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Abstract. In EUROCRYPT 2020, Hosoyamada and Sasaki found that
differential paths with probability 2−2n/3 can be useful in quantum collision
attacks, v.s. 2−n/2 for classical collision attacks. This observation led
to attacks for more rounds on some AES-like hash functions. In this
paper, we quantize the multi-collision distinguisher proposed by Biryukov,
Khovratovich, and Nikolić at CRYPTO 2009, and propose quantum multi-
collision distinguishers. We use CP-tool to automatically search for the
configurations for multi-collision distinguishers and rebound attacks by
taking into account related-key/single-key differentials of the underlying
block cipher. We apply our method to AES-like primitives including block
ciphers AES, Rijndael, Saturnin and AES-hashing modes AES-DM and
AES-HCF.

Keywords: post-quantum cryptography, multicollision, free variable,
BHT, related-key differential trail, distinguisher

1 Introduction

Recently, post-quantum security of cryptographic systems and primitives has
received more and more attention from cryptographic researchers, developers, and
users due to the progress in the development of quantum computers. The security
of public-key crypto-systems such as RSA, DSA, and ECDH/ECDSA can often be
reduced to some mathematically difficult problems such as factoring and discrete
logarithm. However, Shor’s seminal work [32] can be used to solve both problems
efficiently with a sufficiently large quantum computer, which directly destroys
the security of the public-key cryptographic schemes based on them in the post-
quantum world. Due to such concerns, researchers have begun to investigate
and develop post-quantum cryptographic algorithms, serving as replacements of
the current public-key crypto-systems, with security against attackers aided by



both quantum and classical computers. In the meantime, NIST has initiated a
competition to develop post-quantum standards for key establishment schemes
and digital signature schemes since 2017 [29]. On the other hand, symmetric-
key crypto-systems usually are not built upon the security assumption of hard
mathematical problems due to performance needs, and the research on how
quantum computers would affect their security strength is more recent. In 1996,
Grover [15] found quantum algorithms could be faster for bruteforce search than
in the classical setting. This algorithm runs in time

√
N for a space of size N ,

due to which halved (in bits) security strength is now considered as the generic
lower security bound of a classical symmetric-key primitive in some quantum
settings. Besides, recent studies showed that there exist non-trivial quantum
attacks other than direct Grover search. In 2010, Kuwakado and Morii [24] used
Simon’s algorithm [33] to distinguish the 3-round Feistel scheme from a random
permutation in the quantum setting. After that, Simon’s algorithm has been
applied to other symmetric-key schemes such as Even-Mansour scheme [23],
message authentication codes (MACs) [20], and FX construction [25]. Invented in
1997, Simon’s algorithm allows to find a “hidden period” with only polynomially
many queries and time. In most of the previous works utilizing Simon’s algorithm,
the attacker tries to construct a function in such a way that the existence of the
hidden period depends on the key values, which can be recovered once the period
is detected. In addition to Simon’s algorithm, collision-finding utilizing Grover
search is another prominent approach as dedicated attacks against symmetric-key
primitives in quantum setting.

1.1 Collision

Preimage, second-preimage, and collision resistance form the basic security
requirements for a hash function in the classical setting, and the same is expected
in the quantum setting, e.g., some public-key schemes have been proven to be
post-quantum secure in the quantum random oracle model (QROM) [4] when
instantiated with a post-quantum secure hash function. The known generic best
time bounds in the quantum setting so far are n/2 bits for preimage resistance
due to Grover’s algorithm, and n/3 bits for collision resistance due to the BHT
algorithm [5] named after Brassard, Høyer, and Tapp in 1998.

The BHT algorithm finds collisions with a query complexity of O(2n/3) and
O(2n/3)-qubit quantum random access memory (qRAM), which is a quantum
analogue of the random access memory (RAM) allowing to efficiently access data
in quantum superpositions. In 2017, Chailloux, Naya-Plasencia, and Schrottenlo-
her [8] proposed the CNS collision finding algorithm with a time complexity of
O(22n/5), a quantum memory of O(n) qubits, and a classical memory of O(2n/5)
bits. The complexities of both BHT and CNS algorithms are optimized towards
lowest possible time. When it comes to time-memory tradeoff with the merit
of T ×M , the simple Grover search achieves the best 2n/2 (although this is not
proven) with O(2n/2) time and O(1) memory, while BHT gives 2n/3 ⋅ 2n/3 = 22n/3

and CNS 22n/5 ⋅ 2n/5 = 23n/5. Memoryless version of birthday attack for collision
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finding in classical setting is offered by the Pollard’s rho method [31] in 1975, and
an extension for parallelism was given by Van Oorschot and Wiener [37] in 1999.

The above mentioned algorithms are generic and do not exploit any internal
characteristics of the primitives. The first dedicated quantum collision attack on
hash functions was proposed at EUROCRYPT 2020 by Hosoyamada and Sasaki
in [18], which shows differentials whose probability was too low for classical
collision search can become useful in the quantum setting. They applied a
quantum version of the rebound attack [28] to round-reduced AES hashing modes
and Whirlpool, and extended the number of attacked rounds for collision finding
from 6 and 5 rounds in classical setting to 7 and 6 rounds in quantum setting,
respectively. These collision finding algorithms are considered as attacks when they
require fewer time and memory than that of BHT algorithm (T =M = O(2n/3)).
Later, Dong et al. [12] followed the CNS algorithm and presented an improved
quantum rebound attacks on AES hashing modes and Grøstl-512 in a setting,
where only a small amount of qRAM is available and the required resources
are less than that of CNS (T = O(22n/5), qM = O(n), cM = O(2n/5)). Very
recently, Hosoyamada and Sasaki [19] proposed the first dedicated quantum
collision attacks on SHA-256 and SHA-512 in another setting where the efficiency
is evaluated by the time-memory tradeoff compared against O(2n/2) by Pollard’s
rho.

