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Abstract

We describe a garbling scheme for boolean circuits, in which XOR gates are free and AND
gates require communication of 1.55+5 bits. This improves over the state-of-the-art “half-gates”
scheme of Zahur, Rosulek, and Evans (Eurocrypt 2015), in which XOR gates are free and AND
gates cost 2k bits. The half-gates paper proved a lower bound of 2x bits per AND gate, in a
model that captured all known garbling techniques at the time. We bypass this lower bound
with a novel technique that we call slicing and dicing, which involves slicing wire labels in
half and operating separately on those halves. Ours is the first to bypass the lower bound while
being fully compatible with free-XOR, making it a drop-in replacement for half-gates. Our
construction is proven secure from a similar assumption to prior free-XOR, garbling (circular
correlation-robust hash), and uses only slightly more computation than half-gates.

1 Introduction

Garbled circuits (GC) were introduced by Yao in the 1980s [Yao82] in one of the first secure two-
party computation protocols. They remain the leading technique for constant-round two-party
computation. Garbled circuits exclusively use extremely efficient symmetric-key operations (e.g.,
a few calls to AES per gate of the circuit), making communication rather than computation the
bottleneck in realistic deployments — the parties must exchange O(k) bits per gate. For that
reason, most improvements to garbled circuits have focused heavily on reducing their concrete
size [BMR90, NPS99, KS08, PSSW09, KMR14, GLNP15]. The current state of the art for garbled
(boolean) circuits is the half-gates construction of Zahur, Rosulek, and Evans [ZRE15]. In the
half-gates scheme, AND gates are garbled with size 2k bits, while XOR gates are free, requiring no
communication.

The half-gates paper also establishes a lower bound for the size of garbled circuits. Specifically,
the authors define a model of linear garbling — which captured all known techniques at the time
— and proved that a garbled AND gate in this model requires 2« bits. Thus, half-gates is optimal
among linear garbling schemes. In response, there has been a line of work focused on finding ways
around the lower bound. Several works [KKS16, BMR16, WmM17] were successful in constructing
an AND gate using only s bits, using techniques outside of the linear-garbling model. However,
these constructions work only for a single AND gate in isolation, so they do not result in any
improvement to half-gates for garbling general circuits.! Garbling an entire arbitrary circuit with
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!These constructions require the input labels to have a certain correlation that they do not guarantee for the
gate’s output labels.



less than 2k bits per AND-gate remained an open problem. We discuss the linear garbling lower
bound and different paths around it later in Section 7.

1.1 Our Results

We show a garbling scheme for general boolean circuits, in which XOR gates are free and AND
gates cost only 1.5k 45 bits. This is the first scheme to successfully bypass the linear-garbling lower
bound for all AND gates in a circuit, not just a single isolated AND gate. For the typical case of
k = 128 this is a concrete reduction of 23% in the size of garbled circuits relative to half-gates. Our
construction compares to half-gates along other dimensions as follows:

e Hardness assumption: All free-XOR-based garbling schemes require a function H with
output length x and satsifying a circular correlation-robust property. In short, this means
that terms of the form H(X @ A) and H(X © A) ® A are indistinguishable from random, for
adversarially chosen X and global, secret A. Our construction requires a slight generalization.
First, we require H that gives outputs of length /2. Second, the secret A is split into two
halves A = Ap||AR, and we require terms like H(X @ A) @ A, H(X & A) & AL & Ap, etc.
to be indistinguishable from random.

e Computation: Our scheme requires 50% more calls to H per AND gate than half-gates (6
vs 4 for the garbler, and 3 vs 2 for the evaluators). Similar to other work, we can instantiate
the necessary H using just 1 call to AES with a key that is fixed for the entire circuit. As a
result, the computational cost of our scheme is comparable to prior work.

Additionally, since we require H with only x/2 bits of output, certain queries to H for different
AND-gates can be combined into a single query to a x-bit-output function. The effect of this
optimization depends on the circuit topology but in some cases our construction can have
identical or better computation to half-gates (see Section 6.2).

We bypass the [ZRE15] lower bound by using two techniques that are outside of its linear-garbling
model. We refer to the techniques collectively as slicing-and-dicing.

e Slicing: In our construction the evaluator slices wire labels into halves, and uses (possibly
different!) linear combinations to compute each half. To the best of our knowledge, this
technique is novel in garbled circuits. As we demonstrate in detail later, introducing more
linear combinations for the evaluator increases the linear-algebraic dimension in which the
scheme operates, in a way that lets us exploit more linear-algebraic structures that prior
schemes could not exploit.

e Dicing: The evaluator first decrypts a constant-size ciphertext containing “control bits”,
which determine the linear combinations (of input label [halves], gate ciphertexts, and H-
outputs) he/she will use to compute the output label |[halves]. The control bits are chosen
randomly by the garbler (i.e., by tossing “dice”) in a particular way. Randomized control bits
are outside of the linear garbling model, which requires the evaluator’s linear combinations
to be fized. This technique first appeared in [KKS16].

We also describe a variant of our scheme that can garble any kind of gate (e.g., XOR gates,
even constant-output gates) for 1.5k + 10 bits, in a way that hides the gate’s truth table from the
evaluator. This improves on the state of the art for gate-hiding garbling, due to Rosulek [Ros17], in
which each gate is garbled for 2k48 bits, and constant-output gates are not supported. Additionally,
our gate-hiding construction is fully compatible with free-XOR, meaning that the circuit can contain



GC size calls to H per gate
(k bits / gate) garbler evaluator
scheme AND XOR AND XOR AND XOR assump.
unoptimized textbook Yao 8 8 4 4 2.5 2.5 PRF
Yao + point-permute [BMRI0] 4 4 4 4 1 1 PRF
4 — 3 row reduction [NPS99] 3 3 4 4 1 1 PRF
4 — 2 row reduction [PSSW09] 2 2 4 4 1 1 PRF
free-XOR [KS08] 3 0 4 0 1 0 CCR
fleXOR [KMR14] 2 {0,1,2}| 4 {0,2,4}| 1 {0,1,2}| CCR
half-gates [ZRE15] 2 0 4 0 2 0 CCR
[GLNP15] 2 1 4 3 2 1.5 PRF
ours 1.5 0 <6 0 <3 0 CCR

Figure 1: Comparison of efficient garbling schemes. Gate size ignores small constant additive term
(ie., “2” means 2k + O(1) bits per gate). CCR = circular correlation robust hash function.

both “public” XOR gates (evaluator knows that this gate is an XOR) and “private” XOR gates
(only the garbler knows that this gate is an XOR), with the public ones being free.

1.2 Related Work

The garbled circuits technique was first introduced by Yao [Yao82], although the first complete
description and security proof for Yao’s protocol was given much later [LP09]. Bellare, Hoang,
and Rogaway [BHR12] promoted garbled circuits from a technique to well-defined cryptographic
primitive with standardized security properties, which they dubbed a garbling scheme. In this
work, we use their framework to formally express our schemes and prove security.

The garbling scheme formalization captures many techniques, but in this work we focus on
“practical” GC techniques built from symmetric-key tools (PRFs, hash functions, but not homo-
morphic encryption or obfuscation). In the realm of practical garbling, there have been many
quantitative and qualitative improvements over the years, especially focused on reducing the size
of garbled circuits. These works are showcased in Figure 1. Of particular note are the Free-XOR
technique of Kolesnikov & Schneider [KKS08] and the half-gates consruction [ZRE15], mentioned
above. Free-XOR allows XOR, gates in the circuit to be garbled with no communication, and our
construction inherits this technique to achieve the same feature. The free-XOR technique requires
a cryptographic hash with a property called circular correlation-resistance [CKKZ12]. As men-
tioned above, the half-gates paper introduced a lower bound for garbling, which several works have
bypassed in some limited manner. We discuss the lower bound and these related works in more
detail in Section 7.

Several garbling schemes are tailored to support both AND and XOR gates while hiding the
type of gate from the evaluator [KIKS16, WmM17, Ros17]. These works are compared in Figure 2.
They differ in the exact class of boolean gates they can support — all gates, all symmetric gates
(satisfying ¢(0,1) = ¢g(1,0)), or all non-constant gates.

2 Preliminaries

2.1 Circuits

We represent a circuit f = (inputs, outputs, in, leak, eval) by choosing a topological order of the |f|
inputs and gates in the circuit. Let inputs be the number of inputs in the circuit, which we require



GC size calls to H per gate | supported
scheme (k bits/gate) | garbler evaluator gates assump.
Yao + point-permute [BMRI0] 4 4 1 all PRF
4 — 3 row reduction [NPS99] 3 4 1 all PRF
[KKS16] 2 3 1 symmetric | CCR
[WmM17] 2 3 1 symmetric | CCR
[Ros17] 2 4 1 non-const PRF
ours 1.5 <6 <3 all CCR

Figure 2: Comparison of gate-hiding garbling schemes, where the garbled circuit leaks only the
topology of the circuit and not the type of each gate. Gate size ignores small constant additive
term (i.e., “2” means 2k + O(1) bits per gate). CCR = circular correlation robust hash function.
“Symmetric” means all gates g with ¢(0,1) = ¢(1,0). “Non-const” means all gates g except
g(a,b) =0 and g(a,b) = 1.

to come first in the ordering. Each gate is then labeled by its index in the order. For every gate
index g in the circuit, its two input indices? are in1(g) and ina(g), where in;(g) < g. Each gate can
be evaluated using a function eval(g): {0,1}?2 — {0,1}. Finally, the outputs are a subset of the
indices outputs C [1, |f]].

Garbling only hides only partial information about the circuit. What is revealed is contained in
the “leakage function” ®(f). Sometimes two gates in a circuit may both be e.g. XOR-gates, but one
will publicly be XOR while the operation performed by the other gate will be hidden. To support
this, each gate is associated with some leakage leak(g). Gates with different leakages may compute
the same function, but have different rules about how much information is revealed. We then define
®(f) to be (inputs, outputs, in, leak), containing the circuit topology and partial information about
the gates’ truth tables.

2.2 Garbling Schemes
We use a slightly modified version of the garbling definitions of [BHR12].

Definition 1. A garbling scheme consists of four algorithms:
o (F,e,d) < Garble(1”, f).
e X := Encode(e,x). (deterministic)
e YV :=Eval(F, X). (deterministic)
e y := Decode(d,Y). (deterministic)
such that the following conditions hold.

