔ η′

i with ci = config(Xi). by lemma 37, ηX,q,a = ηX1,q1,a ⊗ ... ⊗ ηXn,qn,a
c′

↔906

η′
1 ⊗ ... ⊗ η′

n = join(η̃′) with the convention ηXj ,qj ,a = δqj
for j ∈ J and c′ : q =907

(q1, ..., qn) ∈ states(X) 7→ (c1(q1), ..., cn(qn)).908

By partial-compatibility, for every C ′ ∈ supp(merge(η̃′)), C ′ is compatible. Hence we909

can apply lemma 35, item 1b, which gives merge(η̃′) s↔ join(η̃′) with s = split η̃′ . Hence910

ηX,q,a
c′′

↔ merge(η̃′) with c′′ = s−1 ◦ c′, that is ηX,q,a
c↔ η′ with c = config(X) and the911

restriction of c′′ on supp(ηX,q,a) is c. We can apply lemma 35 again, but for item 1d,912

which gives C
a=⇒φ merge(η̃′).913

32 Dynamic Probabilistic Input Output Automata (Extended Version)

(Constraint 4).914

Let q = (q1, ..., qn) ∈ QX . For every i ∈ [1, n], we note hi = hidden-actions(Xi)(qi), Ci =915

config(Xi)(qi), h =
⋃

i∈[1,n] hi and C = config(X)(q). Since X1, ..., Xn are compatible916

at state q, we have both {Ci|i ∈ [1, n]} compatible and ∀i, j ∈ [1, n], in(Ci) ∩ hj = ∅. By917

compatibility, ∀i, j ∈ [1, n], i ≠ j, out(Ci)∩ out(Cj) = int(Ci)∩ ŝig(Cj) = ∅, which finally918

gives ∀i, j ∈ [1, n], i ̸= j, ŝig(Ci) ∩ hj = ∅.919

Hence, we can apply lemma 6 of commutativity between hiding and composition to obtain920

hide(sig(C1)×× sig(Cn), h1 ∪ ... ∪ hn) = hide(sig(C1), h1)× ...× hide(sig(Cn), hn)921

where × has to be understood in the sense of definition 3 of signature composition.922

That is sig(psioa(X))(q) = sig(psioa(X1))(q1)) × × sig(psioa(Xn))(qn)), as per923

definition 3, with sig(psioa(X))(q) = hide(sig(config(X)(x)), h). Furthermore h ⊆924

out(config(X)(q)), since ∀i ∈ [1, n], hi ⊆ out(Ci). This terminates the proof.925

◀926

8 Scheduler, measure on executions, implementation927

An inherent non-determinism appears for concurrent systems. Indeed, after composition (or928

even before), it is natural to obtain a state with several enabled actions. The most common929

case is the reception of two concurrent messages in flight from two different processes.930

This non-determinism must be solved if we want to define a probability measure on the931

automata executions and be able to say that a situation is likely to occur or not. To solve932

the non-determinism, we use a scheduler that chooses an enabled action from a signature.933

8.1 General definition and probabilistic space (Frags(A),FFrags(A), ϵσ,µ)934

A scheduler is hence a function that takes an execution fragment as input and outputs935

the probability distribution on the set of transitions that will be triggered. We reuse the936

formalism from [20] with the syntax from [3].937

▶ Definition 39 (scheduler). A scheduler of a PSIOA (resp. PCA) A is a function938

σ : Frags∗(A) → SubDisc(DA) such that (q, a, η) ∈ supp(σ(α)) implies q = lstate(α).939

Here SubDisc(DA) is the set of discrete sub-probability distributions on DA. Loosely speaking,940

σ decides (probabilistically) which transition to take after each finite execution fragment α.941

Since this decision is a discrete sub-probability measure, it may be the case that σ chooses to942

halt after α with non-zero probability: 1− σ(α)(DA) > 0. We note schedulers(A) the set of943

schedulers of A.944

▶ Definition 40 (measure ϵσ,α generated by a scheduler and a fragment). A scheduler σ and a945

finite execution fragment α generate a measure ϵσ,α on the sigma-algebra FFrags(A) generated946

by cones of execution fragments, where each cone Cα′ is the set of execution fragments that947

have α′ as a prefix, i.e. Cα′ = {α ∈ Frags(A)|α′ ≤ α} . The measure of a cone Cα′ is defined948

recursively as follows:949

ϵσ,α(Cα′) = :


0 if both α′ ≰ α and α ≰ α′

1 if α′ ≤ α

ϵσ,α(Cα′′) · σ(α′′)(η(A,q′,a)) · η(A,q′,a)(q) if α ≤ α′′ and α′ = α′′⌢q′aq

950

Standard measure theoretic arguments [20] ensure that ϵσ,α is well-defined. The proof951

of [20] (terminating with theorem 4.2.10, section 4.2) is very general and might appear952

P. Civit and M. Potop-Butucaru 33

discouraging for a brief reading. For sake of completeness, we adapt the proof of [20] to the953

formalism of [3]5.954

First, for every set C of subset of a set Ω, we define F1(C), F2(C), F3(C), FΩ as follows:955

Let F1(C) be the be the family containing ∅, Ω, and all C ⊆ Ω such that either C ∈ C or956

Ω \ C ∈ C.957

F2(C) is the family containing all finite intersections of elements of F1(C).958

F3(C) is the family containing all finite unions of disjoint elements of F2(C).959

Clearly, F3(C) is a ring ("field" in [20]; a ring is also a semi-ring, which is enough to apply960

extension theorem [15]) on Ω, i.e. it is a family of subsets of Ω that contains Ω, and that961

is closed under complementation and finite union. When Ω is clear in the context, we say962

F3(C) is the ring generated by C.963

FΩ is defined as the smallest sigma-algebra containing F3(C). (This is also the smallest964

sigma-algebra on Ω containg C). We say FΩ is the sigma-algebra generated by C. If µ965

is a measure on F3(C), by famous Carathéodory’s extension theorem [7], there exists a966

unique extension µ′ of µ to the sigma-algebra FΩ, defining µ′(
⊎

k∈N Ek) ≜
∑

k∈N µ(Ek).967

Let C = {Cα′ |α′ ∈ Frags(A)} be the set of cones. Clearly, C is a set of subsets of Frags(A).968

As mentioned earlier, we define FFrags(A) as the sigma-algebra on Frags(A) generated by C.969

Also, for every pair of execution fragments α1 and α2, if α1 and α2 are non-comparable,970

then Cα1 ∪ Cα2 is not a cone, while if α1 and α2 are comparable, Cα1 and Cα2 are not971

disjoint. Hence, sigma-additivity is trivially ensured by ϵσ,α on C. Now, let us generate the972

appropriate sigma-algebra FFrags(A) on Frags(A) and let us extend ϵσ,α to FFrags(A).973

Let F1(C) be the be the family containing ∅, Frags(A), and all C ⊆ Frags(A) such that974

either C ∈ C or Frags(A) \ C ∈ C.975

There exists a unique extension ϵi
σ,α of ϵσ,α to F1(C). Indeed, there is a unique way976

to extend the measure of the cones to their complements since for each α′, ϵi
σ,α(Cα′) +977

ϵi
σ,α(Frags(A) \ Cα′) = 1. Therefore ϵi

σ,α coincides with ϵσ,α on the cones and ϵi
σ,α978

is defined to be 1 − ϵi
σ,α(Cα) for the complement of any cone Cα . By countably979

branching structure of Frags(A) (QA and acts(A) are both countable), the complement980

of a cone is a countable union of cones. Indeed, let α′ ∈ Frags∗(A), Cα′ ∈ C, then981

Frags(A) \ Cα′ =
⋃

α′′∈Frags∗(A),α′′⩽̸α′∧α′⩽̸α′′ Cα′′ . Hence, σ-additivity is preserved.982

Let F2(C) be the family containing all finite intersections of elements of F1(C). There983

exists a unique extension ϵii
σ,α of ϵi

σ,α to F2(C). Indeed, let us fix a pair of execution984

fragments α1 and α2, if α1 and α2 are non-comparable, then Cα1 ∩ Cα2 = ∅ is not985

a cone, while if α1 and α2 are comparable, let say α1 ≤ α2, then Cα1 ∩ Cα2 = Cα2 .986

Thus, intersection of finitely many sets of F1(C) is a countable union of cones. Therefore987

σ-additivity enforces a unique measure on the new sets of F1(C).988

Let F3(C) be the family containing all finite unions of disjoint elements of F2(C) .989

There exists a unique extension ϵiii
σ,α of ϵii

σ,α to F2(C). Indeed, there is a unique way of990

assigning a measure to the finite union of disjoint sets whose measure is known, i.e.,991

adding up their measures. Since all the sets of F3(C) are countable unions of cones,992

σ-additivity is preserved.993

Clearly, F3(C) is a ring ("field" in [20]) on Frags(A), i.e. it is a family of subsets of994

Frags(A) that contains Frags(A), and that is closed under complementation and finite995

union. FFrags(A) is defined as the smallest sigma-algebra containing F3(C). (This is996

5 We are not aware of such an adaptation in the literature. This concise presentation might have its own
pedagogical interest

34 Dynamic Probabilistic Input Output Automata (Extended Version)

also the smallest σ-algebra containg C). By famous Carathéodory’s extension theorem997

[7], there exists a unique extension ϵiv
σ,α of ϵiii

σ,α to the sigma-algebra FFrags(A), defining998

ϵiv
σ,α(

⊎
k∈N Ek) =

∑
k∈N ϵiii

σ,α(Ek).999

We can remark that ∀α′ ∈ Frags∗(A), {α′} = Cα′ \ (
⋃

α′′∈Frags∗(A),α′<α′′ Cα′′). In the1000

same way, ∀α′ ∈ Fragsω(A), {α′} = Frags(A)\(
⋃

i∈N
⋃

α′′∈Frags∗(A),α′|i<α′′,α′|i+1 ̸=α′′|i+1
Cα′′).1001

Hence ∀α′ ∈ Frags(A), {α′} ∈ FFrags(A). Necessarily, we have ∀α′ ∈ Fragsω(A), ϵiv
σ,α(α′) =1002

limi→∞ϵiv
σ,α(α′|i). Let us note that the limit is well-defined, since ∀i ∈ N, (1) ϵiv

σ,α(α′|i+1) ≤1003

ϵiv
σ,α(α′|i) and (2) ϵiv

σ,α(α′|i) ≥ 0. In the remaining, we abuse the notation and use ϵσ,α to1004

denotes its extension ϵiv
σ,α on FFrags(A).1005

We call the state fstate(α) the first state of ϵσ,α and denote it by fstate(ϵσ,α). If α consists1006

of the start state q̄A only, we call ϵσ,α a probabilistic execution of A. Let µ be a discrete1007

probability measure over Frags∗(A). We denote by ϵσ,µ the measure
∑

α∈supp(µ) µ(α) · ϵσ,α1008

and we say that ϵσ,µ is generated by σ and µ. We call the measure ϵσ,µ a generalized1009

probabilistic execution fragment of A. If every execution fragment in supp(µ) consists of a1010

single state, then we call ϵσ,µ a probabilistic execution fragment of A.1011

The collection F (CExecs(A)) of sets obtained by taking the intersection of each element in1012

F3(C) with Execs(A) is a ring in Execs(A). We note FExecs(A) the smallest sigma-algebra1013

containing F (CExecs(A)). In the remaining part of the paper, we will mainly focus on1014

probabilistic executions of A of the form ϵσ ≜ ϵσ,δq̄A
= ϵσ,q̄A . Hence, we will deal with1015

probablistic space of the form (Execs(A),FExecs(A), ϵσ).1016

Figure 15 Non-deterministic execution: The scheduler allows us to solve the non-determinism,
by triggering an action among the enabled one. Typically after execution α = q0 d q1,x, the actions
e and f are enabled and the probability to take one transition is given by the scheduler σ that
computes σ(α).

Scheduler Schema1017

Without restriction, a scheduler could become a too powerful adversary for practical ap-1018

plications. Hence, it is common to only consider a subset of schedulers, called a scheduler1019

P. Civit and M. Potop-Butucaru 35

schema. Typically, a classic limitation is often described by a scheduler with "partial online1020

information". Some formalism has already been proposed in [20] (section 5.6) to impose the1021

scheduler that its choices are correlated for executions fragments in the same equivalence1022

class where both the equivalence relation and the correlation must to be defined. This idea1023

has been reused and simplified in [4] that defines equivalence classes on actions, called tasks.1024

Then, a task-scheduler (a.k.a. "off-line" scheduler) selects a sequence of tasks T1, T2, ... in1025

advance that it cannot modify during the execution of the automaton. After each transition,1026

the next task Ti triggers an enabled action if there is no ambiguity and is ignored otherwise.1027

One of our main contribution, the theorem of implementation monotonicity w.r.t. PSIOA1028

creation, is ensured only for a certain scheduler schema, so-called creation-oblivious. However,1029

we will see that the practical set of task-schedulers are not creation-oblivious.1030

▶ Definition 41 (scheduler schema). A scheduler schema is a function that maps every1031

PSIOA (resp. PCA) A to a subset of schedulers(A).1032

8.2 Implementation1033

In last subsection, we defined a measure of probability on executions with the help of a1034

scheduler to solve non-determinism. Now we can define the notion of implementation. The1035

intuition behind this notion is the fact that any environment E that would interact with1036

both A and B, would not be able to distinguish A from B. The classic use-case is to formally1037

show that a (potentially very sophisticated) algorithm implements a specification.1038

For us, an environment is simply a partially-compatible automaton, but in practice, he1039

will play the role of a "distinguisher".1040

▶ Definition 42 (Environment). A probabilistic environment for PSIOA A is a PSIOA E1041

such that A and E are partially-compatible. We note env(A) the set of environments of A.1042

Now we define insight function which is a function that captures the insights that could1043

be obtained by an external observer to attempt a distinction.1044

▶ Definition 43 (insight function). An insight-function is a function f(.,.) parametrized1045

by a pair (E ,A) of PSIOA where E ∈ env(A) s.t. f(E,A) is a measurable function from1046

(Execs(E||A),FExecs(E||A)) to some measurable space (G(E,A),FG(E,A)).1047

Some examples of insight-functions are the trace function and the environment projection1048

function.1049

Since an insight-function f(.,.) is measurable, we can define the image measure of ϵσ,µ1050

under f(E,A), i.e. the probability to obtain a certain external perception under a certain1051

scheduler σ and a certain probability distribution µ on the starting executions.1052

▶ Definition 44 (f -dist). Let f(.,.) be an insight-function. Let (E ,A) be a pair of PSIOA1053

where E ∈ env(A). Let µ be a probability measure on (Execs(E||A),FExecs(E||A)), and1054

σ ∈ schedulers(E||A). We define f-dist(E,A)(σ, µ), to be the image measure of ϵσ,µ under1055

f(E,A) (i.e. the function that maps any C ∈ FG(E,A) to ϵσ,µ(f−1
(E,A)(C))) . We note f-1056

dist(E,A)(σ) for f -dist(E,A)(σ, δq̄(E||A)).1057

We can see next definition of f -implementation as the incapacity of an environment to1058

distinguish two automata if it uses only information filtered by the insight function f .1059

▶ Definition 45 (f -implementation). Let f(.,.) be an insight-function. Let S be a scheduler1060

schema. We say that A f -implements B according to S, noted A ≤S,f
0 B, if ∀E ∈ env(A) ∩1061

env(B), ∀σ ∈ S(E||A), ∃σ′ ∈ S(E||B), f -dist(E,A)(σ) ≡ f -dist(E,B)(σ′), i.e.1062

36 Dynamic Probabilistic Input Output Automata (Extended Version)

supp(f -dist(E,A)(σ)) = supp(f -dist(E,B)(σ′)) ≜ ˜supp, and1063

∀C ∈ ˜supp, f -dist(E,A)(σ)(C) = f -dist(E,B)(σ′)(C)1064

We states a necessary and sufficient condition to obtain composability of f -implementation.1065

▶ Definition 46 (Perception function). Let f(.,.) be an insight-function. We say that f(.,.) is a1066

stable by composition if for every quadruplet of PSIOA (A1,A2,B, E), s.t. B is partially com-1067

patible with A1 and A2, E ∈ env(B||A1)∩env(B||A2), for every (C1, C2) ∈ FExecs(E||B||A1)×1068

FExecs(E||B||A2), f(E||B,A1)(C1) = f(E||B,A2)(C2) =⇒ f(E,B||A1)(C1) = f(E,B||A2)(C2). An1069

insight function stable by composition is said to be a perception-function.1070

Substitutability1071

We can restate classic theorem of composability of implementation in a quite general form.1072

▶ Theorem 47 (Implementation composability). Let f(.,.) be a perception-function. Let S be1073

a scheduler schema. Let A1, A2, B be PSIOA, s.t. A1 ≤S,f
0 A2. If B is partially compatible1074

with A1 and A2 then B||A1 ≤S,f
0 B||A2.1075

Proof. If E is an environment for both B||A1 and B||A2, then E ′ = E||B is an environment1076

for both A1 and A2. By associativity of parallel composition, we have for every i ∈ {1, 2},1077

(E||B)||Ai = E||(B||Ai). Since A1 ≤S,f
0 A2, for any scheduler σ ∈ S((E||B)||A1), it exists1078

a corresponding scheduler σ′ ∈ S((E||B)||A2), s.t. f -dist(E||B),A1(ϵσ) ≡ f -dist(E||B),A2(ϵσ′).1079

Thus, by stability by composition, for any scheduler σ ∈ S(E||(B||A1)), it exists a corres-1080

ponding schedule σ′ ∈ S(E||(B||A2)), s.t. f -dist(E,(B||A1))(ϵσ) ≡ f -dist(E,(B||A2))(ϵσ′), that is1081

A1||B ≤S,f
0 A2||B. ◀1082

We also want restate classic theorem of f -implementation transitivity in the same form.1083

▶ Theorem 48 (Implementation transitivity). Let S be a scheduler schema. Let f(.,.) be1084

an insight-function. Let A1, A2, A3 be PSIOA, s.t. A1 ≤S,f
0 A2 and A2 ≤S,f

0 A3, then1085

A1 ≤S,f
0 A3.1086

Proof. Let E ∈ env(A1) ∩ env(A3).1087

Case 1: E ∈ env(A2). Let σ1 ∈ S(E||A1) then, since A1 ≤S,f
0 A2 it exists σ2 ∈ S(E||A2)1088

f -dist(E,A1)(σ1) ≡ f -dist(E,A2)(σ2) and since A2 ≤S,f
0 A3, it exists σ3 ∈ S(E||A3) s.t. f -1089

dist(E,A2)(σ2) ≡ f -dist(E,A3)(σ3) and so for every σ1 ∈ S(E||A1) ,it exists σ3 ∈ S(E||A3) s.t.1090

f -dist(E,A1)(σ1) ≡ f -dist(E,A3)(σ3) , i.e. A1 ≤S,f
0 A3.1091

Case 2: E /∈ env(A2). A renaming procedure has to be performed before applying Case 1.1092

Let A = {E ,A1,A2,A3}. We note acts(A) =
⋃

B∈A acts(B). We use the special character1093

® for our renaming which is assumed to not be present in any syntactical representation of1094

any action in acts(A).1095

We note rint the action renaming fonction s.t. ∀q ∈ QE , ∀a ∈ ŝig(E)(q), if a ∈ int(E)(q),1096

then rint(q)(a) = a®int and rint(q)(a) = a otherwise. Then we note E ′ = rint(E).1097

If E ′ and A2 are not partially-compatible, it is only because of some reachable state1098

(qE , qA2) ∈ Q′
E ×QA2 s.t. out(A2)(qA2) ∩ out(E ′)(qE) ̸= ∅. Thus, we rename the actions for1099

each state to avoid this conflict.1100

We note rout the renaming function for E ′, s.t. ∀qE ∈ QE , ∀a ∈ ŝig(E)(qE), rout(qE)(a) =1101

a®out if a ∈ out(E)(qE) and a otherwise. In the same way, We note, for every i ∈ {1, 2, 3}1102

ri
in the renaming function for Ai, s.t. ∀qAi

∈ QAi
, ∀a ∈ ŝig(Ai)(qAi

) rin(qAi
)(a) = a®out if1103

a ∈ in(Ai)(qAi) and a otherwise. By lemma 12, E ′′ ≜ rout(E ′) is a PSIOA. Finally, E ′′ and1104

A′′
i = ri

in(Ai) are obviously partially-compatible (and even compatible) for each i ∈ {1, 2, 3}.1105

P. Civit and M. Potop-Butucaru 37

There is an obvious isomorphism between E ′′||A′′
1 and E||A1 and between E ′′||A′′

3 and1106

E||A3 that allows us to apply case 1, which ends the proof.1107

◀1108

The two last theorems allows to state the classical theorem of substitutability.1109

▶ Theorem 49 (Implementation substitutability). Let f(.,.) be a perception-function. Let S be1110

a scheduler schema. Let A1, A2, B1, B2 be PSIOA, s.t. A1 ≤S,f
0 A2 and B1 ≤S,f

0 B2. If both1111

B1 and B2 are partially compatible with both A1 and A2 then A1||B1 ≤S,f
0 A2||B2.1112

Proof. By theorem 47 of implementation composability, A1||B1 ≤S,f
0 A2||B1 and A2||B1 ≤S,f

01113

A2||B2. By theorem 48 of implementation transitivity A1||B1 ≤S,f
0 A2||B2. ◀1114

Trace and projection on environment are perception-functions1115

▶ Proposition 50 (trace is measurable). Let A be a PSIOA (resp. PCA).1116

traceA : (Execs(A),FExecs(A))→ (Traces(A),FTraces(A)) is measurable.1117

Proof. This is enough to show that ∀β ∈ Traces∗(A), trace−1
A (Cβ) ∈ FExecs(A). Yet,1118

trace−1
A (Cβ) =

⋃
α∈Execs∗(A),traceA(α)=β Cα. Hence, this is a countable union of cones of1119

executions of A, i.e. an element of FExecs(A). ◀1120

▶ Proposition 51 (projection is measurable). Let A be a PSIOA (resp. PCA) and E ∈ env(A).1121

proj(E,A) :
{

(Execs(E||A),FExecs(E||A)) → (Execs(E),FExecs(E))
α 7→ α ↾ E is measurable.1122

Proof. This is enough to show that ∀α′ ∈ Execs∗(E), proj−1
(E,A)(Cα′) ∈ FExecs(E||A). Yet,1123

proj−1
(E,A)(Cα′) =

⋃
α∈Execs∗(A),α↾E=α′ Cα. Hence, this is a countable union of cones of1124

executions of E||A, i.e. an element of FExecs(E||A). ◀1125

▶ Lemma 52 (trace and projections are perception functions). The function trace(.,.) and1126

proj(.,.) parametrized with PSIOA E ,A where E ∈ env(A), (with trace(E,A) = trace(E||A))1127

are both perception functions.1128

Proof. 1. (measurability) Immediate by propositions 50 and 51.1129

2. (stability by composition) Let (A1,A2,B, E) be a quadruplet of PSIOA, s.t. B is com-1130

patible with A1 and A2, E ∈ env(B||A1) ∩ env(B||A2). Let (α, π) ∈ ExecsE||B||A1 ×1131

ExecsE||B||A2 , clearly α ↾ (E||B) = π ↾ (E||B) =⇒ α ↾ (E||B) ↾ E = π ↾ (E||B) ↾ E =⇒ α ↾1132

E = π ↾ E , while the traces stay the same.1133

◀1134

Thus, given an environment E of A probability measure µ on FExecs(E||A), and a scheduler1135

σ of (E||A) we define pdist(E,A)(σ, µ) ≜ proj-dist(E,A)(σ, µ), to be the image measure of ϵσ,µ1136

under proj(E,A). We note pdist(E,A)(σ) for pdist(E,A)(σ, δq̄E||A).1137

This choice that slightly differs from tdist(E,A)(σ, µ) = trace-dist(E,A)(σ, µ) used in [5], is1138

motivated by the achievement of monotonicity of p-implementation w.r.t. PSIOA creation.1139

9 Introduction on PCA corresponding w.r.t. PSIOA A, B to introduce1140

monotonicity1141

In this section we take an interest in PCA XA and XB that differ only on the fact that1142

B supplants A in XB. This definition is a key step to formally define monotonicity of a1143

38 Dynamic Probabilistic Input Output Automata (Extended Version)

property. If a property is a binary relation on automata, a brave property P would verify1144

monotonicity, i.e. if 1) (A,B) ∈ P , and 2) XA and XB are PCA that differ only on the fact1145

that B supplants A in XB, then 3) (XA, XB) ∈ P . Monotonicity of implementation w.r.t.1146

PSIOA creation is the main contribution of the paper.1147

9.1 Naive correspondence between two PCA1148

We formalize the idea that two configurations are identical except that the automaton B1149

supplants A but with the same external signature. The following definition comes from [2].1150

▶ Definition 53 (◁AB-corresponding configurations). (see figure 27) Let Φ ⊆ Autids, and A,B1151

be PSIOA identifiers. Then we define Φ[B/A] = (Φ \ A) ∪ {B} if A ∈ Φ, and Φ[B/A] = Φ if1152

A /∈ Φ. Let C, D be configurations. We define C ◁AB D iff (1) auts(D) = auts(C)[B/A], (2)1153

for every A′ /∈ auts(C) \ {A} : map(D)(A′) = map(C)(A′), and (3) ext(A)(s) = ext(B)(t)1154

where s = map(C)(A), t = map(D)(B). That is, in ◁AB-corresponding configurations, the1155

SIOA other than A,B must be the same, and must be in the same state. A and B must have1156

the same external signature. In the sequel, when we write Ψ = Φ[B/A], we always assume1157

that B /∈ Φ and A /∈ Ψ.1158

Figure 16 ◁AB corresponding-configuration

▶ Remark 54. It is possible to have two configurations C, D s.t. C ◁AA D. That would1159

mean that C and D only differ on the state of A (s or t) that has even the same external1160

signature in both cases ext(A)(s) = ext(A)(t), while we would have int(A)(s) ̸= int(A)(t).1161

Now, we formalise the fact that two PCA create some PSIOA in the same manner,1162

excepting for B that supplants A. Here again, this definition comes from [2].1163

▶ Definition 55 (Creation corresponding configuration automata). Let X, Y be PCA and A,B1164

be PSIOA. We say that X, Y are creation-corresponding w.r.t. A,B iff1165

1. X never creates B and Y never creates A.1166

2. Let (α, π) ∈ Execs∗(X)× Execs∗(Y) s.t. traceA(α) = traceB(π). Let q = lstate(α), q′ =1167

lstate(π). Then ∀a ∈ ŝig(X)(q)∩ŝig(Y)(q′) : created(Y)(q′)(a) = created(X)(q)(a)[B/A].1168

In the same way than in definition 55, we formalise the fact that two PCA hide some1169

output actions in the same manner. Here again, this definition is inspired by [2].1170

▶ Definition 56 (Hiding corresponding configuration automata). Let X, Y be PCA and A,B1171

be PSIOA. We say that X, Y are hiding-corresponding w.r.t. A,B iff1172

1. X never creates B and Y never creates A.1173

2. Let (α, π) ∈ Execs∗(X)× Execs∗(Y) s.t. traceA(α) = traceB(π). Let q = lstate(α), q′ =1174

lstate(π). Then hidden-actions(Y)(q′) = hidden-actions(X)(q).1175

P. Civit and M. Potop-Butucaru 39

▶ Definition 57 (creation&hiding-corresponding). Let X, Y be PCA and A,B be PSIOA.1176

We say that X, Y are creation&hiding-corresponding w.r.t. A,B, if they are both creation-1177

corresponding and hiding-corresponding w.r.t. A,B1178

Now we define the notion of A-exclusive action which corresponds to an action which is1179

in the signature of A only. This definition is motivated by the fact that monotonicity induces1180

that A-exclusive (resp. B-exclusive) actions do not create automata. Indeed, otherwise two1181

internal action a and a′ of A and B respectively could create different automata C and D1182

and break the correspondence.1183

▶ Definition 58 (A-exclusive action). Let A ∈ Autids, X be a PCA. Let q ∈ QX , (A, S) =1184

config(X)(q), act ∈ ŝig(X)(q). We say that act is A-exclusive if for every A′ ∈ A \ {A},1185

act /∈ ŝig(A′)(S(A′)) (and so act ∈ ŝig(A)(S(A)) only).1186

The previous definitions 53, 55, 56 and 58 allow us to define a first (naive) definition of1187

PCA corresponding w.r.t. A, B.1188

▶ Definition 59 (naively corresponding w.r.t. A, B). Let A,B ∈ Autids, XA and XB be PCA1189

we say that XA and XB are naively corresponding w.r.t. A, B, if they verify:1190

config(XA)(q̄XA) ◁AB config(XB)(q̄XB).1191

XA, XB are creation&hiding-corresponding w.r.t. A,B1192

(No exclusive creation from A and B) for each K ∈ {A,B}, ∀q ∈ QXK , for every1193

K-exclusive action a, created(XK)(q)(a) = ∅1194

The last definition 59 of (naive) correspondence w.r.t. A, B allows us to define a first1195

(naive) definition 60 of monotonic relation.1196

▶ Definition 60 (Naively monotonic relationship). Let R be a binary relation on PSIOA. We1197

say that R is naively monotonic if for every pair of PSIOA (A,B) ∈ R, for every pair of1198

PCA XA and XB that are naively corresponding w.r.t. A, B, (psioa(XA), psioa(XB)) ∈ R1199

.1200

However, the relation of p-implementation introduced in subsection 8.2 is not proved1201

monotonic without some additional technical assumptions presented in next subsection 9.2.1202

Roughly speaking, it allows to 1) define a PCA Y = X \{A} that corresponds to X "deprived"1203

from A and 2) define the composition between Y and A, 3) avoiding some ambiguities during1204

the construction. In the first instance, the reader should skip the next subsection 9.2 on1205

conservatism and keep in mind the intuition only. This sub-section 9.2 can be used to1206

know the assumptions of the theorems of monotonicity and use them as black-boxes. The1207

assumptions will be re-called during the proof.1208

9.2 Conservatism: the additional assumption for relevant definition of1209

correspondence w.r.t. A,B1210

This subsection aims to define the notion of A-conservative PCA.1211

Some definitions relative to configurations1212

In the remaining, it will often be useful to reason on the configurations. This is why we1213

introduce some definitions that will be used again and again in the demonstrations.1214

The next definition captures the idea that two states of a certain layer represents the1215

same situation for the bottom layer.1216

40 Dynamic Probabilistic Input Output Automata (Extended Version)

▶ Definition 61 (configuration-equivalence between two states). Let K, K ′ be PCA and (q, q′) ∈1217

QK ×QK′ . We say that q and q′ are config-equivalent, noted qRconf q′, if config(K)(q) =1218

config(K ′)(q′). Furthermore, if1219

config(K)(q) = config(K ′)(q′),1220

hidden-actions(K)(q) = hidden-actions(K ′)(q′) and1221

∀a ∈ ŝig(K)(q) = ŝig(K ′)(q′), created(K)(q)(a) = created(K ′)(q′)(a),1222

we say that q and q′ are strictly-equivalent, noted qRstrictq
′ .1223

Now, we define a special subset of PCA that do not tolerate different configuration-1224

equivalent states.1225

▶ Definition 62 (Configuration-conflict-free PCA). Let K be a PCA. We say K is configuration-1226

conflict-free, if for every q, q′ ∈ QK s.t. qRconf q′, then q = q′. The current state of a1227

configuration-conflict-free PCA can be defined by its current attached configuration.1228

For some elaborate definitions, we found useful to introduce the set of potential output1229

actions of A in a configuration config(X)(q) coming from a state q of a PCA X:1230

▶ Definition 63 (potential ouput). Let A ∈ autids. Let X be a PCA. Let q ∈ QX . We note1231

pot-out(X)(q)(A) the set of potential output actions of A in config(X)(q) that is1232

pot-out(X)(q)(A) = ∅ if A /∈ auts(config(X)(q))1233

pot-out(X)(q)(A) = out(A)(map(config(X)(q))(A)) if A ∈ auts(config(X)(q))1234

Here, we define a configuration C deprived from an automaton A in the most natural1235

way.1236

▶ Definition 64 (C \ {A} Configuration deprived from an automaton). C = (A, S). C \ {A} =1237

(A′, S′) with A′ = A \ {A} and S′ the restriction of S on A′
1238

The two last definitions 63 and 64 allows us to define in compact way a new relation1239

between states that captures the idea that two states q ∈ QX and q′ ∈ QY are equivalent1240

modulo a difference uniquely due to the presence of automaton A in config(X)(q) and1241

config(Y)(q′).1242

▶ Definition 65 (R\{A} relationship (equivalent if we forget A)). Let A ∈ Autids. Let1243

S = {QX |X is a PCA } the set of states of any PCA. We defined the equivalence relation1244

R
\{A}
conf and R

\{A}
conf on S defined by ∀X, Y PCA, ∀(qX , qY) ∈ QX ×QY :1245

qXR
\{A}
conf qY ⇐⇒ config(X)(qX) \ {A} = config(Y)(qY) \ {A}1246

qXR
\{A}
strictqY ⇐⇒ the conjonction of the 3 following properties:1247

qXR
\{A}
conf qY1248

∀a ∈ ŝig(X)(qX) ∩ ŝig(Y)(qY), created(Y)(qY)(a) \ {A} = created(X)(qX)(a) \ {A}1249

hidden-actions(X)(qX)\pot-out(X)(qX)(A) = hidden-actions(Y)(qY)\pot-out(Y)(qY)(A)1250

A-fair and A-conservative: necessary assumptions to authorize the construction1251

used in the proof1252

Now, we are ready to define A-fairness and then A-conservatism.1253

A A-fair PCA is a PCA s.t. we can deduce its current properties from its current1254

configuration deprived of A. This assumption will allow us to define Y = X \ {A} in the1255

proof of monotonicity.1256

P. Civit and M. Potop-Butucaru 41

▶ Definition 66 (A-fair PCA). Let A ∈ Autids. Let X be a PCA. We say that X is A-fair if1257

(configuration-conflict-free) X is configuration-conflict-free.1258

(no conflict for projection) ∀qX , q′
X ∈ QX , s.t. qXR

\{A}
conf q′

X then qXR
\{A}
strictq

′
X .1259

(no exclusive creation by A) ∀qX ∈ QX , ∀a ∈ ŝig(X)(qX) A-exclusive in qX ,1260

created(X)(qX)(a) = ∅1261

This definition 66 allows the next definition 67 to be well-defined. A A-conservative PCA1262

is a A-fair PCA that does not hide any output action that could be an external action of A.1263

This assumption will allow us to define the composition between A and Y = X \ {A} in the1264

proof of monotonicity.1265

▶ Definition 67 (A-conservative PCA). Let X be a PCA, A ∈ Autids. We say that X is1266

A-conservative if it is A-fair and for every state qX , CX = config(X)(qX) s.t. A ∈ aut(CX)1267

and map(CX)(A) ≜ qA, hidden-actions(X)(qX) ∩ êxt(A)(qA) = ∅.1268

9.3 Corresponding w.r.t. A, B1269

We are closed to state all the technical assumptions to achieve monotonicity of p-implementation1270

w.r.t. PSIOA creation. We introduce one last assumption so-called creation-explicitness,1271

used in section 14 to reduce implementation of XB by XA to implementation of B by A.1272

Intuitively, a PCA is A-creation-explicit if the creation of a sub-automaton A is equivalent1273

to the triggering of an action in a dedicated set. This property will allow to obtain the1274

reduction of lemma 187.1275

▶ Definition 68 (creation-explicit PCA). Let A be a PSIOA and X be a PCA. We say that X1276

is A-creation-explicit iff: it exists a set of actions, noted creation-actions(X)(A), s.t. ∀qX ∈1277

QX , ∀a ∈ ŝig(X)(qX), if we note AX = auts(config(X)(qX)) and φX = created(X)(qX)(a),1278

then A /∈ AX ∧ A ∈ φX ⇐⇒ a ∈ creation-actions(X)(A).1279

Now we can define new (non naively) correspondence w.r.t. PSIOA A, B to define (non1280

naively) monotonic relationship.1281

▶ Definition 69 (corresponding w.r.t. A, B). Let A,B ∈ Autids, XA and XB be PCA we1282

say that XA and XB are corresponding w.r.t. A, B, if 1) they are naively corresponding1283

w.r.t. A, B, 2) they are A-conservative and B-conservative respectively and 3) they are1284

A-creation explicit and B-creation explicit respectively with creation-actions(XA)(A) =1285

creation-actions(XB)(B) i.e. they verify:1286

XA is A-conservative and XB is B-conservative1287

XA is A-creation explicit and XB is B-creation explicit with creation-actions(XA)(A) =1288

creation-actions(XB)(B)1289

config(XA)(q̄XA) ◁AB config(XB)(q̄XB).1290

XA, XB are creation&hiding-corresponding w.r.t. A,B1291

(No exclusive creation from A and B) for each K ∈ {A,B}, ∀q ∈ QXK , for every1292

K-exclusive action a, created(XK)(q)(a) = ∅1293

▶ Definition 70 (Monotonic relationship). Let R be a binary relation on PSIOA. We say that1294

R is monotonic if for every pair of PSIOA (A,B) ∈ R, for every pair of PCA XA and XB1295

that are corresponding w.r.t. A, B, (psioa(XA), psioa(XB)) ∈ R.1296

We would like to state the monotonicy of p-implementation, but it holds only for a certain1297

class of schedulers, so-called creation-oblivious introduced in next subsection 9.41298

42 Dynamic Probabilistic Input Output Automata (Extended Version)

9.4 Creation-oblivious scheduler1299

Here we present a particular scheduler schema, that do not take into account previous internal1300

actions of a particular sub-automaton to output its probability over transitions to trigger.1301

We start by defining strict oblivious-schedulers that output the same transition with the1302

same probability for pair of execution fragments that differ only by prefixes in the same class1303

of equivalence. This definition is inspired by the one provided in the thesis of Segala, but is1304

more restrictive since we require a strict equality instead of a correlation (section 5.6.2 in1305

[20]).1306

▶ Definition 71 (oblivious scheduler). Let W̃ be a PCA or a PSIOA, let σ̃ ∈ schedulers(W̃)1307

and let ≡ be an equivalence relation on Frags∗(W̃) verifying ∀α̃1, α̃2 ∈ Frags∗(W̃) s.t.1308

α̃1 ≡ α̃2, lstate(α1) = lstate(α2) . We say that σ̃ is (≡)-strictly oblivious if ∀α̃1, α̃2, α̃3 ∈1309

