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Abstract. The existence of one-way functions implies secure digital sig-
natures, but not public-key encryption (at least in a black-box setting).
Somewhat surprisingly, though, efficient public-key encryption schemes
appear to be much easier to construct from concrete algebraic assump-
tions (such as the factoring of Diffie-Hellman-like assumptions) than ef-
ficient digital signature schemes. In this work, we provide one reason for
this apparent difficulty to construct efficient signature schemes.
Specifically, we prove that a wide range of algebraic signature schemes
(in which verification essentially checks a number of linear equations over
a group) fall to conceptually surprisingly simple linear algebra attacks.
In fact, we prove that in an algebraic signature scheme, sufficiently many
signatures can be linearly combined to a signature of a fresh message. We
present attacks both in known-order and hidden-order groups (although
in hidden-order settings, we have to restrict our definition of algebraic
signatures a little). More explicitly, we show:
– the insecurity of all algebraic signature schemes in Maurer’s generic

group model (in pairing-free groups), as long as these schemes do not
rely on other cryptographic assumptions, such as hash functions.

– the insecurity of a natural class of signatures in hidden-order groups,
where verification consists of linear equations over group elements.

We believe that this highlights the crucial role of public verifiability in
digital signature schemes. Namely, while public-key encryption schemes
do not require any publicly verifiable structure on ciphertexts, it is ex-
actly this structure on signatures that invites attacks like ours and makes
it hard to construct efficient signatures.

1 Introduction

Digital signatures and public-key encryption. Digital signatures and public-key
encryption (PKE) schemes are two of the most fundamental cryptographic prim-
itives. Both of them are crucial to securing communication, and are used in
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countless applications. From a theoretical perspective, these primitives are com-
parable, but somewhat different in strength: it is known that existentially, digital
signatures are equivalent to one-way functions [41,45]. (That is, secure digital
signatures can be constructed from one-way functions and vice versa.) However,
PKE schemes appear to be strictly stronger (in a black-box sense) than one-way
functions [31]. In this sense, it is easier to construct digital signatures than PKE
schemes.

On the other hand, current efficient constructions of signatures and PKE
schemes from stronger (in particular group-based) assumptions paint a different
picture. For instance, efficient PKE schemes are known from the factoring [29]
and DDH [16,34] assumptions. But efficient signature schemes from the factor-
ing or DDH assumptions appear to require random oracles [47,5,33], stronger
assumptions [17], or tradeoffs in efficiency [30]. Hence, it seems that efficient
signatures are somewhat harder to construct than PKE schemes. This leads to
the obvious question that motivates this work:

What makes efficient (standard-model) digital signature schemes harder to
construct than PKE schemes?

We note that while lower bounds for digital signature schemes exist, they are ei-
ther limited to very special types of signature schemes (like structure-preserving
signatures [2,1,25,26] in the pairing setting), or to bounds on the efficiency of
constructions from symmetric primitives [23,4]. To the best of our knowledge,
e.g., the (space or time) complexity of group-based signature schemes (without
pairings) is not well-understood.

The role of public verifiability. Of course, signature and PKE schemes have a
very different syntax (and different goals). However, one unique property of dig-
ital signatures is that of public verifiability. Specifically, even an adversary can
verify the validity of a signature, while it can in general not verify the consistency
of a PKE ciphertext (i.e., that it was generated with the encryption procedure).
In a security reduction, this difference allows a wider range of techniques to
modify ciphertexts in a security reduction than signatures. In fact, a popular
technique for PKE security reductions starts by making the ciphertext inconsis-
tent [16,18,34]. Similar techniques for signatures exist [24], but currently require
a very specific algebraic setup in order to be compatible with public verifiability.

In a nutshell, public verifiability enforces a certain publicly verifiable struc-
ture on signatures that does not need to be present in PKE ciphertexts. For
many known signature schemes (e.g., [21,47,17,8,52,30]), verifying this structure
amounts to checking whether different group elements or exponents stored in the
signature fulfill one or more polynomial equations (whose coefficients are derived
from public key, message, and signature). The simpler these equations, the more
efficient the signature scheme becomes.

Our results. In this paper, we use the above observations as a motivation to
look at a very simple class of signature schemes we call “algebraic”. An algebraic
signature scheme is one in which public keys and signatures consist of group
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elements (and possibly some additional auxiliary information), and verification
consists in checking whether these group elements satisfy some linear relations
(whose coefficients are influenced by the auxiliary information). This class of
signatures is simple and natural, and would seem a promising starting point for
constructing efficient signature schemes. We provide impossibility results in two
settings:

– In pairing-free groups of known order, we show that all algebraic signature
schemes in Maurer’s generic group model are insecure, as long as these sig-
nature schemes do not rely on other cryptographic assumptions, such as
random oracles.

– In hidden-order groups, we establish the insecurity of a natural subclass of
algebraic signatures (essentially those without auxiliary information). As a
further extension, we show that BLS signatures are insecure when the BLS
hash function is instantiated with a specific type of programmable hash
function, such as Waters’ programmable hash function used in his signature
scheme [52].

In both settings, we show that in algebraic signature schemes, it is always possible
to linearly combine sufficiently many existing signatures (for distinct messages)
to another signature for a fresh message. (The specific methods to do that depend
on the setting, however.)

As a simple special case, assume a signature scheme for which valid signatures
(σ1, . . . , σk) satisfy a single equation of the form

σ1P1 + . . .+ σkPk = P0

over an additive group (G,+), where the Pi = Pi(vk,m) ∈ G are publicly com-
putable from verification key and message, and the σi are exponents from the
signature.

Now if the Pi are also (publicly) computed in a linear fashion from a few base
elements X1, . . . , Xn ∈ G in the verification key, each signature gives a linear
equation

σ′1X1 + . . .+ σ′nXn = 0

(with known σ′i) for the Xi. After seeing sufficiently many valid signatures, the
σ′i (and hence the σi) for a fresh random message m∗ can be derived by linear
algebra. Hence, such a signature scheme is insecure.

Extensions. We extend this idea also to more equations, groups of unknown
order (in which linear algebra has to be replaced with computations over the
integers), and to randomized signatures. Our results cover typical settings of
groups with known order (as used, e.g., with Diffie-Hellman-like assumptions),
and with unknown order (as used, e.g., for factoring- and RSA-based construc-
tions).
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On the efficiency of our attacks. The basic attack outlined above is efficient
in the sense that only linear algebra operations over matrices of exponents are
made. When generalizing to unknown-order settings, these operations become
linear algebra operations over the integers (which are more expensive, but remain
polynomially efficient).

However, we will also generalize these ideas to schemes in which signatures
contain arbitrary “tags” t (i.e., non-algebraic bitstrings that may influence the
selection of the Pi = Pi(vk,m, t)). Such tags can model, e.g., random coins
chosen during signing. In general, it is not immediately clear how to adapt the
above attack idea to such “tagged” signatures, since the attack only yields forgery
coefficients σi, but no suitable t.

In this general setting, we give an attack that is “pseudo-efficient” in the
generic group model. More specifically, our attack uses only a polynomial num-
ber of group operations, but brute-forces a suitable t (and thus becomes com-
putationally infeasible for larger t). This attack shows that even for “tagged”
signatures with such a t, security cannot come from hardness assumptions in
the group alone. We stress that this generalized attack brute-forces only t, and
becomes efficient also in terms of running time for logarithmically-short t. In
fact, for empty t, it coincides with the basic attack described above.

What do our results say about existing paradigms for signature schemes? Our
characterization also helps to understand what differentiates somewhat less effi-
cient schemes like (implicitly [30] or explicitly [39]) tree-based schemes: in tree-
based schemes, the polynomial equations checked have very diverse coefficients
(in the sense that every message uses a unique set of coefficients). Our results do
not apply in such settings, since we may end up with more variables than linear
equations for these variables.

A note on generic group models. Since our first result employs generic groups, it
is worthwhile to comment on our choice of Maurer’s generic group model. Generic
group models (GGMs) formalize the idea that algorithms, both schemes and
adversaries, can only make algebraic use of a group, in other words only use the
group as a black box. This is typically formalized by giving such algorithms access
to the group via a group oracle, which takes as input Zp elements and returns
handles to group elements. The group oracle also performs group operations by
taking handles of group elements and returning the handle of the resulting group
element.

This idea can be implemented in different nuances. In Shoup’s generic group
model [51], the handles are chosen by a random injective function from Zp into
a set of sufficiently long bit-strings, i.e. each group element is represented by a
unique but otherwise uniformly random handle. In this model, the group oracle
can be immediately used to implement a random oracle [55]. As a consequence,
in Shoup’s generic group model, Schnorr’s signature scheme [47] (using random-
oracle-like features of the generic group as in [14]) is provably secure. But this
means that in this model there do in fact exist fully succinct signature schemes,
yet via a non-standard use of the group.

4



In Maurer’s generic group model [37], the group oracle is stateful and han-
dles are computed lazily via a counter. Consequently, the handles do not carry
additional entropy and the group oracle cannot be used to implement a random
oracle. Furthermore, it seems to be difficult to even define a consistent hash func-
tion on group elements, as the labels depend on the order in which the group
elements were queried.