1.2 Quantum Multi-Collision

The generic bound of collision resistance in classical setting is 2n/2 due to birthday
attack, hence a differential based collision finding algorithm constitutes an attack
only if the the probability of the underlying differential path of the bruteforce
search phase is higher than 2−n/2. Hosoyamada and Sasaki [18] observed that,
while in the quantum setting, the generic time bound is 2n/3 due to BHT algorithm,
and the admissible differential probability can be as low as 2−2n/3, for which the
bruteforce search of the conforming pair costs time 2n/3 and negligible quantum
or classical memory by Grover’s search in quantum computers. Taking advantage
of this gap in the admissible probability (2−2n/3 in quantum v.s. 2−n/2 in classical
setting), differential paths with lower probability, but for more rounds, become
useful hence lead to collision attacks for more rounds in quantum setting. This
gap was further enlarged by considering higher time bound in CNS algorithm
in [12], with T = O(22n/5) and admissible probability 2−4n/5, and time-memory
tradeoff in [19] with T = O(2n/2)/S and admissible probability 2−n ⋅ S2 when S
qubits are needed to implement the attack in quantum circuit or for qRAM.

Motivated by [18], in this paper we consider the problem of q-multicollision
finding in the quantum setting, which is a natural generalization of the collision
finding problem. And similarly to [18], we also consider the scenario where
bruteforce (resp. Grover search in quantum setting) is used to find conforming
pairs of a given differential path. When the search is limited by time T , the
admissible differential probability is at least T −1 (resp. T −2 in quantum). In 2019,
Liu and Zhandry [27] proved that the necessary and sufficient query complexity
(hence tight bound) for the quantum q-multicollision problem is N

1
2 ⋅(1−

1
2q−1 ) aided
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Target #Round Attack Tc Tq qc qq Mem Reference
6

CMC/QMC
q ⋅ 236 q ⋅ 218

✓ ✓ – [34]
AES-128 7 q ⋅ 290 q ⋅ 245 4 ✓ – Fig. 6

8 q ⋅ 2112 q ⋅ 256 9 4 – Fig. 2
8 q ⋅ 2105 q ⋅ 252.5 6 ✓ 216 Fig. 6

AES-192 10 CMC/QMC q ⋅ 284 q ⋅ 242
✓ ✓ – [16]

12(Full) CMC/QMC q ⋅ 2102 q ⋅ 251 5 ✓ – Fig. 10
9 CMC/QMC q ⋅ 260 q ⋅ 230

✓ ✓ – Fig. 9
Rijndael-128-160 10 CMC/QMC q ⋅ 290 q ⋅ 245 4 ✓ – Fig. 7

11(Full) CMC/QMC q ⋅ 2118 q ⋅ 259 13 4 – Fig. 7
Rijndael-128-224 11 CMC/QMC q ⋅ 267 q ⋅ 233.5

✓ ✓ – Fig. 8
13(Full) CMC/QMC q ⋅ 297 q ⋅ 248.5 5 ✓ – Fig. 8

Rijndael-160-192 11 CMC/QMC q ⋅ 290 q ⋅ 245
✓ ✓ – Fig. 10

Rijndael-160-256 12 CMC/QMC q ⋅ 2108 q ⋅ 254 4 ✓ – Fig. 9
7 CMC/QMC q ⋅ 2143 q ⋅ 271.5

✓ ✓ – Fig. 3
Saturnin 8 CMC/QMC q ⋅ 2171.2 q ⋅ 285.6 4 ✓ – Fig. 3

10 CMC/QMC q ⋅ 2249.3 q ⋅ 2124.7 39 6 – Fig. 3
Table 1: Summary of results on quantum multi-collision distinguishers against AES,
Rijndael, and Saturnin. Hereafter, CC is classical collision attack; QC is quantum collision
attack; CMC is classical multi-collision attack; QMC is quantum multi-collision attack.
qc, qq denotes the smallest q for valid CMC/QMC distinguishers, and ✓ for all q ≥ 3.

by the same amount of qRAM. Following the N (q−1)/q bound by Suzuki et al.
(after removing the polynomial factors), the admissible probability is N

1
q −1 in

classical v.s. N
1

2q−1−1 in quantum setting, which exhibits a similar gap as for the
differential based collision attacks.

1.3 Our Contributions

Following the observation on the gap of admissible probabilities, in this paper
we propose the Quantum Multi-Collision (QMC) distinguisher, as quantized
version of the q-multicollision distinguisher proposed in [2]. Our model shows
differentials with probability as low as 2−n, for a block cipher with n-bit block
size, will be useful in mounting QMC attack, compared with 2−2n/3 and 2−4n/5

for quantum collision attack considered in [18] and [12], respectively. We apply
the attack framework to AES, Rijndael, and Saturnin [7], and find a rich set of
results summarized in Table 1. All the results surpass the classical distinguishing
attacks in number of rounds and/or the success probability.

To the best of our knowledge, our work is the first dedicated quantum
distinguishing attack on block ciphers that utilize the gap between lower bounds
of query complexity of generic classical multicollision and generic quantum
multicollision. To demonstrate the flexibility of multi-collision attacks, the free-
start collision attack 10-round AES-hashing modes are given in Table 2.

Organization. Section 2 gives a brief introduction of AES-like primitives, quan-
tum computation, qRAMs, and quantum adversary models. Section 3 introduces
the related quantum collision algorithms and quantum multi-collision algorithms
for ideal functions. Then, Section 4 gives our attack framework and techniques
involved, followed by applications to AES-128, Rijndael, and Saturnin in Section 5.
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Target A.R. Attack Tc Tq Mem Reference
AES-256-DM 10 Free-start col. 249 – – Fig. 5
AES-256-DM 10 Free-start col. – 225.61 – Fig. 5
AES-256-DM 14 Pseudo col. q ⋅ 267 – – [2]
AES-256-DM 14 Collision – 251.2 225.6 [8]
AES-192-HCF 7 Free-start col. 264 – – Fig. 5
AES-192-HCF 7 Free-start col. – 233.37 – Fig. 5
AES-256-HCF 10 Free-start col. – 286.07 – [22]
AES-256-HCF 14 Free-start col. – 2100.3 – [1]

Table 2: Results on classical and quantum free-start collision attacks against AES-
hashing modes

Section 6 introduces classical/quantum attacks on AES-hashing modes with use
of previous techniques and enhanced trails. Section 7 concludes the paper. Some
details of the work are postponed to Appendix.