Frags∗(W̃) s.t. 1) α1 ≡ α2 and 2) fstate(α̃3) = lstate(α̃2) = lstate(α̃1), then σ̃(α̃⌢
1 α̃3) =1310

σ̃(α̃⌢
2 α̃3).1311

Now we define the relation of equivalence that defines our subset of creation-oblivious1312

schedulers. Intuitively, two executions fragments ending on A creation are in the same1313

equivalence class if they differ only in terms of internal actions of A.1314

▶ Definition 72 (α̃ ≡cr
A α̃′). Let A be a PSIOA, and W̃ be a PCA. For every α̃, α̃′ ∈1315

Frags∗(W̃), we say α̃ ≡cr
A α̃′ iff:1316

1. α̃, α̃′ both ends on A-creation.1317

2. α̃ and α̃′ differ only in the A-exclusive actions and the states of A, i.e. µ(α̃) = µ(α̃′)1318

where µ(α̃ = q̃0a1q̃1...anq̃n) ∈ Frags∗(W̃) is defined as follows:1319

remove the A-exclusive actions1320

replace each state q̃i by its configuration Config(W̃)(q̃) = (Ai, Si)1321

replace each configuration (Ai, Si) by (Ai, Si) \ {A}1322

replace the (non-alternating) sequences of identical configurations (due to A-exclusiveness1323

of removed actions) by one unique configuration.1324

3. lstate(α̃) = lstate(α̃′)1325

We can remark that the items 3 can be deduced from 1 and 2 if X is configuration-1326

conflict-free.1327

▶ Definition 73 (creation-oblivious scheduler). Let Ã be a PSIOA, W̃ be a PCA, σ̃ ∈1328

schedulers(W̃). We say that σ̃ is A-creation oblivious if it is (≡cr
A)-strictly oblivious.1329

We say that σ̃ is creation-oblivious if it is A-creation oblivious for every sub-automaton1330

A of W̃ (A ∈
⋃

q∈states(W̃) auts(config(W̃)(q))). We note CrOb the function that maps1331

any PCA W̃ to the set of creation-oblivious schedulers of W̃ .1332

We have formally defined our notion of creation-oblivious scheduler. This will be a key1333

property to ensure lemma 187 that allows to reduce the measure of a class of comportment1334

as a function of measures of classes of shorter comportment where no creation of A or B1335

occurs excepting potentially at very last action. This reduction is more or less necessary to1336

obtain monotonicity of implementation relation:1337

▶ Theorem 74 (≤CrOb,p
0 is monotonic). Let A,B ∈ Autids, XA and XB be PCA corresponding1338

w.r.t. A, B. Let S = CrOb and p = proj(.,.). If A ≤S,p
0 B, then XA ≤S,p

0 XB1339

The remaining sections are dedicated to the proof of this theorem 74. We start by defining1340

in section 10 a morphism between executions of automata, so called executions-matching, that1341

P. Civit and M. Potop-Butucaru 43

preserves structure and measure of probability under alter ego schedulers. Next, we define1342

in section 11 the notion of an automaton XA deprived from a PSIOA A, noted XA \ {A}.1343

Furthermore, we show in section 12 that there is an executions-matching from a PCA XA1344

to (XA \ {A})||Ãsw where Ãsw is the simpleton wrapper of A, i.e. a PCA that only handle1345

A. The section 14 uses the morphism of section 12 to reduce the implementation of XB by1346

XA to the implementation of B by A and finally obtain the monotonicity of implementation1347

w.r.t. PSIOA creation. Finally section 15 explains why the task-scheduler introduced in [5]1348

is not creation-oblivious.1349

10 Executions-matching1350

In this section, we introduce some tools to formalise the fact that two automata have the same1351

comportment for the same scheduler. This section is composed by two sub-sections on PSIOA1352

executions-matching and PCA executions-matching. Basically, an executions-matching1353

execution from an automaton A to another automaton B is a morphism fex from Execs(A)1354

to Execs(B) that is structure-preserving. In the remaining, we will often use an executions-1355

matching to show that a pair of executions (α, π = fex(α)) ∈ Execs(A) × Execs(B) have1356

the same probability ϵσ(α) = ϵσ′(π) under a pair of so-called alter-ego schedulers (σ, σ′) ∈1357

schedulers(A)× schedulers(B) that have corresponding comportment after corresponding1358

executions fragment (α′, π′ = fex(α′)) ∈ Frags∗(A)× Frags∗(B).1359

10.1 PSIOA executions-matching and semantic equivalence1360

This first subsection is about PSIOA executions-matching.1361

matching execution1362

An executions-matching need a states-matching (see definition 75) and a transitions-matching1363

(see definition 77) to be defined itself.1364

▶ Definition 75 (states-matching). Let A and B be two PSIOA, let Q′
A ⊂ QA and let1365

f : Q′
A → QB be a mapping that verifies:1366

Starting state preservation: If q̄A ∈ Q′
A then f(q̄A) = q̄B1367

Signature preservation (modulo an hiding operation): ∀(q, q′) ∈ Q′
A ×QB, s.t. q′ = f(q),1368

sig(A)(q) = hide(sig(B)(q′), h(q′)) with h(q′) ⊆ out(B)(q′) (resp. with h(q′) = ∅, that is1369

sig(A)(q) = sig(B)(q′)).1370

then we say that f is a weak (resp. strong) states-matching from A to B. If Q′
A = QA, then1371

we say that f is a complete (weak or strong) states-matching from A to B.1372

Before being able to define transitions-matching, some requirements have to be ensured. A1373

set of transition that would ensure these requirements would be called eligible to transitions-1374

matching.1375

▶ Definition 76 (transitions set eligible to transitions matching). Let A and B be two PSIOA,let1376

Q′
A ⊂ QA and let f : Q′

A → QB be a states-matching from A to B. Let D′
A ⊆ DA be a subset1377

of transition. If D′
A verifies that ∀(q, a, η(A,q,a)) ∈ D′

A:1378

Matched states preservation: q ∈ Q′
A and1379

Equitable corresponding distribution: ∀q′′ ∈ supp(η(A,q,a)), q′′ ∈ Q′
A and η(A,q,a)

f←→1380

η(B,f(q),a)1381

then we say that D′
A is eligible to transitions-matching domain from f . We omit to mention1382

the states-matching f when this is clear in the context.1383

44 Dynamic Probabilistic Input Output Automata (Extended Version)

Now, we are able to define a transitions-matching, which is a property-preserving mapping1384

from a set of transitions D′
A ⊆ DA to another set of transitions D′

B ⊆ DB.1385

▶ Definition 77 (transitions-matching). Let A and B be two PSIOA, let Q′
A ⊂ QA and let1386

f : Q′
A → QB be a states-matching from A to B. Let D′

A ⊆ DA be a subset of transition1387

eligible to transitions-matching domain from f .1388

We define the transitions-matching (f, f tr) from A to B induced by the states-matching1389

f and the subset of transition D′
A s.t. f tr : D′

A → DB is defined by f tr((q, a, η(A,q,a))) =1390

(f(q), a, η(B,f(q),a)) . If f is complete and D′
A = DA, (f, f tr) is said to be a complete1391

transitions-matching. If f is weak (resp. strong) (f, f tr) is said to be a weak (resp. strong)1392

transitions-matching. If f is clear in the context, with a slight abuse of notation, we say that1393

f tr is a transitions-matching.1394

The function f tr needs to verify some constraints imposed by f , but if the set D′
A of1395

concerned transitions is correctly-chosen to ensure the 2 properties of definition 76, then1396

such a transitions-matching is unique.1397

Now, we can easily define an executions-matching with a transitions-matching, which is a1398

property-preserving mapping from a set of execution fragments F ′
A ⊆ Frags(A) to another1399

set of execution fragments F ′
B ⊆ Frags(B).1400

▶ Definition 78 (executions-matching). Let A and B be two PSIOA. Let (f, f tr) be a1401

transitions-matching from A to B. Let F ′
A = {α ≜ q0a1q1...anqn... ∈ Frags(A)|∀i ∈ [0 :1402

|α| − 1], (qi, ai+1, η(A,qi,ai+1)) ∈ dom(f tr)}. Let fex : F ′
A → Frags(B), built from (f, f tr) s.t.1403

∀α = q0
Aa1q1

A...anqn
A... ∈ F ′

A, fex(α) = f(q0
A)a1f(q1

A)...anf(qn
A)...1404

We say that (f, f tr, fex) is an executions-matching from A to B. Furthermore, if (f, f tr)1405

is complete and F ′
A = Frags(A), (f, f tr, fex) is said to be a complete executions-matching.1406

If (f, f tr) is weak (resp. strong) (f, f tr, fex) is said to be a weak (resp. strong) executions-1407

matching. When (f, f tr) is clear in the context, with a slight abuse of notation, we say that1408

fex is an executions-matching.1409

The function fex is completely defined by (f, f tr), hence we call (f, f tr, fex) the executions-1410

matching induced by the transition matching (f, f tr) or the executions-matching induced by1411

the states-matching f and the subset of transitions dom(f tr).1412

The construction of fex allows us to see two executions mapped by an executions-mapping1413

as a sequence of pairs of transitions mapped by the attached transitions-matching. This1414

result is formalised in next lemma 79.1415

▶ Lemma 79 (executions-matching seen as a sequence of transitions-matchings). Let A1416

and B be two PSIOA. Let (f, f tr, fex) be an executions-matching from A to B. Let α =1417

q0
Aa1q1

A...anqn
A... ∈ dom(fex) and π = fex(α) = q0

Ba1q1
B...anqn

B... = f(q0
A)a1f(q1

A)...anf(qn
A)....1418

Then for every i ∈ [0 : |α| − 1], (qi
B, ai+1, η(B,qi

B,ai+1)) = f tr((qi
A, ai+1, η(A,qi

A,ai)))1419

Proof. First, matched states preservation and action preservation are ensured by construction.1420

By definition, for every i ∈ [0 : |α| − 1], (qi
A, ai+1, η(A,qi

A,ai+1)) ∈ dom(f tr). We note1421

tri
B ≜ f tr((qi

A, ai+1, η(A,qi
A,ai+1))). By definition, tri

B is of the form (f(qi
A), ai+1, η). But a1422

transition of this form is unique, which means tri
B = (f(qi

A), ai+1, η(B,f(qi
A),ai+1)) which ends1423

the proof. ◀1424

Now we overload the definition of executions-matching to be able to state the main result1425

of this paragraph i.e. theorem 831426

P. Civit and M. Potop-Butucaru 45

Matching executions

Figure 17 Here we have Q′
A = {q0, q1, ..., q9} ⊊ QA, we define the

state-matching f : Q′
A → QB s.t. ∀k ∈ [1, 9], f(qk) = q̃k, and D′

A =
{(q0, a, η(A,q0,a)), (q1, b, η(A,q1,b)), (q1, c, η(A,q1,c)), (q2, d, η(A,q2,d)), (q4, e, η(A,q4,e)), (q5, f, η(A,q5,f)), (q7, h, η(A,q7,h))}.
We can define the execution matching (f, f tr, fex) induced by f and D′

A.

▶ Definition 80 (executions-matching overload: pre-execution-distribution). Let A and B be1427

two PSIOA. Let (f, f tr, fex) be an executions-matching from A to B.1428

Let (µ, µ′) ∈ Disc(Frags(A)) × Disc(Frags(B)) s.t. µ
fex

↔ µ′. Then we say that1429

(f, f tr, fex) is an executions-matching from (A, µ) to (B, µ′).1430

In practice, we will often use executions-matching from (A, δq̄A) to (B, δq̄B).1431

Continued executions-matching1432

Motivated by PSIOA creation that would break the states-matching from a PCA XA to the1433

PCA ZA ≜ (X \ {A})||Ãsw defined in section 12, we introduce the notion of continuation of1434

executions-matching.1435

▶ Definition 81 (Continued executions-matching). Let A and B be two PSIOA. Let (f, f tr, fex)1436

be an executions-matching from A to B with dom(f) ≜ Q′
A ⊂ QA and dom(f tr) ≜ D′

A ⊂ DA.1437

Let f+ : Q′′
A → QB with Q′′

A ⊂ QA. Let D′′
A ⊂ DA be a subset of transitions verifying for1438

every (q, a, η(A,q,a)) ∈ D′′
A \D′

A:1439

Matched states preservation: q ∈ Q′
A1440

46 Dynamic Probabilistic Input Output Automata (Extended Version)

Extension of equitable corresponding distribution: ∀q′′ ∈ supp(η(A,q,a)), q′′ ∈ Q′′
A and1441

η(A,q,a)
f+

←→ η(B,f(q),a).1442

We define the (f+, D′′
A)-continuation of f tr as the function f tr,+ : D′

A ∪ D′′
A → DB s.t.1443

∀(q, a, η(A,q,a)) ∈ D′
A ∪D′′

A, f tr,+((q, a, η(A,q,a))) = (f(q), a, η(B,f(q),a)).1444

Let F ′′
A = dom(fex) ∪ {α⌢qaq′ ∈ Execs∗(A)|α ∈ dom(fex) ∧ (q, a, η(A,q,a)) ∈ D′′

A}.1445

We define the (f tr,+)-continuation of fex as the function fex,+ : F ′′
A → Frags(B) s.t.1446

∀α ∈ dom(fex), fex,+(α) = fex(α) and ∀α′ = α⌢q, a, q′ ∈ F ′′
A \ dom(fex), fex,+(α′) =1447

fex(α)⌢f(q), a, f+(q′).1448

Then, we say that ((f, f+), f tr,+, fex,+) is the (f+, D′′
A)-continuation of (f, f tr, fex)1449

which is a continuation of (f, f tr, fex) and a continued executions-matching from A to. B.1450

Moreover, if (µ, µ′) ∈ Disc(Frags(A)) × Disc(Frags(B)) s.t. µ
fex,+

←→ µ′, then we say1451

that ((f, f+), f tr,+, fex,+) is a continued executions-matching from (A, µ) to (B, µ′).1452

From executions-matching to probabilistic distribution preservation1453

We want to states that a (potentially-continued) executions-matching preserves measure of1454

probability of the corresponding executions.1455

To do so, we define alter egos schedulers to a certain executions-matching. Such pair of1456

schedulers are very similar in the sense that their outputs depends only on the semantic1457

structure of the input, preserved by the executions-matching.1458

▶ Definition 82 ((f, f tr, fex)-alter egos schedulers). Let A and B be two PSIOA. Let1459

(f, f tr, fex) be an executions-matching from A to B. Let (σ̃, σ) ∈ schedulers(A)×schedulers(B).1460

We say that (σ̃, σ) are (f, f tr, fex)-alter egos (or fex-alter egos) if, and only if, for every1461

(α̃, α) ∈ Frags∗(A)× Frags∗(B) s.t. α = fex(α̃) (which means ŝig(A)(q̃) = ŝig(B)(q) ≜ sig1462

with q̃ = lstate(α̃) and q = lstate(α) by signature preservation property of the associated1463

states-matching), ∀a ∈ sig, σ̃(α̃)((q̃, a, η(A,q̃,a))) = σ(α)((q, a, η(B,q,a))).1464

Let us remark that the previous definition implies that the probability of halting after1465

corresponding executions fragments (α̃, α) is also the same.1466

Now we are ready to states an intuitive result that will be often used in the remaining.1467

▶ Theorem 83 (Executions-matching preserves general probabilistic distribution). Let A and1468

B be two PSIOA. Let (µ̃, µ) ∈ Disc(Frags(A)) ×Disc(Frags(B)). Let (f, f tr, fex) be an1469

executions-matching from (A, µ̃) to (B, µ) . Let (σ̃, σ) ∈ schedulers(A) × schedulers(B),1470

s.t. (σ̃, σ) are (f, f tr, fex)-alter egos. Let (α̃, α) ∈ Frags∗(A)× Frags∗(B) s.t. α = fex(α̃).1471

Then ϵσ̃,µ̃(Cα̃) = ϵσ,µ(Cα) and ϵσ̃,µ̃(α̃) = ϵσ,µ(α).1472

Proof. First, by definition 80 of executions-matching, fex is a bijection from supp(µ̃) to1473

supp(µ) where ∀α̃o ∈ supp(µ̃), µ(fex(α̃o)) = µ̃(α̃o) (*). Second, by definition 40 of meas-1474

ure generated by a scheduler, ϵσ,µ(Cα′) = Σαo∈supp(µ)µ(αo) · ϵσ,αo
(Cα′) and ϵσ̃,µ̃(Cα̃′) =1475

Σα̃o∈supp(µ̃)µ̃(α̃o) · ϵσ̃,α̃o
(Cα̃′) (**). Hence, by combining (*) and (**), we only need to1476

show that for every (α̃o, αo) ∈ supp(µ̃) × supp(µ) with fex(α̃o) = αo, for every (α̃′, α′) ∈1477

Frags∗(A)×Frags∗(B) with fex(α̃′) = α′, we have ϵσ,αo
(Cα′) = ϵσ̃,α̃o

(Cα̃′) that we show by1478

induction on the size s = |α̃| = |α|. We fix (α̃o, αo) ∈ supp(µ̃)× supp(µ) with fex(α̃o) = αo.1479

Basis: s = 01480

Let α̃′ = q̃′ ∈ Frags∗(A), α′ = q′ ∈ Frags∗(B) with α′ = fex(α̃′). We have |α̃′| = |α′| =1481

0. By definition 40 of measure generated by a scheduler,1482

P. Civit and M. Potop-Butucaru 47

ϵσ̃,α̃o(Cα̃′) = :


0 if both α̃′ ≰ α̃o and α̃o ≰ α̃′

1 if α̃′ ≤ α̃o

ϵσ̃,α̃o(Cα̃) · σ̃(α̃)(η(A,q̃,a)) · η(A,q̃,a)(q̃′) if α̃o ≤ α̃ and α̃′ = α̃⌢q̃aq̃′
1483

and1484

ϵσ,αo
(Cα′) = :


0 if both α′ ≰ αo and αo ≰ α′

1 if α′ ≤ αo

ϵσ,αo
(Cα) · σ(α)(η(B,q,a)) · η(B,q,a)(q′) if αo ≤ α and α′ = α⌢qaq′

1485

Since |α̃′| = |α′| = 0 the third case is never met. The second case can be written: α̃′ ≤ α̃o1486

(resp. α′ ≤ αo) iff fstate(α̃o) = q̃′ (resp. fstate(αo) = q′). Hence, for every (α̃o, αo) s.t.1487

fex(α̃o) = αo, ϵσ̃,α̃o(Cα̃′) = ϵσ,αo(C ′
α) which ends the basis.1488

Induction: We assume the result to be true up to size s and we show it implies the1489

result is true for size s + 1. Let (α̃′, α̃, α′, α) ∈ Frags∗(A)2 × Frags∗(B)2 with α̃′ = α̃⌢q̃aq̃′
1490

and α′ = α⌢qaq′ s.t. α′ = fex(α̃′) with |α̃′| = |α′| = s + 1. We want to show that1491

ϵσ̃,µ̃(Cα̃′) = ϵσ,µ(Cα′). By definition 40 of measure generated by a scheduler,1492

ϵσ̃,α̃o(Cα̃′) = :


0 if both α̃′ ≰ α̃o and α̃o ≰ α̃′

1 if α̃′ ≤ α̃o

ϵσ̃,α̃o(Cα̃) · σ̃(α̃)(η(A,q̃,a)) · η(A,q̃,a)(q̃′) if α̃o ≤ α̃ and α̃′ = α̃⌢q̃aq̃′
1493

and1494

ϵσ,αo
(Cα′) = :


0 if both α′ ≰ αo and αo ≰ α′

1 if α′ ≤ αo

ϵσ,αo
(Cα) · σ(α)(η(B,q,a)) · η(B,q,a)(q′) if αo ≤ α and α′ = α⌢qaq′

1495

Again, the executions-matching implies that i) both α̃′ ≰ α̃o and α̃o ≰ α̃′ ⇐⇒ both α′ ≰1496

αo and αo ≰ α′, ii) α̃ ≤ α̃o ⇐⇒ α ≤ αo and iii) α̃o ≤ α̃ ⇐⇒ αo ≤ α. Moreover, by induc-1497

tion assumption ϵσ̃,α̃o(Cα̃) = ϵσ,αo(Cα). Hence we only need to show that σ̃(α̃)(η(A,q̃,a)) ·1498

η(A,q̃,a)(q̃′) = σ(α)(η(B,q,a))·η(B,q,a)(q′) (***). By definition of alter-ego schedulers, σ̃(α̃)(η(A,q̃,a)) =1499

σ(α)(η(B,q,a)) (j). By definition of executions-matching, η(A,q̃,a)(q̃′) = η(B,q,a)(q′) (jj).1500

Thus (j) and (jj) implies (***) which allows us to terminate the induction to obtain1501

ϵσ̃,α̃o
(Cα̃′) = ϵσ,αo

(Cα′).1502

Finally, let sig = ŝig(A)(lstate(α̃′)) = ŝig(A)(lstate(α′)), then ϵσ̃,α̃o(α̃′) = ϵσ̃,α̃o(Cα̃′) ·1503

(1− Σa∈sigσ̃(α̃′)(a)) = ϵσ,αo
(Cα′) · (1− Σa∈sigσ(α′)(a)) = ϵσ,αo

(α′), which ends the proof.1504

◀1505

We restate the previous theorem with continued executions-matching.1506

▶ Theorem 84 (Continued executions-matching preserves general probabilistic distribution). Let1507

A and B be two PSIOA. Let (µ̃, µ) ∈ Disc(Frags(A))×Disc(Frags(B)). Let (f, f tr, fex)1508

be an executions-matching from (A, µ̃) to (B, µ) . Let ((f, f+), f tr,+, fex,+) be a continuation1509

of (f, f tr, fex). Let (σ̃, σ) ∈ schedulers(A)× schedulers(B), s.t. (σ̃, σ) are (f, f tr, fex)-alter1510

egos. Let (α̃, α) ∈ Frags∗(A)× Frags∗(B) s.t. α = fex,+(α̃). Then ϵσ̃,µ̃(Cα̃) = ϵσ,µ(Cα).1511

Proof. The proof is exactly the same than the one for theorem 83 ◀1512

Before dealing with composability of executions-matching, we prove two results about1513

injectivity and surjectivity of executions-matching in next lemma 85 and 86.1514

▶ Lemma 85 (Injectivity of executions-matching). Let (f, f tr, fex) be an executions-matching1515

from A to B and ((f, f+), f tr,+, fex,+) a continuation of (f, f tr, fex).1516

Let f̃ex,+ : F ′′
A ⊆ dom(fex,+)→ F̃B ⊆ range(fex,+). Let f̃ : Q′′

A ⊆ dom(f)→ QB be the1517

restriction of f on a set Q′′
A ⊆ dom(f).1518

1. If i) ∀α ∈ F ′′
A, fstate(α) ∈ Q′′

A and ii) f̃ is injective, then f̃ex,+ is injective.1519

2. (Corollary) if F ′′
A ⊆ Execs(A), fex,+ is injective.1520

48 Dynamic Probabilistic Input Output Automata (Extended Version)

Proof. 1. By induction on the size k of the prefix: Basis: By i) fstate(α), fstate(α′) ∈1521

Q′′
A, by construction of fex,+, f(fstate(α)) = f(fstate(α′)) = fstate(π) and by ii)1522

fstate(α) = fstate(α′) Induction. We assume the injectivity of f̃ex,+ to be true for exe-1523

cution on size k and we show this is also true for size k +1. Let π = s0b1s1...skbk+1sk+1 ∈1524

F ′′
B Let α = q0a1q1...qkak+1qk+1, α′ = q′0a′1q′1...q′ka′k+1q′k+1 ∈ F ′′

A s.t. f(α) =1525

f(α′) = π. By construction of fex,+, ∀i ∈ [1, n], bi = ai = a′i. By construction of1526

fex,+, fex,+(q′0a′1q′1...q′k) = fex,+(q0a1q1...qk) = s0a1s1...sk. By induction assumption1527

q′0a′1q′1...q′k) = q0a1q1...qk. By definition of execution, sk+1 ∈ supp(η(B,sk,ak+1)). By1528

equitable corresponding distribution, If η(A,qk,ak+1) ∈ dom(f tr), the restriction of f ,1529

f̃ : supp(η(A,qk,ak+1)) → supp(η(B,sk,ak+1)) is bijective and η(A,qk,ak+1) ∈ dom(f tr,+) \1530

dom(f tr), the restriction of f+, f̃+ : supp(η(A,qk,ak+1))→ supp(η(B,sk,ak+1)) is bijective1531

so qk+1 = q′k+1 which ends the proof.1532

2. We have |start(A)| = 1. Hence the restriction of f on start(A) is necessarily injective1533

(ii). Let α ∈ Execs(A). By definition of execution, fstate(α) ∈ start(A) (i). All the1534

requirements of lemma 85, first item are met, which ends the proof.1535

◀1536

▶ Lemma 86 (Surjectivity property preserved by continuation). Let A and B be two PSIOA.1537

Let (f, f tr, fex) be an executions-matching from A to B. Let ((f, f+), f tr,+, fex,+) be the1538

(f+, D′′
A)-continuation of (f, f tr, fex) (where by definition D′′

A \ dom(f tr) respect the prop-1539

erties of matched states preservation and extension of equitable corresponding distribution1540

from definition 81). If the restriction f̃ex : E′
A ⊆ Execs(A) → ẼB ⊆ Execs(B) is sur-1541

jective, then f̃ex,+ : E′,+
A = {α′ = α⌢qA, a, q′

A ∈ Execs(A)|α ∈ EA, (qA, a, ηA,qA,a) ∈1542

dom(f tr,+)} → Ẽ+
B = {π′ = π⌢qB, a, q′

B ∈ Execs(B)|π ∈ ẼB,∃α ∈ (fex)−1(π) ∩ E′
A, qA =1543

lstate(α), (qA, a, ηA,qA,a) ∈ dom(f tr,+)} is surjective.1544

Proof. Let π′ ∈ ẼB. We have π′ = π⌢qB, a, q′
B ∈ Execs(B) s.t. π ∈ ẼB and ∃α ∈1545

(fex)−1(π) ∩ E′
A, qA = lstate(α) and (qA, a, η(A,qA,a)) ∈ dom(f tr,+). By (qA, a, ηA,qA,a) ∈1546

dom(f tr,+), if i) (qA, a, ηA,qA,a) ∈ dom(f tr,+) \ dom(f tr) ηA,qA,a
f+

←→ ηB,qB,a and if ii)1547

(qA, a, ηA,qA,a) ∈ dom(f tr) ηA,qA,a
f←→ ηB,qB,a. In both cases, it exists q′

A ∈ supp(ηA,qA,a)1548

s.t. fex,+(α′ = α⌢qA, a, q′
A) = π′ with α′ ∈ E′,+

A .1549

◀1550

We finish this paragraph with the concept of semantic equivalence that describes a pair1551

of PSIOA that differ only syntactically.1552

▶ Definition 87 (semantic equivalence). Let A and B be two PSIOA. We say that A and1553

B are semantically-equivalent if it exists f : Execs(A) → Execs(B) which is a complete1554

bijective executions-matching from A to B.1555

Composability of executions-matching relationship1556

Now we are looking for composability of executions-matching. First we define natural1557

extension of notions presented in previous paragraph for the automaton obtained after1558

composition with another automaton E .1559

▶ Definition 88 (E-extension). Let A and B be two PSIOA. Let E be partially-compatible1560

with both A and B.1561

1. Let Q′
A ⊂ QA. We call E-extension of Q′

A the set of states Q′
A||E = {q ∈ QA||E |q ↾ A ∈1562

Q′
A}1563

P. Civit and M. Potop-Butucaru 49

2. Let f : Q′
A ⊂ QA → QB. We call E-extension of f the function g : Q′

A||E → QB ×QE s.t.1564

∀(qA, qE) ∈ Q′
A||E , g((qA, qE)) = (f(qA), qE))1565

3. Let D′
A ⊂ DA a subset of transitions. We call E-extension of D′

A the set D′
A||E =1566

{((qA, qE), a, η((A,E),(qA,qE),a)) ∈ DA||E |qA ∈ Q′
A and either (qA, a, η(A,qA,a)) ∈ D′

A or1567

the action a is not enabled in qA}.1568

Now, we can start with the composability of states-matching.1569

▶ Lemma 89 (Composability of states-matching). Let A and B be two PSIOA. Let E be1570

partially-compatible with A and B. Let f : Q′
A ⊂ QA → QB be a states-matching. Let g be1571

the E-extension of f .1572

If range(g) ⊂ QB||E , then g is a states-matching from A||E to B||E.1573

Proof. Starting state preservation: if (q̄A, q̄E) ∈ QA||E then q̄A ∈ Q′
A which means1574

f(q̄A) = q̄B, thus g((q̄A, q̄E)) = (q̄B, q̄E).1575

Signature preservation (modulo an hiding operation): ∀((qA, qE), (qB, qE)) ∈ Q′
A||E×QB||E1576

with (qB, qE) = g((qA, qE)), we have sig(A)(qA) = sig(B)(f(qA)) = hide(sig(B)(qB), h(qB))1577

with h(qB) ⊆ out(B)(qB).1578

Since A and E are partially-compatible, sig(A)(qA) = hide(sig(B)(qB), h(qB)) is compat-1579

ible with sig(E)(qE) which means a fortiori sig(B)(qB) is compatible with sig(E)(qE).1580

Namely ∀act ∈ h(qB), act /∈ in(E)(qE). Hence sig((A, E))((qA), qE)) = hide(sig((B, E))((qB, qE)), h′((qB, qE))1581

with h′((qB, qE)) = h(qB) ⊆ out(B)(qB) ⊆ out(B||)((qB, qE)) which ends the proof.1582

◀1583

The composability of states-matching is ensured under the condition range(g) ⊂ QB||E1584

where g is the E-extension of the original states-matching f : Q′
A ⊆ QA → QB. In next1585

lemma, we give a sufficient condition to ensure range(g) ⊂ QB||E . This is the one that we1586

will use in practice.1587

▶ Definition 90 (reachable-by and states of execution (recall)). Let A be a PSIOA or a PCA.1588

Let E′
A ⊆ Execs(A). We note reachable-by(E′

A) = {q ∈ QA|∃α ∈ E′
A, lstate(α) = q}. Let1589

α = q0, a1, q1, ...an, qn, We note states(α) =
⋃

i∈|α| qi.1590

▶ Lemma 91 (A sufficient condition to obtain range(g) ⊂ QB||E). Let A and B be two1591

PSIOA. Let E be partially-compatible with both A and B. Let f : Q′
A ⊂ QA → QB be a1592

states-matching. Let Q′
A||E be the E-extension of Q′

A.1593

Let Q′′
A||E ⊂ Q′

A||E the set of states reachable by an execution that counts only states in1594

Q′
A||E , i.e.1595

E′′
A||E = {α ∈ Execs(A||E)|states(α) ⊆ Q′

A||E}1596

Q′′
A||E = reachable-by(E′′

A||E)1597

Let f ′′ the restriction of f to set Q′′
A = {qA = ((qA, qE) ↾ A)|(qA, qE) ∈ Q′′

A||E}.1598

Then the E-extension of f ′′, noted g′′ verifies range(g′′) ⊂ QB||E .1599

Proof. By induction on the minimum size of an execution α̃ = q0a1...qn with q∗ = qn,∀i ∈1600

[0, n], qi ∈ Q′
A||E . Basis (|α| = 0 =⇒ α = q̄A): we consider q∗ = q̄A. We have g((q̄A, q̄E)) =1601

(f(q̄A), q̄E) = (q̄B, q̄E) ∈ QB||E .1602

We assume this is true for α̃ with lstate(α̃) = q and we show this is also true for1603

α̃′ = α̃⌢qaq′. By induction hypothesis q ∈ QB||E . Since q′ ∈ QA||E , A and E are compatible1604

at state (q′
A, q′

E), that is sig(A)(q′
A) and sig(E)(q′

E) are compatible, which means that a1605

fortiori, (sig(B)(f ′′(q′
A)) and sig(E)(q′

E) are compatible and so B and E are compatible at1606

50 Dynamic Probabilistic Input Output Automata (Extended Version)

state (f ′′(q′
A), q′

E) = g′′(q′). Hence g′′(q′) is a reachable compatible state of (B, E) which1607

means this is a state of B||E .1608

◀1609

Now, we can continue with the composability of transitions-matching.1610

▶ Lemma 92 (Composability of eligibility for transitions-matching). Let A and B be two PSIOA.1611

Let E be partially-compatible with A and B. Let f : Q′
A ⊂ QA → QB be a states-matching1612

and D′
A a subset of transitions eligible to transitions-matching domain from f . Let g be the1613

E-extension of f and D′
A||E the E-extension of DA.1614

If range(g) ⊂ QB||E , then D′
A||E is eligible to transitions-matching domain from g.1615

Proof. Let ((qA, qE), a, η((A,E),(qA,qE),a)) ∈ D′
A||E .1616

By definition, qA ∈ Q′
A which means (qA, qE) ∈ Q′

A||E , so the matched states preservation1617

is ensured. We still need to ensure the equitable corresponding distribution.1618

Let (q′′
A, q′′

E) ∈ supp(η((A,E),(qA,qE),a)). If a ∈ ŝig(A)(qA), then q′′
A ∈ supp(η(A,qA,a))1619

which means q′′
A ∈ Q′

A and hence (q′′
A, q′′

E) ∈ Q′
A||E . If a /∈ ŝig(A), η(A,qA,a) = δqA ,1620

which means q′′
A = qA ∈ Q′

A and hence (q′′
A, q′′

E) ∈ Q′
A||E . Thus for every (q′′

A, q′′
E) ∈1621

supp(η((A,E),(qA,qE),a)), (q′′
A, q′′

E) ∈ Q′
A||E .1622

η((A,E),(qA,qE),a)((q′′
A, q′′

E)) = η(A,qA,a) ⊗ η(E,qE ,a)(q′′
A, q′′

E) = η(A,qA,a)(q′′
A) · η(E,qE ,a)(q′′

E) =1623

η(B,f(qA),a)(f(q′′
A))·η(E,qE ,a)(q′′

E) = η(B,f(qA),a)⊗η(E,qE ,a)(f(q′′
A), q′′

E) = η((B,E),g(qA,qE),a)(g(q′′
A, q′′

E))1624

which ends the proof of equitable corresponding distribution.1625

◀1626

▶ Definition 93 (E-extension of an execution-matching). Let A and B be two PSIOA. Let E1627

be partially-compatible with both A and B. Let (f, f tr, fex) be an executions-matching from1628

A to B. Let g the E-extension of f . If range(g) ⊂ QB||E , then1629

1. we call the E-extension of f tr the function gtr : (q, a, η(A||E,q,a)) ∈ D′
A||E 7→ (g(q), a, η(B||E,g(q),a))1630

where D′
A||E is the E-extension of the domain dom(f tr) of f tr.1631

2. we call the E-extension of (f, f tr, fex) the matching-execution (g, gtr, gex) from A||E to1632

B||E induced by g and dom(gtr).1633

Finally we can states the main result of this paragraph, i.e. theorem 94 of executions-1634

matching composability.1635

▶ Theorem 94 (Composability of executions-matching). Let A and B be two PSIOA. Let E be1636

partially-compatible with both A and B. Let (f, f tr, fex) be an execution-matching from A1637

to B where g represents the E-extension of f . If range(g) ⊂ QB||E , then the E-extension of1638

(f, f tr, fex) is a matching-execution (g, gtr, gex) from A||E to B||E induced by g and dom(gtr).1639

Proof. We repeated the previous definition, while an executions-matching only need a states-1640

matching g and a set dom(gtr) of transitions eligible to transitions-matching domain from g1641

which is provided by construction. ◀1642

Here we give some properties preserved by E-extension of an executions-matching.1643

▶ Lemma 95 (Some properties preserved by E-extension of an executions-matching). Let A1644

and B be PSIOA. Let (f, f tr, fex) be an execution-matching from A to B.1645

1. If f is bijective and f−1 is complete, then for every PSIOA E partially-compatible with1646

A, E is partially-compatible with B.1647

2. Let E partially-compatible with both A and B, let g be the E-extension of f .1648

P. Civit and M. Potop-Butucaru 51

a. If f is bijective and f−1 is complete, then range(g) = QB||E and so we can talk about1649

the E-extension of (f, f tr, fex)1650

b. If (f, f tr) is a bijective complete transition-matching, (g, gtr) is a bijective complete1651

transition-matching. (And (f, f tr, fex) and (g, gtr, gex) are bijective complete execution-1652

matching.)1653

c. If f is strong, then g is strong1654

3. Let E partially-compatible with both A and B, let g be the E-extension of f . Let assume1655

range(g) ⊆ QB||E . Let (g, gtr, gex) be the E-extension of (f, f tr, fex)1656

a. If the restriction f̃ex : E′
A ⊆ Execs(A) → ẼB ⊆ Execs(B) is surjective, then g̃ex :1657

{α ∈ Execs(A||E)|α ↾ A ∈ E′
A} → {π ∈ Execs(B||E)|π ↾ B ∈ ẼB} is surjective1658

b. If f is strong, g is strong.1659

Proof. 1. We need to show that every pseudo-execution of (B, E) ends on a compatible1660

state. Let π = q0a1q1...anqn be a finite pseudo-execution of (B, E). We note α =1661

(f−1(q0
B), q0

E)a1(f−1(q1
B), q1

E)...an(f−1(qn
B), qn

E). The proof is in two steps. First, we show1662

by induction that α = (f−1(q0
B), q0

E)a1(f−1(q1
B), q1

E)...an(f−1(qn
B), qn

E) is an execution of1663

A||E . Second, we deduce that it means (f−1(qn
B), qn

E) is a compatible state of (A, E) which1664

means that a fortiori, (qn
B, qn

E) is a compatible state of (B, E) which ends the proof.1665

First, we show by induction that α is an execution of A||E . We have (f−1(q̄B), q̄E) =1666

(q̄A, q̄E) which ends the basis.1667

Let assume (f−1(q0
B), q0

E)a1(f−1(q1
B), q1

E)...ak(f−1(qk
B), qk

E) is an execution of A||E .1668

Hence (f−1(qk
B), qk

E) is a compatible state of (A, E) which means that a fortiori qk is a1669

compatible state of (B, E) because of signature preservation of f .1670

For the same reason, ŝig(B||E)(qk) = ŝig(A, E)((f−1(qk
B), qk

E)), so ak+1 ∈ ŝig(A, E)((f−1(qk
B), qk

E)).1671

Then we use the completeness of (f−1, (f tr)−1), to obtain the fact that either η(B,qk
B,ak+1) ∈1672

dom((f tr)−1) or ak+1 /∈ ŝig(B)(qk
B) (and we recall the convention that in this second1673

case η(B,qk
B,ak+1) = δqk

B
). which means either (f−1(qk

B), ak+1, η(A,f−1(qk
B),ak+1)) is a1674

transition of A that ensures ∀q′′ ∈ supp(η(B,qk
B,ak+1)), f−1(q′′) ∈ supp(η(A,f−1(qk

