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Abstract. A garbling scheme is a fundamental cryptographic building
block with a long list of applications. The study of different techniques
for garbling a function, towards optimizing computation and communi-
cation complexity, has been an area of active research. Most common
garbling techniques work by representing each gate in the circuit as a set
of ciphertexts that encrypt its truth table row-by-row.
In this work we present a new garbling scheme in the random oracle (RO)
model that garbles circuits in the gate-by-gate paradigm by capturing
the gate functionality (AND,XOR) as a whole rather than as a set of
ciphertexts. The final gate garbling requires 4κ bits of communication
in expectation, 4 RO calls for garbling and 1 RO call for evaluation. We
prove that the scheme satisfies privacy in the non-programmable random
oracle model and against PPT adversaries. We also show how this scheme
can be extended to support free-XOR and garble any gate functionality
over binary inputs.
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1 Introduction

The theory and practice of garbling circuits has been the focus of a long line
of research, starting from the seminal work of [Yao86], and further optimized in
the works of [LP09,PSSW09,BHR12,ZRE15,HK20,RR21], to name a few. Gar-
bled circuits (GCs) are a fundamental building block that represents a func-
tion and a secret input in such a way that evaluating the garbled circuit on
the input representation reveals nothing beyond the function output. GCs have
a long list of applications like constant round secure two-party computation



(2PC) [LP09], constant round multiparty computation [BMR90,BLO16], zero-
knowledge proofs [FNO15,GKPS18], bootstrapping obfuscators [App13], func-
tional encryption [GKP+13], and verifiable computation [GGP10].

Owing to its wide range of applications, Bellare et al. presented an abstrac-
tion for garbling in [BHR12], viewing it as a fundamental building-block for use
in cryptographic protocols. This abstraction is termed as a garbling scheme and
is a framework defining four algorithms. A garbling algorithm takes a function
representation, i.e. a circuit, and uses it to create a garbled circuit (GC). Depend-
ing on the scheme, the GC may have certain function hiding properties: given
a GC, the actual functionality garbled remains hidden. The garbling algorithm
also creates an input encoding function. Next, an input encoding algorithm takes
any valid input to the circuit garbled and uses the input encoding function to
give ‘input labels’ that correspond to the GC. The input labels typically have the
property that, when looked at in isolation, they do not reveal the input repre-
sented. An evaluation algorithm takes a GC and a set of input labels for a certain
input, and derives a representation of the function output. Finally, an output
decoding algorithm derives the function output from its representation output
by the evaluation algorithm. It is required that nothing beyond the function
output is revealed. [BHR12] also gives various definitions of desirable properties
for garbling schemes like correctness, privacy, authenticity and obliviousness.

A scheme for garbling circuits was first proposed in [Yao86] and its security
was formalized in [LP09]. The formalism of [BHR12] captures this construc-
tion and many subsequent works in garbling published after [BHR12] have fol-
lowed the same line of thought as [LP09], also describing themselves in terms
of [BHR12]. [LP09] garbles a circuit in a gate-by-gate manner where each gate is
garbled by encoding its truth table row-by-row, creating a set of ciphertexts. Sub-
sequent optimizations reduce the size of garbled gates by either reducing cipher-
text sizes, allowing certain ciphertexts to not require communication [PSSW09],
or re-writing the gate functionality so that its truth table has fewer rows [ZRE15].

1.1 Our Contributions

We propose a novel scheme for garbling circuits in the gate-by-gate paradigm
that captures the gate’s truth table as a whole in one encoding, rather than as a
set of encrypted rows. We operate in the non-programmable random oracle (RO)
model wherein both the garbler and the evaluator are given access to a common
random oracle. Our garbling approach requires 4 RO queries to garble any binary
gate functionality and 1 RO query for evaluation. For a computational security
parameter κ, letting the length of each input label be κ, the expected length of
each garbled gate is 4κ bits. We also describe how this scheme can be modified
to support free-XOR at the cost of increasing the size of other garbled gates.

Although this scheme does not improve upon the current state-of-the-art
in garbling size, it produces a garbling with size that is comparable. It also
has certain advantages over schemes that produce garblings. For instance, the
garbling scheme in [ZRE15] produces gate garblings of size 2κ while providing
free-XOR compatibility. However, evaluating their GC requires 2 calls to the
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underlying cryptographic primitive for a gate, while our scheme requires only 1
RO call. The garbling scheme in [PSSW09] also produces gate garblings of size
2κ while making 4 calls to the underlying cryptographic primitive for garbling
and 1 call for evaluation. However, it does not support free-XOR and nor can it
be extended to support it like our scheme allows. We also have an advantage in
computation complexity over [RR21] that produces a gate garbling of size 1.5κ
at the cost of up to 6 primitive calls for garbling and 3 for evaluation. Further
novelty of our scheme lies in the new approach employed for garbling that opens
up a variety of avenues for future work.

Our scheme satisfies correctness and privacy [BHR12] against a PPT adver-
sary with access to t(κ) queries to the random oracle for any polynomial t(·).
Informally, the privacy-by-indistinguishability property requires that for two cir-
cuits C0 and C1 that have the same topology, and for two inputs x0 and x1 such
that C0(x0) = C1(x1), a garbling of C0 along with input labels corresponding
to x0 should be indistinguishable from a garbling of C1 and input labels for x1.

[BHR12] also contains a result stating that if the leakage function for a gar-
bling scheme is invertible, the definitions of privacy-by-indistinguishability and
privacy-by-simulation are equivalent. For our garbling scheme, the leakage func-
tion – information about the function revealed by the garbling – is the topology
of the circuit garbled. This is indeed an invertible leakage – given a circuit topol-
ogy, one can construct a circuit that has that topology. Therefore, it holds that
our garbling scheme also satisfies privacy-by-simulation.

1.2 Related Work

Secure garbling of circuits and corresponding ways of succinctly representing the
garbling has been the aim of a long line of research [BMR90,NPS99,KS08,LP09].
The most common paradigm for garbling a circuit operates at the gate level (also
known as the ‘gate-by-gate paradigm’) where for each gate in the circuit, each
line in the truth table of the gate functionality is encrypted separately. The
underlying primitive for encryption is a symmetric-key algorithm (e.g., a pseu-
dorandom function (PRF), a circular-correlation robust hash function (CCR),
a CPA-secure dual-key cipher (DKC)) which yields extremely fast algorithms.
This paradigm led to a long sequence of successful optimizations in computa-
tion and communication, that established garbled circuits as a practical tool for
achieving 2PC [PSSW09,KMR14,ZRE15].

Minimizing the size of garbled circuit representation so as to reduce the com-
munication complexity is a widely studied research area. To this effect, [KS08]
proposes a garbling technique that allows for ‘free-XOR’ – an XOR gate need
not be represented in the garbling at all. Following [LP09], [PSSW09] proposes
schemes that garble each gate in a circuit by garbling its truth-table row wise,
but in a way that certain garbled rows need not be communicated. For a compu-
tational security parameter κ, one such scheme (GRR3) produces a gate garbling
of size of 3κ, while still remaining compatible with free-XOR. Another scheme
(GRR2) garbles each gate with 2κ-bits, at the cost of forfeiting free-XOR com-
patibility. Both of these are improvements over the 4κ-bits required in [LP09].
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Another work, [ZRE15] takes this further by proposing a garbling technique
that garbles each gate using 2κ-bits, while remaining compatible with free-XOR.
[KKS16] shows a scheme in which 2κ bits can be used to garble internal gates
of a circuit, while gates with circuit input wires as input can be garbled using
κ bits. For certain classes of circuits, formulas in particular, their construction
requires between κ and 1.5κ bits per garbled gates on average.

Table 1. Comparison of our scheme with related work. We compare the garbling size
and the number of primitive calls for garbling and evaluation for an AND gate. κ is
the computational security parameter.

Garbling Scheme Gate Garbling Size Number of RO Calls

Garbling Evaluation

[ZRE15](Free-XOR) 2κ 4 2

[RR21](Free-XOR) 1.5κ+ 8 6 3

Our Work 4κ 4 1

Our Work (Free-XOR) 8κ 4 1

The state-of-the-art in garbled gate size optimization today is [RR21] where
the size of each garbled gate is 1.5κ bits. Pursuing a different line of garbling
size optimization, [HK20] proposes a scheme that reduces the size of the circuit
as a whole to the size of the longest branch of computation.

An extended line of works the generalizes garbling is the study of randomized
encodings [IK00,Ish13,App17]. Given a function f and an input x, a randomized

encoding is a representation f̂(x, r) generated using randomness r such that no
information beyond f(x) can be derived from it. A garbling can be viewed as a
special case of a randomized encoding. Specifically, a projective garbling such as
ours is a case of a decomposable randomized encoding, where given the garbling
and the active input labels only, nothing beyond the function output is revealed.

1.3 Vision for Future Research

Our garbling scheme garbles binary gates as a whole in an efficient non-linear
manner, as opposed to encrypting the truth-table of the gate row-by-row. This
opens up avenues in multiple new directions. One future direction would be to try
to extend this scheme to support computationally unbounded adversaries. The
security proof for our scheme does not make any assumptions on the strategy
of the adversary (or its running time) except that the number of RO queries it
is limited to making is polynomial in κ - the security parameter. It remains to
consider if the scheme remains secure when the number of queries permitted is
relaxed to be sub-exponential in κ, or even a small exponent in κ. It also remains
to consider if slight modifications to the scheme would provide statistical security.

For simplicity of explanation and proof, we make use of a random oracle
(RO) while describing our scheme. However, the security proof does not rely on
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properties like programmability or extractability of the RO. So we conjecture
that random oracles may not be necessary for the security of the scheme. Fur-
ther, the extension of our scheme to obtain free-XOR does not depend on the
properties of the RO. So, owing to our garbling technique, we also conjecture
that the RO can be replaced with a simpler primitive that need not satisfy cir-
cular security. This would imply that the resulting scheme achieves free-XOR
without the circular security assumption inherent in all prior works achieving
free-XOR. This effort of finding suitable primitives to replace a random oracle
is also a direction that we leave for future work.