Correctness: For any circuit f and input x, after sampling (F,e,d) + Garble(1%, f), f(x) =
Decode(d, Eval(Encode(e, x))) holds with all but negligible probability.

2We assume that all gates take two inputs. NOT gates can be merged them into downstream gates — e.g. if x
goes into a NOT gate, and then into an AND gate with another input y, this is equivalent to a single T A y gate.



Privacy with respect to leakage ®: There must be a simulator S such that for any circuit f
and input x the following distributions are indistinguishable.

(F,e,d) < Garble(1", f)
X := Encode(e, =)
return (F, X, d)

(F, X, d) < S(17,2(f), f(=))
return (F, X, d)

Obliviousness w.r.t. leakage ®: There must be a simulator S such that for any circuit f and
mput x the following distributions are indistinguishable.

(F,e,d) < Garble(1”, f)
X := Encode(e, )
return (F, X)

(F, X) < S(17, 9(f))
return (F, X)

Authenticity: For any circuit f and input x, no PPT adversary A can make the following dis-
tribution output TRUE with non-negligible probability.

(F,e,d) < Garble(1”, f)

X := Encode(e, z)

Y « A(F,d, X)

return Decode(d,Y") ¢ {f(x), L}

The definitions differ from [BHR12] in two ways. First, we change correctness to allow a
negligible failure probability.? Secondly, we strengthen the authenticity property by giving d to the
adversary. This stronger property is easy to achieve by simply changing what one takes as garbled
output Y.

2.3 Circular Correlation Robust Hashes

Our construction requires a hash function H with a property called circular correlation robustness
(CCR). A comprehensive treatment of this property is presented in [CKKZ12, GKWY20].

The relevant definition of [GKWY20] is tweakable CCR (TCCR). For a hash function H, define
a related oracle Oa(X,7,b) = H(X @& A, 7) @ bA. Then H is a TCCR if On is indistinguishable
from a random oracle, provided that the distinguisher never repeats a (X, 7) pair in calls to the
oracle.

We modify their definition in several important ways:

e We require H to have different input and output lengths. In the original definition, the
adversary used the argument b € {0, 1} to determine whether A was XOR’ed with the output
of H. We generalize so that the adversary can choose a linear function of (the bits of)
A that will be XOR’ed with the output of H. Our construction ultimately needs only 4
linear functions reflecting our slicing of wire labels in half: L, ,(AL||ARr) = aAr @ bAg, for
a,be {0,1}.

3Most garbling schemes actually do not have perfect correctness. If an output wire has labels Wy, W1, then d will
contain both H(Wy) and H(Wh). Correctness is violated if H(Wy) = H(Wh).



o [GKWY20] observe that a “full” TCCR is stronger than what is needed for garbled circuits.
In order to construct a TCCR that uses only one call to an ideal permutation, they prove
TCCR security against adversaries that query only on “naturally derived’ keys. It is somewhat
cumbersome to generalize “naturally derived’ keys to our setting, where the values are sliced
into pieces.

We instead relax TCCR so that H is drawn from a family of hashes, and the adversary only
receives the description of H after making all of its oracle queries. This relaxation suffices for
garbled circuits (the garbler chooses H and reveals it only in the garbled circuit description,
after all queries to H have been made), and simplifies both our definition and our proof.

Definition 2. A family of hash functions H, where each H € H maps {0,1}" x T — {0,1}™ for

some set of tweaks T, is randomized tweakable circular correlation robust (RTCCR) for

a set of linear functions L from {0,1}™ to {0,1}™ if, for any PPTs Ay, Ay that never repeat an

oracle query to Oy a on the same (X, 1),

— Pr
H,R

‘Ig’rA [v +— A{I’OH’A;AQ(U,H) = 1] [v +— A{{’R;AQ(U,H) = 1} ‘

is negligible, where R is a random oracle and Oy A is defined as

Opn(X €{0,1}", 7€ T,LeL):
return H(X & A, 7) & L(A)

In Appendix A we show that if Fj(X) is both a (plain) CCR hash for £ when k is fixed and
a PRF when k is random, and {(X,7) — X @ U(7) | U € U} is a universal hash family,® then
{(X,7) = F(X®U(r)) | k € {0,1}*,U € U} is a secure RTCCR hash family for L.

For our recommended instantiation, let o be a simple function of the form o(X||Xg) =
aXp|aXp, where « is any fixed element in GF(2%/2) \ GF(22). Then AES,(X) @ o(X) is both a
PRF for random k, and a CCR for any fixed k (modelling AES as an ideal permutation). Hence
we get an RTCCR of the form:

(X,7) > AES, (X @ U(r)) @ o(X @ U(7))

U can likewise be a simple function, e.g., when |7| < k/2 then we can use U(7) = uiT||ugT where
uy,us are random elements of GF(2%/2).

3 A Linear-Algebraic View of Garbling Schemes

In this section we present a linear-algebraic perspective of garbling schemes, which is necessary to
understand our construction and its novelty. This perspective is inspired by the presentation of
Rosulek [Ros17], where the evaluator’s behavior (in each of the 4 different gate-input combinations)
defines a set of linear equations that the garbler must satisfy, and we rearrange those equations to
isolate the values that are outside of the garbler’s control.

“Equivalently, ¢/ is 27 "-almost-XOR-universal (AXU).



3.1 The Basic Linear Perspective

Throughout this section, we consider an AND gate whose input wires have labels (Ag, A1) and
(Bo, B1). We will always consider the free-XOR setting [IKXS08], where all wires have labels that xor
to a common global A; i.e., Ag® A1 = By & By = A. Our view of garbling will always start with
the circuit evaluator’s perspective; hence we consider the subscripts to be public. In other words, if
the evaluator holds A;, then he knows the value i. In some works these subscripts are called “color
bits” or “permute bits.” The garbler secretly knows which of {4y, A1} represent true and which of
{Bo, B1} represent true.

Let’s take an example of a textbook Yao garbled gate, using the point-permute technique. The
garbled gate consists of 4 ciphertexts Gop, ..., G11. When the evaluator has input labels A;, B;, he
computes the output label by decrypting the (i, j)’th ciphertext, as H(A;, B;) ® G;;.° In order to
correspond to an AND gate, this evaluation expression must result in some label C' (which could
be either Cp or C) representing (false) in 3 cases and C' @ A (true) in the other. Suppose (41, Bo)
is the case corresponding to inputs (true,true), then the garbler needs to arrange for:

C:H(Ao,Bo)@Gog C@A:H(Al,Bo)@Glo
C = H(Ao,Bl> @G()l C = H(Al,Bl) @GH
We can rearrange these equations as follows:
11000 GC 100 0] [H(Ap, By) 0
10100 G°°_0100 H(Ao, Br)| . (0] o
10010 001_0010 H(A1, By) 1
10001 10 000 1] |H(A,B) 0
G —~

In this equation, values that the garbler cannot control are on the right, and the results of the
garbling process (gate ciphertexts and output labels) are on the left. The vector marked ¢ is the
truth table of the gate (when inputs are ordered by color bits), and known only to the garbler.

In order for the scheme to work, for all possible values on the right-hand side (including all
choices of secret t!) the garbler must be able to solve for the variables on the left-hand side. In
this case the left-hand side is under-determined so solving is easy. The garbler can simply choose
random C' and move it to the right-hand side. Then the matrix remaining on the left-hand side is
an invertible identity matrix. Multiplying by the inverse solves for the desired values. Clearly this
can be done for any ¢, meaning that this approach works to garble any gate (not just AND gates).

3.2 Row-Reduction Techniques

Row reduction refers to any technique to reduce the size of the garbled gate below 4 ciphertexts.
The simplest method works by removing the ciphertext Ggg, and simply having the evaluator take
H(Ap, By) as the output label when he has inputs Ag, By.

C = H(Ao, Bo) 1000][C 100 0] [H(A0,Bo)] [0

C = H(Ao, B1) ® Gor 1100| |Ga| _[0100] |HoB)| _ [0] o
CoA =H(ALB)®Go ~ |1010] |G| = (0010 [HA,LB| P |1

C :H(Al,Bl)@Gu 1001 G 0001 H(Al,Bl) 0

t
The matrix on the left is now a square matrix, and invertible. Thus for any choice of ¢, the garbler
can solve for C' and the G;; values by multiplying by the inverse matrix.

For now, assume H is a random oracle. We ignore including the gate ID as an additional argument to H.



3.3 Half-Gates

The previous example shows that decreasing the size of the garbled gate from 4 to 3 causes the
matrix on the left to change from size 4 x 5 to 4 x 4. Reducing the garbled gate further (from 3
ciphertexts to 2) would cause the matrix to be 4 x 3, and the system of linear equations would be
overdetermined! So how does the half-gates garbling scheme [ZRE15] actually achieve a 2-ciphertext
AND gate?

Let us recall the gate-evaluation algorithm for the half-gates scheme, which is considerably
different from all previous schemes. On inputs A;, B; the evaluator computes the output label as
H(A;)) @ H(Bj)®i-Go® j(G1 @ Aj), where Go, G are the two gate ciphertexts.

Suppose as before that A; and By correspond to true. Then the garbler must arrange for the
following to be true:

C = H(Ao) ® H(Bo)
C:H(Ao)@H(Bl) o G1 D Ag
CoA=H(A) @ H(By) @ Go
C=H(A)®H(B)®Gy®G1® (A D A)
——
Ay
Rearranging in our usual way, we get:
[H(Ap)]
100] 101000 ((REERE 0 0 H(A)
LOI el | [r0o0L10] 10 H(By)
110 GO_ 011000 1 H(B))
111 ! 010111 Ocvvvnns 0| 0 Ao
~ A

Note that A is used both in the truth table adjustment (¢) and in the usual operations of the
evaluator (implicitly, in the one case where he includes 41 = Ap @ A in the linear combination).

As promised, the matrix on the left is only 4 x 3. We cannot solve for the left-hand side by
inverting this matrix as in the previous cases. Instead, the garbler takes advantage of the fact
that the matrices on both sides have the same column space. Specifically, the columns on
the left span the space of all even-parity vectors. For any choice of ¢ containing just a single 1
(corresponding to the truth table of an AND gate), every column on the right also has even parity!
Concretely, suppose the evaluator solved the first three rows of this system of linear equalities
(which is possible since the first three rows on the left form an invertible matrix), then the fourth
row would automatically be in equality since on both sides it is the sum of the first 3 rows.® One
can see that this technique works only for gates whose truth table has odd parity (e.g., AND gates).

