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—— Abstract

We present probabilistic dynamic 1/0 automata, a framework to model dynamic probabilistic systems.
Our work extends dynamic 1/O Automata formalism of Attie & Lynch [2] to probabilistic setting.
The original dynamic I/O Automata formalism included operators for parallel composition, action
hiding, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion.
They can model mobility by using signature modification. They are also hierarchical: a dynamically
changing system of interacting automata is itself modeled as a single automaton. Our work extends
to probabilistic settings all these features. Furthermore, we prove necessary and sufficient conditions
to obtain the implementation monotonicity with respect to automata creation and destruction. Our
construction uses a novel proof technique based on homomorphism that can be of independent
interest. Our work lays down the foundations for extending composable secure-emulation of Canetti et
al. [5] to dynamic settings, an important tool towards the formal verification of protocols combining
probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure
distributed computation, cybersecure distributed protocols etc).

2012 ACM Subject Classification Theory of computation Distributed algorithms

Keywords and phrases Automata, Distributed Computing, Formal Verification, Dynamic systems

1 Introduction

Distributed computing area faces today important challenges coming from modern applica-
tions such as peer-to-peer networks, cooperative robotics, dynamic sensor networks, adhoc
networks and more recently, cryptocurrencies and blockchains which have a tremendous
impact in our society. These newly emerging fields of distributed systems are characterized
by an extreme dynamism in terms of structure, content and load. Moreover, they have to
offer strong guaranties over large scale networks which is usually impossible in deterministic
settings. Therefore, most of these systems use probabilistic algorithms and randomized
techniques in order to offer scalability features. However, the vulnerabilities of these systems
may be exploited with the aim to provoke an unforeseen execution that diverges from the
understanding or intuition of the developers. Therefore, formal validation and verification of
these systems has to be realized before their industrial deployment.

It is difficult to attribute the first formalization of concurrent systems to some particular
authors [18, 9, 1, 17, 10, 14, 8]. Lynch and Tuttle [11] proposed the formalism of Input/Output
Automata to model deterministic asynchronous distributed systems. Relationship between
process algebra and I/O automata are discussed in [21, 16]. Later, this formalism is extended
by Segala in [20] with Markov decision processes [19]. In order to model randomized
distributed systems Segala proposes Probabilistic Input/Output Automata. In this model
each process in the system is an automaton with probabilistic transitions. The probabilistic
protocol is the parallel composition of the automata modeling each participant.

The modelisation of dynamic behavior in distributed systems has been addressed by
Attie & Lynch in [2] where they propose Dynamic Input Output Automata formalism. This
formalism extends the Input/Output Automata with the ability to change their signature
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dynamically (i.e. the set of actions in which the automaton can participate) and to create
other I/O automata or destroy existing I/O automata. The formalism introduced in [2] does
not cover the case of probabilistic distributed systems and therefore cannot be used in the
verification of recent blockchains such as Algorand [6].

In order to respond to the need of formalisation in secure distributed systems, Canetti
& al. proposed in [3] task-structured probabilistic Input/Output automata (TPIOA) spe-
cifically designed for the analysis of cryptographic protocols. Task-structured probabilistic
Input/Output automata are Probabilistic Input/Output automata extended with tasks that
are equivalence classes on the set of actions. The task-structure allows a generalisation of
"off-line scheduling" where the non-determinism of the system is resolved in advance by a
task-scheduler, i.e. a sequence of tasks chosen in advance that trigger the actions among
the enabled ones. They define the parallel composition for this type of automata. Inspired
by the literature in security area they also define the notion of implementation for TPIOA.
Informally, the implementation of a Task-structured probabilistic Input/Output automata
should look "similar" to the specification whatever will be the external environment of
execution. Furthermore, they provide compositional results for the implementation relation.
Even thought the formalism proposed in [5] (built on top of the one of [3]) has been already
used in the formal proof of various cryptographic protocols [4, 22], this formalism does not
capture the dynamicity of probabilistic dynamic systems such as peer-to-peer networks or
blockchains systems where the set of participants dynamically changes.

Our contribution. In order to cope with dynamicity and probabilistic nature of
modern distributed systems we propose an extension of the two formalisms introduced in
[2] and [3]. Our extension uses a refined definition of probabilistic configuration automata
in order to cope with dynamic actions. The main result of our formalism is as follows: the
implementation of probabilistic configuration automata is monotonic to automata creation
and destruction. That is, if systems X 4 and Xp differ only in that X 4 dynamically creates
and destroys automaton A instead of creating and destroying automaton B as Xp does, and
if A implements B (in the sense they cannot be distinguished by any external observer),
then X 4 implements Xp. This result enables a design and refinement methodology based
solely on the notion of externally visible behavior and permits the refinement of components
and subsystems in isolation from the rest of the system. In our construction, we exhibit the
need of considering only creation-oblivious schedulers in the implementation relation, i.e.
a scheduler that, upon the (dynamic) creation of a sub-automaton A4, does not take into
account the previous internal actions of A to output (randomly) a transition. Surprisingly,
the task-schedulers introduced by Canetti & al. [3] are not creation-oblivious. Interestingly,
an important contribution of the paper of independent interest is the proof technique we used
in order to obtain our results. Differently from [2] and [3] which build their constructions
mainly on induction techniques, we developed an elegant homomorphism based technique
which aim to render the proofs modular. This proof technique can be easily adapted in order
to further extend our framework with cryptography and time.

It should be noted that our work is an intermediate step before extending composable
secure-emulation [5] to dynamic settings. This extension is necessary for formal verification
of secure dynamic distributed systems (e.g. blockchain systems).

Paper organization. The paper is organized as follow. Section 3 is dedicated to
a brief introduction of the notion of probabilistic measure and recalls notations used in
defining Signature I/O automata of [2]. Section 4 builds on the frameworks proposed in
[2] and [3] in order to lay down the preliminaries of our formalism. More specifically, we
introduce the definitions of probabilistic signed I/O automata and define their composition
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and implementation. In Section 5 we extend the definition of configuration automata proposed
in [2] to probabilistic configuration automata then we define the composition of probabilistic
configuration automata and prove its closeness in Section 7. Section 6 contains definitions
related to the behavioural semantic of automata, e.g. executions, traces, etc. Section 8
introduces implementation relationship, which allows to formalise the idea that a concrete
system is meeting the specification of an abstract object. The key result of our formalisation,
the monotonicity of PSIOA implementations with respect to creation and destruction, is
presented in the end of Section 9 and demonstrated in the remaining sections, up to Section
14). Section 15 explains why the off-line scheduler introduced by Canetti & al. [5] is not
creation-oblivious and therefore cannot be used to obtain our key result.

2 Warm up

In this section we describe the paper in a very informal way, giving some intuitions on the
role of each section. The section 3 gives some preliminaries on probability and measure,
while a glossary can be found at the end of the document, section 17.

2.1 Probabilistic Signature Input/Output Automata (PSIOA)

The section 4 defines the notion of probabilistic signature Input/Output automata (PSIOA).
A PSIOA A is an automaton that can move from one state to another through actions. The
set of states of A is then denoted @ 4, while we note g4 € Q4 the unique start state of A. At
each state ¢ € Q4 some actions can be triggered in its signature sig(.A)(q). Such an action
leads to a new state with a certain probability. The measure of probability triggered by an
action a in a state ¢ is denoted 7)(4,¢,a)- The model aims to allow the composition of several
automata (noted A4||...||A,) to capture the idea of an interaction between them. That is
why a signature is composed by three categories of actions: the input actions, the output
actions and the internal actions. In practice the input actions of an automaton potentially
aim to be the ouput action of another automaton and vice-versa. Hence an automaton can
influence another one through a shared action. The comportment of the entire system is
formalised by the automaton issued from the compostion of the automata of the system.

After this, we can speak about an execution of an automaton, which is an alternating
sequence of states and actions. We can also speak about a trace of an automaton, which
is the projection of an execution on the external actions uniquely. This allows us to speak
about external behaviour of a system, that is, what can we observe from an outside point of
view.

2.2 Scheduler

We remarked in the example of figure 2 that an inherent non-determinism has to be solved
to be able to define a measure of probability on the executions. This is the role of the
scheduler which is a function o : Frags*(A) — SubDisc(D4) that (consistently) maps an
execution fragment to a discrete sub-probability distributions on set of discrete transitions of
the concerned PSIOA A. Loosely speaking, the scheduler o decides (probabilistically) which
transition to take after each finite execution fragment «. Since this decision is a discrete
sub-probability measure, it may be the case that o chooses to halt after a with non-zero
probability: 1 — a(a)(Dy4) > 0.

A scheduler o generate a measure ¢, on the sigma-field Fpyecs(4) generated by cones of
executions (of the form Cp= = {a®* " a¥|a¥ € Frags(A)}), and so a measure on the measurable
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Figure 1 A representation of two automata U and V. In the top line, we see the PSIOA U in
a state qpr, s.t. sig(U)(qp) = (out(U)(qp),in(U)(ar),int(U)(qr)) = ({b, ¢}, {d}, {g}), the PSIOA
V in a state gy, s.t. sig(V)(qv) = (out(V)(qv),in(V) (g ), int(V)(qv)) = ({d, e}, {c, [}, {h}) and
the result of their composition, the PSIOA U[|V in a state (g, ¢i), s.t. sig(U||V)((q&, ¢)) =

(out(U||V)((atr av)), in(U V) ((atr, av)), int(U||V)((atr av) = ({b,c,d, e}, {f},{g,h}). In the
second line we see the same PSIOA but in different states, with different signatures.

space (G, Fg) for any measurable function f from (Execs(A), Fppees(a)) to (G, Fg). Hence,
when a scheduler is made explicit, we can state the probability that a cone of execution
is reached and that a property holds. We denote by ¢, : Execs(A) — [0, 1] the execution
distribution generated by the scheduler o.

2.3 Environment, external behavior, implementation

Now it is possible to define the crucial concept of implementation that captures the idea
that an automaton A "mimics" another automaton 5. To do so, we define an environment
& which takes on the role of a "distinguisher" for A and B. In general, an environment
of an automaton A is just an automaton compatible with A4 but some additional minor
technical properties can be assumed. The set of environments of the automaton A is denoted
env(A). The information used by an environment to attempt a distinction between two
automata A and B s.t. £ € env(A) Nenv(B) is captured by a function f( ) that we call
insight function. In the literature, we very often deal with (i) fie a) = trace 4y or (ii)
proje.a) : a € Evecs(E||A) — a | £, the function that maps every execution to its projection
on the environment. The philosophy of the two approaches are the same ones, but we proved
monotonicity of external behaviour inclusion only for proj., .

For any insight function f( ), we denote by f-diste a(c) the image measure of e,
under f(g 4). From here, this is classic to define the f-external behaviour of A, denoted
EactBehf4 : € € env(A) = {f-dist 4 g(0)|o € schedulers(E]|.A)}. Such an object capture all
the possible measures of probability on the external interaction of the concerned automaton
A and an arbitrary environment £. Finally we can say that A f-implements B if VE €
env(A) N env(B), ExtBehi(é’) - ExtBeh{S(E), i.e. for any "distinguisher" £ for A and B,
for any possible distribution f-dist 4y(c) of the interaction between £ and A generated
by a scheduler o € schedulers(£||.A), there exists a scheduler o’ € schedulers(€||B) s.t. the
distribution f-dist e gy(0’) of the interaction between £ and B generated by o’ is the same,

i.e. for every external perception ¢ € range(f(s 4)) Urange(f(e s)), f-distie ay(0)(C) = f-
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Figure 2 The figure represents a tree of possible executions for a PSIOA A. The red dots
(¢°,q",¢*,¢*") represents some states of the PSIOA. The PSIOA can move from on state to
another through actions (a, b, c,d, e, f,...) represented with colored solid arrows. Such an action
act, triggered from a specif state ¢ does not lead directly to another state ¢’ but to a probabilistic
distribution on states 1(4,q,qct) represented by a white dot and as many dashed black arrows as
states in the support of 74, q,qct).For example, the PSIOA A can be in state ¢°, trigger the action a
that leads him to 1(4,4,.) and hence to g with probability 1/4 and to ¢"*” with probability 3/4.
The sequence ¢°,a, ¢"?, b, ¢>" is an example of execution. If b is an internal actions, then a,c is an
example of trace. A non-determinism is appearing since the choice of an action at a particular state
is not determined a priori (e.g. between a and d at state qO). This non-determinism will be solved
by the scheduler, introduced later.

distg y(0')(¢), noted f-diste a)(c) = f-dist(e g)(c’). This a way to formalise that there is
no way to distinguish A from B. (see figure 3).

However, as already mentioned in [20], the correctness of an algorithm may be based on
some specific assumptions on the scheduling policy that is used. Thus, in general, we are
interested only in a subset of schedulers(£]|A). A function that maps any automaton W to a
subset of schedulers(W) is called a scheduler schema. Among the most noteworthy examples
are the fair schedulers, the off-line, a.k.a. oblivious schedulers, defined in opposition with
the online-schedulers. So, we note ExtBehQS : € €env(A) — {f-distac(o)|lo € S(E||A)}
where S is a scheduler schema and we say that A f-implements B according to a scheduler
schema S if V€ € env(A) Nenv(B), ExtBehQ’S(E) C ExtBehé’S(S) . In the remaining, we
will have a great interest for two certain classes of oblivious schedulers, i.e. i) the creation-
oblivious scheduler (introduced later) and ii) the task-scheduler: an off-line scheduler already
introduced in [3], which is relevant for cryptographic analysis. The previous notions can be
adapted with a particular class of scheduler schema.

2.4 Probabilistic Configuration Automata (PCA)

The section 5 introduces the notion of probabilistic configuration automata (PCA). (see
figure 4). A PCA is very closed to a PSIOA, but each state is mapped to a configuration
C = (A,S) which is a pair constituted by a set A of PSIOA and the current states of each
member of the set (with a mapping function S: A € A — g4 € Q4. The idea is that the
composition of the attached set can change during the execution of a PCA, which allows us
to formalise the notion of dynamicity, that is the potential creation and potential destruction
of a PSIOA in a dynamic system. Some particular precautions have to be taken to make it
consistent.
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Figure 3 An environment &£, which is nothing more than a PSIOA compatible with both A
and B, tries to distinguish A from B. We say that A implements B if no environment £ is able
to distinguish A from B, that is Vo € schedulers(E||A) Jo’ € schedulers(€||B) (linked by pink
arrow) s.t. every pair of corresponding classes of equivalence of executions, related to the same
perception by the environment (e.g. (Cﬁ‘,Cé) in blue for perception () are equiprobable, i.e.

f—dist(g’A) (O’) (C) = f—dist(gﬂg) (U’)(C)

2.5 Road to monotonicity

The rest of the paper is dedicated to the proof of implementation monotonicity. We show that,
under certain technical conditions, automaton creation is monotonic with respect to external
behavior inclusion, i.e. if a system X creates automaton A instead of (previously) creating
automaton B and the external behaviors of A are a subset of the external behaviors of B,
then the set of external behaviors of the overall system is possibly reduced, but not increased.
Such an external behavior inclusion result enables a design and refinement methodology
based solely on the notion of externally visible behavior, and which is therefore independent
of specific methods of establishing external behavior inclusion. It permits the refinement
of components and subsystems in isolation from the entire system. To do so, we develop
different mathematical tools.

2.5.1 Execution-matching

First, we define in section 10, the notion of executions-matching (see figure 5) to capture the
idea that two automata have the same "comportment" along some corresponding executions.
Basically an execution-matching from a PSIOA A to a PSIOA B is a morphism f¢* :
Ezecs'y — Execs(B) where Execs’y C Execs(A) . This morphism preserves some properties
along the pair of matched executions: signature, transition, ... in such a way that for every
pair (a,a’) € Execs(A) x Execs(B) s.t. o = f(a), €;(a) = €,(a’) for every pair of
scheduler (o,0’) (so-called alter ego) that are "very similar" in the sense they take into
account only the "structure' of the argument to return a sub-probability distribution, i.e.
o = f(a) implies o(a) = o’(«). When the executions-matching is a bijection function
from Fzecs(A) to Execs(B), we say A and B are semantically-equivalent (they differ only
syntactically).
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Figure 4 The figure represents an execution fragment (g%, c, g%, h, g%, b, q‘)l() of a PCA X. In the
left, column, we see different states ¢, ¢%, ¢% and ¢% of the PCA X, represented with white diamonds
(¢). Each of these states % is mapped through the mapping con fig(X) (represented with right dotted
arrows) to a configuration C, represented with a white triangle (>). For example the state ¢% is
mapped with the configuration Ck = (A', 8') with A* = {U,V}, S*(U) = qfy and S*(V) = ¢i-. The
signature of the PCA X at state ¢% is the one of the composition of automata, in their current states
in the attached configuration C%, modulo some external actions hidden-actions(X)(q%) for C% that
are hidden and become internal for X. For example, the configuration C% has a signature sig(C%) =
(out(C%),in(Cx),nt(Cx)) = ({b,e,c,d},{a, f},{g, h}), while the signature of X at corresponding
state is sig(X) (k) = (out(X)(qk), in(X)(ak), int(X)(C)) = ({b, €, c}, {a, }, {g, h,d}) since the
unique action d € hidden-actions(X)(qY) is hidden and hence becomes an internal action. We can
define discrete transitions for configurations in a similar way as what we do for PSIOA, but adding
some tools (formally defined in section 5) to allow the creation and the destruction of automata. For
example, the automaton V' is destroyed during the step (qg(, h, qg’(), while W is created during the
step (¢%,b, %) which is made explicit by the fact that created(X)(¢%)(b) = {X} where created(X)
is a mapping function defined for any PCA X. Some intuitive consistency rules have to be respected
by pair of "corresponding transitions" ((¢%, act, n(X’qé(,act)); (C%, act, W(cg(,qg(,act))) represented by
pair of parallel downward arrows (one between two diamonds ¢ and one between two triangles >) .
For example, the probability n(quk’C)(qgg) of reaching ¢% by triggering ¢ from g% is equal to the
probability n(C}{’q%aC”(Ci) of reaching C% by triggering ¢ from C%. Moreover, a configuration
transition has to respect some of other consistency rules with respect to the sub-automata that
compose the configuration. Typically, the destruction of V' in step (C%,h,C%) comes from the
fact that the triggering the action h from state ¢i of sub-automaton V leads to a probabilistic
states distribution N(V.a2, k) equal to 6q3 which is a Dirac distribution for a special state q{‘; with

sig(V)(q%) = (,0,0) that means V "has been destroyed".
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Figure 5 The figure represents the respective executions tree of two automata 4 and B with
some strong similarities. The states of A (resp. B) are represented with red (resp. blue) dots. The
actions are represented with solid arrows. An action leads to a discrete probability distribution
on states 7, represented with a white dot and dashed arrows reaching the different states of the
support of 7. In section 10, we define these strong similarities with what we call an executions-
matching (f, f'", f¢*) where f : Q4 — Qp, f" : D'x — Dg, f° : Exzecs'y — FEzecs(B) with
Q4 CQua, D'y C D4, Execs'y C Execs(A). The mappings f, f/” and f* preserves the important
properties: signature for corresponding states, name of the action and measure of probability of
corresponding states for corresponding transitions, etc. In the example the similarities exist until
the states ¢°, ¢® and ¢°, hence we have Q4 = {¢°,¢",...,¢°} € Q4 . The states-matching f is then
defined s.t. Vk € [1,9], f(¢¥) = . Thereafter, we define define Act = {a,b,c,d, e, f,h} and fim*"s,
s.t. Vk € [1,9], Yact € Act, for every transition (¢*, act, T A,qk act))s ft”ms((qk,act,n(A’qhact)))
= (cjk, act, 77<Bqu’act)). Each pair of mapped transition gives the same probability to pair of mapped
states, e.g. N(4q2.4)(¢") = Nwpg2,a(d"). Then we can define Ezecs)y C Ezecs(A) the set of
executions composed only with states in Q' and actions in Act. Finally f¢° : a = ¢®a'...a"q" €
Execs'y — f(q°)a’...a™ f(¢™) is an execution-matching. The point is that if two schedulers o and o’
only look at the preserved properties to output a measure of probability on the actions to take, the
attached measures of probability will be equal, i.e. €;(a) = €,/ (a)
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2.5.2 A PCA X, deprived from a PSIOA A

Second, we define in section 11 the notion of a PCA X 4 deprived from a PSIOA A noted
(X4 \ {A}) . Such an automaton corresponds to the intuition of a similar automaton where
A is systematically removed from the configuration of the original PCA (see figure 6a and
6b).

2.5.3 Reconstruction: (X 4\ {A})||A*

Thereafter we show in section 12 that under technical minor assumptions X 4 \ {A} and A%
are composable where A and A are semantically equivalent in the sense loosely introduced
in the section 2.5.1 . In fact A*" is the simpleton wrapper of A, that is a PCA that only
owns A in its attached configuration (see figure 7). Let us note that if A implements B, then
A5 implements B5.

Then we show that there is an (incomplete) execution-matching from X4 to (X4 \
{A})||A** (see figure 8). The domain of this executions-matching is the set of executions
where A is not (re-)created.

After this, we always try to reduce any reasoning on X 4 (resp. Xz ) on a reasoning on

(X \ {ADIIA™ (vesp. (X5 \ {B})[[B*).

2.5.4 Corresponding PCA

We show in section 13 that, under certain reasonable technical assumptions (captured in the
definition of corresponding PCA w.r.t. A, B), (X4 \ {A}) and (X \ {B}) are semantically-
equivalent. We can note Y an arbitrary PCA semantically-equivalent to (X 4 \ {A}) and
(X \ {B}) . Finally, a reasoning on £||X 4 (resp. £||Xg ) can be reduced to a reasoning on
E'|| A (resp. £'||B**) with & = £||Y. Since A** implements B*”, we have already some
results on &'||A% and £'||B** and so on £||X4 and &||Xp. However, these results are a
priori valid only for the subset of executions without creation of neither A nor B before very
last action). This reduction is represented in figures 9a and 9b.

2.5.5 Cut-paste execution fragments creation at the endpoints

The reduction roughly described in figures 9a and 9b holds only for executions fragments
that do not create the automata A and B after their destruction (or at very last action).
Some technical precautions have to be taken to be allowed to paste these fragments together
to finally say that A implements B implies X 4 implements Xp. In fact, such a pasting is
generally not possible for a fully information online scheduler. This observation motivated us
to introduce the creation-oblivious scheduler that outputs (randomly) a transition without
taking into account the internal actions and internal states of a sub-automaton A preceding
its last destruction. We prove monotonicity of external behaviour inclusion for schema
of creation oblivious scheduler in section 14. Surprisingly, the fully-offline task-scheduler
introduced in [3] (slightly modified to be adapted to dynamic setting) is not creation-oblivious
(see section 15) and so does not allow monotonicity of external behaviour inclusion. The
figure 10 represents the issue with non-creation-oblivious scheduler.
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config(X) ﬂf;:';_ig:;l(})
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(a) Projection on PCA, part 1/2: The figure represents a PCA X like in figure 4. A sub-automaton T (in
purple) appears in the configurations attached to the states visited by X. The PCA Y = X \ {T'} where
the sub-automaton 7' is systematically removed is represented in figure 6b.

Y =X\{T} hidden—

actions(Y)
config(Y)
a [ ! e
7 - " o_b {d}
gy o2 2 (2)ar <
ey abe)
H a u ¢ v e
rrrrrrrrrrrrrr N S B {d, e}
g
-
CE b ) Oj<
H(Y‘q;j‘hjé M(CE.aph) v.gih) = Jq$
a Y ; a u
3€> " g
b Q ay cl oy [9)
Mvapn:  Mcpats, ¢ p = created(Y)(g3)(b) = {W}
: : ) (w |
b O o i
b [9) ay Cy b o

(b) Projection on PCA, part 2/2: the figure represents the PCA Y = X \ {T'} while the original PCA
X is represented in figure 6a. We can see that the sub-automaton 7' (in purple in figure 6a) has been
systematically removed from the configurations attached to the states visited by Y.

Figure 6 PCA deprived of a sub-PSIOA
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Figure 7 The figure represents the simpleton wrapper A% of an automaton A. The automaton
A®" is a PCA that only encapsulates one unique sub-automaton which is .A. We can confuse A and
A®" without impact. Intuitively, we can see A®*" as a wrapper of A that does not provide anything.

3 Preliminaries on probability and measure

We assume our reader is comfortable with basic notions of probability theory, such as o-
algebra and (discrete) probability measures. A measurable space is denoted by (S, Fg), where
S is a set and Fg is a o-algebra over S that is Fg C P(.5), is closed under countable union
and complementation and its members are called measurable sets (P(S) denotes the power
set of S). The union of a collection {S;};cs of pairwise disjoint sets indexed by a set I is
written as J;c; Si. A measure over (S, Fg) is a function 7 : Fg — R=9, such that n(0) =0
and for every countable collection of disjoint sets {S;}ier in Fs, n(lH);c; Si) = Liern(Si). A
probability measure (resp. sub-probability measure) over (S, Fg) is a measure 1 such that
n(S) =1 (resp. n(S) < 1). A measure space is denoted by (S, Fg,n) where 1 is a measure
on (S, Fs).

The product measure space (S1,Fs,,nm1) @ (Se2, Fs,,n2) is the measure space (57 x
So, Fsy ® Fsyyi ® 1m2), where Fy, @ Fg, is the smallest o-algebra generated by sets of
the form {A x B|A € Fs,,B € Fs,} and n; ® ny is the unique measure s.t. for every
Cy € Fs,,Co € Foy, m @02(C1 x Co) = 01 (C1) -m2(Cy). If S is countable, we note P(S) = 25,
If S; and Sy are countable, we have 251 ® 252 = 251x52,

A discrete probability measure on a set S is a probability measure 1 on (S,2°%), such that,
for each C C S,n(C) =3 con({c}). We define Disc(S) and SubDisc(S) to be respectively,
the set of discrete probability and sub-probability measures on S. In the sequel, we often omit
the set notation when we denote the measure of a singleton set. For a discrete probability
measure 7 on a set S, supp(n) denotes the support of 7, that is, the set of elements s € S
such that n(s) # 0. Given set S and a subset C' C S, the Dirac measure ¢ is the discrete
probability measure on S that assigns probability 1 to C'. For each element s € S, we note
(SS for 6{5}

If {m;}icr is a countable family of measures on (S, Fs), and {p; }ics is a family of non-
negative values, then the expression ), ; pym; denotes a measure m on (5, Fs) such that,
for each C € Fg,m(C) = > ,c;mifi(C). A function f: X — Y is said to be measurable
from (X, Fx) — (Y, Fy) if the inverse image of each element of Fy is an element of Fx,
that is, for each C € Fy, f~1(C) € Fx. In such a case, given a measure n on (X, Fyx),

11
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Figure 8 The figure shows the similarities between two PCA X and Z = (X \ {V})||[V*®
represented in the top line. The two components of Z, i.e. (X \ {V}) and V** are represented in
the bottom line like in figure 6b and 7. These similarities are captured by the notions of executions-
matching and hold as long as the the sub-automaton V' is not created by X after a destruction. The
idea is to reduce any reasoning on X to a reasoning on (X \ {V})[|V°v.
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(a) The figure represents successive steps to reduce the problem of an environment £ that tries to
distinguish two PCA X 4 and Xp (represented at first column) to a problem of an environment Ep that
tries to distinguish the automata A and B (represented at last column).
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(b) The figure represents the homomorphism enabling the reduction reasoning, for set of executions that
do not create neither A nor B before last action. For every environment &£, For every scheduler o4,
there exists a corresponding scheduler op (mapped with pink arrow) s.t. for every possible perception
¢ (represented in light blue), the probability to observe ( is the same for £ in each world. There is an
homomorphism 2" (orange arrow) between &||X.4 and £]|A*" (and similarly for X3 and B*") s.t. for
every scheduler G 4, alter-ego of 0.4, the measure of each corresponding perception is preserved. Hence,
for every environment &, for every scheduler &4, there exists a corresponding scheduler 65 s.t. for every
possible perception ¢ (represented in dark blue), the probability to observe ( is the same for £ in each
world.

Figure 9 homomorphism-based-proof
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Figure 10 Necessity of creation oblivious scheduler. The reduction described before holds only
for set of executions that do not create neither A nor B before last action (represented on the left).
What if the scheduler 0}42 break independence of probabilities between executing ! and executing
o? after o' ? In that case, we cannot cut-paste the different reductions and the monotonicity of
implementation does not hold, i.e. there is no reason there exists a scheduler counterpart o s.t.
that observing (¢’ (represented in blue and green) has the same probability to occur in A-world
and in B-world.

the function f(n) defined on Fy by f(n)(C) = n(f~1(C)) for each C € Y is a measure on
(Y, Fy) and is called the image measure of n under f.

Let (Q1,29') and (Q2,292) be two measurable sets. Let (12,72) € Disc(Q1) x Disc(Qs).
Let f: Q1 — Q2. We note 1 4 7o if the following is verified: (1) the restriction f of f to
supp (1) is a bijection from supp(n) to supp(rz) and (2) Vg € supp(n), 1(q1) = 12(f(q1))-

4  Probabilistic Signature Input/Output Automata (PSIOA)

This section aims to introduce the first brick of our formalism: the probabilistic signature
input/output automata (PSIOA).

4.1 Background

Here, we quickly survey the literature on I/O automata that led to PSIOA. We first present
the very well known Labeled Transition Systems (LTS). Then we briefly discuss the new
features brought by I/O Automata, probabilistic I/O Automata and signature I/O Automata.

4.1.1 Labeled Transition System (LTS)

Roberto Segala describes LTS as follows ([20], section 3.2, p. 37): "A Labeled Transition
System is a state machine with labeled transitions. The labels, also called actions, are used to
model communication between a system and its external environment." A possible definition
of an LTS, using notation of [13], is A = (Q.4, A, sig(A), steps(A)) where Q 4 represents
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the states of A, g4 represents the start state of A, sig(A) = (ext(A),int(.A)) represents the
signature of A, i.e. the set of actions that can be triggered, that are partitioned into external
and internal actions, and steps(A) C Q4 x acts(A) x Q4 represent the possible transition
of the transition with acts(A) = ext(A) Uint(A). We can note enabled(A): q € Qa— {a e
acts(A)|3(q, a,q’) € steps(A)} to model the actions enabled at a certain state. "The external
actions model communication with the external environment; the internal actions model
internal communication, not visible from the external environment."

It is possible to make several LTS communicate with each others through shared external
actions in CSP [8] style. Typically, if A and B are two LTS s.t. the compatibility condition
acts(A) Nint(B) = acts(B) Nint(A) = § is verified, we can define their composition, A||B
with

Quas =Qa X s,

qa8 = (34, d5), 5 5 ;

sig(A||B) = (ext(A) Uext(B),int(A) U int(B)),

steps(A[|B) = {((¢a,45),a, (44, a8)") € Qayp x xacts(A||B)Qa)sla € enabled(A) U

enabled(B) ANVK € {A, B}, (gk, a, qic) ¢ steps(K) = (a ¢ enabled(KC) A ¢ = qx)}).

An execution of an LTS A is an alternating sequence of states and actions ¢®a'q'a?...

such that each (¢°~1,a’, ¢*) € steps(A). A trace is the restriction to external actions of an
execution. A LTS A implements another LTS B if Traces(A) C Traces(B), where Traces(K)
represents the set of traces of K.

4.1.2 1/0 Automata

The input output Automata (IOA) [12] are LTS with the following additional points:
(I/0O partitioning) There is a partition (in(A), out(A)) of ext(A) where in(A) denotes
the input actions and out(A) denotes the output actions. Moreover, loc(A) denotes the
local actions.
(Output compatibility) The compatibility condition requires out(A) N out(B)
addition.
(I/0 composition) After composition, we have in addition out(A||B) = out(A) U out(B)
and in(A||B) = in(A) U in(B) \ out(A||B)
(Input enabling) Vg € Q.4, in(A) C enabled(A)(q)

The interests of this additional restrictions for formal verification are subtle (e.g. input
enabling can avoid trivial liveness property implementation, locality allows simple definitions
of fairness and oblivious scheduler, I/O partitioning allows intuitive definition of forwarding,
...). However, they do not add complexity in the analysis of this paper. Typically, they are

0 in

never required in the key results of this paper. Adapting this paper to LTS is straightforward.

We have kept I/O automata to be as close as possible from [2] and [3].

4.1.3 PIOA

The probabilistic input output automata (PIOA) [20] are kind of I/O automata where
transitions are randomized, i.e. triggering an action leads to a probability measure on states
instead to a particular state. The transitions are then elements of Dy C Q4 X acts(A) x

Disc(Q4). Now, the set of steps is steps(A) = {(q,a,q¢")|3(q,a,m) € Da N q € supp(n)}.

To define a measure of probability on the set of executions, it is convenient to call on a
scheduler o that will resolve the non-determinism and enable the construction of a measure of
probability €, on executions. The notion of implementation has to be adapted to probabilistic
setting to be relevant.

15



16

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

Dynamic Probabilistic Input Output Automata (Extended Version)

4.1.4 SIOA

The signature I/O automata (SIOA) [2] are kind of I/O automata where the signature
is evolving during the time. This feature is particularly convenient to model dynamicity.
The signature of the automaton A becomes a function mapping each state ¢ to a signature

sig(A)(q).

4.1.5 PSIOA

A PSIOA is the result of the generalization of probabilistic input/output automata (PIOA)
[20] and signature input/output automata (SIOA) [2]. A PSIOA is thus an automaton that
can randomly move from one state to another in response to some actions. The set of possible
actions is the signature of the automaton and is partitioned into input, output and internal
actions. An action can often be both the input of one automaton and the output of another
one to captures the idea that the behavior of an automaton can influence the behavior of
another one. As for the SIOA [2], the signature of a PSIOA can change according to the
current state of the automaton, which allows us to formalise dynamicity later. The figure 11
gives a first intuition of what is a PSIOA.

U )¢ v e unv &
int : int:gh
g P mt:h > :g, E
b | — b
LANE
v
a  u ) ¢ v e a uiv &
> — — r R
int:g > int: h,i 3 -— int : g,h,i
E 0Je
b — ] b

Figure 11 A representation of two automata U and V. In the top line, we see the PSIOA U in
a state g, s.t. sig(U)(q) = (out(U)(qr),in(U)(qr), int(U)(ap)) = ({b,c}, {d}, {g}), the PSIOA
V in astate gy, s.t. sig(V)(qv) = (out(V)(av),in(V)(qv ), int(V)(av)) = ({d, e}, {c, f}. {h}) and
the result of their composition, the PSIOA U||V in a state (¢fr,qi), s.t. sig(U|[V)((¢5r,qt)) =

(out(U|IV) (g, av)), in(U|V)((atr» av)), int(U[|V) (g, av) = ({b,¢,d, e}, {f},{g,h}). 1In the
second line we see the same PSIOA but in different states. We see the PSIOA U in a state
at, st sigU)(g) = (out(U)(qt),in(U)(qr),int(U)(q5)) = ({b},{a,j},{g}), the PSIOA V
in a state gy, s.t. sig(V)(qy) = (out(V)(qi),in(V)(qy),int(V)(av)) = ({e, 4}, {c},{h,i}) and
the result of their composition, the PSIOA U||V in a state (¢7,q%), s.t. sig(U|[V)((¢7,q%)) =

(out(U[IV)((atr, a)), in(U V) (a5, av")), int (U[IV) ((atr- a7) = ({b, e, 5}, {a, ¢}, {g, h. i}).

4.2 Action Signature

We use the signature approach from [2]. We assume the existence of a countable set Autids
of unique probabilistic signature input/output automata (PSIOA) identifiers, an underlying
universal set Auts of PSIOA, and a mapping aut : Autids — Auts. aut(A) is the PSIOA with
identifier A. We use "the automaton A" to mean "the PSIOA with identifier A". We use the
letters A, B, possibly subscripted or primed, for PSIOA identifiers. The executable actions of
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a PSIOA A are drawn from a signature sig(A)(q) = (in(A)(q), out(A)(q),int(A)(q)), called
the state signature, which is a function of the current state g of A.

in(A)(q), out(A)(q),int(A)(¢) are pairwise disjoint sets of input, output, and internal
actions, respectively. We define ext(A)(q), the external signature of A in state ¢, to be
ext(A)(q) = (in(A)(q), out(A)(q)).

We define loc(.A)(gq), the local signature of A in state g, to be loc(A)(q) = (out(A)(q),int(A)(q)).
For any signature component, generally, the = operator yields the union of sets of actions
within the signature, e.g., sig(A) : ¢ € Q — sig(A)(q) = in(A)(q) U out(A)(q) Uint(A)(q).
Also we define acts(A) = U,cq sig(A)(q), that is acts(A) is the "universal’ set of all actions
that A could possibly trigger, in any state. In the same way UI(A) = ,cq in(A)(9),

UO(A) = Uyeq out(A)(a), UH(A) = U,eq int(A)(9), UL(A) = Uyeq loc(A)(q), UE(A) =
Ugeq ext(A)(9)-

4.3 PSIOA
We combine the SIOA of [2] with the PIOA of [20]:

» Definition 1 (PSIOA). A PSIOA A= (Qa,qa4,sig(A), D), where:

Q4 is a countable set of states, (Q,294) is the state space,

qa s the unique start state.

sig(A) : g € Qa > sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q)) is the signature function
that maps each state to a triplet of mutually disjoint countable set of actions, respectively
called input, output and internal actions.

D C Qa X acts(A) x Disc(Qa) is the set of probabilistic discrete transitions where
Y(g,a,m) € D4 : a € sig(A)(q). If (q,a,n) is an element of D4, we write ¢ > n and
action a is said to be enabled at g. We note enabled(A) : g € Q4 — enabled(A)(q) where
enabled(A)(q) denotes the set of enabled actions at state q. We also note steps(A) =
{(g,a,q') € Qa x acts(A) x Qal3(g,a,m) € Da,q" € supp(n)}.

In addition A must satisfy the following conditions

E; (input enabling) Vg € Q 4, in(A)(q) C enabled(A)(q).!

T, (Transition determinism): For every g € Q4 and a € sig(A)(g) there is at most one
N(A,q.a) € Disc(Qa), such that (q,a,1m4,9,0)) € Da.

Later, we will define execution fragments as alternating sequences of states and actions
with classic and natural consistency rules. But a subtlety will appear with the composability
of set of automata at reachable states. Hence, we will define execution fragments after "local
composability" and "probabilistic configuration automata.

4.4 Local composition

The main aim of a formalism of concurrent systems is to compose several automata A =
{A1,..., A} and provide guarantees by composing the guarantees of the different elements
of the system. Some syntactical rules have to be satisfied before defining the composition
operation.

! Since the signature is dynamic, we could require S/Z?](.A) = enabled(A)
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» Definition 2 (Compatible signatures). Let S = {sig; }icz be a set of signatures. Then S is
compatible iff, Vi,j € T, i # j, where sig; = (in;, out;, int;), sig; = (inj, out;,int;), we have:
1. (in; Uout; Uint;) Nint; = 0, and 2. out; Nout; = (.

» Definition 3 (Composition of Signatures). Let ¥ = (in,out,int) and X' = (in', out’,int’) be
compatible signatures. Then we define their composition ¥ X ¥ = (inUin’ — (out Uout’), out U
out’,int Uint')2.

Signature composition is clearly commutative and associative. Now we can define the
compatibility of several automata at a state with the compatibility of their attached signatures.
First we define compatibility at a state, and discrete transition for a set of automata for a
particular compatible state.

» Definition 4 (compatibility at a state). Let A = {A;, ..., A,} be a set of PSIOA. A state
of A is an element ¢ = (q1,....qn) € Qa = Qu, X ... x Qa,. Wenote q | A; = q;. We say
Ai, ..., A, are (or A is) compatible at state ¢ if {sig(A1)(q1), ..., sig(An)(qn)} is a set of
compatible signatures. In this case we note sig(A)(q) = sig(A;)(q1) % ... x sig(An)(qn) as
per definition 8 and we note n(a q.q) € Disc(Qa), s.t. Ya € giTq(A)(q), NA,ga) =M ... 0Ny
where Vj € [1,n], 0 =14;,q,0) i @ € sig(A;)(g;) and n; = dy; otherwise. Moreover, we
note steps(A) = {(q,a,¢')|q,q" € Qa,a € sig(A)(q),q € supp(n(a,q,a))}- Finally, we note
da = (G, q4,)-

Let us note that an action a shared by two automata becomes an output action and not an
internal action after composition. First, it permits the possibility of further communication
using a. Second, it allows associativity. If this property is counter-intuitive, it is always
possible to use the classic hiding operator that "hides" the output actions transforming them
into internal actions.

» Definition 5 (hiding operator). Let sig = (in, out, int) be a signature and H a set of actions.
We note hide(sig, H) = (in, out \ H,int U (out N H)).

Let A = (Qa,qa,sig(A),Dy) be a PSIOA. Let h : g € Qa — h(q) C out(A)(q). We
note hide(A,h) £ (Qa,qa,sig' (A), D), where sig'(A) : ¢ € Q4 — hide(sig(A)(q), h(q)).
Clearly, hide(A, h) is a PSIOA.

» Lemma 6 (hiding and composition are commutative). Let sig, = (ing, out,,int,), sigy =
(iny, outy, inty,) be compatible signature and H,, Hy, some set of actions, s.t.

(H, Nouty) N sigy =0 and

(Hyp, Nouty) N S/Z?]b =10,

then sigl, £ hide(sig, H,) = (inl,, out,,int,) and sig, = hide(sigy, Hy) = (in}, out},int})
are compatible. Furthermore, if

outy NH, =0 ,and

out, N Hy =0
then sig, x sig, = hide(sigq X sigy, Ho U Hp).