Our garbling technique can garble a gate as a whole into one encoding, and
the resulting encoding can be compressed in a lossless manner – due to the re-
sulting encoding not having full entropy. We defer to future empirical analysis
to determine the achievable compression rate.7 Furthermore, an interesting di-
rection to explore would be if two or more gate functionalities can be condensed
into one encoding whose compressed representation is smaller than the size of
individually garbling the gates. Coupled with free-XOR, this would drastically
reduce the size of the resulting garbled circuit. We leave studying the trade-off
between the number of gates in one encoding and compression rate to future
work.

Finally, we also conjecture that this scheme can be shown as secure in the
adaptive garbling setting – where the adversary can choose inputs after it re-
ceives the garbled circuit from the challenger. Proving that a garbling scheme
is adaptive secure has remained an open question for Yao’s garbled circuits,
while subsequent works prove that certain modifications to it is adaptive secure
[KKPW21]. These either incur a security loss or use expensive cryptographic
primitives. We conjecture that our scheme can be shown as adaptive secure
as-it-is using slight modification to our existing proof technique. On replacing
the RO with a cheaper primitive or operation in the standard model, we would
have an adaptive garbling scheme that is much more efficient than the current
state-of-the-art.

2 Technical Overview

Our garbling scheme operates in the random oracle model where both the garbler
and evaluator get access to a random oracle (RO). Below we discuss the key
design aspects of the core scheme. Discussion about the free-XOR extension is
deferred to Section 5.

The Garbling Algorithm. Conforming to the [BHR12] formalism, the input to
the garbling algorithm is a circuit C; and it outputs a garbled circuit F , an
input encoding set e, and an output decoding set d. The algorithm itself can
be separated into the following subroutines that are executed sequentially: (1)
Init(C)→ e; (2) Circuit(C, e) = (F,D); (3) DecodingInfo(D)→ d.

7 A previous version of this paper contained an incorrect claim about the achievable
compression rate.
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Input Label Sampling. The first subroutine in the garbling algorithm takes the
circuit C and creates the input encoding set e. This subroutine Init(·) is a ran-
domized algorithm. From within C, this algorithm only uses n, the number of
input wires. This allows the generation of e potentially ahead of knowing the
function f . Similar to other traditional garbling schemes, the scheme we design
is also a projective garbling scheme. So e contains a set of input wire labels. In
our construction, for each of the n input wires, for an ‘external length parameter’
ℓ, an ℓ-length label is sampled uniformly at random to represent the 0 and 1 bit,
under the constraint that both labels for the same wire cannot be the same.

Gate-by-Gate Garbling. The next subroutine Circuit(·) is a deterministic func-
tion. It takes the input encoding set e with all the randomness it entails, and
extends it to create the complete garbled circuit F and output wire labels D. In
order to extend the existing randomness in a way that lets the garbling preserve
its privacy, Circuit(·) makes black box calls to a random oracle RO.

Each gate in the circuit is garbled separately and in a topological order. To
this effect, for the q total gates in the circuit C, each gate is assigned an index g
in this ordering. The random oracle RO employed throughout the gate-by-gate
garbling process is tweakable: it takes as an additional input the gate index g so
that it behaves independently for each gate.

Garbling a Gate. For a gate g, let A and B be its input wires, g be its output
wire index, and fg be its functionality (e.g., AND, XOR). When garbling a gate,
our methods deviate significantly from traditional garbling techniques. At its
core, we make the following observation: each gate is a binary gate so there are 4
combinations of input values, but only two possible output values corresponding
to one output wire.

Therefore, at its core, a gate garbling is a means to convert a pair of input
labels into an output label. For a wire A, LA0 and LA1 are its labels (similarly
LB1 , L

B
0 for B, and Lg1, L

g
0 for output wire g). We require that for the gate g, the

input label combinations be mapped to (Lg0, L
g
1) in such a way that the gate

functionality fg is preserved. For instance, if the gate is an AND gate, {(LA0 , LB0 ),
(LA0 , L

B
1 ), (L

A
1 , L

B
0 )} should be mapped to Lg0, and (LA1 , L

B
1 ) to Lg1.

We encode all four input label pairs into one encoding ∇g such that, given
one label from each input wire, ∇g can be used to convert these into the correct
output label. The details on how ∇g is generated can be found in Appendix A
where Table 3 indicates how the garbling for the AND functionality is generated
and Table 4 indicates the same for the XOR functionality. These tables are part
of the description of the garbling scheme: that is, they are predetermined and
remain the same regardless of the circuit garbled or the randomness used.

The entire gate garbling process is a result of deterministic steps starting
from the input label values. For gate g with input labels LA1 , L

A
0 and LB1 , L

B
0 , first,

in order to eliminate redundancy, for each pair of input bits (a, b) ∈ {0, 1}2 the
input labels is input to a random oracle: ROg(LAa , L

B
b )→ Xg

ab. The random oracle
RO takes as input the tweak g and two labels with total length 2ℓ, and outputs
an ℓ′-length string. The output length ℓ′ is much larger than that of the input
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and each RO output string is sampled uniformly at random and independently
of the responses of other queries to ROg.

Next, the random oracle outputs (Xg
00, X

g
01, X

g
10, X

g
11) are used to derive a

single ℓg-bit string ∇g (that is padded by 0s to make its length equal to ℓ′) that
encodes the gate functionality. ∇g has the properties that given any one Xg

ab, it
maps it to an ℓ-bit uniformly random binary string Lgfg(a,b). The gate garbling

∇g has Hamming weight ℓ and the positions in this string that contain ‘1’ are
termed as ‘effective key positions’. Each bit in ∇g is set independently until its
hamming weight becomes ℓ. We denote the length of the garbling up to this
point as ℓg bits. It follows that ℓg varies for each gate g, but it still holds that
ℓg = O(κ). The mapping of Xg

ab to an output label is done by projecting the
bits in Xg

ab over the effective key positions in ∇g. The resulting output label is
of length ℓ and is independently and identically distributed (i.i.d.) over all bit
positions. It also holds that the pair ∇g and Xg

ab do not reveal any information
about the inactive output label or the other random oracle outputs.

Decoding Information. Once all the garbled gates and output wire labels are
derived in F , it remains to generate the output decoding information d. Fol-
lowing the same principle as we used for garbling gates, we want to avoid, to
the extent possible, an adversary distinguishing between a valid decoding and
an invalid decoding. Therefore, we need to be able to decode in such a way that
for all label values, valid or invalid, it yields some plausible decoding, but with
the constraint that for valid output labels - labels used within the garbling - the
decoding is additionally also correct. In our construction, we employ another
random oracle RO′ for this. In the subroutine that creates the decoding informa-
tion, for every output wire j, we sample an ℓ-bit string dj . This string has the
property that, given output wire labels (Lj0, L

j
1), it holds that RO′(Lj0, d

j) = 0

and RO′(Lj1, d
j) = 1. Note that such a decoding will always yield some out-

put even for arbitrary ℓ-bit strings that are not output labels. The subroutine
DecodingInfo(D)→ d generates this decoding information given the output wire
labels set.

Evaluating the Garbled Circuit. An evaluator, given the garbled circuit F , a set
of input wire labels X, and the decoding information d, works gate-by-gate. It
has access to RO and RO′ and knows the indices of each gate. Starting with the
input labels L ∈ X we term each value in its view during an honest evaluation
as active. For each gate g, with active input labels LAa , L

B
b , the evaluator works

by first deriving ROg(LAa , L
B
b ) = Xg

ab. Then using Xg
ab and ∇g ∈ F , it computes

Lgfg(a,b) = Xg
ab ◦ ∇g where ◦ is the operation selecting the bits in Xg

ab over

the effective key positions in ∇g. For an output wire label Ljb, using dj ∈ d, it

computes RO′(Ljb, d
j) = b as the function output.

Security Intuition. Our scheme satisfies privacy against a PPT adversary. This
notion is modeled as a game between the adversary and a challenger where the
adversary first picks two circuits C0 and C1 of its choice such that they have
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the same topology. That is, letting Φ denote the leakage function revealing the
topology of a circuit, it needs to hold that Φ(C0) = Φ(C1). The adversary also
chooses two inputs x0 and x1 such that C0(x

0) = C1(x
1). The challenger picks a

bit b ∈ {0, 1}, garblesCb and encodes the input xb. It sends the resulting (F,X, d)
to the adversary and then the adversary, making up to a polynomial number of
queries to the random oracles, needs to output which bit b the challenger chose.

In order to understand why our scheme satisfies this notion of privacy, first
note that the garbling (F, d) in the challenge, in isolation does not reveal any
information about the circuitsC0 orC1, beyond Φ, the topology that is identical.
This is because the garbling hides the gate functionality as each gate garbling
originates from the same distribution regardless of the functionality.

Given the complete challenge (F,X, d), an honest evaluation already reveals
the complete ‘active path’ in the garbling. Our proof follows by proving that
the knowledge of the active path gives the adversary no advantage at all in
distinguishing. That is, given the complete challenge (F,X, d) and all honest
queries, they are distributed independently of the bit b. Hence, we identify that
learning elements in the ‘inactive paths’ is a prerequisite to privacy violation.

We formalize the notion of “learning a label” as making a random oracle
query leading eventually to an inactive label. We identify what kind of queries
lead to this and term them as bad events8. There are three bad events that
are triggered by a query to RO. In ‘Bad Event 1’, the adversary “guesses” a
candidate input label to the gate input wire A and queries it to RO together
with the active input label of wire B. ‘Bad Event 2’ is defined symmetrically for
the input wire B of a gate and ‘Bad Event 3’ is defined when inactive candidates
are queried on both input wires. They are all analysed similarly.

‘Bad Event 1’ is triggered by two sub-events. First, when the candidate is the
inactive input label and the query outputs either the active output label or the
inactive output label. Second, when the output from the query is a valid output
label - the active or inactive output wire label used in the garbling - but the
input label tested is not the inactive input label. This case is possible since the
RO maps each input to an output value independently and uniformly at random.
So a value that is not the inactive input label is mapped to a gate output label.