2 Preliminary

2.1 Quantum Computation and Quantum RAM
Similar to the time complexity estimation on classical computers, the unit of time
complexity on quantum computers refers to the computational effort required to
execute the underlying primitive once. The actual time to run a quantum attack
will depend on many factors including the hardware architectures of quantum
computers. In what follows, we consider the simple computational model that
each pair of qubits in a quantum computer can interact with one another. Based
on this model, the time complexity of dedicated algorithms is evaluated and
compared against the generic bounds under the same model. Such algorithms
are only considered as valid attacks if they require less resources like time and/or
space than the generic bounds. Here, space complexity refers to the number of
qubits to implement the attack, and similarly that needed to implement the
underlying primitive is one unit of space.

Random-access memory (RAM) is a form of computer memory that supports
read and write in any order, and the access time is often assumed to be constant
in the time complexity evaluation of cryptanalysis. Quantum random-access
memory (qRAM) is the quantum analog of the RAM, which supports data access
and computation in superpositions. For simplicity of complexity evaluation, we
assume similarly to RAM that access time of qRAM is constant, and that for
reading or writing of one cell is considered as a unit. Furthermore, we do not
distinguish qubits used as memory like qRAM and the qubits used for quantum
circuit implementations of a function.

2.2 Grover’s algorithm
Given a search space of N elements {1, 2, . . . , N}, a Boolean function f ∶ {1, 2, . . . , N}→
{0, 1}, and a ≜ ∣f−1(1)∣/N the probability for a random x resulting in f(x) = 1,
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the best classical algorithm with black-box access to f requires 1/a queries in
order to find one x with f(x) = 1 for a probability more than 0.5. This is usually
referred to as the bruteforce search in the classical setting. However, in the
quantum setting with quantum black-box oracle access to f , Grover’s algorithm
finds x with Θ(

√
1/a) quantum queries to the quantum oracle Of

5, which is
defined as:

∣x⟩ ∣y⟩↦ ∣x⟩ ∣y ⊕ f(x)⟩ .
Starting with a uniform superposition ∣ϕ⟩ = 1

√

N
∑N

x=1 ∣x⟩, by applying the Hadamard
transformation H⊗n to ∣0⟩⊗n where n = log2 N , the Grover’s algorithm iteratively
applies the unitary transformation (2 ∣ϕ⟩ ⟨ϕ∣ − I)Of to ∣ϕ⟩ so that the amplitudes
of those x’s with f(x) = 1 will be amplified. When measuring the resulting state,
a value of x of interest will be returned with overwhelming probability. Due to
this nature, Grover’s is also viewed as quantum analog of bruteforce search.

2.3 Quantum multicollision algorithm

Quantum q-multicollision algorithm considers the scenario where F ∶X → Y is a q-
to-1 function with ∣X ∣ = q∣Y ∣ = qN . The algorithm from [27] needs O(N 1

2 (1−
1

2q−1 ))
quantum queries, aided by the same amount of qRAM. It is noted that the BHT
algorithm is a special case of q = 2.

3 The Quantum q-multicollision Distinguisher

When the underlying function is ideal and can only be queried as a blackbox, Liu
and Zhandry [27] as reviewed in previous section give an algorithm of complexity
O(N (2

q−1
−1)/(2q

−1)) for the q-multicollision finding problem with proven tight
bounds. Hence, a dedicated algorithm which finds q-multicollision with fewer
time and/or qRAM will be considered a valid distinguisher, which in turn implies
the function under attack is not ideal. Biryukov et al. [2] define the following
function

F∆K ,∆P
(K, P ) = EK(P )⊕EK⊕∆K

(P ⊕∆P ),
where EK is the block cipher of interest. F with (K, P ) as the input can be
considered as a pseudo-random function according to Patarin [30]. Then the
q-multicollision for F can be defined as follows.

Definition 1 ( [2]). Given two fixed differences ∆K and ∆P . A q-multicollision
of a cipher EK(●) is a set of q (q ≥ 2) pairs: {(P1, K1), (P2, K2), . . . , (Pq, Kq)}
that satisfies

EK1(P1)⊕EK1⊕∆K
(P1 ⊕∆P ) = EK2(P2)⊕EK2⊕∆K

(P2 ⊕∆P ) =
= ⋅ ⋅ ⋅ = EKq(Pq)⊕EKq⊕∆K

(Pq ⊕∆P ) =∆C ,
(1)

where Pi ⊕∆P ≠ Pj and Ki ⊕∆K ≠Kj with i, j ∈ {1, 2, . . . , q}.
5 Here we assume use of Of , alternative oracle could be Oω which flips the phase of

good states: Oω ∣x⟩ = (−1)f(x) ∣x⟩
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Here the two differences ∆K and ∆P are fixed following [2, Remark 2], while
allowing two differences ∆K and ∆P to attackers’ choice leads to a difference of
complexity of the generic bounds between q ⋅N

q−2
q+2 in [2] for unfixed differences

v.s. q
e
⋅N

q−1
q in [35] for fixed differences. Scenario in [2, Remark 2] is considered

in this paper.
From the block cipher’s perspective when there exists a high probability

differential path, F is essentially the XOR difference of a ciphertext pair following
the differential path under plaintext difference ∆P and key difference ∆K . In
such case, the above q-multicollision can be translated into finding q conforming
pairs, which costs time q ⋅ p−1/2 by Grover search for a differential path with
probability p. To ensure this leads to a valid distinguisher with lower than generic
attack complexity, we need q ⋅ p−1/2 ≤ O(N (2

q−1
−1)/(2q

−1)) with N = 2n, then the
admissible probability should be p ≥ 2−n(1− 1

2q−1 ).
Note, although the differential is under the related-key setting with key

difference fixed, the entire model is however under the chosen-key setting since
the secret key K is also an input to F which can be chosen freely by the attackers.