Proof. compatibility: After hiding operation, we have:
in, =ing, in, = iny
out,, = out, \ H,, outy = outy \ Hy

2 not to be confused with Cartesian product. We keep this notation to stay as close as possible to the

literature.
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int!, = int, U (outq N Hy), int, = inty U (outy, N Hp)
Since outqaNouty, = 0, a fortiori out,Nout, = 0. intaﬂsz/gb =0, t}ilis if (outaﬁHa)ﬁsz/Zb =0,
then int], N sig, = 0 and with the symetric argument, int; N sig, = 0. Hence, sig), and
sig; are compatible.
commutativity:
After composition of sig, = sigl, X sig; operation, we have:
outl, = out!, U out; = (outy \ He) U (outy \ Hp). If outy N Hy, = @ and out, N Hy = 0,
then out!, = (out, Uouty) \ (Hg U Hyp).
in,, = in,, Uiny \ out, = in, Uiny \ out,,
int, = int!, Uint, = int, U (out, N Hy)inty U (outy N Hy) = int, Uint, U (out, N Hg) U
(outy N Hyp). If outy N Hy, = 0 and out, N Hy = O, then int!, = int, U int, U ((outy U
outb) n (Ha U Hb).
and after composition of sigg = sig, X sigy
outy = out, U outy
ing = ing Uing \ outy
intg = int, Uinty
Finally, after hiding operation sig), = hide(sigq, H, U Hp,) we have :
inl; =ing
out!, = outy \ H, U Hy, = (out, Uouty) \ (H, U Hp)
int:j =intg U (outd n (Ha @] Hb)) = (inta U intb) @] (outd n (Ha U Hb))
Thus, if out, N H, = ) and out, N Hy = ()
inl, =in,
out!, = out!,
int!, = int!,
<

» Remark 7. We can restrict hiding operation to set of actions included in the set of output
actions of the signature (H C out). In this case, since we alreay have out, N out, = ()
by compatibility, we immediatly have out, N Hy = @ and out, N H, = (). Thus to obtain
compatibility, we only need in, N H, = 0 and in, N H, = (). Later, the compatibility of PCA
will implicitly assume this predicate (otherwise the PCA could not be compatible).

4.5 Renaming operators

We introduce some classic, and sometimes useful operators.

4.5.1 State renaming

We anticipate the definition of isomorphism between PSIOA that differs only syntactically.

» Definition 8. (State renaming for PSIOA) Let A be a PSIOA with Q 4 as set of states, let
Q4 be another set of states and let r : Qa — Q. be a bijective mapping. Then r(A) (we
abuse the notation) is the automaton given by:

Gray = 1(qa)

Qray =7(Qa)

Vaua € Qray, sig(r(A))(qar) = sig(A)(r~'(qa))

Vaua € Qpay,Va € sig(r(A))(gar), if (r~'(qa),a,n) € Da, then (qar,a,n') € Dyay

where ' € Disc(Qu, Fq ,,) and for every qar € Qray, 0'(qar) = n(r=t(qar)).

19
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» Definition 9. (State renaming for PSIOA execution) Let A and A’ be two PSIOA s.t.
A =r(A). Let a = ¢®alql... be an execution fragment of A. We note r(c) the sequence

r(g®alr(q)....

» Lemma 10. Let A and A’ be two PSIOA s.t. A" = r(A) withr : Qa4 — Qua being a
bijective map. Let « be an execution fragment of A. The sequence r(a) is an execution
fragment of A.

Proof. Let ¢’a’T1¢7T! be a subsequence of a. 7(g?) € Q4+ by definition, a’ € sig(A")(r(¢’))
since sig(A')(r(¢?)) = sig(A)(¢’), and Nar r(gi),ai+1) (1@ 7)) = Nagiartry(@F) > 0. <

4.5.2 Action renaming

Action renaming is useful to make automata compatible. This operator is used in the proof
of theorem 48 of transitivity of implementation relationship .

» Definition 11 (Action renaming for PSIOA). Let A be a PSIOA and let r be a partial
function on Q4 % acts(A), s.t. Vg € Q.a, r(q) is an injective mapping with (;Z?}(A)(q) as
domain. Then r(A) is the automata given by:

1. Gray = qa-

2. Qray=Qa.

3. Vg € Qa, sig(r(A))(q) = (in(r(A))(q) ,out(r(A)) (q) ,int(r(A))(q)) with
out(r(A))(q) = r(out(A)(q)),
in(r(A))(q) = r(in(A)(q)),
int(r(A))(q) = r(int (A)(q)) .

4. Dyay = {(g,7(a),n)|(g,a,m) € Da} (we note 1e(ay,q,r(a)) the element of Disc(Qr(a))

which is equal to 1 4,q,a)-

» Lemma 12 (PSIOA closeness under action-renaming). Let A be a PSIOA and let v be a
partial function on Q4 X acts(A), s.t. Vg € Q 4, 7(q) is an injective mapping with sig(A)(q)
as domain. Then r(A) is a PSIOA.

Proof. We need to show (1) V(g,a,n),(q,a,n') € Da, n = 1" and a € sig(A)(q), (2)
Vg € Qa,Va € sig(A)(q), In € Disc(Qa), (¢,a,m) € D and (3) Vg € Q4 : in(A)(g) N
out(A)(s) = in(A)(q) N int(A)(q) = out(A)(q) N int(A)(q) = 0.
Constraint 1: From definition 11, we have, for any ¢ € Q,(4): sig(r(A))(q) = out(r(A))(q)
in(r(A)) (q) Uint(r(A))(q) = r(out(A)(q)) Ur(in(A)(q)) Ur(int(A)(q)) = T(SZQ(A)( )
Since A is a PSIOA, we have ¥(q,a,n),(¢,a,n) € Dg:a € szg( )(¢) and n = n’. From
definition 11, D,4y = {(¢,7(a),n)| (¢,a,m) € Da} Hence, if (¢,7(a),n), (¢,7(a),n’)
are arbitrary element of D, 4), then (q,a,71),(q,a,m") € D4, and so n = 7' and
a € sig(A)(g). Hence r(a) € r(sig(A)(q)). Since r(sig(A)(q)) = sig(r(A))(g), we con-
clude r(a) € sig(r(A))(q). Hence, (g, 7(a),n), (¢,7(a),n') € Dya) : 7(a) € sig(r(A))(q)
and 7 = 1. Thus, Constraint 1 holds for r(A).
Constraint 2: From definition 11, D,y = {(¢,7(a),n)|[(¢,a,n) € Da}, Qray = Qu,
and for all ¢ € Q,(a),in(r(A))(q) = r(in(A)(q)). Let ¢ be any state of r(A), and let
q € sig(r(4))(q). Then b = r(a) for some a € sig(A)(q). We have (g,a,n) € D4
for some 7, by Constraint 2 of action enabling for A. Hence (q,a,n) € D,(4). Hence
(q,b,m) € Dy (4. Hence Constraint 2 holds for r(A).
Constraint 3: A is a PSIOA and so satisfies Constraint 3. From this and definition 11 and
the requirement that r be injective, it is easy to see that r(A) also satisfies Constraint 3.
<4
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5 Probabilistic Configuration Automata

We combine the notion of configuration of [2] with the probabilistic setting of [20]. A
configuration is a set of automata attached with their current states. This will be a very
useful tool to define dynamicity by mapping the state of an automaton of a certain "layer" to
a configuration of automata of lower layer, where the set of automata in the configuration
can dynamically change from on state of the automaton of the upper level to another one.

5.1 configuration

» Definition 13 (Configuration). A configuration is a pair (A, S) where
A ={Ay,..., A} is a finite set of PSIOA identifiers and
S maps each Ax € A to a state of Ayg.

In distributed computing, configuration usually refers to the union of states of all the
automata of the "system'. Here, there is a subtlety, since it captures a set of some automata
(A ) in their current state (S), but the set of automata of the systems will not be fized in the
time.

We note Q%™ the (countable) set of configurations.

» Proposition 14. The set Qcony of configurations is countable.

Proof. (1) {A € P(Autids)|A is finite} is countable, (2) VA € Autids, Q 4 is countable by
definition 1 of PSIOA and (3) the cartesian product of countable sets is a countable set. <

» Definition 15 (Compatible configuration). A configuration (A,S), with A = {A4, ..., An},
is compatible iff the set A is compatible at state (S(A1),...,S(Ay)) as per definition 4

» Definition 16 (Intrinsic attributes of a configuration). Let C' = (A,S) be a compatible
configuration. Then we define
auts(C) = A represents the automata of the configuration,
map(C) = S maps each automaton of the configuration with its current state,
TS(C) = (S(A1),...,S(Ay)) yields the tuple of states of the automata of the configuration.
sig(C) = (in(C), out(C), int(C)) = sig(auts(C), TS(C)) in the sense of definition 4, is
called the intrinsic signature of the configuration

Here we define a reduced configuration as a configuration deprived of the automata
that are in the very particular state where their current signatures are the empty set. This
mechanism will be used later to capture the idea of destruction of an automaton.

» Definition 17 (Reduced configuration). reduce(C) = (A’,S’), where A’ = {A|A €
A and sig(A)(S(A)) # 0} and S’ is the restriction of S to A’, noted S | A’ in the re-
maining.

A configuration C is a reduced configuration iff C = reduce(C).

We will define some probabilistic transition from configurations to others where some
automata can be destroyed or created. To define it properly, we start by defining "preserving
transition" where no automaton is neither created nor destroyed and then we define above
this definition the notion of configuration transition.

» Definition 18 (From preserving distribution to intrinsic transition).
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(preserving distribution) Let 1, € Disc(Qcony). We say n, is a preserving distribution
if it exists a finite set of automata A, called family support of n,, s.t. V(A’,S’) €
supp(n,p), A = A

(preserving configuration transition C' - np) Let C = (A, S) be a compatible configuration,
a € sig(C). Let 1, be the unique preserving distribution of Disc(Qeonys) such that (1)
the family support of n, is A and (2) n, EAY NA,TS(C),a)- We say that (C,a,m,) is a
preserving configuration transition, noted C' = Mp-

(np 1 @) Let n, € Disc(Qcony) be a preserving distribution with A as family support. Let
@ be a finite set of of PSIOA identifiers with ANy = 0. Let Cy, = (¢, Sy) € Qcons with
VA; € 0,5,(Aj) = qa,. We note n, T ¢ the unique element of Disc(Qcony) verifying
Tp & (mp T ) with u: C € supp(np) — (CUCy).

(distribution reduction) Let € Disc(Qeonys). We note reduce(n) the element of Disc(Qcony)
verifying Ve € Qconf: (Teduce(ﬁ))(c) = E(C’Esu;z)p(n),c:7'educe(c/))T/(Cl)

(intrinsic transition C ==, ) Let C' = (A,S) be a compatible configuration, let a €
sig(C), let ¢ be a finite set of of PSIOA identifiers with ANy = 0. We note C =1,
if n = reduce(n, T ¢) with C A np- In this case, we say that n is generated by n, and ¢.

Preserving configuration transition (C,a,n,) is the intuitive transition for configurations,

corresponding to the transition (7'S(C), a, N(quts(c),T5(C),q)) (see figure 12). The operator
T ¢ describes the deterministic creation of automata in ¢, who will be appear at their
respective start states. The reduce operator enables to remove "destroyed" automata from
the possibly returned configurations (see figure 13).

= (A1, Az, Ag) o = C) = (A,8))

-
4= (a1,92,43) a<> [0 oo ‘D, [@ @ @ c;=(a8)
Yoo | H[eee a-as)

Figure 12 There is a trivial homomorphism between the preserving distribution n, with C' =

(A,S) % 5, and the distribution MNA,TS(C),a)-

5.2 probabilistic configuration automata (PCA)

Now we are ready to define our probabilistic configuration automata (see figure 14). Such an
automaton define a strong link with a dynamic configuration.

» Definition 19 (Probabilistic Configuration Automaton). A probabilistic configuration auto-
maton (PCA) X consists of the following components:

1. A probabilistic signature I/0 automaton psioa(X). For brevity, we define Qx =
stioa(X)7(jX = Ljpsioa(X)7 SZQ(X) = sig(psioa(X)),steps(X) = steps(psioa(X)), and
likewise for all other (sub)components and attributes of psioa(X).
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C=(AS) = {A}
' ' A= (A, Ay, Ay)

C1— (A),8})
O
A = (A, Ay, Ag) -P
o
hs

Oy = (A,})

C;‘; 1j

Figure 13 An intrinsic transition where A; is destroyed deterministically and A4 is created
deterministically. First, we have the preserving disribution 7, s.t. C' =, with 1, pAY M(A,TS(C),a)-
Second, we take into account the created automata ¢ = {A}, captured by the distribution 1, 1 ¢.
Third, we remove the automata in a particular state with associated empty signature. This is
captured by distribution reduce(np 1 ¢).

2. A configuration mapping config(X) with domain Qx and such that, for all ¢ € Qx,
config(X)(q) is a reduced compatible configuration.

3. For each q € Qx, a mapping created(X)(q) with domain sig(X)(q) and such that
Va € sig(X)(q), created(X)(q)(a) C Autids with created(X)(q)(a) finite.

4. A hidden-actions mapping hidden-actions(X) with domain Qx and such that hidden-
actions(X)(q) C out(config(X)(q)).

and satisfies the following constraints, for every q € Qx, C = config(X)(q), H = hidden-
actions(q).

1. (start states preservation) If config(X)(gx) = (A,S), then VA; € A,S(A;) = qua,-
2. (top/down transition preservation) If (q,a,n(x,q,a)) € Dx, then 3" € Disc(Qconys) 5.1.
NX.q0) & 1 with C ==, 1/, where ¢ = created(X)(g)(a) and ¢ = config(X).

3. (bottom/up transition preservation) If ¢ € Qx and C ==, 1’ for some action a,
¢ = created(X)(q)(a), and reduced compatible probabilistic measure n' € Disc(Qcony),
then (q,a,n(x,q,0)) € Dx, and 1(x q,a) & ' where ¢ = config(X).

4. (signature preservation modulo hiding) Vq € Qx , sig(X)(q) = hide(sig(C), H).

This definition, proposed in a deterministic fashion in [2], captures dynamicity of the
system. Fach state is linked with a configuration. The set of automata of the configuration
can change during an execution. A sub-automaton A is created from state ¢ by the
action a if A € created(X)(q)(a). A sub-automaton A is destroyed if the non-reduced
attached configuration distribution leads to a configuration where A is in a state qf‘ s. t.
sz/'\g(A)(qfl) = (). Then the corresponding reduced configuration will not hold A. The last
constraint states that the signature of a state ¢ of X must be the same as the signature of its
corresponding configuration con fig(X)(q), except for the possible effects of hiding operators,
so that some outputs of config(X)(q) may be internal actions of X in state q.

As for PSIOA, we can define hiding operator applied to PCA.

23
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>

config(X) hidden — actions(X)
a unv €
R e T o Al {d)
9 < «— 9% p
Ci’ b 2 d 2 1 b k) ld f
Mgkl ic
a u c v e a uv e
)> > —> g.h < {d}
2 ’ 0 € )€ < Q f
Ci b d f b b
Maggni  MOiain g = By
a X l a u a u
aé """ > ] «— (]
b 3 ax Oi’ b &2 b 3
Mxady  Mepadn; @ @ = ereated(X)(q¥)(b) = {W}
a u w a unw
2 X X = = — {it
o) 4<> *l , 5 I o -— 9 o !
b o ax Cx b i b T,
i

Figure 14 A PCA life cycle.

Definition 20 (hiding on PCA). Let X be a PCA. Let h: g € Qx + h(q) C out(X)(q). We

note hide(X,h) the PCA X' that differs from X only on

>

psioa(X') = hide(psioa(X), h)
sig(X') = hide(sig(X),h) and
Vg € Qx = Qx, hidden-actions(X")(q) = hidden-actions(X)(q) U h(q).

The notion of local compatibility can be naturally extended to set of PCA.
Definition 21 (PCA compatible at a state). Let X = {X1,...,X,,} be a set of PCA. Let

q=(q1,-qn) € Qx, X ... x Qx,, . Let us note C; = (A;,S;) = config(X;)(q:), Vi € [1,n].
The PCA in X are compatible at state q iff>:

1.
2.
3.

PSIOA compatibility: psioa(Xy), ..., psioa(X,,) are compatible at gx.
Sub-automaton exclusivity: Vi,j € [1:n],1 # j: A;NA; = 0.

Creation exclusivity: Vi,j € [1 : n],i # j,Va € sz/\g(Xl)(q,) N s/z\’g(Xj)(qj) :
created(X;)(q:)(a) N created(X;)(g;)(a) = 0.

If X is compatible at state ¢, for every action a € @(psioa(X))(q), we note 1(x,q,q) =

N(psioa(X),q,a) and we extend this notation with 7x 4.4) = 0q if a ¢ sz/'\g(psioa(X))(q).

6 Executions, reachable states, partially-compatible automata

6.1 Executions, reachable states, traces

In previous sections, we have described how to model probabilistic transitions that might
lead to the creation and destruction of some components of the system. In this section, we

3

We can remark that the conjunction of PSIOA compatibility and sub-automata exclusivity implies the
compatibility of respective configurations as defined later in definition 27
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will define pseudo execution fragments of a set of automata to model the run of a set A
of several dynamic systems interacting with each others. With such a definition, we will
kill two birds with one stone, since it will allow to define reachable states of A and then
compatibility of A as compatibility of A at each reachable state.

» Definition 22 (pseudo execution, reachable states, partial-compatibility). Let A = {A4, ..., A, }
be a finite set of PSIOA (resp. PCA). A pseudo execution fragment of A is a finite or
infinite sequence a = ¢a'qla®... of alternating states and actions, such that:

1. If « is finite, it ends with a state. In that case, we note Istate(a) the last state of .

2. A is compatible at each state of a, with the potential exception of Istate(a) if av is finite.
3. for ever action a', (¢",a’,q") € steps(A).

The first state of a pseudo execution fragment a is noted fstate(a). A pseudo execution
fragment o of A is a pseudo execution of A if fstate(a) = ga. The length |a| of a finite
pseudo execution fragment « is the number of actions in «. A state q of A is said reachable
if there is a pseudo execution o s.t. Istate(a) = q. We note Reachable(A) the set of reachable
states of A. If A is compatible at every reachable state q, A is said partially-compatible.*

» Definition 23 (executions, concatenations). Let A be an automaton. An execution fragment
(resp. execution) of A is a pseudo execution fragment (resp. pseudo execution) of {A}. We
use Frags(A) (resp., Frags*(A)) to denote the set of all (resp., all finite) execution fragments
of A. Ezecs(A) (resp. Ezecs*(A)) denotes the set of all (resp., all finite) executions of A.
We define a concatenation operator — for execution fragments as follows:
If a=q%"q"...a"q™ € Frags*(A) and o/ = ¢"a’ q"'... € Frags*(A), we define a "o’ =
Calq...a”q™ aVq"... only if s° = ¢", otherwise ™’ is undefined. Hence the notation
a”™a implicitly means fstate(a') = Istate(a).
Let a,a/ € Frags(A), then « is a proper prefix of o iff 3a” € Frags(A) such that
o =a"a" with a # o'. In that case, we note a < /. We note a« < o' if a < o' or a =<’
and say that « s a prefix of o'. Finally, o, o’ are said comparable if either o < o or o < a.

» Definition 24 (traces). The trace of an execution « represents its externally visible part,
i.e. the external actions. Let A be a PSIOA (resp. PCA). Let ¢° € Q, (q,a,q") € steps(A),
a, o’ € Execs™(A) x Execs(A) with fstate(a') = Istate(c).

trace(q°) is the empty sequence, noted X,

trace 4(qaq’) { a if a € ext(A)(q) ’

A otherwise.
traces(a™a’) = trace (o) " trace4(a)
We say that B is a trace of A if 3o € Ezecs(A) with 8 = tracea(o). We note Traces(A)
(resp. Traces™(A), resp. Traces”(A)) the set of traces (resp. finite traces, resp. infinite
traces) of A. When the automaton A is understood from context, we write simply trace(a).

The projection of a pseudo-execution « on an automaton A;, noted « [ A;, represents
the contribution of A; to this execution.

» Definition 25 (projection). Let A be a set of PSIOA (resp. PCA), let A; € A. We define
projection operator | recursively as follows: For every (q,a,q’) € steps(A), for every a, o/
being two pseudo executions of A with fstate(a') = Istate(a).

4 In [2], compatible set of PCA are compatible at every (potentially non-reachable) state of the associated
Cartesian product.
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nroa ) @ A a (@ T A if a € sig(A (g | A
(¢:0,4') [ As = (g T A;) = (¢ | A;) otherwise. ’
(@) T Ai = (a [ Ai) " (e [ A)

6.2 PSIOA and PCA composition

We are ready to define composition operator, the most important operator for concurrent
systems.

» Definition 26 (PSIOA partial-composition). If A = { A1, ..., A,} is a partially-compatible
set of PSIOA, with A; = (Qa,,q4,, sig(A;), Da,), then their partial-composition Ail|...||An,
is defined to be A= (Qa,qa,sig(A), D), where:

Q. = Reachable(A)

qa=(qa,;s - qa,)

sig(A) 1 ¢ € Qa > sig(A)(q) = sig(A)(q)

Da={(q,a,1(a,q,0))7 € Qa,a € sig(A)(q)}
» Definition 27 (Union of configurations). Let Cy = (A1,S1) and Cy = (A3, Ss) be con-
figurations such that A1 N Ay = (. Then, the union of C; and Cs, denoted Cy U Cs,
is the configuration C = (A,S) where A = A; U Ay and S agrees with S1 on Ay, and
with So on As. Moreover, if C1 U Cy is a compatible configuration, we say that C7 and
C5 are compatible configurations. It is clear that configuration union is commutative
and associative. Hence, we will freely use the n-ary notation Cy U ... U C),, whenever
Vi,j € [1:nl],i# j,auts(C;) Nauts(C;) = 0.

» Lemma 28. Let C; = (A1,S1) and Cy = (A2, S») be configurations such that Ay N As = ().
Let C = (A,S) = C1 UCy be a compatidle configuration. Then sig(C) = sig(Ch) x sig(Cs)
(in the sense of definition 3).

Proof.

out(C) = U out(Ar)(S(Ax))

AreA

=( |J out(A)SAN) U [ out(A4))(S(4))))

A€A; A; €A,
(U out(A)S1AN) U ( | out(4))(S2(A))
e A €A,

out(Cy) U out(Cs)

in(C)= |J in(Ax)(S(A) \ out(C)

Ar€A

=( U in(A)SA) U 1 in(A)(S(A) \ out(C)

AieAy Aj;€A,

=( U mA)S1 AU | in(A4))(82(4)))) \ out(C)
A;€Aq A;€AS

— in(Ch) Uin(Cs) \ (out(Cy) U out(C))
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int(C) = | int(Ar)(S(Ar))
A €A

=( |J it U [ int(A4)(S(A))

Ai€Ay AjEAL

=( | mt(A)S1(A)) U ( | int(4;)(S2(A))))
Ai€A; A;€AL

= int(C1) Uint(Cs)

<

» Definition 29 (PCA partial-composition). If X = {X1,..., Xy} is a partially-compatible set

of PCA, then their partial-composition X1||...|| Xy, is defined to be the PCA X (proved in

theorem 38 in section 7) s.t. psioa(X) = psioa(X1)||...||psioa(X,) and Vg € Qx:
config(X)(q) = Uicp n) config(Xi)(q [ Xi)
Ya € 5ig(X)(q), ereated(X)()(@) = Uscpn
created(X;)(qi)(a) = 0 if a ¢ sig(X;)(q:)
hidden-actions(q) = U, 1 ) hidden-actions(X;)(q [ X;)

created(X;)(q | Xi)(a), with the convention

7 Toolkit for configurations & PCA closeness under composition

In this section, we define some tools to manipulate measure preserving bijections between
probability distributions (relations of the form 7 4 7’). This tools will be used to prove (1)
the closeness of PCA under parallel composition (theorem 38) and some intermediate results

in the proof of monotonicity of implementation relationship w.r.t. creation/destruction of
PSIOA.

Merge, join, split
» Definition 30 (join). Let ij = (11,...,mn) € Disc(Q1) X ... X Disc(Qy) with each Q; being a
set. We define, join(i): { QuX..X@n — [0,1]

q = (m© .. ®@m)(q)

» Lemma 31 (Joint preserving probability distribution for union of configuration). Let n € N,
let {Cy}repiin) be a set of compatible configurations and Cy = Uke[l:n] Cy. Let (772, My €
Disc(Qeong)™ ! s.t. Vk€[0:n], Cp =0k ifac sig(C) and nk = d¢, otherwise.

Then, ¥(C1,...,C},) € Qryy s 8t Yk € [1: 1], aut(Cy) = aut(Cy),

Mo (Urepin Ck) = (M @ . @ 1)(CY, ., C7)

Proof. We note {Cy = (A, Sk)}reim], Co = (Ao,S0), gr = T'S(Cy) for every k € [0 : n].
We note (Z,J) the partition of [1 : n] s.t. Vi € Z,a € sig(C;) and Vj € J,a ¢ sig(C;).

Since Ao = Upyer.) Ar and Sp agrees with Sy on A € Ay for every k € [1 : n], we

have 77A0,q0,a = n(Atha) ® .. ® n(Anaana) Wlth the convention n(Aj7QJ7a) = 5‘1]’ V‘] € j

Furthermore, for every k € [1,n], 775 A N(An.qr,a), that is for every (Cy, q;.) € Qeons X Qa,
with ¢, = TS(C},), n’;(Cl'ﬂ) = N(An.qn.a)(q). Hence for every ((C1,...,Cy,), (41, .-, q,)) €
Qlong X Qa, with g1 =TS(C1), ..., q, = TS(CL), M(Ag,g0,0) ((¢1; - a)) = (N(Ayq1,0) @ - @
N(Anan.a) (@15 01)) = (1 @ . @3 ((CF, ., Cr)) (%)

By definition of 772’ v(067Q6) € Qconf X QAO? with q6 = TS(O(I))v (Ao,q90,a) (Q6) = 772(0(/))

27
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Since we deal with preserving distribution and Ao = Uye(y.,) Ak, qp is of the form (g1, ..., ¢,
with ¢;, € Qa, and verifies Cf) = C1 U ... U C}, with auts(C},) = Ay and T'S(C},) = q;, (**).
Hence we compose (*) and (**) to obtain for every configuration C} = (Ay, Sj), for every
finite set of configurations {C}, = (Ax,S})}rengs 8-t Co = Uyepr.n Cr» then M (Ch) =
(M @ ...@n)((Cf, ....Ch)).

<

» Definition 32 (merge). Let 7] = (n1,...0n) € Disc(Qeonys)"™. We define
mer e(N)_ Qconf — [O, 1]
genn): C = Z(C/ CLEQ, s join(ﬁ)((C’{, ooy C?”L)) ) ]I(C{u..AUC;L):C

1oeees

» Lemma 33 (Preserving-merging). Let n € N, let {Cy}rejin) be a set of compatible con-
figurations. Let fj, = (n},...,n0) € Disc(Qeony)". Assume Vk € [1:n], if a € sig(Cy,), then
Cp & n;f and otherwise, 77;; = ¢, -

Then, YO}, € supp(merge(i,)), it evists a unique (C1, ..., Cy,), noted split;(Cy), s.t.

(a) Cy = Ukepn C and (b) Vk € [1,n],C € supp(nk).
supp(merge(7p))  —  supp(ny) X ... X supp(n;’)
C} = split; (C9)

Moreover, merge(ij,) < join(fj,) with s = splity;

We note split; : {

Proof. (Uniqueness) Let us imagine two candidates (C1,...,C}) and (CY,...,C)) verifying
both (a) and (b). Let k,¢ € [1 : n],k # ¢. First, by compatibility of Cy, vr N s =
0. Hence auts(C}) N auts(C}) = auts(Ck) N auts(Cy) = 0. Since auts(Upepn Cr) =
auts(Uge1.n) Ck)s Yk € [1: 1], auts(C}) = auts(CY). By equality, Vk € [1: n}, map(Cy) =
map(C}) and so Vk € [1 : n], C}, = C}. (Existence) By construction of merge. By

~—

uniqueness and existence properties, s = splitﬁp is then a bijection from supp(merge(7j,
and supp(ny,) x ... x supp(ny}). Let Cj € supp(merge(7j,)). By definition merge(7j,)(Ch) =
S (ctocpean,, 30m) (Ch s Ch)) - Liequ.uey)=cy By bijectivity, merge(7,) (C)

1900

A

join(ip) (splity, (Cp))-

» Definition 34 (deter-dest, base). Let C = (A,S) be a configuration. For every A € A, we
note ¢ = S(A). Let ¢ € P(Autids). We define
deter-dest(C,a) ={A € ANaga,a = 5‘13} if a € sig(A)(q) and O otherwise. It represents
the set of automata that will be deterministically destroyed.
base(C,a,p) = AU\ deter-dest(C,a). It represents the automata present in supp(n)
with C ==, 1.

» Lemma 35 (Merging). Let n € N, Let (p1,...,0n) € P(Autids)™ with Vk,£ € [1 : n],
or N = 0. Let {Cr}repin) be a set of compatible configurations. Let 1) = (11, ...,7n)
€ Disc(Qeony)™. Assume Vk € [1 : n], if a € s/zZ(Ck), then Cy, :amk n* and otherwise,
n* =8¢, and o = 0. We note pg = Uke[l:n} or and Cy = Uke[lm] Cy.

1. Assume, Yk, 0 € [1:n],k # £, pr N auts(Cy) C deter-dest(Cy, a).
a. VCy € supp(merge(n)), it exists a unique (C1, ..., C},), noted split;(Cy), s.t.
(a) Co = Ukepn) Cr and (b) Yk € [1,n], C, € supp(ny).
supp(merge(7])) —  supp(m) X ... X supp(nn)
C = split;(Co)
b. merge(ii) & join(i) with s = split;
merge(n) = reduce(merge(f,) T o).

—<

d. Cy =%, merge(i) if a € sig(Co) and merge(7}) = dc, otherwise.

We note split; : {

o
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2. Assume YC{ € supp(merge(7)), C§ is compatible. Then, Yk, £ € [1 : n|,k # £, N
787 auts(Cy) C deter-dest(Cy, a).

s Proof. 1.

789 a. Indeed, let us imagine two candidates (C{,...,C},) and (CY, ..., C}) verifying both (a)

790 and (b). Let k,¢ € [1 : n],k # {. By contradiction, let A € auts(C},) N auts(C}).
791 By compatibility, A ¢ auts(Cy) N auts(Cy). W.lo.g., A € ¢ Nauts(Cy). By as-
792 sumption A € deter-dest(Cy, a) and so mathcal A ¢ auts(C}') which leads to a con-
793 tradiction. Hence, Vk € [1 : n], auts(C}) = auts(CY). Since auts(Uyep. Cr) =
794 auts(Upepn Cr)s VE € [1 1 n], auts(Cy) = auts(C}). By equality, Vk € [1 : n],
795 map(C},) = map(C}) and so Vk € [1: n], C;, = C}/. The existence is by construction
796 of jOiTl

707 b. The fact that s = split; is a bijection from supp(merge(i)) and supp(n1) X ... x supp(m1)
708 comes from the existence and the uniqueness of pre-image proved in item 1a Let Cj €
799 supp(merge(7})). By definition merge(7})(C) = Z(Cl’ LCL)EQn ]om( )((Cy, -, CL))-
300 Licju...u0)=cy- By bijectivity, merge(17)(Cy) = join(i)(split; (CO))

801 c. We want to show that merge(7j) = merge((reduce(n, 1 1), ..., (reduce(n 1 ¢,)) =
802 reduce(merge(fp) T Uke[l n] Pk) £ reduce(merge(fiy) 1 o). Intuitively, it comes from
803 1b that gives merge(7]) < join(7j) with s = split; and Vk € [1 : n], n* = Teduce(np T
804 k), with Vk, £ € [1:n],k # £, or N = 0. Let us elaborate.

805 Let Cy € supp(merge(i})). merge()(Cp) = join(n)(split;(Cp)) by 1b.

806 Hence, merge(7)(Cp) = Myepm(reduce(nf 1+ ¢x)(Cp) with split;(Ch) = (C1, ..., C,).
807 Thus, for every k € [1,n], C}, = (A},S}) with (i) A, = A} Uy, (ii) VA €
808 ok, SL(A) = qa (iil) VA € AL, S, (A) # ¢% (¥). This leads to merge(7)(Ch) =
809 Wiciin) (reduce(nk))(CY) with C}/ = (A}, S}) where S} = S} | A].

810 Hence, merge(i)(Cp) = iepin (ZC,’C’,Z,reduce(C,;fz):C,’; n}’,f(C,’c”e)) where every Cy, =
a1l (A} 4,81 ) € supp(ny) with reduce(Cy ,) = C}/ verifies A} , = Ay, and S{ , | A} = S],
812 (**)

813 Second, for every k € [1 : n], we note A{ = deter-dest(Cy,a), n;f)d the unique
a4 preserving distribution such that 77’“ desg® 77 4 With dest® : (A}, S}) — (A} \ AL S} |
815 (A} \ AY)) and we note np,d,T np’d Tk - We note Mp.dt = (M g5 - Magp)- Clearly,
816 (reduce(merge(fp) 1 ¢o)) = (reduce(merge(fp q.4)).

v (reduce(merge(Tpan)(Ch) = Sor . reduee(cy, oy (MErge(pa)(Ca,), where
a1 every Cp 4, = (Af a0 S0 a0 € supp((merge(np@ 1)) with reduce(Cy 4 ,) = Cq verifies
819 A 0,0 —AO\Uk 1:n] A and SO,d,Z FAg—S/

820 By lemma 33, for each ¢, (merge(ip,a,+))(Ch 4.0) = Splitﬁp,d,T(O(IJ,d,e) = er[l:n]n’;’d}T(C’,’c”d’E),
821 with Splitﬁ,,‘dﬁ( (/)7d7€) £ ( i,dl’ ""C;L,d,é)'

822 Moreover, every Cy, ;, = (Al.a.0rSkas) € supp(n;f’d 1T ¢r)) with reduce(Cy, 4 ,) = C, 4,
823 Aj g = (A \ A U pg, Sh.a.e | Ay =S}, We obtain (reduce(merge(ijp,a,1))(Cp) =
o 2205, preduce(Cy, )=y (T0Ip,a1) (splity, , (Cgq,))) and so

825 (reduce(merge(ijp,a,1))(Cp) = ZC(’)d/,reduce(Cé’d’Z):Cé (er[l:n](W,]f,d,¢)(ci/g,d,e)) (5%).
826 Clearly, for every k € [1: n], (nk 1 @) dest” 1717)C e

827 Combined with (**) and (***), we find merge(77)(Cy) = (reduce(merge(q,) T ¢))(Cp)

828 for every C{ € supp(merge(})), which ends the proof.
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d. If a ¢ sig(Cy), the result is trivial. Assume a € sig(Co) Let 7, = (1ps s my) €
Disc(Qeony)™ st. Vk € [L : n], Cp = ny if a € sig(Cy) and ny = bc, otherwise.
For every k € [1 : n], nF = Teduce(n; 1 k). By compatibility of Cp, for every
k.t € [1,n),k # ¢, AF N A} = 0. Hence, we can apply lemma 31 and we have
Co = merge(7j,). Thus, Co ==, reduce(merge(ij,) T o). Finally, merge(ij) =
reduce(merge(f,) T o) by lc.

2. By contradiction. W.l.o.g., let us assume A € ¢, Nauts(Cy) \ deter-dest(Cy, a). Since C
is compatible, A ¢ A, N A,. By definition of deter-dest it exists (C},, C}) € supp(n) %
supp(ne), A € auts(C},)Nauts(C}) and C;,UCY, is not compatible. So it exists (C, ..., C},) €
supp(m & ... @ ny) s.t. (CLU...UCY) is not compatible.

<

trivial results about homomorphisms between probability measures

» Lemma 36. Let (n1,12,13) € Disc(Q1) X Disc(Q2) X Disc(Q3), with Q; being a set for each
i1€{1,2,3}. Let f : Q1 — Q2 and g : Q1 — Q2 defined on supp(ny) and supp(nz) respectively.
Let f (resp. §) denotes the restriction of f (resp. g) on supp(n1) (resp. supp(nz)).

Ifm & ns and e & s, then

1. m & ns where the restriction h of h on supp(n1) verifies h=gof and
2. 19 & m where the restriction k of k to supp(n2) verifies k=f1

Proof.
(bijectivity) The composition of two bijection is a bijection and the reverse function of a
bijection is a bijection.
(measure preservation) In the first case, ¥Yq € supp(n1),n1(q) = n2(f(¢)) with f(q) €
supp(n2) which means n72(f(q)) = n3(g(f(q))). In the second case Vq' € supp(n2),Ilq €

supp(m),m(q) = n2(¢' = f(q)) and hence Vq' € supp(n2),m2(q") = m(qg = f~(¢)).
L |

» Lemma 37 (correspondence preservation for joint probability). Let 77 = (n1,...,0,) €

Disc(Q1) X ... X Disc(Qn), 7' = (0, ...,n},) € Disc(Q}) X ... X Disc(Q),) with each Q; (resp.
Q}) being a set. For each i € [1:n], let f; : Q; — Q}, where dom(f;) C supp(n;), with

%

771‘@77?

Then join(ij) < join(ij') with f:{ Q(lxlx - ZSH : mngé(lfzzx)l)x ;nzcg;(fn) .

Proof. The restriction f of f on supp(join(i)) = supp(ni) x ... X supp(n,) is still a bijection
and Vo = (21, ..., 2,) € dom(f1) X ...x dom(fy), join(f)(x) = n1(z1) ... Mn(Tn) = 71 (f1(z1))-
e (ful(@n)) = join(i') (f (@1, ..., an)). <

PCA closeness under composition

Now we are ready for the theorem that claims that a composition of PCA is a PCA.

» Theorem 38 (PCA closeness under composition). Let X1, ..., X,,, be partially-compatible
PCA. Then X = X4||...||Xn is a PCA.

Proof. We need to show that X verifies all the constraints of definition 19.
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(Constraint) 1: The demonstration is the same as the one in [2], section 5.1, pro-
position 21, p 32-33. Let gx and (A,S) = config(X)(gx). By the composition of
psioa, then ¢x = (¢x,, .-, 4x, ). By definition, config(X)(gx) = config(X1)(gx,) U ... U
con fig(X,)(gx, ). Since for every j € [1: n], X, is a configuration automaton, we apply
constraint 1 to X; to conclude S(A¢) = qa, for every A, € auts(config(X;)(gx,). Since
(auts(config(X1)(dx,), ..., auts(config(X,)(gx,)) is a partition of A by definition of
composition, S(Ay) = qa, for every A, € A which ensures X verifies constraint 1.
(Constraint 2)

Let (q,a,7(x,q,0)) € Dx. We will establish 3n" € Disc(Qcons) s.t- 1(x,q,0) & ' where
¢ = config(X) and config(X)(q) ==, 1’ with ¢ = created(X)(q)(a).

For brevity, let P, = psioa(X;) for every i € [1 : n]. By definition 29 of PCA com-
positon, psioa(X) = psioa(X1)||...||psioa(X,) = Pi||...]| P,. By definition 26 of PSIOA
composition, ¢ = (g1,....,qn) € Qp, X ... x Qp,, while a € ;g sig(P;)(q;) and
NX,q.0 = MPr.q1,a @ - @ NP, q..a With the convention np, 4, = 04, if a & sig(P;)(q;)-

Let (Z,J) be a partition of [1 : n] s.t. Vi € Z, a € sz/\g(PZ)(ql) and Vj € J, a ¢
s/z\'g(Pj)(qj). Then by PCA top/down transition preservation, it exists 1} € Disc(Qconys)
S. b MX,qa = NMPgia < 7, With ¢; = config(X;) and config(X;)(q;) ==, 1. with
¢; = created(X;)(q;)(a). For every j € J, we note p; = () and 0 = Oconfig(X,;)(q;) that
verifies dg, & n; with ¢; = config(X;).

We note 77" = (1, ...,m,) and ¢ = U,c(1.,) i~ By definition 29 of PCA composition,
» = created(X)(q)(a).

We have 1x 4,q & n with ¢ : ¢ = (q1, ..., qn) — (c1(q1), ---, ¢n(gn)) by lemma 37.
Moreover merge(i') < join(7i') with s = split; by lemma 35, item 1b.

S0 Nx.q.a < merge(ii') with ¢ = s7' o ¢/ = config(X).

Moreover we have con fig(X)(q) ==, merge(ii’) by lemma 35, item 1d.

(Constraint 3)

Let ¢ € Qx, C = config(X)(q), a € sig(X)(q), ¢ = created(X)(q)(a) that verify
C ==, 1. We need to show that it exists (q,a,7(x,q,a)) € Dx St. N(x,q.a) < 1’ with
¢ = config(X).

For brevity, let P, = psioa(X;) for every i € [1 : n]. By definition 29 of PCA com-
position psioa(X) = psioa(X1)||...|[psioa(Xy) = Pi|...|[P,. By definition 26 of PSIOA
composition, ¢ = (g1, ...,q¢n) € Qp, X ... X Qp,, while a € Uie[l:n] sig(P;)(q;)-

Let (Z,J) be a partition [1 :n] st. Vi€ Z, a € s/i?J(Pl)(ql) andVje€ J,a¢ @(Pj)(qj).
For every i € Z, we note ¢; = created(X;)(q;)(a),while for every j € J, we note p; =0
and 7} = dconfig(x;)(q;) that verifies d,; & n; with ¢; = config(X;).