Intuitively, the resistance against this event comes due to the size of the set of
candidate labels to be tested. Stemming from the fact that ℓ is appropriately set,
and there is a unique active label Lg, it follows that there are 2ℓ − 1 candidate
labels for which the output of RO is unknown to the adversary. Beyond this
information, any two labels within the set of possible labels are uniform and
independent. This holds by construction because the labels of a wire are either
sampled uniformly at random (input wire labels) or derived as projections of
random oracle outputs (internal wire labels). The latter also results in a random
ℓ-bit string owing to the fact that the random oracle outputs are sampled freshly
and uniformly at random for each distinct domain value, and the nature of the

8 The proof technique we use is similar to [BHKR13] except that our adversary is PPT
rather than query bounded. Since we do not assume anything about the adversarial
strategy, this implies only that the bound on the number of queries is polynomial.
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gate garbling ∇g used to select a subset of these bits. Within the set of candidate
labels for a wire, there is always the inactive label - used in the garbling -
triggering the bad event. However, possibly other ‘false positive’ label values
may also trigger the bad event owing to the nature of the random oracle outputs.
Considering multiple RO queries amounts to sampling without replacement. In
essence, the security argument boils down to the fact that the set of candidate
labels is sufficiently large so that the adversary cannot cover a non-negligible
portion of it within their query budget. The advantage gained by making RO
queries increases linearly in the number of queries and decreases exponentially
in ℓ (Theorem 4). Thus, the adversary’s advantage is always negligible.

It remains to argue that when adversarial queries are made across different
random oracles in different gates the bound on the probability of bad events
remains unchanged. As a special case, let us consider two gates such that the
output wire of one feeds into the other gate as input. First, note that the co-
domain (all possible RO outputs) of the random oracle is {0, 1}ℓ′ . However the
domain is much smaller: {0, 1}2ℓ. Due to this, the size of its range (the subset
of the co-domain that is the set of actual RO outputs corresponding to all the
RO inputs) is also upper-bounded by 22ℓ. However, due to the properties of the
random oracle, it is not possible to distinguish between its co-domain and range
without querying the domain set. If a label in the range of RO is the inactive
input label to the next gate, it will have triggered a ‘Bad Event’ as the inactive
output label of the previous gate, ending the game. If the label is not the inactive
input label, the adversary learns that further queries using this label as input
are unnecessary, but gains no insight how to choose the candidate for the next
query among the other 2ℓ− 1 candidate input labels. Learning not to query this
label to RO has cost the adversary a query in the previous gate hence it remains
the case that “one query → one discarded value”.

Therefore no advantage beyond what was learned directly by the query prop-
agates between gates. This analysis holds without loss of generality when con-
sidering any number of gates in the circuit. We use this to bound the probability
of encountering any of the three bad events, given t(κ) queries to the random
oracles and conclude that this is negligible in κ in our main result (Theorem 1).

3 Preliminaries

Table 2 contains a list of all the parameters with respect to which our garbling
scheme is constructed. We denote by {0, 1} the set containing 0 and 1, and by
{0, 1}n the set of vectors of length n with each position containing 0 or 1. We
use [] to denote an empty array. For a vector V and i ∈ N, we denote by V [i] the
element in the ith position in the vector. When [i] is used in isolation, it signifies
the set of elements 1, . . . , i.

Circuit Notation. For a function f : {0, 1}n → {0, 1}m, let C be its circuit
representation. Let q be the number of gates in C. Each gate g ∈ [q] is defined
by a gate functionality fg ∈ {AND,XOR}, two input wires A,B and an output
wire g where, A,B, g ∈ [n+ q] and topological ordering holds: A,B < g.
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Table 2. Table of Parameters

Parameter Information

n number of circuit input wires

m number of circuit output wires

q number of gates in the circuit

ℓ (external length parameter) length of a wire label

ℓ′ (internal length parameter) length of approximate keys

ℓg length of garbled gate ∇g

κ computational security parameter

s number of adversarial random oracle queries

Random Oracles. The security proof of our scheme holds in the random or-
acle model, which abstracts a truly random function. Following the notation
from [KL14], the random-oracle model posits the existence of a public, random
function R that can be evaluated only by “querying” an oracle – which can be
thought of as a “black box” – returning R(x) when given input x.

Definition 1 (Random Oracle). A random oracle RO is an interface for an
oracle function R : {0, 1}a → {0, 1}b that is sampled uniformly from the family
of functions that map the domain of binary strings {0, 1}a into {0, 1}b.

Garbling Scheme. [BHR12] abstracts garbling as a primitive containing four
algorithms as given in Definition 2. In the definition, a function f is represented
as a circuit C. We also denote by Φ(C) = (n,m, q, {A,B, g}g∈[q]) the topology
of the circuit C. Finally, x ∈ {0, 1}n denotes the function input and y ∈ {0, 1}m
denotes the function output.

Definition 2 (Garbling Scheme [BHR12]). Let f : {0, 1}n → {0, 1}m be a
function with circuit representation C and κ be a computational security param-
eter. A garbling scheme GS = (Gb,En,De,Ev) has four PPT algorithms:

– Gb(1κ,C)→ (F, e, d): returns a garbling F , input encoding set e, and output
decoding set d.

– En(e, x) := X: returns the encoding X for function input x.
– Ev(F,X) := Y : returns the output labels Y by evaluating F on X.
– De(Y, d) := {⊥, y}: returns either the failure symbol ⊥ or a value y = f(x).

These algorithms must satisfy the following properties:

– Correctness: For every κ, circuit C and input x,

Pr[y = C(x) : (F, e, d)← Gb(1κ,C), X = En(e, x),

Y = Ev(F,X), y = De(d, Y ) ] = 1

– Privacy: Let Algorithm 1 denote the actions of the challenger in an indis-
tinguishability game. Let Φ be a leakage function representing the topology of
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a circuit. For every PPT adversary A (with access to RO), for all circuits
C0,C1 s.t. Φ(C0) = Φ(C1) and every x0, x1 s.t. C0(x

0) = C1(x
1) of the

choice of A, there exists a negligible function µ such that A’s advantage is,

Adv(κ) =

∣∣∣∣Pr[ARO(C0,C1, x
0, x1, F,X, d) = b]− 1

2

∣∣∣∣ < µ(κ)

Algorithm 1 Privacy

1: proc Challenger(C0,C1, x
0, x1)

2: if x0, x1 ̸∈ {0, 1}n or Φ(C0) ̸= Φ(C1) or C0(x
0) ̸= C1(x

1) return ⊥
3: b← {0, 1}
4: (F, e, d)← Gb(1κ,Cb)
5: X = En(e, xb)
6: Return (F,X, d)

4 The Scheme

In this section we present our garbling scheme. The scheme itself is presented in
Section 4.1. We present in Section 4.2 the intuition behind why the scheme is
correct. In Section 4.3, we discuss the security guarantee and outline the proof
of security. A full proof is presented in Appendix B.

4.1 Garbling Algorithm

For a function f : {0, 1}n → {0, 1}m, let C be its circuit representation. The
garbling algorithm has the following form:

Algorithm 2 Algorithm Gb(1κ,C)

1: set the external length parameter ℓ = κ and internal length parameter ℓ′ = 8ℓ
2: Init(C, ℓ)→ e
3: Circuit(e,C, ℓ, ℓ′) = (F,D)
4: DecodingInfo(D, ℓ)→ d
5: Return F, e, d

The garbling algorithm as above begins by setting the variables ℓ and ℓ′ de-
fined in Table 2. These parameterize the lengths of the inputs and outputs of
the random oracles employed in the construction. The ‘external length param-
eter’ ℓ parameterizes the length of all wire labels throughout the circuit. The
additional ‘internal length parameter’ ℓ′ parameterizes the length of the inter-
mediate values in the gate garbling – the outputs of RO – and serves as a loose
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upper bound on the length of each gate garbling ℓg. The actual length of the
gate garbings are variable and much smaller than ℓ′ bits. Since the intermediate
garbling values never have to be communicated, and so do not contribute to
the communication complexity, ℓ′ can be arbitrarily larger than ℓ. We refer the
reader to Appendix A.2 for details as to why ℓ′ is set to 8ℓ. Finally, ℓ is also
the Hamming weight of ∇g and parameterizes the effective length of the gate
garbling. The complete garbling algorithm employs two random oracles of the
following forms: (1) ROg : {0, 1}2ℓ → {0, 1}ℓ′ ; and (2) RO′ : {0, 1}2ℓ → {0, 1}.
The first is used in each gate and so it uses the gate number g as a tweak. The
latter is used for circuit output decoding.

Input Encoding Generation. The garbler starts by executing Init(C, ℓ)→ e, for-
mally described in Algorithm 3. Let n be the number of input wires in C and ℓ
be the external length parameter. This algorithm uses the garbler’s randomness
to sample ℓ-length labels to represent the 0 and 1 values for each input wire.
These labels are sampled uniformly at random, under the constraint that two
labels for the same wire cannot take the same value. This resulting set of input
wire labels is the input encoding set e.

Algorithm 3 Init(C, ℓ)

1: extract n from C and initialize e = []
2: for input wire W ∈ [n] do
3: Sample LW

0 ← {0, 1}ℓ uniformly at random
4: Sample LW

1 ← {0, 1}ℓ − {LW
0 } uniformly at random

5: Set e[W ] = eW = (LW
0 , LW

1 )
6: end for
7: Return e

Garbled Circuit Generation. The garbler now runs a deterministic algorithm to
generate the garbled circuit: Circuit(e,C, ℓ, ℓ′) = (F,D). This algorithm receives
as input a circuit C with q gates and a projective input encoding set e with
labels for all n input wires. The output of this algorithm is a garbled circuit F ,
and a set D of pairs of labels for the m output wires of the garbled circuit. This
is described in Algorithm 4. This algorithm works gate-by-gate where it creates
a garbled gate by calling a subroutine described in Algorithm 5. The garbled
circuit so produced is F = (∇1, . . . ,∇q).