Comparison with CMC. In [2], Biryukov et al. applied the CMC distinguishing
attack to the full 14-round AES-256. Rather than following directly the bound
of CMC (2n(1−1/q)) from [36], they considered the repeated queries under the
related-key setting by allowing (∆P , ∆K , ∆C) to attackers’ control and came
up with a slightly twisted bound, up to a constant-factor difference in q. In
our model (∆P , ∆K , ∆C) are fixed, we follow rightfully the bounds of [36] for
classical setting and that of Liu and Zhandry’s QMC algorithm [27] in quantum
setting. Although both CMC and QMC allow as low as 2−n as the admissible
probability for sufficiently large q, QMC allows 2−n(1−1/(2q

−1)), which is smaller
than that for CMC (2−n(1−1/q)) for any fixed q ≥ 2.

4 The Attack Framework and Techniques

To find the q-multicollision of a given block cipher, we follow Definition 1 to find
q conforming pairs following a differential path. The overall attack procedure,
as depicted in Figure 1, works in the following 4 steps, with time complexity
optimization in mind.

Step 1: Path search

Step 2: triangulation
to fixed S-boxes

active S-boxes active
S-boxes

Step 3: Brute-force
conforming pairs

Ri

•
••Ri+1 • •

Ri+2 Ri+3 Ri+4

Figure 1: The attack framework
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Step 1: find a high-probability differential path under the related-key setting.
To find differential path with highest possible probability, automatic
search tools are reviewed and that from [16] are invoked here. ∆P and
∆K are determined together with the path.

Step 2: some probabilistic transitions in the differential path can be fulfilled
deterministically by presetting some state values. In case of our mainly
concerned AES-like ciphers, the input or output of these active Sboxes
can be fixed utilizing such degrees of freedom from both state and key
bytes. To maximize the number of such fixed active Sboxes, triangulation
algorithm developed in [21] will be reviewed and used.

Step 3: the remaining active Sboxes are fulfilled by Grover search, where candi-
dates are generated from the remaining degrees of freedom from Step
2.

Step 4: additional adhoc optimizations are done to minimize the final complexity.

In the sequel, we introduce the techniques and algorithms used in each step.

4.1 Automatic tools for related-key differential paths

Generic solver Constraint Programming (CP) is used to solve Constraint Satis-
faction Problems (CSPs). A CSP is defined by a triple (X ,D,C) where

– X is a finite set of variables;
– D refers to the domain, i.e., the set of values each xi ∈ X can take;
– C is a set of constraints including relations between variables.

When an objective function is defined, the CSP becomes a Constrained-Optimization
Problem (COP). A solution of a COP is an assignment of values to all the vari-
ables in X = {x0,⋯, xn−1} such that all constraints from C = {c0,⋯, cm−1} are
satisfied and objective function achieves maximum or minimum.

Finding an optimal related-key differential trail is a highly combinatorial
problem that hardly scales. To simplify this problem, a usual and efficient way is
to divide it into two steps [3, 13]. Step 1 searches for all truncated differential
characteristics under a given bound on the number of rounds and active S-Boxes.
It may happen that no actual differential characteristic follows the truncated
differential found in Step 1. Hence Step 2 examines and decides whether the
truncated differential characteristics are valid, and finds the actual differential
characteristic that maximizes the probability. Both steps can be approached
by CP. Such CP strategy has been successful in finding related-key differential
characteristics for AES [11,17], Midori [14], and SKINNY [10,26,34], in the sense
that the truncated differentials match the lower bound on the number of active
S-boxes (a.k.a. optimal truncated differentials).

4.2 Triangulation Algorithm

The Triangulation Algorithm(TA) proposed in [21] uses Gaussian elimination to
solve systems of non-linear equations. Unlike a universal algorithm dealing with
any non-linear function, it is efficient for solving system of bijective functions
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only. When a differential characteristic of an AES-like block cipher is given, and
the attacker is given full control over the state and key values, we are interested
in finding the maximum amount of active S-boxes that can be fulfilled by setting
to the respective conforming values. TA serves this purpose, with state bytes and
key bytes as variables, and the round function and key schedule as the system of
equations. This can be applied to multiple rounds one by one, i.e.,TA is applied
to one round, then to the next rounds with only those free variables returned
by the TA from the previous round, this is repeated until all free variables are
exhausted. Our implementation shows the problem sizes in our attack are small
and all our TA programs can finish execution instantly on a PC.

4.3 Complexity Optimizations

To further minimize the overall complexity, the following measures are integrated
into the attack procedure.

1. TA is applied to consecutive rounds, for as many rounds as possible. This
process is repeated for each starting round, and the maximum number of
fixed active S-boxes is selected among all choices.

2. We note it is not necessary that the optimal differential characteristic from
Step 2 leads to the lowest attack complexity after the execution of TA. Hence,
instead of a single optimal path, a set of sub-optimal paths are collected from
Step 2, then TA is run for all the paths to identify the best one with highest
remaining probability.

3. It is noted that S-box operation only applies to the last column of the round
key bytes in the key schedule, while this is for all state bytes in round function.
Hence, it is likely many degrees of freedom from key bytes will be used to
fulfill some active S-boxes in the state. However, a key byte variable may not
affect all state bytes in a bijective way.

5 Applications on AES, Rijndael and Saturnin

In this section, detailed attack procedure on AES will be given for the readers
to follow the techniques, then brief results are described for subsequent targets.
To make a comprehensive comparison, besides QMC we also apply the attack
framework to find CMC. The primary notations used in this section are listed in
Table 3.

SB SR MC MR AK KS RCON
SubBytes ShiftRows MixColumn MixRow AddRoundKey KeySchedule Round Constant

Table 3: Notations
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5.1 AES

Description of AES. AES-k is a block cipher family of 128-bit block and k-bit
key for k ∈ {128, 192, 256}. The state has 16 bytes and can be represented as a
4× 4 matrix. Given a Nrow ×Ncol bytes of the state matrix, where Nrow = Ncol = 4.
Then the state is encrypted by an iterative process which is repeated for 10, 12,
and 14 rounds, for AES-128, AES-192, and AES-256, respectively. An AES round
function is an Substitution-Permutation Network (SPN), and composed of four
consecutive operations: SB, SR, MC, and AK. The master key k is added to the
state before the application of the first round function, and is used to generated
to r subkeys through the KS function.