We note ¢ = created(X)(g)(a). By pca-composition definition, ¢ = (., ¢ For
every k € [1: n], we note Cj, = config(X)(qxr) and for every i € Z, n; € Disc(Qconyg) s.t.
C; :a>%. n;. We note 7' = (n1, ..., n,,)

By constraint 3 (bottom/up transition preservation), Vi € Z, 3(q;, a,1x;,¢:,a) € Dx, s.t.

$n

NX,.qi.a <+ 1) with ¢; = config(X;). by lemma 37, 1x g0 = 1X1.q1.0 @ - @ X, qn.a
M ® ... @mn, = join(q') with the convention 71x, 4,.a = 0y for j € J and ¢’ : ¢ =
(q1y s qn) € states(X) — (c1(q1)y s Cn(gn))-

By partial-compatibility, for every C’ € supp(merge(7}’)), C’' is compatible. Hence we
can apply lemma 35, item 1b, which gives merge(ii’) & join(7') with s = splity,. Hence

Nx.q.a < merge(ii’) with ¢ = s~1 o ¢, that is 1x 4.0 < 7 with ¢ = config(X) and the

restriction of ¢’ on supp(nx,q4.q) is ¢. We can apply lemma 35 again, but for item 1d,
which gives C' =%, merge(y').
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(Constraint 4).

Let ¢ = (g1, .-, qn) € Qx. For every i € [1,n], we note h; = hidden-actions(X;)(¢:), Ci =
config(X;)(gi), h = U;ep ) hi and C = config(X)(q). Since Xy, ..., X, are compatible
at state ¢, we have both {C;|i € [1,n]} compatible and Vi, j € [1,n],in(C;) Nh; = 0. By
compatibility, Vi, j € [1,n],i # j, out(C;) Nout(C;) = int(C;) N s/i\g(Cj) = (), which finally
gives Vi, j € [1,n],i # j, sig(Cy) N h; = 0.

Hence, we can apply lemma 6 of commutativity between hiding and composition to obtain
hide(sig(Ch) X .... X sig(Cy), h1 U ... U hy,) = hide(sig(Cy), h1) X ... x hide(sig(Cy), hn)
where x has to be understood in the sense of definition 3 of signature composition.
That is sig(psioa(X))(q) = sig(psioa(X1))(q1)) X ... x sig(psioa(X,))(qn)), as per
definition 3, with sig(psioa(X))(q) = hide(sig(config(X)(x)),h). Furthermore h C
out(config(X)(q)), since Vi € [1,n], h; C out(C;). This terminates the proof.

8 Scheduler, measure on executions, implementation

An inherent non-determinism appears for concurrent systems. Indeed, after composition (or
even before), it is natural to obtain a state with several enabled actions. The most common
case is the reception of two concurrent messages in flight from two different processes.
This non-determinism must be solved if we want to define a probability measure on the
automata executions and be able to say that a situation is likely to occur or not. To solve
the non-determinism, we use a scheduler that chooses an enabled action from a signature.

8.1 General definition and probabilistic space (Frags(.A), Frrags(a), €o,1)

A scheduler is hence a function that takes an execution fragment as input and outputs
the probability distribution on the set of transitions that will be triggered. We reuse the
formalism from [20] with the syntax from [3].

» Definition 39 (scheduler). A scheduler of a PSIOA (resp. PCA) A is a function

o : Frags*(A) — SubDisc(D4) such that (q,a,n) € supp(o(a)) implies ¢ = Istate(w).
Here SubDisc(D 4) is the set of discrete sub-probability distributions on D 4. Loosely speaking,
o decides (probabilistically) which transition to take after each finite execution fragment c.
Since this decision is a discrete sub-probability measure, it may be the case that o chooses to
halt after o with non-zero probability: 1 — o(a)(D 4) > 0. We note schedulers(A) the set of
schedulers of A.

» Definition 40 (measure €, generated by a scheduler and a fragment). A scheduler o and a
finite execution fragment o generate a measure €54 on the sigma-algebra Fpyqgs.4) generated
by cones of execution fragments, where each cone Cy is the set of execution fragments that
have &' as a prefix, i.e. Cor = {a € Frags(A)|o’ < a} . The measure of a cone Cy is defined
recursively as follows:

0 if both o' £ a and a £ o

€o,a(Cor) =:¢ 1 ifo <a
€o,0 (Coz”) : O-(O//)<"7(A,q/,a)) “N(A,q a) (@) ifa<a and o’ =a""q¢aq

Standard measure theoretic arguments [20] ensure that €, , is well-defined. The proof
of [20] (terminating with theorem 4.2.10, section 4.2) is very general and might appear
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discouraging for a brief reading. For sake of completeness, we adapt the proof of [20] to the
formalism of [3]°.
First, for every set C of subset of a set Q, we define Fy(C), F2(C), F3(C), Fq as follows:

Let F1(C) be the be the family containing 0, Q, and all C C Q such that either C € C or
Q\C ecC.

F5(C) is the family containing all finite intersections of elements of Fy(C).

F3(C) is the family containing all finite unions of disjoint elements of F5(C).

Clearly, F5(C) is a ring ("field" in [20]; a ring is also a semi-ring, which is enough to apply
extension theorem [15]) on §2, i.e. it is a family of subsets of € that contains €2, and that
is closed under complementation and finite union. When €2 is clear in the context, we say
F3(C) is the ring generated by C.

Fq is defined as the smallest sigma-algebra containing F3(C). (This is also the smallest
sigma-algebra on Q) containg C). We say Fgq is the sigma-algebra generated by C. If u
is a measure on F5(C), by famous Carathéodory’s extension theorem [7], there exists a
unique extension £’ of yu to the sigma-algebra Fo, defining p/(¥,cny Er) 2 D pen #(Ek).

Let C = {Cy |’ € Frags(A)} be the set of cones. Clearly, C is a set of subsets of Frags(A).
As mentioned earlier, we define Fpygs.4) as the sigma-algebra on Frags(A) generated by C.

Also, for every pair of execution fragments «; and s, if a3 and as are non-comparable,
then C,, U C,, is not a cone, while if o; and a9 are comparable, C,,, and C,, are not
disjoint. Hence, sigma-additivity is trivially ensured by €, , on C. Now, let us generate the
appropriate sigma-algebra Fpy,gs4) on Frags(A) and let us extend €5 o t0 Frrags(a)-

Let F1(C) be the be the family containing @), Frags(A), and all C' C Frags(A) such that

either C € C or Frags(A) \ C € C.

There exists a unique extension €<i7,(y of €5 to F1(C). Indeed, there is a unique way
to extend the measure of the cones to their complements since for each o, €, ,(Cor) +
€, o(Frags(A) \ Cor) = 1. Therefore €, , coincides with ¢, on the cones and €, ,
is defined to be 1 — ¢, ,(Cy) for the complement of any cone C, . By countably
branching structure of Frags(A) (Q 4 and acts(A) are both countable), the complement
of a cone is a countable union of cones. Indeed, let o/ € Frags*(A),Cy € C, then
Frags(A) \ Cor = Ua,/epmgs*(A%a,,%a%a,%a,, Cy. Hence, o-additivity is preserved.
Let F5(C) be the family containing all finite intersections of elements of F;(C). There
3

exists a unique extension €,

of €, , to F»(C). Indeed, let us fix a pair of execution
fragments a; and as, if @; and ay are non-comparable, then C,, N Cy, = 0 is not
a cone, while if a; and ag are comparable, let say a1 < ag, then C,, N Cy, = Co,.
Thus, intersection of finitely many sets of F;(C) is a countable union of cones. Therefore
o-additivity enforces a unique measure on the new sets of Fy(C).

Let F3(C) be the family containing all finite unions of disjoint elements of F5(C) .

i, of €, to F»(C). Indeed, there is a unique way of
assigning a measure to the finite union of disjoint sets whose measure is known, i.e.,
adding up their measures. Since all the sets of F5(C) are countable unions of cones,
o-additivity is preserved.

Clearly, F5(C) is a ring ("field" in [20]) on Frags(A), i.e. it is a family of subsets of
Frags(A) that contains Frags(A), and that is closed under complementation and finite
union. Fppqgsa) is defined as the smallest sigma-algebra containing F3(C). (This is

There exists a unique extension €

5 We are not aware of such an adaptation in the literature. This concise presentation might have its own
pedagogical interest
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also the smallest o-algebra containg C). By famous Carathéodory’s extension theorem
[7], there exists a unique extension e?ja of eﬁ,”a to the sigma-algebra Fpyqg4), defining
Efrqja (Ween Er) = Xpen efri,ia (E).-
We can remark that Vo' € Frags*(A),{a'} = Cor \ (Usreprags:(a),ar<ar Car). In the
same way, Vo € Frags®(A),{a/} = Frags(A)\(U;en Uar e prags (A),ali<a’ .o/ [111 20711 Car)-
Hence Vo € Frags(A),{e/} € Fprags(a)- Necessarily, we have Yo/ € Frags®(A), e’ (o) =

lim;_, o0l (@];). Let us note that the limit is well-defined, since Vi € N, (1) €¥,,(a/]i11) <

o,a
eV, (a'];) and (2) €’ (c/|;) > 0. In the remaining, we abuse the notation and use €4, to
denotes its extension €, on Fprags(4)-

We call the state fstate(c) the first state of €,,, and denote it by fstate(ey,qo). If & consists
of the start state g4 only, we call €, o a probabilistic execution of A. Let u be a discrete
probability measure over Frags*(A). We denote by €, the measure 3 0, 1(Q) €50
and we say that €, , is generated by ¢ and pu. We call the measure ¢, , a generalized
probabilistic execution fragment of A. If every execution fragment in supp(u) consists of a
single state, then we call €, , a probabilistic execution fragment of A.

The collection F(C Execs( A)) of sets obtained by taking the intersection of each element in
F3(C) with Ezecs(A) is a ring in Ezecs(A). We note Fpyecs4) the smallest sigma-algebra
containing F(Cggecs(4))- In the remaining part of the paper, we will mainly focus on
probabilistic executions of A of the form e, = €000, = €ovda- Hence, we will deal with
probablistic space of the form (Ezecs(A), Fgpecs(A); €o)-

{{l i o {fa."
OO0
" o
'." {{2.|. c {fl‘
£ i o P00
| oam
| " e s
a| o
" " a—r O - >@
.-' q2.1r.' q:l.lr.'
4 .
{{2.:
d
o A0
(:}.___
1z €{2.y
T
o0

Figure 15 Non-deterministic execution: The scheduler allows us to solve the non-determinism,
by triggering an action among the enabled one. Typically after execution o = ¢° d ¢"*, the actions
e and f are enabled and the probability to take one transition is given by the scheduler o that
computes o(a).

Scheduler Schema

Without restriction, a scheduler could become a too powerful adversary for practical ap-
plications. Hence, it is common to only consider a subset of schedulers, called a scheduler
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schema. Typically, a classic limitation is often described by a scheduler with "partial online
information". Some formalism has already been proposed in [20] (section 5.6) to impose the
scheduler that its choices are correlated for executions fragments in the same equivalence
class where both the equivalence relation and the correlation must to be defined. This idea
has been reused and simplified in [4] that defines equivalence classes on actions, called tasks.
Then, a task-scheduler (a.k.a. "off-line" scheduler) selects a sequence of tasks 17,75, ... in
advance that it cannot modify during the execution of the automaton. After each transition,
the next task T; triggers an enabled action if there is no ambiguity and is ignored otherwise.
One of our main contribution, the theorem of implementation monotonicity w.r.t. PSIOA
creation, is ensured only for a certain scheduler schema, so-called creation-oblivious. However,
we will see that the practical set of task-schedulers are not creation-oblivious.

» Definition 41 (scheduler schema). A scheduler schema is a function that maps every
PSIOA (resp. PCA) A to a subset of schedulers(A).

8.2 Implementation

In last subsection, we defined a measure of probability on executions with the help of a
scheduler to solve non-determinism. Now we can define the notion of implementation. The
intuition behind this notion is the fact that any environment £ that would interact with
both A and B, would not be able to distinguish .4 from B. The classic use-case is to formally
show that a (potentially very sophisticated) algorithm implements a specification.

For us, an environment is simply a partially-compatible automaton, but in practice, he
will play the role of a "distinguisher".

» Definition 42 (Environment). A probabilistic environment for PSIOA A is a PSIOA £
such that A and & are partially-compatible. We note env(A) the set of environments of A.

Now we define insight function which is a function that captures the insights that could
be obtained by an external observer to attempt a distinction.

» Definition 43 (insight function). An insight-function is a function f ) parametrized
by a pair (€, A) of PSIOA where £ € env(A) s.t. fe a) is a measurable function from
(Ezecs(E||A), Fruees(e||a)) to some measurable space (G (g Ay, FG e uy)-

Some examples of insight-functions are the trace function and the environment projection
function.

Since an insight-function f( ) is measurable, we can define the image measure of ¢,
under f(g 4), i.e. the probability to obtain a certain external perception under a certain
scheduler o and a certain probability distribution p on the starting executions.

» Definition 44 (f-dist). Let f(  be an insight-function. Let (£, A) be a pair of PSIOA
where £ € env(A). Let p be a probability measure on (Execs(E||A), Fgzees(e|A)), and
o € schedulers(E||A). We define f-diste ay(o, 1), to be the image measure of €5, under
fe.ay (i-e. the function that maps any C € Fg , to e(,,“(f(_g%A)(C)) ) . We note f-
dist(g a)(0) for f-distie a)(0, g 4)-

We can see next definition of f-implementation as the incapacity of an environment to
distinguish two automata if it uses only information filtered by the insight function f.

» Definition 45 (f-implementation). Let f( .y be an insight-function. Let S be a scheduler
schema. We say that A f-implements B according to S, noted A §Os’f B, if V€ € env(A) N
env(B), Vo € S(E]|A), 3o’ € S(E||B), f-diste ay(o) = f-diste p)(0’), i.ec.
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supp(f-diste_ay(0)) = supp(f-diste (")) = supp, and
VC € supp, [-diste,a)(0)(C) = f-diste p)(0’)(C)

We states a necessary and sufficient condition to obtain composability of f-implementation.

» Definition 46 (Perception function). Let f( ) be an insight-function. We say that f( y is a
stable by composition if for every quadruplet of PSIOA (A1, As, B, E), s.t. B is partially com-
patible with Ay and Az, € € env(B||A1) Nenv(B||Az2), for every (C1,Ca) € Frpees(e||B]|A1) X
Frwees(e||BllA2)» fe)8.41) (C1) = [fe8.a2)(C2) = fieB1an(C1) = fie.B)a,(C2). An
insight function stable by composition is said to be a perception-function.

Substitutability
We can restate classic theorem of composability of implementation in a quite general form.

» Theorem 47 (Implementation composability). Let f( y be a perception-function. Let S be
a scheduler schema. Let A, ./42,‘ B be PSIOA, s.t. Ay §§’f As. If B is partially compatible
with Ay and Az then B||.A; §§’f B||Asz.

Proof. If £ is an environment for both B||.4; and B||Az, then & = £||B is an environment
for both A4; and As. By associativity of parallel composition, we have for every i € {1,2},
(EIB)||A;i = &||(B]]A). Since A; <57 Ay, for any scheduler o € S((£]|B)|| A1), it exists
a corresponding scheduler o' € S((E[|B)||Az2), s.t. f-diste|p),u,(€5) = f-diste|By,4,(€5")-
Thus, by stability by composition, for any scheduler o € S(€||(B||.A1)), it exists a corres-
ponding schedule o’ € S(E||(B||Az2)), s.t. f-diste 8)14,))(€x) = f-dist (e (8].4,))(€0r), that is
Av|B <5 As||B. <

We also want restate classic theorem of f-implementation transitivity in the same form.

» Theorem 48 (Implementation transitivity). Let S be a scheduler schema. Let f( . be
an insight-function. Let Ay, As, Az be PSIOA, s.t. Ay Sos’f Ao and A, Sg’f Az, then
.A1 Sg’f A3.

Proof. Let £ € env(A;) Nenv(As).

Case 1: £ € env(Ay). Let o1 € S(E||A1) then, since A; <5 Ay it exists o5 € S(E]|As)
f-distg a,y(01) = f-diste a,)(02) and since Ay <3 As, it exists o3 € S(E||A3) st f-
dist(g a,)(02) = f-dist(e a,)(03) and so for every o1 € S(E||A1) ,it exists o3 € S(E]|A3) s.t.
f-dist(s a,)(01) = f-distg ay(03) , ie. Ay <57 As.

Case 2: £ ¢ env(Asz). A renaming procedure has to be performed before applying Case 1.

Let A = {€, A1, Az, As}. We note acts(A) = [Ugea acts(B). We use the special character
® for our renaming which is assumed to not be present in any syntactical representation of
any action in acts(A).

We note ri; the action renaming fonction s.t. Vg € Qe, Va € sig(€)(q), if a € int(€)(q),
then rin:(q)(a) = agint and 7in:(q)(a) = a otherwise. Then we note &' = 1, ().

If &’ and A; are not partially-compatible, it is only because of some reachable state
(ge,qa,) € Q% X Qa, s.t. out(Az)(ga,) Nout(E)(ge) # 0. Thus, we rename the actions for
each state to avoid this conflict.

We note r,,; the renaming function for £, s.t. Vge € Q¢, Va € %(5)((]5‘), Tout(qe)(a) =
agout if a € out(€)(ge) and a otherwise. In the same way, We note, for every i € {1,2,3}
ri the renaming function for A;, s.t. Vg4, € Q4,, Va € s/z\g(Al)(qAZ) Tin(ga;)(a) = agou if
a € in(A;)(qa,) and a otherwise. By lemma 12, £ £ 7,,:(£’) is a PSIOA. Finally, £&” and
A =7 (A;) are obviously partially-compatible (and even compatible) for each i € {1,2,3}.
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There is an obvious isomorphism between £”||A] and £||.A; and between £”||. A5 and
E||As that allows us to apply case 1, which ends the proof.
<

The two last theorems allows to state the classical theorem of substitutability.

» Theorem 49 (Implementation substitutability). Let f( .y be a perception-function. Let S be
a scheduler schema. Let Ay, As, By, By be PSIOA, s.t. Ay §0S’f Ao and By Sg’f Bs. If both
B1 and By are partially compatible with both Ay and As then A;||B; gﬁ’f As||Bs.

Proof. By theorem 47 of implementation composability, A1 ||51 <§’f As||B1 and As|| By g(f’f

As||By. By theorem 48 of implementation transitivity A;||B; <5 As||Bo. <

Trace and projection on environment are perception-functions

» Proposition 50 (trace is measurable). Let A be a PSIOA (resp. PCA).
tracea : (Evecs(A), Fugees(a)) — (Traces(A), Frraces(A)) is measurable.

Proof. This is enough to show that V3 € Traces*(A), trace;‘l (Cs) € Frgeesay- Yet,
trace ;' (Cs) = Upe Buees* (A) trace s (a)—p Ca- Hence, this is a countable union of cones of
executions of A, i.e. an element of Fryecq(a)- <

» Proposition 51 (projection is measurable). Let A be a PSIOA (resp. PCA) and € € env(A).

{ (Evecs(E||A), Fupeesel|a)) —  (Ezecs(E), Frecs())
o

is measurable.
— alf

Proj(e, A
Proof. This is enough to show that Vo' € Fzecs*(£), proj(_glA)(Ca/) € Fhrecs(e||A)- Yeb,

proj(_g%A) (Co) = UaeEmcs*(A)’aw:a, C,. Hence, this is a countable union of cones of
executions of £||A, i.e. an element of Fryecs(])a)- <

» Lemma 52 (trace and projections are perception functions). The function trace( ) and
proj.,.y parametrized with PSIOA £, A where £ € env(A), (with traces ay = traceg|a))
are both perception functions.

Proof. 1. (measurability) Immediate by propositions 50 and 51.

2. (stability by composition) Let (A1, Az, B,E) be a quadruplet of PSIOA, s.t. B is com-
patible with A; and Ay, £ € env(B||A1) N env(B||Az). Let (a,m) € Execsg)gja, X
Ezecse||)|a,, clearly a [ (E||B) =7 [ (£]|B) = a [ (€]|B) [E=n [ (£]|B) [ € = a |
€ =mx | €, while the traces stay the same.

<

Thus, given an environment & of A probability measure 1 on Frgees(g|).4), and a scheduler
o of (£]|A) we define pdist(g ) (0, ) = proj-diste ay(o, 1), to be the image measure of €,
under proje, a). We note pdist(g ay(0) for pdist(e a)(0,0ge) 4)-

This choice that slightly differs from tdist e a)(0, ) = trace-dist(g ay(c, i) used in [5], is
motivated by the achievement of monotonicity of p-implementation w.r.t. PSIOA creation.

9 Introduction on PCA corresponding w.r.t. PSIOA A, B to introduce
monotonicity

In this section we take an interest in PCA X 4 and Xp that differ only on the fact that
B supplants A in Xg. This definition is a key step to formally define monotonicity of a
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property. If a property is a binary relation on automata, a brave property P would verify
monotonicity, i.e. if 1) (A, B) € P, and 2) X4 and Xpg are PCA that differ only on the fact
that B supplants A in Xz, then 3) (X4, Xp) € P. Monotonicity of implementation w.r.t.
PSIOA creation is the main contribution of the paper.

9.1 Naive correspondence between two PCA

We formalize the idea that two configurations are identical except that the automaton B
supplants A but with the same external signature. The following definition comes from [2].

» Definition 53 (<1 45-corresponding configurations). (see figure 27) Let ® C Autids, and A, B
be PSIOA identifiers. Then we define ®[B/A] = (2\ A) U{B} if A€ ®, and P[B/A] = if
A¢ . Let C, D be configurations. We define C <ag D iff (1) auts(D) = auts(C)[B/A], (2)
for every A" ¢ auts(C) \ {A} : map(D)(A") = map(C)(A"), and (3) ext(A)(s) = ext(B)(t)
where s = map(C)(A),t = map(D)(B). That is, in <ap-corresponding configurations, the
SIOA other than A, B must be the same, and must be in the same state. A and B must have
the same external signature. In the sequel, when we write U = ®[B/A], we always assume
that B¢ ® and A ¢ 0.

SR

a u [ v e A ;
¢ = - int:g int:h Int: k
o d o f 0
b —_— —_J m
a u [~ v e B )
D = 1 oint:g > nten o I >
9y o ara s
b e — — m

Figure 16 <45 corresponding-configuration

» Remark 54. It is possible to have two configurations C', D s.t. C' <{qq D. That would
mean that C' and D only differ on the state of A (s or t) that has even the same external
signature in both cases ext(A)(s) = ext(A)(t), while we would have int(A)(s) # int(A)(t).

Now, we formalise the fact that two PCA create some PSIOA in the same manner,
excepting for B that supplants A. Here again, this definition comes from [2].

» Definition 55 (Creation corresponding configuration automata). Let X, Y be PCA and A, B

be PSIOA. We say that X,Y are creation-corresponding w.r.t. A, B iff

1. X never creates B and Y never creates A.

2. Let (a,m) € Ezecs™(X) x Ezecs™(Y) s.t. trace4(a) = traceg(w). Let ¢ = lstate(a),q' =
Istate(w). ThenVa € sig(X)(q)Nsig(Y)(¢') : created(Y)(q')(a) = created(X)(q)(a)[B/Al.

In the same way than in definition 55, we formalise the fact that two PCA hide some
output actions in the same manner. Here again, this definition is inspired by [2].

» Definition 56 (Hiding corresponding configuration automata). Let X,Y be PCA and A,B

be PSIOA. We say that X,Y are hiding-corresponding w.r.t. A, B iff

1. X never creates B and Y never creates A.

2. Let (a,7) € Execs”(X) x Ezecs™(Y) s.t. tracea(a) = traceg(w). Let q = Istate(a),q =
Istate(w). Then hidden-actions(Y)(q") = hidden-actions(X)(q).
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» Definition 57 (creation&hiding-corresponding). Let X,Y be PCA and A,B be PSIOA.
We say that XY are creation&hiding-corresponding w.r.t. A, B, if they are both creation-
corresponding and hiding-corresponding w.r.t. A, B

Now we define the notion of A-exclusive action which corresponds to an action which is
in the signature of .4 only. This definition is motivated by the fact that monotonicity induces
that A-exclusive (resp. B-exclusive) actions do not create automata. Indeed, otherwise two
internal action a and a’ of A and B respectively could create different automata C and D
and break the correspondence.

» Definition 58 (.A-exclusive action). Let A € Autids, X be a PCA. Let g € Qx, (A,S) =
config(X)(q), act € sig(X)(q). We say that act is A-exclusive if for every A" € A\ {A},
act ¢ sig(A')(S(A")) (and so act € sig(A)(S(A)) only).

The previous definitions 53, 55, 56 and 58 allow us to define a first (naive) definition of
PCA corresponding w.r.t. A, B.

» Definition 59 (naively corresponding w.r.t. A, B). Let A,B € Autids, X4 and Xp be PCA
we say that X4 and Xg are naively corresponding w.r.t. A, B, if they verify:

con fig(Xa)(qx.) <ap config(Xp)(dxs)-

X 4, Xp are creation&hiding-corresponding w.r.t. A, B

(No exclusive creation from A and B) for each K € {A,B}, Vq € Qx, , for every
K-exclusive action a, created(X)(q)(a) =0

The last definition 59 of (naive) correspondence w.r.t. A, B allows us to define a first
(naive) definition 60 of monotonic relation.

» Definition 60 (Naively monotonic relationship). Let R be a binary relation on PSIOA. We
say that R is naively monotonic if for every pair of PSIOA (A,B) € R, for every pair of
PCA X 4 and Xg that are naively corresponding w.r.t. A, B, (psioa(X 4),psioa(Xg)) € R

However, the relation of p-implementation introduced in subsection 8.2 is not proved

monotonic without some additional technical assumptions presented in next subsection 9.2.

Roughly speaking, it allows to 1) define a PCA'Y = X\ {A} that corresponds to X "deprived"
from A and 2) define the composition between Y and A, 3) avoiding some ambiguities during
the construction. In the first instance, the reader should skip the next subsection 9.2 on
conservatism and keep in mind the intuition only. This sub-section 9.2 can be used to
know the assumptions of the theorems of monotonicity and use them as black-boxes. The
assumptions will be re-called during the proof.

9.2 Conservatism: the additional assumption for relevant definition of
correspondence w.r.t. A, B

This subsection aims to define the notion of A-conservative PCA.

Some definitions relative to configurations

In the remaining, it will often be useful to reason on the configurations. This is why we
introduce some definitions that will be used again and again in the demonstrations.

The next definition captures the idea that two states of a certain layer represents the
same situation for the bottom layer.
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» Definition 61 (configuration-equivalence between two states). Let K, K’ be PCA and (¢,q') €
Qr X Qkr. We say that ¢ and ¢’ are config-equivalent, noted qRcontq’, if config(K)(q) =
config(K')(q"). Furthermore, if

config(K)(q) = config(K')(¢),

hidden-actions(K)(q) = hidden-actions(K')(q") and

Va € 5ig(K)(q) = sig(K")(¢'), created(K)(q)(a) = created(K")(¢')(a),

we say that ¢ and ¢’ are strictly-equivalent, noted qRgtrictq’

Now, we define a special subset of PCA that do not tolerate different configuration-
equivalent states.

» Definition 62 (Configuration-conflict-free PCA). Let K be a PCA. We say K is configuration-
conflict-free, if for every q,q¢' € Qk s.t. qRconsq’, then ¢ = ¢'. The current state of a
configuration-conflict-free PCA can be defined by its current attached configuration.

For some elaborate definitions, we found useful to introduce the set of potential output
actions of A in a configuration config(X)(q) coming from a state ¢ of a PCA X:

» Definition 63 (potential ouput). Let A € autids. Let X be a PCA. Let ¢ € Qx. We note
pot-out(X)(q)(A) the set of potential output actions of A in config(X)(q) that is
pot-out(X)(q)(A) = 0 if A ¢ auts(config(X)(q))
pot-out(X)(g)(A) = out(A)(map(con fig(X)(q))(A)) if A € auts(config(X)(q))

Here, we define a configuration C' deprived from an automaton A in the most natural
way.

—~

» Definition 64 (C\ {A} Configuration deprived from an automaton). C' = (A,S). C\ {A} =
(A")S") with A’ = A\ {A} and S’ the restriction of S on A’

The two last definitions 63 and 64 allows us to define in compact way a new relation
between states that captures the idea that two states ¢ € Qx and ¢’ € Qy are equivalent
modulo a difference uniquely due to the presence of automaton A in config(X)(q) and

config(Y)(q').

» Definition 65 (R\t4} relationship (equivalent if we forget A)). Let A € Autids. Let
f\QX|X is a PCA } the set of states of any PCA. We defined the equivalence relation
R\{A R on s defined by VX, Y PCA, V(gx,qyv) € @x X Qy :

conf

Ré’; {qy = config(X)(gx) \ {A} = config(Y)(ay) \ {A}
xR

strict

con f
qy <= the conjonction of the 3 following properties:

qXszn)f}qY N
Va € sig(X)(ax) N sig(Y)(ay), created(Y)(ay)(a) \ {A} = created(X)(ax)(a) \ {A}

hidden-actions(X)(gx)\pot-out(X)(¢x)(A) = hidden-actions(Y)(gy )\pot-out(Y)(qy )(A)

A-fair and A-conservative: necessary assumptions to authorize the construction
used in the proof

Now, we are ready to define A-fairness and then A-conservatism.

A A-fair PCA is a PCA s.t. we can deduce its current properties from its current
configuration deprived of A. This assumption will allow us to define Y = X \ {4} in the
proof of monotonicity.
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» Definition 66 (A-fair PCA). Let A € Autids. Let X be a PCA. We say that X is A-fair if
(configuration-conflict-free ) X is configuration-conflict-free.
(no conflict for projection) Vqx,dx € Qx, s.t. qXRZLEf;q;( then qXszéjtqg( .
(no exclusive creation by A) Vgx € Qx, Va € sz/'\g(X)(qX) A-exclusive in qx,

created(X)(gx)(a) =0

This definition 66 allows the next definition 67 to be well-defined. A A-conservative PCA
is a A-fair PCA that does not hide any output action that could be an external action of A.
This assumption will allow us to define the composition between A and Y = X \ {4} in the
proof of monotonicity.

» Definition 67 (A-conservative PCA). Let X be a PCA, A € Autids. We say that X is
A-conservative if it is A-fair and for every state qx, Cx = config(X)(¢x) s.t. A € aut(Cx)
and map(Cx)(A) £ qa, hidden-actions(X)(qx) Next(A)(qa) = 0.

9.3 Corresponding w.r.t. A, B

We are closed to state all the technical assumptions to achieve monotonicity of p-implementation
w.r.t. PSIOA creation. We introduce one last assumption so-called creation-explicitness,
used in section 14 to reduce implementation of X by X 4 to implementation of B by A.

Intuitively, a PCA is A-creation-explicit if the creation of a sub-automaton A is equivalent
to the triggering of an action in a dedicated set. This property will allow to obtain the
reduction of lemma 187.

» Definition 68 (creation-explicit PCA). Let A be a PSIOA and X be a PCA. We say that X
is A-creation-explicit iff: it exists a set of actions, noted creation-actions(X)(A), s.t. Vgx €
Qx,Vae S/ijq(X)(qX), if we note Ax = auts(config(X)(qx)) and px = created(X)(gx)(a),
then A¢ Ax NA € px < a € creation-actions(X)(A).

Now we can define new (non naively) correspondence w.r.t. PSIOA A, B to define (non
naively) monotonic relationship.

» Definition 69 (corresponding w.r.t. A, B). Let A, B € Autids, X4 and Xp be PCA we
say that X4 and Xg are corresponding w.r.t. A, B, if 1) they are naively corresponding
w.r.t. A, B, 2) they are A-conservative and B-conservative respectively and 3) they are
A-creation explicit and B-creation explicit respectively with creation-actions(X4)(A) =
creation-actions(Xg)(B) i.e. they verify:

X 4 is A-conservative and Xg is B-conservative

XA is A-creation explicit and Xp is B-creation explicit with creation-actions(X 4)(A) =
creation-actions(Xp)(B)

config(Xa)(gx.,) <ap config(Xs)(qxz)-

X 4, Xp are creation&hiding-corresponding w.r.t. A, B

(No exclusive creation from A and B) for each K € {A,B}, Vq € Qx, , for every
K-ezclusive action a, created(Xx)(q)(a) =0

» Definition 70 (Monotonic relationship). Let R be a binary relation on PSIOA. We say that
R is monotonic if for every pair of PSIOA (A, B) € R, for every pair of PCA X 4 and Xp
that are corresponding w.r.t. A, B, (psioa(X 4),psioa(Xg)) € R.

We would like to state the monotonicy of p-implementation, but it holds only for a certain
class of schedulers, so-called creation-oblivious introduced in next subsection 9.4
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9.4 Creation-oblivious scheduler

Here we present a particular scheduler schema, that do not take into account previous internal
actions of a particular sub-automaton to output its probability over transitions to trigger.

We start by defining strict oblivious-schedulers that output the same transition with the
same probability for pair of execution fragments that differ only by prefixes in the same class
of equivalence. This definition is inspired by the one provided in the thesis of Segala, but is
more restrictive since we require a strict equality instead of a correlation (section 5.6.2 in
20]).

» Definition 71 (oblivious scheduler). Let W be a PCA or a PSIOA, let & € schedulers(W)
and let = be an equivalence relation on Frags*(W) verifying Vai,ay € Frags®(W) s.t.
Gy = Go, Istate(aq) = lstate(as) . We say that & is (=)-strictly oblivious if Véq, as, ds €

Frags*(W) s.t. 1) a1 = ag and 2) fstate(as) = lstate(da) = Istate(dy), then (a7 as) =
5(ay as).

Now we define the relation of equivalence that defines our subset of creation-oblivious
schedulers. Intuitively, two executions fragments ending on A creation are in the same
equivalence class if they differ only in terms of internal actions of A.

» Definition 72 (& = a'). Let A be a PSIOA, and W be a PCA. For every a,& €
Frags*(W), we say & = & iff:
1. a,a’ both ends on A-creation.
2. & and & differ only in the A-exclusive actions and the states of A, i.e. p(&) = p(ad’)
where (& = ¢a'G...a"§") € Frags*(W) is defined as follows:
remove the A-exclusive actions
replace each state ¢ by its configuration Config(W)(§) = (A%, S?)
replace each configuration (A*,S%) by (A%, S%) \ {A}
replace the (non-alternating) sequences of identical configurations (due to A-exclusiveness
of removed actions) by one unique configuration.

3. Istate(a) = lstate(&')

We can remark that the items 3 can be deduced from 1 and 2 if X is configuration-
conflict-free.

» Definition 73 (creation-oblivious scheduler). Let A be a PSIOA, W be a PCA, & €

1 —=Cr

schedulers(W). We say that & is A-creation oblivious if it is (= )-strictly oblivious.

We say that & is creation-oblivious if it is A-creation oblivious for every sub-automaton
Aof W (Ac Ugestates(¥) auts(config(W)(q))). We note CrOb the function that maps
any PCA W to the set of creation-oblivious schedulers of W.

We have formally defined our notion of creation-oblivious scheduler. This will be a key
property to ensure lemma 187 that allows to reduce the measure of a class of comportment
as a function of measures of classes of shorter comportment where no creation of A or B
occurs excepting potentially at very last action. This reduction is more or less necessary to
obtain monotonicity of implementation relation:

» Theorem 74 (SOCTOb’p is monotonic). Let A, B € Autids, X4 and X be PCA corresponding
wr.t. A, B. Let S = CrOb and p = proj._y. If A<g" B, then X4 <5" Xp

The remaining sections are dedicated to the proof of this theorem 74. We start by defining
in section 10 a morphism between executions of automata, so called executions-matching, that
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preserves structure and measure of probability under alter ego schedulers. Next, we define
in section 11 the notion of an automaton X 4 deprived from a PSIOA A, noted X 4\ {A}.
Furthermore, we show in section 12 that there is an executions-matching from a PCA X 4
to (X4 \ {A})]|A*Y where A*" is the simpleton wrapper of A, i.e. a PCA that only handle
A. The section 14 uses the morphism of section 12 to reduce the implementation of Xz by
X 4 to the implementation of B by A and finally obtain the monotonicity of implementation
w.r.t. PSIOA creation. Finally section 15 explains why the task-scheduler introduced in [5]
is not creation-oblivious.

10 Executions-matching

In this section, we introduce some tools to formalise the fact that two automata have the same
comportment for the same scheduler. This section is composed by two sub-sections on PSIOA
executions-matching and PCA executions-matching. Basically, an executions-matching
execution from an automaton A to another automaton B is a morphism f* from Ezecs(A)
to Execs(B) that is structure-preserving. In the remaining, we will often use an executions-
matching to show that a pair of executions (o, 7 = f**(a)) € Execs(A) x Execs(B) have
the same probability €,(a) = €,/ (7) under a pair of so-called alter-ego schedulers (o,0") €
schedulers(A) x schedulers(B) that have corresponding comportment after corresponding
executions fragment (o', 7" = f¢*(a/)) € Frags*(A) x Frags*(B).

10.1 PSIOA executions-matching and semantic equivalence

This first subsection is about PSIOA executions-matching.

matching execution

An executions-matching need a states-matching (see definition 75) and a transitions-matching
(see definition 77) to be defined itself.

» Definition 75 (states-matching). Let A and B be two PSIOA, let Q'y C Qa and let
f:Q'y = Qg be a mapping that verifies:
Starting state preservation: If g4 € Q'y then f(qa) = qB
Signature preservation (modulo an hiding operation): ¥(q,q') € Q'y x Qg, s.t. ¢ = f(q),
sig(A)(q) = hide(sig(B)(q"), h(q")) with h(q") C out(B)(q') (resp. with h(q') =0, that is
sig(A)(q) = sig(B)(¢') ).
then we say that f is a weak (resp. strong) states-matching from A to B. If Q'y = Q 4, then
we say that f is a complete (weak or strong) states-matching from A to B.

Before being able to define transitions-matching, some requirements have to be ensured. A
set of transition that would ensure these requirements would be called eligible to transitions-
matching.

» Definition 76 (transitions set eligible to transitions matching). Let A and B be two PSIOA,let
Q'y CQaandlet f:Q'y — Qg be a states-matching from A to B. Let D'y C D 4 be a subset
of transition. If D'y werifies that V(q, a,m4,q,a)) € D/s:

Matched states preservation: q € Q'y and

Equitable corresponding distribution: ¥q" € supp(na,q.a)),qd" € Q4 and n4q,qa) <L>

(B, f(q),a)
then we say that D'y is eligible to transitions-matching domain from f. We omit to mention

the states-matching f when this is clear in the context.
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Now, we are able to define a transitions-matching, which is a property-preserving mapping
from a set of transitions D;‘ C D4 to another set of transitions Dg C Dg.

» Definition 77 (transitions-matching). Let A and B be two PSIOA, let Q'y C Q4 and let
f:Q'y — Qg be a states-matching from A to B. Let D'y C D4 be a subset of transition
eligible to transitions-matching domain from f.

We define the transitions-matching (f, f') from A to B induced by the states-matching
f and the subset of transition D’y s.t. f'" : D'y — Dg is defined by " ((q,a,0(a,4.0))) =
(f(@)sa,nB,f(q).0)) - If | is complete and D'y = Da, (f, f'") is said to be a complete
transitions-matching. If f is weak (resp. strong) (f, f") is said to be a weak (resp. strong)
transitions-matching. If f is clear in the context, with a slight abuse of notation, we say that
¥ is a transitions-matching.

The function f*" needs to verify some constraints imposed by f, but if the set D’y of
concerned transitions is correctly-chosen to ensure the 2 properties of definition 76, then
such a transitions-matching is unique.

Now, we can easily define an executions-matching with a transitions-matching, which is a
property-preserving mapping from a set of execution fragments F j4 C Frags(A) to another
set of execution fragments Fj; C Frags(B).

» Definition 78 (executions-matching). Let A and B be two PSIOA. Let (f, ') be a
transitions-matching from A to B. Let Fy = {a £ ¢a'q*...a"q"... € Frags(A)|Vi € [0 :
la| = 1], (¢", @ a,q ai+r)) € dom(f'")}. Let f° : F'y — Frags(B), built from (f, f") s.t.
Va = ¢%alqy...a”q... € FYy, < (a) = f(¢%)a* f(gy)...a” f(q%)...

We say that (f, f", f¢) is an executions-matching from A to B. Furthermore, if (f, fi")
is complete and F'y = Frags(A), (f, f'", f¢*) is said to be a complete executions-matching.
If (f, ft7) is weak (resp. strong) (f, fi", f*) is said to be a weak (resp. strong) executions-
matching. When (f, f") is clear in the context, with a slight abuse of notation, we say that

f€* is an executions-matching.

The function f¢* is completely defined by (f, fI"), hence we call (f, f", f¢*) the executions-
matching induced by the transition matching (f, f'") or the executions-matching induced by
the states-matching f and the subset of transitions dom(f").

The construction of f¢* allows us to see two executions mapped by an executions-mapping
as a sequence of pairs of transitions mapped by the attached transitions-matching. This
result is formalised in next lemma 79.