Gate Garbling. We discuss now the subroutine that the garbling algorithm uses
to garble each gate of the circuit: (Lg0, L

g
1,∇g) ← Gate(LA0 , L

A
1 , L

B
0 , L

B
1 , g, fg, ℓ).

This subroutine receives the gate index g, input labels set (LA0 , L
A
1 , L

B
0 , L

B
1 ) and

a gate functionality indicator, fg ∈ {AND,XOR}. For simplicity and complete-
ness, we only discuss these functionalities although we can encode any gate func-
tionality over binary inputs. The subroutine outputs a gate garbling ∇g (with
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Algorithm 4 Circuit(e,C, ℓ, ℓ′)

1: ∀g ∈ [q], initialize the random oracle ROg[2ℓ, ℓ′]
2: initialize the wire label set W = [W1, . . . ,Wn+q]
3: for each circuit input wire A do
4: WA = (LA

0 , L
A
1 ) ∈ e

5: end for
6: initialize F = [], D = []
7: for each gate g = (fg, A,B, g) in C in topological order do
8: extract input wire labels LA

0 , L
A
1 , L

B
0 , L

B
1 ∈W

9: compute (Lg
0, L

g
1,∇g)← Gate(LA

0 , L
A
1 , L

B
0 , L

B
1 , g, fg, ℓ)

10: set F [g]← ∇g

11: set Wg = (Lg
0, L

g
1) ∈W

12: if g is an output gate then
13: D[g]← (Lg

0, L
g
1)

14: end if
15: end for
16: Return (F,D)

Hamming weight ℓ) and a set of labels for the gate output wire (Lg0, L
g
1), each of

ℓ-bit length. The details of this subroutine are formally described in Algorithm 5.
This is a deterministic function but with access to random oracle ROg.

A gate is garbled in the following stages. First, given the set of input labels
(LA0 , L

A
1 , LB0 , L

B
1 ), note that each of the combinations in ((LA0 , L

B
0 ), (LA0 , L

B
1 ),

(LA1 , L
B
0 ), (L

A
1 , L

B
1 )) is a 2ℓ-bit string where ℓ bits are common with any other

combination. To unlink the pairs, the input label combinations are passed into
a random oracle ROg. In order for this function to sample fresh outputs for
different gates which may have potentially the same input wires, the input to
ROg also includes the gate id g as a tweak. For bits a, b ∈ {0, 1}, this step
creates ROg(LAa , L

B
b ) = Xg

ab. The values (Xg
00, X

g
01, X

g
10, X

g
11) are intermediate

garbling values termed ‘approximate key’, each ℓ′-bit long, that are the outputs
of the random oracle. Note that since ℓ′ is an internal length parameter and, as
all internal variables are not communicated, it can be arbitrarily long without
effecting the communication complexity of the garbling scheme.

Next, the set (Xg
00, X

g
01, X

g
10, X

g
11) is used to create a gate garbling ∇g. This

lies in the heart of our construction and is one of our key contributions. The
length of ∇g is ℓg ≤ ℓ′ and it varies for each garbled gate. Depending on the
gate type, Tables 3–4 contain truth-tables that indicate how a single index of ∇g

is set as a function of the bits in the same index in each of (Xg
00, X

g
01, X

g
10, X

g
11).

These tables are part of the description of the garbling scheme and are fixed
prior to running the garbling algorithm.

The garbling ∇g is generated bit-by-bit until the Hamming weight comes
to ℓ, the effective length. The gate garbling ∇g is also made such that for any
intermediate value Xg

ab, the output label can be derived as ∇g ◦Xg
ab = Lgfg(a,b)

where ◦ is an operation that projects the bits in Xg
ab over all the positions where

∇g is set to 1. An essential property that ∇g satisfies is that on its application
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Algorithm 5 Gate((LA0 , L
A
1 ), (L

B
0 , L

B
1 ), g, fg, ℓ)

1: Xg
00 = ROg(LA

0 , L
B
0 )

2: Xg
01 = ROg(LA

0 , L
B
1 )

3: Xg
10 = ROg(LA

1 , L
B
0 )

4: Xg
11 = ROg(LA

1 , L
B
1 )

5: initialize ∇g ← 0ℓ
′
and let j = 1

6: repeat
7: Set slice← Xg

00[j]||X
g
01[j]||X

g
10[j]||X

g
11[j]

8: if fg == AND ∧ slice ∈ {0000, 0001, 1110, 1111} then ▷ See Table 3
9: ∇g[j]← 1
10: else if fg == XOR ∧ slice ∈ {0000, 1001, 0110, 1111} then ▷ See Table 4
11: ∇g[j]← 1
12: end if
13: increment j = j + 1
14: until HW (∇g) = ℓ or j = ℓ′

15: if HW (∇g) ̸= ℓ then
16: ABORT the computation
17: end if
18: ℓg = j
19: Lg

0 = Xg
00 ◦ ∇g ▷ A ◦B = projection of A[i] for positions with B[i] = 1

20: if fg == AND then
21: Lg

1 = Xg
11 ◦ ∇g

22: else if fg == XOR then
23: Lg

1 = Xg
01 ◦ ∇g

24: end if
25: Return (Lg

0, L
g
1,∇g)

with any of the Xg
ab, it produces one of two values Lg0 and Lg1 that are distributed

uniformly at random in {0, 1}ℓ and, that too, according to the gate functionality.
These, along with the gate garbling ∇g are the outputs of this subroutine.

Decoding Information. The randomized algorithm DecodingInfo(D, ℓ)→ d takes
the labels set D for the output wires, and returns a sequence d that maps them
back to their plain values; see Algorithm 6. This employs a random oracle RO′.

Completing the Garbling Scheme. It remains to describe, for completeness, the
working of the input encoding algorithm En, the evaluation algorithm Ev and the
output decoding algorithm De. The interfaces and purpose of these are respec-
tively the same as in standard garbling [BHR12]. For brevity we only describe
them in algorithmic form in Algorithm 7.

4.2 Motivating Our Scheme

The mainstream literature on garbled circuits has been operating under the gate-
by-gate paradigm. Informally, binary gates are individually garbled in topological
order. The garbling algorithm samples values for the two labels for each wire

14



Algorithm 6 DecodingInfo(D, ℓ)

1: initialize RO′[2ℓ, 1] and d = []
2: for output wire j ∈ [m] do
3: extract Lj

0, L
j
1 ← D[j]

4: repeat
5: sample dj ∈R {0, 1}ℓ
6: until RO′(Lj

0, d
j) = 0 and RO′(Lj

1, d
j) = 1

7: d[j]← dj

8: end for
9: Return d

(sometimes with additional constraints on their relations) and uses each pair
of input labels as a key for encrypting the output label. This is the setting in
which [LP09] proves the security of garbling schemes using a primitive that was
later termed by [BHR12] a Dual-Key Cipher (DKC). Later, [ZRE15] termed
this kind of garbling as ‘linear’. They provided a model for linear garbling and
showed that any scheme in their model that simultaneously achieves correctness
and privacy requires at least two ciphertexts, thus providing a lower bound on the
communication efficiency of such schemes. Our scheme deviates from [ZRE15]’s
linear model in several key points.

Approximate Keys. Despite a syntactical similarity, a major difference from
prior work is that we do not consider the input labels as keys. Instead, we
consider them as an entropy source to an Approximate-Key-Derivation Function.
This function, modeled as a random oracle and denoted by RO, converts each
label pair into a uniformly distributed string of length ℓ′. The resulting tuple
t = (X00, X01, X10, X11) is a set of approximate keys.

Gate Output Label Derivation. The tuple t contains approximate keys in the
following sense: t = (X00, X01, X10, X11) can be viewed as a 4×ℓ′ binary matrix.
The garbler scans for each j ∈ [ℓ′], indices slicej = (X00[j], X01[j], X10[j], X11[j]).
For an AND gate, the bits in the same column in X00, X01 and X10 must agree
on the same value. When they do, the respective position in Lg0 is set to this
value and the respective position in Lg1 is set to the corresponding bit value from
X11. Otherwise (i.e., if they do not agree), the value in position j is not included
in the construction of the output label.

Table 3 in Appendix A is a truth table according to which the indices slicej
are used to set the jth index of ∇g when the AND functionality is garbled. Note
that the index in ∇g is set to 1 only in the rows of the table where it holds
that X00[j] = X01[j] = X10[j]. Further, each index j of ∇g is set independently,
depending on a different slicej . Each value in this slice is an RO output and
so the slice is a uniformly random value in {0, 1}4. The right side of Table 3
contains the value in the output label that is a result of projecting the value of
Xg

ab in the positions where ∇g contains 1. One can see that L00, L01, and L10
always have the same value (and are therefore the same). If anywhere among
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Algorithm 7 Algorithms to Evaluate the Garbling

1: procedure En(e, x)
2: initialize X = []
3: for every j ∈ [n] do
4: set X[j] = Lj

xj
= ej [xj ]

5: end for
6: Return X
7: end procedure
8:
9: procedure Ev(F,X)
10: initialize Y = []
11: for each gate g ∈ [q] in a topological order do
12: LA, LB ← active labels associated with the input wires of gate g
13: extract ∇g ← F [g] and compute Lg ← RO(g, LA, LB) ◦ ∇g

14: if g is a circuit output wire then
15: Y [g]← Lg

16: end if
17: end for
18: Return Y
19: end procedure
20:
21: procedure De(Y, d)
22: initialize y = []
23: for j ∈ [m] do
24: y[j]← lsb(RO′(Y [j], dj))
25: end for
26: Return y
27: end procedure

the ℓ′ positions we have L11 ̸= (L00 = L01 = L10) (i.e., Lines 1 and 14 in Table 3)
then, {LA0 , LA1 } × {LB0 , LB1 } 7→ {L

g
0, L

g
1} preserves the structure of a binary AND.