Attack Procedure on AES. We apply the search tool described in Section 4.1
to find the related-key differential paths of AES-128 reduced to 7 rounds, 8
rounds, and the full 12-round AES-192, while that for the full 14-round AES-256
has been already found and used in [2, 16]. A lower bound of probability 2−(n+k)

is set to limit the search space, where n is the state size and k is the key size
in bits. This bound is used to ensure there will be at least one pair of messages
conforming the differential path, utilizing all degrees of freedom from both state
and key. A set of differential paths are collected.

∆IN

KS

•
k0

AK

x0

SB

y0

SR

z0

MC

w0

Round 0

KS

k1
AK x

xx
x
x
xxx

x
x
x
x
x

x1

SB

•

• •
•
•
•
•

y1

SR

x
x
x x

x
x

xx
x
x

x
x

z1

MC

w1

Round 1

KS

k2
AK xxx

x
x
x

x

x2

SB •
y2

SR

x
x

x
x
x
x

x

z2

MC

w2

Round 2

KS

•
k3

AK x
x x

x

x3

SB

y3

SR x x
x x

z3

MC

w3

Round 3

KS

•
k4

AK

x4

SB

y4

SR

z4

MC

w4

Round 4

KS

•
k5

AK

x5

SB

y5

SR

z5

MC

w5

Round 5

KS

k6
AK

x6

SB

y6

SR

z6

MC

w6

Round 6

k7
AK

x7

SB

y7

SR

z7

∆OUT

Legend

No diff.

Nonzero diff.

Fixed variables.

• Free variables.

x Known bytes.

Active S-box
with probability 2−7.

Figure 2: A differential path 6 for 8-Round AES-128. Known bytes are determined
from the values of the free bytes.

6 Legend is used for the same meaning for the subsequent differential paths
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Let us denote by yi, wi, ki the state after SB, MC, and the sub-key at i-th
round. Each of them is an array of 16 bytes following order from columns to
columns. Then, the i-th round function involving yi, wi−1, ki and wi can be re-
expressed by Equation (2), where the first line yi ⊕ S(wi−1 ⊕ ki) reassembles
two operations AK and SB, and the second line reassembles SR and MC. The
i-th round key schedule can be re-expressed by the Equation (3), relating key
bytes of the current round ki with that from the previous round ki−1. The same
Equation (3) is used for both AES-128 with i = 0, . . . , 10 and b = 16, and AES-192
with i = 0, . . . , 8 and b = 24. There are 32 free variables (16 from the state and
16 from the key) for AES-128, and 40 free variables (16 from the state and 24
from the key) for AES-192. Each equation will form a line with 1/0 indicating
the presence of the respective variable in the matrix input to TA.

Ri ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi ⊕ S(wi−1 ⊕ ki) = 0

wi ⊕

⎛
⎜⎜⎜⎜⎜
⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎟⎟⎟
⎠

×

⎛
⎜⎜⎜⎜⎜
⎝

yi[0] yi[4] yi[8] yi[12]
yi[5] yi[9] yi[13] yi[1]
yi[10] yi[14] yi[2] yi[6]
yi[15] yi[3] yi[7] yi[11]

⎞
⎟⎟⎟⎟⎟
⎠

= 0
(2)

KSi ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ki[j]⊕ ki[j − 4]⊕ ki−1[j] = 0, j = 4, . . . b − 1
ki[0]⊕ ki−1[0]⊕ S(ki−1[b − 3])⊕RCONi = 0
ki[1]⊕ ki−1[1]⊕ S(ki−1[b − 2]) = 0
ki[2]⊕ ki−1[2]⊕ S(ki−1[b − 1]) = 0
ki[3]⊕ ki−1[3]⊕ S(ki−1[b − 4]) = 0

(3)

Cipher Attacked Active S-boxes Fixed bytes Final Probability Ref.
Rounds Type-I + Type-II Type-I + Type-II pout

AES-128
6 16 + 5 10 + 5 2−36 [34]
7 13 + 16 5 + 10 2−90 Fig. 6
8 10 + 27 (3 + 17) or (3 + 18) 2−112 or 2−105 Fig. 2

AES-192 10 23 + 8 10 + 8 2−84 [16]
12 23 + 16 6 + 16 2−102 Fig. 10

AES-256 14 22 + 2 11 + 2 2−66 [16]
Table 4: Summary of AES related-key differential paths

Results on 8-round AES-128. After CP tool run on a PC for a few minutes,
the desired differential characteristics are found on 8-round AES-128. The one, as
depicted in Figure 2 and specified in Figure 6, is formed with 37 active S-boxes,
whereas 6 of them are in the sub-keys and 31 are in the state. For the AES S-box,
there are two types of differentials with probability of 2−6 and 2−7, which we will
refer to as Type-I and Type-II. They are depicted in the figures of differential path
as boxes in blue only, and blue with white lines, respectively. Among the 37 active
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S-boxes, there are 10 Type-I and 27 Type-II, which gives an overall probability of
2−(10×6+27×7) = 2−249. After execution of TA with all possible starting round, we
find the one starting with Round 1 is the best choice, which allows to fix all active
S-boxes in Round 1 and Round 2, and 4 of the state in Round 3, as well as 5 out of
the 6 active S-boxes in sub-keys, as highlighted in red in the Figure 2. TA finds the
active S-box in k7 cannot be fixed probably because it is too far from the Round
1 variables. After TA, 7 Type-I and 10 Type-II active S-boxes are left unfixed,
resulting in a probability of pout = 2−(7×6+10×7) = 2−112. Grover search then finds
a conforming pair in 256 quantum queries, and hence a QMC in q ⋅ 256. This
complexity is lower than the generic bound when pl = 112/128 = 0.875 < 1 − 1

2q−1 ,
i.e., q ≥ 4. The same differential leads to a CMC attack with complexity q ⋅ 2112,
which is a valid attack when pl < 1 − 1/q, i.e., q ≥ 9. The gap of the q ranges can
be interpreted as the differential leads to a valid QMC attack but invalid CMC
attack in the range 4 ≤ q ≤ 8.