More applications. But while conceptually proving what cannot work to con-
struct efficient signature schemes, we also showcase our techniques for a known
signature scheme. Namely, we show that the pairing-based Boneh-Lynn-Shacham
signature scheme [11], whose security is proved in the random oracle model, can-
not be implemented with a suitable algebraic hash function (such as Waters’
programmable hash function used in his signature scheme [52]).

1.1 Related Work

Impossibility results in idealized and restricted models have a rich history, dat-
ing back to the seminal work of Impagliazzo and Rudich [32] who established
impossibility of constructing key-agreement from one-way functions in a black-
box way. In this vein, Boneh et al. [12] showed that Identity-Based Encryption
(IBE) [50,10,15] cannot be constructed from trapdoor permutations in a black-
box way. Papakonstantinou et al. [42] generalized this result to show that IBE
cannot be constructed by making only black-box use of a cryptographic group
without pairings5. The techniques of [42] set the blueprint for a line of follow-up
works, including this work, in arguing that public information (such as the mas-
ter public key for an IBE scheme) imposes a system of linear constraints, and
every time an adversary is provided a user secret key, one of two events must oc-
cur. (1) Either the dimension of this system decreases in the adversary’s view or
(2) the adversary could have generated this user key by himself from information
which was already available to him. In this way, it can be argued that the size of
public parameters dictate a (polynomial) upper bound for how many key-queries
such an IBE can be secure. Roughly, by exhausting this bound an adversary can
force event (2) to happen after a polynomial number of key queries, thereby
breaking security of the IBE scheme. The impossibility result of [42] is provided
in Shoup’s generic group model. Pass and Shelat [43] showed that achieving VBB
obfuscation is impossible to achieve by only making black-box use of constant
degree graded encoding. In their work, the ideal graded encoding scheme is mod-
eled akin to Shoup’s generic group model, in that handles to group elements are
(unique) uniformly random bit strings. On a technical level, [43] shows that ideal
multilinear maps in any such construction are useless, in that they can be com-
piled out while still obtaining an approximately correct VBB obfuscator (which
were shown to be impossible [6]). The core idea is, in the same vein as in [42],

5 Identity-based Encryption was later shown to be possible from the Computational
Diffie-Hellman (CDH) assumption in cryptographic groups by making non-black-box
use of the underlying group [19]
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to learn as system of linearly independent polynomials via black-box access to
the ideal multilinear maps. This in turn allows emulation of zero-test queries in
the obfuscated program without access to the ideal multilinear maps. This result
was generalized by Mahmoody, Mohammed and Nematihaji [36] to the setting
of ideal non-commutative rings. Zhandry and Zhang [54] adapted the compila-
tion technique of [43] to order revealing encryption, showing that this primitive
cannot be constructed in Shoup’s generic group model. While Shoup’s model
is in some sense closer to the plain model than Maurer’s model by providing
explicit representations of group elements, this aspect leads to many numerous
technical obstacles. A recent line of work has focused on studying limitations of
construction techniques for pivotal cryptographic primitives in Maurer’s model.
Rotem, Segev and Shahaf [46] showed that any generic construction (in Mau-
rer’s model) of a delay function in a group of known order is insecure, giving
evidence that the use of hidden order groups in known constructions [7,44,53]
might indeed be necessary. Schul-Ganz and Segev [49] provided a tight version
of the impossibility result of [42] in Maurer’s model, in showing that any IBE
scheme whose public parameters contain n group elements will support at most n
identity secret keys. We remark using a simple technique known as Naor’s trick,
any IBE scheme can be transformed into a signature scheme. Consequently, on
the surface our results also imply the results of [49]. However, [49] consider IBE
schemes allowing arbitrary (yet generic) decryption algorithms, whereas in this
work we consider signature schemes with algebraic verification, i.e. signature
schemes where verification can be expressed as a (generic) equation system. In
this sense, our results do not immediately imply the results of [49], and further
study in this direction is necessary.

1.2 Technical Outline

We will now provide a high level overview of our generic attacks. As purely
combinatorial techniques suffice to achieve signatures of size logarithmic in the
size of the message space [35,39,41], we will first suitably restrict the class of
signature schemes under consideration.

Algebraic Signature Schemes. We will consider signature schemes which only
make algebraic use of a cryptographic group. By algebraic, we mean that the
group is only accessed via the standard group operations, but not by making use
of representations of group elements. Essentially our notion of algebraic signature
schemes is characterized by the property that verification checks a set of linear
equations in the group. Specifically, assume in the following that we are working
over a cyclic group G with generator P isomorphic to Zp. To simplify notation,
we will write group operations additively. We say a signature scheme over an
additive group G is algebraic, if it meets the following structural requirements.

– Signing keys sk are arbitrary bit-strings, whereas verification keys consist of
a vector of n group elements X = (X1, . . . , Xn)

ᵀ and a bit-string s.
– The signing algorithm produces signatures σ which consist of a vector of k

group elements Y = (Y1, . . . , Yk)
ᵀ and a bit string t.
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– The verification algorithm Verify(vk,m, σ) is described by two efficiently com-
putable functions A and B , where A(s,m, t) returns a Z`×np matrix and
B(s,m, t) returns a Z`×kp matrix, respectively. The signature σ is accepted
if the group-equations

A(s,m, t) ·X = B(s,m, t) ·Y

hold over the additive group (G,+).

We call this type of signature scheme algebraic, as the verification algorithm only
makes algebraic use of the group, i.e. no bit-representations of group elements
are used. Note further that this definition does not impose any restrictions on the
signing algorithm, i.e. the signing algorithm may compute arbitrary functions
of the signing key and the message. While at first glance this notion might
seem overly restrictive, we will argue below that any signature scheme which
only makes algebraic use of a group must be of this form. This notion does not
include pairing-based constructions in the generic group model, since only linear
verification equations are considered. Therefore constructions like [9,8] are not
covered by our results.

Learning Linear Functions. We will now turn to showing that any algebraic
signature scheme can be efficiently attacked in the generic group model, where
we measure the adversary’s efficiency only in terms of its group oracle queries.
Our starting point is a basic fact about the learnability of linear functions.
Consider an experiment where a challenger chooses some function F , and then
plays the following game with an adversary A. The challenger chooses an input
xi from some distribution X and for each xi, A can either decide to see F (xi)
or provide a guess for F (xi), where in the latter case if the adversary guesses
correctly it wins. Clearly, for general functions F this experiment is hopeless for
the adversary, as F could, e.g., be a pseudorandom function with large output
domain.

On the other hand, things are different if F is a linear function. Say F : V→ U
is a linear function between two vector spaces V and U over some field F, where
V is (say) of dimension n. Now, every time A is given a new input xi ∈ V, then
one out of two things must happen.

1. It holds that xi is in the span of x1, . . . ,xi−1. In this case, it follows from
the linearity of F that F (xi) is uniquely specified by the input-output pairs
(x1, F (x1)), . . . , (xi−1, F (xi−1)). Thus, in this caseA can win the experiment
with probability 1, simply by solving a linear equation system for F (xi).

2. It holds that xi is not in the span of x1, . . . ,xi−1. In this case, A will learn
new information about F .

Noting that the dimension of V is n, it follows that case 2 can happen at most
n times. Consequently, after at most n rounds the adversary will win the exper-
iment with probability 1.
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Learning Affine Relations. The discussion in the previous paragraph does not
immediately translate into an attack against algebraic signatures, as the signing
algorithm is not necessarily a linear function. However, we will now modify the
above argument such that it yields an efficient attack against algebraic signatures
over prime order groups.

First note that for an algebraic signature scheme, knowing the discrete loga-
rithms x = (x1, . . . , xn)

ᵀ of the group elements X = (X1, . . . , Xn)
ᵀ is sufficient

to forge signatures: Due to correctness of the signature scheme, we know that
for any message m there exists a valid signature σ = (Y, t), i.e., it holds that

A(s,m, t) ·X = B(s,m, t) ·Y.

Consequently, it also holds

A(s,m, t) · x = B(s,m, t) · y.

in Zp. But this means that, given the discrete logarithms x of X, we can find a
signature for any message m by exhaustively searching over all possible values of
t and testing for each t whether the equation system B(s,m, t) ·y = A(s,m, t) ·x
has a solution y. If for a given t such a y exists, (t,Y = yP ) is a valid signature
of the message m.

Towards developing the actual attack, we will now discuss a twist of the above
idea. Assume the adversary already knows (m1, σ1), . . . , (mi−1, σi−1), where σj =
(Yj , tj).

Then we can define a set Ti−1 ⊆ Znp of candidate vectors x which could be the
discrete logarithms of X. A vector x is in Ti−1, if for all indices j ∈ {1, . . . , i−1}
it holds that A(s,mj , tj) ·X = B(s,mj , tj) ·Yj . In other words, Ti−1 consists
of all vectors x such that for j ∈ {1, . . . , i − 1} the (mj , σj) are valid message-
signature pairs under the verification key X.

Note that while membership in the set Ti−1 can be decided using a poly-
nomial number of group queries, we cannot efficiently compute the set Ti−1
given the message-signature pairs (m1, σ1), . . . , (mi−1, σi−1). However observe
that Ti−1 is an affine subspace of Znp , as it is the solution-space of a non-
homogenous linear equation system.