The case for an XOR gate is similar except that the agreement is sought
between L00 and L11, as well as between L01 and L10 (see the right side of
Table 4). Then if at least once in the ℓ′ positions (L00 = L11) ̸= (L01 = L10), the
structure of a binary XOR is preserved. Table 4 in Appendix A is a truth table
according to which the indices slicej are used to set the jth index of ∇g when
the gate functionality is XOR. Note that the index in ∇g is set to 1 only in the
rows of the table where it holds that X00[j] = X11[j] and X01[j] = X10[j].

Both Table 3 and Table 4 are part of the description of the garbling scheme:
that is, they are predetermined and remain the same regardless of the function
garbled or the randomness used.

Garbling other gate functionalities. Generalizing the above technique lets us
garble an n-input binary gate computing any functionality fg. A gate g with
n input wires and one output wire, with each wire holding binary values would
have two ℓ-length labels for each wire. For each input wire indexed i ∈ [n], let
these labels be Li0, L

i
1 ∈ {0, 1}ℓ. Garbling such a gate would require a random
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oracle of the form ROg : {0, 1}nℓ → {0, 1}ℓ′ . Let a = {ai}i∈[n] ∈ {0, 1}n be a
possible input value to this gate. The garbling proceeds by first making 2n calls
to the random oracle of the form ROg({Lai

i }i∈[n]) → Xg
a , for all a ∈ {0, 1}n.

Letting t = {Xg
a}a∈{0,1}n be the set of approximate keys, we need that t be

partitioned into two sets: t0 = {Xg
a}fg(a)=0 containing all approximate keys that

need to be mapped to the gate output label Lg0, and t1 = {Xg
a}fg(a)=1 with those

that are mapped to Lg1. Now, a table similar to Table 3,4 needs to be generated
for the functionality fg. On the left of the column with ∇g

fg
, this would contain

m = 2n columns, one corresponding to each Xg
a . The table would contain 2m

rows corresponding to all possible values one slice of t can take. Out of these,
the index in ∇g

fg
is set to 1 only when the values in the slice of t0 are equal and

that of t1 are equal. So, out of the 2m rows, only 4 rows set ∇g
fg

to 1: the row
with 0m, 1m, the row equaling the transpose vector of the truth table of fg, and
the complement thereof. In effect, only knowing these 4 combinations suffices for
gate garbling.

Let us consider the special case of 2-input binary gates for some functionality
fg. The random oracle is of the form ROg : {0, 1}2ℓ → {0, 1}ℓ′ and there are 4
approximate keys in the tuple t = (Xg

00, X
g
01, X

g
10, X

g
11). In the truth-table for

setting the bits in ∇g
fg
, out of the 24 = 16 rows, 4 rows would set the bit in ∇g

fg
to 1. Therefore, when a garbling is generated for a 2-input binary gate, it has
the same distribution regardless of the gate functionality. This is the basis of the
gate functionality hiding property of the scheme.

No ciphertexts. In the evaluation algorithm Ev of our scheme, given two input
labels, the evaluator can obtain from the random oracle exactly one approximate
key whereas what they need is the output label. To enable this, the garbler
records in ∇ the bit positions from which the output label is derived. We believe
∇ should not be considered a ciphertext since it does not encrypt any labels but
instead encodes the relation between an approximate-key and the output label.
Furthermore, whereas a ciphertext normally captures the relation between a pair
of input labels and the output label, ∇ captures the relation between all input
labels and both output labels. Finally, each bit of ∇ is zero with probability 3

4
and one with probability 1

4 .

4.3 Security

We consider a PPT adversary A that runs for t(κ) time steps for any polyno-
mial t(·) in the security parameter κ. A has access to the random oracles ROg

and RO′ but, owing to its running time, is restricted to making at most t(κ)
queries overall. Among these, we make a distinction between the set of honest
queries H, and adversarial queries Q. Given the challenge (F,X, d) output from
Algorithm 1, we term the set of queries made in Ev(F,X) = Y and De(Y, d)
as the honest queries H. For a circuit C with q gates and m output wires, this
includes q calls to RO, and m calls to RO′. Therefore, |H| = q +m and its con-
tents are determined completely by the challenge. Any other query A makes is
an adversarial query in Q. We only consider sets Q where |Q| < t(κ).
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Definition 3. A set of adversarial queries Q that an adversary A makes to
the random oracles ROg, and RO′ is permissible if it holds that for a security
parameter κ, and polynomial t(·),

|Q| < t(κ)

Security Game. The security game for Privacy from Definition 2 is an interaction
between the adversaryA and the challenger. Let Φ be a leakage function denoting
the topology of a circuit. That is, for a circuitC, Φ(C) outputs everything except
the gate functionality of each gate in the circuit. First A picks circuits C0,C1

of its choice such that Φ(C0) = Φ(C1), and two inputs x0, x1 ∈ {0, 1}n such
that C0(x

0) = C1(x
1). Then, (C0,C1, x

0, x1) are given to the challenger. On
receiving this, the challenger first samples a bit b← {0, 1} uniformly at random.
It then garblesCb, creating (F, e, d). It encodes x

b using e to getX. The challenge
(F,X, d) is sent back to A. Now A with polynomial running time, and access
to the random oracles ROg, and RO′ to make honest queries H and adversarial
queries Q, is tasked with guessing b that was used internally by the challenger.

The adversary’s view. In the privacy game from Definition 2, A has in its view
(C0,C1, x

1, x0) of its own choice, (F,X, d) that it receives as the challenge, the
set of honest queries (and responses) H, and adversarial queries (and responses)
Q. We define a function V(·) that represents the information learnt by A. For
instance, V(F,X, d) refers to the information A can deduce from the challenge
(F,X, d). In particular, by V(F,X, d,H,Q) we denote all the information learnt
by the adversary9. The advantage Adv of A can be restated as

Adv =

∣∣∣∣Pr[A(V(F,X, d,H,Q)) = b]− 1

2

∣∣∣∣
where the probability distribution is taken over the secrets of the challenger (i.e.,
random choice of b← {0, 1}, and the garbling randomness: (F, e, d)← Gb(Cb)),
and the choice of the adversarial query set Q. The adversary needs to distinguish
between the cases that the challenger chooses b = 0 and b = 1.

Theorem 1. Let GS = (Gb,En,Ev,De) be a garbling scheme as in Algorithms 2–
7. Let κ be a computational security parameter. For every PPT adversary A with
running time t(κ) having access to all random oracles RO ∈ (ROg,RO′) in the
Privacy game (Definition 2), ∃ a negligible function µ s.t. A’s advantage is,

Adv(κ) =

∣∣∣∣Pr[ARO(C0,C1, x
0, x1, F,X, d) = b]− 1

2

∣∣∣∣ < µ(κ)

Proof Outline. We prove that our garbling scheme preserves privacy against
a PPT adversary. The privacy game (Algorithm 1) returns as a challenge

9 We omit writing (C0,C1, x
0, x1) and other garbling parameters like ℓ and ℓ′ for

brevity but it is assumed to be always included.
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(F,X, d) and the adversary A is tasked with guessing the bit b such that
(F, e, d) ← Gb(Cb) and X = En(e, xb). Note that the garbling (F, d) in isola-
tion is distributed identically for both C0 and C1. This is because the garbling
technique creates each gate garbling ∇g in a way that it is distributed identically
regardless of the gate functionality fg ∈ {AND,XOR} and Φ(C0) = Φ(C1).

We denote by honest queries the RO queries that are necessary for evaluating
the garbling F on X. Then our proof follows by proving in Theorem 2 that given
the challenge (F,X, d) and the set of honest queries H only, the view of the
adversary A is identically distributed for the cases where b = 0 and b = 1. In
order to show this, we first prove that nothing beyond the active path P of the
evaluation is revealed from the given information. Next, we show that the active
path is identically distributed for both cases.

All queries that are not honest queries are referred to as adversarial queries.
When an adversarial query is made, we make a distinction between the case
where a response lies in the garbling F , and those that do not. We call the
former a ‘Bad Event’. When a ‘Bad Event’ occurs we assume an adversary can
detect this, and that it gives it enough information to distinguish for b. Therefore,
we bound the probability of a Bad Event for a single query in Theorem 3.

When a query does not lead to a bad event, this implies that its response
is irrelevant to the construction of (F, d). Making such a query does not give
the adversary any advantage over the case considered in Theorem 2. However, it
restricts the domain of future queries to the random oracles. As a result, a future
query to it may have a higher probability of incurring a bad event. In Theorem 4,
we bound the advantage that the adversary would have on making s adversarial
queries. This is done by first, calculating the probability that an ith query leads
to a bad event given that i− 1 previous queries have not triggered a bad event.
This probability is an increasing function of i. Next, A’s advantage is bounded as
the complement of the probability that no bad event has occurred in s queries.
The probability of no bad event occurring is calculated as the product of the
complement of the individual probabilities for each round i that was previously
calculated. This result also holds in the case where A makes t(κ) adversarial
queries, completing the proof for the main theorem: Theorem 1.

5 Supporting Free-XOR

The garbling scheme in Section 4 can be further extended to support free-XOR.
The idea is similar to existing free-XOR schemes where the garbler samples a
secret global offset ∆ ∈ {0, 1}ℓ. For each input wire, the 0-label is sampled
uniformly at random and the 1-label is set such that L0 ⊕ L1 = ∆. The XOR
gate is evaluated by setting the output label as the bitwise XOR between the
labels of the two input wires. This complies with the XOR gate functionality and
maintains the invariant that for the output wire of the XOR gate, L0 ⊕ L1 = ∆.
This gate itself has no garbling representation.