Remark 1. One may wonder if the degree of freedom (DoF) is sufficient for this
attack, since there are in total 32 bytes DoF, 3 + 17 = 20 have to be used as fixed
bytes, and the remaining 32 − 20 = 12 bytes (or 96 bits) are insufficient for a
probability of 2−112. It is important to note that none of DoF will be lost, i.e.,
even for the bytes used as fixed bytes, there will be 21 or 22 solutions for each
such Sbox of Type-II and Type-I, respectively. These leftover DoF together with
those free bytes will be used to fulfill the final pout. Hence, overall it is sufficient
for us to ensure the overall probability 2−249 requires 249 DoF to fulfill, less than
the total available 32 bytes (or 256 bits). Similar assurance has been done for all
presented results during the differential search.

To check if TA works as expected and no byte is over-defined in the system,
we verified the entire procedure to reproduce all other state and key bytes from
the set of fixed bytes and free bytes. As also highlighted in red, the fixed bytes are
{k0[14], k1[15], k2[14], k3[15], k5[15], y1[1], y1[5], y1[10], y1[11], y1[15], y2[2],
y2[6], y2[10], y2[11], y2[13], y2[15], y3[1], y3[3], y3[9], y3[11]}, and the free
bytes are {k0[15], k3[11], k4[4], k5[11], y1[4], y1[7], y1[8], y1[9], y1[12], y1[13],
y1[14], y2[5]}. From these 32 bytes, Table 7 shows step by step how the entire
key state k2 (highlighted in red) and state y1 (highlighted in blue) are derived.
MC−1 is the operator acting on any 4 bytes out of 8 bytes of the columns before
and after MC and resulting in the remaining 4 bytes.

Fixing one more active S-box. In this part, we describe a method to fulfill
one additional active S-box at y3[12] for free at the cost of some qRAM. Along
with the previous fixed bytes, we fix one more byte k3[12] and receive other free
variables from another run of TA. Note that byte k3[12] will not be fixed to
particular value, but will be chosen so that k3[12]⊕ x3[12] fulfill the S-box at
y3[12]. Denote the value of k3[12] as x. Then the value of y3[12] depends on x
and some more free variables and fixed variables, more precisely

y3[12] = S(03 × S(01 × 02−1x⊕ c1)⊕ c2 ⊕ x), (4)
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where c1 and c2 are 8-bit values depending on the 31 free bytes and fixed bytes. A
lookup table with the triplet (c1, c2, x) can be precomputed and stored in qRAM
for superposition access. When the values of the 31 main bytes are fixed, the
corresponding (c1, c2) can be computed, and suitable x can be identified from
the lookup table so that the active S-box at y3[12] can be fulfilled. The cost
of this lookup table is classical computation effort of 216 and 216 qRAM. This
method allows to fix one additional Type-II active S-box, resulting in the final
pout = 2−105 as depicted in Figure 2.

Results on 7-round AES-128. Since the QMC for 8-round AES-128 are not
valid for all q values, and the previous quantum collision attacks work for 7 rounds
only, we also run our attack framework to 7-round for comparison purposes. The
CP tool returns in a few minutes the differential path depicted in Figure 6 with
29 actives S-boxes, out of which 22 S-boxes are in states and 7 are in subkeys.
With (13, 16) and (8, 6) Type-I and Type-II active S-boxes before and after TA,
the respective probabilities are 2−190 and 2−90. Then pl = 90/128 = 0.703 gives a
valid QMC with complexity q ⋅ 245 for q ≥ 3 and a valid CMC with complexity
q ⋅ 290 for q ≥ 4. To find the CMC attack valid for all possible q, we move on to
reduce the attacked round to 6.

Results on 6-round AES-128. The best related-key differential of 6-round
AES-128 has been found in [34], with 16 Type-I and 5 Type-II active S-boxes,
and only 6 Type-I active S-boxes are left. This path gives a final pout = 2−36 and
pl = 0.28 leading to a valid CMC with complexity q ⋅ 236 for all q ≥ 3.

Results on 12-round AES-192. Similar attack procedure is applied to AES-192,
and the probabilities of the differential path before and after application of TA, as
depicted in Figure 10, are 2−250 and 2−102, respectively. The pl = 102/128 ≈ 0.80
gives a valid QMC with complexity q ⋅ 251 for q ≥ 3 and a valid CMC with
complexity q ⋅ 2102 for q ≥ 4. The attacked round reduces to 10 to obtain the
CMC attack valid for q ≥ 3 with time complexity 278. All our results on AES are
summarized in Table 4.

5.2 Rijndael

Cipher Attacked Active S-boxes Fixed bytes Final Probability Ref.
Rounds Type-I + Type-II Type-I + Type-II pout

Rijndael-128-160
9 22 + 9 12 + 9 2−60 Fig. 9
10 27 + 9 12 + 9 2−90 Fig. 7
11 21 + 20 6 + 16 2−118 Fig. 7

Rijndael-128-224 11 19 + 7 9 + 6 2−67 Fig. 8
13 28 + 11 14 + 10 2−97 Fig. 8

Rijndael-160-192 11 31 + 14 16 + 14 2−90 Fig. 9
Rijndael-160-256 12 35 + 7 18 + 7 2−108 Fig. 10

Table 5: Summary of Rijndael related-key differential paths
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Description of Rijndael. Rijndael-b-k (where b is the block size and k is the key
size in bits) is the predecessor of AES designed by Daemen and Rijmen [9]. It has
25 variants corresponding to each case of 4×Ncol block size (128, 160, 192, 224 or
256 bits) and the key size (128, 160, 192, 224 or 256 bits). The number of rounds
for the 25 instances are 10, 11, 12, 13, and 14 depending on the maximum of
block size and key size. The encryption process is the same as AES as described
in Section 5.1, except for the KS, SR, and the round numbers. Here we focus on
the variants of block size 128 and 160 bits, for which SR works the same as AES
by circularly shifting i-th row to the left by i positions.