Ignoring the issue that we cannot efficiently compute Ti−1 for the moment,
we can now mount a similar learning argument as above. For an additional
message-signature pair (mi, σi), define Ti analogous to Ti−1 taking the addi-
tional message-signature pair into account. So for every new message mi, one
out of two cases may happen:

1. By learning the signature σi of mi the space Ti does not shrink, i.e., it holds
that Ti = Ti−1.

2. By learning the signature σi the space T does shrink, i.e., Ti ( Ti−1.

Note that if the first case happens, an adversary A which knows Ti−1 might
have just as well computed σi on its own. Again ignoring the issue that this can’t
be implemented with a polynomial number of group operations, the adversary
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could exhaustively search over all σ = (Y, t) and pick one for which Ti = Ti−1. In
the second case however, since both Ti and Ti−1 are affine spaces, the dimension
of Ti must be strictly smaller than the dimension of Ti−1. Since the space T0 =
Znp has dimension n, case 2 can happen at most n times.

Impossibility of Algebraic Signatures against Generic Adversaries. We will now
address the issue that in the above sketch computing the affine spaces Ti cannot
be achieved with a polynomial number of group operations. Upon closer inspec-
tion, the above argument only hinges on the fact that the dimension of Ti−1 is
decreasing. Since Ti is an affine space, it can be expressed as the sum of any
point in Ti and a linear space Wi. By standard linear algebra, it holds that Wi

is the intersection of the kernels of the A(s,mj , tj). Clearly, Wi has the same
dimension as Ti, i.e., whenever the dimension of Ti decreases, the dimension if
Wi decreases as well.

However, instead of looking at Ti or Wi we will look at the dual space of Ti,
that is the set of all homogeneous linear equations satisfied by all elements in
Ti.

Specifically, for a verification key vk = (X, s), a message m and a signature
σ = (Y, t) we define the space

K(m, t) = LKer(B(s,m, t)) ·A(s,m, t),

where LKer(B(s,m, t)) is the left-kernel of B(s,m, t).
Notice that for every v ∈ K(m, t) we can write vᵀ = wᵀA(s,m, t) for a

wᵀ ∈ LKer(B(s,m, t)) and it holds that

vᵀ ·X = wᵀ ·A(s,m, t)X = wᵀ · B(s,m, t)Y = 0,

as wᵀ ∈ LKer(B(s,m, t)). In the main body we show that K(m, t) precisely
characterizes the linear constraints imposed on the unknown vector x by s,m
and t, that is if it holds for all vᵀ ∈ K(m, t) that vᵀ ·X = 0 then there exists
a Y such that A(s,m, t)X = B(s,m, t)Y. We further define Li to be the set of
linear constraints imposed by all (m1, σ1), . . . , (mi, σi), that is

Li =
i⊕

j=1

K(mj , tj),

where ⊕ denotes the sum of vector spaces6. Note that K(mi, ti) and hence the
Li can be efficiently computed from the bit-strings s and (m1, t1), . . . , (mi, ti).
While the space Ti of candidates for x potentially shrinks when we add a new
message-signature pair, the space Li of linear relations that must be satisfied
by all the x grows. As before, we will distinguish two cases concerning a new
message-signature pair (mi, σi).

6 The sum of vector spaces is the set of all vectors in the ambient space which can be
linearly combined from vectors in these spaces
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1. In the first case it holds that Li = Li−1, in other words it holds that
K(mi, ti) ⊆ Li−1

2. In the second case it holds that Li−1 6⊆ Li, i.e. K(mi, ti) contains new linear
relations about X.

We can routinely argue as before via a simple dimension argument that case 2 can
happen at most n times. On the other hand, if case 1 happens for some (mi, ti),
we can now efficiently forge a signature as follows. If K(mi, ti) ⊆ Li−1, then by
the above discussion there exists a Y such that A(s,mi, ti)X = B(s,mi, ti)Y.
But the critical observation now is that this is a linear equation system for
which we can find a solution Y ∈ Gk (which is guaranteed to exist by the above
discussion) by e.g. computing a weak left-inverse7 H of B(s,m, t) and setting

Y = H ·A(s,mi, ti)X.

Since H can be efficiently computed from B(s,m, t), we can obtain Y from X
by applying a polynomial number of computable Zp operations to X.

Consequently, the final attack can be described as follows, defining the spaces
Li as above. Initialize L0 = {0} and repeat for pairwise distinct messagesm1, . . . ,
mn+1. For message mi, check if there exists ti such that K(mi, ti) ⊆ Li−1. If so,
compute Yi as above, set σi = (Yi, ti) and output the forge (mi, σi). Otherwise,
query a signature σi = (Yi, ti) from the signing oracle, set Li ← Li−1⊕K(mi, ti)
and continue.

Notice that while this attack needs to brute-force over all choices of the ti,
it only makes a polynomial number of queries to the group oracle. In fact we
will show the slightly stronger statement that even if the adversary only receives
a fixed number of random message/signature pairs, the above attack will work
with overwhelming probability.

Algebraic Signatures in Groups of Unknown Order. For the above attack, we’ve
constructed an adversary which makes a polynomial number of queries to the
group oracle, but is otherwise unbounded. We will now consider a more restricted
class of algebraic signatures over groups of unknown order and provide a fully
efficient attack against this class of signatures by using a tweak on the above
ideas. In this setting, we will not model the group as a generic group but rather
provide efficient attacks against a simplified variant of algebraic signatures in
any group of unknown order. Inspecting the above attack, the only inefficient
part of the attack is the exhaustive search over the signature component t. In
our notion of simplified algebraic signatures we will therefore require that the
signature consists only of the group elements Y.

Furthermore, in the unknown group order setting, we will model the publicly
computable matrices A(vk,m) and B(vk,m) used by the verification algorithm
as integer matrices. For a technical reason, in our notion of simplified signatures
we will also require that the matrix B only depends on vk, but not on m.
7 A weak left-inverse of a matrix B is a matrix H for which it holds that BHB = B . For
any matrix B the weak left-inverse H can be efficiently computed e.g. via gaussian
elimination.
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Clearly, if the group order is not known, we cannot immediately extend the
above argument, as we have used linear algebra over fields to compute the spaces
of linear relations Li. Now assume that for a verification key vk the adversary
is given message-signature pairs (m1,Y1), . . . , (mQs ,YQs), i.e. from the view of
the adversary the following linear relations hold over the group:

A(vk,m1) ·X = B(vk) ·Y1

...
A(vk,mQs) ·X = B(vk) ·YQs .

Noting that the A(vk,mi) are integer matrices in Z`×n, then if the number of
signatures Qs issued to the adversary is greater than ` ·n, we will observe integer
linear relations between the A(vk,mi), i.e. there exist α1, . . . , αQs

∈ Z such that

Qs∑
i=1

αiA(vk,mi) = 0.

Assuming that αQs
6= 0, we can express αQs

A(vk,mQs
) as

αQs
A(vk,mQs

) = −
Qs−1∑
i=1

αiA(vk,mi).

Note that if αQs
= 1, we can in fact forge a signature of the message mQs

given
the message-signatures pairs (m1,Y1), . . . , (mQs−1,YQs−1) as follows. Comput-
ing

Y∗Qs
= −

Qs−1∑
i=1

αiYi,

it holds that

B(vk)Y∗Qs
= −

Qs−1∑
i=1

αiB(vk)Yi = −
Qs−1∑
i=1

αiA(vk,mi)X

= αQs
A(vk,mQs

)X = A(vk,mQs
)X.

Our main effort in Section 4 is devoted to showing for a sufficiently large but
poly-bounded Qs there indeed do exist α1, . . . , αQs

∈ Z with αQs
= 1 such that

Qs∑
i=1

αiA(vk,mi) = 0.

A particular challenge of establishing this is that the existence of a signature for
mQs

only guarantees such a linear relation modulo N (where N is the unknown
group order). But to implement our attacks we need such a linear relation over
Z. We will further show that such a linear relation can be efficiently found using
integer linear algebra techniques.

11



2 Preliminaries

2.1 Notation

We denote the security parameter by λ and assume that all algorithms implicitly
take 1λ as an additional input. For n ∈ N, we define the set [n] := {1, . . . , n}.
For a finite set S, s $← S denotes sampling s uniformly at random from S.
Similarly, we write s $← A(x) for the output of a probabilistic algorithm A on
input x and fresh random coins, and s ← A(x) for deterministic algorithms.
A probabilistic algorithm is PPT or efficient, if its runtime is polynomial in
the security parameter and its inputs. For a cyclic group G of order N with
generator P , we write G = (G, N, P ). We write all groups in additive notation
and assume that the bit length of N is in O(λ). Specifically, the multiplication
of a matrix of exponents and a group element vector is defined in the natural
way, i.e. for M = (mi,j) ∈ Zn×kN and X = (X1, . . . , Xk)

ᵀ ∈ Gk, we define
M ·X := (X ′1, . . . , X

′
n)

ᵀ with X ′i =
∑k
j=1mi,jXj for i ∈ [n].