It now remains to show how other gate functionalities like AND are garbled so
that the output wire labels maintain the same invariant. This is done by including
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Algorithm 8 Gate((LA0 , L
A
1 ), (L

B
0 , L

B
1 ), g, ℓ,∆)

1: Xg
00 = ROg(LA

0 , L
B
0 ), X

g
01 = ROg(LA

0 , L
B
1 ), X

g
10 = ROg(LA

1 , L
B
0 ), X

g
11 = ROg(LA

1 , L
B
1 )

2: initialize ∇g ← 0ℓ
′
and let j = 1, j′ = 1

3: repeat
4: slice← ∆[j′]||Xg

00[j]||X
g
01[j]||X

g
10[j]||X

g
11[j]

5: if slice ∈ {00000, 10001, 11110, 01111} then ▷ See Table 5
6: ∇g[j]← 1 and j′ = j′ + 1
7: end if
8: j = j + 1
9: until j′ == ℓ
10: Lg

0 = Xg
00 ◦ ∇g

11: Lg
1 = Xg

11 ◦ ∇g

12: Return (Lg
0, L

g
1,∇g)

∆ as one of the constraints, along with t = (X00, X01, X10, X11), that is used to
create ∇g. Table 5 in Appendix A indicates the new set of constraints. In this
table, the index j in ∇g is set to 1 only when the indices in X00 = X01 = X10

and when for the desired index j′ in ∆, it holds that X00⊕X11 = ∆. Algorithm 8
details the gate garbling algorithm for the AND gate, supporting free-XOR. Note
that while the index j is incremented in every iteration, going over all the indices
in ∇g, the index j′ is incremented only when one bit in ∇g is set to 1, so as to
move to the next element in∆. This continues until the ℓ bits in∆ are exhausted.

Note that out of the 32 different ways that ∇g[j] can be set in Table 5, only
1
8 of them sets it to 1 and the rest set the bit to 0. So in order to maintain a
Hamming weight of ℓ in ∇g, its size would become 8ℓ in expectation. Therefore,
supporting free-XOR in this scheme incurs the cost of increasing the size of the
gate garbling ∇g by double in expectation.

Although this modification to the scheme for free-XOR compatibility in-
creases the size of the garbled gates, the same security analysis as in the proof
in Appendix B, with the exception that the leakage function Φ now not only
reveals the topology of the circuit, but also the position of the XOR gates. This
leakage function is also invertable and so the extension from indistinguishability
based privacy to simulation based privacy still holds.

Our security proof follows a ‘Bad Event’ analysis and the advantage that the
adversary gains is calculated in terms of the probability of encountering a bad
event. Therefore the advantage in the privacy game for this scheme with free-
XOR can be calculated as being the same as that for the scheme in Section 4.
However, there remains a crucial difference between the modified scheme and the
original. In the original scheme, we assume for simplicity that if a Bad Event is
encountered, the adversary can distinguish and security is violated. However, this
may not always be the case. In practice, encountering a bad event would only aid
in violating privacy when it is encountered at certain favourable wires or gates,
depending on the circuit topology. But, in the modified scheme, encountering
a bad event means finding an inactive output label and along with the active
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value already known, this reveals the value of the global offset ∆. Then all the
inactive labels throughout the garbling can be found and the privacy is violated.

Summarizing, in the original scheme, in practice, encountering a Bad Event
may not always violate privacy. But, when the scheme is modified for free-XOR,
encountering a Bad Event would always violate privacy. Owing to our conser-
vative approach, the proof in Appendix B accounts for the worst case scenario
when analyzing the scheme in Section 4, and is therefore agnostic to whether
free-XOR compatibility was leveraged or not. Therefore both schemes are secure.

Garbling Other Gates. Extending the discussion in Section 4.2, a general n-input
binary gate computing any functionality fg can be garbled in a free-XOR com-
patible way. Here again, a random oracle is used to generate the 2n approximate
keys t = {Xg

a}a∈{0,1}n . Out of these, let t0 = {Xg
a}fg(a)=0, and t1 = {Xg

a}fg(a)=1.
Similar to Table 5, the table for creating ∇g

fg
contains m = 2n + 1 columns on

the left where 2n columns correspond to the approximate keys and one column
is for the global offset ∆. The number of rows in the table would be 2m out of
which only 4 would set ∇g to 1: the rows where each element in t0 takes the
same value b0, elements in t1 takes value b1, and b0 ⊕ b1 equals the value in ∆.
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A Additional Details of the Scheme

Table 3. For a gate index g and j ∈ [ℓ′], this table defines∇g
∧[j] (where fg = AND) as a

function in Xg
00[j], X

g
01[j], X

g
10[j], X

g
11[j]. The right side demonstrates how Xg

ab[j]◦∇
g[j]

collapses into only two distinct values Lg
0 = L00 = L01 = L10 and Lg

1 = L11. Each row
in the table corresponds to one bit-slice of the values Xg

ab[j] for a, b ∈ {0, 1}.

Xg
00 Xg

01 Xg
10 Xg

11 ∇g
∧ L00 L01 L10 L11

0 0 0 0 0 1 0 0 0 0
1 0 0 0 1 1 0 0 0 1
2 0 0 1 0 0 - - - -
3 0 0 1 1 0 - - - -
4 0 1 0 0 0 - - - -
5 0 1 0 1 0 - - - -
6 0 1 1 0 0 - - - -
7 0 1 1 1 0 - - - -
8 1 0 0 0 0 - - - -
9 1 0 0 1 0 - - - -
10 1 0 1 0 0 - - - -
11 1 0 1 1 0 - - - -
12 1 1 0 0 0 - - - -
13 1 1 0 1 0 - - - -
14 1 1 1 0 1 1 1 1 0
15 1 1 1 1 1 1 1 1 1

Table 4. For a gate index g and j ∈ [ℓ′], this table defines ∇g
⊕[j] (where fg = XOR) as

a function in Xg
00[j], X

g
01[j], X

g
10[j], X

g
11[j]. In addition, the right side demonstrates how

Xg
ab[j]◦∇

g[j] collapses into only two distinct values Lg
0 = L00 = L11 and Lg

1 = L01 = L10.
Each row in the table corresponds to one bit-slice of the values Xg

ab[j] for a, b ∈ {0, 1}.

Xg
00 Xg

01 Xg
10 Xg

11 ∇g
⊕ L00 L01 L10 L11

0 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 - - - -
2 0 0 1 0 0 - - - -
3 0 0 1 1 0 - - - -
4 0 1 0 0 0 - - - -
5 0 1 0 1 0 - - - -
6 0 1 1 0 1 0 1 1 0
7 0 1 1 1 0 - - - -
8 1 0 0 0 0 - - - -
9 1 0 0 1 1 1 0 0 1
10 1 0 1 0 0 - - - -
11 1 0 1 1 0 - - - -
12 1 1 0 0 0 - - - -
13 1 1 0 1 0 - - - -
14 1 1 1 0 0 - - - -
15 1 1 1 1 1 1 1 1 1
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Table 5. For a gate index g, j ∈ [ℓ′] and j′ ∈ [ℓ], this table defines ∇g
∧[j] (where

fg = AND) as a function of Xg
00[j], X

g
01[j], X

g
10[j], X

g
11[j] and ∆[j′]. In addition, the

right side demonstrates how combining Xg
ab[j] ◦ ∇

g[j] collapses into only two distinct
values Lg

0 = L00 = L01 = L10 and Lg
1 = L11 such that Lg

0 ⊕ Lg
1 = ∆. Each row in the

table corresponds to one bit-slice of the values Xg
ab[j] for a, b ∈ {0, 1}.

∆ Xg
00 Xg

01 Xg
10 Xg

11 ∇g
∧ L00 L01 L10 L11

0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 - - - -
2 0 0 0 1 0 0 - - - -
3 0 0 0 1 1 0 - - - -
4 0 0 1 0 0 0 - - - -
5 0 0 1 0 1 0 - - - -
6 0 0 1 1 0 0 - - - -
7 0 0 1 1 1 0 - - - -
8 0 1 0 0 0 0 - - - -
9 0 1 0 0 1 0 - - - -
10 0 1 0 1 0 0 - - - -
11 0 1 0 1 1 0 - - - -
12 0 1 1 0 0 0 - - - -
13 0 1 1 0 1 0 - - - -
14 0 1 1 1 0 0 - - - -
15 0 1 1 1 1 1 1 1 1 1
16 1 0 0 0 0 0 - - - -
17 1 0 0 0 1 1 0 0 0 1
18 1 0 0 1 0 0 - - - -
19 1 0 0 1 1 0 - - - -
20 1 0 1 0 0 0 - - - -
21 1 0 1 0 1 0 - - - -
22 1 0 1 1 0 0 - - - -
23 1 0 1 1 1 0 - - - -
24 1 1 0 0 0 0 - - - -
25 1 1 0 0 1 0 - - - -
26 1 1 0 1 0 0 - - - -
27 1 1 0 1 1 0 - - - -
28 1 1 1 0 0 0 - - - -
29 1 1 1 0 1 0 - - - -
30 1 1 1 1 0 1 1 1 1 0
31 1 1 1 1 1 0 - - - -

A.1 Random Oracle Query Independence

The following lemma characterizes a key property of the random oracle. Here
we denote by RO the random oracle itself, and by V(·) the information learnt by
an adversary, even when potentially unbounded.

Lemma 1 (Query Independence). Let RO : {0, 1}a → {0, 1}b be a random
oracle with fixed sized inputs of length a. Let Q = (q1, . . . , qm) be the queries
made to the random oracle. Let R = (r1, . . . , rm) be the set of responses such
that for each query qj, rj is its response. Then V(Q) = {Q,R}. For a query
q ̸∈ Q, for all random choices of responses r ∈ {0, 1}b,

Pr[RO(q) = r|V(Q)] = Pr[RO(q) = r]
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A.2 Setting the Length of RO Output

The random oracle RO is employed in each gate in the garbling to derive the
approximate keys t = (X00, X01, X10, X11) from the gate input labels LA0 , L

A
1 and

LB0 , L
B
1 . This oracle RO takes as an input a gate id g ∈ [q] as a tweak, and two

ℓ-bit labels: one from each input wire A and B. It outputs an ℓ′-bit value Xab. In
the garbling scheme, for a security parameter κ, we set ℓ = κ and ℓ′ = 8ℓ = 8κ.
In this section we discuss the reason why ℓ′ is set this way in terms of κ.