Results on Rijndael. Our related-key differential characteristics are obtained
by modifying the tool from [16] to fit Rijndael. There are 25 instances of Rijndael,
we report in this paper only the longest rounds attacked due to space limit. The
QMC can be mounted on full rounds of Rijndael-128-160, Rijndael-128-224, 11-
round Rijndael-160-192, and 12-rounds of Rijndael-160-256. For Rijndael-128-160
(and similarly for Rijndael-128-224), we listed the results from 9 to 11 rounds,
because 9 is the maximum rounds CMC attack can reach for q = 3, 10 is the
valid QMC attack can achieve for q = 3, and 11 is the maximum rounds a valid
QMC works for some bigger q. When TA is applied, active S-boxes in the states
of up to 3 rounds can be fixed. Details of the differential paths, before and after
the application of TA, are summarized in Table 5. It is interesting to note that
differential paths leading to the best attack for 3 out of the 4 variants are optimal,
except for Rijndael-160-256. In this special case, a differential path with 42 active
S-boxes instead of the optimal one with 40 active S-boxes is used. This path has
more active S-boxes in the keys rather than the state than the optimal path.
After application of TA, this sub-optimal path leads to higher final probability
pout. This is consistent with our observation that more free variables are available
from key bytes since there are less S-box operations, hence TA has better chance
to fix active S-boxes in key.

5.3 Saturnin

Description of Saturnin. Saturnin [7] is a block cipher with a 256-bit state
and 256-bit key that was designed as the derivative of AES with efficient imple-
mentation by Canteaut et al. for the NIST lightweight cryptography competition,
and it was among the round 2 candidates. It can be viewed as a 3-dimensional
AES with cell size of 4 bits. The composition of two consecutive rounds starting
from even round is called super-round, which is very similar to an AES round
operating on 16-bit words except that the SR is replaced by a transposition
exactly as used in Square, the predecessor of AES.

Results on Saturnin. On Saturnin’s design website, the authors propose a
challenge to dig into the security analysis of Saturnin against the related-key
differential attack, starting from 9 rounds. In [6], the designers proposed the first
classical related-key attack on 10 rounds, and conclude

“A quantized version of this attack is expected to reach less rounds ... ”
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Figure 3: A differential path for 2-Round Saturnin [6]

In this paper we successfully mount QMC distinguishing attack on 10-round
Saturnin. It does not directly violate designers’ claim above since ours are not
key-recovery attack, however reaches the 10-round boundary. We utilize the
differential characteristic proposed by the designers in [6], where a 2-round
iterative differential characteristic (refer to Figure 3) with probability 2−78.1

is given and repetition by 5 times leads to a 10-round related-key differential
characteristic with probability 2−390.5.

Next, we prepare the system of equations as the input to TA. The key schedule
of Saturnin is simple byte shuffle, which requires no extra equation to describe.
Application of TA shows that all the active S-boxes in first 4 rounds of states
except for the last active S-box in byte y3[7] can be fixed. Saturnin does not
allow us to apply the trick used for AES to save degree of freedom of key bytes,
because each byte of the key is involved in various equations. The relationship of
the key byte and the corresponding state byte involves many more dependent
variables c1, c2, c3,⋯, which increases the requirement of memory significantly.
To this end, the probability of the S-box in byte y3[7] is not lower than 2−15,
which results in a pout = 2−249.3. This leads to a QMC with complexity 2124.65

and q ≥ 6. The similar procedure attack is applied to 8 rounds to achieve general
QMC, i.e., q ≥ 3, with pout = 2−171.2, which leads to the complexity 285.6. To
extend the CMC attack to q = 3, the same differential characteristic but reduced
further to 7 rounds is used. This leads to a pout = 2−143, and a valid CMC attack
with complexity 2143, as summarized in Table 6.

Model Rounds Active S-boxes Fixed bytes Final Probability Ref.

Saturnin
7 22 11 2−143

Fig. 38 24 11 2−171.2

10 30 11 2−249.3

Table 6: Results on Saturnin’ related-key differential paths

6 Rebound attacks on AES-hashing modes

The related-key trails used in multicollision distinguisher can be used to attack
two AES-hashing modes in Figure 4 if ∆P =∆C .

6.1 AES-DM Mode
AES-256-DM is Davies-Meyer hash mode instantiating AES-256. Let F ∶ {0, 1}128×
{0, 1}256 → {0, 1}128 be AES-256-DM compress function such that hi = F (hi−1, mi−1) =
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mi−1
gi−1 EK gi

hi−1

mi
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Figure 4: Left: Davies-Meyer (DM) mode. Right: Hirose’s double block length (DBL)
compress function.

AESmi−1(hi−1) ⊕ hi−1, then one block collision would be a pair of IVs (h0, h⋆0)
and a pair of messages (m0, m⋆0) satisfying AESm0(h0)⊕AESm⋆

0
(h⋆0) = h0 ⊕ h⋆0.

The trail found by Biryukov et al. [2] can be cut into a 10 round trail (Figure
5) used for free-start collision attack on AES-256-DM. The time complexity is
249 for outbound containing (7, 1) Type-I and Type-II active S-boxes in classical
setting and 225.61 in quantum setting.

6.2 AES-DBL Mode

The triangulation technique can also be adapted to the free-start collision attack
on 7-round AES-192-HCF, which is Hirose’s double block length hashing mode
instantiating AES-192.Let F ∶ {0, 1}256 × {0, 1}64 → {0, 1}256 be AES-192-HCF
compress function such that (gi, hi) = F (gi−1, hi−1, mi), and

gi = AEShi−1∣∣mi
(gi−1)⊕ gi−1

hi = AEShi−1∣∣mi
(gi−1 ⊕ c)⊕ gi−1 ⊕ c

where ∣∣ represents the concatenation and c ∈ F128
2 is a non-zero constant. One

block collision of this hash could be found using the same method from [22], i.e.,
considering colliding pair (g0, h0, m1) and (g⋆0 , h0, m1) with g0 ⊕ g⋆0 = c, which
leads condition AESh0∣∣m1(g0)⊕AESh0∣∣m1(g0 ⊕ c) = c.