B),ak+1))1675

or ak+1 /∈ ŝig(A)(f−1(qk
B)) (and we recall the convention that in this second case1676

η(A,f−1(qk
B),ak+1) = δf−1(qk

B)). Thus for every (q′′, q′′′) ∈ supp(η(B,E),qk,ak+1)), (f−1(q′′), q′′′) =1677

g−1((q′′, q′′′)) ∈ supp(η(A,E),g−1(qk),ak+1)) namely for (q′′, q′′′) = (qk+1
B , qk+1

E). Hence,1678

(f−1(qk+1
B), qk+1

E) is reachable by (A, E) which means the alternating sequence1679

(f−1(q0
B), q0

E)a1(f−1(q1
B), q1

E)...ak(f−1(qk
B), qk

E)ak(f−1(qk
B), qk

E)ak+1(f−1(qk+1
B), qk+1

E) is1680

an execution of A||E . Thus by induction α is an execution of A||E .1681

Since A and E are partially-compatible (f−1(qn
B), qn

E) is a state of A||E , so (f−1(qn
B), qn

E)1682

is a compatible state of (A, E) which means (qk
B, qk

E) is a fortiori a compatible state of1683

(B, E) . Hence every reachable state of (B, E) is compatible which means B and E) are1684

partially compatible which ends the proof.1685

2. a. Let (qn
B, qn

E) ∈ QB||E . This state is reachable, so we note π = (q0
B, q0

E)a1(q1
B, q1

E)...an(qn
B, qn

E)1686

the execution of B||E . Thereafter, we note α = (f−1(q0
B), q0

E)a1(f−1(q1
B), q1

E)...an(f−1(qn
B), qn

E).1687

We can show by induction that α is an execution of A||E . The proof is exactly the1688

same than in 1.1689

Hence α is an execution of A||E which means (f−1(qn
B), qn

E) is a state of A||E and1690

then g((f−1(qn
B), qn

E)) = (qn
B, qn

E) to finally prove that it exists q∗ s.t. g(q∗) = (qn
B, qn

E)1691

which means states(B||E) ⊆ dom(g).1692

52 Dynamic Probabilistic Input Output Automata (Extended Version)

We can reuse the proof of 1. to show that if q ∈ QA||E , then g(q) ∈ QB||E which1693

means dom(g) ⊆ QB||E .1694

Hence dom(g) = QB||E .1695

We can apply the previous lemma 92 to obtain the eligibility of DA||E .1696

b. Let assume (f, f tr) are bijective. The bijectivity of g is immediate g(., .) = (f(.), Id(.)).1697

The bijectivity of gtr is also immediate since gtr : η(A,qA,a)⊗η(E,qE ,a) → f tr(η(A,qA,a))⊗1698

η(E,qE ,a) with f tr bijective.1699

c. Immediate, since in this case sig(A)(qA) = sig(B)(f(qA)) implies sig(A||E)((qA, qE)) =1700

sig(B||E)((f(qA), qE)).1701

3. a. Let π = ((q0
B, q0

E), a1, (q1
B, q1

E), ..., an, (qn
B, qn

E)) ∈ Execs(B||E) with π ↾ B = q̂0
B, â1, q̂1

B, ..., âm, q̂m
B ∈1702

ẼB, where the monotonic function k : [0, n] → [0, m], verifies ∀i ∈ [0, n], k(i) ∈1703

[0, m], qi
B = q̂

k(i)
B By surjectivity of fex we have α̂ = q̂0

A, â1, q̂1
A, ..., âm, q̂m

A ∈ E′
A s.t.1704

fex(α̂) = π ↾ B. We note α = (q0
A, q0

E)a1(q1
A, q1

E)...an(qn
A, qn

E) where ∀i ∈ [0, n], qi
A =1705

q̂
k(i)
A . Hence, ∀i ∈ [0, n], g((qi

A, qi
E)) = (qi

B, qi
E). Moreover, by signature preserva-1706

tion, ∀i ∈ [0, n − 1], ai+1 ∈ ŝig(A)(qi
A) ∪ ŝig(E)(qi

E). Furthermore, ∀i ∈ [0, n −1707

1]. (qi+1
A , qi+1

E) ∈ supp(η(A,qi
A,ai) ⊗ η(B,qi

B,ai)) since (qi+1
B , qi+1

E) ∈ supp(η(B,qi
B,ai) ⊗1708

η(B,qi
B,ai)), (qi

B, ai, η(B,qi
B,ai)) = f tr(qi

A, ai, η(A,qi
A,ai)) and qi+1

B = f(qi+1
A). Thus,1709

α ∈ Execs(A||E). Finally, by signature preservation of f , ∀i ∈ [1, n]ŝig(A)(qA) =1710

ŝig(B)(qB), which lead us to α ↾ A = α̂ ∈ E′
A. So for every π ∈ Execs(B||E) with1711

π ↾ B ∈ ẼB, it exists α ∈ Execs(A||E) with α ↾ A ∈ E′
A which ends the proof.1712

b. Immediate by rules of composition of signature: ∀(qA, qE) ∈ states(A||E), ∀(qB, qE) ∈1713

states(B||E) if sig(A)(qA) = sig(B)(qB), then sig(A||E)(qA, qE) = sig(B||E))(qB, qE).1714

◀1715

We are ready to states the composability of semantic equivalence.1716

▶ Theorem 96 (composability of semantic equivalence). Let A and B be PSIOA semantically-1717

equivalent. Then for every PSIOA E:1718

E is partially-compatible with A ⇐⇒ E is partially-compatible with B1719

if E is partially-compatible with both A and B, then A||E and B||E are semantically-1720

equivalent PSIOA.1721

Proof. The first item (E is partially-compatible with A ⇐⇒ E is partially-compatible1722

with B) comes from lemma 95, first item.1723

The second item (if E is partially-compatible with both A and B, then A||E and B||E are1724

semantically-equivalent PSIOA) comes from lemma 95, second item.1725

◀1726

A weak complete bijective transition-matching implies a weak complete bijective execution-1727

matching which means the two automata are completely sementically equivalent modulo1728

some hiding operation that implies that some PSIOA are partially-compatible with one of1729

the automaton and not with the other and that the traces are not necessarily the same ones.1730

composition of continuation of executions-matching1731

Here we define E-extension of continued executions-matching in the same way we defined1732

E-extension of executions-matching just before.1733

▶ Definition 97 (E-extension of continued executions-matching). Let A and B be two PSIOA.1734

Let E be partially-compatible with both A and B. Let (f, f tr, fex) be an executions-matching1735

from A to B. Let ((f, f+), f tr,+, fex,+) be the (f+, D′′
A)-continuation of (f, f tr, fex) (where1736

P. Civit and M. Potop-Butucaru 53

by definition D′′
A\dom(f tr) respect the properties of matched states preservation and extension1737

of equitable corresponding distribution from definition 81). If the respective E-extension of f1738

and f+, noted g and g+, verifie range(g) ∪ range(g+) ⊆ (B||E), we define the E-extension1739

of ((f, f+), f tr,+, fex,+) as ((g, g+), gtr,+, gex,+), where1740

(g, gtr, gex) is the E-extension of (f, f tr, fe)1741

gtr,+ : (q, a, η(A||E),q,a) ∈ D′′
A||E 7→ (g(q), a, η(A||E),g(q),a) where D′′

A||E is the E-extension1742

of dom(f tr,+)1743

∀α′ = α⌢q, a, q′, with α′ ∈ dom(gex), if (q, a, η(A||E),q,a) ∈ dom(gtr) gex,+(α) = gex(α)1744

and if (q, a, η(A||E),q,a) ∈ dom(gtr,+) \ dom(gtr) gex,+(α′) = gex(α)⌢g(q), a, g+(q)1745

▶ Lemma 98 (Commutativity of continuation and extension). Let A and B be two PSIOA. Let1746

E be partially-compatible with both A and B. Let (f, f tr, fex) be an executions-matching from1747

A to B. Let ((f, f+), f tr,+, fex,+) be the (f+, D′′
A)-continuation of (f, f tr, fex) (where by1748

definition D′′
A respect the properties of matched states preservation and extension of equitable1749

corresponding distribution from definition 81). Let1750

(g, gtr, gex) be the E-extension of (f, f tr, fe) verifying range(g) ⊆ QB||E ,1751

D
′′,(c,e)
A||E the E-extension of dom(f tr,+), i.e. D

′′,(c,e)
A||E = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈1752

DA||E |qA ∈ dom(f) ∧ [(qA, a, η(A,qA,a)) ∈ dom(f tr,+) ∨ a /∈ ŝig(A)(qA)]}.1753

g+
(c,e) be the E-extension of f+

1754

Then1755

1. D′′
A||E \ dom(gtr) verifies matched states preservation and extension of equitable corres-1756

ponding distribution.1757

2. the (g+
(c,e), (D′′,(c,e)

A||E))-continuation of (g, gtr, gex), noted ((g, g+
(c,e)), gtr,+

(c,e), gex,+
(c,e)) is equal1758

to the E-extension of ((f, f+), f tr,+, fex,+), noted ((g, g+
(e,c)), gtr,+

(e,c), gex,+
(e,c)).1759

We show that the operation of continuation and extension are in fact commutative.1760

Proof. We start by showing D
′′,(c,e)
A||E \ dom(gtr) verifies matched states preservation and1761

extension of equitable corresponding distribution. By definition 81 of E-extension, D
′′,(c,e)
A||E =1762

{((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈ dom(f) ∧ [(qA, a, η(A,qA,a)) ∈ dom(f tr,+) ∨ a /∈1763

ŝig(A)(qA)]}, while dom(gtr) = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈ dom(f) ∧1764

[(qA, a, η(A,qA,a)) ∈ dom(f tr) ∨ a /∈ ŝig(A)(qA)]}.1765

Thus D
′′,(c,e)
A||E \dom(gtr) = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈ dom(f)∧[(qA, a, η(A,qA,a)) ∈1766

dom(f tr,+) \ dom(f tr)]} (*)1767

Let tr = ((qA, qE), a, η(A||E),(qA,qE),a) ∈ D
′′,(c,e)
A||E \ dom(gtr), then1768

Matched states preservation: By (*) qA ∈ dom(f) which leads immediately to (qA, qE) ∈1769

dom(g)1770

Extension of equitable corresponding distribution: ∀(q′′
A, q′′

E) ∈ supp(η(A||E,(qA,qE),a)),1771

(q′′
A, q′′

E) ∈ supp(η(AqA,a) ⊗ η(E,qE ,a)) with η(AqA,a) ∈ dom(f tr,+) \ dom(f tr) by (*) which1772

means q′′
A ∈ dom(f+) and η(AqA,a)(q′′

A) = η(Bf(qA),a)(f+(q′′
A)) and so (q′′

A, q′′
E) ∈ dom(g+)1773

and η(A,qA,a) ⊗ η(E,qE ,a)(q′′
A, q′′

E) = η(A,qA,a)(q′′
A) · η(E,qE ,a)(q′′

E) = η(B,f(qA),a)(f+(q′′
A)) ·1774

η(E,qE ,a)(q′′
E) = η(B,f(qA),a) ⊗ η(E,qE ,a)(f+(q′′

A), q′′
E) = η(B||E,g(qA,qE),a)(g+(q′′

A, q′′
E))1775

We have shown that D
′′,(c,e)
A||E \dom(gtr) verifies matched states preservation and extension1776

of equitable corresponding distribution.1777

Now, we show the second point.1778

By definition 81 of continuation, g+
(c,e) = g+

(e,c).1779

54 Dynamic Probabilistic Input Output Automata (Extended Version)

We prove dom(gtr,+
(c,e)) = dom(gtr,+

(e,c)) = D
′′,(c,e)
A||E . By definition 81 of continuation,1780

dom(gtr,+
(e,c)) = dom(gtr)∪D

′′,(c,e)
A||E = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈ dom(f)∧1781

[(qA, a, η(A,qA,a)) ∈ dom(f tr)∨a /∈ ŝig(A)(qA)]}∪{((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈1782

dom(f)∧[(qA, a, η(A,qA,a)) ∈ dom(f tr,+)∨a /∈ ŝig(A)(qA)]} = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈1783

DA||E |qA ∈ dom(f) ∧ [(qA, a, η(A,qA,a)) ∈ dom(f tr,+) ∨ a /∈ ŝig(A)(qA)]} = D
′′,(c,e)
A||E .1784

Parrallely, by definition 93 of E-extension, dom(gtr,+
(c,e)) = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈1785

DA||E |qA ∈ dom(f)∧ [(qA, a, η(A,qA,a)) ∈ dom(f tr,+)∨a /∈ ŝig(A)(qA)]} = D
′′,(c,e)
A||E . Thus1786

dom(gtr,+
(c,e)) = dom(gtr,+

(e,c)) = D
′′,(c,e)
A||E .1787

We prove gtr,+
(c,e) = gtr,+

(e,c) Let ((qA, qE), a, η(A||E,(qA,qE),a)) ∈ D′′
A||E .1788

By definition 93 of E-extension, gtr,+
(c,e)(((qA, qE), a, η(A||E,(qA,qE),a))) = (g(qA, qE), a, η(A||E,g(qA,qE),a))),1789

while by definition 81 of continuation, gtr,+
(e,c)(((qA, qE), a, η(A||E,(qA,qE),a))) = (g(qA, qE), a, η(A||E,g(qA,qE),a))).1790

We can remark that properties of equitable corresponding distribution are not conflicting1791

since dom(gtr,+
c,e) \ dom(gtr) = dom(gtr,+

e,c) \ dom(gtr).1792

ge,+
(e,c) and ge,+

(c,e) are entirely defined by ((g, g+
(e,c)), (gtr, gtr,+

(e,c))) and ((g, g+
(c,e)), (gtr, gtr,+

(c,e)))1793

that are equal.1794

◀1795

application for renaming and hiding1796

Before dealing with PCA-executions-matching, we state two intuitive theorems of executions-1797

matching after renaming and hiding operations.1798

▶ Theorem 99. (strong complete bijective execution-matching after renaming) Let A and1799

B be two PSIOA and ren : QA → QB s. t. B = ren(A). (ren, rentr, renex) is a strong1800

complete bijective execution-matching from A to B with dom(rentr) = DA.1801

Proof. By definition ren ensures starting state preservation and strong signature preservation.1802

By definition ren is a complete bijection, which implies matched state preservation. The1803

equitable corresponding distribution is also ensured by definition of ren. Hence, all the1804

properties are ensured ◀1805

▶ Theorem 100. (weak complete bijective executions-matching after hiding) Let A be a1806

PSIOA. Let h defined on states(A), s.t. ∀q ∈ QA, h(q) ⊆ out(A)(q). Let B = hiding(A, h).1807

Let Id the identity function from states(A) to states(B) = QA. Then (Id, Idtr, Idex) is a1808

weak complete bijective execution-matching from A to B.1809

Proof. By definition Id ensures starting state preservation and weak signature preservation.1810

By definition Id is a complete bijection, which implies matched state preservation. The1811

equitable corresponding distribution is also ensured by definition of hiding. Hence, all the1812

properties are ensured ◀1813

10.2 PCA-matching execution1814

Here we extend the notion of executions-matching to PCA. In practice, we will build1815

executions-matchings that preserve the sequence of configurations visited by concerned1816

executions. Hence, the definition of PCA states-matching is slightly more restrictive to1817

capture this notion of configuration equivalence (modulo action hiding operation), while the1818

other definitions are exactly the same ones.1819

P. Civit and M. Potop-Butucaru 55

matching execution1820

▶ Definition 101 (PCA states-matching). Let X and Y be two PCA and let f : Q′
X ⊂ QX →1821

QY be a mapping s.t. :1822

Starting state preservation: If q̄X ∈ Q′
X , then f(q̄X) = q̄Y .1823

Configuration preservation (modulo hiding): ∀(q, q′) ∈ Q′
X × QY , s.t. q′ = f(q), if1824

auts(config(X)(q)) = (A1, ...,An), then auts(config(Y)(q′)) = (A′
1, ...,A′

n) where ∀i ∈1825

[1 : n],Ai = hide(A′
i, hi) with hi defined on states(A′

i), s. t. hi(qA′
i
) ⊆ out(A′

i)(qA′
i
)1826

(resp. s.t. hi(qA′
i
) = ∅, that is Ai = A′

i)1827

Hiding preservation (modulo hiding): ∀(q, q′) ∈ Q′
X × QY , s.t. q′ = f(q), hidden-1828

actions(X)(q) = hidden-actions(Y)(q′) ∪ h+(q′) where h+ defined on states(Y), s. t.1829

h+(qY) ⊆ out(Y)(qY) (resp. s.t. h+(qY) = ∅, that is hidden-actions(X)(q) = hidden-1830

actions(Y)(q′))1831

Creation preservation ∀(q, q′) ∈ Q′
X ×QY , s.t. q′ = f(q), ∀a ∈ ŝig(X)(q) = ŝig(Y)(q′),1832

created(X)(q)(a) = created(Y)(q′)(a).1833

then we say that f is a weak (resp. strong) PCA states-matching from X to Y . If Q′
X = QX ,1834

then we say that f is a complete (weak or strong) PCA states-matching from X to Y .1835

We naturally obtain that a PCA states-matching is a PSIOA states-matching:1836

▶ Lemma 102 (A PCA states-matching is a PSIOA states-matching). If f is a weak (resp.1837

strong) PCA states-matching from X to Y , then f is a PSIOA states-matching from psioa(X)1838

to psioa(Y) (in the sense of definition 75). (The converse is not necessarily true.)1839

Proof. The signature preservation immediately comes from the configuration preservation1840

and the hiding preservation. ◀1841

Now, all the definitions from definition 76 to definition 78 of previous subsections are the1842

same that is:1843

▶ Definition 103 (PCA transitions-matching and PCA executions-matching). Let X and Y be1844

two PCA and let f : Q′
X ⊂ QX → QY be a PCA states-matching from X to Y .1845

Let D′
X ⊆ DX be a subset of transitions, D′

X is eligible to PCA transitions-matching1846

domain from f if it is eligible to PSIOA transitions-matching domain from f according1847

to definition 76.1848

Let D′
X ⊆ DX be a subset of transitions eligible to PCA transitions-matching domain from1849

f . We define the PCA transitions-matching (f, f tr) induced by the PCA states-matching1850

f and the subset of transitions D′
X as the PSIOA transitions-matching induced by the1851

PSIOA states-matching f and the subset of transitions D′
X according to definition 77.1852

Let f tr : D′
X ⊆ DX → DY s.t. (f, f tr) is a PCA transitions-matching, we define the PCA1853

executions-matching (f, f tr, fex) induced by (f, f tr) (resp. by f and dom(f tr)) as the1854

PSIOA executions-matching (f, f tr, fex) induced by (f, f tr) (resp. by f and dom(f tr))1855

according to definition 78. Furthermore, let (µ, µ′) ∈ Disc(Frags(X))×Disc(Frags(Y))1856

s.t. for every α′ ∈ supp(µ), α′ ∈ dom(fex) and µ(α) = µ′(fex(α′)). then we say that1857

(f, f tr, fex) is a PCA executions-matching from (X, µ) to (Y, µ′) according to definition1858

80.1859

The (f+, D′′
X)-continuation of a PCA-executions-matching (f, f tr, fex) is the (f+, D′′

X)-1860

continuation of (f, f tr, fex) in the according to definition 81.1861

We restate the theorem 83 and 84 for PCA executions-matching:1862

56 Dynamic Probabilistic Input Output Automata (Extended Version)

▶ Theorem 104 (PCA-execution-matching preserves probabilsitic distribution). Let X and1863

Y be two PCA (µ, µ′) ∈ Disc(Frags(X)) × Disc(Frags(Y)). Let (f, f tr, fex) be a PCA1864

executions-matching from (X, µ) to (Y, µ′) . Let (σ̃, σ) ∈ schedulers(A) × schedulers(B),1865

s.t. (σ̃, σ) are (f, f tr, fex)-alter egos. Let (α, π) ∈ dom(fex)× Frags(Y).1866

If π = fex(α), then ϵσ̃,µ̃(Cα̃) = ϵσ,µ(Cα) and ϵσ̃,µ̃(α̃) = ϵσ,µ(α).1867

Proof. We just re-apply the theorem 83, since (f, f tr, fex) is a PSIOA executions-matching1868

from (psioa(X), µ) to (psioa(Y), µ′). ◀1869

▶ Theorem 105 (Continued PCA executions-matching preserves general probabilistic distribution).1870

Let X and Y be two PCA (µ, µ′) ∈ Disc(Frags(X))×Disc(Frags(Y)). Let (f, f tr, fex) be a1871

PCA executions-matching from (X, µ) to (Y, µ′) . Let ((f, f+), f tr,+, fex,+) be a continuation1872

of (f, f tr, fex). Let (σ̃, σ) ∈ schedulers(A)× schedulers(B), s.t. (σ̃, σ) are (f, f tr, fex)-alter1873

egos. Let (α, π) ∈ dom(fex,+)× Frags(Y).1874

If π = fex,+(α), then ϵσ̃,µ̃(Cα̃) = ϵσ,µ(Cα).1875

Proof. We just re-apply the theorem, 84 since ((f, f+), f tr,+, fex,+) is a continued PSIOA1876

executions-matching from (psioa(X), µ) to (psioa(Y), µ′). ◀1877

Composability of execution-matching relationship1878

Now we are looking for composability of PCA executions-matching. Here again the notions are1879

the same than the ones for PSIOA excepting for states-matching and for partial-compatibility.1880

Hence we only need to show that i) the E-extension of a PCA states-matching is still a PCA1881

states-matching (see lemma 106), ii) if f : QX → QY is a bijective PCA states-matching and1882

f−1 is complete, then for every PCA E partial-compatible with X, E is partial-compatible Y1883

(see lemma 108).1884

▶ Lemma 106 (Composability of PCA states-matching). Let X and Y be two PCA. Let E be1885

partially-compatible with both X and Y . Let f : Q′
X ⊂ QX → QY be a PCA states-matching.1886

Let g be the E-extension of f .1887

If range(g) ⊂ QY ||E , then g is a PCA states-matching from X||E to Y ||E.1888

Proof. If (q̄X , q̄E) ∈ QX||E then q̄X ∈ Q′
X which means f(q̄X) = q̄Y , thus g((q̄X , q̄E)) =1889

(q̄E , q̄E).1890

∀((qX , qE), (qY , qE)) ∈ Q′
X||E ×QY ||E with (qY , qE) = g((qX , qE)), we have1891

Configuration preservation (modulo hiding): if auts(config(X)(qX)) = (A1, ...,An),1892

then auts(config(Y)(qY)) = (A′
1, ...,A′

n) where ∀i ∈ [1 : n],Ai = hide(A′
i, hi) with1893

hi defined on states(A′
i), s. t. hi(qA′

i
) ⊆ out(A′

i)(qA′
i
) (resp. s.t. hi(qA′

i
) = ∅,1894

that is Ai = A′
i). Hence if auts(config(X||E)((qX , qE)) = (A1, ...,An,B1, ...,Bm),1895

then auts(config(Y ||E)((qY , qE)) = (A′
1, ...,A′

n,B1, ...,Bm) where ∀i ∈ [1 : n],Ai =1896

hide(A′
i, hi) with hi defined on states(A′

i), s. t. hi(qA′
i
) ⊆ out(A′

i)(qA′
i
) (resp. s.t.1897

hi(qA′
i
) = ∅, that is Ai = A′

i).1898

Hidding preservation (modulo hiding): hidden-actions(X)(qX) = hidden-actions(Y)(qY)∪1899

h+(qY) where h+ defined on states(Y), s. t. h+(qY) ⊆ out(Y)(qY). Hence hidden-1900

actions(X||E)((qX , qE)) = hidden-actions(X)(qX) ∪ hidden-actions(E)(qE) = hidden-1901

actions(Y)(qY)∪ hidden-actions(E)(qE)∪ h+(qY) = hidden-actions(Y ||E)((qY , qE))∪1902

h+′((qY , qE)) where h+′ defined on states(Y ||E), s. t. h+′((qY , qE)) = h+(qY) ⊆1903

out(Y)(qY) ⊆ out(Y ||E)((qY , qE)).1904

Creation preservation ∀a ∈ ŝig(X)(qX) = ŝig(Y)(qY), created(X)(qX)(a) = created(Y)(qY)(a).1905

Hence ∀a ∈ ŝig(X||E)((qX , qE)) = ŝig(Y ||E)((qY , qE)), either1906

P. Civit and M. Potop-Butucaru 57

∗ a ∈ ŝig(X)(qX) = ŝig(Y)(qY) but a /∈ ŝig(E)(qE) and then created(X||E)((qX , qE))(a) =1907

created(X)(qX)(a) = created(Y)(qY) = created(Y ||E)((qY , qE))(a)1908

∗ or a /∈ ŝig(X)(qX) = ŝig(Y)(qY) but a ∈ ŝig(E)(qE) and then created(X||E)((qX , qE))(a) =1909

created(E)(qE)(a) = created(Y ||E)((qY , qE))(a)1910

∗ or a ∈ ŝig(X)(qX) = ŝig(Y)(qY) and a ∈ ŝig(E)(qE) and then created(X||E)((qX , qE))(a) =1911

created(X)(qX)(a) ∪ created(E)(qE)(a) = created(Y)(qY) ∪ created(E)(qE)(a) =1912

created(Y ||E)((qY , qE))(a)1913

Thus, ∀a ∈ ŝig(X||E)((qX , qE)) = ŝig(Y ||E)((qY , qE)), created(X||E)((qX , qE))(a) =1914

created(Y ||E)((qY , qE))(a).1915

◀1916

We restate the theorem 94 of executions-matching composability.1917

▶ Theorem 107 (Composability of PCA matching-execution). Let X and Y be two PCA. Let1918

E be partially-compatible with both X and Y . Let (f, f tr, fex) be a PCA executions-matching1919

from X to Y . Let g be the E-extension of f . If range(g) ⊂ QY ||E , then the E-extension of1920

(f, f tr, fex) is a PCA executions-matching (g, gtr, gex) from X||E to Y ||E induced by g and1921

dom(gtr).1922

Proof. This comes immediately from theorem 94. ◀1923

We extend the lemma 95 but we have to take a little precaution for the partial-compatibility1924

since here the configurations have to be pairwise compatible, not only the signatures.1925

▶ Lemma 108 (Some properties preserved by E-extension of a PCA executions-matching). Let1926

X and Y be two PCA. Let (f, f tr, fex) be a PCA executions-matching from X to Y .1927

1. If f is complete, then for every PSIOA E partially-compatible with X, E is partially-1928

compatible with Y .1929

2. Let E partially-compatible with both X and Y , let g be the E-extension of f .1930

a. If f is bijective and f−1 is complete, then range(g) = QY ||E and so we can talk about1931

the E-extension of (f, f tr, fex)1932

b. If (f, f tr) is a bijective complete transition-matching, (g, gtr) is a bijective complete1933

transition-matching. (And (f, f tr, fex) and (g, gtr, gex) are bijective complete execution-1934

matching.)1935

c. If f is strong, then g is strong1936

Proof. 1. We need to show that every pseudo-execution of (Y, E) ends on a compatible1937

state. Let π = q0a1q1...anqn be a finite pseudo-execution of (Y, E). We note α =1938

(f−1(q0
Y), q0

E)a1(f−1(q1
Y), q1

E)...an(f−1(qn
Y), qn

E). The proof is in two steps. First, we show1939

by induction that α = (f−1(q0
Y), q0

E)a1(f−1(q1
Y), q1

E)...an(f−1(qn
Y), qn

E) is an execution of1940

X||E . Second, we deduce that it means (f−1(qn
Y), qn

E) is a compatible state of (X, E)1941

which means that a fortiori, (qn
Y , qn

E) is a compatible state of (Y, E) which ends the proof.1942

First, we show by induction that α is an execution of X||E . We have (f−1(q̄Y), q̄E) =1943

(q̄X , q̄E) which ends the basis.1944

Let assume (f−1(q0
Y), q0

E)a1(f−1(q1
Y), q1

E)...ak(f−1(qk
Y), qk

E) is an execution of X||E .1945

Hence (f−1(qk
Y), qk

E) is a compatible state of (X, E) which means that a fortiori qk is a1946

compatible state of (Y, E) because of signature preservation of f .1947

58 Dynamic Probabilistic Input Output Automata (Extended Version)

For the same reason, ŝig(Y, E)(qk) = ŝig(X||E)((f−1(qk
Y), qk

E)), so ak+1 ∈ ŝig(X, E)((f−1(qk
Y), qk

E)).1948

Then we use the completeness of (f−1, (f tr)−1), to obtain the fact that either η(Y,qk
Y

,ak+1) ∈1949

dom((f tr)−1) or ak+1 /∈ ŝig(Y)(qk
Y) (and we recall the convention that in this second1950

case η(Y,qk
Y

,ak+1) = δqk
Y

). which means either (f−1(qk
Y), ak+1, η(X,f−1(qk

Y
),ak+1)) is a1951

transition of X that ensures ∀q′′ ∈ supp(η(Y,qk
Y

,ak+1)), f−1(q′′) ∈ supp(η(X,f−1(qk
Y

),ak+1))1952

or ak+1 /∈ ŝig(X)(f−1(qk
Y)) (and we recall the convention that in this second case1953

η(X,f−1(qk
Y

),ak+1) = δf−1(qk
Y

)). Thus for every (q′′, q′′′) ∈ supp(η(Y,E),qk,ak+1)), (f−1(q′′), q′′′) =1954

g−1((q′′, q′′′)) ∈ supp(η(X,E),g−1(qk),ak+1)) namely for (q′′, q′′′) = (qk+1
Y , qk+1

E). Hence,1955

(f−1(qk+1
Y), qk+1

E) is reachable by (X, E) which means the alternating sequence1956

(f−1(q0
Y), q0

E)a1(f−1(q1
Y), q1

E)...ak(f−1(qk
Y), qk

E)ak(f−1(qk
Y), qk

E)ak+1(f−1(qk+1
Y), qk+1

E) is1957

an execution of X||E . Thus by induction α is an execution of X||E .1958

Since X and E are partially-compatible (f−1(qn
Y), qn

E) is a state of X||E , so (f−1(qn
Y), qn

E)1959

is a compatible state of (X, E) which means (qk
Y , qk

E) is a fortiori a compatible state of1960

(Y, E) . Hence every reachable state of (Y, E) is compatible which means Y and E are1961

partially compatible which ends the proof.1962

2. This comes immediately from lemma 95 since (f, f tr, fex) is a PSIOA executions-matching1963

from psioa(X) to psioa(Y) by construction.1964

◀1965

Finally, we restate the semantic-equivalence.1966

A strong complete bijective transitions-matching implies a strong complete bijective1967

executions-matching which means the two automata are completely semantically equivalent.1968

▶ Definition 109 (PCA semantic equivalence). Let X an Y be two PCA. We say that X and1969

Y are semantically-equivalent if it exists a complete bijective strong PCA executions-matching1970

from X to Y1971

▶ Theorem 110 (composability of semantic equivalence). Let X and Y be PCA semantically-1972

equivalent. Then for every PSIOA E:1973

E is partially-compatible with X ⇐⇒ E is partially-compatible with Y1974

if E is an environment for both X and Y , then X||E and Y ||E are PCA semantically-1975

equivalent.1976

Proof. The first item comes from lemma 108, first item1977

The second item comes from lemma 108, second item1978

◀1979

A weak complete bijective PCA transitions-matching implies a weak complete bijective1980

PCA executions-matching which means the two automata are completely semantically1981

equivalent modulo some hiding operation that implies that some PSIOA are partially-1982

compatible with one of the automaton and not with the other one and that the traces are1983

not necessarily the same ones.1984

11 Projection1985

This section aims to formalise the idea of a PCA XA considered without an internal PSIOA1986

A. This PCA will be noted YA = XA \ {A}. The reader can already take a look on the1987

figures 23 and 24 to get an intuition on the desired result. This is an important step in our1988

P. Civit and M. Potop-Butucaru 59

reasoning since we will be able to formalise in which sense XA and psioa(XA \ {A})||A are1989

similar.1990

We first define some notions of projection on configurations on subsection 11.1. Then we1991

define the notion of A-fair PCA X in subsection 11.2, which will be a sufficient condition to1992

ensure that Y = X \ {A} is still a PCA, namely that it ensures the constraints of top/down1993

and bottom/up transition preservation, which is proved in the last subsection 11.3.1994

11.1 Projection on Configurations1995

In this subsection, we want to define formally η′ ∈ Disc(Qconf) that would be the result of1996

η ∈ Disc(Qconf) "deprived of an automaton A". This is achieved in definition 116. This1997

definition requires particular precautions and motivate the next sequence of definitions, from1998

definition 111 to 116.1999

The next definition captures the idea of a state deprived of a PSIOA A.2000

▶ Definition 111 (State projection). Let A = {A1, ...,An} be a set of PSIOA compatible at2001

state q = (q1, ..., qn) ∈ QA1 × ...×QAn
. Let As = {As1 , ...,Asn}. We note :2002

q \ {Ak} = (q1, ..., qk−1, qk+1, ..., qn) if Ak ∈ A and q \ {Ak} = q otherwise.2003

q \As = (q \ {Asn}) \ (As \ {Asn}) (recursive extension of the previous item).2004

q ↾ As = q \ (A \As) if As ⊂ A (recursive extension of the previous item). We can2005

remark that q ↾ Ak = qk if Ak ∈ A.2006

Since, ↾ can be defined with \, the next sequence of definitions only handle \, but can be2007

adapted to support ↾ in the obvious way.2008

Figure 18 State projection

The next definition captures the idea of a family transition deprived of a PSIOA A.2009

▶ Definition 112 (Family transition projection). (see figure 19 first for an intuition) Let A1 be2010

a set of automata compatible at state q1 ∈ QA1 . Let As, A2 = A1 \As ̸= ∅. Let q2 = q1 \As.2011

Let a be an action. We note η(A1,q1,a) \As ≜ η(A2,q2,a) with the convention η(Ai,qi,a) = δqi
2012

if a /∈ ŝig(Ai)(qi) for each i ∈ {1, 2}.2013

▶ Lemma 113 (family transition projection). Let A1 be a set of automata compatible at2014

state q1 ∈ QA1 . Let As, A2 = A1 \As ̸= ∅. Let q2 = q1 \ As. Let a be an action. Let2015

η1 = η(A1,q1,a) and η2 = η1 \As with the convention η(A1,q1,a) = δq1 if a /∈ ŝig(A1)(q1).2016

Then ∀q′
2 ∈ QA2 , η2(q′

2) =
∑

q′
1∈QA1 ,q′

1\As=q′
2

η1(q′
1)2017

Proof. Comes from total probability law. If As ∩A1 = ∅, A2 = A1, the result is immediate.2018

Assume As ∩ A1 ≠ ∅. Let A3 = A \ A2 = A \ (A \ As) ̸= ∅. We note q3 = q1 \ A2,2019

η3 = η1 \A2 Then ∀q′
1 ∈ QA1 , η1(q′

1) = η2(q′
2)⊗ η3(q′

3) with q′
2 = q′

1 ↾ A2 and q′
3 = q′

1 ↾ A3.2020

Hence ∀q′
2 ∈ QA2 ,

∑
q′

1∈QA1 ,q′
1\As=q′

2
η1(q′

1) =
∑

q′
1∈QA1 ,q′

1↾A2=q′
2

η2(q′
2) · η3(q′

1 ↾ A3) =2021

η2(q′
2) ·

∑
q′

3∈QA3
η3(q′

3) = η2(q′
2), which ends the proof.2022

◀2023

60 Dynamic Probabilistic Input Output Automata (Extended Version)

Figure 19 total probability law for family transition projection

Then we apply this notation to preserving distributions.2024

▶ Definition 114 (preserving transition projection). (see figure 20) Let A, As, A2 = A\As be2025

set of automata, q ∈ QA, and a be an action. Let ηp ∈ Disc(Qconf) be the unique preserving2026

distribution s.t. ηp
T S↔ η(A,q,a) with the convention η(A,q,a) = δq if a /∈ ŝig(A)(q). We note2027

ηp \As the unique preserving distribution s.t. (ηp \As) T S↔ (η(A,q,a) \As) if A2 ̸= ∅ and2028

ηp = δ(∅,∅) otherwise.2029

▶ Lemma 115 (preserving transition projection). Let As be finite sets of PSIOA. Let a be an2030

action. For each i ∈ {1, 2}, let Ci ∈ Qconf , Ci
a

⇀ ηi
p if a ∈ ŝig(Ci) and ηi

p = δCi otherwise.2031

Let η̃2
p = η1

p \As. Assume C2 = C1 \As. Then,2032

η2
p = η̃2

p, i.e. (C1 \As) a
⇀ (η1

p \As).2033

For every C ′
2 ∈ Qconf , η2

p(C ′
2) = Σ(C′

1∈Qconf ,C′
1\As=C′

2)η
1
p(C ′

1)2034

Proof.2035

Immediate by definitions 18 and 114.2036

For each i ∈ {1, 2}, we note Ai = auts(Ci), qi = TS(Ci). By definition, we have2037

ηi
p

T S↔ η(Ai,qi,a) with the convention η(Ai,qi,a) = δq if a /∈ ŝig(Ai)(qi). Finally, we apply2038

lemma 113.2039

◀2040

Now we are able to define intrinsic transition deprived of a PSIOA A.2041

▶ Definition 116 (intrinsic transition projection). (see figure 21) Let A, As be finite sets2042

of automata, q ∈ QA, and a be an action. Let ηp ∈ Disc(Qconf) be the unique preserving2043

distribution s.t. ηp
T S↔ η(A,q,a) with the convention η(A,q,a) = δq if a /∈ ŝig(A)(q). Let φ be2044

a finite set of PSIOA identifiers with aut(φ) ∩A = ∅. Let η = reduce(ηp ↑ φ). We note2045

η \As = reduce((ηp \As) ↑ (φ \As)).2046

P. Civit and M. Potop-Butucaru 61

Figure 20 total probability law for preserving configuration

▶ Lemma 117 (intrinsic transition projection). Let As be finite sets of PSIOA. Let a be2047

an action. For each i ∈ {1, 2}, let φi be a finite set of PSIOA identifiers, let Ci ∈ Qconf ,2048