Half-gates was the first garbling scheme to structure its oracle queries as H(A;) and H(B)),
instead of H(A;, B;j). Our linear-algebraic perspective highlights the importance of this change.
For a 2-ciphertext AND gate, the matrix on the left will be 4 x 3, so the matrix on the right must
have rank 3. An expression like H(A;, Bj) can be used by the evaluator in only one combination of
inputs, leading to an identity matrix minor that has rank 4. By contrast, each H(A;) and H(B))
term is used for two input combinations, so the corresponding matrix can have rank 3.

Our linear algebraic perspective confirms and provides an explanation for a prior finding of
Carmer & Rosulek [CR16]. They used a SAT solver to show that no garbling scheme (in the linear

SMore generally, multiplying by a left-inverse of the matrix on the left-hand side “just works,” as in the case
where the matrix on the left-hand side is invertible.



model of the half-gates paper) could achieve a 2-ciphertext AND gate, when the evaluator makes
only one query to H. This reiterates the importance of half gates using H(A), H(B) oracle queries
to achieve a 2-ciphertext AND gate.

4 High-Level Overview of Our Scheme

In the previous section, we saw that it was important that the evaluator used oracle queries like
H(A;) and H(Bj) in the half-gates scheme. For every term of the form H(A;) there are two
gate-input combinations in which the evaluator uses this term. This property led to a desirable
redundancy in the matrix that relates H-queries to input combinations. Redundancies in this
matrix lead to smaller garbled gates. We push this idea further using several key observations.

4.1 Observation #1: Get the Most out of the Oracle Queries

H(A;) and H(Bj) are not the only oracle queries that can be made in two different gate-input
combinations. We can also ask the evaluator to query H(A; @ Bj). Because of the free-XOR
constraint, Ao ® By = A1 ® By, and Ay ® B1 = A1 ® Byg. This means that the following oracle
queries can be made for each gate-input combination:

| H(Ao) H(A1) H(Bo) H(B1) H(Ay® By) H(Ao® Bi)

gate input (0,0)| v v v

gate input (0,1)| v v v (1)
gate input (1,0) v v v

gate input (1,1) v v v

Can we use queries of this form to introduce even more redundancy in the relevant matrices?

4.2 Observation #2: Increase Dimension by Slicing Wire Labels

Our linear-algebraic perspective of garbling includes only 4 linear equations, corresponding to the
4 different gate-inputs. Having only 4 linear equations makes it difficult to take advantage of any
new structure introduced by observation #1. Our second observation, and perhaps the key to our
entire approach, is to split each wire label into a left and right half, and let the evaluator
compute the two halves (of the output label) with different linear combinations. This results in
8 linear equations in our linear-algebraic perspective — 2 equations for each of the 4 gate-input
combinations.
Consider the following proposal,

H(Ag) H(A1) H(By) H(B1) H(Ao® By) H(Ay® Bi)

(0,0) left v v

(0,0) right v v

0,1) left | ¢ v

(0,1) right v v (2)
(1,0) left v v

(1,0) right v v

(1,1) left v v

(1,1) right v v

For example, on gate-input (0,0) the evaluator will compute the left half of the output label as
H(Ao)® H(Ap @ By) @ --- (plus other terms, involving gate ciphertexts and input labels). There
are several important features of this table to note:



4.3

H() is used in a linear equation to compute half of an output label, therefore H(:) is a
function with x/2 bits of output. Three of these half-sized hash functions are combined to
encrypt the gate output.” However, we still will use the entire input wire labels as input to
H — using wire-label halves as input to H would cut the effective security parameter in half.

For an evaluator with gate-input (0,0), the values H (A1), H(B1), and H(Ag @ Byp) are all
jointly indistinguishable from random. With that in mind, consider the linear combinations
for any other gate-input. For example, in the (1,0) case the evaluator will compute the output
as

1eft:H(A1)@H(A0@Bl)@“'
right = H(By) ® H(Ao® B1) ® - - -

Because H(A;) and H(Ao @ By) are pseudorandom, this makes both of these outputs jointly
pseudorandom. The entire output of the (1,0) case is pseudorandom from the perspective
of the evaluator in the (0,0) case. This is a necessary condition, since sometimes the (0,0)
and (1,0) cases give different outputs. This pattern holds with respect to any pair of two
gate-inputs.

If we interpret Equation 2 as a matrix (v'=1, empty cell=0), we see that it has rank 5. This
suggests that the garbling process can result in only 5 output values, where in this case each
of these values is k/2 bits. Two of the values are the halves of the output wire label C, leaving
3 values to comprise the garbled gate ciphertexts. In other words, we are on our way to a
garbled gate with only 3k/2 bits, if only we can get all of the relevant linear equations to
cooperate.

Observation #3: Randomize and Hide the Evaluator’s Coefficients

Let us apply our observations so far to our linear perspective of Section 3. Since wire labels are
divided into halves, we use notation like Agr to denote the right half of Ay. Note that the free-XOR
constraint applies independently to the wire label halves; i.e., A1gr = Aor & ARr and so on.

The evaluator computes each half of the output label separately, using a linear combination of
available information: oracle responses, gate ciphertexts, and the 4 (!) halves of the input labels.
If we account for all 8 of the evaluator’s linear equations, while using the oracle-query structure
suggested in Equation 2, we obtain the following system:

H(Ap)

H(A))

107?77 7 1000107727222 727 [0 0]0 07 H(By)
017277 0010102227277 ; 10 0 H(B))

10777 CL 100001777777 00 H(Ao @ Bo)

017?777 GR_ 000101722777 00 H(Ao © By)
10777 GO_ 0100017272 °2777 10 Aol
017?77 G1 001001°?272727?27?7 01 Aor
107?77 2 0100107272277 7 00 Bor,
017?77 ooo110?2°?2?2?2?27?2 [0 0[0 0] Bor
el A

AR

"Hence the title: “Three Halves Make a Whole”.
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The first row represents the evaluator’s linear equation to compute the left half C, of the output
label on input Ag, Bg, etc. Note that the truth table ¢ now consists of 2 x 2 identity blocks and
2 x 2 zero-blocks.

For everything to work correctly, we need to replace the “?” entries, so that for every choice of
t, the matrices on both sides have the same column space.

e The columns on the right-hand side (representing the H outputs) already span a space of
dimension 5, so there is no choice but to extend the left-hand side matrix to a basis of that
space.

e The “?” entries on the right are subject to other constraints, so that they reflect what an
evaluator can actually do in each input combination. For example, on input Ag, Bi, the
evaluator cannot include Byg in its linear combination, it can only include Big = Bor & ARg.
Note that the matrix is written in terms of By only.

Unfortunately, it is not possible to complete the right-hand-side matrix subject to these constraints.
For every t, there is a valid way to replace the “?” entries, but there is no one way that
works for all t.

To get around this problem, we randomize and encrypt the entries of the matrix. To the
best of our knowledge, the technique first appeared in the garbling scheme of [KKS16], and was also
used in [WmM17, Ros17]. The garbler will complete the matrices so that the system of equations
can be solved (i.e., the column spaces coincide). This causes the matrix entries to now depend on
the garbler’s secret t. Next, the garbler will encrypt these matrix entries, so that when the
evaluator has input A;, Bj, he can decrypt only those matriz entries needed for that particular input
combination — not the entire matrix. For example, the evaluator can use Ag, By to decrypt the
top two rows of the matrix — just enough to determine the coefficients of the linear combinations
computing the output label. Unlike other schemes, there is a step of indirection (decrypting this
additional ciphertext) before the evaluator determines which linear combinations to apply — the
linear combination does not depend solely on the color bits of the input labels. We call the contents
of these ciphertexts control bits, which tell the evaluator what linear combination to apply. The
control bits are of small constant size, so encrypting them adds only a constant number of bits to
the garbling scheme.

The garbler completes the missing entries in the matrix by drawing them randomly from a
distribution over matrices. The distribution depends on ¢, as we mentioned — however, it can be
arranged that each marginal view of the matrix is independent of ¢. Since the evaluator
sees only such a marginal view, not the entire matrix, the value of ¢ is hidden.

5 Detalils: Slicing & Dicing

In this section we complete the full picture of our construction. We direct the reader to a guide
to notation/symbols in Figure 9.

5.1 Choosing the Matrices

Let us begin by filling out the question marks in Equation 3. We rewrite this equation using block
matrices, and we group related parts together.

Ag
C .
V[é}:MHEB(R@[O-mOt}) Li) (4)
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Here C, Ay, By, and A are two-element (column) vectors representing the two halves of these wire
labels; G is the vector of gate ciphertexts; and H = [H(AO) H(Ay) H(By) H(B1) H(Ay @ By)
H(Ao® By)] " is the vector of H-outputs. t is the 8 x 2 truth table matrix, which contains a 2 x 2
identity matrix block for each case of the gate that should output true. We have already filled out
M — it is the portion of the right-hand side matrix in Equation 3 with no question marks, that
operates on the hash outputs H. R is called the control matrix because it determines which
pieces of input labels are added to the output.

Choosing V. Recall that the matrices on both sides of the equation must have the same column
space, and that M already spans this 5-dimensional space. Call this common column space the
gate space G. Then

G = colspace(V) = colspace(M) 2 colspace(R® [0----0 ‘ t]).

It will be more convenient to represent G using linear constraints, rather than as the span of the
columns of M. We use a matrix K as a basis for the cokernel of M, so that any vector v is in G if
and only if Kv = 0. Then V must satisfy rank(V) =5 and KV = 0.

Any K and V satisfying these constraints will suffice, and we will use the following:

1000 0]
01000

1 0[10[1 010 Ut
K=lotjotfotjorl v=folo

1[10[1 1

0010 110 01001
10100

0101 0]

Note that the columns of V' corresponding to the gate ciphertexts (the 3 rightmost columns) are
the same as the columns in M corresponding to hash outputs H(A;), H(B1), H(Ap @ By), so they
are clearly in the column space of M.

Constraints on choosing R. It remains to see how we choose the control matrix R. Using our
new notation, colspace(R &) [0 w0 ‘ t]) C G is equivalent to KR = K[O 0 ‘ t], SO we must
choose R to match Kt. Because t is composed of 2 x 2 zero or identity blocks, we can deduce:

KR=K[0----0|t] = (5)

o O O

0
0
0

o o o
o oo
Qo
Sl Bl el

for some a,b € {0,1}, where p is the parity of the truth table. In our main construction, p = 1
since it only considers garbling AND gates. However, the bits a, b reveal more than the parity of
the gate — they leak the position of the “1” in the truth table. Since R must depend on these a,b
bits, we resort to randomizing the control matrix R to hide a, b.