» Lemma 79 (executions-matching seen as a sequence of transitions-matchings). Let A

and B be two PSIOA. Let (f, f", f¢®) be an executions-matching from A to B. Let o =

atqy...a”gy... € dom(f°") and = f°°(a) = qa'qh...a”qR... = f(¢%)a' f(gYy)-..a™ F(q%)-..
Then for every i € [0 |a| — 1], (g5, ™", 0345, ait1)) = f”((qu,ai+17n(A’qj47ai)))

Proof. First, matched states preservation and action preservation are ensured by construction.
By definition, for every i € [0 : |a| — 1], (in,ai—‘rl,’r](A’q;’aH»l)) € dom(f'"). We note
tri; = f”((qit,a”l,n(Aq%aiH))). By definition, ¢rj is of the form (f(gY4),a'™,n). But a
transition of this form is unique, which means try = (f(gy),a" ™, 77(37f(q3'4)7ai+1)) which ends
the proof. <

Now we overload the definition of executions-matching to be able to state the main result
of this paragraph i.e. theorem 83



P. Civit and M. Potop-Butucaru 45

Matching executions
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Figure 17 Here we have Q) = {¢°.¢",..,¢°} < Qa, we define the
state-matching f : Q4 — Qs s.t. vk € [1,9,f(¢") = g, and D) =
4

{(q07 a, n(A,qo,a))v (qla b7 n(A,ql,b))v (q17 c, n(A,ql,c))7 (q27 d7 77(.A,q2,d))a (q , €, n(A,q4,e))7 (q57 fa 77(.A,q5,f))7 (q77 h7 77(,A,q7,h))}'
We can define the execution matching (f, f*", f¢*) induced by f and D’,.

uz » Definition 80 (executions-matching overload: pre-execution-distribution). Let A and B be
ws two PSIOA. Let (f, fi™, f¢) be an executions-matching from A to B.

1429 Let (p, ') € Disc(Frags(A)) x Disc(Frags(B)) s.t. p AN w'. Then we say that
uo  (f, fI7, f6%) is an executions-matching from (A, pu) to (B, u').

131 In practice, we will often use executions-matching from (A, 5, ) to (B, dg,)-

u Continued executions-matching

133 Motivated by PSIOA creation that would break the states-matching from a PCA X 4 to the
wu PCA Z4 2 (X \ {A})|]A%% defined in section 12, we introduce the notion of continuation of
w3  executions-matching.

us  » Definition 81 (Continued executions-matching). Let A and B be two PSIOA. Let (f, fi", f¢%)
ws  be an executions-matching from A to B with dom(f) = Q4 C Qa and dom(f'") = D'y C Dy4.
1438 Let f+: Q" — Qp with Q") C Qa. Let D'y C D be a subset of transitions verifying for
wo  every (q,a,M4,q,a)) € D4\ D/y:

1440 Matched states preservation: q € Q'4
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Esxtension of equitable corresponding distribution: Vq" € supp(nia,q,q)),q¢" € Q4 and

f+

N(Aq,0) <7 N(B.f(a).a)-

We define the (f*,D’))-continuation of f* as the function f'* : D’y UD’y — Dg s.t.
v(‘]7a777(.»4,q,a)) S DfA U DZU ftT’Jr((qvaan(A,q,a))) = (f(Q)vaan(B,f(q),a))‘

Let Iy = dom(f") U{a"qaq" € Execs*(A)|la € dom(f") A (q,a,M4,4,a)) € D4}
We define the (f'1)-continuation of f°* as the function f** : Fi — Frags(B) s.t.
Va € dom(f), 1+ (a) = f*(a) and Yo/ = a~gq,a,q € F{\ dom(f), f=+ (o) =
fe(@) ™ f(@)sa, fH(d).

Then, we say that ((f, f1), fF, f*%) is the (f*,D’j)-continuation of (f, f*", f¢*)
which is a continuation of (f, fi", f¢®) and a continued executions-matching from A to. B.

ex,+
Moreover, if (u, ') € Disc(Frags(A)) x Disc(Frags(B)) s.t. p AN w', then we say
that ((f, f1), f&oF, f¢%7%) is a continued executions-matching from (A, p) to (B, ).

From executions-matching to probabilistic distribution preservation

We want to states that a (potentially-continued) executions-matching preserves measure of
probability of the corresponding executions.

To do so, we define alter egos schedulers to a certain executions-matching. Such pair of
schedulers are very similar in the sense that their outputs depends only on the semantic
structure of the input, preserved by the executions-matching.

» Definition 82 ((f, f'", f¢*)-alter egos schedulers). Let A and B be two PSIOA. Let
(f, [, f¢) be an executions-matching from A to B. Let (6,0) € schedulers(A)xschedulers(B).
We say that (6,0) are (f, fI", f¢%)-alter egos (or f¢®-alter egos) if, and only if, for every
(&, ) € Frags*(A) x Frags*(B) s.t. a = f°*(@) (which means sig(A)(§) = sig(B)(q) £ sig
with ¢ = lstate(&) and g = lstate(a) by signature preservation property of the associated
states-matching), Va € sig, 5(&)((4, a;M4,5,0))) = (@) ((q,a,0(B,q,)))-

Let us remark that the previous definition implies that the probability of halting after
corresponding executions fragments (&, «) is also the same.
Now we are ready to states an intuitive result that will be often used in the remaining.

» Theorem 83 (Executions-matching preserves general probabilistic distribution). Let A and
B be two PSIOA. Let (fi,pn) € Disc(Frags(A)) x Disc(Frags(B)). Let (f, f", f¢*) be an
executions-matching from (A, i) to (B,p) . Let (5,0) € schedulers(A) x schedulers(B),
s.t. (5,0) are (f, ', f¢*)-alter egos. Let (&, ) € Frags*(A) x Frags*(B) s.t. a = f¢(Q).
Then €5,3(Ca) = €5,,(Ca) and €5 (&) = €5 ().

Proof. First, by definition 80 of executions-matching, f¢* is a bijection from supp(ii) to
supp(p) where Yé, € supp(ii), p(f°*(6o)) = fi(éo) (*). Second, by definition 40 of meas-
ure generated by a scheduler, €, ,(Cor) = Ea, esuppu)(®) - €5,0,(Car) and €5 7(Car) =
Y, esupp(i)(0o) - €5,6,(Car) (**). Hence, by combining (*) and (**), we only need to
show that for every (&, a,) € supp(fi) X supp(p) with f°*(a,) = a,, for every (&/,a') €
Frags*(A) x Frags*(B) with f¢*(&') = o/, we have €54, (Ca’) = €5,5,(Car) that we show by
induction on the size s = |&| = |a|. We fix (&, ) € supp(fi) x supp(p) with f%(&,) = .

Basis: s =0

Let &' = ¢ € Frags*(A), o = ¢ € Frags*(B) with o/ = f¢*(&’). We have |&/| = |o/| =
0. By definition 40 of measure generated by a scheduler,
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0 if both & £ &, and &, £ &
€5,a, (C@I) = 1 if 5[/ § 5&0

€5.5,(Ca) - (@) (N(ag.0))  MAGa) (@) i dp <@ and &' = a™gag

and

0 if both o’ £ «a, and a, £ o
€0,0,(Cor) = 1 if o < ay

€o,0, (Coc) . U(a)(n(B,q,a)) : n(B,q,a) (q/) if (0% <« and o/ = aﬂqaql
Since |@'| = || = 0 the third case is never met. The second case can be written: & < &,

(resp. o < ap) iff fstate(a,) = ¢ (resp. fstate(a,) = ¢'). Hence, for every (ao,, ) s.t.
f(@o) = o, €5,6,(Car) = €5,a,(CL) which ends the basis.

Induction: We assume the result to be true up to size s and we show it implies the
result is true for size s + 1. Let (&', &, ', a) € Frags*(A)? x Frags*(B)? with & = a™gag§’

and o = a"qgaq st. o = f(&) with |&@/| = || = s+ 1. We want to show that
€5,1(Car) = €5,,(Cor). By definition 40 of measure generated by a scheduler,
0 if both & £ @&, and &, £ &'
€5,a, (C@/) = 1 if 5/ S do
€5,6,(Ca) - 6(&)(N(A,g,0) MAGa) (@) if G < dand &' =a" gag
and
0 if both o £ «a, and a, % o
€0,0,(Car) = 1 if o < ay

€000 (Ca) - 0()(N(B,g.a)) “N(B,g,a) (@) if @ <@ and o =a™qaq’

Again, the executions-matching implies that i) both & £ &, and &, £ & <= both o/ £
ao and a, £ o, i) @ < &, <= a < a, and iii) &, < & <= a, < a. Moreover, by induc-
tion assumption €5 4,(Ca) = €0,0,(Ca). Hence we only need to show that &(&)(n(4,q,q)) -
NA,g,a) (@) = (@) (N(B,q,0)) N(B,q,0) (@) (***). By definition of alter-ego schedulers, 5(&)(1(4,4,a)) =
o(a)(nB,q,a)) (j). By definition of executions-matching, 74 5.0)(7) = MB,qa) (@) (i)-
Thus (j) and (jj) implies (***) which allows us to terminate the induction to obtain
€5,a,(Car) = €o,0,(Car).

Finally, let sig = sig(A)(Istate(@)) = sig(A)(Istate(c)), then ez 5, () = €5.5,(Car) -
(1 = Xaesigo (@) (a)) = €5,a,(Car) - (1 — Laesigo(e’)(a)) = €s,a, (), which ends the proof.

<

We restate the previous theorem with continued executions-matching.

» Theorem 84 (Continued executions-matching preserves general probabilistic distribution). Let
A and B be two PSIOA. Let (ji, ) € Disc(Frags(A)) x Disc(Frags(B)). Let (f, fi", f¢*)
be an executions-matching from (A, i) to (B, ) . Let ((f, f), fi"F, f©1) be a continuation
of (f, ft", f¢*). Let (7,0) € schedulers(A) x schedulers(B), s.t. (&,0) are (f, f'", f¢*)-alter
egos. Let (&, o) € Frags*(A) x Frags*(B) s.t. a= fT(&). Then €5 ;(Ca) = €0,u(Ca).

Proof. The proof is exactly the same than the one for theorem 83 <

Before dealing with composability of executions-matching, we prove two results about
injectivity and surjectivity of executions-matching in next lemma 85 and 86.

» Lemma 85 (Injectivity of executions-matching). Let (f, fi", f¢*) be an executions-matching
from A to B and ((f, fT), f'=F, &%) a continuation of (f, i, ).

Let fevt . F C dom(f™+) — Fp C range(f*®+). Let f: Q" C dom(f) — Qg be the
restriction of f on a set Q" C dom(f).
1. If i) Vo € F'y, fstate(o) € Q") and i) f is injective, then fe*t is injective.
2. (Corollary) if F){ C Execs(A), [T is injective.
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Proof. 1. By induction on the size k of the prefix: Basis: By i) fstate(a), fstate(a') €
Q"4, by construction of f¢**  f(fstate(a)) = f(fstate(a’)) = fstate(m) and by ii)
fstate(a) = fstate(a’) Induction. We assume the injectivity of f¢** to be true for exe-
cution on size k and we show this is also true for size k+1. Let m = s0b's!...skpFtlsht+l ¢
Fg Let o = qoalql...qkak“qk“,a’ — qloallq/l...q/ka'k+1q'k+1 c F,Z s.t. f(a) —
f(a/) = . By construction of f* Vi € [1,n], b = a® = a’*. By construction of
feot, fert(gat gt .q'%) = fert(¢%atqt...¢") = sCalst...sF. By induction assumption
7% q"...q"%) = ¢®atq*...¢". By definition of execution, s*T1 € supp(ng gr qr+1)). By
equitable corresponding distribution, If 74 gr k+1) € dom(f*"), the restriction of f,
f: SupP(1(a,qk ak+1)) = Supp(n(s, s+ qr+1)) is bijective and 1 g gr ar+1) € dom(f+)\
dom(f*), the restriction of f*, f* : supp(n a,qr.ar+1)) = supp(n(s, sk qx+1)) is bijective
s gkt = gk+1

2. We have |start(.A)| = 1. Hence the restriction of f on start(.A) is necessarily injective
(ii). Let o € Fxecs(A). By definition of execution, fstate(a) € start(A) (i). All the

requirements of lemma 85, first item are met, which ends the proof.

which ends the proof.

<

» Lemma 86 (Surjectivity property preserved by continuation). Let A and B be two PSIOA.
Let (f, f'", f¢*) be an executions-matching from A to B. Let ((f, f1), fi=*, f¢*%) be the
(f,D’)-continuation of (f, f'", f¢*) (where by definition D'} \ dom(f'") respect the prop-
erties of matched states preservation and extension of equitable corresponding distribution
from definition 81). If the restriction f¢* : E'y C FExecs(A) — Eg C Execs(B) is sur-
jective, then feot : E:f = {a = a"qu,a,¢4y € Execs(A)la € E4,(qa,0,M4,94,a) €
dom(ft" )} — Ef = {r' = n7gg,a,qy € Evecs(B)|r € Eg,3Ja € (f¢*)"Y(m) N Ey,q4 =
Istate(a), (g, asNa,q4,a) € dom(f1™ )} is surjective.

Proof. Let @’ € Eg. We have 7/ = T7gB,a,qs € Execs(B) st. w € Ep and Ja €
(fex)_l(ﬁ) N E_/AaQ.A = lStClt@(Oé) and (q.Aaaan(A,qA,a)) € dom(ft7‘7+)' By (qA7a777.A,qA,a) S

+
dom(ft"1), if i) (qa,a,M4.94.a) € dom(f"F)\ dom(f") Naga.a JEAIN NB,qs,a and if ii)

. f . .
(4,0, MA,ga,0) € dom( ") Naga,a € NB,gs,a- 10 both cases, it exists ¢4 € supp(N.a,q4.a)
st f T (o =aTqa,a,¢y) =7 with o/ € E:f.

<

We finish this paragraph with the concept of semantic equivalence that describes a pair
of PSIOA that differ only syntactically.

» Definition 87 (semantic equivalence). Let A and B be two PSIOA. We say that A and
B are semantically-equivalent if it exists f : FExecs(A) — Fxecs(B) which is a complete
bijective executions-matching from A to B.

Composability of executions-matching relationship

Now we are looking for composability of executions-matching. First we define natural
extension of notions presented in previous paragraph for the automaton obtained after
composition with another automaton &.

» Definition 88 (E-extension). Let A and B be two PSIOA. Let £ be partially-compatible
with both A and B.

1. Let Q'y C Qa. We call E-extension of Q' the set of states Q;lHS ={qeQuelgl Ac
Qlu}
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see 2. Let f:Q'y CQa— Qp. We call E-extension of f the function g : Q:4|\£ — QB X Q¢ s.tl.

1565 V(qa,qe) € Qyye- 9((qa,qe)) = (fqa), ge))
seo 3. Let D'y C D a subset of transitions. We call E-extension of D'y the set D:‘\Hf =

1567 {((qa,4)s a;n((A.8).(qurae).a) € Dajelaa € Q/y and either (qa,a,ma,q4,0)) € Dy or
1568 the action a is not enabled in q4}.
1569 Now, we can start with the composability of states-matching.

w0 > Lemma 89 (Composability of states-matching). Let A and B be two PSIOA. Let £ be
sn - partially-compatible with A and B. Let f: Q'y C Q4 — Qp be a states-matching. Let g be
52 the E-extension of f.

1573 If range(g) C Qpyje, then g is a states-matching from Al|E to BJ|E.

154 Proof. Starting state preservation: if (ga,qe) € Que then g4 € Q4 which means
1575 f(qa) = s, thus g((qa,qc)) = (45, 4e)-
1576 Signature preservation (modulo an hiding operation): V((g4, qs), (¢8,q¢)) € Q:‘lllé’ X Qpj|e

w7 with (s, ge) = 9((qa, ge)), we have sig(A)(qa) = sig(B)(f(qa)) = hide(sig(B)(qz), h(qz))
1578 with h(qB) - out(B)(qB).

1579 Since A and &£ are partially-compatible, sig(.A)(qa) = hide(sig(B)(gs), h(gp)) is compat-

1580 ible with sig(£)(ge) which means a fortiori sig(B)(gs) is compatible with sig(€)(ge).

1581 Namely Vact € h(gg),act ¢ in(€)(ge). Hence sig((A, E))((ga), ge)) = hide(sig((B,E€))((gB,qs)), b (g8, gc))
1582 with 1/ ((gs,qe)) = h(gs) C out(B)(¢s) C out(B]|)((gs, ge)) which ends the proof.

1583 <

1584 The composability of states-matching is ensured under the condition range(g) C Qp|je
s where g is the £-extension of the original states-matching f : @’y € Q4 — Qp. In next
s lemma, we give a sufficient condition to ensure range(g) C Qp|je. This is the one that we
1ss7 will use in practice.

s B Definition 90 (reachable-by and states of execution (recall)). Let A be a PSIOA or a PCA.
seo  Let By C Emecs( ). We note reachable-by(E'y) = {q € Q|3 € Ey,Istate(a) = q}. Let
wo a=q",at,q,...a", q",.... We note states(a) = Uz‘e|a\ q’.

1 > Lemma 91 (A sufficient condition to obtain range(g) C Qpe). Let A and B be two
s PSIOA. Let £ be partially-compatible with both A and B. Let f : Q4 C Qa — Qp be a
1503 states-matching. Let Qi‘ll\g be the E-extension of Q'4.

1504 Let QZ\HE - Q:‘\Ilf the set of states reachable by an execution that counts only states in
1595 Q-/AH“«" i.e.

1506 E)je = {o € Ezecs(A|€)|states(a) € Q'y ¢}

1507 QAHS = reachable—by(EZ\Hg)

1508 Let f" the restriction of f to set Q"4 = {qa = ((¢4,q¢) I A)|(qa,qe) € QZ\HS}'
1599 Then the E-extension of f", noted g verifies range(g”) C Qp|e-

1o Proof. By induction on the minimum size of an execution & = ¢%a'...q"™ with ¢* = ¢",Vi €
v [0,n],q" € QAHE' Basis (Ja| =0 = «a = g4): we consider ¢* = g4. We have g((qA,Qg)) =
we  (f(qa),qs) = (a8, 4s) € Qpje-

1603 We assume this is true for & with Istate(d) = ¢ and we show this is also true for
woe &' =& qaq’. By induction hypothesis ¢ € Qpj¢. Since ¢’ € Q4j¢, A and £ are compatible
s at state (¢4, qc), that is sig(A)(¢/y) and sig(€)(qe) are compatible, which means that a
ws  fortiori, (sig(B)(f"(¢/y)) and sig(€)(qe) are compatible and so B and £ are compatible at
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state (f"(q'4).qc) = ¢”(¢'). Hence g”(¢’) is a reachable compatible state of (B,&) which
means this is a state of B]||€.
<

Now, we can continue with the composability of transitions-matching.

» Lemma 92 (Composability of eligibility for transitions-matching). Let A and B be two PSIOA.
Let € be partially-compatible with A and B. Let f : Q'y C Q4 — Qp be a states-matching
and D'y a subset of transitions eligible to transitions-matching domain from f. Let g be the
E-extension of f and Di‘lllf the €-extension of D 4.

If range(g) C Qpjje, then D:‘\Hf is eligible to transitions-matching domain from g.

Proof. Let ((q4,4e), a,71((4,6),(qa.q¢).0)) € Dlyjje-
By definition, ¢4 € Q’4 which means (g4, gs) € Q:atuev so the matched states preservation

is ensured. We still need to ensure the equitable corfgsponding distribution.
Let (4, a2) € supp(n(a.e),(ga.qe)a))- I a € sig(A)(qa), then ¢} € supp(nia,qa,a))
which means ¢} € Q’4 and hence (¢'y,q¢) € Q:‘ll\f' If a ¢ sz/'\g(A)7 N Asgara) = Oqas
which means ¢4 = g4 € Q'4 and hence (¢4, q¢) € Qi‘lllf' Thus for every (¢'y,q¢) €
supp(N((4,8).(ga.0¢).0) ) (1> 4g) € Qlyje-
M(AE) (ga.0e),0) (L4 02)) = N(Aqu.0) © E qe,0) (95 GE) = M(Aqa,0)(@a) - (€ qe.,0) (4E) =

15.f(q.4).0) (@) e ge.a) (9€) = 1B, £(g.0).0) OME ae.0) (A1), 4E) = 1((B.8).g(q..0¢).0) (9(C TE))
which ends the proof of equitable corresponding distribution.

<

» Definition 93 (E-extension of an execution-matching). Let A and B be two PSIOA. Let £

be partially-compatible with both A and B. Let (f, fi", f¢®) be an executions-matching from

A to B. Let g the E-extension of f. If range(g) C Qpje, then

1. we call the E-extension of f* the function g'" : (q,a,1(4)i€,q.0)) € D;\HS = (9(q); a;n(B|1€.9(q).a))
where D'y ¢ is the £-extension of the domain dom(ft") of ftr.

2. we call the E-extension of (f, fI", f¢%) the matching-ezecution (g, g'", g¢®) from A||€ to
B||E induced by g and dom(g'").

Finally we can states the main result of this paragraph, i.e. theorem 94 of executions-
matching composability.

» Theorem 94 (Composability of executions-matching). Let A and B be two PSIOA. Let & be
partially-compatible with both A and B. Let (f, fi", f¢*) be an execution-matching from A
to B where g represents the E-extension of f. If range(g) C Qpje, then the E-extension of
(f, f7, f¢) is a matching-ezecution (g, g'", g°*) from A||E to B||E induced by g and dom(g'").

Proof. We repeated the previous definition, while an executions-matching only need a states-
matching g and a set dom(g'") of transitions eligible to transitions-matching domain from g
which is provided by construction. <

Here we give some properties preserved by £-extension of an executions-matching.

» Lemma 95 (Some properties preserved by E-extension of an executions-matching). Let A
and B be PSIOA. Let (f, fI", f¢*) be an execution-matching from A to B.

1. If f is bijective and f~' is complete, then for every PSIOA & partially-compatible with
A, € is partially-compatible with B.
2. Let & partially-compatible with both A and B, let g be the E-extension of f.
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. If f is bijective and f~' is complete, then range(g) = Qp|je and so we can talk about

the E-extension of (f, fir, f¢%)

If (f, ft") is a bijective complete transition-matching, (g, g'") is a bijective complete
transition-matching. (And (f, f', f¢%) and (g, g'", g°*) are bijective complete execution-
matching. )

. If f is strong, then g is strong

3. Let € partially-compatible with both A and B, let g be the E-extension of f. Let assume
range(g) C Qpie- Let (g,9"", g%*) be the E-extension of (f, f1", f¢*)

a.

b.

If the restriction f* : E'y C Execs(A) — Ep C Ezxecs(B) is surjective, then G :
{a € Evecs(Al|€)|a | A€ Ey} — {r € Execs(B||E)|n | B € Eg} is surjective
If f is strong, g is strong.

Proof. 1. We need to show that every pseudo-execution of (B,£) ends on a compatible

2.

0,11

state. Let m = ¢Ya'q’...a"¢"™ be a finite pseudo-execution of (B,£). We note a =
(F1(q%),d2)a (f~(gk), qt)--a™(f~1(gR), g?). The proof is in two steps. First, we show
by induction that o = (f~1(¢%),¢2)a* (f~*(q5), q¢)...a™(f~1(g%), ¢?) is an execution of
AJ|E. Second, we deduce that it means (f~1(q}), q2) is a compatible state of (A, £) which
means that a fortiori, (¢, ¢2) is a compatible state of (58, €) which ends the proof.

a.

First, we show by induction that « is an execution of A||€. We have (f~1(g5),qe) =

(g4, ge) which ends the basis.

Let assume (f71(q%),q2)a'(f~1(qg), qt)--a*(f~(qf),q¥) is an execution of A||E.

Hence (f71(gk), ¢¥) is a compatible state of (A, £) which means that a fortiori ¢* is a
compatible state of (B, ) because of signature preservation of f.

For the same reason, sig(B]|€)(¢") = sig(A, €)((f 71 (¢}), ¢§)), so a" 1 € sig(A, €)((F(ah), ¢k)).
Then we use the completeness of (f =1, (f")~1), to obtain the fact that either 0(B,q%,ar+1) €

dom((f'7)~1) or a**1 ¢ sig(B)(qf) (and we recall the convention that in this second
case 1(p gk akt1) = 5«12)' which means either (f_l(qg),ak“,n(A’f_l(qg)’aHl)) is a
transition ofﬁt\hat ensures Vq" € supp(n(&qg,akﬂ)), " e Supp(n(A,f—l(qg)7ak+l))
or a**t ¢ sig(A)(f1(¢k)) (and we recall the convention that in this second case

(A, f-1(gh) ak+1) = 5f71(q§)). Thus for every (¢”,¢"") € supp(N(B.£),q+,ak+1)), (f~Yq"),q") =
97 ((¢",q")) € supp(na.e).g-1(gh),ar+1)) namely for (¢”,q") = (g5t  ¢&*"). Hence,
(f~*(gg™), g™ is reachable by (A, ) which means the alternating sequence

(f~1(qB), a2)a' (f " (ah), a)--ab (f(ag), af)ak (f (), ¢f)aF T (F M (g Th), gt F) is

an execution of A||€. Thus by induction « is an execution of AJ|€.

Since A and & are partially-compatible (f~1(q3), q2) is a state of A||€, so (f~(¢R), %)

is a compatible state of (A, £) which means (¢k, ¢&) is a fortiori a compatible state of

(B, &) . Hence every reachable state of (BB, &) is compatible which means B and £) are

partially compatible which ends the proof.

Let (g3, q¢) € Qpjje. This state is reachable, so we note 7 = (g%, q2)a* (g5, qt)...a™ (g, qR)

the execution of B||€. Thereafter, we note v = (f~1(q%), ¢2)a' (f~(qk), ¢2)---a™(f 1 (q}), ¢2).
We can show by induction that « is an execution of A||€. The proof is exactly the

same than in 1.

Hence « is an execution of A||€ which means (f~(q}), ¢2) is a state of A||€ and

then g((f~(qR), q2)) = (g, q2) to finally prove that it exists ¢* s.t. g(¢*) = (¢%, ¢2)

which means states(B||E) C dom(g).



52

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

Dynamic Probabilistic Input Output Automata (Extended Version)

We can reuse the proof of 1. to show that if ¢ € Q 4, then g(q) € @p)|¢ which
means dom(g) € Qp|e-

Hence dom(g) = Qp|e-

We can apply the previous lemma 92 to obtain the eligibility of D 4¢.

b. Let assume (f, ') are bijective. The bijectivity of ¢ is immediate g(.,.) = (f(.), Id(.)).
The bijectivity of g'" is also immediate since ¢ : 1(4.g.1,a) @€ ,q6,0) = " (N(A,qa,0)) D
N(&,qe,a) With f* bijective.

c. Immediate, since in this case sig(A)(ga) = sig(B)(f(qa)) implies sig(A||€)((ga,qe)) =
sig(BIIE)((f(0.4),az))-

3. a. Let ™ = ((¢%,42),a, (¢k, k), .- a™, (g3, q?)) € Execs(B||E) with | B = §%,a', q5, ...,
Ep, where the monotonic function k : [0,n] — [0,m], verifies Vi € [0,n], k(i) €
[0,m], g = dg(i) By surjectivity of f** we have & = ¢%,a',¢Y,...,a™m,§"y € E'y s.t.
(&) =« | B. We note a = (¢%, ¢2)a' (¢}, q¢)...a™(¢'y, q%) where Vi € [0,n], ¢ =
(ji(i). Hence, Vi € [0,n],9((¢"%.q%)) = (gk.q%). Moreover, by signature preserva-
tion, Vi € [0,n — 1],a"*! € sig(A)(qYy) U sig(€)(¢:). Furthermore, Vi € [0,n —
1. (¢t gt e supp(1(A,qi, at) © M(B,qj;,a1)) Since ((J?l,qgrl) € SUPP‘(W(B,qgw) ®
n(B’Qg»ai))7 (q%>ai7n(3,qg,ai)) = ftr(qzlA7a’ia77(A,qj41ai)) and (JELI = f(qfl) ThU.S,
a € Execs(A||€). Finally, by signature preservation of f, Vi € [1,n]sig(A)(qa) =
sig(B)(qs), which lead us to a | A = & € E'y. So for every m € Execs(B||E) with
7 | B € Ep, it exists a € Execs(A||€) with a | A € E/, which ends the proof.

b. Immediate by rules of composition of signature: V(q4,ge) € states(A||E), V(gs, qe) €
states(BJ|€) if sig(A)(qa) = sig(B)(gs), then sig(A||€)(qa, qe) = sig(B||€)) (g5, qe)-

<

We are ready to states the composability of semantic equivalence.

» Theorem 96 (composability of semantic equivalence). Let A and B be PSIOA semantically-
equivalent. Then for every PSIOA E:
& s partially-compatible with A <= £ is partially-compatible with B
if € is partially-compatible with both A and B, then A||E and B||E are semantically-
equivalent PSIOA.

Proof. The first item (& is partially-compatible with A <= £ is partially-compatible
with B) comes from lemma 95, first item.
The second item (if £ is partially-compatible with both A and B, then A||€ and B||€ are
semantically-equivalent PSIOA) comes from lemma 95, second item.
<

A weak complete bijective transition-matching implies a weak complete bijective execution-
matching which means the two automata are completely sementically equivalent modulo
some hiding operation that implies that some PSIOA are partially-compatible with one of
the automaton and not with the other and that the traces are not necessarily the same ones.

composition of continuation of executions-matching

Here we define £-extension of continued executions-matching in the same way we defined
E-extension of executions-matching just before.

» Definition 97 (E-extension of continued executions-matching). Let A and B be two PSIOA.
Let &€ be partially-compatible with both A and B. Let (f, fi", f¢*) be an executions-matching
from A to B. Let ((f, fT), [T, f¢*T) be the (f+, D’})-continuation of (f, f'", f*) (where

", g €
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by definition D'y \dom(f'") respect the properties of matched states preservation and extension
of equitable corresponding distribution from definition 81). If the respective E-extension of f
and fT, noted g and g*, verifie range(g) Urange(g™) C (B||€), we define the E-extension
of (£, fF), f1F, feo%) as ((9,97), 9", g% "), where

(g,9", g%%) is the E-extension of (f, f1", f¢)

9"t 1 (4,0, m4)€).q0.0) € D;"”g = (9(9), a,mca)1€),9(q).a) where D;/t||£ is the £-extension
of dom(f'")

Vo' = a7q,a,q, with o/ € dom(g°®), if (q,a,n4)¢),4.0) € dom(g") g°*F(a) = g°*(a)
and if (¢,a,0(4)j¢),4.0) € dom(g™T) \ dom(g"") g**F (') = g°*(@) " g(a), a, 97 (q)

» Lemma 98 (Commutativity of continuation and extension). Let A and B be two PSIOA. Let
E be partially-compatible with both A and B. Let (f, f'", f*) be an executions-matching from
A to B. Let ((f, fT), fi"+, fe=F) be the (f+,D’))-continuation of (f, ', f¢*) (where by
definition D’} respect the properties of matched states preservation and extension of equitable
corresponding distribution from definition 81). Let

(9,9"",g*) be the E-extension of (f, f'", f¢) verifying range(g) € Qpjje,

D::(l(lcg’e) the E-extension of dom(fi™T), i.e. D;’l’l(“ge) = {((g4,9¢), 0, M04) |6 (qu.q6).0)) €

D jjelga € dom(f) A (g4, 0,04 q4,0) € dom(f"+) V a & sig(A)(qa)]}-
g(t o) be the E-extension of fr

Then

1. DZ\HE \ dom(g'") werifies matched states preservation and extension of equitable corres-
ponding distribution.

2. the (gae), (D:ﬁ{‘(‘;e)))—continuatwn of (9,9'", g%*), noted ((g, g?‘cve)), gf::), g(efe';) is equal
to the E-catension of ((f, ), f"*, =), noted (9,97, ) 9105 97520,
We show that the operation of continuation and extension are in fact commutative.

Proof. We start by showing Di:(\ﬁ?e) \ dom(g'") verifies matched states preservation and

extension of equitable corresponding distribution. By definition 81 of £-extension, Dii{ﬁcg’e) =

{((q.a, ae)s @ neajie(aa.ge).0)) € Dajielga € dom(f) Al(ga, a,na.94.0)) € dom(f*"*)Va ¢
sig(A)(qa)]}, while dom(g"") = {((ga,9¢), Al (g.000).0) € Dajielaa € dom(f) A
[(qa, @M A,qa,0)) € dom(f7) V a & sig(A)(qa)]}.
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Thus D457 \dom(g") = {((q.4, de): @, M ale (02 ).0) € Dajielaa € dom(F)N(a., 0.0 q40) €

dom(£7+) \ dom(f™)]} (%)
Let tr = ((qa,qe); @, 0(A]1€),(qa.qe).a) € fofﬁge) \ dom(g'"), then
Matched states preservation: By (*) g4 € dom(f) which leads immediately to (ga,qe) €
dom(g)
Extension of equitable corresponding distribution: V(q’y,q¢) € supp(ncajie,(qa.qae).a))s
(4> qg) € supp(N(Aga,a) @ (€. qe,a)) WIth N(aqa.a) € dom(f1" )\ dom(ft") by (*) which
means ¢4 € dom(f*) and 1(ag.a)(a4) = B ga).0) (fT(d4)) and so (¢}, ¢¢) € dom(g™)
and 1(,q4,0) @ N(Eqe,a) Qa0 0E) = NAga,a) (@A) * NEqe.a)(4E) = N8, F(qa).) (FT (D)) -
(€ .qe.0) (48) = N(B,F(qu).a) @ NE.qe.a)(FT(AR) 48) = N(BlI€.g(anae).a) (97T (4 GE))

1 (c.e)

We have shown that D Al
of equitable corresponding distribution.
Now, we show the second point.

\ dom(g'") verifies matched states preservation and extension

By definition 81 of continuation, g(t o) = g(t o)
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1780 We prove dom(g ’EZ’S) = dom(ggj)) = D::H(‘fge). By definition 81 of continuation,
v dom(g() = dom(g") UD3 57 = {((qu 4e)s 0 a2 (g0 ).0) € Dajelga € dom(f) A
1762 (g4, @, M(490.0) € dom(fT)Va ¢ sig(A)(q)]}H{((qa: ge), @ Mealie (ga.00).0) € Dajielda €
1763 dom(f)A[(qa, a,N(a,qa.a)) € dom(f"T)Va & sig(A)(qa)l} = {((q4,4e): @, 1Al€ (ga,06),0)) €
1784 D gjelga € dom(f) A [(qa,a;N(a,qa.a) € dom(fF) Va ¢ sig(A)(qa)l} = Z(|(|Cg’e)

1785 Parrallely, by definition 93 of £-extension, dom(g ET +) = {((qA7Qg) A, N(A|IE, (qaqe)sa)) €

1,(c,e)

1786 D ajielga € dom(f) A[(qa,a(a,qq,a)) € dom(f"T)Va ¢ sig(A)(qa)]} = Djjie”- Thus

) —donty ) = D
1788 We prove g(c e) = QZZ’C) Let ((qA,qg) a’n(AH&(q,A,qs),a)) c D.ZlHS'

1789 By definition 93 of £-extension, g(C e)(((qA, qe )y Oy M A|E (qa,qe).a)) = (9(Q450e)s @M AJE,g(ga,96),0)))>
1790 while by definition 81 of continuation, gEZ:zL)(((qA, qe), a, T](A||g7(qA,q£)7a))) = (9(qa,qs),a, 17(A||g7g(qA,q£)7a))).

1791 We can remark that properties of equitable corresponding distribution are not conflicting
1792 since dom(gffe"’) \ dom(g"") = dom(gl":*) \ dom(g"").

s w g(oL) and g{, ! are entirely defined by ((g, 9 ), (9", g(0'5)) and (g, 9(;.))s (9" 900 0))
1794 that are equal.

1795 <

s application for renaming and hiding

o7 Before dealing with PCA-executions-matching, we state two intuitive theorems of executions-
wes  matching after renaming and hiding operations.

wo B Theorem 99. (strong complete bijective execution-matching after renaming) Let A and
wo B be two PSIOA and ren : Qa4 — Qp s. t. B =ren(A). (ren,ren'” ren) is a strong
wo  complete bijective execution-matching from A to B with dom(ren'™) = D 4.

182 Proof. By definition ren ensures starting state preservation and strong signature preservation.
1803 By definition ren is a complete bijection, which implies matched state preservation. The
1804 equitable corresponding distribution is also ensured by definition of ren. Hence, all the
1805 properties are ensured |

s » Theorem 100. (weak complete bijective executions-matching after hiding) Let A be a
wor  PSIOA. Let h defined on states(A), s.t. YVq € Qa,h(q) C out(A)(q). Let B = hiding(A,h).
ws  Let Id the identity function from states(A) to states(B) = Qa. Then (Id,Id",I1d*") is a
100 weak complete bijective execution-matching from A to B.

110 Proof. By definition Id ensures starting state preservation and weak signature preservation.
1su By definition Id is a complete bijection, which implies matched state preservation. The
1812 equitable corresponding distribution is also ensured by definition of hiding. Hence, all the
113 properties are ensured |

we 10.2  PCA-matching execution

s Here we extend the notion of executions-matching to PCA. In practice, we will build
w6 executions-matchings that preserve the sequence of configurations visited by concerned
w17 executions. Hence, the definition of PCA states-matching is slightly more restrictive to
s capture this notion of configuration equivalence (modulo action hiding operation), while the
1819 other definitions are exactly the same ones.
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matching execution

» Definition 101 (PCA states-matching). Let X and Y be two PCA and let f : Qx C Qx —
Qy be a mapping s.t. :
Starting state preservation: If §x € Q', then f(gx) = gv-
Configuration preservation (modulo hiding): V(q,q¢') € Q% X Qy, s.t. ¢ = f(q), if
auts(config(X)(q)) = (A1, ..., An), then auts(config(Y)(q")) = (A}, ..., A),) where Vi €
[1:n],A; = hide(Aj, h;) with h; defined on states(A;), s. t. hi(ga;) C out(A;)(qar)
(resp. s.t. hi(qar) =0, that is A; = A})
Hiding preservation (modulo hiding): V(q,q¢') € Qx x Qy, s.t. ¢ = f(q), hidden-
actions(X)(q) = hidden-actions(Y)(q') U ht(q') where h* defined on states(Y), s. t.
ht(qy) C out(Y)(qy) (resp. s.t. h™(qy) = 0, that is hidden-actions(X)(q) = hidden-
actions(Y)(q'))
Creation preservation ¥(q,q') € Qx X Qy, s.t. ¢ = f(q), Ya € S/Z\g(X)(q) = s/i\g(Y)(q’),
created(X)(q)(a) = created(Y)(q')(a).
then we say that f is a weak (resp. strong) PCA states-matching from X to Y. If Qy = Qx,
then we say that f is a complete (weak or strong) PCA states-matching from X toY .

We naturally obtain that a PCA states-matching is a PSIOA states-matching:

» Lemma 102 (A PCA states-matching is a PSIOA states-matching). If f is a weak (resp.
strong) PCA states-matching from X toY, then f is a PSIOA states-matching from psioa(X)
to psioa(Y') (in the sense of definition 75). (The converse is not necessarily true.)

Proof. The signature preservation immediately comes from the configuration preservation
and the hiding preservation. <

Now, all the definitions from definition 76 to definition 78 of previous subsections are the
same that is:

» Definition 103 (PCA transitions-matching and PCA executions-matching). Let X and Y be
two PCA and let f : Qy C Qx — Qy be a PCA states-matching from X to'Y.

Let Dy C Dx be a subset of transitions, D'y is eligible to PCA transitions-matching
domain from f if it is eligible to PSIOA transitions-matching domain from f according
to definition 76.

Let D'y, C Dx be a subset of transitions eligible to PCA transitions-matching domain from
f. We define the PCA transitions-matching (f, f'") induced by the PCA states-matching
f and the subset of transitions D'y as the PSIOA transitions-matching induced by the
PSIOA states-matching f and the subset of transitions D'y according to definition 77.
Let f" : D'y C Dx — Dy s.t. (f, f'") is a PCA transitions-matching, we define the PCA
executions-matching (f, £, f¢%) induced by (f, f*) (resp. by f and dom(f%")) as the
PSIOA executions-matching (f, fi*, £¢%) induced by (f, f) (resp. by f and dom(ft"))
according to definition 78. Furthermore, let (u, 1') € Disc(Frags(X)) x Disc(Frags(Y))
s.t. for every o € supp(u), o € dom(f*) and p(a) = p/'(f* (o). then we say that
(f, ft, f¢®) is a PCA executions-matching from (X, u) to (Y, ') according to definition
80.

The (f+, D%)-continuation of a PCA-executions-matching (f, f'", f¢*) is the (f, D%)-
continuation of (f, ft*, f¢%) in the according to definition 81.

We restate the theorem 83 and 84 for PCA executions-matching:
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3 » Theorem 104 (PCA-execution-matching preserves probabilsitic distribution). Let X and
we Y be two PCA (p, ') € Disc(Frags(X)) x Disc(Frags(Y)). Let (f, fi", f¢®) be a PCA
wes  executions-matching from (X, p) to (Y, ') . Let (6,0) € schedulers(A) x schedulers(B),
we 8.t (G,0) are (f, fi", f¢%)-alter egos. Let (o, m) € dom(f*) x Frags(Y).

wor  If ™= f"(a), then €5 5(Ca) = €5,,(Ca) and €5 ;(&) = €5 ().

ws Proof. We just re-apply the theorem 83, since (f, f'", f¢*) is a PSIOA executions-matching
o from (psioa(X), 1) to (psioa(Y), u'). <

o B Theorem 105 (Continued PCA executions-matching preserves general probabilistic distribution).
wn  Let X and Y be two PCA (u, ') € Disc(Frags(X)) x Disc(Frags(Y)). Let (f, f'", f¢) be a
w2 PCA executions-matching from (X, ) to (Y, ') . Let ((f, f), fi™F, f¢=1) be a continuation
wis of (f, [, f¢%). Let (G,0) € schedulers(A) x schedulers(B), s.t. (5,0) are (f, fi, f¢)-alter
we  egos. Let (o, ) € dom(f** 1) x Frags(Y).
ws  If T = f(a), then €5 5(Ca) = €5, (Ca).

we Proof. We just re-apply the theorem, 84 since ((f, f*), fi"T, f¢**) is a continued PSTOA
w7 executions-matching from (psioa(X), u) to (psioa(Y), p'). <

s Composability of execution-matching relationship

19 Now we are looking for composability of PCA executions-matching. Here again the notions are
180 the same than the ones for PSIOA excepting for states-matching and for partial-compatibility.
1 Hence we only need to show that i) the E-extension of a PCA states-matching is still a PCA
12 states-matching (see lemma 106), ii) if f: Qx — Qy is a bijective PCA states-matching and
wes ! is complete, then for every PCA &£ partial-compatible with X, £ is partial-compatible Y
14 (see lemma 108).

s B Lemma 106 (Composability of PCA states-matching). Let X and Y be two PCA. Let £ be
wse  partially-compatible with both X and Y. Let f : Qx C Qx — Qy be a PCA states-matching.
w7 Let g be the E-extension of f.