Ci
a=⇒φi

ηi if a ∈ ŝig(Ci) and ηi = δCi
otherwise. Let η̃2 = η1 \As and φ̃2 = φ1 \As.2049

Assume C2 = C1 \As. Then,2050

η2 = η̃2 and φ̃2 = φ2, i.e. (C1 \As) a=⇒φ1\As (η1 \As).2051

For every C ′
2 ∈ Qconf , (η2

p ↑ φ2)(C ′
2) =

∑
(C′

1∈Qconf ,C′
1\As=C′

2)(η1
p ↑ φ1)(C ′

1)2052

For every C ′
2 ∈ Qconf , η2(C ′

2) = Σ(C′
1∈Qconf ,C′

1\As=C′
2)η

1(C ′
1)2053

Proof.2054

Immediate by definitions 18, 116 and lemma 1152055

Let C3 = C1 \ (auts(C1) \As). We note φ3 = φ1 \ φ2. By definition 18, for each2056

i ∈ {1, 2, 3}, for each C ′
i ∈ Qconf , (ηi

p ↑ φi)(C ′
i) = δCφi

(C ′
i ↾ φi) · ηi

p(C ′
i \ φi) with2057

auts(Cφi) = φi and ∀A ∈ φi, map(Cφi)(A) = q̄A. By previous lemma, for every2058

C ′′
2 ∈ Qconf , η1

p(C ′′
2) =

∑
C′′

1 ,C′′
1 \As=C′′

2
η1

p(C ′′
1). Hence, (η2

p ↑ φ2)(C ′
2) = δCφ2

(C ′
2 ↾2059

φ2) ·
∑

C′′
1 ,C′′

1 \As=(C′
2\φ2) η1

p(C ′′
1) and so (η2

p ↑ φ2)(C ′
2) =

∑
C′′

1 ,C′′
1 \As=(C′

2\φ2) δCφ2
(C ′

2 ↾2060

φ2) · η1
p(C ′′

1).2061

We remark that the conjunction of C ′′
1 ∈ supp(η1

p), C ′′
1 \As = (C ′

2\φ2) and C ′
2 ↾ φ2 = Cφ22062

implies (C ′′
1 ∪ Cφ3 ∪ Cφ2) \As = C ′

2 .2063

Thus, (η2
p ↑ φ2)(C ′

2) =
∑

C′′′
1 ,C′′′

1 \As=(C′
2) δCφ2

(C ′
2 ↾ φ2) · δCφ3

(C ′′′
1 ↾ φ3) · η1

p(C ′′′
1 \ φ1) =2064 ∑

C′′′
1 ,C′′′

1 \As=(C′
2) δCφ2

(C ′′′
1 ↾ φ2)·δCφ3

(C ′′′
1 ↾ φ3)·η1

p(C ′′′
1 \φ1) =

∑
C′′′

1 ,C′′′
1 \As=C′

2
δCφ1

(C ′′′
1 ↾2065

φ1) · η1
p(C ′′′

1 \ φ1) =
∑

C′′′
1 ,C′′′

1 \As=C′
2
(η1

p ↑ φ1).2066

By definition 18, for each i ∈ {1, 2}, for each C ′
i ∈ Qconf , ηi(C ′

i) =
∑

C′′
i

,reduce(C′′
i

)=C′
i
(ηi

p ↑2067

φi)(C ′′
i). By previous lemma, for every C ′′

2 ∈ Qconf , η1
p(C ′′

2) =
∑

C′′′
1 ,C′′′

1 \As=C′′
2

(η1
p ↑2068

φ1)(C ′′′
1). Thus, η2(C ′

2) =
∑

C′′
2 ,reduce(C′′

2)=C′
2
(
∑

C′′′
1 ,C′′′

1 \As=C′′
2

(η1
p ↑ φ1)(C ′′′

1)) and2069

so η2(C ′
2) =

∑
C′′′

1 ,reduce(C′′′
1 \As)=C′′

2
(η1

p ↑ φ1)(C ′′′
1) =

∑
C′′′

1 ,reduce(C′′′
1)\As=C′′

2
(η1

p ↑2070

62 Dynamic Probabilistic Input Output Automata (Extended Version)

φ1)(C ′′′
1).2071

Finally η2(C ′
2) =

∑
C′

1,C′
1\As=C′

2
(
∑

C′′
1 ,reduce(C′′

1)=C′
1
((η1

p ↑ φ1)(C ′′
1))) =

∑
C′

1,C′
1\As=C′

2
η1(C ′

1)2072

◀2073

Figure 21 intrinsic transition projection

In next subsection, this lemma 117 will lead to lemma 119 which will be a key lemma to2074

allow the constructive definition 120 of PCA deprived of a (sub) PSIOA.2075

11.2 A-fairness assumption, motivated by our definition of PCA2076

deprived from an internal PSIOA: X \ {A}2077

Here we recall in definition 118 the definition 66 of a A-fair PCA. Then we show lemma 1192078

(via lemma 117) that will be used to enable the constructive definition of X \ {A}.2079

▶ Definition 118 (A-fair PCA (recall)). Let A ∈ Autids. Let X be a PCA. We say that X is2080

A-fair if it verifies the following constraints.2081

(configuration-conflict-free) X is configuration-conflict-free, that is ∀q, q′ ∈ QX , s.t.2082

qRconf q′ (i.e. config(X)(q) = config(X)(q′)) then q = q′
2083

(no conflict for projection) ∀q, q′ ∈ QX , s.t. qR
\{A}
conf q′ then qR

\{A}
strictq

′. That is if2084

config(X)(q) \ {A} = config(X)(q′) \ {A}, then2085

∀a ∈ ŝig(X)(q) ∩ ŝig(X)(q′), created(X)(q)(a) \ {A} = created(X)(q′)(a) \ {A}2086

hidden-actions(X)(q)\pot-out(X)(q)(A) = hidden-actions(X)(q′)\pot-out(X)(q′)(A)2087

where for each q′′ ∈ QX :2088

∗ pot-out(X)(q′′)(A) = ∅ if A /∈ auts(config(X)(q′′)), and2089

∗ pot-out(X)(q′′)(A) = out(A)(map(config(X)(q′′))(A)) if A ∈ auts(config(X)(q′′)).2090

(no exclusive creation by A) ∀q ∈ QX , ∀a ∈ ŝig(X)(q) A-exclusive in q, created(X)(q)(a) =2091

∅ where A-exclusive means ∀B ∈ auts(config(X)(q)), B ̸= A, a /∈ ŝig(B)(map(config(X)(q))(B)).2092

A A-fair PCA is a PCA s.t. we can deduce its current properties from its current2093

configuration deprived of A. This will allow the definition of X \ {A}, where X is a PCA, to2094

be well-defined.2095

Now we give the second key lemma (after lemma 117) to allow the definition 120 of PCA2096

deprived of a (sub) PSIOA. Basically, this lemma states that if two states qX and qY are2097

strictly equivalent modulo the deprivation of a (sub) automaton P , noted qXR
\{P }
strictqY , then2098

the intrinsic configurations issued from these states deprived of P are equal.2099

P. Civit and M. Potop-Butucaru 63

▶ Lemma 119 (equality of intrinsic transition after deprivation of a sub-PSIOA). Let X1, X22100

be two PCA, (q1, q2) ∈ QX1 ×QX2 s.t. q1R
\{P }
strictq2. Let a be an action. For each i ∈ {1, 2},2101

we note Ci ≜ config(X)(qi), φi ≜ created(X)(qi)(a), ηi s.t. if a ∈ ŝig(Ci), Ci
a=⇒φi

ηi and2102

ηi = δCi otherwise. Then,2103

C0 ≜ C1 \ {P} = C2 \ {P},2104

φ0 ≜ φ1 \ {P} = φ2 \ {P},2105

η ≜ η1 \ {P} = η2 \ {P},2106

If a ∈ ŝig(C0), C0
a=⇒φ η0 and η0 = δC0 otherwise.2107

Proof. The two first items comes directly from definition of R
\{P }
strict. By lemma 117, if2108

a ∈ ŝig(C0), we have both C0
a=⇒φ η1 \ {P} and C0

a=⇒φ η2 \ {P}, while if a /∈ ŝig(C0), we2109

have both (η1 \ {P}) = δC0 and (η2 \ {P}) = δC0 . By uniqueness of intrinsic transition, we2110

have η1 \ {P} = η2 \ {P}. ◀2111

▶ Definition 120 (X \ {P}). (see figure 22 for the constructive definition and figures 232112

and 24 for the desired result.) Let P ∈ Autids. Let X be a P -fair PCA, with psioa(X) =2113

(QX , q̄X , sig(X), DX). We note X \ {P} the automaton Y equipped with the same attributes2114

than a PCA (psioa, config, hidden-actions, created), µP
s : QX → QY and µP

d : DX \2115

{η(X,qX ,a) ∈ DX |a is P -exclusive in qX} → DY that respect systematically the following2116

rules:2117

P -deprivation: ∀qY ∈ QY , P /∈ config(Y)(qY), ∀a ∈ ŝig(Y)(qY)(a), P /∈ created(Y)(qY)(a).2118

µP
s -correspondence: ∀(qX , qY) ∈ QX ×QY s.t. µP

s (qX) = qY , then qXR
\{P }
strictqY .2119

µP
d -correspondence: ∀((qY , a, η(Y,qY ,aY)), (qX , a, η(X,qX ,aX))) ∈ DX×DY s.t. (qY , a, η(Y,qY ,aY)) =2120

µP
d (qX , a, η(X,qX ,aX)), then2121

µP
s (qX) = qY ,2122

aX = aY and2123

∀q′
Y ∈ QY , η(Y,qY ,a)(q′

Y) = Σq′
X

∈QX ,µs(q′
X

)=q′
Y

η(X,qX ,a)(q′
X).2124

and constructed (conjointly with the mapping µP
s and µP

d) as follows:2125

(Partitioning):2126

We partition QX in equivalence classes according to the equivalence relation R
\{P }
conf that is2127

we obtain a partition (Cj)j∈J⊂N s.t. ∀j ∈ J , ∀qX , q′
X ∈ Cj, qXR

\{P }
conf q′

X and by P -fair2128

assumption, qXR
\{P }
strictq

′
X2129

(QY , sig(Y) and µP
s):2130

∀j ∈ J , we construct qj
Y ∈ QY and conjointly extend µP

s s.t. ∀qX ∈ Cj, µP
s (qX) = qj

Y ,2131

verifying the P -deprivation-rule and µP
s -correspondence rule, that is2132

config(Y)(qj
Y) = config(X)(qX) \ {P},2133

hidden-actions(Y)(qj
Y) = hidden-actions(X)(qX) \ pot-out(X)(qX)(P),2134

sig(Y)(qj
Y) = hide(sig(config(Y)(qj

Y)), hidden-actions(Y)(qj
Y))2135

∀a ∈ ŝig(Y)(qj
Y), created(Y)(qj

Y)(a) = created(X)(qX)(a) \ {P}.2136

Furthermore q̄Y = µP
s (q̄X).2137

(DY and µP
d):2138

∀qY ∈ QY , ∀a ∈ ŝig(Y)(qY) (and so ∀qX ∈ (µP
s)−1(qY), a ∈ ŝig(X)(qX)) we con-2139

struct η(Y,qY ,a) and conjointly extend µP
d s.t. ∀qX ∈ (µP

s)−1(qY), (qY , a, η(Y,qY ,aY)) =2140

µP
d (qX , a, η(X,qX ,aX)), verifies the µP

d -correspondence rule. We show this construction is2141

possible:2142

We note CY = config(Y)(qY), φY = created(Y)(qY)(a), ηY the unique element of2143

Disc(Qconf) s.t. CY
a=⇒φY

ηY . Let (qi
X)i∈I⊂N = (µP

s)−1(qY). For every i ∈ I,2144

64 Dynamic Probabilistic Input Output Automata (Extended Version)

we note Ci
X = config(X)(qi

X), φi
X = created(X)(qi

X)(a), ηi
X the unique element of2145

Disc(Qconf) s.t. Ci
X

a=⇒φi
X

ηi
X . By lemma 119, ∀i ∈ I, Ci

X\{P} = CY , φi\{P} = φY2146

and ηi
X \ {P} = ηY .2147

For every qi
X ∈ (µP

s)−1(qY), we partition supp(η(X,qi
X

,a)) in equivalence classes ac-2148

cording to the equivalence relation R
\{P }
conf that is we obtain a partition (C ′

j)j∈J′⊂N2149

s.t. ∀j ∈ J ′, ∀q′
X , q′′

X ∈ C ′
j, q′

XR
\{P }
conf q′′

X and by P -fair assumption, q′
XR

\{P }
strictq

′′
X .2150

For each j ∈ J ′, we extract an arbitrary q′
X ∈ C ′

j and q′
Y = µP

s (q′
X). We fix2151

η(Y,qY ,a)(q′
Y) := ηY (C ′

Y) with C ′
Y = config(Y)(q′

Y).2152

ηY (C ′
Y) =

∑
C′

X
,C′

Y
=C′

X
\{P }

ηi
X(C ′

X) by lemma 1172153

=
∑

q′
X

,C′
Y

=config(X)(q′
X

)\{P }

η(X,qi
X

,a)(q′
X) by bottom/up transition preservation2154

=
∑

q′
X

,q′
Y

=µP
s (q′

X
)

η(X,qi
X

,a)(q′
X) By µP

s -correspondence2155

21562157

Thus, the µP
d -correspondence constraint holds for all the possible qi

X ∈ (µP
s)−1(qY).2158

In the remaining, if we consider a PCA X deprived of a PSIOA A we always implicitly2159

assume that X is A-fair.2160

11.3 Y = X \ {A} is a PCA if X is A-fair2161

Here we prove a sequence of lemma to show that Y = X \ {P} is indeed a PCA, by verifying2162

all the constraints.2163

Prepare the top/down transition preservation2164

We show a useful lemma to show Y = X \{A} verifies the constraint 2 of top/down transition2165

preservation.2166

▶ Lemma 121 (corresponding transition after projection). Let A be a PSIOA. Let X be a2167

A-fair PCA and Y = X \ A. ((qX , a, ηX), (qY , a, ηY)) ∈ DX ×DY , s.t. (qY , a, η(Y,qY ,a)) =2168

µd(qX , a, η(X,qX ,a)). For each K ∈ {X, Y }, we note CK = config(K)(qK), φK = created(K)(qK)(a).2169

Let η′
X the unique element of Disc(Qconf) s.t. x0) η(X,qX ,a)

c↔ η′
X with x1) c = config(X)2170

and x2) CX
a=⇒φX

η′
X .2171

Let η′
Y = η′

X \ {A}. Then η′
Y verifies y0) η(Y,qY ,a)

c′

↔ η′
Y with y1) c′ = config(Y)(qY)2172

and y2) Config(Y)(qY) a=⇒φY
η′

Y .2173

Proof. We note (QX
i)i∈I the partition of supp(ηX,qX ,a) s.t. ∀i ∈ I, ∀q′

X , q′′
X ∈ QX

i , q′
XR

\{A}
conf q′′

X .2174

∀i ∈ I, we note C
\{A}
i = config(q′

X) \ {A} for an arbitrary element q′
X ∈ QX

i and2175

Ci = {C ∈ supp(η′
X)|C\A = C

\{A}
i }. Since x0) η(X,qX ,a)

f↔ η′
X with x1) f = config(X)(qX),2176

(Ci)i∈I is a partition of supp(η′
X).2177

For every i ∈ I, we note qY
i = µs(q′

X) for an arbitrary element q′
X ∈ QX

i . By µA
s -2178

correspondance, config(qY
i) = C

\{A}
i = config(q′

X) \ {A}2179

By µA
d -correspondance,2180

P. Civit and M. Potop-Butucaru 65

Figure 22 constructive definition of Y = X \ {P }. First we construct q̃0 which is the initial
state of Y . Then we partition supp(η(X,q0,a)) = {q1xu , q1xv } ∪ {q1yu , q1yv } s.t. q1xu R

\{P }
conf q1xv and

q1yu R
\{P }
conf q1yv . Thereafter we construct ˜q1x = µs(q1xu) = µs(q1xv) and ˜q1y = µs(q1yu) = µs(q1yv).

Then, η(Y,q̃0,a) is defined s.t. η(Y,q̃0,a)(q̃
1x) = η(X,q0,a)(q1xu) + η(X,q0,a)(q1xv) and η(Y,q̃0,a)(q̃

1y) =
η(X,q0,a)(q1yu) + η(X,q0,a)(q1yv). We perform another time this procedure. by partitioning
supp(η(X,q1yu ,a)) = {q2xu } ∪ {q2yu } or supp(η(X,q1yv ,a)) = {q2xv , q2xw } ∪ {q2yv , q2yw } arbitrarily.
Indeed the obtai,ed result is the same: (i) q1yu R

\{P }
conf q1yv since they are both pre-image of q̃1y by µs,

which means (ii) q1yu R
\{P }
strictq

1yv since X is assumed to be P -fair. If we note Cu = config(X)(q1yu),
Cv = config(X)(q1yv), φu = created(X)(q1yu)(c), φv = created(X)(q1yv)(c), Cu

c=⇒φu ηu

and Cv
c=⇒φv ηv we have j) Cu \ {P } = Cv \ {P }, jj) Cu \ {P } c=⇒φu\{P } ηu \ {P } and jjj)

Cv \ {P } c=⇒φv\{P } ηv \ {P } which implies jv) ηu \ {P } = ηv \ {P }.

η(Y,qY ,a)(q′
Y) = Σq′

X
,µs(q′

X
)=q′

Y
η(X,qX ,a)(q′

X)2181

= Σi∈IΣq′
X

∈QX
i

,µs(q′
X

)=q′
Y

η(X,qX ,a)(q′
X)2182

2183

By assumption x0) and x1), η(X,qX ,a)
c↔ η′

X with c = config(X), thus2184

ηY,qy,a(q′
y) = Σi∈IΣq′

X
∈QX

i
,µs(q′

X
)=q′

Y
η′

X(config(X)(q′
X))2185

= Σi∈IΣC′
X

∈Ci,C′
X

\A=config(q′
Y

)η
′
X(C ′

X)2186

= ΣC′
X

,C′
X

\A=config(q′
Y

)η
′
X(C ′

X)2187
2188

66 Dynamic Probabilistic Input Output Automata (Extended Version)

Figure 23 Projection on PCA (part 1/2, the part 2/2 is in figure 24): the original PCA X

Therafter, we use the lemma 117 and get η(Y,qy,a)(q′
Y) = η′

Y (config(Y)(q′
Y)) with η′

Y =2189

η′
X \ {A}.2190

By definition of Y , Config(Y)(qY = µs(qX)) = Config(X)(qX) \ {A}. We can apply2191

lemma 117. Since a ∈ ŝig(config(X)(qX) \ {A}), Config(Y)(qY) a=⇒φY
η′

Y with η′
Y = η′

X \2192

{A} and φY = (φX\{A}). By µA
s -correspondance, created(Y)(qY)(a) = created(X)(qX)(a)\2193

{A}, thus φY = created(Y)(qY)(a).2194

Finally the restriction of config(Y) on supp(η(Y,qY ,a)) is a bijection. Indeed, we note2195

f1 : qY 7→ QX
i s.t. {qY } = µs(QX

i), f2 : QX
i 7→ Ci f3 : Ci 7→ C

\A
i . By construction, f12196

and f3 are bijection. By bijectivity of the restriction of config(X) on supp(ηX,qX ,a), f2 is a2197

bijection too. Moreover, the restriction f ′ of config(Y) on supp(ηY,qY ,a) is f1 ◦ f2 ◦ f3 and2198

hence this is a bijection too.2199

◀2200

Now we are able to demonstrate that the PCA set is closed under deprivation.2201

▶ Theorem 122 (X \ {P} is a PCA). Let P ∈ Autids. Let X be a P -fair PCA, then2202

Y = X \ {P} is a PCA.2203

Proof. (Constraint 1) By construction of Y , q̄Y = µP
s (q̄X) and by µs-correspondence2204

rule, config(Y)(q̄Y) = config(X)(q̄X) \ {P}. Since the constraint 1 is respected by X,2205

it is a fortiori respected by Y .2206

(Constraint 2) Let (qY , a, η(Y,qY ,a)) ∈ DY . By construction of Y , we know it exists2207

(qX , a, η(X,qX ,a)) ∈ DX with η(Y,qY ,a) = µd(η(X,qX ,a)) and qY = µs(qX). Then, because2208

of constraint 2 ensured by X, we obtain it exists a reduced configuration distribu-2209

tion η′
X ∈ Disc(Qconf) s.t. x0) η(X,qX ,a)

c↔ η′
X with x1) c = config(X) and x2)2210

P. Civit and M. Potop-Butucaru 67

Figure 24 Projection on PCA (part 2/2, the part 1/2 is in figure 23): the PCA Y = X \ {T }

Config(X)(qX) a=⇒φX
η′

X where φX = created(X)(qX)(a). We can apply lemma2211

121 to obtain that η′
Y = η′

X \ {P} is a reduced configuration transition that verifies2212

y0) η(Y,qY ,a)
c′

↔ η′
Y with y1) c′ = config(Y) and y2) config(Y)(qY) a=⇒φY

η′
Y where2213

φY = φX \ {P} = created(Y)(qY)(a).2214

This terminates the proof of constraint 2.2215

(Constraint 3) Let qY ∈ QY , CY = config(Y)(qY), a ∈ ŝig(CY), φY = created(Y)(qY)(a),2216

η′
Y ∈ Disc(Qconf) s.t. CY

a=⇒ η′
Y .2217

By construction of Y = X \ {P}, if qY ∈ QY , ∃qX ∈ QX , µs(qX) = qY , CX =2218

config(X)(qX), CX \ {P} = CY . Necessarily, a ∈ ŝig(CX) and by construction of2219

Y = X \ {P}, φX \ {P} = φY with φX = created(X)(qX)(a). We note η′
X verifying2220

CX
a=⇒φX

η′
X . By lemma 117, η′

Y = η′
X \ {A}.2221

Because of constraint 3, it means (qX , a, ηX,qX ,a) ∈ DX with x0) η(X,qX ,a)
c↔ η′

X with x1)2222

c = config(X). Since qY = µs(qY) and a ∈ ŝig(Y)(qY), the construction of DY implies2223

(qY , a, η(Y,qY ,a)) ∈ DY with (qY , a, η(Y,qY ,a)) = µP
d ((qX , a, η(X,qX ,a))).2224

We can apply lemma 121 to obtain that η′
Y verifies y0) η(Y,qY ,a)

c′

↔ η′
Y with y1) c′ =2225

config(Y) and y2) CY
a=⇒φY

η′
Y .2226

This terminates the proof of constraint 3.2227

(Constraint 4) Verified by construction (We recall that ∀(qY , qX) ∈ QY × QX , qY =2228

µP
s (qX), sig(Y)(qY) ≜ hide(sig(config(Y)(qY), hidden-actions(Y)(qY)) where hidden-2229

actions(Y)(qY) ≜ hidden-actions(X)(qX) \ pot-out(X)(qX)(P).2230

◀2231

68 Dynamic Probabilistic Input Output Automata (Extended Version)

12 Reconstruction2232

In the previous section, we have shown that Y = X \ A is a PCA (as long as X is A-fair).2233

In this section we will2234

1. introduce the concept of simpleton wrapper Ãsw that is a PCA that encapsulates A.2235

2. prove that X \ {A} and Ãsw are partially-compatible (see theorem 134)2236

3. There is a strong executions-matching from X to (X \ {A})||Ãsw in a restricted set of2237

executions of X that do not create A (see theorem 140). Hence it is always possible2238

to transfer a reasoning on X into a reasoning on (X \ {A})||Ãsw if no re-creation of A2239

occurs.2240

4. The operation of projection/deprivation and composition are commutative (see theorem2241

145).2242

12.1 Simpleton wrapper : Ãsw
2243

Here we introduce simpleton wrapper Ãsw, a PCA that only encapsulates Ãsw
2244

▶ Definition 123 (Simpleton wrapper). (see figure 25) Let A be a PSIOA. We note Ãsw the2245

simpleton wrapper of A as the following PCA:2246

psioa(Ãsw) = A2247

config(Ãsw)(qϕ
A) = (∅, ∅)2248

∀q ∈ QA, qA ̸= qϕ
A, config(Ãsw)(q) = (A, {(A, q)})2249

∀q ∈ QA,∀a ∈ ŝig(Ãsw)(q), created(Ãsw)(q)(a) = ∅2250

∀q ∈ QA, hidden-actions(Ãsw)(q) = ∅2251

We can remark that when Ãsw enters in qϕ

Ãsw = qϕ
A where ŝig(Ãsw)(qϕ

Ãsw) = ∅ , this matches2252

the moment where A enters in qϕ
A where ŝig(A)(qϕ

A) = ∅, s.t. the corresponding configuration2253

is the empty one.2254

Figure 25 Simpleton wrapper

12.2 Partial-compatibility of (XA \ {A}) and Ãsw
2255

In this subsection, we show that (XA \ {A}) and Ãsw are partially-compatible and that2256

(XA \ {A})||Ãsw mimics XA as long as no creation of A occurs (see figure 26).2257

P. Civit and M. Potop-Butucaru 69

Figure 26 Reconstruction of a PCA via Z = (X, X \ {V })

Map X and (X \ {A}, Ãsw)2258

We first introduce two functions to map X and (X \ {A}, Ãsw).2259

▶ Definition 124 (µA
z and µA

e : mapping of reconstruction). Let A ∈ Autids, X be a A-fair2260

PCA, Y = X \ A. Let Ãsw be the simpleton wrapper of A. Let qϕ
A ∈ QA the (assumed)2261

unique state s.t. ŝig(A)(qϕ
A) = ∅. We note:2262

The function X.µA
z : QX → QY ×QÃsw s.t. ∀qX ∈ QX , X.µA

z (qX) = (X.µA
s (qX), qA) with2263

qA = map(config(X)(qX))(A) if A ∈ (auts(config(X)(qX))) and qA = qϕ
A otherwise.2264

The function X.µA
e that maps any alternating sequence αX = q0

X , a1, q1
X , a2... of states and2265

actions of X, to µA
e (αX) the alternating sequence αZ = X.µA

z (q0
X), a1, X.µA

z (q1
X), a2,2266

The symbol A and X. are omitted when this is clear in the context.2267

70 Dynamic Probabilistic Input Output Automata (Extended Version)

Now, we recall definition 67 of A-conservative PCA, an additional condition to allow the2268

compatibility between X \ A and Ãsw.2269

▶ Definition 125 (A-conservative PCA (recall)). Let X be a PCA, A ∈ Autids. We say2270

that X is A-conservative if it is A-fair and for every state qX ∈ QX , CX = (AX , SX) =2271

config(X)(qX) s.t. A ∈ AX and SX(A) ≜ qA, hidden-actions(X)(qX) = hidden-actions(X)(qX)\2272

êxt(A)(qA).2273

A A-conservative PCA is a A-fair PCA that does not hide any output action that could2274

be an external action of A.2275

Preservation of properties2276

Now we start a sequence of lemma (from lemma 126 to lemma 132) about properties2277

preserved after reconstruction to eventually show in theorem 134 that X \ A and Ãsw are2278

partially-compatible.2279

The next lemma shows that reconstruction preserves signature compatibility.2280

▶ Lemma 126 (preservation of signature compatibility of configurations). Let A ∈ Autids. Let2281

X be a A-conservative PCA, Y = X \ A. Let qX ∈ QX , CX = (AX , SX) = config(X)(qX).2282

Let qY ∈ QY , qY = µs(qX). Let CY = (AY , SY) = config(Y)(qY).2283

If A ∈ AX and qA = SX(A), then sig(CY) and sig(Ãsw)(qA) are compatible and2284

sig(CX) = sig(CY)× sig(Ãsw)(qA).2285

If A /∈ AX , then sig(CY) and sig(Ãsw)(qϕ
A) are compatible and sig(CX) = sig(CY) ×2286

sig(Ãsw)(qϕ
A).2287

Proof. Let A ∈ Autids Let X and Y \{A} be PCA. Let qX ∈ QX . Let CX = config(X)(qX),2288

AX = auts(CX) and SX = map(CX). Let qY ∈ QY , qY = µs(qX). Let CY = config(Y)(qY),2289

AY = auts(CY) and SY = map(CY). By definition of Y , CY = CX \ {A}.2290

Case 1: A ∈ AX2291

Since X is a PCA, CX is a compatible configuration, thus ((AY , SY) ∪ (A, qA)) is a2292

compatible configuration. Finally sig(CY) and sig(A)(qA) are compatible with sig(A)(qA) =2293

sig(Ãsw)(qϕ
A) .2294

By definition of intrinsinc attributes of a configuration, that are constructed with the2295

attributes of the automaton issued from the composition of the family of automata of the2296

configuration, we have AX = AY ∪ {A} and sig(CX) = sig(CY) × sig(A)(qA), that is2297

sig(CX) = sig(CY)× sig(Ãsw)(qA).2298

Case 2: A /∈ AX2299

Since X is a PCA, CX is a compatible configuration, thus CY = CX is a compatible2300

configuration. Finally sig(CY) and sig(A)(qϕ
A) = (∅, ∅, ∅) = sig(A)(qA) = sig(Ãsw)(qϕ

A) are2301

compatible.2302

By definition of intrinsinc attributes of a configuration, that are constructed with the2303

attributes of the automaton issued from the composition of the family of automata of2304

the configuration (here AY and AX = AY), we have sig(CX) = sig(CY). Furthermore,2305

sig(Ãsw)(qϕ
A) = sig(A)(qϕ

A) = (∅, ∅, ∅). Thus sig(CX) = sig(CY)× sig(Ãsw)(qϕ
A) ◀2306

The next lemma shows that reconstruction preserves signature.2307

▶ Lemma 127 (preservation of signature). Let A ∈ Autids. Let X be a A-conservative PCA,2308

A ∈ Autids, Y = X \ {A}. For every qX ∈ QX , we have sig(X)(qX) = sig(Y)(qY) ×2309

sig(Ãsw)(qA) with (qY , qA) = µA
z (qX).2310

P. Civit and M. Potop-Butucaru 71

Proof. The last lemma 126 tell us for every qX ∈ QX , we have sig(config(X)(qX)) =2311

sig(config(Y)(qY)) × sig(Ãsw)(qA) with (qY , qA) = µz(qX). Since X is A-conservative,2312

we have (*) sig(X)(qX) = hide(sig(config(X)(qX)), acts) where acts ⊆ (out(X)(qX) \2313

(ext(A)(qA)). Hence sig(Y)(qY) = hide(sig(config(Y)(qY)), acts). Since (**) acts ∩2314

ext(A)(qA) = ∅ , sig(Y)(qY) and sig(A)(qA) are also compatible. We have sig(config(X)(qX)) =2315

sig(config(Y)(qY))× sig(A)(qA) = sig(config(Y)(qY))× sig(Ãsw)(qA) which gives because2316

of (*) hide(sig(config(X)(qX)), acts) = hide(sig(config(Y)(qY)), acts)× sig(A)(qA), that2317

is sig(X)(qX) = sig(Y)(qY)× sig(A)(qA) = sig(Y)(qY)× sig(Ãsw)(qA).2318

◀2319

The next lemma shows that reconstruction preserves partial-compatibility at any reachable2320

state.2321

▶ Lemma 128 (preservation of compatibility at any reachable state). Let A ∈ Autids, X be a2322

A-conservative PCA, Y = X \ {A}, Z = (Y, Ãsw) Let qZ = (qY , q̃Ãsw) ∈ QY × QÃsw and2323

qX ∈ QX s.t. µA
z (qX) = qZ . Then psioa(Y) and psioa(Ãsw) are compatible. Moreover, by2324

definition of Y = X \ {A} and Ãsw being the simpleton wrapper of A, the sub-automaton2325

exclusivity and creation exclusivity of definition 21 are necessarily ensured. Hence, Z is2326

compatible at state qZ .2327

Proof. Since X is a A-conservative PCA, the previous lemma 127 ensures that sig(Y)(qY)2328

and sig(A)(qA) = sig(Ãsw)(qA) are compatible, thus by definition Z is compatible at state2329

qZ . ◀2330

Here, we show that reconstruction preserves probabilistic distribution of corresponding2331

transition, as long as no creation of the concerned automaton occurs.2332

▶ Lemma 129 (homomorphic transition without creation). Let A ∈ Autids, X be a A-2333

conservative PCA, Y = X \ {A}, Z = (Y, Ãsw). Let qZ = (qY , q̃Ãsw) ∈ QY × QÃsw2334

and qX ∈ QX s.t. (i) µz(qX) = qZ . Let a ∈ sig(X)(qX) = sig(Y)(qY) × sig(Ãsw)(q̃Ãsw) ,2335

verifying (ii: No creation from A) If a is A-exclusive in state qX ,then created(X)(qX)(a) = ∅,2336

If A is not created by a, i.e. if either2337

A ∈ auts(config(X)(qX)), or2338

A /∈ auts(config(X)(qX)) and A /∈ created(X)(qX)(a) (X does not create A with2339

probability 1)2340

Then η(X,qX ,a)
µz↔ η(Z,qZ ,a)2341

If A is created by a i.e. A /∈ auts(config(X)(qX)) and A ∈ created(X)(qX)(a) (X2342

creates A with probability 1)2343

Then η(X,qX ,a)
fϕ

↔ η(Z,qZ ,a) where fϕ : q′
X ∈ supp(η(X,qX ,a)) 7→ (X.µA

s (q′
X), qϕ

Ãsw).2344

Proof. By lemma 127, we have sig(X)(qX) = sig(Y)(qY) × sig(A)(qA) = sig(Y)(qY) ×2345

sig(Ãsw)(q̃Ãsw = qA).2346

We note CX = (AX , SX) = config(X)(qX), CY = (AY , SY) = config(Y)(qY), CÃsw =2347

(AÃsw , SÃsw) = config(Ãsw)(qÃsw). By construction of µz, CX = CY ∪ CÃsw with CY and2348

CÃsw compatible configuration (1).2349

We note φX = created(X)(qX)(a), φY = φX \ {A}, φÃsw = ∅, φZ = φX ∪ φÃsw . If a is2350

A-exclusive in state qX , then φX = φY = ∅.2351

If A is not created by a, then φX = φZ ,2352

If A is created by a, then φX = φZ ∪ {A} and φZ = φX \ {A}2353

72 Dynamic Probabilistic Input Output Automata (Extended Version)

Since X is a PCA and (qX , a, η(X,qX ,a)) ∈ DX , the constraint 2 of top/down trans-2354

ition preservation says that there exists a unique reduced configuration distribution η′
X s.t.2355

η(X,qX ,a)
fX

↔ η′
X with fX = config(X) and config(X)(qX) =⇒φX

η′
X (2).2356

For Y (resp. Ãsw) we note ηY = η(Y,qY ,a) if a ∈ ŝig(Y)(qY) and ηY = δqY
otherwise2357

(resp. ηÃsw = η(Ãsw,qÃsw ,a) if a ∈ ŝig(Ãsw)(qÃsw) and ηÃsw = δqÃsw otherwise).2358

Since Y and Ãsw are PCA, either because of the constraint 2 of top/down transition preser-2359

vation or because a is not action of the signature, there exists a unique reduced configuration2360

distribution η′
Y s.t. ηY

fY

↔ η′
Y with fY = config(Y) and config(Y)(qY) =⇒φY

η′
Y (resp.2361

η′
Ãsw s.t. ηÃsw

fÃsw

↔ η′
Ãsw with f Ãsw = config(Ãsw) and config(Ãsw)(qÃsw) =⇒φÃsw η′

Ãsw)2362

(3).2363

By construction ∀(q′
Y , q′

Ãsw) ∈ QY×QÃsw , constitution(Y)(q′
Y)∩constitution(Ãsw)(q′

Ãsw) =2364

∅ (and so auts(config(Y)(q′
Y))∩auts(config(Ãsw)(q′

Ãsw)) = ∅) which means (**) base(CY , a, φY)∩2365

base(CÃsw , a, φÃsw) = ∅.2366

The conjonction of (1), (2), (3) and (**) allows us to apply the lemma 35. This means2367

by item 1b of lemma 35: merge((η′
Ãsw , η′

Y)) fs

↔ join((η′
Ãsw , η′

Y)) with fs : C ′
Z 7→2368

(C ′
Y , C ′

Ãsw) s.t. i) C ′
Z = C ′

Y ∪ C ′
Ãsw , ii) A /∈ C ′

Y and iii) ∀B ̸= A, B /∈ C ′
Ãsw (4)2369

by item 1d of lemma 35: CX
a=⇒φZ

merge((η′
Ãsw , η′

Y)) (5)2370

Furthermore ηZ,qZ ,a = ηY ⊗ ηÃsw . So by (3), ηZ,qZ ,a
fZ

←→ join((η′
Ãsw , η′

Y)) (***) with2371

fZ : q′
Z = (q′

Y , q′
Ãsw) 7→ (config(Y)(q′

Ãsw), config(Ãsw)(q′
Ãsw)).2372

Now we deal have to separate the treatment of the two cases:2373

If A is not created by a, since φZ = φX , because of (5) and (2), merge((η′
Ãsw , η′