We also need the control matrix to reflect linear combinations that the evaluator can actually
do with the available wire labels. The linear constraints are expressed in terms of Ag, By, and A,
but when the evaluator has wire label, say, A1, he can either include it in the linear combination
(adding both Ay and A) or not (adding neither Ayp nor A) — he cannot include only one of Ap, A

12



in the linear combination. This means that R must decompose into 2 X 2 matrices in the following
way:

Rooa Roo 0
Ro1a Rois Roip

R = 6
Ripa Rio Rioa ©

Ri1a R Ri1a @ RuB

When the evaluator holds input labels A;, B;, the submatrix R;; = [Rij A RijB] is enough to
completely determine which linear combination should be applied. We call R;; the marginal
view for that input combination. We will randomize the choice of R, subject to the constraints
listed above, so that any single marginal view leaks nothing about t. That is, we want to find a
distribution R(t) such that when R < R(t), KR = K[0----0|t] with probability 1, yet for every
i,j € {0,1}, if t <~ T and R < R(t) then ¢t and R;; are independently distributed.

Basic approach to the distribution R(¢): We must choose R to match the p, a, b bits defined
above (which depend on the truth table ¢). Suppose we have a distribution Ry with the following
properties:

o If Rg +— Ry then KRg =0
e For all 4,5 € {0,1}, if Rg <~ R then (Rg);; (the marginal view) is uniform

and we also have fixed matrices R,, R,, R} such that:
00/00|10 00/00|0O0 00/0 0|00
KR,=100{00/01] KR,=1]00{00/00| KRy=|00{00(0O0], (7)
0 0[00|0O0 00[00|10 00[00|01

Define R(t) to first sample Rg < Ro and output R = pR, ® aR, ® bR, ® Rg. The result R will
always satisfy the condition of Equation 5. The randomness in Rg also causes marginal views of
R;; to be uniform and therefore hide p, a,b. See Appendix B for details of sampling Rg. Concrete
values for R,, R,, Ry are given in Figures 3 and 4, as part of a different construction.

If Ry is the uniform distribution over all matrices satisfying KR = 0, then the garbler must
encrypt the full marginal views R;; at 8 bits per view. A more thoughtful choice of distribution
will allow the garbler to convey R;; marginal views with fewer bits.

Compressing the marginal views: FEach marginal view R;; is a 2 x 4 matrix. We can “com-
press” these if we manage to restrict all R;; to some linear subspace S = span{Si, Sa,...,Sq} of
2 X 4 matrices (presumably with dimension d < 8), while still maintaining the other properties
needed.

Let Rij denote the representation of R;; with respect to the basis S — i.e., a vector of length
d. Then the garbler can encrypt only the Rij’s to convey the marginal views of R. The choice of
the subspace S depends on the class of truth tables that need to be hidden.

Parity-leaking gates: We performed an exhaustive computer search of low dimensional sub-
spaces to determine how to pick the basis S for different types of gates. For even-parity gates (e.g.
XOR or constant gates) we found a 2-dimensional subspace that works. Details of the R(t) distri-
bution are given in Figure 3. For odd-parity gates (like AND, OR) we simply use the even-parity
distribution and add a public constant R, (from Figure 4) to the result. This approach works
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00
_ 11 _
R, = 01 Ry =
10
[0 0{0 0|0 O]
00/00|0O0
011 1|11
1 1|1 010
Ra= Holo1[ro| =
01j1 1|01
11{10(01
1 0[0 1|1 1]
Figure 3:

11|10 10
51_1001} 52{01
o~
10 _
11 Rg <+ span
_01_
0 0/0 0]0 0]
00[00[00
11]10[10
Lojotfo1] o
01(11(01 § < span
11/10[11
10/01]11
011 1]1 0

01
11]
1 0] 0 1]
10 01
10 ' 01
110 0 1]
1 1]1 00 0] [1 0]0 1|0 0]
1 0(01/00| |01]11(00
1 1[1 01 o] [1 00 1]0 1
10[{0 1|0 1| [0 1]1 1|11
1 1[/10]1 1]"[1 0fl01]1 0
10/0 1|1 0] [01]11]01
1 1]1 0o 1] [1 0]0 1]1 1
10011 1] [0 1[1 1|1 0]

Control matrices for even-parity gates. The top row contains the two basis matrices for
S. The bottom row shows the full control matrices (R, is not needed for even-parity gates). The
middle row shows the “compressed” representation of the control matrices, in terms of the basis
{S1,S2} (i.e., each row expresses which linear combination of Si, Sy appears in the corresponding
blocks of the control matrix). The reader can verify that (1) each row in Rg is individually uniform;
(2) KRg = 0; and (3) Equation 7 holds.

11]10 10[01 00[10 000

Sl:[l 0|0 1] 52:[0 111] 53:[0000} 54—{010
0011 0010 000 1]

s _ Joo10 A conn 1110 1001
P 0001 § 5P 0110/ * (1101
0000 1010 010 1]

0 01 00 0T 0 0|1 0/0 07 [0 0|0 0]0 0]
01/00[00 00looloo|l [o1]loo0|oo
001010 01/0 10 1] [T1]T 0|10

p _ 000000l 11/10/1o| [11]o1]01
»= [00[00[00 $ €SPy TG 1(1T 0|’ [0 1|1 1]0 1
01/00[01 0o1/11]o1] [10][10|10
00[00]/00 1T1/00/11| [To0[01]T1
00/00/0 0] 1 0/0 1)1 1] (001 1|1 1]

o O
— =

Figure 4: Control matrices for gate-hiding garbling. The top row contains the basis matrices for S.
The basis of Figure 3 is a subset of this basis, so we can use the same R, and R} as Figure 3. The
distributions on Rg and Rg also include the matrices from Figure 3 (omitted with “...” here). The
middle row gives the control matrices in terms of the new basis, while the bottom row shows them
directly. The reader may verify that (1) each row of Rg is individually uniform; (2) K Rg = 0; and
(3) Equation 7 holds.
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when the parity of the gate is public, since the evaluator must know to add R, when decoding the
description of their marginal view R;;.

The construction for odd-parity gates is our primary construction, which would be used in most
applications of garbling (in combination with free XOR gates).

Parity-hiding gates: To make the garbling scheme gate-hiding, we also need to hide the parity
of the truth table. In other words, the distribution on Rg must be random enough to mask the
presence (or absence) of a matrix R, as in Equation 7. The R, in Figure 4 is not in the subspace
S of control matrices in Figure 3. Hence, to support parity-hiding we have had to extend that
subspace with two additional basis elements (the basis matrices Si, Sy are as in the parity-leaking
case). Our parity-hiding gates require 4 (compressed) control bits per gate-input combination,
corresponding to the 4-dimensional basis S. See Figure 4 for details.

5.2 Garbling the Control Bits

So far we have glossed over the details of how the control bits actually get encrypted and sent to
the evaluator. We know that there will be some 4 x d (d = 2 for parity-leaking gates and d = 4
for parity hiding gates) matrix R, and that the evaluator should only get to see a single row sz of
R telling them what linear combination of Si,..., Sy to use as control bits. The garbler can easily
encrypt these values so that on input A;, B; the evaluator can decrypt only Rij.

In order to reuse the calls to H that the evaluator already uses, it turns out that we can use
our new garbling construction to garble the control bits as well. At first it looks like this would just
give infinite recursion, as if we used something like Equation 4 to garble the control bits then that
garbling would need its own control bits, which would need to be garbled, and so on. In reality, the
compressed control bits actually have a structure that allows us to garble them without recursive
control bits.

Conceptually, we can treat the bits of R as wire labels and slice them as we do regular wire labels.
Collect the bits from odd and even-indexed positions of Rij into numbers 7;;;, and 7 € GF(Qd/ 3,
respectively. Define the vector

L= T

7= [Foor Toor To1L To1r T10L T10R T11L T11R)
We observed that for both our parity-leaking and parity-hiding constructions, this vector is always
in the gate subspace G — i.e., that K7 = 0. Looking at Figure 3, the reader can check that this
holds for any possible 7 (which in this case is the same as R read in row-major order). And similarly
for Figure 4; this time the test for R is equivalent to checking its two 4 x 2 blocks individually.

Since the control bits, when expressed as 7, are always in the gate subspace G, they can be
garbled without needing their own control bits. The garbler can compute a constant-size ciphertext
Z such that:

VZ® Mlsby (H) =7, (8)

where V, M ,F[ are as in Equation 4. Here we assume that every hash has been extended by an

extra d/2 bits (or more realistically given that block ciphers have a fixed size, each wire label slice

has been shrunk by d/2 bits to make room), and that these extra bit can be extracted with lIsbg.
2

The remainder of the hash vector, msb%(ﬁ ), is used for garbling the wire labels themselves. By
the same reasoning as for usual garbling, when the evaluator has input labels A;, B;, he can learn
only the 775; portions of 7.
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We can combine Equations 4 and 8 into a single system, allowing the whole gate to be garbled

at once.
o[z

where || denotes element wise concatenation, so e.g. the bits of 7oor, € GF(2%2) get concatenated
with some z € GF(2%/2) to get a value in GF(2(#79)/2). We write the bits in little endian order, so
Isba(H) || msbx (H) = H.

2

ED@ME[:F (R [0----0]t]) %2 ’ (©)

5.3 The Construction

We can now describe our garbling scheme formally. All of our different types of gates are compat-
ible, so we describe a single unified scheme. The circuit has a leak function that indicates what
information about each gate is public (which affects the cost of garbling each gate):

e EVEN: even-parity gate e XOR: free XOR gate

e ODD: odd-parity gate e NONE: no leakage (gate-hiding)

Because we need different control matrices depending on what kind of gate is being garbled, we
use the notation R(L,t), for L € {EVEN,ODD,NONE} to denote the appropriate distribution over
control matrices. For EVEN/ODD gates, the distribution is as in Figure 3 (with R, added in the
case of ODD), and for NONE the distribution is as in Figure 4.