We will also use symmetric pairing groups, which we denote as G = (G,GT ,
N, P, e), where e : G × G → GT and both G,GT are of order N , with G being
generated by P .

We denote column vectors as lowercase bold x ∈ Zn. For a matrix M ∈
Zn×k, we denote by m∗i the ith column of M and mᵀ

j∗ the jth row of M . The
free module generated by the columns of a matrix M ∈ Zn×k is defined as
ColumnSpace(M ) := {a ∈ Zn : there exists c ∈ Zk with a =

∑k
j=1 cjm∗j}.

Alternatively, we can also see ColumnSpace as an integer lattice in Zn.
Let K be a field and V be a K-vector space. For a vector subspace U of V,

we write U ⊆ V. For a (finite) set of vector subspaces Ui ⊆ V for i ∈ I, we
denote the direct sum as U =

⊕
i∈I Ui, i.e. the smallest vector subspace U ⊆ V

s.t. Ui ⊆ U for i ∈ I. Vectors of group elements are bold, upper case letters and
vectors of group exponents are bold, lower case letters. All vectors are column
vectors unless stated otherwise.

For a matrix A, we write its left-kernel as LKer(A) := {x | xᵀ · A = 0},
which is a vector subspace of A’s domain. The product of a vector space V with
a matrix A is defined in the natural way as V ·A := {xᵀ ·A | x ∈ V}.

We will need the following lemma about the extended gcd (greatest common
divisor) algorithm in Section 4.

Lemma 1. Consider any two integers a, b ∈ Z. If a divides b, then the extended
gcd algorithm outputs a as the greatest common divisor, along with the Bezout
coefficients (1, 0). Similarly, If b divides a, then the algorithm outputs b as the
greatest common divisor, along with the Bezout coefficients (0, 1). Recall that
the Bezout coefficients are any integers α, β that satisfy the identity αa + βb =
gcd(a, b).

2.2 Generic Group Model

In the generic group model, the group structure is hidden from an adversary. We
use the definition of Maurer [38], since, in contrast to the model of Shoup [51],
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it doesn’t allow for hash functions on group elements, since this would already
result in short signatures, e.g. [47].

Specifically, the group is encapsulated in a black box, which has registers
for group elements and only exposes them through labels to the outside. These
labels are simply running register numbers and (unlike in Shoup’s model) are
not unique to a group element. (That is, several labels can reference the same
group element.) A generic adversary can only interact with the group via a group
operation oracle Ogrp and an equality test oracle Oeq. The group operation oracle
takes two labels as input, internally computes the group operation on the group
elements corresponding to the labels, writes the new group element to a new
register and outputs the label of the new register. The equality test oracle takes
two labels and outputs 1 iff the group elements corresponding to the labels are
equal. For simplicity, we also add a multiplication oracle Omul, which takes a
label and an integer and returns a label to the group element multiplied by the
integer, and assume that the GGM always outputs the same label for the same
group element since this specific label can always be found by a generic adversary
with polynomially many queries to the equality check oracle.

An adversary is called generic, if it works with only access to the generic
group model. As the GGM is an information theoretic model, the running time
of a generic adversary is typically measured by the number of its queries to
the group oracles. It is called pseudo-efficient, if it makes polynomially many
queries in the security parameter to its group oracles, yet its overall running
time is (potentially) unbounded. If furthermore the overall running time is also
polynomially bounded, then we call it efficient.

We will present a pseudo-efficient generic adversary in Section 3 and an
efficient, standard model adversary in Section 4. Note that although a pseudo-
efficient adversary in the generic group model doesn’t immediately present an
adversary on the schemes covered by our impossibility result, it is sufficient to
rule out black-box constructions from generic groups alone. In other words, the
result tells us that in order to make a signature scheme secure, we need another
source of complexity, which we “factor out” through letting our adversary be
unbounded outside of the generic group.

2.3 Signatures

We recall the standard definitions of syntax and security for digital signatures.

Definition 2 (Digital Signatures). A digital signature scheme SIG = {KeyGen,
Sign, Verify} consists of the following algorithms.

– The key generation algorithm KeyGen is probabilistic and on input of the
security parameter 1λ outputs a verification key and secret key (vk, sk). We
assume that vk implicitly defines the (finite) message space M, which is
superpolynomial in λ.

– The signing algorithm Sign takes a message m ∈ M and a secret key sk as
input and returns a signature σ.
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– The deterministic verification algorithm Verify takes a verification key, a
message m ∈ M and a signature σ as input and returns 1 for accept and 0
for reject.

We require that for all (vk, sk) $← KeyGen(1λ) and every message m ∈ M we
have

Pr[Verify(vk,m,Sign(sk,m)) = 1] = 1.

Definition 3 (UF-CMA Security). We define the advantage of an adversary
A against UF-CMA security (unforgeability against chosen message attack) of a
signature scheme SIG as

AdvUF-CMA
A,SIG (λ) = Pr

[
Verify(vk,m∗, σ∗) = 1
∧ m∗ 6∈ {m1, . . . ,mq}

∣∣∣∣ (vk, sk) $← KeyGen(1λ)
(m∗, σ∗) $← ASign(sk,·)(vk)

]
,

wherem1, . . .mq is the set of all messages queried to the signing oracle Sign(sk, ·).

We can similarly define the notion UF-q-CMA, which is parametrized by the
number q of signature queries the adversary is allowed to make, for some q < |M|.

A weaker form of security is captured by unforgeability against random mes-
sage attacks (UF-q-RMA security), where the adversary receives a set of q random
messages and signatures.

Definition 4 (UF-q-RMA Security). Let q < |M|. We define the advantage
of an adversary A against UF-q-RMA security (unforgeability against random
message attack) of a signature scheme SIG as

AdvUF-q-RMA
A,SIG (λ) = Pr

Verify(vk,m∗, σ∗) = 1
∧ m∗ 6∈ {m1, . . . ,mq}

∣∣∣∣∣∣∣∣
(vk, sk) $← KeyGen(1λ)

∀i ∈ [q] : mi
$←M\ {m1, . . . ,mi−1}

∀i ∈ [q] : σi
$← Sign(sk,mi)

(m∗, σ∗) $← A(vk, (mi, σi)i∈[q])

 .

Note that in UF-q-RMA security the messages are uniformly random without
repetition, i.e., all messages are distinct. Moreover, we decided to make the pa-
rameter q explicit since it simplifies the exposition of our impossibility results.
(In an alternative definition more closely related to UF-CMA security, the adver-
sary would first specify the number of signatures q it would like to see. All our
negative results also hold in this notion.)

3 Signature Schemes over Groups of Prime Order

In this section, we will show our impossibility result for signatures in the generic
group model for prime order groups.
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3.1 Algebraic Signatures

We now introduce our abstraction of algebraic signatures over a generic group G.
Intuitively, these signatures are limited by the fact that one doesn’t have access
to the representation of group elements. Specifically, in Mauer’s GGM, one can’t
even define a consistent (hash) function on group elements not provided by the
GGM itself, as the label of each group element depends on the order in which
they are received and are therefore not consistent. This makes it hard to map
group elements to group exponents consistently. Hence, in algebraic signatures
all exponents in the verification have to be independent of the group elements
of the signature and the verification key.

Definition 5. An algebraic signature scheme SIG over G = (G, p, P ) of prime
order p with parameters n, k, `, κ ∈ N polynomial in the security parameter λ is
a digital signature scheme with the following structural properties.

– There exists efficiently computable functions A : {0, 1}∗ ×M× {0, 1}κ →
Z`×np and B : {0, 1}∗×M×{0, 1}κ → Z`×kp . If s,m and t are clear, we write
A = A(s,m, t) and B = B(s,m, t).
– KeyGen(1λ) outputs a keypair (vk, sk) with sk ∈ {0, 1}∗ and

vk = (X = (X1, . . . , Xn)
ᵀ, s) ∈ Gn × {0, 1}∗.

– Sign(sk,m) outputs a signature

σ = (Y = (Y1, . . . , Yk)
ᵀ, t) ∈ Gk × {0, 1}κ.

– Verify(vk,m, σ) returns 1 iff

A(s,m, t) ·X = B(s,m, t) ·Y.

Recall that group (G,+) is written in additive form. Hence Verify checks whether
` group equations are fulfilled simultaneously.

3.2 Preparation

If B as in Definition 5 would be invertible for somem∗, t∗, then finding such a pair
suffices to break the signature scheme. So we only consider signature schemes
where this is not the case and use a different approach. As outlined in the
introduction, our adversary will try to learn linear relations on the verification
key elements and find a message for which a signature exists that verifies for
all possible verification keys satisfying the linear relations already known. These
relations form an affine space, but computing it requires group oracle queries.
Since the number of group oracle queries an adversary is allowed to make is
limited, we will not look at the relations directly but at the dual space, as it can
be computed without group oracle access. Specifically, we will look for vectors
z ∈ Znp s.t. zᵀ · X = 0. These can be found with the help of the following
Lemma 6.
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Lemma 6. Let A ∈ Z`×np ,B ∈ Z`×kp and x ∈ Znp for some prime p. Then the
following statements are equivalent:

∃y ∈ Zkp : A · x = B · y (1)

∀z ∈ LKer(B) : zᵀ ·A · x = 0 (2)
∀v ∈ LKer(B) ·A : vᵀ · x = 0. (3)

Notice that each signature will satisfy Eq. (1) and since A and B are Zp
matrices, the v in Eq. (3) can be computed without the group oracle. The specific
usage of Lemma 6 will be described in Section 3.3.