Y)) =2374

η′
X and because of (2) η(X,qX ,a)

fX

↔ merge((η′
Ãsw , η′

Y)) (6). Because of (6) and (4),2375

η(X,qX ,a)
g←→ join((η′

Ãsw , η′
Y)) with g = fs ◦ fX .2376

Hence, if A is not created by a η(X,qX ,a)
h←→ η(Z,qZ ,a) with h = (fZ)−1 ◦ fs ◦ fX = µz2377

which ends the proof for this case.2378

If A is created by a, we have both2379

CX
a=⇒φZ

merge((η′
Ãsw , η′

Y))2380

CX
a=⇒φZ ∪{A} η′

X2381

which means CX
a

⇀ η′
p with2382

merge((η′
Ãsw , η′

Y)) generated by η′
p and φZ and2383

η′
X generated by η′

p and φZ ∪ {A}.2384

Thus η′
X

gϕ

←→ merge((η′
Ãsw , η′

Y)) with gϕ : C ′
X = C ′

Y ∪C̄Ãsw 7→ C ′
Y . where C̄Ãsw ({A}, S′

Ãsw :2385

A 7→ q̄Ãsw).2386

To summerize, we have:2387

η(X,qX ,a)
fX

←→ η′
X2388

η′
X

gϕ

←→ merge((η′
Ãsw , η′

Y))2389

merge((η′
Ãsw , η′

Y)) fs

←→ join((η′
Ãsw , η′

Y))2390

η(Z,qz,a)
fZ

←→ join((η′
Ãsw , η′

Y))2391

Hence η(X,qX ,a)
h←→ η(Z,qZ ,a) with fϕ = (fZ)−1 ◦ fs ◦ gϕ ◦ fX , i.e.2392

fϕ : q′
X ∈ supp(η(X,qX ,a)) 7→ (X.µA

s (q′
X), qϕ

Ãsw), which ends the proof for this case.2393

◀2394

P. Civit and M. Potop-Butucaru 73

The second case where A is created will not be used before section 14.2395

We take advantage of the lemma 132 used for theorem 134 to introduce the notion of2396

twin PCA and extends directly the lemma 132 and theorem 134 to twin PCA.2397

▶ Definition 130 (Xq̄X →q̄′
X

). Let X = (QX , q̄X , sig(X), DX) be a PSIOA and q̄′
X ∈2398

reachable(X). We note Xq̄X →q̄′
X

the PSIOA X ′ = (QX , q̄′
X , sig(X), DX).2399

Two PCA X and X ′ are A-twin if they differ only by their start state where one of them2400

corresponds to A-creation.2401

▶ Definition 131 (A-twin). Let A ∈ Autids. Let X, X ′ be PCA. We say that X ′ = Xq̄X →q̄X′2402

is a A-twin of X if it differs from X at most only by its start states q̄X′ reachable by X2403

s.t. either X ′ = X or A ∈ config(X ′)(q̄X′) and map(config(X ′)(q̄X′))(A) = q̄A. If X ′ is a2404

A-twin of X and Y = X \ {A} and Y ′ = X ′ \ {A}, we slightly abuse the notation and say2405

that Y ′ is a A-twin of Y ′.2406

▶ Lemma 132 (partial surjectivity 1). Let A ∈ Autids. Let X be a PCA A-conservative and2407

X ′ a A-twin of X. Let Y ′ = X ′ \ {A}. Let Y ′ be a A-twin of Y . Let Z′ = (Y ′, Ãsw).2408

Let α = q0, a1, ..., ak, qk be a pseudo execution of Z′. Let assume the presence of A in α,2409

i.e. ∀s ∈ [0, k − 1], qs
Ãsw ̸= qϕ

A .2410

Then ∃α̃ ∈ Execs(X ′), s.t. X ′.µA
e (α̃) = α.2411

Proof. By induction on each prefix αs = q0, a1, ..., as, qs with s ≤ k.2412

Basis: case 1) A ∈ config(X ′)(q̄X′): We have µz(q̄X′) = (q̄Y ′ , q̄A). Hence µe(q̄X′) =2413

(q̄Y ′ , q̄A).2414

case 2) A /∈ config(X ′)(q̄X′), (necessarily X = X ′): µz(q̄X′) = (q̄Y ′ , qϕ
A). Hence2415

µe(q̄X′) = (q̄Y ′ , qϕ
A).2416

Induction: we assume this is true for s and we show it implies this true for s + 1. We note2417

α̃s s.t. µe(α̃s) = αs. We also note q̃s = lstate(α̃s) and we have by induction assumption2418

µz(q̃s) = qs = (qs
Y , qs

A). Because of preservation of signature compatibility, sig(X)(q̃s)) =2419

sig(Y)(qs
Y))×sig(A)(qs

A)). Hence as+1 ∈ sig(X)(q̃s). Thereafter, by construction of X \{A}2420

there exists q̃s+1 s.t. qs+1 = µA
z (q̃s+1). Finally, since no creation of and from A occurs by2421

assumption of presence of A, we can use lemma 129 of homomorphic transition which give2422

η(X,q̃s,as+1)
µz↔ η(Z,qs,as+1) which means q̃s+1 ∈ supp(η(X,q̃s,as+1)) which ends the induction2423

and so the proof. ◀2424

Before using lemma 132 and 128 to demonstrate theorem 134 of partial compatibility2425

after reconstruction, we take the opportunity to extend lemma 132:2426

▶ Lemma 133 (partial surjectivity 2). Let A ∈ Autids. Let X be a PCA A-conservative. Let2427

Y = X \ A. Let Y ′ be a A-twin of Y . Let Z = Y ′||Ãsw.2428

Let α = q0, a1, ..., ak, qk be a an execution of Z. Let assume (a) qs
Ãsw ̸= qϕ

A for every2429

s ∈ [0, k∗] (b) qs
Ãsw = qϕ

Ãsw for every s ∈ [k∗ + 1, k] (c) for every s ∈ [k∗ + 1, k− 1], for every2430

q̃s, s.t. µz(q̃s) = qs, A /∈ created(X)(q̃s)(as+1). Then ∃α̃ ∈ Frags(X), s.t. µe(α̃) = α. If2431

Y ′ = Y , ∃α̃ ∈ Execs(X), s.t. µe(α̃) = α.2432

Proof. We already know this is true up to k∗ because of lemma 132. We perform the2433

same induction than the one of the previous lemma on partial surjectivity: We note α̃s2434

s.t. µe(α̃s) = αs. We also note q̃s = lstate(α̃s) and we have by induction assumption2435

µz(q̃s) = qs = (qs
Y , qs

A). Because of preservation of signature compatibility, sig(X)(q̃s)) =2436

sig(Y)(qs
Y))× sig(A)(qs

A). Hence ak+1 ∈ sig(X)(q̃s). Now we use the assumption (c), that2437

says that A /∈ created(X)(q̃s)(as+1) to be able to apply preservation of transition since no2438

creation of A can occurs. ◀2439

74 Dynamic Probabilistic Input Output Automata (Extended Version)

Now we can use lemma 132 and 128 to demonstrate theorem 134 of partial compatibility2440

after reconstruction.2441

▶ Theorem 134 (Partial-compatibility after resconstruction). Let A ∈ Autids. Let X be a PCA2442

A-conservative s.t. ∀qX ∈ QX , for every action a A-exclusive in qX , created(X)(qX)(a) = ∅.2443

Let X ′ ba a A-twin of X and Y ′ = X ′ \ {A}. Then Y ′ and Ãsw are partially-compatible.2444

Proof. Let Z′ = (Y ′, Ãsw). Let α be a pseudo-execution of Z′ with Let lstate(α) = qZ =2445

(qY ′ , qÃsw). Case 1) qÃsw = qϕ

Ãsw . The compatibility is immediate since sig(Ãsw)(qϕ

Ãsw) = ∅.2446

Case 2) qÃsw ̸= qϕ

Ãsw . Since (*) A cannot be re-created after destruction by neither Y2447

or Ãsw and (**) ∀qX ∈ QX , for every action a A-exclusive in qX , created(X)(qX)(a) = ∅2448

we can use the previous lemma 132 to show ∃ α̃ ∈ Execs(X ′), s.t. µe(α̃) = α. Thus,2449

lstate(α) = µz(lstate(α̃)) which means Z′ is partially-compatible at lstate(α) by lemma2450

128. Hence Z is partially-compatible at every reachable state, which means Y ′ and Ãsw are2451

partially-compatible. We can legitimately note Z ′ = Y ′||Ãsw. ◀2452

Since Z′ = (Y ′, Ãsw) is partially-compatible, we can legitimately note Z ′ = Y ′||Ãsw,2453

which will be the standard notation in the remaining.2454

12.3 Execution-matching from X to X \ {A}||Ãsw
2455

In this subsection, we show in theorem 140 that X.µA
e is a (incomplete) PCA executions-2456

matching from X to (X \ {A})||Ãsw in a restricted set of executions of X that do not create2457

A.2458

We start by defining the restricted set of executions of X that do not create A with2459

definitions 135 and 136.2460

▶ Definition 135 (execution without creation). Let A be a PSIOA. Let X be a PCA ,2461

we note execs-without-creation(X)(A) the set of executions of X without creation of A,2462

i.e. execs-without-creation(X)(A) = {α = q0a1q1...akqk ∈ Execs(X)|∀i ∈ [0, |α|],A /∈2463

auts(config(X)(qi)) =⇒ A /∈ auts(config(X)(qi+1))}.2464

▶ Definition 136 (reachable-by). Let X be a PSIOA or a PCA. Let Execs′
X ⊆ Execs(X).2465

We note reachable-by(Execs′
X) the set of states of X reachable by an execution of Execs′

X ,2466

i.e. reachable-by(Execs′
X) = {q ∈ QX |∃α ∈ Execs′

X , lstate(α) = q}2467

The next 2 lemma show that reconstruction preserves configuration and signature.2468

They will be sufficient to show that the restriction of µA
e on reachable-by(execs-without-2469

creation(X)(A)) is a PCA executions-matching.2470

▶ Lemma 137 (µz configuration preservation). Let A ∈ Autids. Let X be a A-conservatiee2471

PCA, Y = X \ A, Z = Y ||Asw. Let qX ∈ QX , qZ = (qY , qÃsw) ∈ QZ s.t. µz(qX) = qZ .2472

Then config(X)(qX) = config(Z)(qZ).2473

Proof. By definition of composition of PCA, config(Z)(qZ) = config(Y)(qY)∪config(Ãsw)(qÃsw).2474

(*)2475

Also, by µA
z -correspondence, config(X)(qX) \ A = config(Y)(qY) (**).2476

We deal with the two cases ŝig(Ãsw)(qÃsw) = ∅ or ŝig(Ãsw)(qÃsw) ̸= ∅2477

If ŝig(Ãsw)(qÃsw) = ∅, thenA /∈ aut(config(X)(qX)) which means, that config(X)(qX) =2478

config(X)(qX) \ A (1). Furthermore, config(Ãsw)(qÃsw) = (∅, ∅) (2) .Because of (**)2479

and (1), config(X)(qX) = config(Y)(qY) and because of (*) and (2), config(X)(qX) =2480

config(Z)(qZ).2481

P. Civit and M. Potop-Butucaru 75

If ŝig(Ãsw)(qÃsw) ̸= ∅, thenA ∈ aut(config(X)(qX)). We note CA = config(Ãsw)(qÃsw) =2482

({A}, S : A 7→ map(config(X)(qX))(A)). By (*), config(Z)(qZ) = config(Y)(qY) ∪ CA2483

and by (**) config(Y)(qY) ∪ CA = config(X)(qX) \ A ∪ CA = config(X)(qX). Hence,2484

config(X)(qX) = config(Z)(qZ)2485

Thus in all cases, config(X)(qX) = config(Z)(qZ) which ends the proof.2486

◀2487

▶ Lemma 138 (µz signature-preservation). Let A ∈ Autids. Let X be a A-conservatiee PCA,2488

Y = X \ A, Z = Y ||Asw. Let qX ∈ QX , qZ = (qY , qÃsw) ∈ QZ s.t. µz(qX) = qZ . Then2489

sig(X)(qX) = sig(Z)(qZ).2490

Proof. By lemma 127 of preservation of signature sig(X)(qX) = sig(Y)(qY)×sig(Ãsw)(qÃsw).2491

By definition of composition of PCA, sig(Z)(qZ) = sig(Y)(qY)× sig(Ãsw)(qÃsw) which ends2492

the proof. ◀2493

Now we can states our strong PCA executions-matching:2494

▶ Definition 139. Let A be a PSIOA. Let X be a A-conservative PCA. Let Y = X \ {A}2495

and Z = Y ||Ãsw.2496

We define (X.µ̃A
z , X.µ̃A

tr, X.µ̃A
e) (noted (µ̃A

z , µ̃A
tr, µ̃A

e) when it is clear in the context) as2497

follows:2498

µ̃A
z the restriction of µA

z on reachable-by(execs-without-creation(X)(A)).2499

f tr : (qX , a, η(X,qX ,a)) ∈ D′
X 7→ (µ̃A

z (qX), a, η(Z,µ̃A
z (qX),a)) where D′

X = {(qX , a, η(X,qX ,a)) ∈2500

DX |qX ∈ reachable-by(execs-without-creation(X)(A)), (A /∈ auts(config(X)(qX) =⇒2501

A /∈ created(X)(qX)(a))}.2502

µ̃A
e the restriction of µA

e on execs-without-creation(X)(A).2503

▶ Theorem 140 (execution-matching after reconstruction). Let A be a PSIOA. Let X be2504

a A-conservative PCA. Let Y = X \ {A}. The triplet (µ̃A
z , µ̃A

tr, µ̃A
e) is a strong PCA2505

executions-matching from X to Y ||Ãsw if A ∈ auts(config(XA)(start(XA))) and from X2506

to Y ||Ãsw
q̄Ãsw →qϕ

Ãsw

otherwise.2507

Proof. We note Z = Y ||Ãsw and Zϕ = Y ||Ãsw
q̄Ãsw →qϕ

Ãsw

2508

µ̃A
z is a strong PCA-state-matching since2509

starting state preservation is ensured by construction:2510

∗ A ∈ auts(config(XA)(start(XA))) : µ̃A
z (q̄X) = q̄Z2511

∗ A /∈ auts(config(XA)(start(XA))) :µ̃A
z (q̄X) = q̄Zϕ2512

signature preservation is ensured ∀(qX , qZ) ∈ QX×QZ s.t. qZ = µ̃A
z (qX), sig(X)(qX) =2513

sig(Z)(qZ) by lemma 138 of signature preservation of µz.2514

D′
X ≜ dom(µ̃A

tr) is eligible to PCA transition-matching (and thus (µ̃A
z , µ̃A

tr) is a strong2515

PCA-transition-matching) since2516

matched state preservation is ensured: ∀η(X,qX ,a) ∈ D′
X , qX ∈ dom(µ̃A

z) by construc-2517

tion of D′
X2518

equitable corresponding distribution is ensured: ∀η(X,qX ,a) ∈ D′
X ,∀q′′ ∈ supp(η(X,qX ,a)),2519

η(X,qX ,a)(q′′) = η(Z,µ̃A
z (qX),a)(µ̃A

z (q′′)) by lemma 129 of homomorphic transition.2520

(µ̃A
z , µ̃A

tr, µ̃A
e) is the PCA-execution-matching induced by (µ̃A

z , µ̃A
tr). and correctly verifies:2521

For each state q in an execution in execs-without-creation(X)(A), q ∈ dom(µ̃A
z).2522

Then, the triplet (µ̃A
z , µ̃A

tr, µ̃A
e) is a strong PCA-execution-matching from X to Z if2523

A ∈ auts(config(XA)(start(XA))) : µ̃A
z (q̄X) = q̄Z and from X to Zϕ otherwise.2524

◀2525

76 Dynamic Probabilistic Input Output Automata (Extended Version)

extension and continuation of (µ̃A
z , µ̃A

tr, µ̃A
e)2526

Now, we continue the executions-matching (µ̃A
z , µ̃A

tr, µ̃A
e) to deal with A creation at very last2527

action.2528

▶ Definition 141 (Preparing continuation of PCA executions-matching from X to Z). Let A2529

be a PSIOA. Let X be a A-conservative PCA. We define2530

execs-with-only-one-creation-at-last-action(X)(A) = {α′ = α⌢q, a, q′ ∈ Execs(X)|α ∈2531

execs-without-creation(X)(A) ∧ α′ /∈ execs-without-creation(X)(A)}.2532

µ̃A,+
z : qX ∈ reachable-by(execs-with-only-one-creation-at-last-action(X)(A)) 7→ (µ̃A

s (qYA), qϕ
A).2533

µ̃A,+
tr : (qX , a, η(X,qX ,a)) ∈ dom(µ̃A

tr) ∪D′′
X 7→ (µ̃A

z (qX), a, η(X,µ̃A
z (qX),a)) where2534

D′′
X = {(qX , a, η(X,qX ,a)) ∈ DX |qX ∈ reachable-by(execs-without-creation-at-last-action(X)(A))∧2535

A /∈ auts(config(X)(qX)) ∧ A ∈ created(X)(qX)(a)}2536

We show that dom(µ̃A,+
tr) \ dom(µ̃A

tr) verifies the equitable corresponding property of2537

definition 81.2538

▶ Lemma 142 (Continuation of PCA transitions-matching from X to Z). Let A be a PSIOA.2539

Let X be a A-conservative PCA. Let Y = X \ {A} and Z = Y ||Ãsw.2540

∀(qX , a, η(X,qX ,a)) ∈ dom(µ̃A,+
tr) \ dom(µ̃A

tr), ∀q′
X ∈ supp(η(X,qX ,a)), η(X,qX ,a)(q′

X) =2541

η(Z,µ̃A
z (qX),a)(µ̃A,+

z (q′
X))2542

Proof. By configuration preservation, Conf = config(X)(qX) = config(Z)(µ̃A
z (qX)). We2543

have Conf
a

⇀ η(Conf,a),p. Moreover, by µs-correspondence rule, φX \ {A} = φZ , with2544

φX = created(X)(qX)(a) and φZ = created(Z)(µ̃A
z (qX))(a).2545

Hence Conf
a=⇒φX

η′
X with η′

X generated by φX and η(Conf,a),p, while Conf
a=⇒φZ

η′
Z2546

with η′
Z generated by φZ and η(Conf,a),p.2547

Since A is created, for every Conf ′
Z = (A′

Z , S′
Z) with A /∈ AZ , for every Conf ′

X =2548

(A′
X , S′

X) with A′
X = A′

Z ∪ {A} where S′
X(A) = q̄A and S′

X agrees with S′
Z on A′

Z ,2549

η′
Z(Conf ′

Z) = η′
X(Conf ′

X), while η′
X(Conf ′′

X) = 0 for every Conf ′′
X = (A′′

X , S′′
X) s. t either2550

A /∈ A′′
X orA ∈ A′′

X but S′′
X(A) ̸= q̄A. So η(Z,µ̃A

z (qX),a)(µ̃A,+
z (q′

X)) = η′
Z(config(Z)(µ̃A,+

z (q′
X))) =2551

η′
X((config(X)(q′

X))) = η(X,qX ,a)(q′
X) which ends the proof.2552

◀2553

Since dom(µ̃A,+
tr) \ dom(µ̃A

tr) verifies the equitable corresponding property of definition 81,2554

we can define a continuation of (µ̃A
z , µ̃A

tr, µ̃A
e) that deal with A-creation at very last action.2555

▶ Definition 143 (Continuation of PCA executions-matching from X to Z). Let A be a2556

PSIOA. Let X be a A-conservative PCA. Let Y = X \ {A} and Z = Y ||Ãsw. Let2557

D′′
X = dom(µ̃A,+

z) \ dom(µ̃A
z). Since ∀(qX , a, η(X,qX ,a)) ∈ D′′

X , ∀q′
X ∈ supp(η(X,qX ,a)),2558

η(X,qX ,a)(q′
X) = ηZ,µ̃A

z (qX),a)(µ̃A,+
z (q′

X)) by previous lemma 142, we can define:2559

((µ̃A
z , µ̃A,+

z), µ̃A,+
tr , µ̃A,+

e)) the (µ̃A,+
z , D′′

X)-continuation of (µ̃A
z , µ̃A

tr, µ̃A
e).2560

We terminate this subsection by showing the E-extension of our continued PCA executions-2561

matching is always well-defined.2562

▶ Theorem 144 (extension of continued executions-matching after reconstruction). Let A be a2563

PSIOA. Let X be a A-conservative PCA. Let Y = X \ {A} and Z = Y ||Ãsw. Let Ẽ partially-2564

compatible with both X and Z. The Ẽ-extension of ((X.µ̃A
z , X.µ̃A,+

z), X.µ̃A
tr, X.µ̃A

e), noted2565

(((Ẽ ||X).µ̃A
z , (Ẽ ||X).µ̃A,+

z), (Ẽ ||X).µ̃A
tr, (Ẽ ||X).µ̃A

e), is a strong continued PCA executions-2566

matching from Ẽ ||X to Ẽ ||Z.2567

Proof. By definition of µ̃A,+
z and µ̃A

z , we have2568

P. Civit and M. Potop-Butucaru 77

ẼẼ||X = execs-without-creation(Ẽ ||X)(A)2569

Ẽ+
Ẽ||X = execs-with-only-one-creation-at-last-action(Ẽ ||X)(A)2570

ẼX = execs-without-creation(X)(A)2571

Ẽ+
X = execs-with-only-one-creation-at-last-action(X)(A)2572

Q̃Ẽ||X = reachable-by(ẼẼ||X)2573

Q̃+
Ẽ||X = reachable-by(Ẽ+

Ẽ||X)2574

Q̃X = reachable-by(ẼX)2575

Q̃+
X = reachable-by(Ẽ+

X)2576

dom((Ẽ ||X).µ̃A,+
z) = Q̃+

Ẽ||X2577

dom((Ẽ ||X).µ̃A
z) = Q̃Ẽ||X2578

dom(X.µ̃A,+
z) = Q̃+

X2579

dom(X.µ̃A
z) = Q̃X2580

This allow us to apply lemma 91 of "sufficient conditions to obtain range inclusion" to both2581

(Ẽ ||X).µ̃A,+
z and (Ẽ ||X).µ̃A

z which gives range((Ẽ ||X).µ̃A,+
z) ⊆ QẼ||Z and range((Ẽ ||X).µ̃A

z) ⊆2582

QẼ||Z which allows us to apply lemma 98.2583

The lemma 108 implies that the resulting executions-matching is a strong one.2584

◀2585

12.4 Composition and projection are commutative2586

This section aims to show in theorem 145 that operation of projection/deprivation and2587

composition are commutative.2588

▶ Theorem 145 ((X||E) \ {A} and (X \ {A})||E are semantically equivalent). Let A be a2589

PSIOA. Let X be a A-fair PCA partially-compatible with E that never counts A in its2590

constitution with both X, E and X||E configuration-conflict-free. The PCA (X||E) \ {A} and2591

(X \ {A})||E are semantically equivalent.2592

Proof. We note W = X||E , U = (X||E) \ {A}, V = (X \ {A})||E , µX,A
s = X.µA

s , µW,A
s =2593

W.µA
s . To stay simple, we note Id the identity function on any domain, that is we note Id2594

for both IdE : qE ∈ QE 7→ qE and IdU : qU ∈ QU 7→ qU .2595

The plan of the proof is the following one:2596

We will construct two functions, isoUV : QU → QV and isoV U : QV → QU , s.t.2597

isoUV (qU) is the unique element of (µX,A
s , Id)((µW,A

s)−1(qU)) and isoV U ((qY , qE)) is the2598

unique element of µW,A
s ((µX,A

s , Id)−1((qY , qE))).2599

Then we will show that isoUV and isoV U are two bijections s.t. isoV U = iso−1
UV .2600

Thereafter we will show that for every (qU , qV), (q′
U , q′

V) ∈ (states(U)×QV), s.t. qV =2601

isoUV (qU) and q′
V = isoUV (q′

U), then qU RstrictqV , q′
U Rstrictq

′
V and for every a ∈2602

ŝig(U)(qU) = ŝig(V)(qV), η(U,qU ,a)(q′
U) = η(V,qV ,a)(q′

V).2603

Finally, it will allow us to construct a strong complete bijective execution-matching2604

induced by isoUV and DU (the set of discrete transitions of U) in bijection with a strong2605

complete bijective execution-matching induced by isoV U and DV (the set of discrete2606

transitions of V) .2607

First, we show that for every qW = (qX , qE) ∈ reachable(W) ⊂ QX × QE , the state2608

qV ≜ (µX,A
s , Id)(qW) = (µX,A

s (qX), qE) is an element of reachable(V) (*). We proceed by2609

induction. Basis: (µX,A
s (q̄X), q̄E) is the initial state of V . Induction: Let qW ≜ (qX , qE), q′

W ≜2610

78 Dynamic Probabilistic Input Output Automata (Extended Version)

(q′
X , q′

E) ∈ reachable(W), qV ∈ reachable(V), a ∈ ŝig(W)(qW) s.t. q′
W ∈ supp(η(W,qW ,a)),2611

qV = (µX,A
s , Id)(qW), and q′

V = (µX,A
s , Id)(q′

W) . There is two cases:2612

case 1) a is A-exclusive in qW . In this case qW R\{A}q′
W , which means q′

V = qV and ends2613

the proof2614

case 2) a ∈ ŝig(V)(qV) ∩ ŝig(W)(qW)2615

We need to show that q′
V ∈ supp(η(V,qV ,a)). This is easy to show. Indeed, q′

W ∈2616

supp(η(W,qW ,a)) means (q′
X , q′

E) ∈ supp(η(X,qX ,a)⊗η(E,qE ,a)) (with the convention η(X,qX ,a) =2617

δqX
if a /∈ ŝig(X)(qX)) and η(E,qE ,a) = δqE if a /∈ ŝig(E)(qE))) which means q′

X ∈ supp(η(X,qX ,a))2618

and q′
E ∈ supp(η(E,qE ,a)). So µX,A

s (q′
X) ∈ supp(η(Y,µX,A

s (qX),a)) which means (µX,A
s (q′

X), q′
E) ∈2619

supp(η(Y,µX,A
s (qX),a)⊗η(E,qE ,a)), that is (µX,A

s (q′
X), q′

E) ∈ supp(η((Y,E),(µX,A
s (qX),qE),a))η(E,qE ,a))2620

and thus q′
V ∈ supp(η(V,qV ,a)) so q′

V ∈ reachable(V) .2621

Second, we show that for every qV ≜ (qY , qE) ∈ reachable(V), ∃ qW ≜ (qX , qE) ∈2622

reachable(W) s.t. qV = (µX,A
s , Id)(qW) (**). The reasoning is the same, we proceed by2623

induction. The basis is performed with start state correspondance as before. Induction:2624

Let qV ≜ (qY , qE), q′
V ≜ (q′

Y , q′
E) ∈ reachable(V), qW ∈ reachable(W), a ∈ ŝig(V)(qV) ∩2625

ŝig(W)(qW) s.t. q′
V ∈ supp(η(V,qV ,a)) with qV = (µX,A

s , Id)(qW).2626

We need to show that ∃ q′
W ∈ supp(η(W,qW ,a)) s.t. q′

V = (µX,A
s , Id)(q′

W). This is easy2627

to show because of µX,A
d -correspondance. For every q′

V ≜ (q′
Y , qE) ∈ supp(η(V,(qY ,qE),a))2628

, q′
Y ∈ supp(η(Y,qY ,a)). Because of µX,A

d -correspondance, ∃ q′
X ∈ supp(η(X,qX ,a)) with2629

q′
Y = µX,A

s (q′
X), thus ∃ q′

W = (q′
X , q′

E) ∈ supp(η(W,(qX ,qE),a)) s.t. q′
V = (µX,A

s (q′
X), q′

E) which2630

ends the proof of this second point.2631

Now we can construct isoUV and isoV U .2632

isoUV : for every qU ∈ QU , (µW,A
s)−1(qU) ̸= ∅ by construction of U and for every2633

qW ≜ (qX , qE), q′
W ≜ (q′

X , q′
E) ∈ (µW,A

s)−1(qU), qW R
\{A}
strictq

′
W2634

[...],2635

which means for every qW ≜ (qX , qE), q′
W ≜ (q′

X , q′
E) ∈ (µW,A

s)−1(qU), (µX,A
s , Id)((qX , qE)) =2636

(µX,A
s , Id)((q′

X , q′
E)) and so (µX,A

s , Id)((µW,A
s)−1(qU)) = {qV } where qV ≜ isoUV (qU) ∈2637

QV by (*).2638

isoV U : for every qV ≜ (qY , qE) ∈ QV , (µX,A
s , Id)−1(qV) ̸= ∅ by (**). Furthermore2639

for every qW ≜ (qX , qE), q′
W ≜ (q′

X , qE) ∈ (µX,A
s , Id)−1(qV), qXR

\{A}
strictq

′
X , which means2640

qW R
\{A}
strictq

′
W and so µW,A

s ((µX,A
s , Id)−1(qV)) = {qU} where qU ≜ isoV U (qV) ∈ QU2641

Now we can show that isoUV is a bijection with isoV U = iso−1
V U .2642

surjectivity of isoUV : Let qV = (qY , qE) ∈ reachable(V), we will show that ∃ qU ∈2643

reachable(U) s.t. isoUV (qU) = qV . Indeed, we already know that (*) ∃ qW = (qX , qE) ∈2644

(µX,A
s , Id)−1(qV) ∩ reachable(W). Let qU = µW,A

s (qW). By construction of U , we have2645

qU ∈ reachable(U) and qW ∈ (µW,A
s)−1(qU) and (µX,A

s , Id)(qW) = qV which means2646

isoUV (qU) = qV and ends this item.2647

injectivity of isoUV : Let qV ∈ reachable(V), Let qU , q′
U ∈ reachable(U) s.t. isoUV (qU) =2648

isoUV (q′
U) then qU = q′

U . Again for every qW , q′
W ∈ (µX,A

s , Id)−1(qV), qW R
\A
strictq

′
W and2649

so µW,A
s (qW) = µW,A

s (q′
W). But for every qU , q′

U ∈ iso−1
UV (qV), qU , q′

U ∈ µW,A
s (µX,A

s , Id)−1(qV)2650

which means qU = q′
U .2651

Let (i) qV = isoUV (qU) or (ii) qU = isoUV (qV) we will show that in both (i) and (ii)2652

qV RstrictqU . By definition, {qV } = (µX,A
s , Id)(µW,A

s)−1(qU)).2653

In case (i) we note qW an arbitrary element of (µW,A
s)−1(qU) ̸= ∅, while in case (ii)2654

we note qW an arbitrary element of (µX,A
s , Id)−1(qV) ̸= ∅ . In both cases, we have 1a)2655

config(W)(qW) \ {A} = config(U)(qU) and 1b) config(W)(qW) \ {A} = config(V)(qV),2656

P. Civit and M. Potop-Butucaru 79

which means 1c) config(U)(qU) = config(V)(qV). Then we have 2a) hidden-actions(W)(qW)\2657

pot-out(W)(qW)(A) = hidden-actions(U)(qU)\pot-out(W)(qW)(A) = hidden-actions(U)(qU)2658

and 2b) hidden-actions(W)(qW)\pot-out(W)(qW)(A) = hidden-actions(V)(qV)\pot-out(W)(qW)(A) =2659

hidden-actions(V)(qV), which means 2c) hidden-actions(U)(qU) = hidden-actions(V)(qV).2660

Thereafter we have 3a) for every action a ∈ ŝig(W)(qW) ∩ ŝig(U)(qU), created(W)(qW)(a) \2661

{A} = created(U)(qU)(a)\{A} = created(U)(qU)(a) and 3b) for every action a ∈ ŝig(W)(qW)∩2662

ŝig(V)(qV), created(W)(qW)(a) \ {A} = created(V)(qV)(a) \ {A} = created(V)(qV)(a)2663

which means 3c) for every action a ∈ ŝig(U)(qU) = ŝig(V)(qV), created(U)(qU)(a) =2664

created(V)(qV)(a). The conjonction of 3a), 3b) and 3c) lead us to qV RstrictqU .2665

Now we can show that isoUV is the reverse function of isoV U : Let (qU , qV) ∈ reachable(U)×2666

reachable(V) s.t. qV = isoUV (qU). We need to show that isoV U (qV) = qU . The point is2667

that ∃! q′
U ≜ isoV U (qV) and we have qV RstrictqU and qV Rstrictq

′
U which means qU Rstrictq

′
U2668

and so qU = q′
U by assumption of configuration-conflict-free PCA. Hence isoUV = iso−1

V U .2669

The last point is to show that that for every (qU , qV), (q′
U , q′

V) ∈ reachable(U) ×2670

reachable(V), s.t. qV = isoUV (qU) and q′
V = isoUV (q′

U), then qU RstrictqV , q′
U Rstrictq

′
V2671

and for every a ∈ ŝig(U)(qU) = ŝig(V)(qV), η(U,qU ,a)(q′
U) = η(V,qV ,a)(q′

V).2672

For every a ∈ ŝig(U)(qU) = ŝig(V)(qV) we have a unique η s.t. C
a=⇒φ η with2673

C = config(U)(qU) = config(V)(qV) and φ = created(U)(qU)(a) = created(V)(qV)(a).2674

Hence for every configuration C ′ ∈ supp(η), ∃! (q′
U , q′

V) ∈ reachable(U) × reachable(V)2675

s.t. C ′ = config(U)(q′
U) = config(V)(q′

V). Hence isoUV (q′
U) = q′

V and furthermore2676

η(U,qU ,a)(q′
U) = η(V,qV ,a)(q′

V) = η(C).2677

Everything is ready to construct the PCA-execution-matching, which is (j) the PCA-2678

execution-matching induced by isoUV and DU (the set of discrete transition of U) and (jj)2679

the PCA-execution-matching induced by isoV U and DV (the set of discrete transition of V)2680

◀2681

13 PCA corresponding w.r.t. PSIOA A, B2682

In the previous section we have shown that XA||E and Ãsw||(XA \ {A}||E) are linked by a2683

strong PCA executions-matching as long as A is not re-created by XA. This also means2684

that the probability distribution of XA||E is preserved by Ãsw||(X \ {A}||E), as long as2685

A is not re-created by XA. We can have the same reasoning to obtain a strong PCA2686

executions-matching from XB||E and B̃sw||(XB \ {B}||E).2687

In this section we take an interest in PCA XA and XB that differ only on the fact that B2688

supplants A in XB. Hence, we recall the definitions of section 9. Then, we show that under2689

slight assumptions, XA \ {A} and XB \ {B} are semantically equivalent (see theorem 160).2690

Combined with the result of previous section we will realise that we can obtain a strong2691

PCA executions-matching from (*) XA||E to Ãsw||(Y ||E) and (**) from XB||E to B̃sw||(Y ||E)2692

where Y is semantically equivalent to both XB \{B} and XA\{A}. Hence if E ′ = E||Y cannot2693

distinguish Ãsw from B̃sw, we will be able to show that E cannot distinguish XA from XB2694

which will be the subject of sections 14 to finally prove the monotonicity of p-implementation.2695

◁AB-correspondence between two configurations2696

We formalise the idea that two configurations are the same excepting the fact that the2697

automaton B supplants A but with the same external signature. The next definition comes2698

from [2].2699

80 Dynamic Probabilistic Input Output Automata (Extended Version)

▶ Definition 146 (◁AB-corresponding configurations). (see figure 27) Let Φ ⊆ Autids, and2700

A,B be PSIOA identifiers. Then we define Φ[B/A] = (Φ\A)∪{B} if A ∈ Φ, and Φ[B/A] = Φ2701

if A /∈ Φ. Let C, D be configurations. We define C ◁AB D iff (1) auts(D) = auts(C)[B/A],2702

(2) for every A′ /∈ auts(C)\{A} : map(D)(A′) = map(C)(A′), and (3) ext(A)(s) = ext(B)(t)2703

where s = map(C)(A), t = map(D)(B). That is, in ◁AB-corresponding configurations, the2704

SIOA other than A,B must be the same, and must be in the same state. A and B must have2705

the same external signature. In the sequel, when we write Ψ = Φ[B/A], we always assume2706

that B /∈ Φ and A /∈ Ψ.2707

Figure 27 ◁AB corresponding-configuration

Next lemma states that ◁AB-corresponding configurations have the same external signa-2708

ture, which is quite intuitive when we see the figure 27.2709

▶ Proposition 147. Let C, D be configurations such that C ◁AB D. Then ext(C) = ext(D).2710

Proof. The proof is in [2], section 6, p. 38. We write the proof here to be complete:2711

If A /∈ C then C = D by definition , and we are done. Now suppose that A ∈ C, so that2712

C = (A ∪ {A}, S) for some set A of PSIOA identifiers s.t. A /∈ A, and let s = S(A). Then,2713

by definition 16 of attributes of configuration, out(C) = (
⋃

Ai∈A out(Ai)(S(Ai)))∪out(A)(s).2714

From C ◁AB D and definition , we have D = (A ∪ {B}, S′), where S′ agrees with S2715

on all Ai ∈ A, and t = S′(B) such that ext(A)(s) = ext(B)(t). Hence out(A)(s) =2716

out(B)(t) and in(A)(s) = in(B)(t). By definition 16 of configuration attributes, out(D) =2717

(
⋃

Ai∈A out(Ai)(S′(Ai))) ∪ out(B)(t). Finally, out(C) = out(D) since S′ agrees with S on all2718

A ∈ A and out(A)(s) = out(B)(t). We establish in(C) = in(D) in the same manner, and2719

omit the repetitive details. Hence ext(C) = ext(D). ◀2720

▶ Remark 148. It is possible to have two configurations C, D s.t. C◁AA D. That would mean2721

that C and D only differ on the state of A (s or t) that has even the same external signature2722

in both cases ext(A)(s) = ext(A)(t), while we would potentially have int(A)(s) ̸= int(A)(t).2723

The next lemma states that ◁AB-corresponding configurations are equals if we omit the2724

automata A and B.2725

▶ Lemma 149 (Same configuration). Let A,B ∈ Autids. Let XA, XB be A-fair and B-fair2726

PCA respectively, where XA never contains B and XB never contains A. Let YA = XA \{A},2727

YB = XB \ {B}. Let (xa, xb) ∈ QXA ×QXB s.t. config(XA)(xa) ◁AB config(XB)(xb). Let2728

ya = XA.µA
s (xa), yb = XA.µA

s (xb)2729

Then config(YA)(ya) = config(YB)(yb).2730

Proof. By projection, we have config(YA)(ya) ◁AB config(YB)(yb) with each configuration2731

that does not contain A nor B, thus for config(YA)(ya) and config(YB)(yb) contain the2732

same set of automata ids (rule (1) of ◁AB) and map each automaton of this set to the same2733

state (rule (2) of ◁AB). ◀2734

P. Civit and M. Potop-Butucaru 81

same comportment of two PCA modulo A, B2735

In this paragraph we formalise the fact that two PCA have the same comportment, excepting2736

for B that supplants A.2737

First, we formalise the fact that two PCA create some PSIOA in the same manner,2738

excepting for B that supplants A. Here again, this definition comes from [2].2739

▶ Definition 150 (Creation corresponding configuration automata). Let X, Y be configuration2740

automata and A,B be PSIOA. We say that X, Y are creation-corresponding w.r.t. A,B iff2741

1. X never creates B and Y never creates A.2742

2. ∀(α, π) ∈ Execs∗(X) × Execs∗(Y) s.t traceA(α) = traceB(π), for x = lstate(α), y =2743

lstate(π), we have Then ∀a ∈ ŝig(X)(x)∩ŝig(Y)(y) : created(Y)(y)(a) = created(X)(x)(a)[B/A].2744

Naturally [B/A]-corresponding sets of created automata are deprived of A and B respect-2745

ively, they becomes equal, which is formalised in next lemma.2746

▶ Lemma 151 (Same creation after projection). Let A,B ∈ Autids. Let XA, XB be A-fair and2747