Our garbling scheme is shown in Figures 5 and 6. The garbler associates the kth wire in the
circuit with a wire label Wy, (and its opposite label Wi & A) and a point-and-permute bit 7. Wy
is the label with color bit 1sb(W}) = 0 (visible to the evaluator). The label Wy @ 7 A is the wire
label representing false on that wire. Equivalently, W}, is the wire label representing logical value
k.

DecodeR(7, leak, i, 7):

SampleR(¢, leak):

R+ R(leak, t) [zl H H gd—l] —
for i,j € {0,1}: 2|l lea
find coeffs ¢ s.t. R;j = @k cx Sk (leak) .R” = @k cy Sk(leak)
7ip=cill -+ lcas // odd positions if leak = ODD:
?Z'j‘zL% ; 612 - cfz_l // evenppositjons Rij := Rij © (R,(ODD))y;
N return R;;

7= [FOOL TOOR TO1L T01R T10L T10R T11L ?nR]
if leak = ODD:

R:=R® R,(0ODD)
return R, 7

Decode((®, D), E):
(inputs, outputs, in, leak) := ®
y := empty list
for k € outputs:
if 3j. DI = H'(Ey, k):
append j to y
else: abort
return y

Encode((A, W, ), x):
for K =1 to inputs:
E, =W, ® (.’L‘k D TFk)A
return F

Figure 5: Our garbling scheme (continued in Figure 6).
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Garble(1%, f):
(inputs, outputs, in, leak, eval) := f
H+H
1 || GF(28/271)
s Meran |
for K =1 to inputs:
0 || GF(2%/2-1)
Wi [ GF(2+/2) ]
T <— {0, 1}
for k = inputs + 1 to |f|:
A0, Bo := Win, (k) Wina (k)
TA, TB = Tiny(k)s Tina(k)
if leak(k) = XOR:

Wy := Ao ® By
T i=TADTRB
continue
g = eval(k)
t:=[g(ra,mB) g(ma,1—mp) g(1 —7wa,7p) g(l —ma,1— FB)}T
R, 7 := SampleR(t, leak(k))
i H(Ap, 3k —3)]
Ay H(Ay @ A, 3k — 3)
o I . H(By, 3k — 2)
% [quj =V (r (R@[O....ot])[tz)}) &V-IM H(B® A 3k — 2)
H(Ao® Bo,3k — 1)
_H(AO @® By @ A,3k‘ — 1)_
T = ISb(C)
Wi :=C & A

for k € outputs, j € {0,1}:
D} = H' (Wi ® (j © 1) A k)
return F' = ((I)(f)’H’ G7 Z)? €= (Aa VV77T)7 d= ((I)(f)vD)

Eval(F = (®,H,G, 7), E):
(inputs, outputs, in, leak) := ®
for k = inputs + 1 to |®|:

A, B := Ein, (k) Eina (k)
i,7 :=1sb(A),lsb(B)
if leak(k) = XOR:

Ek =APB
else
H(A,3k—3)
0 1 1
7 X = Vi (zk | [GED ® [0 " J H(B,3k — 2)}
H(A® B,3k—1)

R;; := DecodeR(7, leak, 4, j)
A
E) = Xz'j @ Rij |:B:|

return F

Figure 6: Our garbling scheme (continued from Figure 5). V! is a left inverse of V.
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For each non-free gate, the garbler first samples a control matrix R and encodes its marginal
views (i.e., expresses each view in terms of the basis {S;};). We have factored out this sampling
procedure into a helper function SampleR, along with a corresponding decoding function DecodeR
used by the evaluator to reconstruct its marginal view of the control matrix. One thing to note
about SampleR is that in the case of a ODD gate, the control matrices include the term R,,, but R,
is not in the subspace spanned by the basis {S;};. The compressed representation of each marginal
view excludes the contribution of R,, but in these cases it is publicly known that the evaluator
should compensate by manually adding .

For each gate k, we have a master evaluation equation in the style of Equation 9. This equation
expresses constraints that must be true about that gate, but the garbler is interested in computing
garbled gate ciphertexts ék, control bit ciphertexts Zj, and output wire label that satisfy the
constraints. As previously discussed, we can solve for these values by multipying both sides by
V1, a left inverse of V. One possible choice of V! is given below:

10[00/00]00
0 1[0 0[0 0[0 0

Vv=l=1|11]/0011]00 (10)
11/11/00[00
0 0[00[10[10

The queries to hash function H include tweaks based on the gate ID, for domain separation.
Finally, for each output wire, the garbler computes hashes of the wire labels, which will be used in
Decode to authenticate labels and determine their logical value (true or false). These hashes need k
bits for authenticity, so they are computed using another hash function H'(E, k) with output length
k instead 2. Tt is simplest to set H'(E, k) = msbx (H(E, 3| f|+2k)) [|msbs (H(E, 3| f[+ 2k +1)),
which puts together x bits from two evaluations of H, while avoiding any overlaps in tweaks.

The evaluator follows a similar process. Starting with the input wire labels E, it evaluates the
garbled circuit one gate at a time. The invariant is that on wire k, the evaluator will hold the
“active” wire label Ey = Wi @ (2 @ m)A, where xy is the logical value on that wire, for the
given circuit input. If A, B are the active wire labels on the input wires of this gate, then the
evaluator computes terms of the form H(A), H(B),H(A @& B) and evaluates the gate according
to Equation 9. The evaluator only knows enough for two rows of Equation 9, depending on the
color bits i = Isb(A), j = Isb(B), so we let V;; be the corresponding pair of rows from V. It only
evaluates the gate partially at first, in order to find the encoded control bits so that it can decode
them with DecodeR and use them to finally compute the output wire label.

5.4 Security Proof

Theorem 3. Let H be a family of hash functions, with output length (k+d)/2 bits, that is RTCCR
for £ = {Lap(AL||AR) = 092 ||aAL ®VAR | a,b, € {0,1}}. Then our construction (Figures 5 and 6)
1 a secure garbling scheme.

Proof. We need to prove four properties of the construction.

Correctness: We need to prove an invariant: Ey = Wy ® (2 ®mg)A for all k, if 2, is the plaintext
value on that wire. Encode chooses the inputs in this way, so at least it’s true for £ < inputs, and
it is trivially maintained for free-XOR gates. For any v € colspace(V) = G, we have VV ~1lv = v,
as there exists some u such that v = Vu and VV~'Vu = Vu = v because V! is a left inverse of
V. In Section 5.1 we showed that colspace(M) = G, colspace(R @ [0----0 ‘ t]) € G, and 7 € G,
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so after multiplying both sides of garbler’s equation by V on the left, the VV ~!s will cancel, and
taking a two-row piece of this equation gives the evaluator’s equation. In this equation, Xj; is the
two rows of

Ag
X=Cae(Rea[0----0[t]) |Bo|, (11)
A

corresponding to the evaluation case i,j. The structure of R (see Equation 6) implies that the
evaluator’s row pair of R[A] By A']T will be R;;[AT BT]T. Therefore

A
E,=X,;OR |:B:| = C@ti]’A = Wi @ (eval(k)(ma @i, mp © j) & ) A,

which maintains this invariant because
i = 18b(Ein, (1)) = 18D (Win, k) @ (Zing (k) @ Tiny (1)) A) = Tiny (k) D Tiny (1)

and similarly for j. Finally, Decode will correctly find that Di* = H'(Wj @ (zx, ® m)A k) =
H'(E), k), assuming that D;* # D};mk, which has only negligible probability of failing. Therefore
it gives the correct result.

Privacy: We need to prove that generating (®, G, Z), E, (®, D) with Garble and Encode is indis-
tinguishable from the output of Spiv. We give a sequence of intermediate hybrids, going from the
real garbler to the simulator.

Hybrid 1: This hybrid switches from the garbler’s perspective to the evaluator’s perspective
when garbling the circuit. Instead of keeping track of the “zero” wire label Wy, for every gate, we
keep track of the “active” wire label Ej, and rewrite the garbling procedure in terms of the “active”
labels. This basically involves a change of variable names throughout the garbling algorithm. The
changes are extensive, and given in detail in Figure 7:

e Replace point-and-permute bits 7, with the equivalent expression xy @ Isb(Ey).

e Write the control matrix part of the garbling equation in terms of active wire labels A = Ei, (1)
and B = Ejn,(x) instead of Ag and By.

Ap A
replace R x | By| with equivalent R’ x | B
A A

where a change of basis has been applied to R, that expresses Ag as the appropriate linear
combination of A and A, and expresses By in terms of B and A.

e Partition H into two pieces:

Hy=[H(A) H(B) HA® B)]"
Hpa=[HA®A) HB&A) HA®B® A)]"

where again A and B are the active wire labels. Similarly partition the matrix M into M
and Ma, and replace M x H with (MoHo ® MaHA).
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Spriv(17, ®, ):
(inputs, outputs, in, leak) := &
(F7 E) A Sobliv(lﬁv CD)
E' = Eval(F, E)
for k € outputs:
D .= H'(E}, k)
D, " « GF(2")
return F, E, (®, D)

Sobliv (17, ®):
(inputs, outputs, in, leak) := &
H+H
for k =1 to inputs:
Ej, + GF(2"/2)?
for k = inputs + 1 to |®|:
if leak(k) = XOR: continue
Gr + GF(2/2)3
7 GF(Qd(Ieak(k))/2)5
return (¢, H, G, Z),E

Hybrid1(1%, f, x):

(inputs, outputs, in, leak, eval) := f
H+H
1] GF(2r/21)
A [ GF(2+/%) ]
for kK =1 to inputs:
Ej + GF(2"/2)?
for k = inputs + 1 to |f|:
A, B = Ein (1), Binyi)
i,7 :=1sb(A),lsb(B)
LA, B = TLiny(k)s Ling (k)
if leak(k) = XOR:
E,.=A®B
T =2xADTB
continue
g :=eval(k)
zp = g(za,xB)
g(xa @i, x5 D j)
g(za®i,xp®jD1)
g(zAa®iDd 1,z j)
Jra®i®lrp®jol)
R, 7 := SampleR(t, leak(k))

10000
01000 i

., loo103j0
B=8100010;
000010
00000 1]
H(A,3k—3)
Hy = H(B,3k —2)

H(A® B,3k—1)
H(A® A, 3k—3)

—

HA®B® A3k—1)
A
(Fibot || G i= Ve | 7| (R @ [0---0]]) | B
A

) Vggtle(Moﬁo S MaHA)

0 101 = A
E, =V, [ék] D |:0 1 1:| meg(Ho) @Rij |:B]

(F)rop = Vi [(Zk(;bot] ® [(1] (1) ﬂ 1Sb%(HO) o
for k € outputs, j € {0,1}:

Dj == H'(E, @ (j ® x) A k)
return (®(f), G, 2), E, (®(f), D)

Figure 7: Left: simulators for privacy and obliviousness. Right: a hybrid for privacy.
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e Note that the matrix V! has 5 rows, where the first 2 correspond to slices of the output
label and the last 3 correspond to the gate ciphertexts. Denote this division of V! by Vl‘_:blel
and Vg;tle. Instead of multiplying on the left by V! to solve for the output label and gate
ciphertexts, we now multiply on the left by Vg;tle to solve for only the gate ciphertexts. We
then evaluate those gate ciphertexts with A and B to learn the (active) output label Ej. This
different approach has the same result by the correctness of the scheme.