1888 If range(g) C Qy e, then g is a PCA states-matching from X||€ to Y||E.

e Proof. If ((jx,(jg) € QXHg then gx € Q/X which means f((jx) =qy, thus g(((ixﬂjg)) =
1890 ((j&(jg).
1591 V((ax,qe), (ay, qe)) € Qe X Qe With (gv,¢e) = 9((ax, ge)), we have

1802 Configuration preservation (modulo hiding): if auts(config(X)(gx)) = (A1, ..., An),

1803 then auts(config(Y)(qy)) = (A}, ..., A,) where Vi € [1 : n], A; = hide(A}, h;) with

1904 h; defined on states(A;), s. t. hi(qa) C out(A;)(qa;) (resp. s.t. hi(qa) = 0,
1895 that is A; = Aj}). Hence if auts(config(X||€)((¢x,qsc)) = (A1, ...s An, B1, ..., Bn),
1896 then auts(config(Y|€)((qv,qe)) = (A}, ..., AL, B1, ..., Bn) where Vi € [1 : n|, A; =

1907 hide(Aj, h;) with h; defined on states(Aj), s. t. hi(qa;) € out(A;)(qa:) (resp. s.t.
1898 hi(qA;) = (), that is A; = A}).

1899 Hidding preservation (modulo hiding): hidden-actions(X)(gx) = hidden-actions(Y)(qy)U
1900 h*(qy) where h™ defined on states(Y), s. t. ht(qy) C out(Y)(qy). Hence hidden-
1901 actions(X||€)((gx, qe)) = hidden-actions(X)(qx) U hidden-actions(E)(qe) = hidden-

1902 actions(Y)(gy ) U hidden-actions(E)(qs) U™ (qy) = hidden-actions(Y||E)((qy,qe)) U

1903 ht'((gy,qe)) where h™' defined on states(Y||€), s. t. h™'((gv,qs)) = ht(qy) C

o out(Y)(ay) Cout(VlI€)(avae))

1905 Creation preservation Va € sig(X)(gx) = sig(Y)(qy ), created(X)(gx)(a) = created(Y)(gqy)(a).

1905 Hence Va € sig(X||€)((ax.¢¢)) = sig(Y]|€)((av g¢)), either
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0 € 5ig(X)(ax) = 519(Y)(g) but a ¢ 579(E)(g) and then created(X|1€)((qx, g¢)) (@) =
1008 created/(\X)(qX)(a) z/c\reated(Y)(qy) = c/r\eated(YHE)((qy, qe))(a)

1900 ora ¢ sig(X)(gx) = sig(Y)(gy) but a € sig(E)(qge) and then created(X||E)((¢x, qe))(a) =
1910 created/(\‘c”)(qg)(a) = cz"\eated(YHc‘:)((qY, qél)(a)

1911 ora € sig(X)(gx) = sig(Y)(gy) and a € sig(€)(qge) and then created(X||E)((¢x,q¢e))(a) =
1912 created(X)(gx)(a) U created(E)(qe)(a) = created(Y)(gqy) U created(€E)(qe)(a) =

1013 created(Y||€)((qy, qe))(a) .

1914 Thus, Va € sig(X||€)((¢x,¢¢)) = sig(Y[[€)((av ge)), created(X||€)((gx,qe))(a) =

1915 created(Y||€)((gy, qe))(a).

1916 <

1017 We restate the theorem 94 of executions-matching composability.

s B Theorem 107 (Composability of PCA matching-execution). Let X and Y be two PCA. Let
wo & be partially-compatible with both X and Y. Let (f, f'", f¢*) be a PCA ezecutions-matching
wo from X toY. Let g be the E-extension of f. If range(g) C Qyje, then the E-extension of
wr (f, f17, f¢%) is a PCA executions-matching (g, g'", g**) from X||E to Y||E induced by g and
1922 dom(g“’) .

123 Proof. This comes immediately from theorem 94. <

1924 We extend the lemma 95 but we have to take a little precaution for the partial-compatibility
125 since here the configurations have to be pairwise compatible, not only the signatures.

1026 » Lemma 108 (Some properties preserved by E-extension of a PCA executions-matching). Let
w7 X and Y be two PCA. Let (f, f'", f¢*) be a PCA ezecutions-matching from X to Y.

ws 1. If f is complete, then for every PSIOA &£ partially-compatible with X, &€ is partially-
1929 compatible with Y .
w0 2. Let € partially-compatible with both X and Y, let g be the E-extension of f.

1031 a. If f is bijective and f~' is complete, then range(g) = Qy|ie and so we can talk about
1032 the E-extension of (f, fir, f¢%)

1033 b. If (f, ") is a bijective complete transition-matching, (g, g'") is a bijective complete
1034 transition-matching. (And (f, f', f¢%) and (g, g'", g°*) are bijective complete execution-
1935 matching. )

1936 c. If f is strong, then g is strong

v Proof. 1. We need to show that every pseudo-execution of (Y,€) ends on a compatible

1038 state. Let m = ¢%alql...a™q" be a finite pseudo-execution of (Y,£). We note a =
1039 (F1gY),q¢X)a' (f~1(q)), qt)...a™(f~1(g}), q%). The proof is in two steps. First, we show
1940 by induction that o = (f~1(¢%),¢2)a' (f 1 (qy), ¢t)-..a™(f~1(g%), g?) is an execution of
1001 X||€. Second, we deduce that it means (f~'(g¥),q®) is a compatible state of (X, &)
1042 which means that a fortiori, (¢j+, ¢2) is a compatible state of (Y, €) which ends the proof.
1903 First, we show by induction that « is an execution of X||€. We have (f~1(gy),qe) =
1004 (gx,qe) which ends the basis.

1005 Let assume (f~1(¢¥),q2)a*(f~(q%), qt)...a®(f~1(q}), q¥) is an execution of X||€.
1046 Hence (f~1(g¥), ¢¥) is a compatible state of (X, €) which means that a fortiori ¢" is a

1047 compatible state of (Y, &) because of signature preservation of f.
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1948 For the same reason, sig(Y, &)(¢") = sig(X||€)((f 7 (a}), g¥)), so a*+1 € sig(X, €)((f 7 (a}), k).
1949 Then we use the completeness of (f~1, (f)~1), to obtain the fact that either N(Y.gh ak+1) €

1950 dom((ft)~1) or aF*! ¢ SE(?) (¢%) (and we recall the convention that in this second

1951 Case T(y,gk ak+1) = 5q;;,). which means either (f’l(qf,),akH,n(X’fq(qx;,)’akﬂ)) is a

1952 transition of X' that ensures Vq"” € supp(ney g ar+1)), 4" e Supp(n(x, f-1(gh),ak+1))

1953 or ak*tl ¢ SE(})( (%)) (and we recall the convention that in this second case

1954 n(X’f—l(qic,)’ak+1) = 5f*1(q’;,))' Thus for every (q’/, q///) c Supp(n(y,g),qk,akﬂ)), (f—l(q//), q///) _
1955 97 ((¢",q")) € supp(n(x.e),g-1(¢h),ar+1)) namely for (¢”,q") = (g5, g&*"). Hence,

1056 (f *l(qéfrl), qé“) is reachable by (X, &) which means the alternating sequence

(7 (a3), ad)a' (FH(ay), a)--a" (71 (ah), af)aP (F 1 (a§), ) 1 (F M gy ™), gz ™) is

1958 an execution of X||€. Thus by induction « is an execution of X||€.

1050 Since X and & are partially-compatible (f~1(q}), ¢2) is a state of X||€, so (f (%), %)

1060 is a compatible state of (X, €) which means (¢¥, %) is a fortiori a compatible state of

1961 (Y,€) . Hence every reachable state of (Y, ) is compatible which means Y and & are

1962 partially compatible which ends the proof.

w3 2. This comes immediately from lemma 95 since (f, fI", f¢*) is a PSIOA executions-matching

1964 from psioa(X) to psioa(Y") by construction.
1965 |
1966 Finally, we restate the semantic-equivalence.
1067 A strong complete bijective transitions-matching implies a strong complete bijective

s  executions-matching which means the two automata are completely semantically equivalent.

w0 B Definition 109 (PCA semantic equivalence). Let X an'Y be two PCA. We say that X and
wo Y are semantically-equivalent if it exists a complete bijective strong PCA ezxecutions-matching
wn  from X toY

w2 B Theorem 110 (composability of semantic equivalence). Let X and Y be PCA semantically-
w3 equivalent. Then for every PSIOA &:

1974 & s partially-compatible with X <= & is partially-compatible with Y

1975 if € is an environment for both X and Y, then X||€ and Y||E are PCA semantically-
1076 equivalent.

wrz Proof. The first item comes from lemma 108, first item

1078 The second item comes from lemma 108, second item

1979 <
1080 A weak complete bijective PCA transitions-matching implies a weak complete bijective

s PCA executions-matching which means the two automata are completely semantically
102 equivalent modulo some hiding operation that implies that some PSIOA are partially-
1083 compatible with one of the automaton and not with the other one and that the traces are
s not necessarily the same ones.

1085 11 PI’OjeCtion

1085 This section aims to formalise the idea of a PCA X 4 considered without an internal PSIOA
v A. This PCA will be noted Y4 = X4 \ {A}. The reader can already take a look on the
088 figures 23 and 24 to get an intuition on the desired result. This is an important step in our
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reasoning since we will be able to formalise in which sense X 4 and psioa(X 4 \ {A})||A are
similar.

We first define some notions of projection on configurations on subsection 11.1. Then we
define the notion of A-fair PCA X in subsection 11.2, which will be a sufficient condition to
ensure that Y = X \ {A} is still a PCA, namely that it ensures the constraints of top/down
and bottom/up transition preservation, which is proved in the last subsection 11.3.

11.1 Projection on Configurations

In this subsection, we want to define formally 1" € Disc(Qcons) that would be the result of
1 € Disc(Qcony) "deprived of an automaton A". This is achieved in definition 116. This
definition requires particular precautions and motivate the next sequence of definitions, from
definition 111 to 116.

The next definition captures the idea of a state deprived of a PSIOA A.

» Definition 111 (State projection). Let A = { A1, ..., A} be a set of PSIOA compatible at
state ¢ = (q1y oy qn) € Qa, X ... X Qa, . Let A® ={As, ..., Asn}. We note :
g\ {Ar} = (@1, s Q15 Ghet 1, -1 In) if Ak € A and g\ {Ar} = q otherwise.
g\ A% = (¢ \ {Asn}) \ (A®\ {Asn}) (recursive extension of the previous item,).
g A% =q\ (A\A?%) if A5 C A (recursive extension of the previous item). We can
remark that q | Ay = qi if Ax € A.

Since, | can be defined with \, the next sequence of definitions only handle \, but can be
adapted to support | in the obvious way.

A= (A, Ay Ay, Ay, A5) A, = (A, Ay)
9= (g1, 92,93, 94, 45) gl Ay = (g2, q4) g\ A} = (g gs.95)

Figure 18 State projection

The next definition captures the idea of a family transition deprived of a PSIOA A.

» Definition 112 (Family transition projection). (see figure 19 first for an intuition) Let Ay be
a set of automata compatible at state q1 € Qa,. Let A5, Ay = A1\ A® £ (. Let go = q1 \ A®.
Let a be an action. We note 1(a, q,,a) \ A® = N(As,q0,a) With the convention na, q,.a) = g

if a ¢ sig(A;)(q:) for each i € {1,2}.

» Lemma 113 (family transition projection). Let A; be a set of autormata compatible at

state q1 € Qa,. Let A5, Ay = A1\ A® £ 0. Let go = 1 \ A®. Let a be an action. Let

M = N(Ay,q1,0) 0nd N2 =01\ A® with the convention 1A, q,,q) = 0q, if a & sig(A1)(q1).
Then Vg € Qays 12(92) = X g1eqa, q)\As=q; (1)

Proof. Comes from total probability law. If A5 N A; =0, Ay = A4, the result is immediate.

Assume AN Ay # 0. Let A3 = A\ Ay = A\ (A\ A%) £ (). We note g3 = q1 \ Ag,

n3 =m \ Ag Then Vq; € Qa,, m(q)) = n2(q3) @ n3(q3) with g5 = ¢} | Az and g5 = ¢ [ As.

Hence vq/2 S QA27 Z‘HGQA a\\As=g), 771((1/1) = ZqieQAlvqi [Az=q) 772(ql2) ’ 773(‘1’1 F AS) =
12(qh) - queQA3 13(q5) = M2 qés, which ends the proof.
<
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A 04 A=(ALAA) 0.4
a . ::/,
qo—<1 \?t-\h.-n-a; Oa_(‘;::’?i)\.q.a]
‘® 06 9= (q1,,0) ““.:“<> ooty
0.6
A 2 07
" MArpa)
gz “\\
‘o 03
A AN A} = (A1, A5)
% et 0“—‘3}?(»&@”] 4 { Az}
a & sig(Ag)(qz) g\ {Az} = (g1, 43} "

Figure 19 total probability law for family transition projection

Then we apply this notation to preserving distributions.

» Definition 114 (preserving transition projection). (see figure 20) Let A, A®, Ay = A\ A® be
set of automata, ¢ € Qa, and a be an action. Let n, € Disc(Qcony) be the unique preserving
distribution s.t. n, Ay N(A,q,a) With the convention N q.a) = 0q if a & sig(A)(q). We note
np \ A® the unique preserving distribution s.t. (n, \ A®) B (N(A,q.0) \ A®) if Ay # 0 and
np = 0(p,p) otherwise.

» Lemma 115 (preserving transition projection). Let A® be finite sets of PSIOA. Let a be an
action. For each i € {1,2}, let C; € Qcony, Ci N 77; if a € sig(C;) and 77; = d¢, otherwise.
Let 77127 =nl\ A%, Assume Cy = C1 \ A®. Then,

p
772 = 77;2;7 i.e. (C1\ A®) N (n;\AS).
For every Cy € Qeonf,Mp(Cy) = B(C1 €Quony oA =) (CT)

Proof.
Immediate by definitions 18 and 114.
For each i € {1,2}, we note A; = auts(C;), ¢ = TS(C;). By definition, we have
77; A (As.q:,0) With the convention 7(a, 4,.a) = 0q if @ ¢ s/z\g(Al)(qz) Finally, we apply
lemma 113.

Now we are able to define intrinsic transition deprived of a PSIOA A.

» Definition 116 (intrinsic transition projection). (see figure 21) Let A, A% be finite sets
of automata, ¢ € Qa, and a be an action. Let n, € Disc(Qconyt) be the unique preserving
distribution s.t. n, A N(A,q,a) With the convention N q.a) = 0q if a & sig(A)(q). Let ¢ be
a finite set of PSIOA identifiers with aut(o) N A = 0. Let n = reduce(n, 1 ¢). We note
n\ A* = reduce((np, \ A%) T (¢ \ A%)).
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A= (A, A, Ay) o 0.28 = C) = (A,S)) 0.28
_,r;<> i 0.4 ‘[> G-(a%) on 0.4
ot ns
2= (ama) ‘<> [0 0o onu ‘|> (@@ e c;=(as) 04
N [@ee] 0is ’ S [e@e] c;-(as) o1 "
AN {4} = (A, Ag)
o 04 -+ Cy=(A\{4:},8)) 04
T \ () T\ ()
2\ {4} = (1,0) \\“<> o e o RS [0 ®] ¢~ (A\{4}S) 06

Figure 20 total probability law for preserving configuration

» Lemma 117 (intrinsic transition projection). Let A® be finite sets of PSIOA. Let a be
an action. For each i € {1,2}, let ¢; be a finite set of PSIOA identifiers, let C; € Qconf,
C; ==, 0" if a € sig(C;) and n' = é¢, otherwise. Let i = n* \ A and 3% = o'\ A®.

Assume Co = C1 \ A®. Then,

n? =i and $a = o, i.e. (C1\ A?) :a>m\As (n'\ A%).
For every Cy € Qeong, (M T ¢2)(C5) = Z(c;eme,c;\As:c;)(W; T 91)(C1)
For every Cy € Qeong,1*(Cy) = B(C1 €Quons.c\As =N (CT)

Proof.
Immediate by definitions 18, 116 and lemma 115

Let C3 = Cy \ (auts(Cy) \ A®). We note @3 = ¢1 \ p2. By definition 18, for each
i € {1,2,3}, for each C! € Qcony, (77;; 1T ) (C)) = 6Cm (CL T i) - n;(C; \ ¢i) with

auts(Cy,,) = ¢; and VA € ¢;,map(Cy,,)(A) = ga. By previous lemma, for every

Cy € Qconf77711)(cél) = ZC{',C{/\As:cg 77;1;(01/)~ Hence, (77;23 T 92)(Cy) = 6@,2 (Cy 1
©2) 2o omas—(cy\es) Mp(CT) and so (17 1 2)(C3) = Ycn cim as—(cg\pa) 0, (C2 1

®2) - 77;1)(01/)~

We remark that the conjunction of C7' € supp(n),), C7\A® = (Cy\p2) and C§ [ @3 = C,,,

implies (C7 U Cyu, UC,,) \ Ay =Cj .

Thus, (775 T 2)(C3) = chf,c{"\As:(cé) 50%2 (C5 1 p2) - 5C¢3 (CY" 1 3) ‘77;1,(01” \ 1) =

"

Zc{",(){”\Asz(c&) oc,, (G 502)'5C¢3 (G 903)'77;1)(0

©1) - 77;1)(01" \ 1) = ZCi,,7C{,,\AS=Cé (77;1, T p1).

"

1\¢1) = ZCi”,C{"\AS:Cé dc,, (C1

"

By definition 18, for each i € {1,2}, for each C} € Qeons, n°(Cl) = Zc;',reduce(cg’):c; (nj, 1
©i)(C{). By previous lemma, for every C§ € Qcons,np(Cy) = ZC{”,C{'\AS:CQ(W; 0
801)(01//)' ThuS, nQ(Cé) = ZCQ’,raduce(Cé’):Cé(ZC{”,C{”\AS:CQ’(H; T s@l)(ciﬁ)) and

SO 772(Cé) = ZC{”,Teduce(C{”\AS):Cé/(/'7117 T QDl)(C

"
1

— 1
) - ZC’Y',reduce(Ci”)\AS:CQ(np T

I
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)(Clll)
Fmallyn (C3) = Zc/ c{\As:cé(ch,reduce(cg):c;((77;17 Te1)(CY)) = ZC{,C{\AS:Cé n*(C1)
<
o= {AnA} P\A (A}
= (A2, A3, Ay, A5) Ay = (A 4) A" = Ay, Ay)
C; = (A,8)) Cy = (A",87)
= (Ay, Az, Ag) "D AVA, = (4, 4) 5\‘D

2 g e pa
* :
C, = (A", S) Cy = (A",S})

C- C\A, =S4, 1) A,

Figure 21 intrinsic transition projection

In next subsection, this lemma 117 will lead to lemma 119 which will be a key lemma to
allow the constructive definition 120 of PCA deprived of a (sub) PSIOA.

11.2 _A-fairness assumption, motivated by our definition of PCA
deprived from an internal PSIOA: X \ {A}

Here we recall in definition 118 the definition 66 of a A-fair PCA. Then we show lemma 119
(via lemma 117) that will be used to enable the constructive definition of X \ {A}.

» Definition 118 (A-fair PCA (recall)). Let A € Autids. Let X be a PCA. We say that X is
A-fair if it verifies the following constraints.
(configuration-conflict-free) X is conﬁgumtion-conﬂict-free, that is ¥q,q' € Qx, s.t.
qRconsq’ (i.e. config(X)(q) = config(X)(q')) then ¢ =¢
(no conflict for projection) Vq,q¢ € Qx, s.t. RZ;:‘f}q’ then quféc}tq’ That is if
conig(X)(@)\ {A} = config(X)(@) \ {A}, then
Ya € sig(X)(q) N 579(X)(¢"), ereated(X)(q)(a) \ {A} = created(X)(¢’)(@) \ {A}
hidden-actions(X)(q)\pot-out(X)(q)(A) = hidden-actions(X)(q")\pot-out(X)(q")(A)
where for each ¢ € Qx:
pot-out(X)(¢")(A) =0 if A ¢ auts(config(X)(q")), and
pot-out(X)(¢")(A) = out(A)(map(con fig(X)(¢"))(A)) if A € auts(con fig(X)(a").
(no exclusive creation by A)¥q € Qx, Va € sig(X)(q) A-exclusive in in g, created(X)(q)(a) =
(0 where A-exclusive means VB € auts(config(X)(q)), B# A, a ¢ szg( Y(map(config(X)(q))(B)).

A A-fair PCA is a PCA s.t. we can deduce its current properties from its current
configuration deprived of A. This will allow the definition of X \ {4}, where X is a PCA, to
be well-defined.

Now we give the second key lemma (after lemma 117) to allow the definition 120 of PCA
deprived of a (sub) PSIOA. Basically, this lemma states that if two states gx and gy are
strictly equivalent modulo the deprivation of a (sub) automaton P, noted qx R\\5) gy, then
the intrinsic configurations issued from these states deprived of P are equal.
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200 Lemma 119 (equality of intrinsic transition after deprivation of a sub-PSIOA). Let X, X5
a0 be two PCA, (q1,¢2) € Qx, X Qx, s.t. qu:fﬁjtqg Let a be an action. For each i € {1,2},
ae we note C; 2 config(X)(q), @i 2 created(X)(q:)(a), n; s.t. if a € sig(C;), C; =%, i and
203 1); = 0¢, otherwise. Then,

2104 Coé01\{P}:CZ\{P}7

2105 vo 2 o1 \{P} =2\ {P},
2106 77—771\{P}—772\{P}
2107 Ifa € szg(Co) Co :>(P Mo and 1y = d¢, otherwise.

a0s Proof. The two first items comes directly from definition of Réfm; By lemma 117, if
a0 a € sig(Cy), we have both Cy ==, n; \ {P} and Cy ==, 12 \ {P}, while if a ¢ sig(Cy), we
auo have both (n1 \ {P}) = d¢, and (2 \ {P}) = d¢, . By uniqueness of intrinsic transition, we

an have n; \ {P} =2 \ {P}. |

a2 Definition 120 (X \ {P}). (see figure 22 for the constructive definition and figures 23
s and 24 for the desired result.) Let P € Autids. Let X be a P-fair PCA, with psioa(X) =
ae (Qx,qx,si9(X),Dx). We note X \ {P} the automaton Y equipped with the same attributes
aus  than a PCA (psioa, config, hidden-actions, created), uf’ : Qx — Qy and uf : Dx \
s {N(x,qx,a) € Dxla is P-exclusive in qx} — Dy that respect systematically the following
ar rules:

2118 P-deprivation: Yqy € Qy, P ¢ config(Y)(qy), Va € s/z\'g(Y)(qY)(a), P ¢ created(Y)(gy)(a).

2110 ul -correspondence: ¥(qx,qy) € Qx x Qy s.t. uf(qx) = qy, then qXRstTIZthy.

2120 ul -correspondence: ¥((qy, a,N(Y,qyav))s (0X5 0 (X gx.ax)) € Dx XDy s.t. (qy,a,0v,qy ay)) =
2121 ug(qx,a,n(x,qx’ax)), then

222 1l (gx) = qv,

2123 ax = ay and

124 Vay € Qv M(vagy.a)(@y) = By €@ ualay)=a, M X.ax.a) (9x)-

2125 and constructed (conjointly with the mapping ut and ey F) as follows:

2126 (Partitioning):

2127 We partition Qx in equivalence classes according to the equivalence relation Rzifj f} that is
2128 we obtain a partition (Cj)jescn s.t. ¥j € J, Yax,dx € Cj, qXRZ(EnJc}qS( and by P-fair
2120 assumption, qXR:ch}tq’X

2120 @Qy, sig(Y) and p):

2131 Vj € J, we construct qY € Qy and conjointly extend pt s.t. Vgx € Cy, wl(qx) = q{/,
213 verifying the P-deprivation-rule and uf -correspondence rule, that is

25 config(Y)(qy) = config(X)(gx) \ {P},

2134 hidden-actions(Y')(q3,) = hidden-actions(X)(gx) \ pot-out(X)(gx)(P),

213 sig(Y)(qY) = hide(sig(config(Y)(gy)), hidden-actions(Y')(gy))

2136 Ya € szg(Y)(qY) created(Y)(ql)(a) = created(X)(qx)(a) \ {P}.

2137 Furthermore qy = uf (qx).

2138 (Dy and p¥):
an Yoy € Qy, Ya € sig(Y)(qy) (and so Vax € (uf) '(av),a € sig(X)(gx)) we con-

2140 struct 1ey,qy o) and conjointly extend pf s.t. Yax € (ul) " ay), (av,a,M(v.gy ay)) =
2101 ,uf;(qx,am(xyqxﬂx)), verifies the ,ug-correspondence rule. We show this construction is
2142 possible:

2103 We note Cy = config(Y)(qy), ¢y = created(Y)(qy)(a), ny the unique element of

2144 Disc(Qconys) s.t. Cy :a>¢y ny. Let (¢%)icicn = (uP)YL(qy). For everyi € I,
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215 we note C% = config(X)(qk), ¢ = created(X)(g%)(a), n% the unique element of

2146 Disc(Qeong) s-t. Ci :a>¢§( n%. Bylemma 119,Vi € I, Ci,\{P} = Cy, ¢'\{P} = ¢y

2147 and n \ {P} =ny .

2148 For every ¢ € (uf)~(gv), we partition supp(N(x.qi, .a)) N equivalence classes ac-

2149 cording to the equivalence relation szﬁ’ that is we obtain a partition (C7)jcrcn

2150 st. Vj € J, Vix,dx € Cf, qS(RZ(;{:f}q;’( and by P-fair assumption, q’XR;fﬁc}tq')’(.

2151 For each j € J', we extract an arbitrary ¢x € C} and ¢y = wl(dy). We fix

a2 Y.y @) (@) 7= 1y (Cy) with Cy = config(Y)(gy).

2153 ny (Cy) = Z 7% (C%) by lemma 117

' ClL=Ci \{P}
2154 = Z U(x,qg(,a)(QS() by bottom/up transition preservation
@Oy =con fig(X)(a’ )\ P}
2155 = Z n(X7q§(7a)(q3() By ul -correspondence
a0y =pf (d%)

2158

2158 Thus, the ,ufl)—correspondence constraint holds for all the possible ¢’ € () qy).

2159 In the remaining, if we consider a PCA X deprived of a PSIOA A we always implicitly
ae0  assume that X is A-fair.

a0 11.3 Y=X \ {A} isa PCAif X is A-fair

262 Here we prove a sequence of lemma to show that Y = X \ {P} is indeed a PCA, by verifying
263 all the constraints.

s« Prepare the top/down transition preservation

26 We show a useful lemma to show Y = X \ { A} verifies the constraint 2 of top/down transition
2166 preservation.

267 B Lemma 121 (corresponding transition after projection). Let A be a PSIOA. Let X be a

ae  A-fair PCA andY = X\ A. ((¢x,a,7x),(qv,a,my)) € Dx x Dy, s.t. (qv,a,7(yv,qy.a)) =

260 fa(gx, QN (X,qx,a))- Foreach K € {X,Y}, we note Cx = config(K)(qx), ¢x = created(K)(qx)(a).
2170 Let 1’ the unique element of Disc(Qconf) 8-t. ©0) N(x,qx ) &y with x1) ¢ = config(X)
an and 72) Ox ==, 1.

2172 Let ny = n'x \ {A}. Then 0y verifies y0) 1¢y,qy a) & 0y with y1) ¢ = config(Y)(qy)
ars and y2) Config(Y)(qy) == 4y Ny -

24X

aw Proof. We note (QF );cz the partition of supp(nx,qx .a) s-t- Vi € I, Vdk, d% € QFF, q’XRziff}qg’(

as Vi € Z, we note C’i\{A} = config(qdy) \ {A} for an arbitrary element ¢% € Q¥ and
ars C; = {C € supp(n’y)|C\A = C’i\{A}}. Since x0) 7(x,qx ,a) é) Ny with x1) f = config(X)(gx),
arn (C})iez is a partition of supp(n'y).

2178 For every i € Z, we note ¢f = pus(q’) for an arbitrary element ¢5 € QX. By uZ-
a7 correspondance, config(qY) = C’i\{A} = config(qy) \ {A}

2180 By ,u;l“—correspondance,



2181

2182
2183

2184

2185

2186

2187
2188

P. Civit and M. Potop-Butucaru

ql:y
b - »@
A2
qu a ) L q
X o—Cl,
M :
i ,Ud'
i ."ﬂ.'il: i;:l
a L ]
~xX\{P} &8 g
7" c é ‘r.
o ] Femmnes »®
-1y qg.h'

Figure 22 constructive definition of Y = X \ {P}. First we construct ¢° which is the initial

state of Y. Then we partition supp(n(x,¢0,q)) = {g"™, "™ YU {¢"¥, 'V} s.t. ¢** RZiff}qlz“ and

gty ng:;qu”. Thereafter we construct ¢ = p15(¢'*) = ps(¢'**) and ¢¥ = ps(¢*¥*) = ps(g'v?).

Then, Ny o ) i defined s.t. 7y 0 ) (77) = Nex.g0.0) (@) + 71,000 (¢7) and My o, (TY) =
n(X,qO,a)(quu) + n(X,qO,a)(qu’”). We perform another time this procedure. by partitioning

supp(n(x,qive ) = {*} U{g®*} or supp(nix qrve a)) = {*, "} U{¢**", ¢*¥*} arbitrarily.

Indeed the obtai,ed result is the same: (i) ¢'¥» R\{P}qu” since they are both pre-image of §'¥ by s,

conf
which means (ii) ¢'¥= R:gﬁgtqu“ since X is assumed to be P-fair. If we note C,, = config(X)(q'¥"),

Co = config(X)(q"""), pu = created(X)(q"V*)(c), po = created(X)(q"")(c), Cu =4, M
and C, :C>W v we have j) C, \ {P} = C, \ {P}, jj) Cu \ {P} :C><pu\{p} 7 \ {P} and jjj)
C, \ {P} :c>%\{p} v \ {P} which implies jv) n, \ {P} =n, \ {P}-

Y.y a)(@y) = B e (d)=a}, N X,qx.a) (dx)

= BierX g, €@ ua(ay )=d, N X,ax.a) (@x)

By assumption x0) and x1), 7(x qx,a) &y with ¢ = config(X), thus

1¥.ay.0(2y) = Tier2q €QX . (g )=a, Mx (config(X)(dx))
= Yier¥cy e0,,0i \A=con fig(d,)Nx (Cx)

= B0 0 \A=con fig(a,)Tx (Cx)
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Figure 23 Projection on PCA (part 1/2, the part 2/2 is in figure 24): the original PCA X

Therafter, we use the lemma 117 and get 7¢y,q, .a)(¢y) = 1y (config(Y)(qy)) with ny, =
nx \ {A}.

By definition of Y, Config(Y)(qy = ps(gx)) = Config(X)(gx) \ {A}. We can apply
lemma 117. Since a € %(config(X)(qX) \ {A}), Config(Y)(qy) == oy n% with 0} =n'y \
{A} and py = (px\{A}). By uf-correspondance, created(Y)(qy)(a) = created(X)(qx)(a)\
{A}, thus ¢y = created(Y)(qy)(a).

Finally the restriction of config(Y) on supp(n(y,qy ,a)) is a bijection. Indeed, we note
fiiay = QF st {av} = ps(QF), fo: QX = Ci f3: C; — CZ-\A. By construction, fi
and f3 are bijection. By bijectivity of the restriction of config(X) on supp(nx.qx.a), f2 is a
bijection too. Moreover, the restriction f’ of config(Y) on supp(ny,qy.a) is f1 0 f2 o f3 and
hence this is a bijection too.

<

Now we are able to demonstrate that the PCA set is closed under deprivation.

» Theorem 122 (X \ {P} is a PCA). Let P € Autids. Let X be a P-fair PCA, then
Y =X\ {P} is a PCA.

Proof. = (Constraint 1) By construction of Y, gy = uf(gx) and by ps-correspondence
rule, config(Y)(qy) = config(X)(gx) \ {P}. Since the constraint 1 is respected by X,
it is a fortiori respected by Y.

= (Constraint 2) Let (qvy,a,nv,qy,0)) € Dy. By construction of Y, we know it exists
(gx,0,M(x qx,0)) € Dx With ny,qy a) = 1a(M(x,qx,a)) a0d gy = ps(gx). Then, because
of constraint 2 ensured by X, we obtain it exists a reduced configuration distribu-
tion 0y € Disc(Qeons) s.t. X0) N(x.q¢,a) <> Ny With x1) ¢ = config(X) and x2)
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¥ =X\ {1}
hidden—
config(Y
¢ @ actions(Y')
a Y @ a u [ ¥ e
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OS5 1 , € 03 0 “(f_—
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o [9) 4 Cf b o)

Figure 24 Projection on PCA (part 2/2, the part 1/2 is in figure 23): the PCA Y = X \ {T'}

Config(X)(gx) ==, My where px = created(X)(qx)(a). We can apply lemma
121 to obtain that nj = 7 \ {P} is a reduced configuration transition that verifies

¥0) N(v,qy ,a) & ny with y1) ¢ = config(Y) and y2) config(Y)(qy) ==, 1} where
ey = px \ {P} = created(Y)(qy)(a).
This terminates the proof of constraint 2.
(Constraint 3) Let gy € Qy,Cy = config(Y)(qy),a € sig(Cy), oy = created(Y)(qy)(a),
Ny € Disc(Qcony) s-t. Cy == 7
By construction of Y = X \ {P}, if ¢v € Qy, Jgx € Qx, us(¢gx) = qv, Cx =
config(X)(gx), Cx \ {P} = Cy. Necessarily, a € sig(Cx) and by construction of
Y = X\ {P}, ox \ {P} = ¢y with px = created(X)(gx)(a). We note n’y verifying
Cx :a><PX N . By lemma 117, n{, = n’x \ {A}.
Because of constraint 3, it means (gx, @, 7x,qx,a) € Dx With x0) 0(x ¢ ,a) S N with x1)
¢ = config(X). Since ¢y = ps(qy) and a € s/z\g(Y) (qy), the construction of Dy implies
(av,a,0(v,ay a)) € Dy With (v, a,0(v,qy ,a)) = 1 (4% @ 1(x qx,0)))-
We can apply lemma 121 to obtain that ny verifies y0) 1(y,qy ) & 7y with y1) ¢ =
config(Y) and y2) Cy ==, 7}
This terminates the proof of constraint 3.
(Constraint 4) Verified by construction (We recall that V(gy,qx) € Qv X Qx,qy =
P (gx),si9(Y)(qv) = hide(sig(config(Y)(qy), hidden-actions(Y)(gy)) where hidden-
actions(Y)(qy) £ hidden-actions(X)(qx) \ pot-out(X)(qx)(P).

<
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12 Reconstruction

In the previous section, we have shown that Y = X \ A is a PCA (as long as X is A-fair ).

In this section we will

1. introduce the concept of simpleton wrapper A% that is a PCA that encapsulates A.

2. prove that X \ {A} and A%" are partially-compatible (see theorem 134)

3. There is a strong executions-matching from X to (X \ {A})||.A*" in a restricted set of
executions of X that do not create A (see theorem 140). Hence it is always possible
to transfer a reasoning on X into a reasoning on (X \ {A})||A** if no re-creation of A
occurs.

4. The operation of projection/deprivation and composition are commutative (see theorem
145).

12.1 Simpleton wrapper : A5

Here we introduce simpleton wrapper A%, a PCA that only encapsulates A5®

» Definition 123 (Simpleton wrapper). (sece figure 25) Let A be a PSIOA. We note A*™ the
simpleton wrapper of A as the following PCA:

psioa(A*") = A

config(A**)(¢%) = (0,0)

Vg € Qa,qa # g4, config(A)(q) = (A {(A q)})

Vg € Qa,Va € sig(A**)(q), created(A**)(q)(a) = 0

Yq € Q.. hidden-actions(A**)(q) = 0
We can remark that when A% enters in qi}sw = qf‘ where @(Asw)(qzsw) = (), this matches

the moment where A enters in qj where sz/\g(A)(qﬁ) =0, s.t. the corresponding configuration
is the empty one.

A G A c
o N e s N e
D <«— C o <«
» ___9J%a qt Aww s L OJ%
c c
TI(A,..-MHU) . ﬂ(CLW,.c}
a A é a A
_’ Y - —)-
] 2>> g
D— 2 ]
b 0 q c o b 0
b b
5qf.1_,u. i {6(0,0) ‘ MAgib) = O
A <%> )i:>
6 Y o 32
4%, =9 Ci.= 00

Figure 25 Simpleton wrapper

12.2 Partial-compatibility of (X 4\ {A}) and A*"

In this subsection, we show that (X4 \ {A}) and A*" are partially-compatible and that
(X4 \ {A})]]A** mimics X 4 as long as no creation of A occurs (see figure 26).
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Figure 26 Reconstruction of a PCA via Z = (X, X \ {V})
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We first introduce two functions to map X and (X \ { A}, A5%).

69

» Definition 124 (7 and p': mapping of reconstruction). Let A € Autids, X be a A-fair

PCA, Y = X\ A. Let A° be the simpleton wrapper of A. Let qft € Qa the (assumed)

unique state s.t. sz/\g(.A)(qfl) = (). We note:
The function X.ut : Qx — Qy xQ fow s.1. Ygx € Qx, X.uMax) = (X.pMax), qa) with
ga = map(config(X)(gx))(A) if A € (auts(config(X)(gx))) and g4 = qi otherwise.
The function X.uf that maps any alternating sequence ax = ¢%, a', ¢k, a*... of states and
actions of X, to uf(ax) the alternating sequence az = X.u(q%), a', X.u(qk), a?, ...

The symbol A and X. are omitted when this is clear in the contet.
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Now, we recall definition 67 of A-conservative PCA, an additional condition to allow the
compatibility between X \ A and A5%.

» Definition 125 (A-conservative PCA (recall)). Let X be a PCA, A € Autids. We say
that X is A-conservative if it is A-fair and for every state qx € Qx, Cx = (Ax,Sx) =

config(X)(gx) s.t. A€ Ax and Sx(A) £ qu, hidden-actions(X)(gx) = hidden-actions(X)(qx)\

cxt(A)(q)-

A A-conservative PCA is a A-fair PCA that does not hide any output action that could
be an external action of A.

Preservation of properties

Now we start a sequence of lemma (from lemma 126 to lemma 132) about properties
preserved after reconstruction to eventually show in theorem 134 that X \ A and A are
partially-compatible.

The next lemma shows that reconstruction preserves signature compatibility.

» Lemma 126 (preservation of signature compatibility of configurations). Let A € Autids. Let
X be a A-conservative PCA, Y = X \ A. Let gx € Qx, Cx = (Ax,Sx) = config(X)(¢x).
Let gy € Qv,qy = ps(gx). Let Cy = (Ay,Sy) = config(Y)(gy).

If A € Ax and qa = Sx(A), then sig(Cy) and sig(A*")(qa) are compatible and
sig(Cx) = sig(Cy) x sig(A**)(qa).

If A ¢ Ax, then sig(Cy) and Sig(Asw)(Qi) are compatible and sig(Cx) = sig(Cy) x
stg qa)-

(A*) (%)

Proof. Let A € Autids Let X and Y\ {A} be PCA. Let gx € Qx. Let Cx = config(X)(gx),
Ax =auts(Cx) and Sy = map(Cx). Let ¢y € Qy, ¢y = ps(gx). Let Cy = config(Y)(qyv),
Ay = auts(Cy) and Sy = map(Cy). By definition of Y, Cy = Cx \ {A}.

Case 1: Ac Ay

Since X is a PCA, Cx is a compatible configuration, thus ((Ay,Sy) U (A, q4)) is a
compatible configuration. Finally sig(Cy) and sig(A)(g4) are compatible with sig(A)(qa) =
sig(A) (q5)

By definition of intrinsinc attributes of a configuration, that are constructed with the
attributes of the automaton issued from the composition of the family of automata of the
configuration, we have Ax = Ay U {A} and sig(Cx) = sig(Cy) x sig(A)(qa), that is
sig(Cx) = sig(Cy) x sig(A*")(qa)-

Case 2: A¢ Ax

Since X is a PCA, Cx is a compatible configuration, thus Cy = Cx is a compatible
configuration. Finally sig(Cy) and sig(A)(qﬁ) = (0,0,0) = sig(A)(ga) = sig(A**)(¢%) are
compatible.

By definition of intrinsinc attributes of a configuration, that are constructed with the
attributes of the automaton issued from the composition of the family of automata of
the configuration (here Ay and Ax = Ay ), we have sig(Cx) = sig(Cy). Furthermore,
sig(A*)(q%) = sig(A)(g%) = (,0,0). Thus sig(Cx) = sig(Cy) x sig(A**)(¢%) <

The next lemma shows that reconstruction preserves signature.