B-fair PCA respectively, where XA never contains B and XB never contains A (B /∈ UA(XA)2748

and A /∈ UA(XB)). Let YA = XA \ {A}, YB = XB \ {B}. Let (xa, xb) ∈ QXA × QXB and2749

act ∈ sig(XA)(xa) ∩ sig(XB)(xb) s.t. created(XB)(xb)(act) = created(XA)(xa)(act)[B/A].2750

Let ya = XA.µA
s (xa), yb = XB.µB

s (xb)2751

Then created(YB)(xb)(act) = created(YA)(xa)(act)2752

Proof. By definition of PCA projection, we have created(YB)(xb)(act) = (created(XB)(xb)(act))\2753

B = (created(XA)(xa)(act)[B/A]) \ B = created(XA)(xa)(act) \ A = created(YA)(xa)(act).2754

◀2755

Second, we formalise the fact that two PCA hide their actions in the same manner. The2756

definition is strongly inspired by [2].2757

▶ Definition 152 (Hiding corresponding configuration automata). Let X, Y be configuration2758

automata and A,B be PSIOA. We say that X, Y are hiding-corresponding w.r.t. A,B iff2759

1. X never creates B and Y never creates A.2760

2. ∀(α, π) ∈ Execs∗(X) × Execs∗(Y) s.t traceA(α) = traceB(π), for x = lstate(α), y =2761

lstate(π), we have hidden-actions(Y)(y) = hidden-actions(X)(x).2762

Naturally if hidden actions of ◁AB-corresponding states are equal, it remains true after2763

respective deprivation of A and B which is formalised in next lemma.2764

▶ Lemma 153 (Same hidden-actions after projection). Let A,B ∈ Autids. Let XA, XB be2765

A-fair and B-fair PCA respectively, where XA never contains B and XB never contains A2766

(B /∈ UA(XA) and A /∈ UA(XB)). Let YA = XA \ {A}, YB = XB \ {B}. Let (xa, xb) ∈2767

QXA ×QXB , ya = XA.µA
s (xa), yb = XB.µB

s (xb) s.t.2768

xaR
\{A}
conf xb, i.e. yaRconf yb2769

hidden-actions(XB)(xb) = hidden-actions(XA)(xa)2770

Then hidden-actions(YB)(yb) = hidden-actions(YA)(ya)2771

Proof. We note CXA = config(XA)(xa), CXB = config(XB)(xb), CYA = config(YA)(ya),2772

CYB = config(YB)(yb). By assumption, CXA \ {A} = CYA = CYB = CXB \ {B}.2773

We note hXA = hidden-actions(XA)(xa), hXB = hidden-actions(XB)(xb), hYA =2774

hidden-actions(YA)(ya), hYB = hidden-actions(YB)(yb). By assumption, hXA = hXB , while2775

by construction, hYA = hXA \ pot-out(XA)(A) and hYB = hXB \ pot-out(XB)(B).2776

82 Dynamic Probabilistic Input Output Automata (Extended Version)

Case 1: pot-out(XA)(A)(xa) = pot-out(XB)(B)(xb), the result is immediate, Case 2:2777

pot-out(XA)(A)(xa) ∩ hXA = pot-out(XB)(B)(xb) ∩ hXB = ∅, the result is immediate.2778

Case 3: Without loss of generality, we assume act = pot-out(XA)(A)(xa) ∩ hXA ̸= ∅.2779

For every C ∈ auts(CYB), C ∈ auts(CYA) since CYA = CYB and C ∈ auts(CXA) since2780

CYA = CXA \ {A}. By compatibility of CXA , pot-out(XA)(A)(xa)∩ pot-out(XA)(C)(xa) = ∅.2781

Case 3a) B /∈ auts(CXB), which means both i) act ⊂ hXB , ii) act ∩ out(CXB) = ∅ and iii)2782

hXB ⊂ out(CXB) which is impossible. Thus we only consider2783

Case 3b) B ∈ auts(CXB). Since j) for every C ∈ auts(CYB), pot-out(XA)(A)(xa) ∩ pot-2784

out(XA)(C)(xa) = ∅ and jj) hXB ⊂ out(CXB), we have act ⊂ pot-out(XB)(B)(xb).2785

For symmetrical reason, we have both pot-out(XA)(A)(xa) ∩ hXA ⊂ pot-out(XB)(B)(xb)2786

and pot-out(XB)(B)(xb)∩hXB ⊂ pot-out(XA)(A)(xA), which means hXA\pot-out(XB)(B)(xb) =2787

hXB \ pot-out(XB)(B)(xb) and ends the proof2788

◀2789

Now we are ready to define corresponding PCA w.r.t. PSIOA A, B, that is two PCA XA2790

and XB that differ only on the fact that B supplants A in XB. Some additional assumptions2791

are added to ensure monotonicity later. This definition is still inspired by definitions of [2].2792

▶ Definition 154 (corresponding w.r.t. A, B). Let A,B ∈ Autids, XA and XB be PCA we2793

say that XA and XB are corresponding w.r.t. A, B, if they verify:2794

config(XA)(q̄XA) ◁AB config(XB)(q̄XB).2795

XA never contains B (B /∈ UA(XA)), while XB never contains A (A /∈ UA(XB)).2796

XA, XB are creation-corresponding w.r.t. A,B.2797

XA, XB are hiding-corresponding w.r.t. A,B.2798

XA (resp. XB) is a A-conservative (resp. B-conservative) PCA.2799

(No exclusive creation from A and B)2800

∀qXA ∈ QXA , for every action act A-exclusive, created(XA)(qXA)(act) = ∅ and2801

similarly2802

∀qXB ∈ QXB , for every action act′ B-exclusive, created(XB)(qXB)(act′) = ∅2803

equivalent transitions to obtain semantic equivalence after projection2804

In this last paragraph of the section, we show that if two PCA XA XB are corresponding2805

w.r.t. A and B, then there respective projection YA = XA \ {A} and YB = XB \ {B} are2806

semantically equivalents. To do so, we use notions of equivalent transitions. the idea is to2807

recursively show that any corresponding executions of YA and YB lead to strictly equivalent2808

transitions to finally build the complete bijective PCA executions-matching from YA to YB.2809

We start by defining equivalent transitions.2810

▶ Definition 155 (configuration-equivalence and strict-equivalence between two distributions).2811

Let K, K ′ be PCA and (η, η′) ∈ Disc(states(K))×Disc(states(K ′)).2812

We say that η and η′ are config-equivalent, noted η
f←→

conf
η′, if there exists f : QK −→ QK′2813

s.t. η
f←→ η′ with ∀q′′ ∈ supp(η), q′′Rconf f(q′′).2814

If additionally, ∀q′′ ∈ supp(η), q′′Rstrictf(q′′), then we say that η and η′ are strictly-2815

equivalent, noted η
f←→

strict
η′.2816

Basically, equivalent transitions are transitions where the states with non-zero probability2817

to be reached are mapped by a bijective function that preserves i) measure of probability2818

P. Civit and M. Potop-Butucaru 83

and ii) configuration. A stricter version preserves also iii) future created automata and2819

hidden-actions.2820

The next lemma states that if we take two corresponding transitions from strict equivalent2821

states, then we obtain configuration equivalent transitions.2822

▶ Lemma 156. (strictly-equivalent states implies config-equivalent transition) Let K, K ′
2823

be PCA and (q, q′) ∈ QK × QK′ strictly-equivalent, i.e. qRstricitq
′. Let a ∈ ŝig(K)(q) =2824

ŝig(K ′)(q′) and ((q, a, η(K,q,a)), (q′, a, η(K′,q′,a))) ∈ DK × DK . Then η(K,q,a) and η(K′,q′,a)2825

are config-equivalent, i.e. ∃f : QK → QK′ s.t. η
f←→

conf
η′.2826

Proof. This is the direct consequence of constraint 2 and 3 of definition 19 of PCA. We2827

note C = config(K)(q) = config(K ′)(q′) and φ = created(K)(q)(a) = created(K ′)(q′)(a).2828

By constraint 2, applied to K, there exists η s.t. η(K,q,a)
fK

←→ η with fK = config(K)2829

and config(K)(q) a=⇒created(K)(q)(a) η By constraint 2, applied to K ′, there exists η′ s.t.2830

η(K′,q′,a)
fK′

←→ η′ with fK′ = config(K ′) and config(K ′)(q′) a=⇒created(K′)(q′)(a) η′.2831

Since qRstrictq
′, C ≜ config(K)(q) = config(K ′)(q′) and φ ≜ created(K)(q)(a) =2832

created(K ′)(q′)(a).2833

Hence C
a=⇒φ η and C

a=⇒φ η′ which means η = η′.2834

So η(K,q,a)
f←→ η(K′,q′,a) with f̃ = (f̃K′)−1 ◦ f̃K where f̃ (resp. f̃K′, resp. f̃K) is2835

the restriction of f (resp. fK′, resp. fK) on supp(η(K,q,a)) (resp. supp(η(K′,q′,a)), resp.2836

supp(η(K,q,a))).2837

Thus, for every (q̃, q̃′) ∈ supp(η(K,q,a))× supp(η(K′,q′,a)) s.t. q̃′ = f(q̃), fK(q̃) = fK′(q̃′),2838

that is config(K)(q̃) = config(K ′)(q̃′), i.e. q̃Rconf q̃′.2839

Hence η(K,q,a)
f←→

conf
η(K′,q′,a) which ends the proof.2840

◀2841

Now we start a sequence of lemma (from lemma 157 to lemma 159) to finally show in2842

theorem 160 that if XA and XB are corresponding w.r.t. A, B then XA \ {A} and XB \ {B}2843

are semantically-equivalent.2844

The next lemma shows that we can always construct an execution α̃X ∈ Execs(X) from2845

an execution αY ∈ Execs(Y) with Y = X \ {A} that preserves the trace.2846

▶ Lemma 157 (Execs(X \{A}) can be obtained by Execs(X)). Let A ∈ Autids, X a A-fair2847

PCA, Y = X \ {A}.2848

Let αY = q0
Y , a1, q1

Y , ..., qn
Y ∈ Execs(Y). Then there exists, α̃X = q̃0

X , a1, q̃1
X , ..., q̃n

X ∈2849

Execs(X) s.t. ∀i ∈ [0, n], qi
Y = µA

s (q̃i
X).2850

Proof. By induction on the size s = |αs
Y | of prefix αs

Y = q0
Y , a1, q1

Y , ..., qs
Y .2851

Basis (|αs
Y | = 0): By definition 120, q̄Y = X.µA

s (q̄X)2852

Induction: let assume the proposition is true for prefix αs
Y = q0

Y , a1, q1
Y , ..., qs

Y with2853

s < |αY |. We will show it is true for αs+1
Y . We have qs

Y = X.µA
s (qs

X). By construction of2854

DY provided by definition 120, there exists η(X,qs
X

,as+1) ∈ DX s.t. X.µA
d (η(X,qs

X
,as+1)) =2855

η(Y,qs
Y

,as+1). By X.µA
d -correspondence of definition 120, η(Y,qs

Y
,as+1)(qs+1

Y) =
∑

q′
X

∈QX ,µs(q′
X

)=qs+1
Y

2856

η(X,qs
X

,as+1)(q′
X). By definition of an execution, qs+1

Y ∈ supp(η(Y,qs
Y

,as+1)), which means there2857

exists qs+1
X ∈ QX s.t. 1) µA

s (qs+1
X) = qs+1

Y and 2) qs+1
X ∈ supp(η(X,qs

X
,as+1)). Thus, it exist2858

α̃s+1
X = q̃0

X , a1, q̃1
X , ..., q̃s+1

X ∈ Execs(X) s.t. ∀i ∈ [0, s + 1], qi
Y = µA

s (q̃i
X), which ends the2859

induction and so the proof. ◀2860

84 Dynamic Probabilistic Input Output Automata (Extended Version)

The next lemma states that, after projection, two configuration-equivalent states obtain2861

via executions with the same trace are strictly equivalent.2862

▶ Lemma 158 (After projection, configuration-equivalence obtain after same trace implies strict2863

equivalence). Let XA and XB be two PCA corresponding w.r.t. A, B. Let YA = XA \ {A}2864

and YB = XB \ {B}. Let (αYA , πYB) ∈ Execs(YA)× Execs(YB) with lstate(αYA) = qYA and2865

lstate(πYB) = qYB . If2866

qYARconf qYB and2867

trace(αYA) = trace(πYB) = β,2868

then qYARstrictqYB2869

Proof. By lemma 157, ∃(α̃XA , π̃XB) ∈ Execs(XA) × Execs(XB) s.t. (i) trace(α̃XA) =2870

trace(αYA) = trace(πYB) = trace(π̃XB) and (ii) qYA = XA.µA
s (q̃XA) and qYB = XB.µB

s (q̃XB)2871

where q̃XB = lstate(π̃XB) and q̃XA = lstate(α̃XA).2872

Since trace(α̃XA) = trace(π̃XB), we have j) hidden-actions(XA)(q̃XA) = hidden-actions(XB)(q̃XB)2873

by hiding-correspondence of definition 56 and jj) ∀a ∈ ŝig(XA)(q̃XA) ∩ ŝig(XB)(q̃XB),2874

created(XA)(q̃XA)(a) = created(XB)(q̃XB)(a).2875

By lemma 153 we have (*) hidden-actions(YA)(q̃YA) = hidden-actions(YB)(q̃YB) , and2876

by lemma 151 we have (**) ∀a ∈ ŝig(YA)(qYA) = ŝig(YB)(qYB).2877

If we combine the definition qYARconf qYB with (*) and (**), we obtain qYARstrictqYB ,2878

which ends the proof.2879

◀2880

Finally, the next lemma states that, after projection, two configuration-equivalent states2881

obtain via executions with the same trace lead necessarily to strictly equivalent transitions.2882

▶ Lemma 159 (After projection, configuration-equivalence obtain after same trace implies2883

strict equivalent transitions). Let XA and XB be two PCA corresponding w.r.t. A, B. Let2884

YA = XA \ {A} and YB = XB \ {B}. Let (αYA , πYB) ∈ Execs(YA) × Execs(YB) with2885

lstate(αYA) = qYA and lstate(πYB) = qYB . If2886

qYARconf qYB and2887

trace(αYA) = trace(πYB) = β,2888

then for every a ∈ ŝig(YA)(qYA) = ŝig(YB)(qYB), η(YA,qYA ,a) and η(YB,qYB ,a) are strictly2889

equivalent, i.e. ∃f : QK → QK′ s.t. η
f←→

strict
η′

2890

Proof. By previous lemma 158, qYA and qYB are strictly equivalent. Thus by previous lemma2891

156, there exists f s.t. η(YA,qYA ,a)
f←→

conf
η(YB,qYB ,a). Let two corresponding states (q′

YA
, q′

YB
) ∈2892

supp(η(YA,qYA ,a)) × η(YB,qYB ,a) s.t. f(q′
YA

) = q′
YB

. We have q′
YA

Rconf q′
YB

(*). Furthermore,2893

since qYARstrictqYB , sig(YA)(qYA) = sig(YB)(qYB), namely ext(YA)(qYA) = ext(YB)(qYB),2894

which means trace(α⌢
YA

qYAaq′
YA

) = trace(π⌢
YB

qYB aq′
YB

). So we can reapply previous lemma2895

to obtain q′
YA

Rstrictq
′
YB

which ends the proof.2896

◀2897

Now we can finally show that if XA and XB are corresponding w.r.t. A, B then XA \{A}2898

and XB \ {B} are semantically-equivalent which was the main aim of this subsection.2899

▶ Theorem 160 (XA and XB corresponding w.r.t. A, B implies XA \ {A} and XB \ {B}2900

semantically-equivalent). Let XA and XB be two PCA corresponding w.r.t. A, B. Let2901

YA = XA \ {A} and YB = XB \ {B}.2902

The PCA YA and YB are semantically-equivalent.2903

P. Civit and M. Potop-Butucaru 85

Proof. We recursively construct a strong complete bijective PCA executions-matching2904

(fs, f tran
s , fex

s) where fs : reachable≤s(YA)→ reachable≤s(YB) and fex
s : {α ∈ Execs(YA)||α| ≤2905

s} → {π ∈ Execs(YB)||π| ≤ s} s.t. fex
s (α) = π implies lstate(α)Rstrictlstate(π).2906

Basis: s = 0, reachable≤0(YA) = {q̄XA}, while reachable≤0(YB) = {q̄XB}.2907

By definition 69 of corresponding automata config(XA)(q̄XA) ◁AB config(XB)(q̄XB),2908

while (q̄YA , q̄YB) = (XA.µA
s (q̄XA), XB.µB

s (q̄XB)) by definition 120 of PCA projection, which2909

gives q̄YARconf q̄YB by lemma 149. Moreover traceYA(q̄YA) = traceYB (q̄YB) = λ (λ denotes2910

the empty sequence). Thus we can apply lemma 158 to obtain q̄YARstrictq̄YB . We con-2911

struct f0(q̄YA) = q̄YB , fex
0 (q̄YA) = q̄YB . Clearly f0 is a bijection from reachable0(YA) to2912

reachable0(YB), while fex
0 is a bijection from Execs0(YA) to Execs0(YB)2913

Induction: We assume the result to be true for an integer s ∈ N and we will show it is2914

then true for s + 1. Let Execss(YA) = {α ∈ Execs(YA)||α| = s} and Execss(YB) = {π ∈2915

Execs(YB)||π| = s}.2916

We can build fs+1 (resp. fex
s+1) s.t. ∀q ∈ reachable≤s(YA), fs+1(q) = fs(q) (resp.2917

s.t. ∀α ∈ Execs≤s(YA) fex
s+1(α) = fex

s (α)) and ∀qj
YA
∈ reachables+1(YA), fs+1(q∗) (resp.2918

∀αa,j ∈ Execss(YA), fex
s+1(α′)) is built as follows:2919

We note αa,j = α⌢
YA

qYAaqj
YA

(qYA = lstate(αYA)). We note πYB = fex
s (αYA). By2920

induction assumption, qYARstrictqYB with qYA = lstate(αYA) and qYB = lstate(πYB). Hence2921

sig(YA)(qYA) = sig(YB)(qYB) and by previous lemma 159, for every a ∈ sig(YA)(qYA) =2922

sig(YB)(qYB), ∃gj
a, η(YA,qYA ,a)

gj
a←→

strict
η(YB,qYB ,a).2923

Hence, we define fex
s+1 : αa,j = α⌢

YA
qYAaqj

YA
7→ fex

s+1(αYA)⌢fs(qYA)agj
a(qj

YA
), while2924

fs+1 is naturally defined via fex
s+1, i.e. for every qj

YA
∈ reachables+1(YA), we note αa,j ∈2925

Execss+1(YA) s.t. lstate(αa,j) = qj
YA

and fs+1(qj
YA

) = gj
a(qj

YA
) = lstate(fex

s+1(αa,j)).2926

We finally define fex : q0a1...anqn... 7→ f0(q0)a1...anfn(qn), f : q 7→ fn(q) where q =2927

lstate(q0a1...qn) and f tr : (q, a, η(YA,q,a)) 7→ (f(q), a, η(YB,f(q),a)).2928

Clearly (f, f tr, fex) is strong since for every pair (qYA , qYB), s.t. f(qYA) = qYB , qYARstrictqYB .2929

Moreover, (f, f tr, fex) is complete since dom(f) = reachable(YA) = QYA .2930

Finally, the bijectivity of fex is given by the inductive bijective construction.2931

Hence (f, f tr, fex) is strong complete bijective PCA executions-matching from YA to YB2932

which ends the proof.2933

◀2934

14 Top/Down corresponding classes2935

In previous section 13, we have shown in theorem 160 that if XA and XB are corresponding2936

w.r.t. A and B (in the sense of definition 69), then YA = XA \ {A} and YB = XB \ {B} are2937

semantically equivalent. We can note Y an arbitrary PCA semantically equivalent with both2938

YA and YB.2939

In section 12, we have shown in theorem 140 that for every PCA E environment of both2940

XA and XB, XA||E and Ãsw||YA||E (resp. XB||E and B̃sw||YB||E) are linked by a PCA2941

executions-matching2942

It is time to combine this two results to realise that for every PCA E environment2943

of both XA and XB, XA||E and Ãsw||E ′ (resp. XB||E and B̃sw||E ′) are linked by a PCA2944

executions-matching where E ′ = E||Y .2945

Hence (*) if E ′ cannot distinguish Ãsw from B̃sw, we will be able to show that E cannot2946

distinguish XA from XB.2947

86 Dynamic Probabilistic Input Output Automata (Extended Version)

In this section, we formalise (*) in theorem 191 of monotonicity of implementation2948

relation. However, some assumptions are required to reduce the implementation of XB by2949

XA into implementation of B by A. These are all minor technical assumptions except for2950

one: our implementation relation concerns only a particular subset of schedulers so-called2951

creation-oblivious, i.e. in order to compute (potentially randomly) the next transition, they do2952

not take into account the internal actions of a sub-automaton preceding its last destruction.2953

14.1 Creation-oblivious scheduler2954

Here we recall the definition of creation-oblivious scheduler (already introduced in subsection2955

9.4), that does not take into account previous internal actions of a particular sub-automaton2956

to output its probability over transitions to trigger.2957

We start by defining strict oblivious-schedulers that output the same transition with the2958

same probability for pair of execution fragments that differ only by prefixes in the same class2959

of equivalence. This definition is inspired by the one provided in the thesis of Segala, but is2960

more restrictive since we require a strict equality instead of a correlation (section 5.6.2 in2961

[20]).2962

▶ Definition 161 (strict oblivious scheduler (recall)). Let W be a PCA or a PSIOA, let2963

σ ∈ schedulers(W) and let ≡ be an equivalence relation on Frags∗(W) verifying ∀α1, α2 ∈2964

Frags∗(W) s.t. α1 ≡ α2, lstate(α1) = lstate(α2) . We say that σ is (≡)-strictly oblivious if2965

∀α1, α2, α3 ∈ Frags∗(W̃) s.t. 1) α1 ≡ α2 and 2) fstate(α3) = lstate(α2) = lstate(α1), then2966

σ(α⌢
1 α3) = σ(α⌢

2 α3).2967

Now we define the relation of equivalence that defines our subset of creation-oblivious2968

schedulers. Intuitively, two executions fragments ending on A creation are in the same2969

equivalence class if they differ only in terms of internal actions of A.2970

▶ Definition 162. (α̃ ≡cr
A α̃′ (recall)). Let Ã be a PSIOA, W̃ be a PCA, ∀α̃, α̃′ ∈ Frags∗(W̃),2971

we say α̃ ≡cr
A α̃′ iff:2972

1. α̃, α̃′ both ends on A-creation.2973

2. α̃ and α̃′ differ only in the A-exclusive actions and the states of A, i.e. µ(α̃) = µ(α̃′)2974

where µ(α̃ = q̃0a1q̃1...anq̃n) ∈ Frags∗(W̃) is defined as follows:2975

remove the A-exclusive actions2976

replace each state q̃i by its configuration Config(W̃)(q̃) = (Ai, Si)2977

replace each configuration (Ai, Si) by (Ai, Si) \ {A}2978

replace the (non-alternating) sequences of identical configurations (due to A-exclusiveness2979

of removed actions) by one unique configuration.2980

3. lstate(α1) = lstate(α2)2981

We can remark that the items 3 can be deduced from 1 and 2 if X is configuration-conflict-2982

free. We can also remark that if W̃ is a A-conservative PCA, we can replace µ(α̃) = µ(α̃′),2983

by µA
e (α̃) ↾ (W̃ \ {A}) = µA

e (α̃′) ↾ (W̃ \ {A}) but we want to be as general as possible for2984

next definition of creation oblivious scheduler :2985

▶ Definition 163 (creation-oblivious scheduler). Let A be a PSIOA, W be a PCA, σ ∈2986

schedulers(W). We say that σ is A-creation oblivious if it is (≡cr
A)-strictly oblivious.2987

We say that σ is creation-oblivious if it is A-creation oblivious for every sub-automaton2988

A of W (A ∈
⋃

q∈QW
auts(config(W)(q))). We note CrOB the function that maps every2989

PCA W to the set of creation-oblivious schedulers of W . If W is not a PCA but a PSIOA,2990

CrOB(W) = schedulers(W).2991

P. Civit and M. Potop-Butucaru 87

If σ is A-creation oblivious, we can remark that ∀α, α′ ∈ Execs∗(W), α ≡cr
A α′, σ|α = σ|α′2992

in the sense of definition 164 stated immediately below.2993

▶ Definition 164 (conditioned scheduler). Let A be a PSIOA, σ ∈ schedulers(A) and let α1 ∈2994

Frags∗(A). We note σ|α1 : {α2 ∈ Frags∗(A)|fstate(α2) = lstate(α1)} → SubDisc(DA)2995

the sub-scheduler conditioned by σ and α1 that verifies ∀α2 ∈ Frags∗(A), fstate(α2) =2996

lstate(α1), σ|α1(α2) = σ(α⌢
1 α2).2997

We take the opportunity to state a lemma of conditional probability that will be used2998

later for lemma 190.2999

▶ Lemma 165 (conditional measure law). Let A be a PSIOA, σ ∈ schedulers(A) and3000

let α1 ∈ Frags∗(A) and σ|α1 the sub-scheduler conditioned by σ and α1. Let αo, α2 ∈3001

Frags∗(A), fstate(α2) = lstate(α1) ≜ q12. Then3002

ϵσ,αo(Cα⌢
1 α2) = :

{
ϵσ,αo(Cα1) · ϵσ|α1 ,q12(Cα2) if α1 ≰ αo

ϵσ|α1 ,α′
o
(Cα2) if αo = α⌢

1 α′
o

3003

Proof. We note α12 = α⌢
1 α2.3004

1. α1 ≰ αo:3005

a. α1 ≰ αo and αo ≰ α1:3006

This implies α12 ≰ αo and αo ≰ α12 thus ϵσ,αo
(Cα⌢

1 α2) = ϵσ,αo
(Cα1) = 0 which ends3007

the proof.3008

b. αo ≤ α1:3009

This implies αo ≤ α12 By induction on size s of α2. Basis: s = 0, i.e. α2 = lstate(α1) =3010

q12. Thus, we meet the second case of definition of ϵσ|α1 ,q12(Cα2): α2 ≤ q12, which3011

means ϵσ|α1 ,q12(Cα2) = 1 and terminates the basis. Induction: We assume the result3012

to be true up to size s ∈ N and we want to show it is still true for size s + 1.3013

Let α2 ∈ Frags∗(A), fstate(α2) = lstate(α1) ≜ q12 with |α2| = s + 1. We note3014

α2 = α′⌢
2 q′aq and α′

12 = α⌢
1 α′

2. We have |α′
2| = s and αo ≤ α′

123015

By definition we have ϵσ|α1 ,q12(Cα2) = ϵσ|α1 ,q12(Cα′
2
) · σ(α′

2)(η(A,q′,a)) · η(A,q′,a)(q).3016

In Parallel, by definition: ϵσ,αo
(Cα12) = ϵσ,αo

(Cα′
12

) · σ(α′
12)(η(A,q′,a)) · η(A,q′,a)(q) and3017

by induction assumption, ϵσ,αo
(Cα12) = ϵσ,αo

(Cα1) · ϵσ|α1 ,q12(Cα′
2
) · σ(α′

12)(η(A,q′,a)) ·3018

η(A,q′,a)(q) and so ϵσ,αo(Cα12) = ϵσ,αo(Cα1) · ϵσ|α1 ,q12(Cα2), which ends the induction3019

and so the case.3020

2. αo = α⌢
1 α′

o. By definition, ϵσ,αo
(Cα1) = 13021

a. both α12 ≰ αo and αo ≰ α12. This implies α2 ≰ α′
o and α′

o ≰ α2 Then, by definition,3022

ϵσ,αo
(Cα12) = ϵσ|α1 ,α′

o
(Cα2) = 0.3023

b. α12 ≤ αo. This implies α2 ≤ α′
o. Then, by definition, ϵσ,αo

(Cα12) = ϵσ|α1 ,α′
o
(Cα2) = 13024

c. αo ≤ α12:3025

We proceed by induction on size s of α2.3026

Basis: s = 0, i.e. α2 = q12. Then by definition ϵσ,αo(Cα12) = ϵσ,αo(Cα1) = 1. Moreover3027

q12 ≤ α′
o which means ϵσ|α1 ,α′

o
(Cα2) = 1, which ends the basis.3028

Induction:3029

We assume the result to be true up to size s ∈ N and we want to show it is still true3030

for size s + 1. Let α2 ∈ Frags∗(A), fstate(α2) = lstate(α1) ≜ q12 with |α2| = s + 1.3031

We note α2 = α′⌢
2 q′aq and α′

12 = α⌢
1 α′

2. We have |α′
2| = s and αo ≤ α′

12.3032

By definition we have ϵσ|α1 ,α′
o
(Cα2) = ϵσ|α1 ,α′

o
(Cα′

2
) · σ(α′

2)(η(A,q′,a)) · η(A,q′,a)(q).3033

In Parallel, by definition: ϵσ,αo(Cα12) = ϵσ,αo(Cα′
12

) · σ(α′
12)(η(A,q′,a)) · η(A,q′,a)(q) and3034

by induction assumption, ϵσ,αo
(Cα12) = ϵσ,αo

(Cα1) · ϵσ|α1 ,α′
o
(Cα′

2
) · σ(α′

12)(η(A,q′,a)) ·3035

88 Dynamic Probabilistic Input Output Automata (Extended Version)

η(A,q′,a)(q) and so ϵσ,αo(Cα⌢
1 α2) = ϵσ,αo(Cα1)·ϵσ|α1 ,α′

o
(Cα2). Finally, since ϵσ,αo(Cα1) =3036

1, we have ϵσ,αo
(Cα12) = ϵσ|α1 ,α′

o
(Cα2) which ends the induction, the case and so the3037

proof.3038

◀3039

We have formally defined our notion of creation-oblivious scheduler. This will be a key3040

property to ensure lemma 187 that allows to reduce the measure of a class of comportment3041

as a function of measures of classes of shorter comportment where no creation of A or B3042

occurs excepting potentially at very last action. This reduction is more or less necessary to3043

obtain monotonicity of implementation relation.3044

14.2 Tools: proxy function, creation-explicitness, classes3045

In this subsection we introduce some tools frequently used during our proof of monotonicity.3046

Later, we will adopt a quite general approach to understand the key properties of a perception3047

function to ensure monotonicity. All these properties will be met by environment projection3048

function proj(.,.), but not by trace function.3049

First we introduce proxy function, which enables a generic reduction from automata3050

(Ẽ ||XA) to automata ((Ẽ ||XA \ {A})||Ãsw)3051

▶ Definition 166 (proxy). Let A be a PSIOA. Let f(.,.) be an insight function. The A-proxy3052

function of f , noted fA,proxy
(.,.) , is the insight function s.t. for every A-conservative PCA X,3053

∀Ẽ ∈ env(X), ∀α̃ ∈ dom((Ẽ ||X).µA,+
e), fA,proxy

(Ẽ,X) (α̃) = f((Ẽ||X\{A}),Ãsw)(
˜

µA,+
e (α̃))3054

Second, we define ordinary function, as functions capturing the fact that an environment3055

obtain the exact same insight from XA or from ((XA \ {A})||Ãsw). Any reasonable insight3056

function is ordinary.3057

▶ Definition 167 (ordinary). Let f(.,.) be an insight function. We say f(.,.) is ordinary if for3058

every PSIOA A, for every A-conservative PCA X, ∀Ẽ ∈ env(X), ∀α̃ ∈ dom((Ẽ ||X).µA,+
e),3059

f(Ẽ,X)(α̃) = f(Ẽ,((X\{A})||Ãsw))(
˜

µA,+
e (α̃))3060

It is worthy to remark that for ordinary perception function, a common perception in the3061

reduced world implies a common perception in the original world. This fact will be used in3062

the proof of lemma 185 of partitioning.3063

▶ Lemma 168 (ordinary perception function). Let f be an ordinary perception function.3064

Then for every PSIOA A, for every A-conservative PCA X, ∀Ẽ ∈ env(X), ∀α̃, α̃′ ∈3065

dom((Ẽ ||X).µA,+
e)3066

fA,proxy

(Ẽ,X) (α̃) = fA,proxy

(Ẽ,X) (α̃′) =⇒ f(Ẽ,X)(α̃) = f(Ẽ,X)(α̃′)3067

Proof. By definition of proxy function, f((Ẽ||X\{A}),Ãsw)(
˜

µA,+
e (α̃)) = f((Ẽ||X\{A}),Ãsw)(

˜
µA,+

e (α̃′)).3068

By definition of perception function, f(Ẽ,((X\{A})||Ãsw))(
˜

µA,+
e (α̃)) = f(Ẽ,((X\{A})||Ãsw))(

˜
µA,+

e (α̃′)).3069

By definition of ordinary function, f(Ẽ,X)(α̃) = f(Ẽ,X)(α̃′). ◀3070

▶ Proposition 169. The environment projection function proj(.,.) (i.e. for each automaton3071

K, ∀E ∈ env(K), proj(E,K) : α ∈ Execs(E||K) 7→ α ↾ E) and the trace functions are ordinary3072

function.3073

Proof. By definition ◀3074

P. Civit and M. Potop-Butucaru 89

Now, we introduce two new concepts. First, we introduce notion of creation-explicitness,3075

that states that an automaton has a clear dedicated set of actions to create each sub-3076

automaton. This property of creation-explicitness will clarify the condition to obtain3077

surjectivity of µ̃A,+
e since it suffices to consider this function with a restricted range where3078

no action of creation-actions(X)(A) appears before last action.3079

▶ Definition 170 (creation-explicit PCA). Let A be a PSIOA and X be a PCA. We say that3080

X is A-creation-explicit iff: there exists a set of actions, noted creation-actions(X)(A),3081

s.t. ∀qX ∈ QX , ∀a ∈ ŝig(X)(qX), if we note AX = auts(config(X)(qX)) and φX =3082

created(X)(qX)(a), then A /∈ AX ∧ A ∈ φX ⇐⇒ a ∈ creation-actions(X)(A).3083

Second, we define classes of equivalence of some executions that imply the exact same3084

perception from the environment.3085

▶ Definition 171 (class of equivalence). Let f be an insight function. Let A be a PSIOA.3086

Let E ∈ env(A). Let ζ ∈
⋃

PSIOA B,E∈env(B) range(f(E,B)). We note Class(E ,A, f, ζ) = {α ∈3087

Execs(E||A)}|f(E,A)(α) = ζ}.3088

14.3 Homomorphism between simple classes3089

In this subsection, we exhibit the conditions such that µ̃A,+
e is an homomorphism between3090

the perception after reduction and the original perception. These conditions are met by3091

projection function.3092

First, we state that µ̃A,+
e is surjective if we consider a range constituted of executions3093

that does not create A before very last action.3094

▶ Lemma 172 (Partial surjectivity with explicit creation). Let A be a PSIOA and X be a3095

A-conservative and A-creation-explicit PCA. Let Ẽ be partially-compatible with X. Let Y =3096

X \ {A}. Let EA = Ẽ ||Y . Let (((Ẽ ||X).µ̃A
z , (Ẽ ||X).µ̃A,+

z), (Ẽ ||X).µ̃A,+
tr , (Ẽ ||X).µ̃A,+

e) the Ẽ-3097

extension of ((X.µ̃A
z , X.µ̃A,+

z), X.µ̃A,+
tr , X.µ̃A,+

e). Let α, α′ ∈ Execs(EA||Ãsw) s.t. creation-3098

actions(X)(A) ∩ actions(α) = ∅3099

1) Then ∃α̃ ∈ dom(µ̃A
e) s.t. µ̃A,+

e (α̃) = µ̃A
e (α̃) = α.3100

2) If α′ = α⌢q, a!, q′ with a! ∈ creation-actions(X)(A), then ∃α̃′ ∈ dom(µ̃A,+
e) s.t.3101

µ̃A,+
e (α̃′) = α′.3102

Proof. We proof the results in the same order they are stated in the lemma:3103

1. We note α = q0, a1, ..., an, qn... and we proof the result by induction on the prefix size s.3104

Basis: the result trivially holds for any execution α of size 0 by construction of X\{A} that3105

requires X.µA
s (q̄X) = q̄X\{A}. We assume the result holds up to prefix size s and we show3106

it still holds for prefix size s + 1. We note αs = q0, a1, ..., as, qs and α̃s ∈ Execs(Ẽ ||X) s.t.3107

µ̃A
e (α̃s) = αs. By lemma 138 of signature preservation as+1 ∈ sig(Ẽ ||X)(q̃s). Moreover,3108

by assumption as+1 /∈ creation-actions(X)(A) which means the application of lemma3109

129 of homomorphic transitions leads us to η((Ẽ||X),q̃s,as+1)
µA

z←→ η((EA||Ãsw),qs,as+1). So3110

there exists q̃s+1 ∈ supp(η((Ẽ||X),q̃,a!)) with µA
z (q̃) = q. So µA

e (α̃⌢
s q̃sas+1q̃s+1) = αs+1.3111

This ends the induction and so the proof of 1. .3112

2. We apply 1. and note α̃ ∈ Execs(Ẽ ||X) s.t. µ̃A
e (α̃) = α. By lemma 138 of signature3113

preservation a! ∈ sig(Ẽ ||X)(q̃) with q̃ = lstate(α). Moreover, by lemma 129 of homo-3114

morphic transition, η(Ẽ||X),q̃,a!

µA,+
z←→ η(EA||Ãsw),q,a!