Proof. We show the statement by proving circular implications in the order
(1)⇒ (2)⇒ (3)⇒ (1).

(1)⇒ (2): clear.

(2)⇒ (3): Let v ∈ LKer(B) · A. Then there is a z ∈ LKer(B), s.t. vᵀ = zᵀ · A.
Then we have vᵀ · x = zᵀ · A · x (2)

= 0. Since v was chosen arbitrarily, this holds
for all v ∈ LKer(B) ·A and (3) follows.

(3)⇒ (1): We prove ¬(1)⇒ ¬(3). If B spans Z`p, the step is trivial. So assume
that B doesn’t span Z`p. Define an ` × `-matrix H s.t. H maps the columns of
B to 0 and all vectors linearly independent of B to themselves. Such a matrix
exists due to the basis extension theorem and is a non-zero matrix as long as
B doesn’t have full rank `. Since we assume ¬(1), A · x is not in the span of B
and H · A · x 6= 0 unless A · x = 0 (which would contradict ¬(1)). However all
rows of H are in the left kernel of B . H is non-zero, so there is at least one such
non-zero row vector w and w ·A · x 6= 0 but w ∈ LKerB , which shows ¬(3).

3.3 Impossibility of Secure Algebraic Signatures

Theorem 7 (Impossibility of Algebraic Signatures with UF-q-RMA Se-
curity). Let SIG be an algebraic signature scheme with parameters n, k, `, κ ∈ N
over group G of prime order p. Then there exists a generic group adversary A
with

AdvUF-n-RMA
A,SIG (λ) ≥ 1

n+ 1

Specifically, A makes Qmul = `(n + k) group multiplication queries to Omul,
Qgrp = `(n+ k − 2) group operation queries to Ogrp, and additional
2κ · poly(n, k, `, log(p)) computation steps.

Note that adversary A is potentially pseudo-efficient as it makes polynomially
many queries to its group oracles but its overall running time is exponential in
κ.

We now provide an intuition for the proof. The central ingredient is Lemma 6,
which is used in two ways during the proof. First, each signature is a valid solu-
tion to the verification equation system, so Eq. (3) holds and LKer(B(s,m, t)) ·A
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is exactly the space of linear relations on the verification key imposed by the sig-
nature. A and B output matrices over Zp, hence this space can be computed with-
out GGM queries. On the other hand, if the adversary finds a message/bitstring
pair (m∗, t∗) for which A and B satisfy Eq. (3), it knows that a solution to the
verification equation exists for (m∗, t∗). Since Zp is a field, the solution can be
found with standard linear algebra techniques.

We will show that for a random message m∗, the probability that there
exists a t∗ s.t. (m∗, t∗) satisfies Eq. (3) is non-negligible. Intuitively, if we sample
n + 1 random messages and get signatures for n of them, we either learn the
complete space of linear relations on the verification key or at least one of the
messages doesn’t introduce a new linear relation. In either case, at least one of
the n+ 1 messages satisfies Eq. (3) and the adversary can forge a signature for
that message.

Proof. We describe a generic attacker A with the properties stated above. First,
A receives a verification key vk = (X, s) and q := n message/signature pairs
(mi, σi)i∈[n], wheremi

$←M\{m1, . . . ,mi−1} and σi := (Yi, ti)
$← Sign(vk,mi).

Next, A computes

L :=

n⊕
j=1

LKer(B(s,mj , tj)) ·A(s,mj , tj)

where
⊕

is the sum of the vector subspaces and B(s,mj , tj) and A(s,mj , tj)
are the defining matrices from Definition 5. Note that L is a vector subspace of
Znp . Then A chooses a random message m∗ $←M\ {m1, . . . ,mn} and for every
t ∈ {0, 1}κ, A computes

K(m∗, t) := LKer(B(s,m∗, t)) ·A(s,m∗, t),

where s is the bit string from vk. A checks whether K(m∗, t) ⊆ L, i.e. if K(m∗, t)
is a vector subspace of L. If A finds a pair (m∗, t∗) for which this condition holds,
it continues. Otherwise, A aborts.

For the pair (m∗, t∗), A sets up the linear equation system

A(s,m∗, t∗) ·X = B(s,m∗, t∗) ·Y∗

and tries to solve it for Y∗. If it finds a solution, it outputs its forgery σ∗ :=
(Y∗, t∗) on message m∗ and aborts otherwise.

We proceed to the analysis of A.
Running time. First, note that A can check whether the condition K(m, t) ⊆ L
on the vector spaces holds without making any GGM queries and A can com-
pute L without verifying the received signatures. Therefore A does not require
any GGM queries before trying to solve the linear equation system, which takes
at most `(n+ k) group multiplication queries and `(n+ k − 2) group operation
queries, which yields the stated number of queries. Since A chooses a random
message m∗ and searches over all strings t ∈ {0, 1}κ to find a fitting t∗ and com-
putes the vector space K(m∗, t∗) for each potential t∗, its additional computation
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is bounded by 2κ·poly((n, k, `, log(p)), where the polynomial term consists mostly
of subspace computations and membership tests. Therefore A is pseudo-efficient,
unless κ ∈ O(log(λ)).

Correctness. To show correctness, we fix a verification key vk = (X, s) in the
execution of A.

For the moment, assume thatA samples the distinct randommessagesm1, . . . ,mn+1

and chooses the i-th message as its forgery and queries the remaining n to the
signing oracle. Define

Li :=
⊕

j∈[n+1]\{i}

K(mj , tj)

where tj is some bitstring used in the signatures returned by the challenger for
message mj .

Then there exists at least one i ∈ [n+ 1] s.t. K(mi, ti) ⊂ Li for some ti.
Assume for contradiction, that no such i exists, i.e. K(mi, ti) 6⊂ Li for all i ∈

[n+1] and ti ∈ {0, 1}κ. But then the dimension of L′i =
⊕

k∈[n+1]\{i,j}K(mk, tk)

is smaller than the dimension of Li for all i ∈ [n + 1], j ∈ [n + 1] \ {i}, since
K(mj , tj) increases the dimension of Lj and therefore is not included in any of
the other K(mi, ti) and especially not in K(mi, ti). With the same argument,
removing each K(mj , tj) reduces the dimension of Li by at least one. However
since the dimension of Li is at most n − 1 (as otherwise Li = Znp and then
K(mi, ti) ⊆ Li), removing n messages would reduce its dimension to −1, which
is a contradiction.

So by choosing a random message from a set of n + 1 messages, the adver-
sary chooses a message m∗ which satisfies Eq. (3) together with some t∗ with
probability at least 1

n+1 . But since all messages are random, this is the same as
saying that the probability of the last message, i.e. mn+1 being this message is
at least 1

n+1 and this also holds if the first n messages are randomly chosen by
the challenger and only the last message is chosen by the attacker.

Therefore A finds a pair (m∗, t∗) such that A(s,m∗, t∗) and B(s,m∗, t∗) sat-
isfy Equation (3) from Lemma 6 for the verification key vectorX with probability
at least 1

n+1 . This implies that the verification equation system has a solution
and it can be found using standard linear algebra techniques since Zp is a field.
Since a signature is valid, iff it satisfies the verification equation this solution is
exactly a valid signature and A wins the UF-n-RMA game.

4 Signature Schemes over Groups of Unknown Order

In this section, we describe a linear attack concerning a specific form of signatures
over groups of unknown order. This attack has implications in particular on
factoring- and RSA-based signatures. We start first by defining a particular
type of signatures that we can attack. We call this type of signatures simplified
algebraic signatures.
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4.1 Simplified Algebraic Signatures

Unlike in the previous case where the group order was known, here the signatures
rely on the algebraic structure of a group of (potentially) unknown order, such
as in RSA signatures.

Compared to our formalization of algebraic signatures from Definition 5, the
verification key of simplified algebraic signatures does not contain the s element
anymore. This change is without loss of generality: namely, since the results in
this section can be formulated in the standard model (without generic groups),
linear coefficients can depend on the full representation of group elements in the
verification key. Any additional information (that was previously contained in
s) can now be encoded with group elements in vk.

Furthermore, signatures in simplified algebraic signature schemes do not con-
tain the string t anymore. This is in fact a restriction, and it is caused by the
fact that our attacks from this section need to be efficient. Hence, we cannot
afford to run a brute-force search over a suitable t during an attack here (unlike
in the attack from Section 3). Moreover, observe that the matrix B is not al-
lowed to depend on the message m, which is another difference when compared
to Definition 5, a restriction which stems from the limitations of our attack.

Definition 8. Let λ denote the security parameter and G = (G, N, P ) be a group
of order N ∈ N (that may or may not be known, with N having O(λ) bits).
A simplified algebraic signature scheme SIG over G with parameters n, k, ` ∈
N (polynomial in λ) is a digital signature scheme with the following structural
properties.