» Lemma 127 (preservation of signature). Let A € Autids. Let X be a A-conservative PCA,
A € Autids, Y = X \ {A}. For every qx € Qx, we have sig(X)(qx) = sig(Y)(qy) X
sig(A*)(qa) with (qv,q4) = 2 (ax)-
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Proof. The last lemma 126 tell us for every ¢x € Qx, we have sig(config(X)(gx)) =
sig(config(Y)(qy)) x sig(A*)(qa) with (¢y,q4) = p-(gx). Since X is A-conservative,
we have (*) sig(X)(gx) = hide(sig(config(X)(qx)),acts) where acts C (out(X)(gx) \
(ext(A)(qa)). Hence sig(Y)(qy) = hide(sig(config(Y)(qy)),acts). Since (**) acts N

ext(A)(qa) =0, sig(Y)(gy) and sig(A)(q4) are also compatible. We have sig(con fig(X)(¢x)) =

sig(config(Y)(qy)) x sig(A)(qa) = sig(config(Y)(qy)) x sig(A**)(q4) which gives because
of (*) hide(sig(config(X)(qx)), acts) = hide(sig(config(Y)(qy)), acts) x sig(A)(ga), that

is sig(X)(qx) = sig(Y)(qy) x sig(A)(qa) = sig(Y)(qy) x sig(A**)(qa).

<

The next lemma shows that reconstruction preserves partial-compatibility at any reachable
state.

» Lemma 128 (preservation of compatibility at any reachable state). Let A € Autids, X be a
A-conservative PCA, Y = X \ {A}, Z = (Y, A*") Let qz = (¢v, 4 zou) € Qy X Q jou and
ax € Qx s.t. pMgx) = qz. Then psioa(Y) and psioa(A%”) are compatible. Moreover, by
definition of Y = X \ {A} and A*" being the simpleton wrapper of A, the sub-automaton
exclusivity and creation exclusivity of definition 21 are necessarily ensured. Hence, Z is
compatible at state qz.

Proof. Since X is a A-conservative PCA, the previous lemma 127 ensures that sig(Y')(gy)
and sig(A)(qa) = sig(A°”)(q4) are compatible, thus by definition Z is compatible at state
4z- |

Here, we show that reconstruction preserves probabilistic distribution of corresponding
transition, as long as no creation of the concerned automaton occurs.

» Lemma 129 (homomorphic transition without creation). Let A € Autids, X be a A-
conservative PCA, Y = X \ {4}, Z = (Y, flsw). Let qz = (qv,04:v) € Qy X Q jouw
and qx € Qx s.t. (i) p-(gx) = qz. Let a € sig(X)(qx) = sig(Y)(qy) % sig(A**)(q zow )
verifying (#: No creation from A) If a is A-exclusive in state qx ,then created(X)(¢x)(a) = 0,

If A is not created by a, i.e. if either
A € auts(config(X)(gx)), or
A & auts(config(X)(qx)) and A ¢ created(X)(gx)(a) (X does not create A with
probability 1)
Then N(X,qx,a) ig NZ,qz,a)
If A is created by a i.e. A ¢ auts(config(X)(qx)) and A € created(X)(gx)(a) (X
creates A with probability 1)
Then Nx,ax.a) & Nzaaz.a) where £ dy € supp(ixax ) — (X (d) 45..)-
Proof. By lemma 127, we have sig(X)(¢x) = sig(Y)(qy) X sig(A)(qga) = sig(Y)(qy) X
519(A™) (@ o = 04)-
We note Cx = (Ax,Sx) = config(X)(qx), Cy = (Ay,Sy) = config(Y)(qy), Cfow =
(A fews S fow) = config(A*")(q j-w ). By construction of ., Cx = Cy UC z.., with Cy and
C j+w compatible configuration (1).
We note px = created(X)(gx)(a), vy = ox \ {A}, ¢ qe0 =0, vz = ox U@ jou. If ais
A-exclusive in state gx, then px = ¢y = ().

If A is not created by a, then px = ¢z,
If A is created by a, then px = oz U{A} and pz = ox \ {A}

71
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2354 Since X is a PCA and (gx,a,7(x,qx,a)) € Dx, the constraint 2 of top/down trans-
255 ition preservation says that there exists a unique reduced configuration distribution n’y s.t.

X
256 1)(X,qx,a) AN 0y with fX = config(X) and config(X)(qx) =,y Ny (2).

2357 For Y (resp. A%™) we note ny = 1(y,qya) if @ € sig(Y)(qy) and ny = dq, otherwise
a6 (TESD. 1) fow = T fow g 100 ,a) 1L @ € 5ig(A*)(¢ gow) and 1) fou = 04 40 Otherwise).
2350 Since Y and A** are PCA, either because of the constraint 2 of top /down transition preser-

260 vation or because a is not action of the signature, there exists a unique reduced configuration

Y
z0  distribution 7} s.t. Ny L ny with f¥ = config(Y) and config(Y)(qy) =, 0} (resp.
Asw

ow S 1 fow T 1 jow With FA = config(A*®) and config(A**)(q1ew) =g 4o N few)

2362 7]
(

2363 3
2364 By construction V(gy, ¢';,..) € Qv XQ ew, constitution(Y)(q@)ﬂconstitution(ﬁs“’)(q;ﬁw) =
2 () (and so auts(con fig(Y)(qy ))Nauts(config(A**)(q';.,)) = 0) which means (**) base(Cy, a, ¢y )N
2366 base(CAsw ,a, @Asw) = @

2367 The conjonction of (1), (2), (3) and (**) allows us to apply the lemma 35. This means

Nt

sw

2368 by item 1b of lemma 35: merge((n';...ny)) TN join((n'z.n-ny)) with f*: C% —
2369 (C4,C.,) st 1) C,=CL Ul i) A¢ Cf and iil) VB # A, B¢ C';,., (4)

_Asw _Asw’
2370 by item 1d of lemma 35: Cx ==, merge((n'z...ny)) (5)
z
2m Furthermore 7z 4,.0 = 7y ® 1 ew. S0 by (3), 12,47, L Join((n'z....my)) (***) with
wn f7 0 qly = (4, q ) = (config(Y)(d..), config(A**)(d5..))-
2373 Now we deal have to separate the treatment of the two cases:
2374 If A is not created by a, since pz = px, because of (5) and (2), merge((n',...ny)) =
X

2375 nx and because of (2) 7(x,qgy.a) AN merge((n'z..,my)) (6). Because of (6) and (4),
276 N(X.qx,a) < GOI((0/ o> ) with g = fo f.
2377 Hence, if A is not created by a 1(x 4y ,a) PN NZyaz,a) With h = (fZ)"ho foo f5 =y,
2378 which ends the proof for this case.
2379 If A is created by a, we have both

a ! /
2380 CX ﬁtpz merge((’r]‘jsw ? ny))
2381 CX :a>tsz{A} 77;(
2382 which means Cx N 77;) with
2383 merge((n'y...»My)) generated by n;, and ¢z and
2384 n’x generated by 7, and ¢z U {A}.

@ _ _
2385 Thus 7y <— merge((1) .., 1y)) with g : C% = CyUC ze0 = C3. where C g0 ({A}, 84,
2386 A (L{sw).
2387 To summerize, we have:
fX

2388 N(X.qx.a) € Tx

s
2359 . <= merge((n'g..., my))

oo
2390 merge((n'z..,1y)) € join((n'z... ny))
7o

2301 NZ,q.,a) < ]om((n:&sw,ng,))
2302 Hence 7(x,4x .a) PN NZ.qz,a) With [ = (fZ)" o ffog?o fX ie.
2303 fo:dy € supp(N(x,qx,a)) — (X.ul(dy), qi)isw)’ which ends the proof for this case.

2394 |
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The second case where A is created will not be used before section 14.
We take advantage of the lemma 132 used for theorem 134 to introduce the notion of
twin PCA and extends directly the lemma 132 and theorem 134 to twin PCA.

q
reachable(X). We note Xg, g the PSIOA X' = (Qx,qx,sig(X), Dx).

» Definition 130 (X—Xﬁq;(). Let X = (Qx,qx,sig(X),Dx) be a PSIOA and gy €

Two PCA X and X' are A-twin if they differ only by their start state where one of them
corresponds to A-creation.

» Definition 131 (A-twin). Let A € Autids. Let X, X' be PCA. We say that X' = Xg 4.,
is a A-twin of X if it differs from X at most only by its start states qx: reachable by X
s.t. either X' = X or A € config(X')(qx’) and map(config(X')(gx'))(A) =qa. If X' is a
A-twin of X andY = X \ {A} andY' = X'\ {A}, we slightly abuse the notation and say
that Y’ is a A-twin of Y'.

» Lemma 132 (partial surjectivity 1). Let A € Autids. Let X be a PCA A-conservative and
X' a A-twin of X. Let Y = X'\ {A}. Let Y’ be a A-twin of Y. Let Z' = (Y', A*").

Let a = ¢°,a', ...,a", ¢* be a pseudo execution of Z'. Let assume the presence of A in a,
i.e. Vs €0,k — 1], Qo 7 qj .

Then 3a& € Execs(X'), s.t. X'.ulMa) = a.

Proof. By induction on each prefix a® = ¢°,a', ..., 0%, ¢° with s < k.

Basis: case 1) A € config(X')(gx/): We have u.(qx/) = (qy/,qa). Hence u.(qx') =
(@v',qa)-

case 2) A ¢ config(X')(gx'), (necessarily X = X'): pu.(qx/) = (q_y/,qfl). Hence
pe(gxr) = (@Ynfﬁ)-

Induction: we assume this is true for s and we show it implies this true for s+ 1. We note
as s.b. pe(@®) = a®. We also note ¢° = Istate(@®) and we have by induction assumption
p=(G%) = ¢° = (¢5,¢%)- Because of preservation of signature compatibility, sig(X)(¢°)) =
sig(Y) (g3 )) x sig(A)(q%)). Hence a**! € sig(X)(¢*). Thereafter, by construction of X \ {A}
there exists ¢°*! s.t. ¢**' = pA(¢*+!). Finally, since no creation of and from A occurs by
assumption of presence of A, we can use lemma 129 of homomorphic transition which give
N(x,G¢as+1) 3 0(Z,q7 as+1) Which means 5+
and so the proof. <

€ supp(n(x,g°,a=+1)) Which ends the induction

Before using lemma 132 and 128 to demonstrate theorem 134 of partial compatibility
after reconstruction, we take the opportunity to extend lemma 132:

» Lemma 133 (partial surjectivity 2). Let A € Autids. Let X be a PCA A-conservative. Let
Y =X\ A Let Y be a A-twin of Y. Let Z =Y'||A*".

Let a = ¢°,a',...,a* ¢* be a an execution of Z. Let assume (a) iy =+ qﬁ for every
s €[0,k"] (b) ¢%.., = CIf(sw for every s € [k*+1,k] (¢) for every s € [k* + 1,k — 1], for every
G, s.t. 1.(q3®) = ¢*, A ¢ created(X)(§®)(a*Tt). Then Ja € Frags(X), s.t. pe(d) = a. If
Y=Y, 3a € Execs(X), s.t. p.(ad) = a.

Proof. We already know this is true up to k* because of lemma 132. We perform the
same induction than the one of the previous lemma on partial surjectivity: We note &,
st. pe(@®) = a®. We also note ¢° = lstate(@®) and we have by induction assumption
p=(G%) = ¢° = (¢5,¢%)- Because of preservation of signature compatibility, sig(X)(¢°)) =
sig(Y)(q5)) x sig(A)(g%). Hence a1 € sig(X)(G°). Now we use the assumption (c), that
says that A ¢ created(X)(¢%)(a*T1) to be able to apply preservation of transition since no
creation of A can occurs. <

73



74

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

Dynamic Probabilistic Input Output Automata (Extended Version)

Now we can use lemma 132 and 128 to demonstrate theorem 134 of partial compatibility
after reconstruction.

» Theorem 134 (Partial-compatibility after resconstruction). Let A € Autids. Let X be a PCA
A-conservative s.t. Ygx € Qx, for every action a A-exclusive in qx, created(X)(gx)(a) = 0.
Let X' ba a A-twin of X and Y' = X'\ {A}. Then Y’ and A% are partially-compatible.

Proof. Let Z’' = (Y', A%). Let a be a pseudo-execution of Z’ with Let Istate(a) = qz =
(qy7:q jow)- Case 1) g fow = qﬁw. The compatibility is immediate since sig(Asw)(qzw) = 0.
Case 2) q o0 # qfisw. Since (*) A cannot be re-created after destruction by neither ¥
or A% and (**) Vqx € Qx, for every action a A-exclusive in ¢x, created(X)(gx)(a) = 0
we can use the previous lemma 132 to show 3 & € Ezecs(X'), s.t. pe(&) = a. Thus,
Istate(a) = p.(Istate(@)) which means Z’ is partially-compatible at lstate(«) by lemma
128. Hence Z is partially-compatible at every reachable state, which means Y’ and A% are

partially-compatible. We can legitimately note Z’ = Y"||A*%. <

Since Z' = (Y’, A*") is partially-compatible, we can legitimately note 2’ = Y'||A%%,
which will be the standard notation in the remaining.

12.3 Execution-matching from X to X \ {A}||A*"

In this subsection, we show in theorem 140 that X.u7' is a (incomplete) PCA executions-
matching from X to (X \ {.A})]|A°" in a restricted set of executions of X that do not create
A.

We start by defining the restricted set of executions of X that do not create A with
definitions 135 and 136.

» Definition 135 (execution without creation). Let A be a PSIOA. Let X be a PCA ,
we note execs-without-creation(X)(A) the set of executions of X without creation of A,
i.e. execs-without-creation(X)(A) = {a = ¢®alqt...a*¢* € Ezecs(X)|Vi € [0,]a]], A ¢
auts(config(X)(¢')) => A ¢ auts(config(X)(¢"t1))}.

» Definition 136 (reachable-by). Let X be a PSIOA or a PCA. Let Execs’y C Ezecs(X).

We note reachable-by(Execs’y) the set of states of X reachable by an execution of Execs'y,
i.e. reachable-by(Execsy) = {q € Qx|3a € Execs’y,lstate(a) = q}

The next 2 lemma show that reconstruction preserves configuration and signature.
They will be sufficient to show that the restriction of u on reachable-by(execs-without-
creation(X)(A)) is a PCA executions-matching.

» Lemma 137 (u, configuration preservation). Let A € Autids. Let X be a A-conservatiee
PCA, Y = X\ A, Z =Y||A*. Let qx € Qx,qz = (qv,q4:w) € Qz s.t. pz(qx) = qz.
Then con fig(X)(qx) = config(Z)(qz)-

Proof. By definition of composition of PCA, con fig(Z)(qz) = config(Y)(qy)Ucon fig(A**)(q jou)-

(*)
Also, by pu-correspondence, config(X)(qx) \ A= config(Y)(qy) (**).
We deal with the two cases szg(AS“’)(qu) =0 or szg(Asw)(qu) #0

If sig(Av)(q ew) = 0, then A ¢ aut(config(X)(¢x)) which means, that con fig(X)(gx) =
config(X)(gx) \ A (1). Furthermore, config(A**)(q 1..) = (0,0) (2) Because of (**)
and (1), config(X)(gx) = config(Y)(gy) and because of (*) and (2), config(X)(qx) =
config(Z)(qz).
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Ifgi\g(Asw)(qu) # (), then A € aut(config(X)(gx)). Wenote C4 = config(A**)(q jou) =

({A}, 8+ A= map(config(X)(qx))(A)). By (*), config(Z)(qz) = config(Y)(qy) U Ca
and by (**) config(Y)(qy) U Ca = config(X)(gx) \ AUCa = config(X)(qx). Hence,
config(X)(gx) = config(Z)(qz)
Thus in all cases, config(X)(¢x) = config(Z)(qz) which ends the proof.
<

» Lemma 138 (p. signature-preservation). Let A € Autids. Let X be a A-conservatiee PCA,
Y =X\A Z=Y|[A". Let qx € Qx,qz = (qv,q4:0) € Qz s.t. pz(qx) = qz. Then
sig(X)(qx) = sig(Z)(qz)-

Proof. By lemma 127 of preservation of signature sig(X)(gx) = sig(Y)(qy ) x sig(A**)(q 1o )-
By definition of composition of PCA, sig(Z)(qz) = sig(Y)(qy) x sig(A*")(g 1...) which ends
the proof. <

Now we can states our strong PCA executions-matching:

» Definition 139. Let A be a PSIOA. Let X be a A-conservative PCA. Let Y = X \ {A}
and Z = Y || A*®.

We define (X. o', X .k, X.i) (noted (G, ik, i) when it is clear in the context) as
follows:

i the restriction of u* on reachable-by(execs-without-creation(X)(A)).

F7 o (ax, 0, (x g 0) € Dy = (2(0x ), 0512, 54 (gx),a)) Where Dy = {(qx,a,1(x,qx,a)) €

Dx|gx € reachable-by(execs-without-creation(X)(A)), (A ¢ auts(config(X)(qx) =

A ¢ created(X)(qx)(a))}-

A the restriction of pt on execs-without-creation(X)(A).

» Theorem 140 (execution-matching after reconstruction). Let A be a PSIOA. Let X be
a A-conservative PCA. Let Y = X \ {A}. The triplet (i, ji7t, ') is a strong PCA
exzecutions-matching from X to Y||A*® if A € auts(config(X)(start(X4))) and from X

to Y||A*® s  Otherwise.
qAsw 44>qlﬂsiv
Proof. We note Z = Y|[|A** and Z¢ = Y||A%

@
Tasw =450

i is a strong PCA-state-matching since

starting state preservation is ensured by construction:
A € auts(config(X 4)(start(X4))) : iMax) = 4z
A ¢ auts(config(X 4)(start(X4))) i qx) = qze
signature preservation is ensured ¥(gx, qz) € Qx xQz s.t. qz = jil(qx), sig(X)(gx) =
st9(Z)(qz) by lemma 138 of signature preservation of ..
D & dom(jit) is eligible to PCA transition-matching (and thus (i, fifl) is a strong
PCA-transition-matching) since
matched state preservation is ensured: Vi x q.a) € D, 4x € dom(fi) by construc-
tion of D’

equitable corresponding distribution is ensured: Vn(x ¢, ,a) € D', ¥q" € supp(n(x,qx.a)),

N(X.x.a)(@") = N(z2,54(qx),0) (i(¢")) by lemma 129 of homomorphic transition.
(a, ik, i) is the PCA-execution-matching induced by (i, fifl). and correctly verifies:

For each state ¢ in an execution in execs-without-creation(X)(A), q € dom(i).

Then, the triplet (i, i, i) is a strong PCA-execution-matching from X to Z if
A € auts(config(X 4)(start(X 4))) : il (Gx) = @z and from X to Z¢ otherwise.
<
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x6 extension and continuation of (i, ift, i)
»27 Now, we continue the executions-matching (i}, fift, i) to deal with A creation at very last
2528 action.

20 » Definition 141 (Preparing continuation of PCA executions-matching from X to Z). Let A
s be a PSIOA. Let X be a A-conservative PCA. We define

2531 execs-with-only-one-creation-at-last-action(X)(A) = {a’ = a"q,a,q¢ € Ezecs(X)|a €

2532 execs-without-creation(X)(A) A o ¢ execs-without-creation(X)(A)}.

2533 a2t qx € reachable-by(execs-with-only-one-creation-at-last-action(X)(A)) — (ﬂf(qYA),qﬁ).
2534 ﬁﬁ7+ : (QX, a, n(X#Zxﬂl)) € dom(ﬂt"i) U Dg( = (ﬂf(q)()a a, n(X,ﬂvz“(qX),a)) where

2535 D% ={(gx,a,0(x,q9x,a)) € Dx|qx € reachable-by(execs-without-creation-at-last-action(X)(A))A

2536 A ¢ auts(config(X)(gx)) N A € created(X)(¢x)(a)}

2537 We show that dom(ﬂf}j"’) \ dom(ji{*) verifies the equitable corresponding property of
»3  definition 81.

3 B Lemma 142 (Continuation of PCA transitions-matching from X to Z). Let A be a PSIOA.
w0 Let X be a A-conservative PCA. Let Y = X \ {A} and Z = Y||A*.

2541 v(‘]Xaa777(X,l1)(,(1)) € dom(ﬂﬁ*’Jr) \ dom(ﬂﬁ)’ Vq&- € Supp(ﬂ(x,qx,a)), 77(X,qX,a)(q/X) =
w0 17, (gx ) (B2 (0% )

x4 Proof. By configuration preservation, Conf = config(X)(qx) = config(Z)(jif(¢x)). We
su  have Conf = N(Conf,a),p- Moreover, by ps-correspondence rule, px \ {A} = ¢z, with
s px = created(X)(gx)(a) and ¢z = created(Z) (it (gx))(a).

2546 Hence Conf ==, 1y with 0y generated by ¢x and N(Conf,a),p» While Conf =, Ny
s with 1), generated by vz and 9(conf,a),p-
2548 Since A is created, for every Conf, = (A,,S") with A ¢ Az, for every Confy =

swo (Aly,S%) with Ay = A, U {A} where S (A) = g4 and S’y agrees with S, on A’

w0 Ny (Confl) = nx (Confl), while 0’y (Conf¥) = 0 for every Conf% = (A%, S’%) s. t either

ms A g Al or A€ A but S (A) # Ga. S0 (7,54 (gx).0) (A2 (@) = 0z (config(Z) (a2 (d))) =
s x ((config(X)(dx))) = 1(x,qx,a) (@) Which ends the proof.

2553 <

2554 Since dom(ﬁf}f’) \ dom(ji{*) verifies the equitable corresponding property of definition 81,
»s  we can define a continuation of (i, fi7t, i') that deal with A-creation at very last action.

5 » Definition 143 (Continuation of PCA executions-matching from X to Z). Let A be a
w7 PSIOA. Let X be a A-conservative PCA. Let Y = X \ {A} and Z = Y||A*". Let
wo DY = dom(pT) \ dom(fid). Since V(qx,a,M(x,qx.0)) € D%, Vdx € supp(n(x.qx.a))>
259 1)(X,qx,a)(0%) = Nz,32(qx).a) (5 F () by previous lemma 142, we can define:

A - AL - . . A A -
2560 (B, A, iy ™, gA) the (ah+, D%)-continuation of (A, ik, id).
2561 We terminate this subsection by showing the £-extension of our continued PCA executions-

62 matching is always well-defined.

2563 B Theorem 144 (extension of continued executions-matching after reconstruction). Let A be a
see  PSIOA. Let X be a A-conservative PCA. Let Y = X\ {A} and Z = Y||A*". Let & partially-
ses  compatible with both X and Z. The &-eatension of (X.at, X.at), X. i, X. i), noted
wes (((E]|1X).a2, ()| X). b)), (E)1X).a, ()| X).al), is a strong continued PCA executions-
ser matching from E||X to &||Z.

s Proof. By definition of ibF and i, we have
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Egl x = execs-without-creation(E|| X)(A)

E;HX = execs-with-only-one-creation-at-last-action(E|| X )(A)
Ex = execs-without-creation(X)(A)

E}E = execs-with-only-one-creation-at-last-action(X)(A)
QSHX = reachable- by(ESHX)

QEHX = reachable-by( €||X)

Qx = reachable—by(EX)
Q% = reachable-by(EY)

dom((€11X).fi24) = QF

dom((é'HX) i) = Qg x
dom(X.at) = Qj{
dom(X uz A =Qx

This allow us to apply lemma 91 of "sufficient conditions to obtain range inclusion" to both
(£]1X).at and (€]|X). a2 which gives range((€]|X).aT) C Qg z and range((€]|X).ad) €
Qs iz which allows us to apply lemma 98.

The lemma 108 implies that the resulting executions-matching is a strong one.

12.4 Composition and projection are commutative

This section aims to show in theorem 145 that operation of projection/deprivation and
composition are commutative.

» Theorem 145 ((X||€) \ {A} and (X \ {A})||€ are semantically equivalent). Let A be a
PSIOA. Let X be a A-fair PCA partially-compatible with £ that never counts A in its
constitution with both X,E and X||€ configuration-conflict-free. The PCA (X||€)\ {A} and
(X \ {AD||E are semantically equivalent.

Proof. We note W = X||€, U = (X||€) \ {4}, V = (X \ {AD]|E, pX4 = X.ud, pVA =
W.ut. To stay simple, we note Id the identity function on any domain, that is we note Id
for both Idg : qe¢ € Qe — q¢ and Idy : qu € Qu — qu-

The plan of the proof is the following one:

We will construct two functions, isoyy : Qu —> Qv and isoyy : Qv — Qu, s.t.
isoyv(qu) is the unlque element of (/AX AT (V)" (qu)) and isoyy ((gy, ge)) is the
unique element of VA (X4, Id) ™ ((qy, qe)))-

Then we will show that isoyy and isoyy are two bijections s.t. isoyy = iso,}‘l/.
Thereafter we will show that for every (qu, gv), (¢[;, i) € (states(U) x Qv ), s.t. qv =
isopv(qu) and ¢, = isoyv(qy), then quRsrictqv, qyRstricedy and for every a €
sig(U)(qu) = sig(V)(av ), nw,qv,0)(q0) = 1(v,qv,a) (41 )-

Finally, it will allow us to construct a strong complete bijective execution-matching
induced by isoyy and Dy (the set of discrete transitions of U) in bijection with a strong
complete bijective execution-matching induced by isoyy and Dy (the set of discrete
transitions of V') .

First, we show that for every qw = (¢x,qe) € reachable(W) C Qx X Qg, the state
v 2 (uXA Id) (qw) = (154(gx), ge) is an element of reachable(V) (*). We proceed by
induction. Basis: (uX*(gx), ge) is the initial state of V. Induction: Let qw = (gx,qe), ¢l =
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(dx,qt) € reachable(W),qv € reachable(V),a € sig(W)(qw) s.t. qw € supp(Nw,qw .a)),
qv = (p5A, 1d) (qw), and ¢}, = (uX4,1d)(g}y) . There is two cases:

case 1) a is A-exclusive in gy . In this case qWR\{A}q{,V, which means ¢{, = ¢ and ends
the proof

case 2) a € sig(V)(gv) N sig(W)(qw)

We need to show that qi, € supp(n(v,q,,q)). This is easy to show. Indeed, ¢y, €
supp(n(w,q/w\’a)) means (¢, qe) € SUPP(U(X,qX,a)(/? N(E qe,a)) (With the convention 1(x gy q) =
dqx ifa & sig(X)(gx)) and ng ¢ a) = 0qc if @ ¢ sig(E)(qe))) which means ¢’y € supp(n(x qx.qa))
and gz € supp(n(e,ge.a))- So pi*(dy) € SUPP<77(Y XA (g).ay) Which means (124(d ), g¢) €
Supp(ﬂ(y,p A(gx),a) ET(E e, a)), that is (1) k) € Supp(ﬂ((yg) (XA (ax),q¢), a)) (€ ,qe,a))
and thus ¢, € supp(n(v7qv7a)) so qi, € reachable(V) .

Second, we show that for every qv £ (qy,qe) € reachable(V), 3 qw = (qx,qe) €
reachable(W) s.t. qy = (u4, Id)(qw) (**). The reasoning is the same, we proceed by
induction. The basis is performed with start state correspondance as before. Induction:
Let gy = (qy,qg) 4y £ (dy,qe) € reachable(V),qw € reachable(W),a € s/z\'g(V)(qv) N
sig(W)(qw) s.t. ¢ € supp(v.gy ) With gy = (uXA, Id)(qw).

We need to show that 3 gy, € supp(nw,qu.a)) 8-t @ = (uXA, 1d)(g}y). This is easy
to show because of uf’A—correSpondance. For every ¢i, £ (dy,qe) € supp(N(v,(qy ,qe),a))
, @y € supp(N(y,qy,a))- Because of ,ufl(7A—comrespondance7 3 ¢ € supp(nix,qx,a)) With
& = 1A (dx), thus 3 giy = (0, 48) € supP(Nw,(gx e )a)) S @ = (34 (d ), g&) which
ends the proof of this second point.

Now we can construct isoyy and isoy .

isoUV for every qu € Qu, (uW*)"'(qu) # 0 by construction of U and for every

aw 2 (ax,4e), a2 (d,a8) € ()" ), aw R\ dly

[--];

which means for every qw £ (qx, qe), ¢y = (qX,qg) € (LW Naqu), (XA, Id)((gx, qe)) =

(154, 1d)((d g)) and so (A, Id) ()" (qu)) = {gv} where qv 2 isouv (qu) €

Qv by (%)

isoyy: for every qv 2 (qv, g) € Qv, (XA Id)~ ( v) # 0 by (**). Furthermore

for every qw = (qX,qg) qW 2 (dy,qe) € (il A,Id) Yaqy), qXR;f;?gtqg(, which means

aw RAA gy and so pVA((uXA, 1d) " (qv)) = {qu} where qu £ isovu(av) € Qu

Now we can show that isoyy is a bijection with isoyy = iso‘_/lU.

surjectivity of isoyy: Let qv = (qv,qe) € reachable(V), we will show that 3 ¢y €
reachable(U) s.t. isoyy(qu) = qv. Indeed, we already know that (*) 3 qw = (¢x,qe) €
(uXA Id) =Y (qv) N reachable(W). Let qu = uV**(qw). By construction of U, we have
qu € reachable(U) and qw € (uV*)'(qu) and (uXA,Id)(qw) = qv which means
isoyv (qu) = qv and ends this item.

injectivity of isoyy: Let gy € reachable(V'), Let qu, q;; € reachable(U) s.t. isoyy (qu) =
isoyv (q);) then qu = q};. Again for every qw,qly, € (U4, Id) " (qv), qWR;ﬁith{/V and

so A (qw) = MWA(q ). But for every qu, gy € isog (av), au» gy € pVA (XA, Td) (gy
which means qu = ¢j;.

Let (i) qv = isoyv(qu) or (ii) gqu = isoyy(qv) we will show that in both (i) and (ii)
qVRstrictQU~ By deﬁnition7 {qV} = (M§7A7 Id)(IU/sW7A)_1(qU))

In case (i) we note g an arbitrary element of (uV4)~!(qy) # 0, while in case (ii)
we note gy an arbitrary element of (uXA, Id)~'(qv) # 0 . In both cases, we have 1a)

config(W)(aw) \ {A} = config(U)(qu) and 1b) config(W)(qw) \ {A} = config(V)(qv),
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257 which means 1c) config(U)(qu) = config(V)(qv). Then we have 2a) hidden-actions(W)(qw )\

a8 pot-out(W)(qw ) (A) = hidden-actions(U)(qu ) \pot-out(W)(qw ) (A) = hidden-actions(U)(qu)

w0 and 2b) hidden-actions(W)(qw ) \pot-out(W)(qgw )(A) = hidden-actions(V)(qv ) \pot-out(W)(qw )(A) =
w0 hidden-actions(V)(qy ), which means 2¢) hidden-actions(U)(qu) = hidden-actions(V)(qv).
x0 Thereafter we have 3a) for every action a € sig(W)(qw) N sig(U)(qu), created(W)(qw)(a) \
w2 {A} = created(U)(qu)(a)\{A} = created(U)(qu)(a) and 3b) for every action a € sigW)(qw )N
ws 5ig(V)(qv), created(W)(qw)(a) \ {A} = created(V)(qv)(a) \ {A} = created(V)(qy)(a)
2 which means 3c) for every action a € sig(U)(qu) = sig(V)(qv),created(U)(qu)(a) =
w65 created(V)(qv)(a). The conjonction of 3a), 3b) and 3c) lead us to qy Rstrictqu-

2666 Now we can show that isoyy is the reverse function of isoy: Let (qu, qv) € reachable(U)x
wer  reachable(V) s.t. qu = isoyy(qu). We need to show that isoyy(gy) = qu. The point is
xes  that 3! g, £ isovy(qy) and we have qy Rsirictqu and qy Ririctq); which means qu Rsirict Q)
200 and so gy = g;; by assumption of configuration-conflict-free PCA. Hence isoyy = iso;b.

2670 The last point is to show that that for every (qu,qv),(q,qy,) € reachable(U) X
an reachable(V), s.t. qv = isoyyv(qu) and g = isopv(qy), then quRstriceqv, quRstrictqy
% and for every a € sig(U)(qu) = sig(V)(qv), Nw,qu.a)(q0) = 1v.qv ,a) (@ )-

2673 For every a € sig(U)(qu) = sig(V)(qv) we have a unique 5 s.t. C =%, 1 with
wu C = config(U)(qu) = config(V)(qv) and ¢ = created(U)(qu)(a) = created(V')(qv)(a).
25 Hence for every configuration C' € supp(n), 3! (¢}, qy,) € reachable(U) x reachable(V')
ws s.t. C' = config(U)(qy) = config(V)(qi,). Hence isoyv(qy) = ¢i and furthermore
w1 N(U,gu.a) (40) = NViav.0)(@1) = 1(C).

2678 Everything is ready to construct the PCA-execution-matching, which is (j) the PCA-
9 execution-matching induced by isoyy and Dy (the set of discrete transition of U) and (jj)
w0 the PCA-execution-matching induced by isoyy and Dy (the set of discrete transition of V')
2681 <

x> 13 ~ PCA corresponding w.r.t. PSIOA A, B

s In the previous section we have shown that X 4||€ and A**|[(X.4 \ {A}||€) are linked by a
s strong PCA executions-matching as long as A is not re-created by X 4. This also means
x5 that the probability distribution of X 4||€ is preserved by As”[|(X \ {A}||€), as long as
s A is not re-created by X 4. We can have the same reasoning to obtain a strong PCA
s executions-matching from Xp||€ and B**||(X5 \ {B}/|€).

2688 In this section we take an interest in PCA X 4 and Xp that differ only on the fact that B
%80  supplants A in Xp. Hence, we recall the definitions of section 9. Then, we show that under
a0 slight assumptions, X 4 \ {A} and X \ {B} are semantically equivalent (see theorem 160).
2691 Combined with the result of previous section we will realise that we can obtain a strong
s  PCA executions-matching from (*) X 4||€ to A**||(Y||€) and (**) from Xg||€ to B*||(Y]|€)
w03 where Y is semantically equivalent to both Xz \{B} and X 4\ {A}. Hence if &' = £||Y cannot
s distinguish A% from B*, we will be able to show that £ cannot distinguish X 4 from Xp
x0s  which will be the subject of sections 14 to finally prove the monotonicity of p-implementation.

w6 <l gp-correspondence between two configurations

x0r  We formalise the idea that two configurations are the same excepting the fact that the
x0s  automaton B supplants A but with the same external signature. The next definition comes
2600 from [2]
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» Definition 146 (<1 45-corresponding configurations). (see figure 27) Let ® C Autids, and
A, B be PSIOA identifiers. Then we define ®[B/A] = (P\A)U{B} if A€ @, and D[B/A] = P
if A¢ ®. Let C, D be configurations. We define C <ap D iff (1) auts(D) = auts(C)[B/A],
(2) for every A’ ¢ auts(C)\{A} : map(D)(A") = map(C)(A"), and (8) ext(A)(s) = ext(B)(t)
where s = map(C)(A),t = map(D)(B). That is, in <ap-corresponding configurations, the
SIOA other than A, B must be the same, and must be in the same state. A and B must have
the same external signature. In the sequel, when we write ¥ = ®[B/A], we always assume
that B¢ ® and A ¢ 0.

a - u c v e A ) ¢
o4 = - int:g int:h int: Kk
d 2 f 0. m

ah c ! e B ¢
D = ” int:g »  int:h 3 int:n, o e

—

Figure 27 <145 corresponding-configuration

Next lemma states that <14p-corresponding configurations have the same external signa-
ture, which is quite intuitive when we see the figure 27.

» Proposition 147. Let C, D be configurations such that C <lap D. Then ext(C) = ext(D).

Proof. The proof is in [2], section 6, p. 38. We write the proof here to be complete:

If A ¢ C then C = D by definition , and we are done. Now suppose that A € C, so that
C = (A U{A}S) for some set A of PSIOA identifiers s.t. A ¢ A, and let s = S(A). Then,
by definition 16 of attributes of configuration, out(C) = (U 4,ca 0ut(A:)(S(A;:))) Uout(A)(s).
From C <45 D and definition , we have D = (A U {B},S’), where S’ agrees with S
on all 4; € A, and t = S'(B) such that ext(A)(s) = ext(B)(t). Hence out(A)(s) =
out(B)(t) and in(A)(s) = in(B)(t). By definition 16 of configuration attributes, out(D) =
(U, ea out(Ai)(S'(A:))) Uout(B)(t). Finally, out(C) = out(D) since S’ agrees with S on all
A € A and out(A)(s) = out(B)(t). We establish in(C) = in(D) in the same manner, and
omit the repetitive details. Hence ext(C) = ext(D). <

» Remark 148. Tt is possible to have two configurations C, D s.t. C'<igqq D. That would mean
that C' and D only differ on the state of A (s or ¢) that has even the same external signature
in both cases ext(A)(s) = ext(A)(t), while we would potentially have int(.A)(s) # int(A)(¢).

The next lemma states that <1 4p-corresponding configurations are equals if we omit the
automata A and B.

» Lemma 149 (Same configuration). Let A, B € Autids. Let X 4, Xp be A-fair and B-fair
PCA respectively, where X 4 never contains B and Xg never contains A. Let Y, = X4\ {A},
Y = Xp\ {B}. Let (zq4,2) € Qx4 X Qxp St config(Xa)(zae) <ap config(Xg)(zp). Let
Yo = X3 (xa), yo = Xa-pg ()
Then config(Ya)(ya) = config(Yr)(ys).

Proof. By projection, we have config(Y4)(ya) <ap config(Ys)(ys) with each configuration
that does not contain A nor B, thus for config(Y4)(y.) and config(Ys)(y,) contain the
same set of automata ids (rule (1) of <4p5) and map each automaton of this set to the same
state (rule (2) of <1ap). <
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a5 same comportment of two PCA modulo A, B

oz In this paragraph we formalise the fact that two PCA have the same comportment, excepting
azr - for B that supplants A.

2738 First, we formalise the fact that two PCA create some PSIOA in the same manner,
a3 excepting for B that supplants A. Here again, this definition comes from [2].

oo » Definition 150 (Creation corresponding configuration automata). Let X, Y be configuration

aa automata and A, B be PSIOA. We say that X,Y are creation-corresponding w.r.t. A, B iff

a2 1. X mever creates B and Y never creates A.

ms 2. V(a,m) € Ezecs™(X) x Fzecs™ (V) s.t traces(a) = traceg(n), for x = Istate(a),y =

2744 Istate(), we have ThenVa € sig(X)(z)Nsig(Y)(y) : created(Y)(y)(a) = created(X)(z)(a)[B/A].

2145 Naturally [B/.A]-corresponding sets of created automata are deprived of A and B respect-
aue  ively, they becomes equal, which is formalised in next lemma.

a7 Lemma 151 (Same creation after projection). Let A, B € Autids. Let X 4, Xp be A-fair and
s B-fair PCA respectively, where X 4 never contains B and Xg never contains A (B ¢ UA(X 4)
e and A ¢ UA(XB)) Let Y4 = X4 \ {A}, Y = Xp \ {B} Let (xa,xb) S QXA X QXB and
o act € sig(Xa)(xq) Nsig(Xg)(ap) s.t. created(Xp)(zp)(act) = created(X 4)(zq)(act)[B/A].
o Let yo = Xa-pg(xa), yp = Xp.p5 (1)

15 Then created(Ys)(xp)(act) = created(Y4)(z,)(act)

x5 Proof. By definition of PCA projection, we have created(Yg)(xp)(act) = (created(Xp)(xp)(act))\
s B = (created(X a)(xq)(act)[B/A]) \ B = created(X 4)(xq)(act) \ A = created(Ya)(zq)(act).
2755 <

2756 Second, we formalise the fact that two PCA hide their actions in the same manner. The
oy definition is strongly inspired by [2].

o > Definition 152 (Hiding corresponding configuration automata). Let X,Y be configuration
aso  automata and A, B be PSIOA. We say that X,Y are hiding-corresponding w.r.t. A, B iff
a0 1. X mever creates B and Y never creates A.

we 2. V(a,m) € Erecs™(X) x Ezecs™(Y) s.t tracey(a) = traceg(rw), for x = lstate(a),y =
2762 Istate(m), we have hidden-actions(Y')(y) = hidden-actions(X)(z).

2763 Naturally if hidden actions of <1 4p-corresponding states are equal, it remains true after
aea respective deprivation of A and B which is formalised in next lemma.

zes  » Lemma 153 (Same hidden-actions after projection). Let A,B € Autids. Let X 4, Xg be
aes  A-fair and B-fair PCA respectively, where X 4 never contains B and Xp never contains A
2767 (B % UA(XA) and A ¢ UA(XB)) Let YA = XA \ {A}, YB = XB \ {B} Let (xa,xb) S
mes Qx, X QX?’ Yo = X a4 (xa), yo = Xp.p5 (1) s.t.

2769 xaRco;:‘f Tp, i.e. yaRconfyb

2170 hidden-actions(Xp)(xzp) = hidden-actions(X 4)(xq)

am Then hidden-actions(Yg)(yp) = hidden-actions(Y4)(ya)

zn2 - Proof. We note Cx, = config(Xa)(zs), Cx, = config(Xg)(xp), Cy, = config(Ya)(ya),
i Cy, = config(Yg)(yy). By assumption, Cx, \{A} = Cy, = Cyy = Cxy, \ {B}.