. So there exists q̃′ ∈ supp(η(Ẽ||X),q̃,a!
)3115

with µA,+
z (q̃′) = q′. So µA,+

e (α̃⌢q̃a!q̃
′) = α′ which ends the proof.3116

◀3117

90 Dynamic Probabilistic Input Output Automata (Extended Version)

Since we i) classify executions in some classes according to their projection on an3118

environment and ii) are concerned by the actions of the execution that create A, the next3119

lemma will simplify this classification. It states that if the projection e of an execution3120

α ∈ Execs(EA||Ãsw) on the environment EA ends by an action a! ∈ creation-actions(X)(A),3121

then the execution necessarily ends by a! (without additional suffix).3122

Then we define Γ-delineated function f that verifies the fact that an execution α perceived3123

in Γ through f implies α does not create A before very last action.3124

▶ Definition 173 (delineated function). Let A be a PSIOA, X a A-conservative PCA, E ∈3125

env(X), Y = X \ {A}, EA = E||Y . Let f(.,.) be an insight function. Let Γ ⊆ range(f(EA,Ãsw)).3126

We say that f is (Γ, Ẽ , X,A)-delineated if ∀ζ ∈ Γ, ∀α ∈ Execs(EA||Ãsw), f(EA,Ãsw)(α) = ζ,3127

implies α ∈ rangef(Ẽ ||X).µA,+
e , i.e ∀α′ < α, actions(α′) ∩ creation-actions(X)(A) = ∅.3128

It is worthy to remark that if the projection e of an execution α does not contain actions3129

dedicated to the creation of A before very last action, then α does not create A before very3130

last action.3131

▶ Lemma 174 (projection is a delineated function with explicit creation). Let A be a PSIOA, X3132

a A-conservative PCA, E ∈ env(X), Y = X\{A}, EA = E||Y . Let Γ ≜ {e ∈ Execs(EA)|∀e′ <3133

e, actions(e′)∩creation-actions(X)(A) = ∅}. The projection function proj(.,.) is (Γ, Ẽ , X,A)-3134

delineated.3135

Proof. Let α ∈ Execs(EA||Ãsw), (α ↾ EA) = e′ ∈ Γ. Hence either |e′| = 0 or e′ = e⌢qa!q
′

3136

with actions(e′)∩ creation-actions(X)(A) = ∅. If actions(α)∩ creation-actions(X)(A) = ∅,3137

the result is immediate. Assume the opposite. We note α = α1⌢q1
ℓ , a!, q2⌢

f α2 with a! ∈3138

creation-actions(X)(A).3139

We have q1
ℓ ↾ Ãsw = qϕ

Ãsw . Indeed, let us assume the contrary: q1
ℓ ↾ Ãsw ̸= qϕ

Ãsw . Then q ↾3140

Ãsw ̸= qϕ

Ãsw for every state q ∈ α1. Since creation-actions(X)(A)∩actions(e′) = ∅, creation-3141

actions(X)(A) ∩ actions(α1) = ∅. Thus we apply lemma 172 of partial surjectivity with3142

explicit creation to obtain, there exists α̃1 ∈ Execs(Ẽ ||X) s.t. µ̃A,+
e (α̃1) = α1 with both A ∈3143

auts(config(X)(lstate(α̃1) ↾ X)) and a! ∈ creation-actions(X)(A)∩sig(X)(lstate(α̃1)) ↾ X)3144

which is impossible.3145

Since q1
ℓ ↾ Ãsw = qϕ

Ãsw , q ↾ Ãsw = qϕ

Ãsw for every state q ∈ α2. Hence, α2 = q2
f to respect3146

α ↾ EA = e′, which means α = α1⌢q1
ℓ , a!, q2

f . Since creation-actions(X)(A)∩ actions(e) = ∅,3147

creation-actions(X)(A) ∩ actions(α1) = ∅, which ends the proof.3148

◀3149

Now, we can clarify when µ̃A,+
e is a bijection between "top/down" corresponding classes3150

of equivalence.3151

▶ Lemma 175. (µ̃A,+
e is a bijection from C̃ to C). Let A be a PSIOA and X be a A-3152

conservative and A-creation-explicit PCA. Let Ẽ ∈ env(X). Let Y = X \ {A}. Let3153

EA = Ẽ ||Y . Let (((Ẽ ||X).µ̃A
z , (Ẽ ||X).µ̃A,+

z), (Ẽ ||X).µ̃A,+
tr , (Ẽ ||X).µ̃A,+

e) the Ẽ-extension of3154

((X.µ̃A
z , X.µ̃A,+

z), X.µ̃A,+
tr , X.µ̃A,+

e).3155

Let f be an ordinary perception function, (Γ, Ẽ , X,A)-delineated.3156

For every ζ ∈ Γ, (Ẽ ||X).µ̃A,+
e is a bijection from C̃ to C, where3157

C̃ = Class(Ẽ , X, fA,proxy, ζ)3158

C = Class(EA, Ãsw, f, ζ)3159

Proof. Injectivity is immediate by lemma 85, item (2).3160

P. Civit and M. Potop-Butucaru 91

Surjectivity: Let α ∈ C. By definition, f(EA,Ãsw)(α) = ζ ∈ Γ. Since f is (Γ, Ẽ , X,A)-3161

delineated, then ∀α′ < α, (actions(α′) ∩ creation-actions(X)(A) = ∅. Hence, we can3162

apply lemma 172 of partial surjectivity with explicit creation3163

◀3164

Hence, we obtain an equiprobability of top/down corresponding cones equipped with3165

alter-ego schedulers.3166

▶ Lemma 176 (equiprobability of top/down corresponding cones). Let A be a PSIOA and3167

X be a A-conservative and A-creation-explicit PCA. Let Ẽ ∈ env(X). Let Y = X \ {A}.3168

Let EA = Ẽ ||Y . Let (((Ẽ ||X).µ̃A
z , (Ẽ ||X).µ̃A,+

z), (Ẽ ||X).µ̃A,+
tr , (Ẽ ||X).µ̃A,+

e) the Ẽ-extension of3169

((X.µ̃A
z , X.µ̃A,+

z), X.µ̃A,+
tr , X.µ̃A,+

e).3170

Let f be an ordinary perception function, (Γ, Ẽ , X,A)-delineated. Let ζ ∈ Γ, and3171

C̃ = Class(Ẽ , X, fA,proxy, ζ)3172

C = Class(EA, Ãsw, f, ζ)3173

Then for every σ̃ ∈ schedulers(Ẽ ||X), for σ (((Ẽ ||X).µ̃A
z , (Ẽ ||X).µ̃A,+

z), (Ẽ ||X).µ̃A,+
tr , (Ẽ ||X).µ̃A,+

e)-3174

alter ego of σ̃,3175

ϵσ̃,δq̄(Ẽ||X)
(CC̃) = ϵσ,δq̄(EA||Ãsw)

(CC)3176

Proof. By lemma 175, µ̃A,+
e is a bijection from C̃ to C. We note {(α̃i, αi)}i∈I = C̃ × C the re-3177

lated pairs of executions s.t. µ̃A,+
e (α̃i) = αi. We obtain ϵσ̃,δq̄(Ẽ||X)

(CC̃) =
∑

i∈I ϵσ̃,δq̄(Ẽ||X)
(Cα̃i)3178

and ϵσ,δq̄(EA||Ãsw)
(CC) =

∑
i∈I ϵσ,δq̄(EA||Ãsw)

(Cαi
).3179

Thus it is enough to show that ∀i ∈ I, ϵσ̃,δq̄(Ẽ||X)
(Cα̃i

) = ϵσ,δq̄(EA||Ãsw)
(Cαi

) which is given3180

by theorem 84 that can be applied since µ̃A,+
e is a continued executions-matching by theorem3181

144.3182

◀3183

14.4 Decomposition, pasting-friendly functions3184

In last subsection, the dynamic creation/destruction of A has been discarded. It is time to3185

generalise previous approach with dynamic creation/destruction of A.3186

We first define some tools to describe the decomposition of an executions into segments3187

whose last action is in in the dedicated set to create A.3188

▶ Definition 177. (n-building-vector for executions). Let α be an alternating sequence3189

states and actions starting by state and finishing by a state if α is finite. Let n ∈ N ∪3190

{∞}. A n-building-vector of α is a (potentially infinite) vector →
α = (α1, ..., αi, ...) of3191

|→α| = n alternating sequences of states and actions starting by state and finishing by a3192

state (excepting potentially the last one if it is infinite) s.t. α1⌢...αi−1⌢αi⌢... = α (with3193

∀i ∈ [1, |→α| − 1], fstate(αi+1) = lstate(αi)). We note Building-vectors(α, n) the set of3194

n-building-vector of α and →
α

n: α to say →
α ∈ Building-vectors(α, n). We note Building-3195

vectors(α) =
⋃

n∈N∪{∞} Building-vectors(α, n) and →
α : α to say α ∈ Building-vectors(α).3196

We note →
α[i] = αi and →

α[: i] = α1⌢...⌢αi−1. If W is an automaton, α ∈ Execs(W), →
α : α3197

and f a function with dom(f) ⊆ Frags(W), we note f(→
α) = [f(→

α[1]), ..., f(→
α[i]), ...].3198

▶ Definition 178. (→
α :

(X,A)
α) Let W and X be two PCA s.t. X is A-creation-explicit,3199

α ∈ Frags(W). We note →
α :

(X,A)
α (and →

α :
A

α when X is clear in the context) the (clearly3200

unique) vector →
α ∈ Building-vectors(α) of execution fragments s.t.3201

92 Dynamic Probabilistic Input Output Automata (Extended Version)

1. ∀i ∈ [1, n], ∀α′ <
→
α[i], actions(α′) ∩ creation-actions(X)(A) = ∅ and3202

2. ∀i ∈ [1, n− 1], laction(→
α[i])) ∈ creation-actions(X)(A).3203

We write →
α

n:
(X,A)

or →
α

n:
A

to indicate that |→α| = n.3204

▶ Definition 179. (A-decomposition) Let A be a PSIOA and X be a PCA. Let α =3205

q0a1...anqn... ∈ Frags(X). We say that3206

α is a A-open-portion iff α does not create A, i.e. ∀i ∈ [1, |α|]A /∈ auts(config(X)(qi−1)) =⇒3207

A /∈ auts(config(X)(qi)).3208

α is a A-closed-portion iff α does not create A excepting at very last last action, i.e.3209

∀i ∈ [1, |α|]A /∈ auts(config(X)(qi−1)) ∧ A ∈ auts(config(X)(qi))⇐⇒ i = |α|.3210

α is a A-portion of X if it is either a A-open-portion or a A-closed-portion.3211

We call A-decomposition of α, noted A-decomposition(α), the unique vector (α1, ..., αn, ...) ∈3212

Building-vectors(α) s.t.3213

∀i ∈ [1, |A-decomposition(α)| − 1], αi is a A-closed-portion of X and3214

if |A-decomposition(α)| = n ∈ N, αn is a A-portion of X.3215

▶ Lemma 180. (→
α :

(X,A)
α means →

α = A-decomposition(α)). Let A be a PSIOA and X3216

be a A-creation-explicit PCA. Let α ∈ Frags(X). Let →
α = A-decomposition(α). Then3217

→
α

n:
(X,A)

α.3218

Proof. By definition, →
α ∈ Building-vectors(α). Still by definition, ∀i ∈ [1, |A-decomposition(α)|−3219

1], αi is a A-closed-portion of X, i.e. αi does not create A excepting at very last last3220

action laction(αi). By definition of creation-explicitness, the two item of definition 1783221

are verified for every i ∈ [1, |A-decomposition(α)| − 1]. Finally, by definition, if |A-3222

decomposition(α)| = n ∈ N, αn is a A-portion of X, i.e. αn does not create A excepting3223

potentially at very last last action if αn is finite. Again, by definition of creation-explicitness,3224

the first item of definition 178 is verified.3225

◀3226

Now, we introduce the crucial property, called pasting-friendly, required for a perception3227

function f to ensure monotonicity of ≤CrOb,f
0 . This property allows to cut-paste a general3228

class of equivalence into a composition of smaller classes of equivalence, without creation of A3229

before very last action, where lemma 176 of equiprobability between top-down corresponding3230

cones can be applied to each smaller class.3231

▶ Definition 181 (pasting friendly). Let f(.,.) be an insight function. We say that f(.,.) is3232

pasting-friendly if for every PSIOA A, for every A-conservative and A-creation-explicit PCA3233

X, ∀Ẽ ∈ env(X), ∀ζ̃ ∈
⋃

K,Ẽ∈env(K) range(f(Ẽ,K)), ∀
→
ζ ∈ →

proxy(ζ̃)Ẽ,X,A then3234

1. ∀α̃, α̃′, →
α = A-decomposition(α̃), →

α
′

= A-decomposition(α̃′), fA,proxy

(Ẽ,X) (→
α) = fA,proxy

(Ẽ,X) (→
α

′
) ≜3235

→
ζ implies |→α| = |→α| = |

→
ζ | ≜ n ∈ N∪{∞}∧ ∀i ∈ [1, n−1], lstate(→

α[i]) = lstate(→
α

′
[i]) ≜ qℓ

i .3236

2. We note Ẽ1 = Ẽ, X1 = X, and ∀i ∈ [2, n], we note Ẽ i = Ẽq̄Ẽ →(qℓ
i−1↾Ẽ) (resp Xi =3237

Xq̄X →(qℓ
i−1↾X)).3238

∀j ∈ [1, n],∀αj ∈ Execs((Ẽj ||Xj)), fA,proxy

(Ẽj ,Xj) (αj) =
→
ζ [j], then3239

a. for every α′
j < αj, actions(α′

j) ∩ creation-actions(X)(A) = ∅ and3240

b. if j ∈ [1, n− 1], αj = α′⌢
j aj

! qj
ℓ with aj

! ∈ creation(X)(A)3241

P. Civit and M. Potop-Butucaru 93

We state an intermediate lemma to show that projection on environment is pasting-friendly3242

(see lemma 183).3243

▶ Lemma 182 (chunks ending on creation). Let A be a PSIOA, let X be a A-conservative3244

and A-creation-explicit PCA and Ẽ partially-compatible with X. Let α̃ ∈ Frags(Ẽ ||X) and3245

e ∈ Frags(Ẽ ||X \ {A}) s.t. (Ẽ ||X).µA,+
e (α̃) ↾ (Ẽ ||X \ {A}) = e.3246

Then3247

laction(α̃) = a! ∈ creation-actions(X)(A) =⇒ laction(e) = a! ∈ creation-actions(X)(A).3248

if α̃ ∈ dom(µ̃A,+
e),3249

laction(α̃) = a! ∈ creation-actions(X)(A)⇐= laction(e) = a! ∈ creation-actions(X)(A).3250

Proof. We prove the two implications in the same order.3251

=⇒) Let assume a! ≜ laction(α̃) ∈ creation-actions(X)(A). Since X is A-creation-3252

explicit, we have α̃ = α̃′⌢q′a!q with A /∈ auts(config(X)(q′)). Thus laction(e) = a! ∈3253

creation-actions(X)(A).3254

⇐=) Let assume a! ≜ laction(e) ∈ creation-actions(X)(A). Thus a! ∈ actions(α̃). Since3255

X is A-creation-explicit, it implies α̃ = α̃1⌢q1
ℓ , a!, q2⌢

f α̃2 where A /∈ auts(config(X)(q1
ℓ))3256

and A ∈ auts(config(X)(q2
f)). But α̃ ∈ dom((Ẽ ||X).µ̃A,+

e), so α̃2 = q2
f and hence3257

laction(α̃) = a! ∈ creation-actions(X)(A)3258

◀3259

Now, we are ready to show that projection on environment is pasting-friendly.3260

▶ Lemma 183. The projection function proj(., .) (for each automaton K, ∀E ∈ env(K),3261

proj(E,K) : α ∈ Execs(E||K) 7→ α ↾ E is pasting friendly.3262

Proof. 1. Let A be a PSIOA, let X be a A-conservative PCA, let Ẽ ∈ env(X), let EA =3263

(Ẽ ||(X \ {A})). We note qℓ,i = lstate(→
α[i]) and q′

ℓ,i = lstate(→
α

′
[i]), Cℓ,i = (Aℓ,i, Sℓ,i) =3264

config(Ẽ ||X)(qℓ,i) and C ′
ℓ,i = (A′

ℓ,i, S′
ℓ,i) = config(Ẽ ||X)(q′

ℓ,i). Let i ∈ [1, |α| − 1]. By3265

construction of A-decomposition, Sℓ,i(A) = S′
ℓ,i(A) = q̄A (1). Moreover, fA,proxy

(Ẽ,X) (→
α) =3266

fA,proxy

(Ẽ,X) (→
α

′
) ≜

→
ζ , i.e. proj(EA,Ãsw)(

→
α[i]) = proj(EA,Ãsw)(

→
α

′
[i]), which means qℓ,i ↾ EA =3267

q′
ℓ,i ↾ EA. Hence, Aℓ,i \ {A} = A′

ℓ,i \ {A} ≜ A′′
ℓ,i and ∀B ∈ A′′

ℓ,i, Sℓ,i(B) = S′
ℓ,i(B) (2). By3268

(1) and (2), Cℓ,i = C ′
ℓ,i. Since X is configuration-conflict-free, qℓ,i = q′

ℓ,i.3269

2. Let j ∈ [1, n], let αj ∈ Execs((Ẽj ||Xj)), fA,proxy

(Ẽj ,Xj) (αj) =
→
ζ [j] Let α̃ ∈ Execs(Ẽ ||X),3270

→
α = A-decomposition(α̃), →

α ∈ (projA,proxy

(Ẽ,X))−1(
→
ζ).3271

a. Let us assume j ∈ [1, n − 1]. By construction of A-decomposition, We have →
α[j] =3272

α∗⌢
j (aj

! qj
ℓ) with actions(α∗

j)∩creation-actions(X)(A) = ∅ and aj
! ∈ creation-actions(X)(A).3273

By lemma 182, it implies,
→
ζ [j] = e∗⌢

j (aj
! qj

ℓ ↾ Ẽ) with actions(e∗
j)∩creation-actions(X)(A) =3274

∅ and aj
! ∈ creation-actions(X)(A). By lemma 182, it implies αj = α′⌢

j (aj
! (qj

ℓ))3275

with actions(α′
j) ∩ creation-actions(X)(A) = ∅ and aj

! ∈ creation-actions(X)(A) (*).3276

Moreover, let us assume n ∈ N. For every α∗
n <

→
α[n], actions(α∗

n)∩creation-actions(X)(A) =3277

∅, hence, for every e∗
n <

→
ζ [n], actions(e∗

n) ∩ creation-actions(X)(A) = ∅ and so for3278

every α∗
n < αn, actions(α∗

n) ∩ creation-actions(X)(A) = ∅.3279

b. Assume j ∈ [1, n − 1]. By previous item, αj = α′⌢
j (aj

! qj
ℓ) with actions(α′

j) ∩3280

creation-actions(X)(A) = ∅ and aj
! ∈ creation-actions(X)(A) (*). Moreover, by3281

construction, we have projA,proxy

(Ẽ,X))(αj) = projA,proxy

(Ẽ,X))(→
α[j]) (**). We can apply the3282

exact same reasoning than in item 1.3283

94 Dynamic Probabilistic Input Output Automata (Extended Version)

◀3284

Before stating our first lemma 185 of decomposition, we define the set of vector proxies.3285

This set contains all the explanations
→
ζ

k

, from reduction, of a perception ζ̃.3286

▶ Definition 184. (
→

proxy(ζ̃)) Let f(.,.) be an insight function. Let A be a PSIOA, let X be a3287

A-conservative PCA, let Ẽ ∈ env(X), Let ζ̃ ∈
⋃

K,Ẽ∈env(K) range(f(Ẽ,K)). We note3288

→
proxy(ζ̃)(Ẽ,X,A) = {

→
ζ

k

|∃α̃ ∈ f−1
(Ẽ,X)(ζ̃) ∧ fA,proxy

Ẽ,X
(A-decomposition(α̃)) =

→
ζ

k

}.3289

Now, we can partition executions with a common perception ζ̃ into sub-set of classes3290

with more details related to the reduction.3291

▶ Lemma 185. Let f be an ordinary perception function pasting friendly. Let A be a PSIOA,3292

let X be a A-conservative PCA, let Ẽ ∈ env(X), Let ζ̃ ∈
⋃

K,Ẽ∈env(K) range(f(Ẽ,K)). Let3293

C ζ̃ = Class(Ẽ , X, f, ζ̃).3294

C ζ̃ =
⊎

→
ζ

k

∈
→

proxy(ζ̃)(Ẽ,X,A)

C
→
ζ

k

with3295

C
→
ζ

k

= Class(Ẽ , X, fA,proxy ◦ A-decomposition,
→
ζ

k

)3296

Proof. The proof is immediate by construction, since A-decomposition is unique.3297

(equality) We first show the equality by double inclusion.3298

(⊆) Let α̃ ∈ C ζ̃ . We note →
α = A-decomposition(α̃). By construction, we have →

α :
A

α̃.3299

We note
→
ζ = fA,proxy

(Ẽ,X) (→
α). Obviously,

→
ζ ∈

→
proxy(ζ̃)(Ẽ,X,A).3300

(⊇) Let
→
ζ

k

∈
→

proxy(ζ̃)(Ẽ,X,A), with n ≜ |
→
ζ

k

|, let α̃ ∈ C
→
ζ

k

. We want to show that3301

α̃ ∈ C ζ̃ .3302

Let →
α = A-decomposition(α̃) By definition of

→
proxy(ζ̃)(Ẽ,X,A), ∃α̃′ ∈ f−1

(Ẽ,X)(ζ̃) s.t.3303

fA,proxy

Ẽ,X
(A-decomposition(α̃′)) =

→
ζ

k

. Let fix such a α̃′. Let →
α

′
= A-decomposition(α̃′).3304

By construction fA,proxy

Ẽ,X
(→
α) = fA,proxy

Ẽ,X
(→
α

′
). Moreover, f is assumed to be pasting3305

friendly, which implies ∀i ∈ [1, n], fA,proxy

Ẽi,Xi (→
α[i]) = fA,proxy

Ẽi,Xi (→
α

′
[i]) where Ẽ i and3306

Xi are defined as in definition 181 of pasting friendly functions. Since f is an3307

ordinary perception function, we can apply lemma 168, which implies that ∀i ∈ [1, n],3308

fẼ,X(→
α[i]) = fẼ,X(→

α
′
[i])) and so fẼ,X(α̃) = fẼ,X(α̃′) = ζ̃, that is α̃ ∈ C ζ̃ .3309

(partitioning) We show that ∀(
→
ζ

k

,
→
ζ

ℓ

),
→
ζ

k

≠
→
ζ

ℓ

, C
→
ζ

k

∩C
→
ζ

ℓ

= ∅. Let (α̃, α̃′) ∈ C
→
ζ

k

×C
→
ζ

ℓ

.3310

Let →
α :

A
α and →

α
′

:
A

α′. We have fA,proxy

(Ẽ,X) (→
α) =

→
ζ

k

̸=
→
ζ

ℓ

= fA,proxy

(Ẽ,X) (→
α

′
). Thus →

α ̸= →
α

′
.3311

By lemma 180, →
α = A-decomposition(α̃) and →

α
′

= A-decomposition(α̃′), and so α̃ ̸= α̃′.3312

Hence, ∀(
→
ζ

k

,
→
ζ

ℓ

),
→
ζ

k

̸=
→
ζ

ℓ

, C
→
ζ

k

∩ C
→
ζ

ℓ

= ∅.3313

◀3314

Then, we perform our decomposition of Ĉ
→
ζ = Class(Ẽ , X, fA,proxy◦A-decomposition,

→
ζ

k

)3315

into small chunks.3316

P. Civit and M. Potop-Butucaru 95

▶ Lemma 186 (decomposition into simple classes). Let f(.,.) be pasting friendly. Let A be a3317

PSIOA, X be a A-conservative and A-creation-explicit a PCA and Ẽ partially-compatible3318

with X. Let EA = Ẽ ||(X \ {A}). Let ζ̃ ∈
⋃

K,Ẽ∈env(K) range(f(Ẽ,K)). Let n ∈ N ∪ {∞}, let3319

→
ζ ∈

→
proxy(ζ̃)(Ẽ,X,A) with |

→
ζ | = n. Let Ĉ

→
ζ = Class(Ẽ , X, fA,proxy ◦ A-decomposition,

→
ζ

k

).3320

Then, Ĉ
→
ζ =

n⊗
i

Ĉ
→
ζ [i] with3321

1. Ĉ
→
ζ [i] = Class(Ẽ i, Xi, fA,proxy,

→
ζ [i])3322

2. ∀αi ∈ Ĉ
→
ζ [i] if i ∈ [1, n − 1], αi = α′⌢

i ai
!q

i
ℓ with ai

! ∈ creation(X)(A) and if n ∈ N3323

∀α′
n < αn, actions(α′

n) ∩ creation-actions(X)(A) = ∅ (ensured by pasting friendship of3324

f).3325

3. ∀i ∈ [1, n− 1], we note qi−1
ℓ the unique last state of every execution of Ĉ

→
ζ [i] (ensured by3326

pasting friendship of f).3327

4. Ẽ1 = Ẽ and ∀i ∈ [2, n], Ẽ i = Ẽq̄E →qi
E

, (as per definition 130), with qi
E = qi−1

ℓ ↾ Ẽ.3328

5. X1 = X and ∀i ∈ [2, n], Xi = Xq̄X →qi
X

(as per definition 130) with qi
X = qi−1

ℓ ↾ X.3329

6.
n⊗
i

Ci = C1 ⊗ C2 ⊗ ...⊗ Cn
3330

7. C1 ⊗ C2 = {α⌢
1 α2|α1 ∈ C1, α2 ∈ C2} (The concatenation is always defined by item 3)3331

Proof. The properties are ensured by the fact f is pasting-friendly. We prove the equality3332

by double inclusion.3333

⊆) Let α ∈ Ĉ
→
ζ , and. →

α = A-decomposition(α), i.e. fA,proxy

Ẽ,X
(→
α) =

→
ζ . By construction3334

due to A-decomposition, ∀i ∈ [2, n], fstate(→
α[i]) = lstate(→

α[i− 1]) where →
α[i− 1] ends3335

on A-creation (1). Moreover, since f is assumed to be pasting-friendly, each qi
ℓ is well3336

defined (2). By (1) and (2), fstate(→
α[i]) = q̄Ẽi||Xi where Ẽ i and Xi are defined like in3337

the lemma (3). By construction due to A-decomposition, →
α[i] does not create A before3338

its very last action, i.e. ∀α′
i <

→
α[i], actions(α′

i) ∩ creation-actions(X)(A) = ∅ (4). Thus3339

by (3) and (4), α ∈
n⊗
i

Ĉ
→
ζ [i]. Hence, Ĉ

→
ζ ⊆

n⊗
i

Ĉ
→
ζ [i]

3340

⊇) Let α ∈
n⊗
i

Ĉ
→
ζ [i] Let →

α = (α1, α2, ..., αi, ...) ∈ Ĉ
→
ζ [1] × Ĉ

→
ζ [2] × ...× Ĉ

→
ζ [i] × ..., s.t. →

α : α.3341

By construction, ∀i ∈ [1, n] fA,proxy

(Ẽi,Xi) (αi) =
→
ζ [i]. Hence fA,proxy

(Ẽi,Xi) (→
α) =

→
ζ . It remains to3342

show that →
α = A-decomposition(α), which comes immediately from item 2.3343

◀3344

A first trivial analysis of measure of big class of equivalence gives the following lemma3345

▶ Lemma 187 (measure after partitioning and decomposition). Let A be a PSIOA, X be3346

a A-conservative and A-creation-explicit PCA and Ẽ partially-compatible with X. Let3347

EA = Ẽ ||X \ {A}. Let ζ̃ ∈
⋃

K,Ẽ∈env(K) range(f(Ẽ,K)). Let σ̃ ∈ schedulers(Ẽ ||X).3348

ϵσ̃(CC̃ζ̃) =
∑

→
ζ ∈

→
proxy(ζ̃)(Ẽ,X,A)

ϵσ̃(C
|
→
ζ |⊗

i=1

Ĉ
→
ζ [i]

).3349

Proof. Immediate by two previous lemma 185 and 186 ◀3350

96 Dynamic Probabilistic Input Output Automata (Extended Version)

14.5 Creation oblivious scheduler applied to decomposition3351

Now we want to transform the term ϵσ̃(C
|
→
ζ |⊗

i=1

Ĉ
→
ζ [i]

) as a function of some terms ϵσ̃i(C
Ĉ

→
ζ [i]

)3352

where σ̃i must be defined. The critical point is that the occurrence of these events might3353

not be independent with (*) a perfect-information scheduler that chooses the measure of3354

class Ĉ
→
ζ [i] as a function of the concrete prefix in class Ĉ

→
ζ [j<i]. This observation enforced us3355

to weaken the implementation definition to make it monotonic w.r.t. PSIOA creation by3356

handling only creation-oblivious schedulers that cannot make the choice (*).3357

Here again, we exhibit a key property of a perception function to ensure monotonicity of3358

implementation w.r.t. creation oblivious schedulers.3359

▶ Definition 188 (creation oblivious function). Let f(.,.) be an insight function. f is said3360

creation-oblivious, if for every PSIOA A, for every A-conservative and A-creation-explicit3361

PCA X, ∀Ẽ ∈ env(X), ∀α̃, α̃′ ∈ Execs(Ẽ ||X), α̃, α̃′ ends on A-creation, then fA,proxy

(Ẽ,X) (α̃) =3362

fA,proxy

(Ẽ,X) (α̃′) implies α̃ ≡cr
A α̃′.3363

In that case, for every A-creation-oblivious scheduler σ̃ of Ẽ ||X, we can note σ̃|A,ζ = σ̃|α̃3364

for any α̃ ∈ Execs(Ẽ ||X) s.t. fA,proxy

(Ẽ,X) (α̃) = ζ.3365

This property is naturally verified by environment projection function.3366

▶ Lemma 189. Let proj(.,.) the environment projection function i.e. for each automaton K,3367

∀E ∈ env(K), proj(E,K) : α ∈ Execs(E||K) 7→ α ↾ E. Then proj(.,.) is creation-oblivious.3368

Proof. Let A be a PSIOA, let X be a A-conservative and A-creation-explicit PCA, let3369

Ẽ ∈ env(X), let α̃, α̃′ ∈ Execs(Ẽ ||X), s.t. α̃, α̃′ ends on A-creation and projA,proxy

(Ẽ,X) (α̃) =3370

projA,proxy

(Ẽ,X) (α̃′). Then by definition, (Ẽ ||X).µ̃A
e (α) ↾ (Ẽ ||(X \ {A}) = (Ẽ ||X).µ̃A

e (α′) ↾3371

(Ẽ ||(X \ {A}) which meets the definition of α̃ ≡cr
A α̃′. ◀3372

Finally, we can terminate our decomposition argument, assuming creation oblivious3373

schedulers.3374

▶ Lemma 190 (measure after decomposition for oblivious creation scheduler). Let A be a3375

PSIOA, X be a A-conservative, A-creation-explicit PCA and Ẽ partially-compatible with X.3376

Let f a creation-oblivious insight function.3377

Let ζ̃ ∈
⋃

K,Ẽ∈env(K) range(f(Ẽ,K)). Let n ∈ N ∪ {∞}, let
→
ζ ∈

→
proxy(ζ̃)(Ẽ,X,A) with3378

|
→
ζ | = n. Let σ̃ ∈ schedulers(Ẽ ||X) that is A-creation-oblivious.3379

Then ϵσ̃(C n⊗
i

Ĉ
→
ζ [i]

) =
n

Π
i
ϵσ̃i(C

C
→
ζ [i]

) with ∀i ∈ [1, n], σ̃i = oblivious
A,

→
ζ [:i]

(σ̃).3380

Proof. We recall the remark of definition 163 of A-creation-oblivious scheduler for a A-3381

conservative PCA that raises the fact that if an execution fragment α̃ ∈ Frags∗((Ẽ ||X))3382

verifying3383

i) α̃ ends on A-creation and ii) fA,proxy

(Ẽ,X) (α̃) = ζ, then σ̃|A,ζ = σ̃|α̃, the sub-scheduler3384

conditioned by σ̃ and α̃ in the sense of definition 164. Then we simply apply lemma 165, which3385

states that for every α = α⌢
x αy ∈ Frags∗(Ẽ ||X), for σ̃|αx

the sub-scheduler conditioned3386

by σ̃ ∈ schedulers(Ẽ ||X) and αx (in the sense of definition 164), for ϵσ̃ generated by σ̃,3387

ϵσ̃(Cα) = ϵσ̃(Cαx) · ϵσ̃|αx
(Cαy) with σ̃|αx

(αz) = σ̃(α⌢
x αz) for every αz with fstate(αz) =3388

lstate(αx).3389

P. Civit and M. Potop-Butucaru 97

For every α ∈
n⊗
i

Ĉ
→
ζ [i], for →

α = A-decomposition, ϵσ̃(Cα) =
n

Π
i
ϵσ̃

|
→
α [1:i−1]

(C→
α [i]), with3390

→
α[1 : i− 1] = α1⌢...⌢αi−1.3391

By A-creation-oblivious property of σ̃ and creation-oblivious of f ,
n

Π
i
ϵσ̃

|
→
α [1:i−1]

(C→
α [i]) =3392

n

Π
i
ϵσ̃

|
→
ζ [1:i−1]

(C→
α [i]) with

→
ζ [1 : i− 1] = fA,proxy

(Ẽ,X) (→
α[1 : i− 1]).3393

Hence, for every i ∈ [1, n] we note σ̃i ∈ schedulers(Ẽ i||Xi) that matches σ̃|
→
α [1:i−1] on Cζj3394

for an arbitrary →
α[1 : i− 1].3395

This leads us to: ∀α ∈
n⊗
i

Ĉ
→
ζ [i], for →

α :
(X,A)

α, ϵσ̃(Cα) =
n

Π
i
ϵσ̃i(C→

α [i])3396

Thus ϵσ̃(C n⊗
i

Ĉ
→
ζ [i]

) =
∑

→
α :

(X,A)
α, α∈

n⊗
i

Ĉ
→
ζ [i]

n

Π
i
ϵσ̃i(C→

α [i]) and by lemma 186,3397

ϵσ̃(C n⊗
i

Ĉ
→
ζ [i]

) =
∑

α1∈C
→
ζ [1]

...
∑

αi∈C
→
ζ [i]

...
n

Π
i
ϵσ̃i(Cαi

) =
n

Π
i
ϵσ̃i(C

C
→
ζ [i]

)3398

◀3399

14.6 Monotonicity of implementation3400

We use the previous decomposition to state the monotonicity of implementation relationship.3401

▶ Theorem 191 (monotonicity). Let A and B be two PSIOA, let XA be a A-conservative3402

and A-creation-explicit PCA, let XB be a B-conservative and B-creation-explicit PCA,3403

s.t. XA and XB are corresponding w.r.t. A,B with creation-actions(XA)(A) = creation-3404

actions(XB)(B) ≜ CrActs.3405

Let S = CrOb the scheduler schema of creatio-oblivious scheduler. Let f(.,.) = proj(.,.)3406

the environment projection function i.e. for each automaton K, ∀E ∈ env(K), f(E,K) : α ∈3407

Execs(E||K) 7→ α ↾ E.3408

If A ≤S,f
0 B, then XA ≤S,f

0 XB.3409

Proof. Let Ẽ ∈ env(XA) ∩ env(XB). Let YA = XA \ {A}, YB = XB \ {B}, EA = Ẽ ||YA,3410

EB = Ẽ ||YB and E an arbitrary PCA semantically equivalent to both EA and EB with3411

E ∈ env(Ãsw)∩ env(B̃sw) by theorem 160. We note µAC the (complete, strong and bijective)3412

PCA executions-matching from EA to E and µCB the (complete, strong and bijective) PCA3413

executions-matching from E to EB. We also note µ×
AC the (complete, strong and bijective) PCA3414

executions-matching from EA||Ãsw to E||Ãsw and µ×
CB the (complete, strong and bijective)3415

PCA executions-matching from E||B̃sw to EB||B̃sw.3416

In the remaining we note (Ẽ ||XA)↓ζ the automaton (Ẽ ||XA)q̄(Ẽ||XA)→q (as per definition3417

130) where q is the unique last state of every execution α̃ s.t. fproxy

(Ẽ,XA)(α̃) = ζ. Respectively,3418

we note (Ẽ ||XB)↓ζ the automaton (Ẽ ||XB)q̄(Ẽ||XB)→q (as per definition 130) where q is the3419

unique last state of every execution π̃ s.t. fproxy

(Ẽ,XB)(π̃) = ζ. This notation is possible because3420

f is pasting-friendly. Finally, ∀e ∈ Execs(Ẽ), we note Ẽe = Ẽq̄E →lstate(e).3421

Let σ̃ ∈ S(Ẽ ||XA). We need to show there exists σ̃′ ∈ S(Ẽ ||XB) s.t.3422

∀ζ̃ ∈ range(f(Ẽ,XA)) ∪ range(f(Ẽ,XB)), ϵσ̃(CC̃ζ̃
XA

) = ϵσ̃′(CC̃ζ̃
XB

)3423

where C̃ ζ̃
XA

= Class(Ẽ , XA, f, ζ̃) and C̃ ζ̃
XB

= Class(Ẽ , XB), f, ζ̃).3424

Let ζ̃ ∈ range(f(Ẽ,XA)) ∪ range(f(Ẽ,XB)). For every
→
ζ ∈ →

proxy(ζ̃)(Ẽ,XA,A), ∀i ∈ [1 : |
→
ζ |],3425

we note σ
|A,

→
ζ [:i]

the ((Ẽ ||XA)↓
→
ζ [:i]).µ̃A,+

e alter-ego of σ̃
|A,

→
ζ [:i]

. For every i ∈ [1 : |
→
ζ |]3426

98 Dynamic Probabilistic Input Output Automata (Extended Version)

α̃′, α̃′′ ∈ (fA,proxy

(Ẽ,XA))−1(
→
ζ [: i]), lstate(α̃′) = lstate(α̃′′) ≜ qi−1

ℓ since f is pasting-friendly. We3427

note E(
→
ζ ,i) = Eq̄E →µAC(qi−1

ℓ
↾EA)3428

We note σc

|A,
→
ζ [:i]
∈ schedulers(E(

→
ζ ,i)||Ãsw) the µ×

AC alter-ego of σ
|A,

→
ζ [:i]

.3429

(*) Since A ≤S,f
0 B, ∃σd

|B,
→
ζ [:i]
∈ S(E(

→
ζ ,i)||B̃sw) balanced with σc

|A,
→
ζ [:i]

, i.e.3430

∀ζ ′ ∈ range(f(E i ,Ãsw)) ∪ range(f(E i ,B̃sw)), σc

|A,
→
ζ [:i]

(CČζ′
A

) = σd

|B,
→
ζ [:i]

(CČζ′
B

)3431

where Čζ′

A = Class(E i, Ãsw, f, ζ ′) and Čζ′

B = Class(E i, B̃sw, f, ζ ′)3432

We note σ′
|B,

→
ζ [:i]

the µ×
CB alter-ego of σd

|B,
→
ζ [:i]