We can similarly partition the control bit ciphertexts zj into 2, = [(Zk)top (Zk)bot], Use Vg;tle
to compute (Zk)pot, and then use the evaluator’s computation to solve for (Zj)top. Solving for
(Zk)top is simplified by the first two columns of V;; being the identity matrix. In this case, we

solve for the missing positions using knowledge of the compressed control bits 7;;.

All of the changes are simple variable substitutions or basis changes in the linear algebra, so this
hybrid is distributed identically to the real garbling.

Hybrid 2: In this hybrid, we apply the RTCCR property of H to all oracle queries of the form
H(-® A). We must show that A is used in a way that can be achieved by calling the oracle from
the RTCCR security game.
We focus on the term
Vol MH = VL (MyHy® MaHA)

gate gate

First, consider the expression V™' x M, and recall that M is written in terms of the zero-labels
Ag, By. Using the V! given in Equation 10, we can compute:

100 0[10
00[10[10

VIM={11[00[00 (12)
00[11[00
00[00[11

Thus Vg;tle x M will consist of the bottom three rows of Equation 12.

Recall that the columns of M correspond to oracle queries H(Ag), H(Ao © A), H(By), H(Boy @
A),H(A® B),H(A® B @ A), in that order. In the current hybrid M is partitioned into My
(corresponding to H-queries on active labels) and Ma (corresponding to the other queries). In
other words, Ma will consist of exactly one of rows {1, 2}, exactly one of rows {3,4}, and exactly
one of rows {5,6} from M. In all cases, the result of Vg;tleMA (i.e., the bottom 3 rows of V"1 Mu)
is the 3 x 3 identity matrix!

This means we can rewrite the hybrid in the following way:

A
(ibor || G = Viate | 7| (R @ [0+ 0[1]) | B] | @ Viake (Moo © MaH)
A

N [linear combinations of A] & - - -

Since all the H-queries in Ha include a A term, we can compute this expression with 3 suitable
calls to the RTCCR oracle.® Finally, D,ifx’“ = H'(Er ® A, k) also uses A, and will become two
calls to the RTCCR oracle. These transformations successfully moves all references to A into the
RTCCR oracle.

8Note also that the calls to H have globally distinct tweaks.
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Applying RTCCR security, it has negligible effect to replace the results of these H-queries with
uniformly random values. This has the effect of making the entire expression uniform, i.e.:

(Zk)bot

| Gy GR(2l+ /2y
Also, Dika is now sampled uniformly at random in GF(2%).

Hybrid 3: After making the previous change, the only place that R is used is when we use the
marginal views R;; and 77; to solve for the output label and for the missing pieces of the control bit
ciphertexts. In Section 5.1 we specifically chose R so that this marginal views is uniform for all ¢
and all 4, j. Therefore instead of doing R, i <— SampleR(t, leak(k)), we can simply choose uniform 7j;
and use DecodeR to reconstruct R;;. The change has no effect on the overall view of the adversary.

Note that after making this change, the control-bit ciphertexts (Zj)top become uniform since 77;
acts as a one-time pad.

Hybrid 4: As a result of the previous change, the hybrid no longer uses t. Additionally, ¢ was
the only place where the plaintext values x; were used, other than in the computation of D. But
D only uses plaintext values for the circuit’s output wires. In other words, the entire hybrid
can be computed knowing only the circuit output f(z). Additionally, all garbled gate ciphertexts
and control bit ciphertexts are chosen uniformly, and the active wire labels on output wires are
determined by the scheme’s evaluation procedure. Hence, the hybrid exactly matches what happens
in Spriv-

Obliviousness: Notice that Sy calls Sopliv to generate (F, E'), then samples some more random
bits for decoding and returns it all. Therefore, any adversary for obliviousness could be turned into
one for privacy by only looking at (F, E) and ignoring the rest.

Authenticity: The first two steps of the authenticity distribution are exactly the same as the
real privacy distribution, so we can swap them for the simulated distribution Spy in a hybrid.
Then to break authenticity the adversary must cause Decode to choose j = 1 — x; for at least
one output k, as otherwise it will either produce the correct answer or abort. But D,ifx’“ is fresh

uniform randomness, so the probability that D,i_x’“ = H'(Ey, k) is 27", O

5.5 Discussion

Concrete costs. The garbler makes 6 calls to H per non-free gate, while the evaluator makes 3
calls to H per non-free gate.

Each non-free garbled gate consists of gate ciphertexts G and encrypted control bits z. There
are 3 gate ciphertexts, each being /2 bits long. The encrypted control bits are a vector of length
5, where each component of the vector has length d/2 (where d is the dimension of the control
matrix subspace). For the standard (parity-leaking) instantiation of our scheme, d = 2 and we get
that the total size of a garbled gate is 1.5k + 5 bits. For the gate-hiding instantiation, d = 4 and
we get a size of 1.5k + 10 bits.

Comparison to half-gates. We assume that calls to H are the computational bottleneck, in
any implementation of both our scheme and in half-gates [ZRE15]. The following analysis therefore
ignores the cost of xor’ing wire labels and bit-fiddling related to color bits and control bits.
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In the time it takes to call H 12 times, half-gates generates 3 gates and sends 6 bits (4 calls
to H and 2k bits per gate), while our scheme generates 2 gates and sends 3k bits (6 calls to H
and 1.5k bits per gate). Thus, a CPU-bound implementation of our scheme will produce garbled
output at half the rate of half-gates. We evaluated the optimized half-gates garbling algorithm from
the ABY3 library [MR18], and found it capable of generating garbled output at a rate of ~850
Mbyte/s on single core of a i7-7500U laptop processor running at 3.5GHz. Thus, we conservatively
estimate that a comparable implementation of our scheme could generate garbled output at ~400
Mbyte/s = 3.2 Gbit/s. This rate would still leave our scheme network-bound in most situations
and applications of garbled circuits. When both half-gates and our scheme are network bound, our
scheme is expected to be ~25% faster by virtue of reducing communication by 25%.

6 Optimizations

6.1 Optimizing Control Bit Encryptions

In our scheme the control bit encryptions Z is a vector of length 5, where the components in that
vector are each a single bit (in the case of parity-leaking gates) or 2 bits (in the case of parity-hiding
gates). These ciphertexts therefore contribute 5 or 10 bits to the size of each garbled gate.

We remark that it is possible to use ideas of garbled row reduction [NPS99, PSSW09] to reduce
Z to a length-3 vector. This will result in these ciphertexts contributing 3 or 6 bits to the garbled
gate. Such an optimization may be convenient in parity-hiding case, where the change from 10 to
6 bits allows these control bit ciphertexts to fit in a single byte.

Recall that in the security proof, we partition the control bit ciphertexts Z' into (2)iop (2 com-
ponents) and (2)pot (3 components). Our idea to reduce their size is to simply fix (2)op to zeroes,
so that these components do not need to be explicitly included in the garbled gate. The evaluator
can act exactly as before, taking the missing values from 2z’ to be zeroes. The garbler must sample
the control matrix subject to it causing (2)top = 0.

A drawback to this optimization is that it significantly complicates the security proof (and
hence why we only sketch it here). When we apply the security of RTCCR in the security proof,
the hybrid acts as follows:

1. It uses the d/2 least significant bits of the H-outputs to determine how the control bits are
going to be “masked”.

2. Based on these masks, it chooses a consistent control matrix R that causes the first two
components of Z to be 0.

3. The choice of R determines which linear combinations of wire label slices (including slices of
A) are applied.

So the reduction to RTCCR security must first read the low bits of several H(- & A) queries before
it decides which linear combination of A should be XOR’ed with the remaining output of H. Of
course the RTCCR, oracle requires the choice of linear combination to be provided when H is
called. It is indeed possible to formally account for this, but only by modeling the two parts of H’s
output (for masking wire label slices and for masking control bits) as separate hash functions for
the purposes of the security proof.
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circuit baseline | optimized | improvement || half-gates [ZRE15]
64-bit adder 6.00 6.00 0% 4.00
64-bit division 6.00 5.75 4.1% 4.00
64-bit multiplication 6.00 4.99 16.8% 4.00
AES-128 6.00 4.31 28.2% 4.00
SHA-256 6.00 5.77 3.8% 4.00
Keccak f 6.00 4.00 33.3% 4.00

Figure 8: Number of calls to k-bit H' RTCCR function (per AND gate) to garble each circuit, with
and without the optimization of Section 6.2. Evaluating the garbled circuit costs exactly half this
number of calls to H'.

6.2 Optimizing Computation

Our construction requires a RTCCR function H with output length (k + d)/2. We propose an

efficient instantiation of H which naturally results in x-bit output, which is then truncated to

(k4 d)/2. The hash produces nearly twice as many bits as needed, raising the question of whether

we are “wasting” these extra bits. In fact, if we reduce the security parameter slightly so that H

is derived from a (k + d)-bit primitive, we can use these extra bits to reduce the computation cost.
Suppose H' is a [RT]CCR with (x + d) bits of output. Then define

first half of H'(X, T) T even

H(X,1)= 3
{second half of H'(X,552) 7 odd

Clearly H is also a [RT]CCR with (x + d)/2 bits of output. How can we use this H to reduce the

total number of calls to the underlying H'?

When a wire with labels (A, A @ A) is used as input to an AND gate, our scheme makes calls
of the form H(A,j), H(A® A,j) where j is the ID of that AND gate. Let us slightly change how
the tweaks are used. Suppose this wire with label (A, A @ A) is used as input in n different AND
gates. Then those gates should make calls of the form H(A,0| ), H(A,1]%),...,H(A,n—1] 1),
where i is now the index of the wire whose labels are (A, A® A). When H is defined as above, these
queries can be computed with only [n/2] queries to H'.