2174 We note hy, = hidden-actions(Xa)(z,), hx, = hidden-actions(Xg)(zp), hy, =
ars hidden-actions(Ya)(ya), hy, = hidden-actions(Yg)(ys). By assumption, hy, = hx,, while
2 by construction, hy, = hx, \ pot-out(X 4)(A) and hy, = hx, \ pot-out(Xg)(B).
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Case 1: pot-out(X 4)(A)(x,) = pot-out(Xpg)(B)(xp), the result is immediate, Case 2:
pot-out(X 4)(A)(z,) Nhx,, = pot-out(Xp)(B)(zs) N hx, = 0, the result is immediate.

Case 3: Without loss of generality, we assume act = pot-out(X4)(A)(z,) Nhx, # 0.
For every C € auts(Cy,), C € auts(Cy,) since Cy, = Cy, and C € auts(Cx,) since
Cy, = Cx, \ {A}. By compatibility of Cx ,, pot-out(X 4)(A)(x4) N pot-out(X 4)(C)(zq) = 0.

Case 3a) B ¢ auts(Cx, ), which means both i) act C hx,, ii) act N out(Cx,) = @ and iii)
hx, C out(Cx,) which is impossible. Thus we only consider

Case 3b) B € auts(Cx,). Since j) for every C € auts(Cyy), pot-out(X 4)(A)(z4) N pot-
out(X 4)(C)(xq) = 0 and jj) hx, C out(Cx,), we have act C pot-out(Xg)(B)(xy).

For symmetrical reason, we have both pot-out(X 4)(A)(z,) Nhx,, C pot-out(Xpg)(B)(zs)
and pot-out(Xp)(B)(xp)Nhx, C pot-out(X 4)(A)(z4), which means hx , \pot-out(Xg)(B)(z)
hx, \ pot-out(Xg)(B)(zp) and ends the proof

<

Now we are ready to define corresponding PCA w.r.t. PSIOA A, B, that is two PCA X 4
and Xz that differ only on the fact that B supplants A in Xp. Some additional assumptions
are added to ensure monotonicity later. This definition is still inspired by definitions of [2].

» Definition 154 (corresponding w.r.t. A, B). Let A, B € Autids, X4 and Xp be PCA we
say that X4 and Xp are corresponding w.r.t. A, B, if they verify:

config(Xa)(ax.,) <ap config(Xs)(qxy)-

X 4 never contains B (B ¢ UA(X 4)), while Xp never contains A (A ¢ UA(Xg)).

X A, X are creation-corresponding w.r.t. A, B.

X 4, Xp are hiding-corresponding w.r.t. A, B.

X4 (resp. Xg) is a A-conservative (resp. B-conservative) PCA.

(No exclusive creation from A and B)
Vgx, € Qx, , for every action act A-exclusive, created(X 4)(qx,)(act) = 0 and
similarly
Vaxs € Qxy, for every action act’ B-exclusive, created(Xp)(gx,)(act’) =0

equivalent transitions to obtain semantic equivalence after projection

In this last paragraph of the section, we show that if two PCA X 4 X are corresponding

w.r.t. A and B, then there respective projection Y4 = X4 \ {A} and Yz = Xp \ {B} are

semantically equivalents. To do so, we use notions of equivalent transitions. the idea is to

recursively show that any corresponding executions of Y4 and Yz lead to strictly equivalent

transitions to finally build the complete bijective PCA executions-matching from Y to Yg.
We start by defining equivalent transitions.

» Definition 155 (configuration-equivalence and strict-equivalence between two distributions).
Let K, K' be PCA and (n,n') € Disc(states(K)) x Disc(states(K")).

We say that 1 and ' are config-equivalent, noted n <Lf> 7', if there exists  : Qx — Qg
con

s.t.m PN n" with ¥q" € supp(n), ¢" Reons f(q").
If additionally, Yq" € supp(n), ¢" Rstrict f(q"), then we say that n and 1’ are strictly-

equivalent, noted 7 PN 7.

strict

Basically, equivalent transitions are transitions where the states with non-zero probability
to be reached are mapped by a bijective function that preserves i) measure of probability
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and ii) configuration. A stricter version preserves also iii) future created automata and

hidden-actions.

The next lemma states that if we take two corresponding transitions from strict equivalent
states, then we obtain configuration equivalent transitions.

» Lemma 156. (strictly-equivalent states implies config-equivalent transition) Let K, K’
be PCA and (q,¢') € Qk X Q' strictly-equivalent, i.e. qRstricitq’. Let a € sig(K)(q) =
sig(K')(q') and ((q,a,0(k,q,0)), (@' @,k q,0))) € D X Dic. Then n(rc,q,a) and nre gr,a)

!

are config-equivalent, i.e. f : Qg — QK+ s.t. n <—f> 7.
con

Proof. This is the direct consequence of constraint 2 and 3 of definition 19 of PCA. We
note C' = config(K)(q) = config(K')(q") and ¢ = created(K)(q)(a) = created(K")(q")(a).

K
By constraint 2, applied to K, there exists 1 s.t. 7k q.q) N n with fK = config(K)

and config(K)(q) :a>created(K)(q)(a) 1 By constraint 2, applied to K’, there exists 7’ s.t.

K1
WK’ g ) AN 7' with f& = config(K') and config(K')(q') == created(K')(q')(a) 1 -

Since ¢Rstrictq’, C = config(K)(q)

created(K")(q")(a).

Hence C ==, 1 and C' ==, 1/ which means 1 = 7’.

config(K')(¢") and ¢ £ created(K)(q)(a) =

! o E o ERno1 g . . —_—
S0 N(K,q.a) < M(K',q',a) With f = (f5) =1 o fX where f (vesp. f&', resp. fX) is
the restriction of f (resp. f&/, resp. f&) on supp(nix,q.q)) (vesp. supp(nk: ¢ .q)), resp.

Supp(n(K7q7a)))'

Thus, for every (¢,') € supp(n(x,q.0) ¥ suPP((K7,q0)) st @ = F(@), F5(@) = F¥(2),
that is config(K)(§) = config(K')(q'), i.e. GReonsq -

Hence 1k q,a) <Lf> N(K',q',a) Which ends the proof.
con

<

Now we start a sequence of lemma (from lemma 157 to lemma 159) to finally show in
theorem 160 that if X 4 and X are corresponding w.r.t. A, B then X 4\ {A} and X\ {B}

are semantically-equivalent.

The next lemma shows that we can always construct an execution &x € Frecs(X) from
an execution ay € Execs(Y) with Y = X \ {A} that preserves the trace.

» Lemma 157 (Execs(X \ {A}) can be obtained by Ezecs(X)). Let A € Autids, X a A-fair

PCA, Y = X\ {A]}.

Let ay = ¢§-,a',q,...,¢% € Execs(Y).

Execs(X) s.t. Vi € [0,n], ¢} = u(d).

Proof. By induction on the size s = |a§| of prefix a5 = ¢%,al, g5, ...

Basis (|a3| = 0): By definition 120, gy = X.u(qx)
Induction: let assume the proposition is true for prefix of = ¢¥,a', ¢}, ..., ¢§ with
s < |ay|. We will show it is true for a§t'. We have ¢3. = X.ut(¢%). By construction of
Dy provided by definition 120, there exists N(X,q3,a+1) € Dx s.t. X.M?(’I](qug{vaSle)) =

Then there exists, ax = (jgg,al,d}(,...,(j} IS

S

aQY'

N(Y,q5 as+1)- BY X.Mé“—correspondence of definition 120, n(yyqiyasﬂ)(qf,“) = Zq;{eQx,us(q;():qifl

s+1

77(X’q§(’a5+1)(qfx). By definition of an execution, g5 € supp(n(y’q;,asﬂ)), which means there

exists q§(+1 € Qx s.t. 1) ul(q

s+1
X

)

_ s+1
= gy

and 2) ¢%" € supp(nx

N5

as+1y). Thus, it exist

astt = %, a',dy, ., d% " € Evecs(X) s.t. Vi € (0,5 + 1],¢% = p(gy), which ends the

induction and so the proof.

<

83



84

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

Dynamic Probabilistic Input Output Automata (Extended Version)

The next lemma states that, after projection, two configuration-equivalent states obtain
via executions with the same trace are strictly equivalent.

» Lemma 158 (After projection, configuration-equivalence obtain after same trace implies strict
equivalence). Let X 4 and Xp be two PCA corresponding w.r.t. A, B. Let Y4 = X4\ {A}
and Yg = Xp \ {B}. Let (ay,,my,) € Execs(Ya) x Execs(Yg) with Istate(ay,) = qy, and
Istate(Ty,) = Qv If

QYA}LmanYB and

trace(ay,) = trace(my,) = B,
then qy, RstricthB

Proof. By lemma 157, 3(adx ,,7x,) € Erecs(Xa) x Ezxecs(Xg) s.t. (i) trace(dx,) =
trace(ay,) = trace(my,) = trace(7x,) and (i) gy, = X4.u2(Gx,) and gy, = X518 (dx,)
where Gx, = lstate(7x,) and §x , = lstate(éx ).

Since trace(éx ,) = trace(Tx, ), we have j) hidden-actions(X 4)(Gx ) = hidden-actions(Xg)(4xy)

by hiding-correspondence of definition 56 and jj) Va € %(XA)(QXA) N s/z?](XB)((jXB),
created(X 4)(Gx ,)(a) = created(Xp)(Gx,)(a).
By lemma 153 we have (*) hidden-actions(Ya)(Gy,) = hidden-actions(Y5)(Gy,) , and
by lemma 151 we have (**) Va € S/ZEI(YA)(qu) = 5ig(Y5)(qvy)-
If we combine the definition gy, Reonfqy, with (*) and (**), we obtain gy, Rstrictqvs,
which ends the proof.
<

Finally, the next lemma states that, after projection, two configuration-equivalent states
obtain via executions with the same trace lead necessarily to strictly equivalent transitions.

» Lemma 159 (After projection, configuration-equivalence obtain after same trace implies
strict equivalent transitions). Let X 4 and Xp be two PCA corresponding w.r.t. A, B. Let
Ya=Xa\{A} and Yg = X\ {B}. Let (ay,,my,) € Execs(Ya) x Execs(Yp) with
Istate(ay,) = gy, and lstate(my,) = qvy- If

qy s Reonpyys and

trace(ay,) = trace(my,) = B, .
then for every a € sig(Ya)(qv,) = sig(Yn)(qvs), N(Yasav 4 50) and 1(yy,qy,,a) ore strictly

equivalent, i.e. f : Qg — Qg s.t. 1 g, n

strict

Proof. By previous lemma 158, ¢y, and gy, are strictly equivalent. Thus by previous lemma

156, there exists f s.t. N(v,,qv,,a) <C0Lnf> N(Yis,qvy.a)- Lt two corresponding states (¢y, . ¢y,,) €

supp(n(yA}qYA’a)) X 1Y ,qyy5,0) S-b- f(qg/A) = qﬁ,B. We have qnganqu,B (*). Furthermore,
since gy, Rstrictqys, $19(Ya)(qy,) = sig(YB)(qvs), namely ext(Ya)(gy,) = ext(Yn)(qvs),
which means trace(ay,, gy, aqy,) = trace(my, gy aqy, ). So we can reapply previous lemma
to obtain qng RitrictQy, which ends the proof.

|

Now we can finally show that if X 4 and Xp are corresponding w.r.t. A, B then X 4\ {A}
and Xp \ {B} are semantically-equivalent which was the main aim of this subsection.

» Theorem 160 (X 4 and Xp corresponding w.r.t. A, B implies X 4 \ {A} and X5 \ {B}
semantically-equivalent). Let X4 and Xg be two PCA corresponding w.r.t. A, B. Let
Y_A:XA\{.A} anleg:XB\{B}.

The PCA Y, and Yg are semantically-equivalent.
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20 Proof. We recursively construct a strong complete bijective PCA executions-matching
2005 (fs, fITO) f¢%) where f5 : reachable<s(Y4) — reachable<s(Yg) and f&* : {a € Ezecs(Ya)|la| <
ws s} — {m € Execs(Yp)||r| < s} s.t. fe%(a) = w implies lstate(a) Rstrictlstate(n).

2007 Basis: s = 0, reachable<o(Y4) = {Gx , }, while reachable<o(Ys) = {gx, }-

2908 By definition 69 of corresponding automata config(Xa)(gx.,) <an config(Xg)(dx,),
w00 while (qy ., Gvis) = (Xa-u(Gx4), X515 (Gx,)) by definition 120 of PCA projection, which
20 gives Gy, ReonfQy,; by lemma 149. Moreover tracey, (Gv,) = tracey,(gvs) = A (A denotes
s the empty sequence). Thus we can apply lemma 158 to obtain gy, Rstrictqvs- We con-
w2 struct fo(Gy,) = Gy, [§5(Gv,) = Gvs- Clearly fo is a bijection from reachableg(Y4) to
w13 reachableg(Yg), while f§* is a bijection from Fxzecsg(Y4) to Execsy(Ys)

2014 Induction: We assume the result to be true for an integer s € N and we will show it is
205 then true for s + 1. Let Execss(Yy) = {a € Execs(Ya)|la| = s} and Ezecss(Yg) = {r €
s Execs(Yp)||r| = s}.

2017 We can build fei1 (resp. f$f)) s.t. Vg € reachable<s(Ya), fo+1(q) = fs(q) (resp.
o s.t. Vo € Execs<y(Ya) f7(a) = f&¥(a)) and Vq{/A € reachables11(Ya), fs+1(q*) (resp.
oo Va®i € Execss(Ya), f&51(a’) ) is built as follows:

2020 We note a®J = oz{/;quaq{,A (gv, = lstate(ay,)). We note my, = f*(ay,). By
22 induction assumption, gy, Retrictqy, With gy, = lstate(ay,) and gy, = lstate(my,). Hence
w2 sig(Ya)(qv,) = si9(Ys)(qy,) and by previous lemma 159, for every a € sig(Ya)(gy,) =

J

2923 Sig(YB)(qu)a Elggv n(YA7qu,a) iT{;ct n(YB,qu,a)~
2024 Hence, we define f&, : o = aQAquaq{/A — fsefl(ayA)“fs(qYA)agg(q{}A), while

225 fsq1 is naturally defined via f¢7,, i.e. for every q{,A € reachables,1(Y4), we note a®J €

s Erecssy1(Ya) s.t. Istate(a®™) = q{/A and sz(q{/A) = gg(q{/A) = Istate(f&7,(a™7)).
2007 We finally define f°* : ¢®al...a”q"™... = fo(q®)a*...a”fn(q"), f : ¢ = fn(q) where ¢ =
wn state(q®at..q™) and [ : (q,a,00v4 q.0)) = (F(Q), @0y, £(q).0))-

2020 Clearly (f, f'", f¢*) is strong since for every pair (qy,, Gvy ), S-t- f(qyv4) = Qvigs @va Rstrictqvs -
2030 Moreover, (f, f'", f¢*) is complete since dom(f) = reachable(Y4) = Qy,.

2031 Finally, the bijectivity of f°* is given by the inductive bijective construction.

203 Hence (f, f'", f¢*) is strong complete bijective PCA executions-matching from Y4 to Yz
2033 which ends the proof.

2934 <4

xs 14  Top/Down corresponding classes

26 In previous section 13, we have shown in theorem 160 that if X 4 and Xp are corresponding
w3 w.r.t. Aand B (in the sense of definition 69), then Y4 = X4 \ {A} and Yz = Xp \ {B} are
2038 semantically equivalent. We can note Y an arbitrary PCA semantically equivalent with both
2939 Y_A and YB.

2040 In section 12, we have shown in theorem 140 that for every PCA & environment of both
o X4 and Xp, XA||€ and A%||Y4||E (vesp. Xp||€ and B*¥||Y5||€ ) are linked by a PCA
2002 executions-matching

2043 It is time to combine this two results to realise that for every PCA £ environment
2 of both X4 and X, X 4|/ and A*||E (vesp. Xp||E and B**||E’) are linked by a PCA
s executions-matching where &' = £]|Y.

2046 Hence (*) if £ cannot distinguish A** from B*, we will be able to show that £ cannot
2947 distinguish XA from XB-
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In this section, we formalise (*) in theorem 191 of monotonicity of implementation
relation. However, some assumptions are required to reduce the implementation of Xz by
X 4 into implementation of B by A. These are all minor technical assumptions except for
one: our implementation relation concerns only a particular subset of schedulers so-called
creation-oblivious, i.e. in order to compute (potentially randomly) the next transition, they do
not take into account the internal actions of a sub-automaton preceding its last destruction.

14.1 Creation-oblivious scheduler

Here we recall the definition of creation-oblivious scheduler (already introduced in subsection
9.4), that does not take into account previous internal actions of a particular sub-automaton
to output its probability over transitions to trigger.

We start by defining strict oblivious-schedulers that output the same transition with the
same probability for pair of execution fragments that differ only by prefixes in the same class
of equivalence. This definition is inspired by the one provided in the thesis of Segala, but is
more restrictive since we require a strict equality instead of a correlation (section 5.6.2 in
20]).

» Definition 161 (strict oblivious scheduler (recall)). Let W be a PCA or a PSIOA, let
o € schedulers(W) and let = be an equivalence relation on Frags* (W) verifying Vaq, s €
Frags*(W) s.t. a1 = aq, lstate(aq) = Istate(as) . We say that o is (=)-strictly oblivious if
Yai, oo, as € Frags* (W) s.t. 1) a1 = ay and 2) fstate(as) = lstate(as) = Istate(ay), then
olarTas) =o(ag as).

Now we define the relation of equivalence that defines our subset of creation-oblivious
schedulers. Intuitively, two executions fragments ending on A creation are in the same
equivalence class if they differ only in terms of internal actions of A.

» Definition 162. (@ =% &' (recall)). Let A be a PSIOA, W be a PCA, Va, &' € Frags* (W),
we say & = & iff:
1. a,a’ both ends on A-creation.
2. & and & differ only in the A-exclusive actions and the states of A, i.e. pu(&) = u(a@’)
where p(a@ = a'G ...a"§q") € Frags*(W) is defined as follows:
remove the A-exclusive actions
replace each state §' by its configuration Config(W)(§) = (A?, S
replace each configuration (A%, S%) by (A%, S%)\ {A}
replace the (non-alternating) sequences of identical configurations (due to A-exclusiveness
of removed actions) by one unique configuration.

3. Istate(ay) = lstate(a)

We can remark that the items 3 can be deduced from 1 and 2 if X is configuration-conflict-
free. We can also remark that if W is a A-conservative PCA, we can replace u(a) = u(&'),
by p (@) | W\ {A}) = pA@) | (W\ {A}) but we want to be as general as possible for
next definition of creation oblivious scheduler:

» Definition 163 (creation-oblivious scheduler). Let A be a PSIOA, W be a PCA, o €
schedulers(W). We say that o is A-creation oblivious if it is (= )-strictly oblivious.

We say that o is creation-oblivious if it is A-creation oblivious for every sub-automaton
A of W (A€ U,cq,, auts(config(W)(q))). We note CrOB the function that maps every
PCA W to the set of creation-oblivious schedulers of W. If W is not a PCA but a PSIOA,

CrOB(W) = schedulers(W).
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If o is A-creation oblivious, we can remark that Vo, o/ € Execs™(W),a =7 o, 0jq = 0|
in the sense of definition 164 stated immediately below.

» Definition 164 (conditioned scheduler). Let A be a PSIOA, o € schedulers(A) and let oy €
Frags*(A). We note 0|, : {aa € Frags*(A)|fstate(as) = Istate(ar)} — SubDisc(D 4)
the sub-scheduler conditioned by o and «; that verifies Voo € Frags*(A), fstate(as) =
Istate(a), 0q, (a2) = (a7 az).

We take the opportunity to state a lemma of conditional probability that will be used
later for lemma 190.

» Lemma 165 (conditional measure law). Let A be a PSIOA, o € schedulers(A) and
let ay € Frags*(A) and Ola, the sub-scheduler conditioned by o and ay. Let ay,az €
Frags*(A), fstate(as) = Istate(ar) = q12. Then
€0,a,(Cay) - €00y 912 (Ca) ifor £ a,

!/

€o.0, (Comay) = : ; ~
o, \Yar asz 60‘(,1,04,(0042) Zf 0, = Q] Qg

Proof. We note a2 = af axs.

1. a1 £ ay:

a. a1 £ a, and a, £ og:
This implies a1z £ a, and a, £ a1z thus €5.4,(Caras) = €50, (Ca, ) = 0 which ends
the proof.

b. o, < ag:
This implies a, < 12 By induction on size s of aip. Basis: s = 0, i.e. agy = lstate(a;) =
q12. Thus, we meet the second case of definition of eg|a1’q12(Ca2): as < ¢12, which
means €, q,,(Ca,) =1 and terminates the basis. Induction: We assume the result

to be true up to size s € N and we want to show it is still true for size s + 1.

Let ay € Frags*(A), fstate(as) = lstate(a;) £ qio with |as| = s 4+ 1. We note
as = a5 q'aqg and o), = a7 ab. We have |ob| = s and «, < o,
By definition we have €5, 415(Cas) = €00, ,012(Cay) - 0(5) (A g a)) * M A g a) (D)
In Parallel, by definition: €5,q,(Cas,) = €5,0,(Car,) - 0(012)(M(a,q7,0)) * (A .a) (@) and
by induction assumption, €,.a,(Cays) = €5,0,(Car) * €010, 1012 (Cay) - 0(@12) (N(Aq7,0)) -
N(Aq",a) (@) and 50 €5.a,(Cars) = €5.0,(Cay) * €0, ,q12(Casy ), which ends the induction
and so the case.
2. a, = a7 o). By definition, €, 4,(Ca,) =1

a. both aiz £ a, and a, £ aje. This implies as £ o, and o), £ as Then, by definition,
€o,a, (Coqz) = €010yl (Caz) =0.

b. a12 < a,. This implies ag < o). Then, by definition, €, 4,(Ca,,) = eg‘al,ag(Caz) =1

c. o, < aq9:
We proceed by induction on size s of as.
Basis: s =0, i.e. as = gi2. Then by definition €, 4, (Cay,) = €o,a,(Ca,) = 1. Moreover
¢12 < o, which means eg‘al,%(C’az) = 1, which ends the basis.
Induction:
We assume the result to be true up to size s € N and we want to show it is still true

for size s + 1. Let ay € Frags*(A), fstate(as) = lstate(ay) = g1z with |ag| = s+ 1.

We note az = a5 ¢'aq and o), = a7 ab. We have || = s and o, < ofs.

By definition we have €5, s (Cas) = €0y, a1 (Cay) - (%) (N(Aq7,0)) * M A7) (@)

In Parallel, by definition: €, 4, (Cars) = €50, (00/12) o (A2) (M A,q,0)) - (AL 0) () and
by induction assumption, €, qa,(Cayy) = €o,a, (Cay) - eglavag(Caé) co(ade)(Nag ) -
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N(Aqa)(q) and 50 €50, (Cara,) = eg,ao(Cal)-eam’ag(C’az). Finally, since €5, (Ca,) =
1, we have €5,0,(Casy) = €5, a7, (Ca,) Which ends the induction, the case and so the
proof.

<

We have formally defined our notion of creation-oblivious scheduler. This will be a key
property to ensure lemma 187 that allows to reduce the measure of a class of comportment
as a function of measures of classes of shorter comportment where no creation of A or B
occurs excepting potentially at very last action. This reduction is more or less necessary to
obtain monotonicity of implementation relation.

14.2 Tools: proxy function, creation-explicitness, classes

In this subsection we introduce some tools frequently used during our proof of monotonicity.
Later, we will adopt a quite general approach to understand the key properties of a perception
function to ensure monotonicity. All these properties will be met by environment projection
function proj. .y, but not by trace function.

First we introduce proxy function, which enables a generic reduction from automata

(E]|X4) to automata ((£]|X 4 \ {A})[.A5*)

» Definition 166 (proxy) Let A be a PSIOA. Let f y be an insight function. The A-proxy
function of f, noted f( ’pwxy, is the insight function s.t. for every A-conservative PCA X,

VE € env(X), Ya € dom((€]|X).pt), fé:ﬁ)my(&) = fuepe pap e (2T (@)

Second, we define ordinary function, as functions capturing the fact that an environment
obtain the exact same insight from X 4 or from ((X 4 \ {A})[|A°"). Any reasonable insight
function is ordinary.

» Definition 167 (ordinary). Let f( .y be an insight function. We say f .y is ordinary if for
every PSIOA A, for every A-conservative PCA X, VE € env(X), Va € dom((E]|X).ubT),
fie.x)(@) = fe (x\an HAsw))(Me (@)

It is worthy to remark that for ordinary perception function, a common perception in the

reduced world implies a common perception in the original world. This fact will be used in
the proof of lemma 185 of partitioning.

» Lemma 168 (ordinary perception function). Let f be an ordinary perception function.
Then for every PSIOA A, for every A-conservative PCA X, Y€ € env(X), Va,& €
dom((E]|X).puc)

A,proxy  ~ A,prox ~

f(gg() Y(a) = f(g?;() (a) = fex)(@) = f(g",X)(O/)

Proof. By definition of proxy function, f g x\(a1), Aw)( @) = fex\gay), asw) (ke H@)).
A

By definition ofperceptlon fuIlCthIl f(g (X\{A})||As w))(,ue ( )) ( ((X\{A})HASW))(HS 7+(6é
By definition of ordinary function, fz v\ (&) = f(g x)(&). <

» Proposition 169. The environment projection function proj. .y (i.e. for each automaton
K, V€ € env(K), proje k) : o € Execs(E||K) +— o | £) and the trace functions are ordinary
function.

Proof. By definition <
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Now, we introduce two new concepts. First, we introduce notion of creation-explicitness,
that states that an automaton has a clear dedicated set of actions to create each sub-
automaton. This property of creation-explicitness will clarify the condition to obtain
surjectivity of ﬂf"" since it suffices to consider this function with a restricted range where
no action of creation-actions(X)(A) appears before last action.

» Definition 170 (creation-explicit PCA). Let A be a PSIOA and X be a PCA. We say that
X is A-creation-explicit iff: there exists a set of actions, noted creation-actions(X)(A),
s.t. Vax € Qx, Va € sig(X)(qx), if we note Ax = auts(config(X)(qx)) and ox =
created(X)(gx)(a), then A ¢ Ax NA € px < a € creation-actions(X)(A).

Second, we define classes of equivalence of some executions that imply the exact same
perception from the environment.

» Definition 171 (class of equivalence). Let f be an insight function. Let A be a PSIOA.
Let € € env(A). Let ¢ € Upsron B,ecenv(n) range(fie,s)). We note Class(€, A, f,¢) = {a €
Ezecs(E||A)} fie,a)(a) = ¢}

14.3 Homomorphism between simple classes

In this subsection, we exhibit the conditions such that % is an homomorphism between
the perception after reduction and the original perception. These conditions are met by
projection function.

First, we state that ﬂf"" is surjective if we consider a range constituted of executions
that does not create A before very last action.

» Lemma 172 (Partial surjectivity with explicit creation). Let A be a PSIOA and X be a
A-conservative and A-creation-explicit PCA. Let € be partially-compatible with X. Let Y =
X\{A}. Let €4 = E|Y. Let ((E]|X).a2s (E11X)a24), (EIIX)a5n ™ (EN1 X)) the E-
extension of (X.a2, X pA), X oot X pA). Let a, o’ € Execs(E4||A*™) s.t. creation-
actions(X)(A) Nactions(a) = 0

1) Then 3a € dom(i) s.t. bt (a) = (&) = a.

2) If o/ = a~q,ar,q" with ay € creation-actions(X)(A), then 3&' € dom(i+) s.t.
it () = o

Proof. We proof the results in the same order they are stated in the lemma:

1. We note o = ¢°,a', ..., a", ¢"... and we proof the result by induction on the prefix size s.
Basis: the result trivially holds for any execution « of size 0 by construction of X\ {.A} that
requires X.u2(gx) = dx\{A}- We assume the result holds up to prefix size s and we show
it still holds for prefix size s + 1. We note oy = ¢°,al, ..., a°,¢* and &° € Execs(E||X) s.t.
(@) = a,. By lemma 138 of signature preservation a**! € sig(£||X)(gs). Moreover,
by assumption a*T! ¢ creation-actions(X)(A) which means the application of lemma

129 of homomorphic transitions leads us to 77}‘5 1X),3°,as+1) aEIN n((EAIIAW) ¢ as+1y- D0
there exists ¢*t! € supp(n((&|1x).q.a1)) With pz'(q) = q. So p (a7 @Ea ) = agy.
This ends the induction and so the proof of 1.

2. We apply 1. and note & € FExecs(€||X) s.t. ﬂf(~) = a. By lemma 138 of signature
preservation ay € sig(£||X)(q) w1th G = lstate(a). Moreover, by lemma 129 of homo-

morphlc transition, 1| x) 7.a, <—> n(SAIIAﬁ“’) g, S0 there exists ¢’ € supp(ng|x).5.a,)
with uA*(7) = ¢'. So M+ (@™ Gay§') = o which ends the proof.

<
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Since we i) classify executions in some classes according to their projection on an
environment and ii) are concerned by the actions of the execution that create A, the next
lemma will simplify this classification. It states that if the projection e of an execution
a € Execs(E4]|A%") on the environment 4 ends by an action a) € creation-actions(X)(A),
then the execution necessarily ends by a; (without additional suffix).

Then we define I'-delineated function f that verifies the fact that an execution a perceived
in I" through f implies a does not create A before very last action.

» Definition 173 (delineated function). Let A be a PSIOA, X a A-conservative PCA, £ €
env(X), Y = X\{A}, Ea =E|[Y. Let f( ) be an insight function. Let I' C range(fig , fo)-
We say that f is (I',€, X, A)-delineated if V¢ € I', Va € Ezecs(Ea||A™), fie, asw)(a) =,
implies a € rangef (E||X).ut, i.e Yo/ < a, actions(a’) N ereation-actions(X)(A) = 0.

It is worthy to remark that if the projection e of an execution a does not contain actions
dedicated to the creation of A before very last action, then o does not create A before very
last action.

» Lemma 174 (projection is a delineated function with explicit creation). Let A be a PSIOA, X
a A-conservative PCA, £ € env(X),Y = X\{A}, E4=E||Y. LetT £ {e € Execs(E4)|Ve' <
e, actions(e’)Nereation-actions(X)(A) = 0}. The projection function proj..y is (T, £, X,A)-
delineated.

Proof. Let o € Execs(E4]|A°"), (a | £4) = ¢’ € T'. Hence either |¢/| = 0 or ¢/ = e™qarq’
with actions(e’) Nereation-actions(X)(A) = 0. If actions(a) Nereation-actions(X)(A) = 0,
the result is immediate. Assume the opposite. We note a = alﬁq},ag,q?“ag with ay €
creation-actions(X)(A).

We have ¢} | A% = qf%sw. Indeed, let us assume the contrary: ¢f [ A% # qzw. Then q |
Asw 4 qgsw for every state ¢ € al. Since creation-actions(X)(A)Nactions(e’) = 0, creation-
actions(X)(A) N actions(al) = (). Thus we apply lemma 172 of partial surjectivity with
explicit creation to obtain, there exists &' € Execs(E[|X) s.t. it (a') = o' with both A €
auts(config(X)(Istate(a') | X)) and a) € creation-actions(X)(A)Nsig(X)(Istate(al)) | X)
which is impossible.

Since g} | Asw = qzsw, q | A = qzsw for every state ¢ € o2, Hence, a® = qJQ‘- to respect
'7q;, a1, q;. Since creation-actions(X)(A) Nactions(e) = 0,
creation-actions(X)(A) Nactions(al) = O, which ends the proof.

a | €4 =€, which means o = «
|

Now, we can clarify when %% is a bijection between "top/down" corresponding classes
of equivalence.

» Lemma 175. (5T is a bijection from C to C). Let A be a PSIOA and X be a A-
conservative and A-creation-explicit PCA. Let £ € env(X). Let Y = X \ {A}. Let
Ea = E|IY. Let (E|1X).5A, (E|X).aAT), (E|1X).ab T, (E]|X).5AT) the E-extension of
(X2, X ), Xyt X ).

Let f be an ordinary perception function, (F7€~,X, A)-delineated.

For every ¢ € T, (E]|X).ait is a bijection from C to C, where

C = Class(E, X, fAPromY ()

C = Class(Ea, A%, [, ()

Proof. Injectivity is immediate by lemma 85, item (2).
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Surjectivity: Let a € C. By definition, f(eA,ASW)(O‘) = ¢ eT. Since fis (I,€, X, A)-
delineated, then Vo < «, (actions(a’) N creation-actions(X)(A) = (. Hence, we can
apply lemma 172 of partial surjectivity with explicit creation

<

Hence, we obtain an equiprobability of top/down corresponding cones equipped with
alter-ego schedulers.

» Lemma 176 (equiprobability of top/down corresponding cones). Let A be a PSIOA and
X be a A-conservative and A-creation-explicit PCA. Let £ € env(X). Let Y = X \ {A}.
Let E4 = E||Y. Let (]| X).52, (£]|X).arH), (5||X).ﬂ;‘j+, (E)|X).it) the E-extension of
(X, X ), X iy ™, X it ). )

Let f be an ordinary perception function, (I',E, X, A)-delineated. Let ( € T, and

C = Class(E, X, fAPromy ()

C = Class(Ea, A%, £,¢)

91

Then for every & € schedulers(gHX), foro (((EHX)[L;“, (<S’~||X).ﬂ;4’+)7 (<5'~|\X).,11;‘}J+7 (€~|\X).ﬂg4’+)—

alter ego of &,

65’55(5"”)() (C(f) = €5,

(Ce)

Proof. By lemma 175, i/%F is a bijection from C to C. We note {(, a;)}ier = C x C the re-

. . "JA,'F ~ 0\ . . N 0\ N 5
lated pairs of executions s.t. a2t (&;) = ;. We obtain €6.80.6, ) (Ce) = ier €681, ) (Ca,)
and €0 g amw) (Ce) = 2ier €0 axw) (Ca)-

Thus it is enough to show that Vi € I, €5 5, (Ca;) = €o,6

9E11x)

a(f,AHAsw)

. _ (C4;) which is given
(EallAsw)
by theorem 84 that can be applied since i/t is a continued executions-matching by theorem
144.

<

14.4 Decomposition, pasting-friendly functions

In last subsection, the dynamic creation/destruction of A has been discarded. It is time to
generalise previous approach with dynamic creation/destruction of A.

We first define some tools to describe the decomposition of an executions into segments
whose last action is in in the dedicated set to create A.

» Definition 177. (n-building-vector for executions). Let o be an alternating sequence
states and actions starting by state and finishing by a state if o is finite. Let n € N U

{o0}. A n-building-vector of « is a (potentially infinite) vector a = (al,....at..) of
|E| = n alternating sequences of states and actions starting by state and finishing by a
state (excepting potentially the last one if it is infinite) s.t. o' ..a’"17ai™ ... = a (with

Vi € [1, la| — 1], fstate(a;+1) = lstate(a;)). We note Building-vectors(a,n) the set of
n-building-vector of a and atato say a € Building-vectors(a,n). We note Building-
vectors(a) = U, enuioo Building-vectors(a, n) and o :a to say a € Building-vectors(a).

We note afi] = o' and a:i] = oX ... "a'"L. If W is an automaton, a € Ezecs(W), o : «
—

and f a function with dom(f) C Frags(W), we note f(a) = [f(a[1]),..., f(a]i]),...].
» Definition 178. (EZ (X:A) a) Let W and X be two PCA s.t. X is A-creation-explicit,

a € Frags(W). We note o (X:A) o (and o L@ when X is clear in the context) the (clearly

unique) vector o€ Building-vectors(a) of execution fragments s.t.
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a0 1. Vi€ [1,n], Yo/ < ali], actions(a’) N creation-actions(X)(A) = 0 and
w0 2. Vi€ [1,n—1], laction(ali])) € creation-actions(X)(A).
3204 We write & " or a Z to indicate that || = n.

w205 B Definition 179. (A-decomposition) Let A be a PSIOA and X be a PCA. Let o =
we  q'al...a”q"... € Frags(X). We say that

3207 « is a A-open-portion iff o does not create A, i.e. Vi € [1,|a|]A ¢ auts(config(X)(¢" ') =
3208 A ¢ auts(config(X)(q"))-

3200 a is a A-closed-portion iff a does not create A excepting at very last last action, i.e.
3210 Vi € [1,]al)A ¢ auts(config(X)(¢"=1)) A A € auts(config(X)(q")) < i = |a|.

3211 a is a A-portion of X if it is either a A-open-portion or a A-closed-portion.

3012 We call A-decomposition of o, noted A-decomposition(c), the unique vector (al,...,a™,...) €
2 Building-vectors(a) s.t.

214 Vi € [1,|A-decomposition(a)| — 1], o is a A-closed-portion of X and

3215 if | A-decomposition(a)| =n € N, o™ is a A-portion of X.

26 » Lemma 180. (o (X:A) o means o = A-decomposition(c)). Let A be a PSIOA and X

)

wr be a A-creation-explicit PCA. Let o € Frags(X). Let o = A-decomposition(a). Then
3218 a) 7:l .
(X,A)

ms  Proof. By definition, o € Building-vectors(c). Still by definition, Vi € [1, | A-decomposition(a)|—
w0 1], o' is a A-closed-portion of X, i.e. o' does not create A excepting at very last last
w21 action laction(w;). By definition of creation-explicitness, the two item of definition 178
w2 are verified for every i € [1,|A-decomposition(a)| — 1]. Finally, by definition, if |.A-
a3 decomposition(a)] = n € N, a™ is a A-portion of X, i.e. o™ does not create A excepting
24 potentially at very last last action if o™ is finite. Again, by definition of creation-explicitness,
as  the first item of definition 178 is verified.

3226 <

3207 Now, we introduce the crucial property, called pasting-friendly, required for a perception
s  function f to ensure monotonicity of SOCTOb’f . This property allows to cut-paste a general
a9 class of equivalence into a composition of smaller classes of equivalence, without creation of A
w230 before very last action, where lemma 176 of equiprobability between top-down corresponding
»31 cones can be applied to each smaller class.

»» » Definition 181 (pasting friendly). Let f( ) be an insight function. We say that f ) is
a3 pasting-friendly if for every PSIOA A, for every A-conservative and A-creation-explicit PCA

. - - -
2 X, VE €env(X), V(€ UK,éeenu(K) range(fie ), V¢ € prgxy(ogyxﬂ then

ws 1. Va8, a = A-decompositz’on(~), o = A- decomposition(d’), f(“g I;;my( a) = fé,z;;)xy(a )&
—

3236 ¢ implies LEZ\ |~a| = \C| £ n e NU{co}A Vi € [1,n—1], lstate( [i]) = lstate(a [i]) % q.

ny 2. We note £' = &, = X, and Vi € [2,n], we note & = quﬁ(q 16) (resp X* =

3238 XqX_>(q14 X))

Vj € [1,n],Vai € Execs((E7]|X7)), (“‘,‘gf";’fy( iy = Clj], then

3240 a. for every o), < oy, actions(a) N creation-actions(X)(A) = 0 and

5201 b. ifjel,n—1], a; = o/’\afq; with a} € creation(X)(A)
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We state an intermediate lemma to show that projection on environment is pasting-friendly
(see lemma 183).

» Lemma 182 (chunks ending on creation). Let A be a PSIOA, let X be a A-conservative
and A-creation-explicit PCA and € partially-compatible with X. Let & € Frags(£||X) and
e € Prags(€]|X \ {A}) s.t. (€]1X)42+ (@) | (€)X \ {A}) = e.

Then

laction(&) = a1 € creation-actions(X)(A) = laction(e) = ai € creation-actions(X)(A).

if & € dom(ib ),

laction(&) = a1 € creation-actions(X)(A) <= laction(e) = ar € creation-actions(X)(A).

Proof. We prove the two implications in the same order.
=) Let assume a; = laction(&) € creation-actions(X)(A). Since X is A-creation-
explicit, we have & = &'~ ¢'aiq with A ¢ auts(config(X)(¢')). Thus laction(e) = ar €
creation-actions(X)(A).
<=) Let assume a; 2 laction(e) € creation-actions(X)(A). Thus a) € actions(&). Since
X is A-creation-explicit, it implies & = &' ¢}, a q?“aQ where A ¢ auts(confzg( )(a}))
and A € auts(config(X )(qf)) But & € dom((€]|X).abT), so &% = qf and hence
laction(&) = ay € creation-actions(X)(A)
<

Now, we are ready to show that projection on environment is pasting-friendly.

» Lemma 183. The projection function proj(.,.) (for each automaton K, VE € env(K),

proje i) - a € Erecs(E||K) — a | £ is pasting friendly.

Proof. 1. Let A be a PSIOA, let X be a A-conservative PCA, let € € env(X), let £4 =
(E]1(X \ {A})). We note g, = Istate(a[i]) and g, = Istate(d [i]), Cri = (Ars,Ses) =
config(€||X)(qeq) and Cy; = (A};,S;;) = config(€]|X)(q,;). Let i € [1,]|a| —1]. By
construction of .A-decomposition, Sy;(A) = S} ;(A) = ga (1). Moreover, f( ’pmxy(a) =

X)
l - l
fé.’;;xy(a )2 ¢, ie. proj(gA’Asw)(a[i]) Projie,, Aéw)(_> [i]), which means q¢; | E4 =

Gy | €a- Hence, Api \ {A} = Aj ;\{A} £ A, and VB € A7;, 8,:(B) = S} ,(B) (2). By
(1) and (2), Cp,; = Cy ;. Since X is configuration-conflict-free, go; = g ;-

. o — .
2. Let j € [1,n], let o € Ezecs((E7]|X7)), f(g’f’;?fy( 7y = ([j] Let & € Execs(&]|X),

o = A-decomposition(a), o (proy(s”;;my) 1(().

a. Let us assume j € [1,n — 1]. By construction of A-decomposition, We have alj] =

J

— . -
By lemma 182, it implies, ¢ [j] = €} (a{ gy | £) with actions(e )ﬂcreatlon—actlons( )(A) =
) and a,j € creation-actions(X)(A). By lemma 182, it lmpheb a; = af (a]( j))

with actions(a}) N creation-actions(X)(A) = () and al € creation-actions(X)(A) (¥).