The attack takes advantage of using a valid differential characteristic in the
middle while the rest of the trail remains truncated (Figure 5), leads to the saving
of above 28 iterations to find the correct pair values in the classic rebound-based
attack. Along with at least 34 degrees of freedom from active S-boxes (each active
S-boxes contributes at least 2 admissible values) in the Super-Inbound phase, we
can obtain 234 ⋅ 28×5 = 274 pair values, which is enough to fulfill the probability
2−64 of the feed-forward cancellation ∆IN =∆OUT (2−32) and condition ∆h0 = c
(2−32), where c has 4 non-zero bytes at some specific positions. The overall time
complexity of the attack is 264 in classical setting and 233.37 in quantum setting.

7 Conclusions

In this paper, we proposed the quantum multi-collision distinguishers. Our model
shows differential paths with probability as low as 2−n will be useful in mounting
such attacks, hence resulted in more rounds than both quantum collision attack
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and classic multi-collision distinguishers. We applied the attack model to AES-
like ciphers including all three versions of AES, 4 versions of Rijndael, and
the post-quantum block cipher design Saturnin-256. Full round distinguishing
attacks are mounted on AES-192, AES-256, Rijndael-128-160, and Rijndael-128-224.
Comparing with quantum collision attacks, our attack covered one more round on
AES-128. We also applied the same techniques to AES-hashing modes including
AES-256-DM and AES-192-HCF. Our attack framework is generic, hence can be
applied to more target ciphers.
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Supplementary Material

A Steps to reduce k2

Fixed bytes: k0[14], k1[15], k2[14], k3[15], k5[15], y1[1], y1[5], y1[10], y1[11], y1[15],
y2[2], y2[6], y2[10], y2[11], y2[13], y2[15], y3[1], y3[3], y3[9], y3[11]

Free bytes: k0[15], k3[11], k4[4], k5[11], y1[4], y1[7], y1[8], y1[9], y1[12], y1[13], y1[14], y2[5]
1. k1[11] = k0[15]⊕ k1[15] 27. k2[3] = S(k2[12])⊕ k3[3]
2. k2[15] = k3[11]⊕ k3[15] 28. k1[14] = k2[10]⊕ k2[14]
3. k4[15] = k5[11]⊕ k5[15] 29. k1[10] = k0[14]⊕ k1[14]
4. k4[11] = k3[15]⊕ k4[15] 30. k2[6] = k1[10]⊕ k2[10]
5. k4[7] = k4[11]⊕ k3[11] 31. x1[6] = x2[6]⊕ k2[6]
6. k5[7] = k5[11]⊕ k4[11] 32. y1[3] = z1[7], w1[4, 5, 7]

=MC−1
(z1[4, 5, 6], w1[6])

7. k5[3] = k5[7]⊕ k4[7] 33. k2[5] = w1[5]⊕ x2[5]
8. w1[15] = x2[15]⊕ k2[15] 34. x2[7] = w1[7]⊕ k2[7]
9. y1[6] = z1[14], w1[12, 13, 14] 35. z2[8], w2[8, 9, 10]
=MC−1

(z1[12, 13, 15], w1[15]) =MC−1
(z2[9, 10, 11], w2[11])

10. k2[13] = x2[13]⊕w1[13] 36. k2[8] = x2[8]⊕w1[8]
11. x2[14] = k2[14]⊕w1[14] 37. k3[9] = w2[9]⊕ x3[9]
12. w2[11] = x3[11]⊕ k3[11] 38. k3[4] = k2[8]⊕ k3[8]
13. k2[11] = k1[15]⊕ k2[15] 39. k4[0] = k3[4]⊕ k4[4]
14. k2[7] = k1[11]⊕ k2[11] 40. k3[13] = k3[9]⊕ k2[13]
15. k3[7] = k2[11]⊕ k3[11] 41. k3[0] = S(k3[13])⊕ k4[0]
16. k3[3] = k2[7]⊕ k3[7] 42. k2[4] = k3[0]⊕ k3[4]
17. k4[3] = k3[7]⊕ k4[7] 43. k2[0] = S(k2[13])⊕ k3[0]
18. k4[12] = S−1

(k4[3]⊕ k5[3]) 44. w2[3] = k3[3]⊕ x3[3]
19. k3[12] = S−1

(k3[3]⊕ k4[3]) 45. z2[0], w2[0, 1, 2]
=MC−1

(z2[1, 2, 3], w2[3])
20. k4[8] = k3[12]⊕ k4[12] 46. w1[0] = k2[0]⊕ x2[0]
21. k3[8] = k4[4]⊕ k4[8] 47. y1[0] = z1[0], w1[1, 2, 3]

=MC−1
(z1[1, 2, 3], w1[0])

22. k2[12] = k3[8]⊕ k3[12] 48. k2[2] = w1[2]⊕ x2[2]
23. w1[11] = k2[11]⊕ x2[11] 49. k3[1] = w2[1]⊕ x3[1]
24. y1[2] = z1[10], w1[8, 9, 10] 50. k2[1] = k3[1]⊕ S(k2[14])
=MC−1

(z1[8, 911], w1[11])
25. k2[10] = w1[10]⊕ x2[10] 51. k3[5] = k2[5]⊕ k3[1]
26. x2[12] = w1[12]⊕ k2[12] 52. k2[9] = k3[5]⊕ k3[9]

Table 7: Steps to derive the entire key k2 (marked in red) and state y1 (marked in
blue) from the fixed and free bytes.

21



B The differential trails of our attacks
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Figure 5: Left: A differential trail for free-start collision attack on 10-round AES-
256-DM. Right: A differential trail for quantum free-start collision attack on 7-round
AES-192-HCF.
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Figure 7: Left: A differential trail for 10-Round Rijndael-128-160. Right: A differential
trail for 11-Round Rijndael-128-160.
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Figure 8: Left: A differential trail for 13-Round Rijndael-128-224. Right: A differential
trail for 11-Round Rijndael-128-224.
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Figure 9: Left: A differential trail for 12-Round Rijndael-160-256. Right: A differential
trail for 9-Round Rijndael-128-160.
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Figure 10: Left: A differential trail for 11-Round Rijndael-160-192. Right: A differential
trail for 12-Round AES-192.

24


	Automatic Quantum Multi-collision Distinguishers and Rebound Attacks with Triangulation Algorithm