– There exist efficiently computable functions A : {0, 1}∗ ×M → Z`×nN and
B : {0, 1}∗ → Z`×kN . If m is clear, we write A := A(vk,m) and B := B(vk)
respectively.
– KeyGen(1λ) outputs a keypair (vk, sk) with sk ∈ {0, 1}∗ and

vk = (X = (X1, . . . , Xn)
>) ∈ Gn.

– Sign(sk,m) outputs a signature

σ = (Y = (Y1, . . . , Yk)
>) ∈ Gk.

– Verify(vk,m, σ) returns 1 iff

A(vk,m) ·X = B(vk) ·Y.

4.2 Hermite Normal Form

We present one of the main technical tools we are going to use in this section
and which allows us to utilize linear algebra over the ring of integers.

Definition 9 (Hermite Normal Form [3,40]). An n×m matrix H over Z is
in Hermite Normal Form (HNF) if H = 0 or H 6= 0 and there exists an integer
r with 1 ≤ r ≤ min(n,m), such that:

19



– the first r columns are non-zero, i.e., h∗j 6= 0 for all j ∈ [r].
– there is a sequence of integers 1 ≤ n1 < n2 < . . . < nr ≤ n, such that:
• hi,j = 0 for j ∈ [m], i < nj. Also, hi,j = 0 for j > r and any i ∈ [n].
• hnj ,j > 0, for all 1 ≤ j ≤ r. Moreover, all entries of H on rows nj
for j ∈ [r] are non-negative and hnj ,j is strictly greater than all other
elements on the nth

j row, namely: 0 ≤ hnj ,k < hnj ,j for all j ∈ [r], k ∈
[j − 1].

Note that r from Definition 9 coincides with the column-rank of H . Matrix
H will therefore be in HNF if it has the following shape, where 0 denotes the
all-zero matrix in Zn,m−r and ∗ stands for any element of Z:

0 0 0
...

...
0 0

hn1,1 0
...

∗
...

∗ 0 0

∗ hn2,2

... 0

∗ ∗
. . . 0

∗ ∗
. . . hnr,r

∗ ∗
. . .

...

∗ ∗
. . . ∗


The top-most non-zero element hnj ,j , j ∈ [r] on each column is called a pivot.
The second condition in Definition 9 tells us that all elements on a row with a
pivot are non-negative and must be strictly smaller than the pivot. No condition
is enforced on elements that are on a row without a pivot, meaning they might
be negative.

Note that we use this (more-general) definition (see for example [3]) because
we need to accommodate matrices which are not-necessarily square, and for
which the column-rank is not necessarily maximal.

Lemma 10 (Existence and uniqueness of HNF [48]). For any matrix M ∈
Zn×m, there exists a unique matrix HNF(M ) ∈ Zn×m in Hermite Normal Form
such that:

ColumnSpace(HNF(M )) = ColumnSpace(M ).

Lemma 11 (A polynomial-time algorithm for HNF [22]). For any n×m
matrix M , computing its Hermite Normal Form can be realized in polynomial
time.

The following lemma is well-known:
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Lemma 12. Let A ∈ Zn×m,H = HNF(A) and c ∈ Zn. If c ∈ ColumnSpace(H )
then we can find in polynomial time (in the bitlength of its input) integer vectors
β and α such that c = H · β and c = A ·α.

4.3 An Inefficient AddColumn Procedure for matrices in HNF

In this section we describe a straightforward inefficient algorithm which on input
matrix H in Hermite Normal Form and column vector d, will compute the HNF
of [H | d]. While inefficient, this algorithm will simplify our proof by allowing
us to analyze the impact of successively adding columns to a matrix H on its
HNF. Since the HNF is unique, the reasoning we come to using the inefficient
algorithm will extend to the efficient one, since we are only concerned with what
happens to the HNF, and not its intermediate results.

The AddColumn Algorithm

Input: n×m matrix H = [B | 0] in Hermite Normal Form and column vector
d. Assume without loss of generality that H = B .

Output: HNF([H | d]).

The algorithm iterates over the non-zero columns of H as follows.

1. Initialization: The algorithm initializes E (0) = B and c(0) = d. At step
i, matrix E (i) is initialized as E (i) ← E (i − 1) and vector c(i) ← c(i −
1). Additionally, at step i, vector c(i) has its first i − 1 elements set to 0.
Values r(i), n1(i), . . . , nr(i) correspond to the r, n1 . . . nr values of E (i) from
Definition 9. Since these indices may change, they depend on the iteration
number i. If c(i)i is 0, then we skip iteration i and move on to step i + 1.
Otherwise, if c(i)i 6= 0, we let s be the smallest index such that ns(i−1) ≥ i.
We write:

E (i) =



0 0
... 0
0 0

en1(i),1(i) 0

en1(i)+1,1(i)
. . .

... ens(i),s(i)
... F (i)

en,1(i) en,s(i)


In the right lower corner of E (i) is matrix F (i) ∈ Z(n−ns(i))×(m−s), which
does not change during iteration i. All entries e(i)k,j with k < nj(i) are 0,
for all j ∈ [r] and k ∈ [nj(i) − 1]. We also have e(i)k,j = 0, for all k ∈ [n]
and j > r(i).
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2. Column Index Selection: Recall that s is the smallest index such that
ns(i − 1) ≥ i. What this means is that the sth column is the first column
of E (i) that can be modified using element c(i)i. Now, we distinguish the
following cases:

(a) Column Insertion Step: If ns(i− 1) > i, we insert vector c(i) before
the sth column of E (i). Namely, c(i) becomes the sth column of E (i)
and matrix E (i) increases its column dimension by 1. We then set c(i)
to the all-zero vector and after the modular reduction phase (which we
will soon describe as well), we will output E (i) as the HNF of [H |d].

(b) GCD step: Otherwise, we have ns(i − 1) = i. We then know that
e(i)i,s 6= 0, since e(i)i,s is the top-most non-zero element on the sth col-
umn (the pivot). We compute g ← gcd(e(i)i,s, c(i)i) = αe(i)i,s + βc(i)i,
where α, β ∈ Z are the Bezout coefficients computed by the extended
greatest common divisor algorithm. We aim to replace ei,s(i) with g =
gcd(e(i)i,s, c(i)i), while preserving the column space of E (i):
– The sth column of E (i) is modified as e(i)∗s ← αe(i)∗s+βc(i). Note

that the first (i − 1) entries of c(i) are 0, which means that e(i)i,s
remains the top-most non-zero element on the sth column (the pivot),
as required by the HNF condition (Definition 9).

– Vector c(i)← c(i)−(c(i)i/g)·e(i)∗s. This replaces the ith component
of c(i) with 0.

3. Modular Reduction Phase: Finally, the algorithm has to ensure that
0 ≤ e(i)nj ,k < e(i)nj ,j for all k ∈ [m], j ∈ [r]. This is done by reducing
the large entries modulo the pivots (the top-most non-zero elements on each
column). To preserve the column space, the algorithm uses the following
procedure:
for j = 1 to m do
for k = j + 1 to r do
if e(i)nk(i),j ≥ e(i)nk(i),k then

e(i)∗j ← e(i)∗j − b
e(i)nk(i),j

e(i)nk(i),k
ce(i)∗k

else if e(i)nk(i),j < 0 then

e(i)∗j ← e(i)∗j + d
e(i)nk(i),j

e(i)nk(i),k
ee(i)∗k

end if
end for

end for
At this stage E (i) is in HNF and c(i) has its first i entries equal to 0. The
algorithm is now ready to move on to the next i, making the same compu-
tations for E (i+1). Note that all operations of AddColumn are expressed as
operations on the columns of the matrix E (i). This means that E (i) has the
same column space as E (i− 1).

4. Output: If the algorithm made no column insertions, then the output is
[E (n)‖0], where here 0 ∈ Zn×1. If at some point the algorithm made a
column insertion, the output will be E (n).
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Remark on the running time of AddColumn. The algorithm described above
is (potentially) inefficient because the intermediate values computed by the algo-
rithm are not shown to be bounded. A polynomial time algorithm for computing
HNF([H | b]) can be found in [22,40].

Lemma 13 (Decreasing pivots). Consider n,m ∈ N∗. Let H ∈ Zn×m be
a matrix in HNF and of column-rank r. Consider a column vector b and let
H ′ := AddColumn(H ,b) = HNF([H | b]). Let r, n1, . . . , nr be the column-rank
and pivot indices of H , and r′, n′1, . . . , n′r the values corresponding to H ′ (as in
Definition 9).

Then we must have one of the following cases:

1. r′ > r, i.e. the column rank of H ′ is strictly greater than the one of H .
2. r′ = r and then the positions of the pivots remain the same (nj = n′j, for

all j ∈ [r]). Moreover, all pivot entries of H ′ are smaller than or equal to
the corresponding pivot elements of H , i.e. h′nj ,j

≤ hnj ,j, for all j ∈ [n].
Furthermore, at least a pivot entry of H ′ is smaller by at least a factor of 2
than the corresponding pivot of H , i.e. h′nj ,j

≤ hnj ,j/2, for some j ∈ [r].
3. b ∈ ColumnSpace(H ).