.3433

We build σ̃′ ∈ S(Ẽ ||XB) as follows:3434

For every ζ̃ ∈ range(f(Ẽ,XB)) \ range(f(Ẽ,XA)), ∀
→
ζ ∈ →

proxy(ζ̃)(Ẽ,XB,B), ∀i ∈ [1 : |
→
ζ |], we3435

require that σ̃
|B,

→
ζ [:i]

halts (i.e. ∀α̃′, fB,proxy

(Ẽ,XB) (α̃′) =
→
ζ [: i], supp(σ̃

|B,
→
ζ [:i]

(α̃′)) = ∅).3436

For every ζ̃ ∈ range(f(Ẽ,XA)) ∪ range(f(Ẽ,XB)), ∀
→
ζ ∈ →

proxy(ζ̃)(Ẽ,XB,B), ∀i ∈ [1 : |
→
ζ |], we3437

require that σ̃
|B,

→
ζ [:i]

and σ′
|B,

→
ζ [:i]

are ((Ẽ ||XB)↓
→
ζ [:i]).µ̃B,+

e alter-ego.3438

Let ζ̃ ∈ range(f(Ẽ,XA)) ∪ range(f(Ẽ,XB)), let
→
ζ ∈ →

proxy(ζ̃)(Ẽ,XB,B) For every i ∈ [1 : |
→
ζ |]3439

π̃′, π̃′′ ∈ (fB,proxy

(Ẽ,XB))−1(
→
ζ [: i]), lstate(π̃′) = lstate(π̃′) ≜ qi−1

ℓ since f is pasting-friendly. We3440

note E ′(
→
ζ ,i) = Eq̄E →µBC(qi−1

ℓ
↾EB). Moreover, E ′(

→
ζ

′
,i) = E(

→
ζ ,i) for every pair (

→
ζ ,

→
ζ

′
), s.t.3441

µ×
AC(

→
ζ) = µ×

BC(
→
ζ

′
).3442

Now we show that σ̃ and σ̃′ are balanced:3443

Let ζ̃ ∈ range(f(Ẽ,XA)) ∪ range(f(Ẽ,XB)), (ζ̃ ∈ Execs(Ẽ)). Let3444

C̃ ζ̃
A = Class(Ẽ , XA, f, ζ̃) and3445

C̃ ζ̃
B = Class(Ẽ , XB, f, ζ̃)3446

.3447

We need to show that ϵσ̃(CC̃ζ̃
A

) = ϵσ̃′(CC̃ζ̃
B

):3448

We apply lemma 187 to obtain:3449

ϵσ̃(CC̃ζ̃
A

) =
∑

→
ζ a∈

→
proxy(ζ̃)(Ẽ,XA,A)

ϵσ̃(C n⊗
i

Ĉ
→
ζ a[i]

A

).3450

ϵσ̃′(CC̃ζ̃
B

) =
∑

→
ζ b∈

→
proxy(ζ̃)(Ẽ,XB,B)

ϵσ̃′(C n⊗
i

Ĉ
→
ζ b[i]

B

).3451

Since EA and EB are semantically equivalent, the sets {ζa ∈ Execs(EA)|ζa ↾ Ẽ = ζ̃}3452

and {ζb ∈ Execs(EB)|ζb ↾ Ẽ = ζ̃} are in bijection. Hence, it is enough to show that3453

∀(ζac, ζbc) ∈ Execs(EA)× Execs(EB) with ζbc = µAC ◦ µCB(ζac) and ζbc ↾ Ẽ = ζac ↾ Ẽ = ζ̃,3454

for
→
ζ

ac
n:
A

ζac,
→
ζ

bc
n:
A

ζbc, then ϵσ̃(C n⊗
i

Ĉ
→
ζ

ac
[i]

A

) = ϵσ̃′(C n⊗
i

Ĉ
→
ζ

bc
[i]

B

).3455

By definition, σ̃ is A-creation-oblivious, and by construction, σ̃′ is B-creation-oblivious.3456

This allows us to apply lemma 190 to obtain:3457

ϵσ̃(C n⊗
i

Ĉ
→
ζ

ac
[i]

A

) =
n

Π
i
ϵσ̃i(C

Ĉ
→
ζ

ac
[i]

A

) with ∀i ∈ [1, n], σ̃i = oblivious
A,

→
ζ

ac

[:i]
(σ̃) = σ̃

|A,
→
ζ

ac

[:i]
.3458

P. Civit and M. Potop-Butucaru 99

ϵσ̃′(C n⊗
i

Ĉ
→
ζ

bc
[i]

B

) =
n

Π
i
ϵσ̃′i(C

Ĉ
→
ζ

ac
[i]

B

) with ∀i ∈ [1, n], σ̃′i = oblivious
B,

→
ζ

bc

[:i]
(σ̃′) = σ̃

|B,
→
ζ

bc

[:i]
.3459

where →
z [: i] = →

z [1]⌢...⌢
→
z [i− 1] for →

z ∈ {
→
ζ

ac

,
→
ζ

bc

}3460

Ĉ
→
ζ

ac

[i]
A = Class((Ẽ ||XA)↓

→
e

ac
[:i]), fA,proxy,

→
ζ

ac

[i])3461

Ĉ
→
ζ

bc

[i]
B = Class((Ẽ ||XB)↓

→
e

bc
[:i]), fB,proxy,

→
ζ

bc

[i])3462

Thus it is enough to show that ∀i ∈ [1, n], ϵσ̃i(C
Ĉ

→
ζ

ac
[i]

A

) = ϵσ̃′i(C
Ĉ

→
ζ

bc
[i]

B

). Let i ∈ [1, n]3463

By lemma 174 combined with lemma 176, we obtain:3464

ϵσ̃i(C
Ĉ

→
ζ

ac
[i]

A

) = ϵσ
|A,

→
ζ

ac
[:i]

(Č(
→
ζ

ac

[i])
(EA,A))3465

ϵσ̃′i(C
Ĉ

→
ζ

bc
[i]

B

) = ϵσ′

|B,
→
ζ

bc
[:i]

(Č(
→
ζ

bc

[i])
(EB,B) .3466

where:3467

Č(
→
ζ

ac

[i])
(EA,A) = Class(E

→
ζ

ac

[:i]
A , Ãsw, f,

→
ζ

ac

[i]) and3468

Č(
→
ζ

bc

[i])
(EB,B) = Class(E

→
ζ

bc

[:i]
B , B̃sw, f,

→
ζ

bc

[i])3469

σ
|A,

→
ζ

ac

[:i]
is the ((Ẽ ||XA)↓

→
ζ

ac

[:i]).µ̃A,+
e alter-ego of σ̃i.3470

σ′

|B,
→
ζ

bc

[:i]
is the ((Ẽ ||XB)↓

→
ζ

bc

[:i]).µ̃B,+
e alter-ego of σ̃′i.3471

.3472

Hence it is sufficient to show that ϵσ
|A,

→
ζ

ac
[:i]

(C
Č(

→
ζ

ac
[i])

(EA,A)

) = ϵσ′

|B,
→
ζ

bc
[:i]

(C
Č(

→
ζ

bc
[i])

(EB,B)

).3473

Finally, we find again our construction (*):3474

ϵσ
|A,

→
ζ

ac
[:i]

(C
Č(

→
ζ

ac
[i])

(EA,A)

) = ϵσc

|A,
→
ζ [:i]

(C
Č(

→
ζ [i])

(E,A)

)3475

ϵσ′

|B,
→
ζ

bc
[:i]

(C
Č(

→
ζ

bc
[i])

(EB,B)

) = ϵσd

|B,
→
ζ [:i]

(C
Č(

→
ζ [i])

(E,B)

)3476

ϵσc

|A,
→
ζ [:i]

(C
Č(

→
ζ [i])

(E,A)

) = ϵσd

|B,
→
ζ [:i]

(C
Č(

→
ζ [i])

(E,B)

)3477

where:3478

→
e is the vector of (Frags∗(E))n s.t. ∀j ∈ [1 : n],

→
ζ [j] = µAC(

→
ζ

ac

[j]) = µ−1
CB(

→
ζ

bc

[j]).3479

Č(
→
ζ [i])

(E,A) = Class(E
→
ζ [:i]), Ãsw, f,

→
ζ [i]) and3480

Č(
→
ζ [i])

(E,B) = Class(E
→
ζ [:i]), B̃sw, f,

→
ζ [i])3481

.3482

This leads us to ϵσ
|A,

→
ζ

ac
[:i]

(C
Č(

→
ζ

ac
[i])

(EA,A)

) = ϵσ′

|B,
→
β [:i],

→
ζ

bc
[:i]

(C
Č(

→
ζ

bc
[i])

(EB,B)

), which ends the proof.3483

◀3484

100 Dynamic Probabilistic Input Output Automata (Extended Version)

15 Task schedule3485

We have shown in previous section that ≤CrOb,proj
0 was a monotonic relationship. In this3486

section, we explain why, without cautious modifications, an easy to use off-line scheduler3487

introduced by Canetti & al. [5], so-called task-scheduler, is not a priori creation-oblivious3488

which surprisingly prevents us from obtaining monotonicity of the implementation relation3489

w.r.t. PSIOA creation for this scheduler schema.3490

15.1 Discussion on adaptation of task-structure in dynamic setting3491

We adapt the task structure of [3] to dynamic setting. For any PSIOAA = (QA, q̄A, sig(A), DA),3492

we note acts(A) =
⋃

q∈QA
sig(A)(q), UI(A) =

⋃
q∈QA

in(A)(q), UO(A) =
⋃

q∈QA
out(A)(q),3493

UH(A) =
⋃

q∈QA
int(A)(q), UL(A) =

⋃
q∈QA

l̂ocal(A)(q), UE(A) =
⋃

q∈QA
êxt(A)(q).3494

In classic PIOA formalism [20], if an action a ∈ OA ∩ IB is an output action for A and3495

an input action for B, then a is an output for A||B and this does not depend on the current3496

state of A||B.3497

In PSIOA, if an action a ∈ UO(A) ∩ UI(B) is an output action for A at a certain state3498

qA, without being an input action of A at any other state, while this is an input action for B3499

at some state qB, without being an output action of B at another state, then it does not say3500

that a will never be an input of A||B at a certain state q′ = (q′
A, q′

B) where a ∈ in(B)(q′
B)3501

but a /∈ out(A)(q′
A).3502

To summerize, if an action can clearly and definitely be an input or an ouput in PIOA3503

formalism [20], this is not the case in PSIOA formalism where an action can be an input and3504

becomes an output an vice-versa.3505

Figure 28 We represents the composition W = U ||V of two automata U and V . At two
different states qW = (qU , qV) and q′

W = (q′
U , q′

V) where sig(U)(q′
U) = (in(U)(qU), out(U)(qU) \

{c}, int(U)(q′
U)). The different states are represented with different colors. The action c is an output

of W in qW but an input of W ′ in q′
W .

In [3], a task-structure RA of a PIOA A is an equivalence class on local actions of A and3506

a task-schedule is a sequence of tasks. The task-structure is assumed to ensure next-action3507

determinism, that is for each state q ∈ QA, for each task T ∈ RA, there exists at most3508

one (local) action a ∈ T ∩ local(A)(q) enabled in q. A task-schedule can hence "resolve3509

the non-determinism", leading to a unique probabilistic measure on the executions. A nice3510

property is that next-action determinism is preserved by composition if the task-structure R3511

of the parallel composition of task-PIOA (A,RA) and (B,RB) is defined as R = RA ∪RB3512

In PSIOA formalism, the preservation of well-formdness after composition is less obvious.3513

If we assume that a task is a set of actions ensuring (local action determinism) (that is for3514

P. Civit and M. Potop-Butucaru 101

each state q ∈ QA, for each task T ∈ RA, at most one local action a ∈ T is enabled in q),3515

this property will not be preserved by the composition. Indeed let imagine PISOA A, B,3516

(qA, qB) ∈ QA ×QB with sig(A)(qA) = ({a}, {b}, ∅), sig(B)(qB) = (∅, {a}, ∅) and T = {a, b}3517

is a task of A. Then sig(A||B)(qA, qB) = (∅, {a, b}, ∅) and both a and b can be enabled.3518

This observation motivates an additional assumption, called input partitioning. We assume3519

the existence of a set of "atomic entities" Autids0 ⊂ Autids, s.t. for every A ∈ Autids0,3520

every action a ∈ acts(A), a ∈ UI(A) =⇒ a /∈ UO(A). Since the vocation of an input a of3521

A is to be triggered as an output action of a compatible automaton B, this assumption is3522

very conservative. Furthermore, in [2], the composition is defined for automata where all the3523

states are compatible. Hence nothing is lost compared to the formalisation of [2]. Now, we3524

can assume that, for every A ∈ Autids0, for every action a ∈ UI(A), for every task T of A,3525

a /∈ T .3526

This assumption is not preserved by the composition. Indeed, if a is an output of3527

A ⊂ Autids0 and an input of B ⊂ Autids0, we can have a task T = {a} of A, that would3528

become a task of A||B, where a can be an input of A||B. In fact we will assume both input3529

partitioning for Autids0 and local action determinism and we will show that local action3530

determinism is ensured by any PSIOA or PCA built with atomic elements of Autids0.3531

Another subtlety appears. In static setting, since the signature is unique and compatibility3532

of A and B means UL(A) ∩ UL(B) = ∅, there is no ambiguity in defining a subset of tasks3533

T ′ = {Tk′}k′∈K′ among the ones of A||B composed uniquely of tasks of A (or B symetrically).3534

In dynamic setting if a task T is only a set of action labels, T could be a task for different3535

automata (not a the same time). For example, T could be triggered by the A "contribution"3536

of A||B or by the B "contribution" of A||B in alternative execution branches. The confusion3537

can become much greater for a configuration automaton X (formalised in section 4) where3538

each state points to a configuration of dynamic set AX of automata (with their own current3539

state). What if the scheduler proposes a task T to a configuration automaton X that goes3540

successively into states qX and q′
X pointing to configuration CX and C ′

X with different set of3541

automata AX and A′
X where B ∈ AX and is in its current state qB and B′ ∈ A′

X and is in3542

its current state qB′ with B ≠ B′ but l̂oc(B)(qB) ∩ l̂oc(B′)(qB′) ∩ T ≠ ∅ ? There are a lot of3543

different ways to deal with this source of ambiguity. To solve it, we have two motivations:3544

Reuse the notion of projection of a schedule on an environment as in [5]3545

Obtain our theorem of monocity,. To do so, we need to avoid that a task T that was3546

intented to be triggered by an automaton A in a certain execution branch α and ignored3547

in another branch α′ can be triggered by another automata A′ in an execution branch α̃′
3548

with trace(α′) = trace(α̃′) of a configuration automaton X that creates A′ instead of A.3549

The monocity theorem is based on the fact that XA||E mimics the behaviour of Ãsw||E ′′
A3550

with E ′′
A = XA \ {A}||E where Ãsw is the simpleton wrapper of A (formalised in definition3551

123) and XA \ {A} (formalised in definition 120) is the PCA XA deprived of A at each3552

configuration (see figures 29 and 30). If we examine the succession of reduced configurations3553

(configuration without automata with empty signature) visited in α̃ ∈ Execs(XA||E) and in3554

corresponding α ∈ Execs(A||E ′′
A), α = µA

e (α̃), we obtain the same ones (see figure 31). Since3555

our theorem takes advantage of the corresponding successions of configurations, it is natural3556

to make appear the ids of Autids0, representing the "atomic" entities among all the entities.3557

This formalism avoid the possibility for an atomic entity A to be a "member" of two3558

different hierachy as it was already the case in [2] which is completely normal in IO automata3559

formalism. However, contrary to [2], the notion of partial-compatibility does not prevent an3560

automaton A to move from a configuration X to another configuration Y . Indeed we can3561

102 Dynamic Probabilistic Input Output Automata (Extended Version)

Figure 29 An example of an execution α̃ of a probabilistic configuration automata (PCA) XA||E .
At first, A is a "member" (yellow dot) of XA , then it is destroyed and finally a clone A′ is created
(green dot) in XA. The formalism of [2] allows that A and A′ are "member" of XA in two different
states as long as they cannot be member in the same state.

Figure 30 The corresponding execution α of A||E ′′
A, noted α = µA

e (α̃). At first, A is "alive" (yellow
dot), then it goes forever into a "zombie state" qϕ

A (black dot) where ŝig(A)(qϕ
A) = ∅. Finally a clone

A′ is created (green dot) in E ′′
A. The formalism of [2] is not supposed to allow this composition since

among all the states of QA × QE′′
A

, some of them are not compatible. However, it is possible to
extend their formalism and define a partial-compatibility where all reachable states of QA × QE′′

A
are compatible.

imagine X and Y that create and destroy A so that they are partially-compatible (while3562

they cannot be compatible). Neverteless, this possibility will not be handled by our theorem3563

of monocity, since A, even in its zombie state, cannot be partially-compatible with a PCA E3564

that creates A. Here again, we do not lose any expressiveness compared to the original work3565

of [2]. We can remark we are not dealing with a schedule of a specific automaton anymore,3566

which differs from [5]. However the restriction of our definition to "static" setting, where each3567

automaton is the composition of a finite set of automata in Autids0, matches their definition.3568

It will be the responsibility of the task-scheduler to chose a task-schedule ρ = T1, ..., Tk, ...3569

that produces the probabilistic distribution that it wants.3570

P. Civit and M. Potop-Butucaru 103

Figure 31 As long as no creation of A occurs, the executions α̃ ∈ Execs(XA||E) and α ∈
Execs(A||E ′′

A) handle the same succession of reduced configurations.

According to our understanding, the fact that the set of tasks is not a set of equivalence3571

classes for an equivalence relation is not crucial for the model.3572

15.2 task-schedule for dynamic setting3573

We formalise the scheduler schema of task-schedulers that is a schema of off-line schedulers.3574

We assume the existence of a subset Autids0 ⊂ Autids that represents the "atomic3575

entities" of our formalism. Any automaton is the result of the composition of automata in3576

Autids0.3577

▶ Definition 192 (Constitution). For every PSIOA or PCA A, we note3578

constitution(A) :
{

QA → P(Autids0) where P(Autids0) denotes the power set of Autids0
q 7→ constitution(A)(q)3579

The function constitution is defined as follows:3580

for every PSIOA A ∈ Autids0, ∀q ∈ QA, constitution(A)(q) = {A}.3581

for every finite set of partially-compatible PSIOA A = {A1, ...,An} ∈ (Autids0)n, ∀q ∈3582

QA, constitution(A1||...||An)(q) = A.3583

The constitution of a PCA is defined recursively through its configuration. For every PCA3584

X, ∀q ∈ QX , if we note (A, S) = config(X)(q), constitution(X)(q) =
⋃

A∈A constitution(A)(S(A)).3585

We can extend the principle of a partial function map (attached to a configuration) to3586

the entire constitution of a PCA or PSIOA.3587

▶ Definition 193 (hierarchy mapping SH). Let X be a PCA or a PSIOA. Let q ∈ QX We3588

note SH(X)(q) 6 the function that maps any PSIOA Ai ∈ constitution(X)(q) to a state3589

qAi ∈ QAi s.t.3590

if X = Ai, qAi
= q3591

if X = A1||...||Ai||...||An and q = (q1, ..., qi, ..., qn) ∈ QA1 ||...||Ai||...||An), qAi
= qi3592

if X is a PCA, qAi = SH(Y)(qY) where Y is the unique member of auts(config(X)(q))3593

s.t. Ai ∈ constitution(Y)(qY) with qY = map(config(X)(q))(Y)3594

Anticipating the definition of an enabled task, we extend the definition of task of [3] with3595

an id of Autids0.3596

6 H stands for "hierarchy" and S refers to notation of mapping function of a configuration (A, S).

104 Dynamic Probabilistic Input Output Automata (Extended Version)

▶ Definition 194 (Task). A task T is a pair (id, actions) where id ∈ Autids0 and actions ⊂3597

acts(aut(id)) is a set of action labels. Let T = (id, actions), we note id(T) = id and3598

actions(T) = actions.3599

Now, we are ready to define notion of enabled task.3600

▶ Definition 195 (Enabled task). Let X be a PSIOA or a PCA. A task T is said enabled in3601

state q ∈ QX if3602

id(T) ∈ constitution(X)(q)3603

it exists a unique local action a ∈ l̂oc(A)(qAi)∩actions(T) enabled at state SH(X)(q)(A)7.3604

All previous precautions allow us to define a task-schedule, which is a particular subclass3605

of schedulers, avoiding the technical problems mentioned in previous subsection. We are3606

not dealing with a task-schedule of a specific automaton anymore, which differs from [3].3607

However the restriction of our definition to "static" setting matches their definition.3608

▶ Definition 196 (task-schedule). A task-schedule ρ = T1, T2, T3, ... is a (finite or infinite)3609

sequence of tasks.3610

Since our task-schedule is defined, we are ready to solve the non-determinism and define3611

a probability on the executions of a PSIOA. We use the measure of [3].3612

▶ Definition 197. (task-based probability on executions: applyA(µ, ρ) : Frags(A)→ [0, 1])3613

Let A be a PSIOA. Given µ ∈ Disc(Frags(A)) a discrete probability measure on the execution3614

fragments and a task schedule ρ, apply(µ, ρ) is a probability measure on Frags(A). It is3615

defined recursively as follows.3616

1. applyA(µ, λ) := µ. Here λ denotes the empty sequence.3617

2. For every T and α ∈ Frags∗(A), apply(µ, T)(α) := p1(α) + p2(α), where:3618

p1(α) =
{

µ(α′)η(A,q′,a)(q) if α = α′⌢(a, q), q′ = lstate(α′) and a is triggered by T enabled after α′

0 otherwise3619

p2(α) =
{

µ(α) if T is not enabled after α

0 otherwise3620

3. 3. If ρ is finite and of the form ρ′T , then applyA(µ, ρ) := applyA(applyA(µ, ρ′), T).3621

4. 4. If ρ is infinite, let ρi denote the length-i prefix of ρ and let pmi be applyA(µ, ρi). Then3622

applyA(µ, ρ) := lim
i→∞

pmi.3623

▶ Proposition 198. Let A be a PSIOA, For each measure µ on Frags∗(A) and task schedule3624

ρ, there is scheduler σ for A such that apply(µ, ρ) is the generalized probabilistic execution3625

fragment ϵσ,µ.3626

Proof. The result has been proven in [3], appendix B.4. ◀3627

15.3 Why a task-scheduler is not creation-oblivious ?3628

Let us imagine the following example. The class Cx is composed of two executions αx,1
3629

and αx,2, the class Cy is composed of two executions αy,1 and αy,2 and the class Cz is3630

composed of four executions αz,11 = αx,1⌢αy,1, αz,12 = αx,1⌢αy,2, αz,21 = αx,2⌢αy,1,3631

αz,22 = αx,2⌢αy,2. Let ρ = ρ1⌢ρ2 be a task-schedule. We do not have apply(., ρ)(Cz)) =3632

7 action enabling assumption implies that a ∈ ŝig(Ai)(SH(X)(q)(A)) =⇒ a enabled at state
SH(X)(q)(A) (i.e. ∃η ∈ Disc(QA) s.t. (SH(X)(q)(A), a, η) ∈ DA)

P. Civit and M. Potop-Butucaru 105

Figure 32 Non-deterministic execution: The scheduler allows us to solve the non-determinism,
by triggering an action among the enabled one. We give an example with an automaton
A = (QA, q̄A = q0, sig(A), DA) and the tasks Tg, To, Tp, Tb (for green, orange, pink, blue) with
the respective actions {a}, {d}, {b, b′}, {c, c′}, and the tasks Tgo, Tbo with the respective actions
{a, d}, {c, c′, d}. At state q0, sig(A)(q0) = (∅, {a}, {d}). Hence both a and d are enabled local action
at q0, which means both Tg and To are enabled at state q0, but Tgo is not enabled at state q0 since
it does not solve the non-determinism (a and d are enabled local action at q0). At state q1, Tp is
enabled but neither To or Tb. We give some results: apply(δq0 , Tg)(q0, a, q1,v) = 1
apply(δq0 , TgTp)(q0, a, q1,v, b, q2,w) = apply(apply(δq0 , Tg), Tp)(q0, a, q1,v, b, q2,w) = 1/2
apply(δq0 , TgTpTb)(q0, a, q1,v, b, q2,w, c, q3,w) = apply(apply(δq0 , TgTp), Tb)(q0, a, q1,v, b, q2,w, c, q3,w) =
3/8
apply(δq0 , TgTpToTb)(q0, a, q1,v, b, q2,w, c, q3,w) = 3/8, since To is not enabled at state q2,w.

apply(., ρ1)(Cx) · apply(., ρ2)(Cy) ! Indeed, the executions αx,1 and αx,2 can differ s.t. they3633

do not ignore the same tasks. Typically, ρ1 could be written ρ1 = ρ1,a⌢ρ1,b where the last3634

action of αx,1 is triggered by the last task of ρ1,a and ρ1,b is "ignored by αx,1. The issue3635

comes if both apply(., ρ2)(Cy) ̸= ∅ and apply(., ρ1,b⌢ρ2)(Cy) ̸= ∅. The point is that Cz can3636

be obtained with different cut-paste: cut-paste A: ρ1,a for Cx and ρ1,b⌢ρ2 for Cy ; cut-paste3637

B: ρ1 for Cx and ρ2 for Cy.3638

There is room for finding the appropriate natural assumptions to obtain creation-3639

obliviousness for task-schedules in future work.3640

16 Conclusion3641

We extended dynamic I/O Automata formalism of Attie & Lynch [2] to probabilistic settings3642

in order to cope with emergent distributed systems such as peer-to-peer networks, robot3643

networks, adhoc networks or blockchains. Our formalism includes operators for parallel3644

composition, action hiding, action renaming, automaton creation and use a refined definition3645

of probabilistic configuration automata in order to cope with dynamic actions. The key result3646

of our framework is as follows: the implementation of probabilistic configuration automata is3647

monotonic to automata creation and destruction. That is, if systems XA and XB differ only3648

106 Dynamic Probabilistic Input Output Automata (Extended Version)

in that XA dynamically creates and destroys automaton A instead of creating and destroying3649

automaton B as XB does, and if A implements B (in the sense they cannot be distinguished3650

by any external observer), then XA implements XB. This results is particularly interesting3651

in the design and refinement of components and subsystems in isolation. In our construction3652

we exhibit the need of considering only creation-oblivious schedulers in the implementation3653

relation, i.e. a scheduler that, upon the (dynamic) creation of a sub-automaton A, does not3654

take into account the previous internal behaviours of A to output (randomly) a transition.3655

Interestingly and of independent interest, motivated by the monotonicity of execution3656

w.r.t. to automata creation, we introduce new proof techniques to deduce certain properties3657

of a system XA from a sub-automaton XA dynamically created and destroyed by XA. This3658

proof technique is used to construct a homomorphism between the probabilistic spaces of3659

automata executions. Then we expose such homomorphism from a system XA to a new3660

system resulting from the composition of A and XA \ {A}. The latter corresponds intuitively3661

to the system XA deprived of A. Furthermore, the homomorphism is used to show that3662

under certain minor technical assumptions, if XA and XB differ only in the fact that XA3663

dynamically creates and destroys the automaton A instead of creating and destroying the3664

automaton B as XB does, then XA \ {A} and XB \ {B} are semantically equivalent, i.e. they3665

only differ syntactically. The homomorphism is finally reused to establish the monotonicity3666

of the implementation relation. Our technique can be used in extensions of our formalism3667

with time and cryptography notions.3668

As future work we plan to extend the composable secure-emulation of Canetti et al. [5] to3669

dynamic settings. This extension is necessary for formal verification of protocols combining3670

probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains,3671

secure distributed computation, cybersecure distributed protocols etc).3672

17 Glossary3673

A PSIOA with id A
(QA, FQA) state space of A
q̄A start state of A
DA discrete trandistions of A
steps(A) steps of A
sig(A) signature of A, maps each state to a triplet
ŝig(A) signature of A, maps each state to the union of actions of the triplet sig(A)
in(A) input actions of A
out(A) output actions of A
int(A) internal actions of A
ext(A) external actions of A, maps each state q ∈ QA to the pair (in(A)(q), out(A))(q))
êxt(A) external actions of A, maps each state q ∈ QA to in(A)(q) ∪ out(A))(q)
loc(A) local actions of A, maps each state q ∈ QA to the pair (out(A))(q), int(A))
l̂oc(A) local actions of A, maps each state q ∈ QA to out(A))(q) ∪ int(A)
acts(A) universal set of actions of A, i.e.

⋃
q∈QA

ŝig(A)
Execs(A) executions of A
Execs∗(A) finite executions of A
Execsω(A) infinite executions of A
Frags(A) execution fragments of A
Frags∗(A) finite execution fragments of A

P. Civit and M. Potop-Butucaru 107

Fragsω(A) infinite execution fragments of A
Traces(A) traces of A
Traces∗(A) finite traces of A
Tracesω(A) infinite traces of A
Reachable(A) reachable states of A
Cα cone of executions with α as prefix
traceA(α) trace of execution α

lstate(α) last state of execution α

fstate(α) first state of execution α

states(α) set of states composing the execution α

actions(α) set of actions composing the execution α

↾ projection for states, executions
≤S,f

ϵ implementation relation w.r.t. scheduler schema S, insight-function f , approximation ϵ

|| parallel composition
× cardinal product, also used as operator of composition for signature
⊗ product of measures or product of σ-algebra
Qconf set of configurations
auts(C) automata of configuration C

map(C) maps each automata of auts(C) to its current state
sig(C) signature of configuration C

config(X) maps each state q to associated configurations of PCA X at state q

created(X)(q) maps each action a to sub-automata created by X at state q through action a

hidden-actions(X) maps each state q to hidden actions of PCA X at state q

ϵσ measure of probability on Execs(A) generated by scheduler σ

env(A) set of environment of A
f -dist(E,A)(σ) measure of probability on f(Execs(E||A)) generated by scheduler σ for E ∈ env(A)
proj(.,.) for each automaton K, ∀E ∈ env(K), ∀α ∈ Execs(E||K), proj(E,K)(α) = α ↾ E
η1

c↔ η2 c is a preserving-measure bijection between distributions η1 and η2

Φ[B/A] same automata ids than in Φ, modulo B replacing A
C ◁AB C′ C and C′ are the same configurations modulo B replacing A in C′

X \ {A} PCA X deprived of A
qRconf q′ the states q and q′ are associated to the same configuration
qR

\{A}
conf q′ the states q and q′ are associated to configurations that are equal if we ignore A

qRstrictq
′ the states q and q′ are associated to the same components of their PCA

qR
\{A}
strictq

′ the states q and q′ are associated to the same components of their PCA if we ignore A
pot-out(X)(A)(q) the (potential) output actions of A in config(X)(q)
Ãsw simpleton wrapper of A
α ≡cr

A α′ α and α′ differs only on internal states and internal actions of sub-automaton A.

References3674

1 Edward A. Ashcroft. Proving assertions about parallel programs. J. Comput. Syst. Sci.,3675

10(1):110–135, 1975. doi:10.1016/S0022-0000(75)80018-3.3676

2 Paul C. Attie and Nancy A. Lynch. Dynamic input/output automata: A formal and composi-3677

tional model for dynamic systems. Inf. Comput., 249:28–75, 2016. doi:10.1016/j.ic.2016.3678

03.008.3679

3 Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira, and3680

Roberto Segala. Task-Structured Probabilistic {I/O} Automata. Journal of Computer and3681

System Sciences, 94:63—-97, 2018. URL: https://doi.org/10.1016/j.jcss.2017.09.007.3682

https://doi.org/10.1016/S0022-0000(75)80018-3
https://doi.org/10.1016/j.ic.2016.03.008
https://doi.org/10.1016/j.ic.2016.03.008
https://doi.org/10.1016/j.ic.2016.03.008
https://doi.org/10.1016/j.jcss.2017.09.007

108 Dynamic Probabilistic Input Output Automata (Extended Version)

4 Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses D. Liskov, Nancy A. Lynch, Olivier3683

Pereira, and Roberto Segala. Using probabilistic I/O automata to analyze an oblivious transfer3684

protocol. IACR Cryptol. ePrint Arch., page 452, 2005. URL: http://eprint.iacr.org/2005/3685

452.3686

5 Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Nancy A. Lynch, and Olivier Pereira.3687

Compositional security for task-pioas. In 20th IEEE Computer Security Foundations Sym-3688

posium, CSF 2007, 6-8 July 2007, Venice, Italy, pages 125–139. IEEE Computer Society, 2007.3689

doi:10.1109/CSF.2007.15.3690

6 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.3691

Comput. Sci., 777:155–183, 2019. doi:10.1016/j.tcs.2019.02.001.3692

7 R. M. Dudley. Real analysis and probability. Wadsworth, Belmont, Calif, 1989.3693

8 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.3694

9 Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput. Syst. Sci.,3695

3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.3696

10 Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software3697

Eng., 3(2):125–143, 1977. doi:10.1109/TSE.1977.229904.3698

11 Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. A theory of atomic3699

transactions. Lecture Notes in Computer Science (including subseries Lecture Notes in3700

Artificial Intelligence and Lecture Notes in Bioinformatics), 326 LNCS:41–71, 1988. doi:3701

10.1007/3-540-50171-1_3.3702

12 Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms.3703

In Fred B. Schneider, editor, Proceedings of the Sixth Annual ACM Symposium on Principles3704

of Distributed Computing, Vancouver, British Columbia, Canada, August 10-12, 1987, pages3705

137–151. ACM, 1987. doi:10.1145/41840.41852.3706

13 Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I. untimed3707

systems. Inf. Comput., 121(2):214–233, 1995. doi:10.1006/inco.1995.1134.3708

14 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer3709

Science. Springer, 1980. doi:10.1007/3-540-10235-3.3710

15 Sayan Mitra. A Verification Framework for Hybrid Systems. 2007. doi:10.1007/3711

3-540-44936-1_6.3712

16 Rocco De Nicola and Roberto Segala. A process algebraic view of input/output automata.3713

Theor. Comput. Sci., 138(2):391–423, 1995. doi:10.1016/0304-3975(95)92307-J.3714

17 Susan S. Owicki and David Gries. An axiomatic proof technique for parallel programs I. Acta3715

Informatica, 6:319–340, 1976. doi:10.1007/BF00268134.3716

18 C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle Mathem-3717

atik, Bonn, 1962.3718

19 Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming.3719

Wiley series in probability and mathematical statistics. John Wiley & Sons, 1 edition, 1994.3720

20 Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.3721

PhD thesis, Massachusettes Institute of technology, 1995.3722

21 Frits W. Vaandrager. On the relationship between process algebra and input/output automata.3723

In Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91),3724

Amsterdam, The Netherlands, July 15-18, 1991, pages 387–398. IEEE Computer Society, 1991.3725

doi:10.1109/LICS.1991.151662.3726

22 Kazuki Yoneyama. Formal modeling of random oracle programmability and verification of3727

signature unforgeability using task-pioas. Int. J. Inf. Sec., 17(1):43–66, 2018. doi:10.1007/3728

s10207-016-0352-y.3729

http://eprint.iacr.org/2005/452
http://eprint.iacr.org/2005/452
http://eprint.iacr.org/2005/452
https://doi.org/10.1109/CSF.2007.15
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/3-540-50171-1_3
https://doi.org/10.1007/3-540-50171-1_3
https://doi.org/10.1007/3-540-50171-1_3
https://doi.org/10.1145/41840.41852
https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-44936-1_6
https://doi.org/10.1007/3-540-44936-1_6
https://doi.org/10.1007/3-540-44936-1_6
https://doi.org/10.1016/0304-3975(95)92307-J
https://doi.org/10.1007/BF00268134
https://doi.org/10.1109/LICS.1991.151662
https://doi.org/10.1007/s10207-016-0352-y
https://doi.org/10.1007/s10207-016-0352-y
https://doi.org/10.1007/s10207-016-0352-y

	1 Introduction
	2 Warm up
	2.1 Probabilistic Signature Input/Output Automata (PSIOA)
	2.2 Scheduler
	2.3 Environment, external behavior, implementation
	2.4 Probabilistic Configuration Automata (PCA)
	2.5 Road to monotonicity
	2.5.1 Execution-matching
	2.5.2 A PCA XA deprived from a PSIOA A
	2.5.3 Reconstruction: (XA { A }) || sw
	2.5.4 Corresponding PCA
	2.5.5 Cut-paste execution fragments creation at the endpoints

	3 Preliminaries on probability and measure
	4 Probabilistic Signature Input/Output Automata (PSIOA)
	4.1 Background
	4.1.1 Labeled Transition System (LTS)
	4.1.2 I/O Automata
	4.1.3 PIOA
	4.1.4 SIOA
	4.1.5 PSIOA

	4.2 Action Signature
	4.3 PSIOA
	4.4 Local composition
	4.5 Renaming operators
	4.5.1 State renaming
	4.5.2 Action renaming

	5 Probabilistic Configuration Automata
	5.1 configuration
	5.2 probabilistic configuration automata (PCA)

	6 Executions, reachable states, partially-compatible automata
	6.1 Executions, reachable states, traces
	6.2 PSIOA and PCA composition

	7 Toolkit for configurations & PCA closeness under composition
	8 Scheduler, measure on executions, implementation
	8.1 General definition and probabilistic space (Frags(A), FFrags(A), ,)
	8.2 Implementation

	9 Introduction on PCA corresponding w.r.t. PSIOA A, B to introduce monotonicity
	9.1 Naive correspondence between two PCA
	9.2 Conservatism: the additional assumption for relevant definition of correspondence w.r.t. A, B
	9.3 Corresponding w.r.t. A, B
	9.4 Creation-oblivious scheduler

	10 Executions-matching
	10.1 PSIOA executions-matching and semantic equivalence
	10.2 PCA-matching execution

	11 Projection
	11.1 Projection on Configurations
	11.2 A-fairness assumption, motivated by our definition of PCA deprived from an internal PSIOA: X { A }
	11.3 Y = X { A } is a PCA if X is A-fair

	12 Reconstruction
	12.1 Simpleton wrapper : sw
	12.2 Partial-compatibility of (XA { A }) and sw
	12.3 Execution-matching from X to X { A } || sw
	12.4 Composition and projection are commutative

	13 PCA corresponding w.r.t. PSIOA A, B
	14 Top/Down corresponding classes
	14.1 Creation-oblivious scheduler
	14.2 Tools: proxy function, creation-explicitness, classes
	14.3 Homomorphism between simple classes
	14.4 Decomposition, pasting-friendly functions
	14.5 Creation oblivious scheduler applied to decomposition
	14.6 Monotonicity of implementation

	15 Task schedule
	15.1 Discussion on adaptation of task-structure in dynamic setting
	15.2 task-schedule for dynamic setting
	15.3 Why a task-scheduler is not creation-oblivious ?

	16 Conclusion
	17 Glossary