The primary reason stems from the nature of the algorithm used to create
∇g. The gate garbling ∇g is created bit-by-bit independently until it contains
ℓ positions with 1. From Table 3,4 it is evident that a position j in ∇g is set
to 1 with probability 1

4 over a random choice of (X00[j], X01[j], X10[j], X11[j]) ∈
{0, 1}4. As these bits originate from random oracle outputs, they are indeed
distributed uniformly at random. Therefore, ℓ′ needs to be set such that the
probability of ∇g having Hamming weight < ℓ is negligible in κ. Let us now
examine this probability for ℓ′ = 8κ.

For a gate g, let H be a random variable that denotes the Hamming weight of
∇g derived from a random t = (X00, X01, X10, X11) where each Xab ∈ {0, 1}ℓ

′
.

H ∼ Binomial(ℓ′,
1

4
) = Binomial(8κ,

1

4
)

This random variable has a mean µ = np = 8κ
4 = 2κ and variance σ2 = npq =

1.5κ. Then, using Hoeffding’s inequality for Binomial Distributions,

Pr[H < κ] ≤e−2n(p− k
n )2

=e−16κ( 1
4−

κ
8κ )2

=e−
κ
4

which is negligible in κ.

B Proof of Theorem 1

Before stating the proof itself, we define certain terms used within our proof.

B.1 Proof Setup

In the security game, the adversary’s goal given (F,X, d) is to distinguish
whether (F, d) ← Gb(C0) and X = En(e, x0), or (F, d) ← Gb(C1) and X =
En(e, x1). Going forward, for a gate g, we denote by LA and LB the active input
labels, and by Lg the active output label. These values are revealed during the
evaluation of F on X. We show in our proof that the knowledge of these active
values only gives the adversary A zero advantage in distinguishing b.

We denote by LA∗ and LB∗ the inactive input labels, and by Lg∗ the inactive
output label. We term as a “Bad Event”, the case where an adversary A learns
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an inactive label for any wire in F . These reveal additional information about
the circuit and potentially its correlation to X, leading the adversary to gain
advantage in distinguishing in the privacy game. For simplicity of analysis, we
assume that when a random oracle query leads to a ‘Bad Event’, privacy is
already violated, without needing further work/queries from the adversary. For
any wire indexed i, we denote by Li

′
a candidate for an inactive label. Such

a candidate is queried to the random oracle in order to learn whether it is the
inactive label or not. We bound the probability of a “Bad Event” by computing a
bound on the number of such possible queries. We then argue that for each query
to RO ∈ (ROg,RO′), the probability of encountering a bad event is negligible.

We denote by Q the set of adversarial queries and responses. Setting |Q| = s,

Q =

{
[gi, qi, ri]

}
i∈[s]

where gi is the gate index for when RO is queried, qi is the value input during
the ith query, and ri is its respective response.

We denote by H, the set of honest queries and responses. Given the challenge
(F,X, d), this is the set of queries to ROg,RO′ that are made within Ev(F,X) =
Y and De(Y, d) = y. The set H has the following form:

H =

{
{[g, (LAg , LBg ), XABg ]}g∈[q]

{[−, (Y [j], dj), yj ]}j∈[m]

We denote by P the corresponding active path in F . P contains all the values
revealed when evaluating the garbling (F, d) on X. All the elements in P can be
derived from the elements in H. P has the form:

P =

{{
LAg , LBg , XABg , Lg

}
g∈[q]

⋃{
Y [j], dj , yj

}
j∈[m]

}
Note that all the labels Lw for each wire w ∈ [n + q] are of length ℓ-bits

(Table 2). This is also the length of the output labels Y [j] and decoding labels
dj for each output wire j ∈ [m]. For each gate g ∈ [q], the values XABg has
length ℓ′-bits. This is an upper bound on the length of the gate garbling ∇g.
Each ∇g has Hamming weight ℓ. This Hamming weight is the effective key length
and the indices in ∇g containing 1 are termed as the effective key positions.

Definition 4 (Bad Event 1). For a gate g with a garbling ∇g, let LB be the
set of candidate inactive labels for input wire B. Let Lg∗ be the inactive output
label and Lg be the active output label. ‘Bad Event 1’ occurs when for Lb

′ ∈ LB

that is queried by the adversary to RO, it holds that,

ROg(LA, Lb
′
) ◦ ∇g ∈ {Lg, Lg∗}

For simplicity, we treat the test for whether a candidate output label Lg
′
is

the inactive label Lg∗ as requiring zero additional calls after the call to ROg for
Bad Event 1 (Definition 4).
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Lemma 2. In the same setting as in Definition 4, let BLB ⊆ LB be the set
of candidates leading to ‘Bad Event 1’, Lb

′
be the candidate queried in the i-th

query, and Li ⊆ LB the set consisting of the previous i − 1 queried candidates.
For effective key length ℓ of ∇g it holds that,

Pr[ROg(LA, Lb
′
) ◦ ∇g ∈ {Lg, Lg∗}|BLB ∩ Li = ∅] ≤ 1

2ℓ − i
+ 2−ℓ+1

i.e., the probability that the i-th query triggers ‘Bad Event 1’ is upper bounded
by 1

2ℓ−i−1
+ 2−ℓ+1 as long as none of the previous queries triggered the same.

Proof: Let S = LB − Li be the set of candidate input labels that have not
yet been queried. Note that the size of the set S ≥ 2ℓ − i − 1. Let E be the
event that BLB ∩ Li = ∅ ∩ Lb

′ ̸∈ Li, that is, a new label is being queried and
none of the previous i − 1 queries have triggered a Bad Event. We calculate
the probability of ‘Bad Event 1’ by considering two cases. One case is when the
inactive input label is chosen: Lb

′
= LB∗ ∈ S. Querying on this yields one of Lg∗

or Lg (according to the gate functionality) with probability 1. The other case is
when any other candidate Lb

′

i ∈ S is picked. Since the output of ROg is a truly
random string in {0, 1}ℓ, it can yield Lg∗ or Lg with probability 2

2ℓ
. Therefore,

Pr[ROg(LA, Lb
′
) ◦ ∇g ∈ {Lg, Lg∗}|E]

= Pr[ROg(LA, Lb
′
) ◦ ∇g ∈ {Lg, Lg∗}|E, Lb

′
= LB∗] · Pr[Lb

′
= LB∗∣∣E]

+ Pr[ROg(LA, Lb
′
) ◦ ∇g ∈ {Lg, Lg∗}|E, Lb

′
̸= LB∗] · Pr[Lb

′
̸= LB∗∣∣E]

= 1 · 1

2ℓ − i− 1
+

2

2ℓ
· 2

ℓ − i− 2

2ℓ − i− 1

≈ 1

2ℓ − i− 1
+ 2−ℓ+1

⊓⊔
Symmetrically, we define Bad Event 2 and 3 as follows:

Definition 5 (Bad Event 2). For a gate g with a garbling ∇g, let LA be the
set of candidate inactive labels for input wire A. Let Lg∗ be the inactive output
label and Lg be the active output label. ‘Bad Event 2’ occurs when for La

′ ∈ LA,
it holds that,

ROg(La
′
, LB) ◦ ∇g ∈ {Lg, Lg∗}

Definition 6 (Bad Event 3). For a gate g with a garbling ∇g, let LB and LA

be the set of candidate inactive labels for input wire B and A respectively. Let
Lg∗ be the inactive output label and Lg be the active output label. ‘Bad Event 3’
occurs when for Lb

′ ∈ LB and La
′ ∈ LA, it holds that,

ROg(La
′
, Lb

′
) ◦ ∇g ∈ {Lg, Lg∗}

27



Corollary 1. In the same setting as Definition 5, let BLA ⊆ LA the set of
candidates leading to ‘Bad Event 2’, La

′
be the candidate queried in the i-th

query, and Li ⊆ LA the set consisting of the previous i − 1 queried candidates.
For effective key length ℓ of ∇g it holds that,

Pr[ROg(La
′
, LB) ◦ ∇g ∈ {Lg, Lg∗}|BLA ∩ Li = ∅] ≤ 1

2ℓ − i− 1
+ 2−ℓ+1

i.e., the probability that the i-th query triggers ‘Bad Event 2’ is upper bounded
by 1

2ℓ−i
+ 2−ℓ+1 as long as none of the previous queries triggered the same.

Corollary 2. In the same setting as Definition 6, let BLA,LB ⊆ LA×LB be the

ordered set of candidates leading to ‘Bad Event 3’, Lb
′
and La

′
be the candidate

queried in the i-th query, and Li ⊆ LA×LB be the set consisting of the previous
i− 1 queries. For effective key length ℓ of ∇g it holds that,

Pr[ROg(La
′
, Lb

′
) ◦ ∇g ∈ {Lg, Lg∗}|BLA,LB ∩ Li = ∅] ≤ 1

2ℓ − i− 1
+ 2−ℓ+1

i.e., the probability that the i-th query triggers ‘Bad Event 3’ is upper bounded
by 1

2ℓ−i
+ 2−ℓ+1 as long as none of the previous queries triggered the same.

B.2 The Complete Proof

Theorem 2 (Honest-but-Curious Adversarial Behaviour). Let A be a
PPT adversary. In the privacy game as in Algorithm 1, given (C0,C1, x

0, x1)
of A’s choice such that Φ(C0) = Φ(C1) and C0(x

0) = C1(x
1), the challenge

(F,X, d), and H, the set of honest queries only, it holds that,

Pr[F, d← Gb(C0), X = En(e, x0)|V(F,X, d,H)]

=Pr[F, d← Gb(C1), X = En(e, x1)|V(F,X, d,H)]

Proof: Before proving the above theorem, consider the following lemmas:

Lemma 3 (Honest Queries reveal only the Active Path). Let (F,X, d) be
the challenge that is output from Algorithm 1. Let H be the set of honest queries
and let P be the active path. Then,

V(F,X, d,H) = P

Informally, the proof follows in two stages. The first step is to show that
V(F,X, d,H) does indeed include P . This can be shown by the construction
of the garbling scheme. Next, it remains to show that nothing beyond P is
revealed. In order to prove this, we show that given P , the tuple (F,X, d,H) can
be constructed. This completes the proof.