Note that both the garbler and evaluator can take advantage of this optimization, with the
garbler always requiring exactly twice as many calls to H' (if in some scenario the evaluator needs
H'(X) then the garbler will need H'(X) and H'(X @ A)). Our AND gates require calls to H of the
form H(A),H(B),H(A® B), and so far we have discussed optimizing only the H(A) and H(B)
queries. Similar logic can be applied to the queries of the form H(A @ B); for example, if a circuit
contains gates a A b and (a @ b) A ¢, then both of those AND gates will require H(A @ B) terms
that can be optimized in this way.

We explored the effect of this optimization for a selection of circuits.” The results are shown
in Figure 8. The improvement ranges from 0% to 33.3%. As a reference, our baseline construction
requires 6 calls to ((k+ d)/2-bit output) H to garble an AND gate, while half-gates requires 4 calls
(to a k-bit function). Interestingly, in the Keccak f-function every wire used as input to an even
number of AND gates, so that our optimized scheme has the same computation cost as half-gates
(4 calls to H' per AND gate). In principle, this optimization can result in as few as 3 calls to H’
per AND gate,'? but typical circuits do not appear to be nearly so favorable.

9

9Circuits were obtained from https://homes.esat.kuleuven.be/~nsmart/MPC/

10This can happen, e.g., when for every a A b gate there is a corresponding a V b =@ A b gate.
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7 The Linear Garbling Lower Bound

In [ZRE15], the authors present a lower bound for garbled AND gates in a model that they call
linear garbling. The linear garbling model considers schemes with the following properties:

e Wire labels have an associated color bit which must be {0, 1}.

e To evaluate the garbled gate, the evaluator makes a sequence of calls to a random oracle (that
depend only on the input wire labels), and then outputs some linear combination of input
labels, gate ciphertexts, and random oracle outputs. The linear combination must depend
only on the color bits of the input labels.

The bound of [ZRE15] considers only linear combinations over the field GF(27), and it is unclear
to what extent the results generalize to other fields.

Several works have bypassed this lower bound, and we summarize them below. All of these
works show how to garble an AND gate for x4+ O(1) bits, but only a single AND gate in isolation.
These constructions all require the input wire labels to satisfy a certain structure, but do not
guarantee that the output labels also satisfy that structure.

e Kempka, Kikuchi, and Suzuki [KKS16] and Wang & Malluhi [WmM17] both use a technique of
randomizing the control bits. The evaluator decrypts a constant-size ciphertext to determine
which linear combination to apply. This approach is outside of the linear garbling model,
which requires that the linear combination depend only on the color bits. These works also
add wire labels in Zg~ rather than XOR them (as in GF(2")). Apart from these similiarities,
the two approaches are quite different.

e Ball, Malkin, and Rosulek [BMR16] deviate from the linear garbling model by letting each
wire label have a color “trit” from Zs instead of a color bit from Zy. There is no further
“indirection” of the evaluator’s linear combination — it depends only on the colors of the
input labels. They also perform some linear combinations on wire labels over a field of
characteristic 3.

As described earlier, we bypass the lower bound by adopting the control-bit randomization
technique of [KKS16] but also introducing the wire-label-slicing technique.

8 Open Problems

We conclude by listing several open problems suggested by our work.

Optimality. Is 1.5« bits optimal for garbled AND gates in a more inclusive model than the one
in [ZRE15]? A natural model that excludes “heavy machinery” like fully homomorphic encryption
is Minicrypt, in which all parties are computationally unbounded but have bounded access to a
random oracle. Conversely, can one do better — say, 4x/3 bits per AND gate? Does it help to
sacrifice compatibility with free-XOR? In our construction, free-XOR, seems crucial.

Computation Cost. In Section 6.2 we described how to reduce the number of queries to an
underlying k-bit primitive, with an optimization that depends on topology of the circuit. Is there
a way to reduce the computation cost of our scheme (measured in number of calls to, say, a k-bit
ideal permutation), for all circuits?
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In the best case, we can garble a circuit for only 3 (amortized) calls per AND gate, whereas all
prior schemes require 4. Setting aside garbled circuit size and free-XOR compatibility, is there any
scheme that can garble arbitrary circuits for less than 4 (amortized) calls to a x-bit primitive per
AND gate?

Hardness Assumption. Free-XOR garbling requires some kind of circular correlation-robust
assumption (see [CKKZ12] for a formal statement). The state-of-the-art garbling scheme based on
the minimal assumption of PRF is due to Gueron et al. [GLNP15], where AND gates cost 2k and
XOR gates cost k bits. Can our new techniques be used to improve on garbling from the PRF
assumption, or alternatively can the optimality of [GLNP15] be proven? Again, our construction
seems to rely heavily on the free-XOR structure of wire labels, which (apparently) makes circular
correlation robustness necessary.

Privacy-Free Garbling. Frederiksen et al. [FNOI15] introduced privacy-free garbled circuits,
in which only the authenticity property is required of the garbling scheme. The state-of-the-art
privacy-free scheme is due to [ZRE15], where XOR gates are free and AND gates cost k bits. Can
our new techniques lead to a privacy-free garbling scheme with less than « bits per AND gate (with
or without free-XOR)?

Simpler Description. Is there a way to describe our construction as the clean composition of
simpler components, similar to how the half-gates construction is described in terms of simpler
“half gate” objects? The challenge in our scheme is the way in which left-slices and right-slices of
the wire labels are used together.
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free-XOR. wire label offset (sometimes a vector of slices [Ar, Ag]T)

security parameter (e.g., 128)

point-permute bit of wire k: wire label W}, represents plaintext value my,

circuit leakage function

input wire labels with color bit 0

“active” wire labels (sometimes a vector of slices [A, Ar]T)

an output wire label (sometimes a vector of slices [C,Cr]")

dimension of basis S for control bit marginal views R;;

active wire label on wire k

“gate space” = column space of all matrices in (Equation 4)

vector of gate ciphertexts (G, for the kth gate)

RTCCR hash function, family

vector of responses from H: [H(A), H(A® A),...] (Equation 4)

partition of H corresponding to active/inactive queries to H, respectively (in the security proof)
basis matrix for cokernel of gate space G; i.e., every v € G satisfies Kv =0

set of linear functions for an RTCCR hash

matrix corresponding to linear combinations of H-responses (Equation 4)

partition of M corresponding to active/inactive queries to H, respectively (in the security proof)
control bit matrix (Equation 4), specifying how input label slices are used in linear combinations

distribution over control matrices R corresponding to gate truth table ¢; sometimes takes gate
leakage as additional argument

control bit matrix R after applying a basis change in the security proof

control matrix that is always included for odd-parity gates

; marginal view of control matrix R, for one gate-input combination

compressed representation of control matrix R, or of marginal view R;;, expressed in basis S,
vector encoding of control matrix R, for garbling the control bits
basis for control bit marginal views R;; (basis elements .S;); sometimes has a leakage argument

truth table of the gate: an 8 x 2 matrix composed of 2 x 2 identity blocks and 2 x 2 zero blocks

; the 2 x 2 block of ¢ corresponding to a single gate input combination (in correctness proof)

matrix on LHS of the main garbling equation (Equation 4), corresponding to output label and
gate ciphertexts

pair of rows from V used by the evaluator when Isb(A) = ¢ and Isb(B) = j
a left-inverse of V'

partition of V=1 corresponding to gate ciphertexts and output label slices, respectively (in the
security proof)

wire label on wire k& with color bit 0
gate output wire labels (resp. wire label) before applying control matrix (Equation 11, Figure 6)
plaintext value on wire k (in security proof)

garbling/encryption of control bit matrix R / its encoding 7 (Z for the kth gate)

Figure 9: Guide to notation.
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A Randomized Tweakable Circular Correlation Robust Functions

A.1 Circular Correlation Robustness

We build to our final construction in two steps, the first of which is to construct a simpler circular
correlation robust hash in the ideal permutation model.

Below we give the definition of circular correlation robustness from [GKWY20], but generalized
to support non-matching input/output lengths and a family of linear functions £. The original
definition corresponds to the case n = m and L containing the identity function and the all-zeroes
function.

Definition 4. Let H : {0,1}" — {0,1}", and let L be a set of linear functions from {0,1}" —
{0,1}™. Then H is circular correlation robust for L if for all PPT A,

Pr [A%:2() = 1] — Pr [A%() = 1]

is negligible, where OF's is defined as:

OH’A(X € {O, 1}”,L S ﬁ):
return H(X & A) @ L(A)

We show how to construct such a function for n = m in the ideal permutation model. Our
constructions require m < n, and such a function can be obtained by simply truncating one with
n=m.

Lemma 5. Fix a set of linear transformations L, and let o be any function such that:
e sigma is linear, so that c(X ®Y) =o(X)®o(Y)
o X — L(X)®o(X) is invertible for all L € L.

If m is an ideal permutation (all parties have oracle access to a random permutation m and its
inverse 1), then

is circular correlation robust for L.

This construction is the natural generalization of the one from [GKWY20], who consider £ to
contain only the zero-function and the identity function. In that case, our restrictions on o amount
to requiring that o is an orthomorphism.

Proof. Consider the following game, in the style of Bellare & Rogaway [BRO6]:
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A+ {0,1}"

m(A):
if 3B : (A, B) € II*:
bad1 =1
return B
B <+ {0,1}™\ right(II)
while 34" : (A’, B) € I1*:
bad3 =1
B+ {0,1}™ \ right(II)
add (A4, B) to II

return B

B+ {0,1}" \ right(IT U IT*)

7 Y(B):
if 3A: (A, B) € IT*:
bad2 =1
return A
A« {0,137\ left(IT)
while 3B’ : (A, B) € TI*:
bad4 =1
A+ {0,1}™\ left(I1)
add (A, B) to 11
return A

A {0,137\ left(IL U IT¥)

O(X,L):
if 3B: (X®A,B) eIl:
bad1 =1
return B® o(X & A) & L(A)
Z + {0,1}"
B=Zdo(X®A)® L(A)
while 3A : (A, B) e TUII*: B+ {0,1}™\ right(IT U IT*)
bads = 1 Z=B&®o(X®A)® L(A)
Z +{0,1}"
B=Z@o(X®A)DL(A)
add (X @ A, B) to IT*
return Z

The adversary gets oracle access to these 3 oracles and finally outputs a bit. Without loss of
generality, assume that the adversary does not repeat identical queries, does not query 7= on a
previous output of 77!, and does not query 7! on a previous output of m — in all of these cases,
the answer to the query is already known. We make the following observations:

e Without the highlighted lines, the game matches the “ideal” CCR experiment.
The 7% oracles instantiate an ideal permutation on the fly, in the usual way, keeping track of

31



the input/output pairs in the set II. left(II) and right(II) denote the left/right element of all
tuples in II, respectively. O is instantiated as an independent random function.

e With the highlighted lines, the game matches the “real” CCR experiment. A query
of the form O(X, L) = Z corresponds precisely to an internal query of the form 7(X & A) =
Z®o(X ®A)® L(A). This game maintains a set IT* of input/output pairs for 7+ that are
defined as a result of a query to O. The added if-statements ensure consistency when the same
7 input/output pair is used in both a query to 7% and to ©. The added while-statements
ensure that 7 always remains a permutation. Note that the added while-statements, along
with the preceding lines, can be simplified as we show to the right.

e The two games are identical-until-bad. With or without the highlighted lines, the games
execute identical statements until one of the bad; flags is set to 1.