Proof. We consider the following statements:

– r′ < r cannot hold. Let E (i) and c(i) be the intermediary values computed
by AddColumn. We show first that r′ < r cannot hold. Observe that the
algorithm may insert one column (and only one) during its execution, which
introduces a new pivot element. Apart from that, each pivot element in H ′

is computed as the greatest common divisor of a non-zero pivot element in
E (i) and a non-zero element of c(i). Moreover, the modular reduction phase
does not modify the value of the pivots. Therefore, pivots in H cannot be
set to 0 and thus r ≤ r′.

– Case 1 does not hold implies pivot positions are the same. If r = r′,
this implies that the algorithm never inserts the vector c(i) as a column of
E (i). As explained in the previous paragraph, pivots in H ′ are computed as
the greatest common divisor of a non-zero pivot and E (i) and a non-zero
element of c(i). Additionally, since pivots in E (i) cannot become 0 and no
column insertion is made, the pivot positions also remain unchanged.

– Case 1 does not hold implies smaller pivots. By contradiction, assume
for now that the pivot entries h′nj ,j

are not smaller or equal than hnj ,j , for
all j ∈ [r]. Since we are in the case of no column insertions, observe that
e(j)ni,i can only change its value in iteration ni of AddColumn. This means
that h′ni,i

is equal to the value e(i)ni,i has at the end of iteration ni. Then,
since hni,i 6= 0, e(i)ni,i = gcd(hni,i, c(i)ni), therefore e(i)ni,i divides hni,i.
Thus, we have e(i)ni,i ≤ hni,i, which implies h′ni,i

≤ hni,i.
– Case 1 does not hold and equal pivots imply Case 3. Now assume by

contradiction that h′nj ,j
= hnj ,j , for all j ∈ [r]. This means that e(i)nj ,j re-

main the same throughout the execution of the AddColumn algorithm. From
the description of AddColumn, we have that e(i)nj ,j = gcd(e(i−1)nj ,j , c(i)nj ).
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We use Lemma 1 and notice that, if the pivot elements e(i)nj ,j never change,
then neither can the non-zero elements which are not pivots. That is because
they already satisfy 0 ≤ enk,j < enk,k, for all k ∈ [r], j ∈ [k−1] at the start of
the algorithm, so the modular reduction phase cannot further reduce these
elements.
Recall that we defined s(i) as the smallest index such that ns(i−1) ≥ i. Since
by hypothesis, case 1 does not hold, this implies that ns(i−1) = i. But then,
it must hold that, at the beginning of iteration i, e(i)ns(i),s(i) was already
equal to gcd(e(i)ns(i),s(i), c(i)ns(i)

). Therefore, c(i)ns(i)
is already divisible by

e(i)ns(i),s(i) at the beginning of iteration i. Since this holds for all iterations
i ∈ [n], this implies that b can be expressed as a linear combination of the
columns of H , therefore b ∈ ColumnSpace(H ).

– Case 1 and Case 3 do not hold imply Case 2. Let’s now assume
that b /∈ ColumnSpace(H ). From the argument above, we know that for
some iteration i ∈ [n] and index s(i) ∈ [r], at least one pivot element
e(i)ns(i),s(i) < e(i− 1)ns(i),s(i). But e(i)ns(i),s(i) = gcd(e(i− 1)ns(i),s(i), c(i)i),
so e(i)ns(i),s(i) must be smaller by at least a factor of 2 than e(i− 1)ns(i),s(i).
Since e(i)ns(i),s(i) is not changed in iterations (i + 1) . . . n, this implies that
h′ns(i),s(i)

≤ hns(i),s(i)/2.

This concludes the proof of Lemma 13.

4.4 Impossibility of Simplified Algebraic Signatures

Theorem 14 (Impossibility of Simplified Algebraic Signatures with
UF-QS-CMA Security). Let SIG be a simplified algebraic signature scheme
with parameters λ, n, k, ` ∈ N over group G of (possibly) unknown order N and
message space superpolynomial in λ. Then there exists a PPT adversary A with

AdvUF-QS-CMA
A,SIG (λ) = 1

The adversary makes at most QS = (n`)2 · |τmax| signature queries, where
|τmax| is the bitlength of the largest entry in the matrices A(vk,m) for the mes-
sages that will be queried (we will argue that |τmax| = poly(n log(N) + |m|)).
In addition, |M| does not have to be superpolynomial, it suffices to require
|M| ≥ QS + 1.

Letting Tlinear denote an upper bound on the run-time of all invocations of the
polynomial-time HNF algorithm and Tmax be an upper-bound on the polynomial
running time of functions A, our attack runs in O(QS · (Tmax + Tlinear)) =

O
(
(n`)2 · |τmax| · (Tmax + Tlinear)

)
.

Proof. We describe our PPT adversary A. Recall that A(vk,m) is efficiently
computable, this means that there exists a value τmax whose bitlength is greater
or equal than all the entries of the matrices A(vk,m) that will be queried. Since
the input length of the functions computing A(vk,m) is n log(N)+ |m|, we have
that the bitlength |τmax| is polynomially small with |τmax| = poly(n log(N) +
|m|).
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1. Setup Phase. The challenger runs KeyGen, generating sk and vk = X and
sends vk to A.

2. Discovery Phase. Let ai∗(vk,m)> denote the ith row of A(vk,m) and
bj∗(vk)

> be the jth row of B(vk). The adversary initializes matrix H (0) to
be the empty matrix. At iteration i, the adversary picks a uniformly random
message mi

$← M \ {m1, . . . ,mi−1}. It then computes the column vector
c(i) = [a1∗(vk,mi)

>| . . . |a`∗(vk,mi)
>]> ∈ Zn` and builds matrix D(i) =

[H (i−1)|c(i)] ∈ Zn`×i. Let H (i) = HNF(D(i)), where HNF(D(i)) denotes the
(column-style) HNF of matrix D(i). The adversary checks whether H (i) =
[H (i− 1)|0], if that is the case, it means that c(i) ∈ ColumnSpace(H (i− 1))
(i.e. c(i) is in the linear span of the columns of H (i − 1)). Let h(i − 1)∗j
denote the jth column of H (i − 1). Using linear algebra over Z (see for
example [48]), the adversary can efficiently compute a linear combination of
the columns of H (i− 1). More specifically, it can find a vector β ∈ Zi such
that c(i) =

∑
j βjh(i − 1)∗j through a matrix-vector multiplication (whose

complexity can be bounded by Tlinear). From Lemma 12, this allows us to
also recover a vector α ∈ Zi such that c(i) =

∑
j αjc(j), where c(i) was

defined as c(i) = [a1∗(vk,mi)
>| . . . |a`∗(vk,mi)

>]> ∈ Zn`.
3. Signing Queries: Consider j ∈ [i − 1], then for all αj 6= 0, the adversary

makes a signing query on mj and receives signature Ymj
= (Ymj ,1 . . . Ymj ,k).

4. Forgery Phase: Consider the following matrix of group elements:

W =

 Y>m1

...
Y>mi−1

 ∈ G(i−1)×k

At this stage, the adversary can compute a forged signature for message
m∗ = mi as (Y∗)> = α>W and it outputs the forgery Y∗.

Correctness of the attack. Let’s assume for now that the adversary has
output a forgery. Since c(i) =

∑
j αjc(j), where c(j) was defined as c(i) =

[a1∗(vk,mi)
>| . . . |a`∗(vk,mi)

>]>, we have the following intermediary result:

i−1∑
j=1

(
αj ·A(vk,mj)

)
= A(vk,m∗). (4)

The forgery is an accepting signature, because:

B(vk)Y∗ =B(vk)W>α

=
(
B(vk)Ym1

. . . B(vk)Ymi−1

)
·α

(∗)
=
(
A(vk,m1)X . . . A(vk,mi−1)X

)
·α

=

i−1∑
j=1

(
αj ·A(vk,mj)X

)
=

( i−1∑
j=1

αj ·A(vk,mj)

)
X

=A(vk,m∗)X.
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Equality (*) holds because signatures Ymj
are correct for all j ∈ [i− 1]. We

have shown that A(vk,m)X = B(vk)Y∗, which implies that the forgery is a
valid signature. The last equation uses Equation (4).

Running Time. The adversary can only compute a forgery if for some iteration
i, it holds that c(i) ∈ ColumnSpace(H (i − 1)). We show that this must occur
after a polynomial number of iterations. From Lemma 13, we have that at least
one of the following cases must hold:

1. The column rank of H (i) is strictly larger than the rank of H (i− 1).
2. The rank is unchanged, so are the positions of the pivots, but at least one

pivot of H (i) decreases by at least a factor of 2. Furthermore, all other pivots
are smaller than or equal to the previous ones, i.e. h(i)nj ,j ≤ h(i − 1)nj ,j ,
for all j ∈ [n].

3. Or c(i) ∈ ColumnSpace(H (i− 1)).

Note that even though Lemma 13 is proven by reasoning about the inefficient
algorithm AddColumn, since the HNF is unique, the proof also applies to poly-
time HNF algorithms (Lemma 11). Therefore, at each iteration, we have the
following possibilities:

1. The rank of H (i) increases. This can only happen at most n` times.
2. Column-rank and pivot positions are unchanged, but at least one pivot de-

creases by a factor of 2, while no other pivot increases. Since the HNF is
applied on matrices A(vk,m) with each entry bounded by τmax, this can
happen at most |τmax| ·n` times (we can have at most n` pivots). The pivots
become smaller by one bit, until they become 1, and do not decrease further.