Proof: The proof follows in two steps. First we need to show that P can indeed
be derived from V(F,X, d,H). That is,

P ⊆ V(F,X, d,H)
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This holds by construction. The active path P can be derived from V(F,X, d,H)
since all of its elements can be determined from H. Recall, H is the set of honest
queries to the random oracles that are necessary for computing Y = Ev(F,X)
and y = De(Y, d) from the challenge. By definition, it has the form,

H =

{
{[g, (LAg , LBg ), XABg ]}g∈[q]

{[−, (Y [j], dj), yj ]}j∈[m]

So (F,X, d,H) does indeed complete all the information in the active path:

P =

{{
LAg , LBg , XABg , Lg

}
g∈[q]

⋃{
Y [j], dj , yj

}
j∈[m]

}
In order to complete the proof of the theorem, it remains to show that nothing

beyond P is revealed from V(F,X, d,H). That is,

P ⊇ V(F,X, d,H)

We show that P alone can be used to recreate the tuple (F,X, d,H). First,
note that X contains the set of active labels for all circuit input wires. This
is contained within P . The set d = {dj}j∈[m] is the decoding information, also
contained within P . H can also be determined by P . For each gate g, the el-
ements (LAg , LBg , XABg ) ∈ P are the query and response for ROg. The set{
Y [j], dj , yj

}
j∈[m]

is the set of RO′ query and responses in H. Finally, F is a

set of gate garblings, ∇g. For each g ∈ [q], this can be derived from examining
XABg and Lg: ∇g is set to 1 for only those positions in XABg whose projection
gives Lg. This completes the proof. ⊓⊔

Lemma 4 (Active Paths are Identically Distributed). For the garbling
(F0, d0, e) ← Gb(C0), let X0 = En(e, x0) and let P0 and H0 be the correspond-
ing active path and honest queries set. Similarly, For the garbling (F1, d1, e) ←
Gb(C1), let X1 = En(e, x1) and let P1 and H1 be the active path and honest
queries set. Then if C0(x

0) = C1(x
1) and Φ(C0) = Φ(C1), it holds that,

{F0, d0, X0, P0, H0} ≡ {F1, d1, X1, P1, H1}

Proof: The proof for this considers the distribution A0 = {F0, d0, X0, P0, H0}
that is derived using C0 and x0, and the distribution A1 = {F1, d1, X1, P1, H1}
that is derived using C1 and x1. Let us examine these distributions:

– In both distributions, the garbling (F0, d0) ∈ A0 and (F1, d1) ∈ A1 are
distributed the same way. The garbling F0, d0 are a garbling of C0, and
F1, d1 are a garbling of C1 using the garbling scheme in Algorithms 2-6. It
holds that their topology, Φ(C0) = Φ(C1). The garbling produced does not
reveal any information beyond Φ. This is because the gate garbling ∇g is
distributed the same way regardless of the functionality fg ∈ {AND,XOR}
due to the nature of Algorithm 5 and Table 3,4.
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– Considering the complete challenge (F0, d0, X0) ∈ A0 and (F1, d1, X1) ∈
A1, note that the active input labels sets contain labels that are sampled
independently and uniformly at random from {0, 1}ℓ. These distributions,
without making any random oracle queries, is also identically distributed
since X and F, d are independent when no RO queries are made.

– On evaluating the challenges, note that C0(x
0) = C1(x

1) and so the distri-
butions cannot be distinguished on the basis of the output of the evaluation.
The honest queries in the set H0 are determined by (F0, X0, d0). The dis-
tribution of these queries is identical to that in H1 that are determined by
(F1, X1, d1). This is because the probability that the random oracle query
responses are distributed as in H0 is the same as the probability of it be-
ing as in H1. Therefore (F0, d0, X0, H0) ∈ A0 and (F1, d1, X1, H1) ∈ A1 are
identically distributed.

– The active paths P0 and P1 are determined completely by H0 and H1.

Therefore,
{F0, d0, X0, P0, H0} ≡ {F1, d1, X1, P1, H1}

⊓⊔
From Lemma 3, given (F,X, d) and the honest queries H only, nothing be-

yond the active path P is revealed. Lemma 4 shows that the active paths for any
C0, x

0 and C1, x
1 is identically distributed. Therefore, the theorem follows. ⊓⊔

Theorem 3 shows a bound on the advantage from a single adversarial query.

Theorem 3 (Advantage of a single malicious query). Let A be a PPT
adversary and ℓ be the effective key length. Given the challenge (F,X, d) as in
Algorithm 1, A’s advantage on a single adversarial query is bounded by,

Adv|Q|=1 ≤ 2−ℓ +
1

2ℓ − 2

Proof: From Lemma 2 and Corollary 1 and 2, we can conclude that when the
adversary A makes one adversarial query, it can encounter at most one of the 3
‘Bad Events’. The probability of the same happening can be bounded as,

Pr[Bad Event] ≤ max
j∈[3]

(Pr[Bad Event j])

≤ 1

2ℓ − 2
+ 2−ℓ

It can also only gain advantage if the query it makes corresponds to a ‘Bad
Event’. Therefore, A’s advantage on a single adversarial query is,

Adv|Q|=1 ≤ Pr[Bad Event] ≤ max
j∈[3]

(Pr[Bad Event j]) ≤ 1

2ℓ − 2
+ 2−ℓ

⊓⊔
Theorem 4 extends the result above to provide a bound on the advantage

gained from multiple adversarial queries.
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Theorem 4 (Advantage in multiple malicious queries). Let A be a PPT
adversary and ℓ be the effective key length. Given (F,X, d) as in Algorithm 1, the
honest queries set H, and adversarial queries Q s.t. |Q| = s, A’s advantage is,

Adv|Q|=s <
s

2ℓ − 2

Proof: In order to prove the above theorem, note that a query made by an
adversary A can be broadly classified under one of the following categories:

1. An Honest Query where the query and the response for the random oracle
lies on the active path of the garbling in the challenge (F,X, d). Theorem 2
shows that given all the queries H in the active path, A’s advantage is 0.

2. An Adversarial Query yielding a ‘Bad Event’ is a query other than an Honest
Query for which the response of the random oracle lies within the garbling
in the challenge. This may reveal information about the garbling beyond the
active path. On such an event, without loss of generality, we consider privacy
as violated. Our proof builds towards bounding the probability of this event.

3. An Adversarial Query not yielding a ‘Bad Event’ is a random oracle query
and response that can evidently not be involved in the construction of the
challenge garbling. Making queries to the RO that yield such responses do
not help identify the inactive path and therefore give no advantage. That
is, given the honest-query-set H, and adversarial queries that do not lead to
a ‘Bad Event’, this will at most help narrow down the domain of the RO.
This helps increase the probability of eventually encountering a ‘Bad Event’.
However, until the ‘Bad Event’ is encountered this gives A no advantage over
possessing H.

Let qi be the event that the ith adversarial query takes place given that all i− 1
queries before it have not lead to any bad event. We have from Lemma 2, and
Corollary 1 and 2 that each of the ‘Bad Events’ 1, 2 and 3 are bounded as,

Pr[ Bad Event ∈ {1, 2, 3}
∣∣qi] ≈ 1

2ℓ − i− 1
+ 2−ℓ

Note that the probability of the ‘Bad Event’ increases with the increase in the
number of queries and in each query, the probability of encountering any ‘Bad
Event’ at all is calculated as the maximum of these above probabilities. Let us
now compute, the probability that a ‘Bad Event’ is encountered given |Q| = s
adversarial queries to the same random oracle:

Pr[ Bad Event
∣∣|Q| = s] = 1− Pr[¬ Bad Event

∣∣|Q| = s]

= 1−Πs
i=11− Pr[ Bad Event

∣∣qi]
< 1−Πs

i=1

(
1− 1

2ℓ − i− 1
− 2−ℓ

)
≈ 1−Πs

i=1

(
2ℓ − i− 2

2ℓ − i− 1

)
= 1− 2ℓ − s− 2

2ℓ − 2
=

s

2ℓ − 2
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We have seen in the proof for Theorem 3 that one adversarial query can trigger
at most 1 ‘Bad Event’ and the adversary A’s advantage is bounded by the
probability of a ‘Bad Event’ occurring. Given an adversarial query, if the response
leads to a ‘Bad Event’, we assume that privacy is violated. If it does not, the
views of the adversary are still identical. We therefore need to calculate the
probability of at least one ‘Bad Event’ among |Q| = s adversarial queries.

The above is a bound on the probability of a ‘Bad Event’ on a particular ran-
dom oracle RO ∈ (ROg,RO′). It remains to extend this result to the case where
adversarial queries were made to different random oracles across different gate
garblings in the circuit. Note that each random oracle used in the construction
is independent. So the result of queries to one random oracle do not affect the
result of making (even the same) queries to a different random oracle, except
for possibly reusing the query space as a result of seeing a query output without
triggering a bad event. So the above is an upper bound that also extends to the
case where not all of the previous i − 1 queries have been made to the same
random oracle since all those cases are bounded by this case. Hence it follows
again that when |Q| = s, A’s advantage is bounded by:

Adv|Q|=s <
s

2ℓ − 2

⊓⊔
Summing up, the proof of our final theorem follows.

Theorem 1 (Overall advantage of a malicious adversary - Restated).
Let GS = (Gb,En,Ev,De) be a garbling scheme as in Algorithms 2–7. Let κ be
a computational security parameter. For every PPT adversary A with running
time t(κ) having access to all random oracles RO ∈ (ROg,RO′), participating in
the Privacy game (Definition 2), ∃ negligible function µ s.t. A’s advantage is,

Adv(κ) =

∣∣∣∣Pr[ARO(C0,C1, x
0, x1, F,X, d) = b]− 1

2

∣∣∣∣ < µ(κ)

Proof: For a PPT adversary A running for t(κ) time steps, |Q| ≤ t(κ). Setting
ℓ = κ, we have from Theorem 4,

Adv|Q|=t(κ) <
t(κ)

2κ − 2

⊓⊔
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