From [BRO6], we have that the distinguishing advantage of the adversary is bounded by Prlany bad; is set to 1].
This probability can be calculated with respect to the ideal game (highlighted code is not executed,

except to set the bad; flags). Since the bad; flags do not affect the execution in the ideal game, it is

most convenient to consider that the adversary makes all queries, and only when the game is over

do we inspect the execution and determine whether the bad; flags are set. It suffices to show that

each bad; flag is set to 1 with only negligible probability.

e bad; is set to 1 (in either of two places) only if the adversary manages to directly query m(A)
and also O(X, L) where X = A ® A — the two queries can happen in either order. Note
that in the ideal game variant, A is independent of the adversary’s view. It is equivalent to
choose A at the end of the execution, after all queries have been made, and when we are
checking whether any bad; flag was set. For a two specific queries (one to 7 and one to O),
the probability that they satisfy X = A® A is 1/2". Hence if the adversary makes a total of
q oracle queries, bad; is set with probability at most ¢?/2" by a simple union bound.

e bady is set to 1 only if the adversary manages to query O(X, L) = Z and later query 7~ !(B)
where Z = B® o(X ® A) @ L(A). As above, imagine A being chosen after all queries have
been made. For a specific pair of queries (one to 7—! and one to ©), the probability that

Z=B®o(X®A)DL(A)
=Boo(X)o (a(A) ® L(A))
is 1/2™ since o @ L is a bijection. Hence if the adversary makes a total of ¢ oracle queries,
bads is set with probability at most ¢2/2" by a simple union bound.

e bads is set to 1 only if B is chosen from right(IT*). At any given time the size of right(IT*) is
bounded by ¢, the total number of queries made by the adversary. Hence the total probability
that bads gets set is bounded by ¢%/2".

e bad, is similar to bads: it is set to 1 only if A is chosen from left(IT*).

e bads is set to 1 only if B € right(ITUII*). Note that when Z is uniform, so is B. So as above,
on each call to O the probability that bads is set is at most ¢/2", and the overall probability
of bads being set is at most ¢?/2".

Since each bad; flag is set to 1 with negligible probability, the two games are indistinguishable, and
the construction satisfies the CCR security definition. O
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Instantiations. Our main construction truncates a CCR from & to /2 bits. Let the input X
to the CCR be & bits and split it into two halves as X = X || Xg. Our construction uses linear
functions Lay(AL||AR) = (aAr @ bAR)||0%/2, for a,b € {0,1}.

Our optimization in Section 6.2 uses a single k-bit CCR to derive two calls to a x/2-bit CCR,
each with possibly different linear transformations. This corresponds to a x-bit CCR with linear
functions Laped(AL||ARr) = (aAL & bAR)||(cAL & dAR), for a,b,c,d € {0,1}.

Our construction requires an XOR-homomorphic function o such that o(X)® L(X) is invertible
for any L in this class. The simplest examples of such a o is as follows: split the input X into
two halves X | Xg, then define o(Xp||Xr) = (aXr)|[(aXRr), where a is any fixed element in
GF(2%/2) \ GF(2?), and the multiplication is in GF(2%/2). Then we get

o(A) ® Lapea(D) = [a GCB ’ a ; d] [iﬂ

Since a,b,c,d € {0,1}, the determinant of this matrix is a degree-2 polynomial in a with binary
coefficients. And since «a is chosen not to be in GF(22), it is not the root of any such degree-2
polynomial. Hence the determinant of the matrix is nonzero, and o(A) @ Lgpeq(A) is invertible.

A.2 Randomized Tweakable CCR

Lemma 6. Define Hy ; as:
H,;k’U(X, T)=F (X U(T))

and denote the family of all such function as H* = {Hpy | k € {0,1}*,U e U}. If F is a secure
PRF, and for every (fized) k, Fy is CCR for L, and {(X,7) — X @ U(7) | U € U} is a universal
hash family, then H* is a secure RTCCR hash family for L.

Proof. Consider an adversary (A1, Az2) in the “real” RTCCR experiment. Its first phase A; makes
queries to H* € H* and to O?ﬁf’A before learning the parameters k and U.

Claim: it is with only negligible probability that A; makes distinct queries (X, 7), (X', 7’) to
its oracles such that X @ U(1) = X' @ U(7).

Proof of claim: Consider the following reduction algorithm M which has oracle access to the
construction H} ;;, with k& and U uniform. It internally runs 4; and chooses a random A. When
A1 queries its H* oracle, M relays that query directly to its oracle. When A; queries its O oracle
on (X,7,L), M queries its H* oracle and returns H}; ;,(A ® X, 1) ® L(A).

Clearly M perfectly simulates the view of A;. Since Fj, is a PRF and (X,7)—» XaU(r)is a
universal hash function, the construction Hy ;;(X,7) = Fy(X & U(7)) is exactly a Carter-Wegman
MAC/PRF [BHK"99]. The usual security proof of Carter-Wegman establishes that it is only with
negligible probability that an adversary with oracle access to the MAC causes an internal collision
in the universal hash.

Now consider the following reduction algorithm M’ which has an oracle for just Fj and the
(plain) CCR oracle OF' 5. It internally runs A; and chooses a random U < U. When A; queries
its H* oracle at (X,7), M’ queries its F}, oracle at X & U(7). When A; queries its O™ oracle
at (X,7,L), M' queries its O%' 5 oracle at (X & U(7), L). Furthermore, M" aborts if two distinct
queries ever result in the same X @ U(7). After A; finishes, M’ runs Ay and gives it k£ and U.
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Note that

OF AX@U(r),L) =Fr(Ad X @ U(r)) ® L(A)
= Hi (X © A7) @ L(A)
— O (X7 L)

and so, conditioned on M’ not aborting, it perfectly simulates the view of (A;,.43). By the argument
above, M’ aborts with only negligible probability. Note that M’ is a valid adversary in the (plain)
CCR experiment as it never repeats an argument X @ U(7) to its OF; A oracle. It is important
that the CCR experiment allows F}, to be public, so that M’ can give k to As.

By the fact that Fj is CCR (for fixed k), this interaction is indistinguishable from one in which
O}}Cki A is replaced with a random function. Making such a replacement causes A;’s O™ oracle to
be replaced by a random function. The fact that this view for (Aj;,.A2) is indistinguishable shows
that H* is RTCCR. O

Instantiation A simple choice of U is multiplication (in GF(2%)) by a random field element.
Consider the map (X,7) = X ® U(7) = X @ u -7 where u + GF(2"). For fixed (X, 1) # (X', 1),
we have the following cases:

o If 7=17"then X # X'so X ®ur # X' ®ur'.
o If 7 # 7/ then Pr[X ®ur = X' ®ur’| =Pr[(X o X')(r®7)~! = u] = 1/27 since u is uniform.

In either case, the probability of (X, 7) and (X’,7") being a collision is negligible, so the map is a
universal hash.

In the reasonable event that all tweaks are at most /2 bits, we can interpret 7 as an element
of GF(2%/?) and define U(7) = (ur7)||(ug7) where ur,ur are independently uniform in GF(2"/2).
For k = 128, this way of defining U involves more efficient 64-bit operations.
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We used computerized linear algebra to generate a basis for the 14-dimensional linear space of

matrices Rg such that K Rg = 0.

coloclocloa oolooloocloa oolo ~]o oo —~
coloclooclooe ocoloocloocloec ocolooc|loo|loo
—~oloo|l= ~lo—= o —looclo -l o olo ~|lo oo —~
coloclocloo ocoloocloocloec ocolooc|loo|lo o
colo~loclo= ocoloclocloc o olo oo oo o
colooclooloo, ocolocolocloo, oolooloolo o,
coloolooloo ocolooloocloo oolo oo oo o
coloclocloo ocoloocloc|loc ocolo ~|lo o|lo —~
coloclocloo occocloclocloe oolo oo oo o
—~ocloo|lw o~ o —looclo oo ocolo ~|lo oo —~
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coloHloolo~ ocoloolocloo, oolooloolo o,
S olmolo w4~ S olmolo~~—~ Solholo—~m—~ ooloolHol-o
colocloocloo ocolocloclooc ocolooloolocoo ocooloo|looloo
colro|l+ o~ ocolHolodlr—~ oco|lmoln oo~ ocoloolooloo
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—olo ol o —~looclo~lococ ool oo ocoloo|-ol-o
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o olo oo oo ocolo oo oo ooloolooloo oolooloolo o
col~oclorlH— ocolHoloAlr~ oco|lmolo-l-—~ ocoloo|l~wol~o
colocloclooe ocolocloclcoo ocoloolooclcoo o olo oo oo o
O OH O =[O — O OoOH OO H |+ - OO O = | O oo oI oOo|I0 O
coloc|locloo ocoloc|locloo ocolooloocloco o olo oo oo o
—~oclo~lo-lHo o -looclo~loo ool —lo-HlHo ocoloo|lwol-o

Rg < span

As you can see, projecting this basis unto a single evaluation case’s control matrix Rg;; will always

give a uniformly random result, so this technique is sufficient to hide the entire control matrix when
using control indirection. This is easiest to see with the case i = j = 0 (the top two rows of each

matrix) because of the particular basis we chose, which is in echelon form when the matrices are

written as vectors in row-major order.
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