3. It holds that c(i) ∈ ColumnSpace(H (i− 1)), and we can forge a signature.

Therefore, this means that after at most (n`)2 · |τmax| iterations, we will end
up in the third case, when H (i) = [H (i − 1)|0] and we can compute a forgery.
Since computing the HNF is a polynomial-time algorithm and the number of
iterations is polynomial, this means that the adversary also runs in polynomial
time.

Theorem 15 (Impossibility of Simplified Algebraic Signatures with
UF-q-RMA Security). Let SIG be a simplified algebraic signature scheme with
parameters n, k, ` ∈ N over group G of (possibly) unknown order N , and let QS
be defined as in Theorem 14. There exists a PPT adversary A with

AdvUF-QS-RMA
A,SIG (λ) =

1

QS + 1

The proof of Theorem 15 can be found in the full version of this paper [20].

Remark 16. We can also consider a slight generalization of Definition 8 to ac-
count for the additional element t from Definition 5. Specifically, we could allow
verification to check equations of the form:

A(vk,m, t) ·X = B(vk) ·Y.
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The value t ∈ {0, 1}κ is then part of the signature. Note that unlike in Defini-
tion 5, matrices B are not allowed to depend on t here. Our attack can be gener-
alized to this setting and remains in polynomial-time, as long as κ = O(log(λ)).

5 Extension: BLS signatures instantiated with algebraic
hash functions are insecure

It is well-known that Waters’ hash function [13,52] (which is prominently used
in his signature scheme from [52] to imitate useful features of a random oracle)
cannot be used to securely implement the random oracle in the Boneh-Lynn-
Shacham signature scheme [11]. Intuitively, the reason for this is that Waters’
hash function has certain algebraic properties that, e.g., make it easy to find
distinct preimages A,B,C,D with H(A)+H(B)−H(C) = H(D) (where addition
and subtraction take place in the target domain of H, a cyclic group). These
algebraic relations directly translate to simple algebraic relations among BLS
signatures, which can be exploited as in Section 3.3.

In this section, we generalize this observation and show that BLS signa-
tures [11] cannot be securely implemented with any “algebraic” standard-model
hash function (such as a programmable hash function [28]).

Definition 17 (Algebraic hash function). An algebraic hash function over
a group G and with message spaceM consists of two PPT algorithms:

– A key generation algorithm HGen that outputs an evaluation key hk . We
assume that hk specifies a vector X = (X1, . . . , Xn)

ᵀ ∈ Gn of group elements.
– An evaluation algorithm Eval that, on input hk and m ∈M, outputs a hash

value
Hhk (m) = A(hk ,m)ᵀ ·X ∈ G

for a public and efficiently computable function A with output in Zn.

In a nutshell, algebraic hash functions construct their output through generic
group operations from a sequence X of public group elements (defined in the
hashing key hk). Popular constructions of programmable hash functions (e.g.,
[52,28,27] are algebraic hash functions.

In this section, we want to show that the attack in Theorem 14 can be
adjusted to also work against another type of signatures, which we refer to as
plain algebraic signatures in pairing groups. This class of signatures generalizes
the BLS signature when the BLS hash function is modelled as an algebraic
hash function. What is different from Definition 8, is that Definition 18 supports
verification equations which apply a pairing operation on certain elements of the
verification key along with other parts of the verification key. In particular, this
means that the signature can consist of group elements whose implicit exponents
correspond to quadratic relations in the implicit exponents of the group elements
in the verification key.
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Definition 18 (Plain Algebraic Signatures in Pairing Groups). Let λ
denote the security parameter and G = (G,GT , N, P, e) be a symmetric pairing
group of order N ∈ N (that may or may not be known, with N having O(λ) bits).
Consider also (HGen,Eval) to be an algebraic hash function. A plain algebraic
signature scheme SIG over G with parameters k, γ ∈ N (polynomial in λ) is a
digital signature scheme with the following structural properties.

– There exist efficiently computable functions A : {0, 1}∗ ×M → Zγ×1N and
B : {0, 1}∗ → Z1×k

N . If m is clear, we write A := A(hk ,m) and B := B(vk)
respectively.
– KeyGen(1λ) outputs a keypair (vk, sk) with sk ∈ {0, 1}∗ and

vk = (X,Xhk ) = (X, (Xhk
1 , . . . , Xhk

γ )>) ∈ G×Gγ ,

where hk := Xhk is the hash key of the algebraic hash function, generated
using the HGen algorithm.
– Sign(sk,m) outputs a signature σ, with:

σ = (Y = (Y1, . . . , Yk)
>) ∈ Gk.

– Verify(vk,m, σ) returns 1 iff

e(Hhk (m), X) = e(A(hk ,m)ᵀ ·Xhk , X) = e(P,B(vk) ·Y).

The result in Theorem 14 extends to the signatures in Definition 18:

Theorem 19 (Impossibility of Plain Algebraic Signatures in Pairing
Groups, with UF-CMA Security). Let SIG be a plain algebraic signature
scheme in pairing groups with parameters λ, k, γ ∈ N over a symmetric pairing
group (G,GT , e) of (possibly) unknown order N and message space superpolyno-
mial in λ. Then there exists a PPT adversary A with

AdvUF-CMA
A,SIG (λ) = 1

The adversary makes at most QS = γ2 · |τmax| signature queries, where |τmax|
is the bitlength of the largest entry in the matrices A(hk ,m) for the messages
that will be queried (we have |τmax| = poly(γ log(N) + |m|)). In addition, |M|
does not have to be superpolynomial, it suffices to require |M| ≥ QS + 1.

Letting Tlinear denote an upper bound on the run-time of all invocations of the
polynomial-time HNF algorithm and Tmax be an upper-bound on the polynomial
running time of functions A, our attack runs in O(QS · (Tmax + Tlinear)) =

O
(
γ2 · |τmax| · (Tmax + Tlinear)

)
.

Proof Sketch. As in the proof of Theorem 14, the adversary iteratively obtains sig-
natures for many messages m1 . . .mi and constructs an HNF matrix describing
the column space generated by column vectors A(hk ,m1)

> . . . A(hk ,mi)
>. Since

A(hk ,m) is a row vector, the goal is to find a message m∗ with A(hk ,m∗)> ∈
ColumnSpace(A(hk ,m1)

>| . . . |A(hk ,mi)
>) and to retrieve an integer vector α ∈
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Zi, such that A(hk ,m∗) =
∑i
j=1 αjA(hk ,mi). The forgery signature Y∗ is then

computed as Y∗ =
∑i
j=1 αjYj . Let us check that this indeed satisfies correct-

ness:

e
(
A(hk ,m∗)> ·Xhk , X

)
= e
( i∑
j=1

αjA(hk ,mi)
> ·Xhk , X

)
=

Correctness of Yj
=

i∑
j=1

αje(P,B(vk) ·Yj) = e(P,B(vk) ·Y∗)

Arguing that the algorithm succeeds in forging after QS iterations is identical
to the reasoning in Theorem 14.

BLS signatures. In the following, we will prove a result about the BLS signa-
ture scheme [11]. We will not formally define BLS signatures, since it will only
be important which signatures are considered valid by BLS. In the BLS scheme,
public keys are of the form vk := X = x · P ∈ G for a group G of order p
generated by P , and uniformly random x ∈ Zp. We also assume a hash function
H, whose parameters may be added to vk if the function is parameterized. Valid
signatures for a message m are of the form

σ = x · H(m).

BLS signatures consist of only one group element Y , and verification is performed
by a pairing operation:

e(H(m), X) = e(P, Y ).

Boneh, Lynn, and Shacham [11] prove that if the used hash function H is
modeled as a random oracle, then their scheme is UF-CMA secure under the
computational Diffie-Hellman assumption in G. In contrast, we prove that if H
is algebraic (in the sense of Definition 17), then the scheme is insecure:

Theorem 20. When implemented with an algebraic hash function H, the BLS
scheme described above is UF-q-RMA-insecure for a polynomial q = q(γ) in the
number of public group elements of H.

To show Theorem 20, observe that BLS (when implemented with an algebraic
hash function), is a plain signature in the sense of Definition 18. Hence, Theo-
rem 20 follows from Theorem 19. Furthermore, if the order p of the used group
G is prime, then tracing the steps of our attack actually shows that q(γ) ≤ γ+1.

Remark 21 (Waters Signatures). Note that Waters signatures [52] make use of
programmable hash functions and symmetric pairing groups, and are known to
be secure in the standard model. The attack in Theorem 19 does not extend to
Waters signatures, because their verification equation pairs H(m) with parts of
the signature, which is not allowed in Definition 18.

29



Remark 22 (Further generalization of plain and simplified algebraic signatures).
We could also consider a definition of signature that captures the verification
equations in both Definition 8 and Definition 18. By adjusting our attacks to
concatenate the A(hk ,m) vectors from Definition 18 to the c(i) vectors of the
attack in Theorem 14, one can obtain an attack against this slightly generalized
signature class.
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