Moreover, let us assume n € N. For every o < alnl, actions(ag )Nereation-actions(X)(A)

=
(), hence, for every eX < (|[n], actions(ek) N creation-actions(X)(A) = @) and so for

every o, < au,, actions(ag) N creation-actions(X)(A) = 0.
b. Assume j € [1,n — 1]. By previous item, a; = af (af q%) with actions(a’;) N

creation-actions(X)(A) = @ and a] € creation-actions(X)(A) (*). Moreover, by

construction, we have proy( ’pr;’zy)(a]) proy(g’gimy)(a)[j]) (**). We can apply the

exact same reasoning than in item 1.

o™ (a ¢)) with actions(a;)Nereation-actions(X)(A) = ) and af € creation-actions(X)(A).
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<

Before stating our first lemma 185 of decomposition, we define the set of vector proxies.
ok -
This set contains all the explanations ¢ , from reduction, of a perception (.

—

» Definition 184. (proxzy(()) Let f.,.) be an insight function. Let A be a PSIOA, let X be a
A-conservative PCA, let £ € env(X), Let ¢ € Uy Ecenu(rc) Tange(fig k). We note

—

B Sk Sk
proxy(C) g x4 =1¢ [Fa e f(_gfx)(() A fA o 7" (A-decomposition(&)) = ¢ }.

Now, we can partition executions with a common perception g: into sub-set of classes
with more details related to the reduction.

» Lemma 185. Let f be an ordinary perception function pasting friendly. Let A be a PSIOA,
let X be a A-conservative PCA, let € € env(X), Let ¢ € Uk gcenv(r) Tange(fie k). Let
cs = Class(€, X, f,).
- —k
CC - L‘ﬂ*)k - CC ’lUZth
¢ EI”OQ?Z/(C)(g X, A)
*}k

CC = Class(E, X, fAPT%Y o A-decomposition, )

Proof. The proof is immediate by construction, since A-decomposition is unique.
(equality) We first show the equality by double inclusion.

(Q) Let a € CS. We note o = A- decomposition(&). By construction, we have o 4 Q.

5
We note C = fg,z;;?wy( a). Obviously, C Eproxy(()(g—XA).

Sk — —k
(D) Let ¢ € proxy(C)(ExA) with n = |C |, let @ € C¢ . We want to show that

a e cC. R
Let o = A- decomposition(&) By definition of pro:vy(C)(gXA), Jd € f%lx)(g) s.t.

Hk
fg")?mxy(A—decomposition(d’)) = (¢ . Letfixsuchad'. Let o = A decomposition(a’).
By construction fZ pad 7mjy(oz) = f;\}?rowy( ) Moreover, f is assumed to be pasting
friendly, which 1mphes Vi € [1,n], fAPTOM(Qli]) = i“.’pwmy(gl[i]) where £ and

& xi £ixi
X' are defined as in definition 181 of pasting friendly functions. Since f is an
ordmary perception function, we can apply lemma 168, which implies that Vi € [1,n],
—/
fgx( [i]) = fgx( [i])) and so fg (&) = fgx( ') = <7 that is & € CC.

—k € Sk —k Sk

(partitioning) We show that V(¢ , ¢ ), ( # ( CC ﬂCC =0. Let (a,&') € C¢ ><CC .
/! !

Let 8;104 and o f4a We have f(g’pmw( )— C + C = f(gvf"“"“y(& ). Thus a # o

By lemma 180, a = A- decomp051t10n( ) and o = A-decomposition(@’), and so & # &'.

Sk 0 Sk —k

Hence, V(¢ , ¢ ), ¢ 7&( c¢ ﬁCC = 0.

<

A ~ —k
Then, we perform our decomposition of C¢ = Class(E, X, fAPr°Y 0 A-decomposition, ¢ )

into small chunks.
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» Lemma 186 (decomposition into simple classes). Let f( y be pasting friendly. Let A be a
PSIOA, X be a A-conservative and A-creation-explicit a PCA and & partially-compatible
with X. Let E4 = E|(X \ {A}). Let ¢ € Ungem)(K) range(fig 1)) Let n € NU {oo}, let

Sk

C € proxy(f)(g XA) with |C| =mn. Let CC = Class(€, X, fAP7°% o A-decomposition, ¢ ).
Then, C¢ = ®C <l with

7

1. CCH = Class(&, X1, fArrowy (i])

2. Vol € CSU ifi e [1,n — 1], oy = o aiq} with af € creation(X)(A) and if n € N
Vai, < an,actions(al,) N creation-actions(X)(A) = 0 (ensured by pasting friendship of
f)-

3. Vi € [1,n — 1], we note qffl the unique last state of every execution of(f'cm (ensured by
pasting friendship of f).
4. £' =& andVie [2,n], & = g’qgﬁqé ,

(as per definition 130), with ¢t = ¢, | E.
5. X'=X and Vi € [2,n], X' = X -1

(as per definition 130) with g% = q|

ax—ak
6. IC'=C'®C*®..0C"
7. C'®@C? = {aT as|a; € Ct,as € C?} (The concatenation is always defined by item 3)

Proof. The properties are ensured by the fact f is pasting-friendly. We prove the equality
by double inclusion.

.:4.,promy
é.x
due to A-decomposition, Vi € [2,n], fstate(a[i]) = Istate(a[i — 1]) where a[i — 1] ends
on A-creation (1). Moreover, since f is assumed to be pasting-friendly, each q} is well
defined (2). By (1) and (2), fstate(ali]) = Ggi)xi where E" and X are defined like in
the lemma (3). By construction due to A-decomposition, a[i] does not create A before
its very last action, i.c. Yo < al[i], actions(a}) N creation-actions(X)(A) = 0 (4). Thus

by (3) and (4), o € QC <. Hence, C¢ C QC<L

/\4) —
C) Let a € C¢, and. a = A-decomposition(a), i.e. (a) = ¢. By construction

— —
A A

D) Let a € ®CACM Let o = (o, g,y 0, .) € CCM 5 G x5 Gl . st a:o

5
By construction, Vi € [1,n] f(’g’ip;:f)y (a;) = C[i]. Hence félpgfm)y( a) = C It remains to

show that a = .A-decomposition(a), which comes immediately from item 2.
<

A first trivial analysis of measure of big class of equivalence gives the following lemma

» Lemma 187 (measure after partitioning and decomposition). Let A be a PSIOA, X be
a A-conservative and A-creation-explicit PCA and & partially-compatible with X. Let
Ea=ElIX\{A}. Let ¢ € Uk gcenvr) Tange(fie i) Let & € schedulers(E]|X).

(Ce) =Y. - g

CEPTOJDy(E)(s“,X,A) 1<) H

i=1

Proof. Immediate by two previous lemma 185 and 186 |
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14.5 Creation oblivious scheduler applied to decomposition

Now we want to transform the term e;(C - ) as a function of some terms €si (C@?[' )
¢

[ i]
57 1

i=1
where 6 must be defined. The critical point is that the occurrence of these events might
not be independent with (*) a perfect-information scheduler that chooses the measure of

class C ¢l as a function of the concrete prefix in class € ¢U<. This observation enforced us
to weaken the implementation definition to make it monotonic w.r.t. PSIOA creation by
handling only creation-oblivious schedulers that cannot make the choice (*).

Here again, we exhibit a key property of a perception function to ensure monotonicity of
implementation w.r.t. creation oblivious schedulers.

» Definition 188 (creation oblivious function). Let f( y be an insight function. f is said
creation-oblivious, if for every PSIOA A, for every A-conservative and A-creation-explicit
PCA X, V€ € env(X), Va,&' € Execs(E]|X), &, & ends on A-creation, then f(él;)owy(&) =

o~/

f(“g’pmxy(&’) implies & = &

X))
In that case, for every A-creation-oblivious scheduler & of || X, we can note &|4,c = 7la
- 5 A.prozy / ~
for any & € Execs(€E]|X) s.t. f((é’p);;w(a) =C.
This property is naturally verified by environment projection function.
» Lemma 189. Let proj. ) the environment projection function i.e. for each automaton K,
VE € env(K), proje iy : o € Evecs(E||K) — a [ E. Then proj(., .y is creation-oblivious.

Proof. Let A be a PSIOA, let X be a A-conservative and A-creation-explicit PCA, let
& € env(X), let &, € Execs(€]|X), s.t. &, & ends on A-creation and projé’pmxy(d) =

:X)
projig"y™ (/). Then by definition, (€]|X)-i'() | (EIX \ {A}) = (ElIX). () |
(E]I(X \ {A}) which meets the definition of & =% &' <

Finally, we can terminate our decomposition argument, assuming creation oblivious
schedulers.

» Lemma 190 (measure after decomposition for oblivious creation scheduler). Let A be a
PSIOA, X be a A-conservative, A-creation-explicit PCA and & partially-compatible with X .

Let f a creation-oblivious insight function.
—

~ —

Let ¢ € UK,SEenv(K) mnge(f(g)K)), Let n € NU {oo}, let ¢ € proxy(()(gvX,A) with
- -
|C| =n. Let & € schedulers(E||X) that is A-creation-oblivious.

n
Then e5(C n -, ) =Tlezi(C » ) with Vi € [1,n],5" = oblivious - (5).
C ¢l i C ¢l A, ¢ [:1]

Proof. We recall the remark of definition 163 of A-creation-oblivious scheduler for a A-
conservative PCA that raises the fact that if an execution fragment & € Frags*((£]|X))
verifying

i) @ ends on A-creation and ii) f(“g’];;)omy
conditioned by ¢ and & in the sense of definition 164. Then we simply apply lemma 165, which

(@) = ¢, then §4,c = G5, the sub-scheduler

states that for every a = o, a, € Frags*(£||X), for G|a, the sub-scheduler conditioned
by & € schedulers(€||X) and «, (in the sense of definition 164), for €5 generated by &,
€5(Ca) = €5(Ca,) - €5,,, (Ca,) With G)o, (az) = 7(a; az) for every a, with fstate(a.) =
Istate(ay,).
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n .. n
For every a € ®C¢l, for o = A-decomposition, e;(Cy) = Iles (C'—>[_]), with
B 7 |

| o [1:i—1]

all:i—1]=a'".. "L

n
By A-creation-oblivious property of 6 and creation-oblivious of f, Iles _, (CZ
i o[li—1]

[i])
n —

) Y wi i pAproy 2 L i

I}egl?[mﬂ (Cam) with ¢[1:4¢— 1] f(é‘,X) ([l :4—1]).

Hence, for every i € [1,n] we note 6° € schedulers(£%|| X?) that matches & Siiog O CSi

|a[1:4—1]

for an arbitrary o[l : i — 1].

: . SOl o 5 — Tl 5i (C=
This leads us to: Va € @C , for o €5(Ca) Ie; (€3 [i])

Thus e5(C» - )= no ﬁﬁa—i C- ) and by lemma 186,
( ®é<m) 2y a, ac@@CCl i (Ca) Y
(X’A> k2

n n
5 n = L dlesi ) =Ilez:
GU(C ?[i]) alec?[l] aiec?m ieq (Cal) iea (CC?M

14.6 Monotonicity of implementation

We use the previous decomposition to state the monotonicity of implementation relationship.

» Theorem 191 (monotonicity). Let A and B be two PSIOA, let X 4 be a A-conservative
and A-creation-explicit PCA, let Xg be a B-conservative and B-creation-explicit PCA,
s.t. X4 and Xg are corresponding w.r.t. A, B with creation-actions(X 4)(A) = creation-
actions(Xg)(B) £ CrActs.

Let S = CrOb the scheduler schema of creatio-oblivious scheduler. Let f( y = proj. .
the environment projection function i.e. for each automaton K, VE € env(K), fie k) a €
Ezecs(E||K) — a | E.

If A Sg’f B, then X 4 gg’f X5.

Proof. Let £ € env(X4) Nenv(Xg). Let Yu = X4\ {A}, Yz = Xg \ {B}, E4 = &||Y4,
&z = &||Y and & an arbitrary PCA semantically equivalent to both £4 and £z with
£ € env(A*®) Nenv(B°) by theorem 160. We note i 4c the (complete, strong and bijective)
PCA executions-matching from €4 to € and puep the (complete, strong and bijective) PCA
executions-matching from € to €. We also note i’y » the (complete, strong and bijective) PCA
executions-matching from £4||A%" to £[|A*" and pjy, the (complete, strong and bijective)
PCA executions-matching from &||B** to Eg||B**.

In the remaining we note (£]|X4)%¢ the automaton (SHXA)Z(TEL)%A)H(Z (as per definition
(€.Xa)
as per definition 130) where ¢ is the

130) where ¢ is the unique last state of every execution & s.t. f

we note (£]|Xp)*¢ the automaton (£]|Xp)
unique last state of every execution 7 s.t. f

(&) = ¢. Respectively,

4(E|1xp) 4 (

(p i ‘;Z)(fr) = (. This notation is possible because

f is pasting-friendly. Finally, Ve € Ezecs(£), we note £¢ = gqg%lsmte(e).
Let & € S(€]|X.4). We need to show there exists 6’ € S(£||Xp) s.t.

V(e mnge(f(ngA)) U mnge(f(g’XB)), €6<Cc~<‘ )= 66’(055 )
5 B - ){«4 _ )(ZS _
where é§(A = Class(€,X 4, f,¢) and Cg(g = Class(&, Xp), [, ().

N — —
Let ¢ € range(fig x ,)) U range(f ¢ x,))- For every ¢ € pr&vy(()(g,XA’A), vie[l:|C]],

. > -

we note GIAZ[ ' the ((£]|X4)*<E). At alter-ego of ErlA—> . For every i € [1 : [(]]

> 6 1°T , 6 []
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— .
a,a" e (f(g’p”m’) Y(C[:d]), Istate(a’) = Istate(a) 2 ¢! since f is pasting-friendly. We

(<) — .
note & - gésquAc(qéfl [€a)

We note 0¢ _, € schedulers(£(¢ || A%%) the u’§, alter-ego of o Sl

|A, ¢ [:4] |A, ¢ [:4]
(*) Since A <37 B, 3o ., e S(ECD]|B5¥) balanced with 0 _, | i.e.
1B, ¢ [+] |4, ¢ [:4]
V(' € range(fgi gew)) U range(fie: gony ), 0 (Cer) =0 . (Cper)
(e A™) €8 0 o) T O 2 e

where Cj = Class(E', A", f,¢') and Cé = Class(E', B, f, (')
We note 0/, the pjy alter-ego of ol ., .
1B, ¢ [:] 1B, ¢ []
We build 6’ € S(€||Xp) as follows:
~ ~ —
For every ¢ € mnge(f(gxs ) \range(]‘(aXA)), V(¢ € prgxy(()(g)x&lg), Viell:|C]], we
—
require that 6|B Ll halts (i.e. V&’ f( DPTOTY(R) = ([: 4], supp(G (@)) =0).
o —

E,X5)
~ —
For every ¢ € range(fig x,)) U mnge(f(g)xg)) V¢ e prowy(()(g xp,8) Vi € [1:]C]], we

J,

1B, 4]

require that 5|B - and o’  are ((<‘f\|Xl/3)“[”']).~ + alter-ego.

6 L] B, ¢ [+1]
~ —
Let ¢ € range(fig x ,)) U range(f¢ x,)). let C e proxy(C ) (&,x5.,8) For every i € [1:|(|]
=
7,7 € (féi?gy) YC[:4]), Istate(7') = lstate(fr’) £ ¢, ! since f is pasting-friendly. We

— =/

note £ = & gg)- Moreover, 4SS W = 5(4’“ for every pair (¢, ¢ ), s.t

Ge—pse(q) 'l
x (7 X pa
MAc(C) = MBc(C )-
Now we show that & and & are balanced:
Lf}t ¢ € range(fig x ) U range(fig x,,)), (C € Execs(E)). Let
C~f4 = Class(€,X 4, f,¢) and

C}% = Class(g,XB,f, C~)

We need to show that €5 (Céi) = e;,/(Cég):

We apply lemma 187 to obtain:

€5 C~' = — - _ €5 n = .
a( C,CA) ZCaeproxy(C)(g,xA,A) U( ®é<a[i]
€5/ C~" = — _ _ 5/ C —

#( Czcs) ZCbepmmy(C)(g‘xB,B) ( ®C<b

Since £4 and £p are semantically equivalent, the sets {¢* € Fxecs(E4)|C* | € = f}
and {¢® € Exzecs(Ep)|C® | € = (} are in bijection. Hence, it is enough to show that
V(¢e, b)) € Execs(E4) x Execs(Eg) with (¢ = pac o pes(¢*) and ¢ [ € = (% | € = (,

—ac —be
f Y ¢ae Y b, then €5(C n —ee ) =€ (C i ue ).
or &R0 T E e e O o) = e (i)

By definition, & is A-creation-oblivious, and by construction, &’ is B-creation-oblivious.

This allows us to apply lemma 190 to obtain:

€5(C n —ac ) =Tlez: (C —ac ) with Vi € [1,n],6° = oblivious —ac () =& —ac .
®cs W i ¢é A ¢ L] A, ¢ [+]

A
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n
€5(C o e ) =1Ilezi(C —ac ) with Vi € [1,n],6" = oblivious _be (6') =6 _be .
" . ®él§b“]) oo Cs o) b B,cb[:z‘]( ) 15.¢
—ac —bc

3460 where Z[:d] = z[1]".. " Z[i— 1] for Z € {¢ ,( }
v = CS = Class((E)|Xa)¥¢" 1D, pAwrons i)
—be be

¢ [] ~ —be | —
3462 CB ! :C'lass((é'HXB)ie [;1])7f8,p7”o:ry7<~ [Z])

3463 Thus it is enough to show that Vi € [1,n], €5:(C —ac _]) =€5i(C e ). Let i € [1,n]

CC [i és
B
3464 By lemma 174 combined with lemma 176, we obtain:
_ 5(¢ D)
3409 (Cc?ap[i]) - EalA?‘“ (C(SA,A) )
—bc .
3466 Gﬁli(CA_ﬂuc ] ) = €5/ Cobe (C((ch,lg)])
¢s M B¢ [

3467 where:

. —ac —ac y 5 —ac
3468 C((éA X]) Class(f,’c Ll s f, ¢ [i]) and

. —be . —be y B _)bc
3469 C((‘gg’g)]) = Class(é’é ['l], Bsw7 fa C [2])
3470 P is the ((€]|X )¢ ). aAT alter-ego of &°.

s 2
—be

samt o' . s the (€||Xp)*¢ ) a8+ alter-ego of 6.

1B,¢ [1]
3472
w73 Hence it is sufficient to show that e, .. ( s ])) =¢ . (C e ).

A, ¢ [:4] C(SA A 5.C L CE;B B[;”

3474 Finally, we find again our construction (*):

3475 €6 ac (C —ac ):EUC IR (C - )

P ) PN
A, ¢ [:] C(S.A A) | A, ¢ [:4] C(E,.A)
3476 €q/ C b = €d C -
7 ( o C[m) ot | oe
1B, ¢ [:] (£5,B) |B, ¢ [:1] (€,B)
o o (O 5(< 13D ) = €00 (© (?[n)
— 5(¢ i
et Cigay B¢l Ciem
3478 where:

—sac —bc

79 € is the vector of (Frags*(€))™ s.t. Vj € [1: n], E[]] =pac(¢ ) = pep(C L)

~ - . ~ -
3480 C((é = Class(ESED | Asv £, ([i]) and
v = - . ~ —
c((g = Class(ESLD Bsw £, C[i])
3482
2483 This leads us to €, .. (C —ac ) =€, .. (C e ), which ends the proof.
et G G 8500, ¢ b Cligm)

3484 |
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15 Task schedule

: ) . CrOb,proj
We have shown in previous section that <" """

was a monotonic relationship. In this
section, we explain why, without cautious modifications, an easy to use off-line scheduler
introduced by Canetti & al. [5], so-called task-scheduler, is not a priori creation-oblivious
which surprisingly prevents us from obtaining monotonicity of the implementation relation

w.r.t. PSIOA creation for this scheduler schema.

15.1 Discussion on adaptation of task-structure in dynamic setting

We adapt the task structure of [3] to dynamic setting. For any PSIOA A = (Q 4, g4, sig(A), D 4),
we note acts(A) = U,cq , sig(A)(q), UI(A) = !EQ““ in(A)(q), UO(A) = U, cq, out(A)(q),
UH(A) = U,eq, int(A)(@), UL(A) = U,eq, local(A)(q), UB(A) = Uyeq,, cot(A)(a)-

In classic PIOA formalism [20], if an action a € O4 N I is an output action for A and
an input action for B, then a is an output for A||B and this does not depend on the current
state of A||B.

In PSIOA, if an action a € UO(A) NUI(B) is an output action for A at a certain state
q4, without being an input action of A at any other state, while this is an input action for B
at some state g, without being an output action of B at another state, then it does not say
that a will never be an input of A||B at a certain state ¢ = (¢4, q) where a € in(B)(qp)
but a ¢ out(A)(¢y)-

To summerize, if an action can clearly and definitely be an input or an ouput in PIOA
formalism [20], this is not the case in PSIOA formalism where an action can be an input and
becomes an output an vice-versa.

a u c € v e a " u ‘I c v e a unv, €
int:g int:h - int:g int:h » int:g.,h
<« 0 <« Ofe— | «— 0 Ole— « O —
b d d 1 o d ] b
Pl
&
a u ¢ v e a :’ u 1 ; v e a N uiv € >
int:g ™ mn » int:g int:h » 'm=9-“0 <
o 0 — Ole— <« 0 Ol¢— < f
b d d ] b d f b T/
id

Figure 28 We represents the composition W = U||V of two automata U and V. At two

different states qw = (qu,qv) and gy = (g, db) where sig(U)(gl) = (in(U)(av), out(U)(aw) \
{c},int(U)(qy)). The different states are represented with different colors. The action ¢ is an output
of W in qw but an input of W’ in qi; .

In [3], a task-structure R 4 of a PIOA A is an equivalence class on local actions of A and
a task-schedule is a sequence of tasks. The task-structure is assumed to ensure next-action
determinism, that is for each state ¢ € Q 4, for each task T € R 4, there exists at most
one (local) action a € T Nlocal(A)(q) enabled in gq. A task-schedule can hence "resolve
the non-determinism", leading to a unique probabilistic measure on the executions. A nice
property is that next-action determinism is preserved by composition if the task-structure R
of the parallel composition of task-PIOA (A, R4) and (B, Rg) is defined as R = R4 U Rp

In PSIOA formalism, the preservation of well-formdness after composition is less obvious.
If we assume that a task is a set of actions ensuring (local action determinism) (that is for
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each state ¢ € @4, for each task T' € R 4, at most one local action a € T is enabled in ¢),
this property will not be preserved by the composition. Indeed let imagine PISOA A, B,
(q4,98) € Qa x Qp with sig(A)(qa) = ({a}, {b},0), sig(B)(g5) = ((Z)a {a}, Q)) and 7' = {a, b}
is a task of A. Then sig(A||B)(qa4,q8) = (0,{a,b},0) and both a and b can be enabled.

This observation motivates an additional assumption, called input partitioning. We assume
the existence of a set of "atomic entities" Autidsg C Autids, s.t. for every A € Autidsy,
every action a € acts(A), a € UI(A) = a ¢ UO(A). Since the vocation of an input a of
A is to be triggered as an output action of a compatible automaton B, this assumption is
very conservative. Furthermore, in [2], the composition is defined for automata where all the
states are compatible. Hence nothing is lost compared to the formalisation of [2]. Now, we
can assume that, for every A € Autidsy, for every action a € UI(A), for every task T of A,
agT.

This assumption is not preserved by the composition. Indeed, if a is an output of
A C Autidsg and an input of B C Autidsg, we can have a task T' = {a} of A, that would
become a task of A||B, where a can be an input of A||B. In fact we will assume both input
partitioning for Autidsy and local action determinism and we will show that local action
determinism is ensured by any PSIOA or PCA built with atomic elements of Autidsg.

Another subtlety appears. In static setting, since the signature is unique and compatibility
of A and B means UL(A) NUL(B) = ), there is no ambiguity in defining a subset of tasks

T" = {T} } v among the ones of A||B composed uniquely of tasks of A (or B symetrically).

In dynamic setting if a task T is only a set of action labels, T' could be a task for different
automata (not a the same time). For example, T' could be triggered by the A "contribution"
of A||B or by the B "contribution" of A||B in alternative execution branches. The confusion
can become much greater for a configuration automaton X (formalised in section 4) where
each state points to a configuration of dynamic set A x of automata (with their own current
state). What if the scheduler proposes a task T to a configuration automaton X that goes
successively into states ¢x and ¢’ pointing to configuration Cx and C% with different set of
automata Ax and A’y where B € Ax and is in its current state g and B’ € A’y and is in
its current state gz with B # B’ but l/()\(:(B)(qB) N l/<)\c(B’)(qB/) NT # @ ? There are a lot of
different ways to deal with this source of ambiguity. To solve it, we have two motivations:

Reuse the notion of projection of a schedule on an environment as in [5]

Obtain our theorem of monocity,. To do so, we need to avoid that a task T that was
intented to be triggered by an automaton A in a certain execution branch « and ignored
in another branch o’ can be triggered by another automata A’ in an execution branch &'

with trace(a’) = trace(@’) of a configuration automaton X that creates A’ instead of A.

The monocity theorem is based on the fact that X 4||€ mimics the behaviour of A** ||
with €4 = X 4 \ {A}||€ where A* is the simpleton wrapper of A (formalised in definition
123) and X 4 \ {A} (formalised in definition 120) is the PCA X 4 deprived of A at each
configuration (see figures 29 and 30). If we examine the succession of reduced configurations
(configuration without automata with empty signature) visited in & € Execs(X 4||€) and in
corresponding « € Execs(A||E4), a = p(&), we obtain the same ones (see figure 31). Since
our theorem takes advantage of the corresponding successions of configurations, it is natural
to make appear the ids of Autidsg, representing the "atomic" entities among all the entities.

This formalism avoid the possibility for an atomic entity A to be a "member" of two
different hierachy as it was already the case in [2] which is completely normal in IO automata
formalism. However, contrary to [2], the notion of partial-compatibility does not prevent an
automaton A to move from a configuration X to another configuration Y. Indeed we can
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Alg A§ g g g A G
O L J O [ ] L] L J (O3 ]
Cxa vV vV v V vV
EY 4]
X4 < <V‘\A<> <>/‘\<> .
A. dest( A) Xy create(A')
X4l D ............... D/_“\D _______________ D/—“\D
£ < < <& < <
G A A A A A
® [ ] [ ] ® [ ]
H H H H H

Figure 29 An example of an execution & of a probabilistic configuration automata (PCA) X 4]|€.
At first, A is a "member" (yellow dot) of X 4 , then it is destroyed and finally a clone A’ is created
(green dot) in X 4. The formalism of [2] allows that A and A" are "member" of X 4 in two different
states as long as they cannot be member in the same state.

4] EY 4]
A O O e @ o
A.dest(A)

AllE, [:] ............... [:}”‘_5\‘{:] --------------- [:}”‘_m\‘[:]

&Y. create(A")

& <& &0 OO
Al

G A A A A A
[ ] ® ® @ [ ] ®* @ O
g H g H G H G M G H oA

Figure 30 The corresponding execution o of A||€4, noted o = pu(@). At first, A is "alive" (yellow
dot), then it goes forever into a "zombie state' g% (black dot) where gz\g(.A) (¢%) = 0. Finally a clone
A’ is created (green dot) in £%. The formalism of [2] is not supposed to allow this composition since
among all the states of Q4 X Qg% , some of them are not compatible. However, it is possible to
extend their formalism and define a partial-compatibility where all reachable states of Q.4 X Qsﬁ
are compatible.

imagine X and Y that create and destroy A so that they are partially-compatible (while
they cannot be compatible). Neverteless, this possibility will not be handled by our theorem
of monocity, since A, even in its zombie state, cannot be partially-compatible with a PCA £
that creates A. Here again, we do not lose any expressiveness compared to the original work
of [2]. We can remark we are not dealing with a schedule of a specific automaton anymore,
which differs from [5]. However the restriction of our definition to "static" setting, where each
automaton is the composition of a finite set of automata in Autidsg, matches their definition.
It will be the responsibility of the task-scheduler to chose a task-schedule p =T, ..., T}, ...
that produces the probabilistic distribution that it wants.
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Hl|€ = A2\ {ADIIE) = Alley

Cayer JANUETEITESPPRY A FANRRIETEEEER SRR A A
o e e o e e L N ] L N o e 0
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Cx e v ............... v v ............... v v

Figure 31 As long as no creation of A occurs, the executions & € Ezxecs(X4||€) and a €
Ezecs(A||€/4) handle the same succession of reduced configurations.

371 According to our understanding, the fact that the set of tasks is not a set of equivalence
s classes for an equivalence relation is not crucial for the model.

s 15.2  task-schedule for dynamic setting

s We formalise the scheduler schema of task-schedulers that is a schema of off-line schedulers.
3575 We assume the existence of a subset Autidsq C Autids that represents the "atomic
w76 entities” of our formalism. Any automaton is the result of the composition of automata in
3577 Autidso.

s Definition 192 (Constitution). For every PSIOA or PCA A, we note

Qa — P(Autidsg) where P(Autidsy) denotes the power set of Autidsg
q —  constitution(A)(q)

3580 The function constitution is defined as follows:

3579 constitution(A) : {

3581 for every PSIOA A € Autidsg, Yq € Q 4, constitution(A)(q) = {A}.

3582 for every finite set of partially-compatible PSIOA A = {Ay, ..., A,} € (Autidsy)™, Vq €

3583 Qa, constitution(Ay]]...||An)(q) = A.

3584 The constitution of a PCA is defined recursively through its configuration. For every PCA

3585 X, ¥q € Qx, if we note (A, S) = config(X)(q), constitution(X)(q) = U 4c o constitution(A)(S(A)).

3586 We can extend the principle of a partial function map (attached to a configuration) to
g7 the entire constitution of a PCA or PSIOA.

s » Definition 193 (hierarchy mapping S™). Let X be a PCA or a PSIOA. Let g € Qx We
se0  note ST(X)(q)  the function that maps any PSIOA A; € constitution(X)(q) to a state
w0 qa, € Qa, St

3501 ZfX = .Ai, qaA;, = ¢q

3502 if X = Ap|]- A JAn and ¢ = (q1, ooy @iy ooy Gn) € Qg ||| Al || AR), 4, = ¢

3503 if X is a PCA, qa, = ST (Y)(qy) where Y is the unique member of auts(config(X)(q))
3504 s.t. A; € constitution(Y)(qy) with ¢y = map(con fig(X)(q))(Y)

3505 Anticipating the definition of an enabled task, we extend the definition of task of [3] with
306 an id of Autidsg.

8 H stands for "hierarchy" and S refers to notation of mapping function of a configuration (A, S).
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sso7 B Definition 194 (Task). A task T is a pair (id, actions) where id € Autidsy and actions C
08 acts(aut(id)) is a set of action labels. Let T = (id,actions), we note id(T) = id and
300 actions(T) = actions.

3600 Now, we are ready to define notion of enabled task.

s B Definition 195 (Enabled task). Let X be a PSIOA or a PCA. A task T is said enabled in

w2 state ¢ € Qx if
3603 id(T) € constitution(X)(q)

3604 it exists a unique local action a € lo/\c(A)(in)ﬁactions(T) enabled at state ST (X)(q)(A)7.
3605 All previous precautions allow us to define a task-schedule, which is a particular subclass

w0 Of schedulers, avoiding the technical problems mentioned in previous subsection. We are
o7 not dealing with a task-schedule of a specific automaton anymore, which differs from [3].
ws  However the restriction of our definition to "static" setting matches their definition.

sso0 B Definition 196 (task-schedule). A task-schedule p =Ty, T3, Ts, ... is a (finite or infinite)
w0 sequence of tasks.

3611 Since our task-schedule is defined, we are ready to solve the non-determinism and define
sz a probability on the executions of a PSIOA. We use the measure of [3].

ssis > Definition 197. (task-based probability on executions: applya(p,p) : Frags(A) — [0,1])
s Let A be a PSIOA. Given p € Disc(Frags(A)) a discrete probability measure on the execution
s fragments and a task schedule p, apply(p, p) is a probability measure on Frags(A). It is
16 defined recursively as follows.
sir L. oapplya(p, A) := p. Here \ denotes the empty sequence.
ssis 2. For every T and o € Frags*(A), apply(p, T)(a) := p1(a) + p2(w), where:
B { w(ana,qg.a(@) if a=0a""(a,q),q =lstate(a’) and a is triggered by T enabled after o

3619 Pl(a) = .

0 otherwise

w(a) if T is not enabled after o
e pa(@) = { 0 otherwise
s 3. 3. If p is finite and of the form p'T, then applya(u, p) := applya(applya(p, p'),T).
w2 4. 4. If p is infinite, let p; denote the length-i prefiz of p and let pm; be applya(u, p;). Then

3623 apply 4(p, p) := limpm,.
1— 00

w2 B Proposition 198. Let A be a PSIOA, For each measure u on Frags*(A) and task schedule
w2 p, there is scheduler o for A such that apply(u, p) is the generalized probabilistic execution
s fragment €g ;.

s2r - Proof. The result has been proven in [3], appendix B.4. <

w2 15.3  Why a task-scheduler is not creation-oblivious ?

w0 Let us imagine the following example. The class C* is composed of two executions a®:!

w0 and o®?2, the class CY is composed of two executions a¥! and a¥? and the class C? is

s composed of four executions o1t = o®!a¥!l, a®1? = o®la¥?, a®? = o®2a¥ !,

wn a2 = a®27a¥2 Let p = p'p? be a task-schedule. We do not have apply(., p)(C*?)) =

T action enabling assumption implies that a € s/zZ(Ai)(SH(X)(q)(A)) = a enabled at state

SH(X)(@)(A) (i-e. 3 € Disc(Qa) st. (ST (X)(q)(A),a,n) € D.a)
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Figure 32 Non-deterministic execution: The scheduler allows us to solve the non-determinism,
by triggering an action among the enabled one. We give an example with an automaton
A = (Qa,q4a = qo,sig(A),D4) and the tasks Ty, T, Ty, Ty, (for green, orange, pink, blue) with
the respective actions {a}, {d}, {b,b'}, {c,c'}, and the tasks Tyo, Tpo With the respective actions
{a,d},{c,c,d}. At state qo, sig(A)(qo) = (0, {a}, {d}). Hence both a and d are enabled local action
at go, which means both Ty and T, are enabled at state qo, but Ty, is not enabled at state go since
it does not solve the non-determinism (a and d are enabled local action at qo). At state ¢q1, T} is
enabled but neither T, or T,. We give some results: apply(d o, T)(d% a,¢"") =1
apply (540, TyTp) (4%, a,4"°,b,¢%%) = apply(apply(6,0,Ty), Tp)(¢" a,¢"" b,6*") = 1/2
a?ply(%o,TngTb)(qO, a,q"",b,¢*", ¢, ¢*") = apply(apply(3y0, Ty T,), Tv)(4°, a, 4", b, 4> ¢ q
3/8
apply(8,0, TyTpyToTy) (%, a, ¢, b, ¢, ¢, ¢*™) = 3/8, since T, is not enabled at state ¢>*.

apply(., p1)(C*) - apply(., p?)(C¥) ! Indeed, the executions a®! and a®? can differ s.t. they
do not ignore the same tasks. Typically, p! could be written p' = p»?~ pl® where the last
action of a®! is triggered by the last task of p'% and p' is "ignored by a®!. The issue
comes if both apply(., p?)(CY) # O and apply(., p-*~p?)(CY) # (). The point is that C* can
be obtained with different cut-paste: cut-paste A: p¢ for C* and p'*~p? for C¥ ; cut-paste
B: p! for C* and p? for CV.

There is room for finding the appropriate natural assumptions to obtain creation-
obliviousness for task-schedules in future work.

16 Conclusion

We extended dynamic I/0 Automata formalism of Attie & Lynch [2] to probabilistic settings
in order to cope with emergent distributed systems such as peer-to-peer networks, robot
networks, adhoc networks or blockchains. Our formalism includes operators for parallel
composition, action hiding, action renaming, automaton creation and use a refined definition
of probabilistic configuration automata in order to cope with dynamic actions. The key result
of our framework is as follows: the implementation of probabilistic configuration automata is
monotonic to automata creation and destruction. That is, if systems X 4 and Xp differ only

3,w) —

105



106 Dynamic Probabilistic Input Output Automata (Extended Version)

a9 in that X 4 dynamically creates and destroys automaton A instead of creating and destroying
w50 automaton B as Xp does, and if A4 implements B (in the sense they cannot be distinguished
st by any external observer), then X 4 implements Xg. This results is particularly interesting
w52 in the design and refinement of components and subsystems in isolation. In our construction
w53 we exhibit the need of considering only creation-oblivious schedulers in the implementation
w5 relation, i.e. a scheduler that, upon the (dynamic) creation of a sub-automaton A, does not
s take into account the previous internal behaviours of A to output (randomly) a transition.
3656 Interestingly and of independent interest, motivated by the monotonicity of execution
7 W.I.t. to automata creation, we introduce new proof techniques to deduce certain properties
s Of a system X 4 from a sub-automaton X 4 dynamically created and destroyed by X 4. This
50 proof technique is used to construct a homomorphism between the probabilistic spaces of
w0 automata executions. Then we expose such homomorphism from a system X 4 to a new
w61 system resulting from the composition of A and X 4 \ {{A}. The latter corresponds intuitively
w2 to the system X 4 deprived of A. Furthermore, the homomorphism is used to show that
w63 under certain minor technical assumptions, if X 4 and X differ only in the fact that X 4
wee  dynamically creates and destroys the automaton A instead of creating and destroying the
sses  automaton B as Xp does, then X 4\ {A} and X\ {B} are semantically equivalent, i.e. they
ses  only differ syntactically. The homomorphism is finally reused to establish the monotonicity
sz of the implementation relation. Our technique can be used in extensions of our formalism
s with time and cryptography notions.

3669 As future work we plan to extend the composable secure-emulation of Canetti et al. [5] to
w0 dynamic settings. This extension is necessary for formal verification of protocols combining
sn probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains,
sz secure distributed computation, cybersecure distributed protocols etc).

ws 17 Glossary

A PSIOA with id A

(Qa,Fa ) state space of A

qa start state of A

Dy discrete trandistions of A

steps(A) steps of A

sig(A) signature of A, maps each state to a triplet

sig(A) signature of A, maps each state to the union of actions of the triplet sig(.A)
in(A) input actions of A

out(A) output actions of A

int(A) internal actions of A

ext(A) external actions of .4, maps each state ¢ € Q.4 to the pair (in(A)(q), out(A))(q))
ext(A) external actions of A4, maps each state ¢ € Q4 to in(A)(q) U out(A))(q)
loc(A) local actions of A, maps each state ¢ € Q.4 to the pair (out(A))(q), int(A))
E)\C(.A) local actions of A, maps each state g € Q. to out(A))(q) U int(A)

acts(A) universal set of actions of A, i.e. quQA sig(A)

Ezecs(A) executions of A

Ezecs™ (A) finite executions of A

Ezecs”(A) infinite executions of A

Frags(A) execution fragments of A

Frags™(A) finite execution fragments of A
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3675

3676
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3679
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3681
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Frags”(A)
Traces(A)
Traces™ (A)
Traces” (A)
Reachable(A)
Ca

tracea ()
Istate(c)
fstate(a)
states(a)
actions(a)

I

<&/

I

X

&

Qeonf
auts(C)
map(C)
sig(C)
config(X)
created(X)(q)
hidden-actions(X)
€o

env(A)
f-diste, ) (o)
Proje.,.

m < 72
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infinite execution fragments of A

traces of A

finite traces of A

infinite traces of A

reachable states of A

cone of executions with a as prefix

trace of execution «

last state of execution a

first state of execution «

set of states composing the execution «

set of actions composing the execution «

projection for states, executions

implementation relation w.r.t. scheduler schema S, insight-function f, approximation e
parallel composition

cardinal product, also used as operator of composition for signature

product of measures or product of o-algebra

set of configurations

automata of configuration C'

maps each automata of auts(C) to its current state

signature of configuration C

maps each state ¢ to associated configurations of PCA X at state ¢

maps each action a to sub-automata created by X at state ¢ through action a
maps each state ¢ to hidden actions of PCA X at state ¢

measure of probability on Ezecs(A) generated by scheduler o

set of environment of A

measure of probability on f(Ezecs(€||.A)) generated by scheduler o for £ € env(A)
for each automaton K, V€ € env(K), Yo € Ezecs(E||K), proje xy(a) =a [ £

c is a preserving-measure bijection between distributions 71 and 72

same automata ids than in ®, modulo B replacing A

C and C’ are the same configurations modulo B replacing A in C’

PCA X deprived of A

the states ¢ and ¢’ are associated to the same configuration

the states ¢ and ¢’ are associated to configurations that are equal if we ignore A
the states ¢ and ¢’ are associated to the same components of their PCA

the states ¢ and ¢’ are associated to the same components of their PCA if we ignore A
the (potential) output actions of A in config(X)(q)

simpleton wrapper of A

o and o differs only on internal states and internal actions of sub-automaton .A.
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