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Abstract

We propose a new bootstrapping approach that works for all three Brakerski-Gentry-
Vaikuntanathan(BGV), Brakerski/Fan-Vercauteren (BFV), and Cheon-Kim-Kim-Song (CKKS)
schemes. This approach adopts a blind rotation technique from FHEW-type schemes. For BGV
and BFV, our bootstrapping does not have any restrictions on plaintext modulus unlike typical
cases of the previous methods. For CKKS, our approach introduces an error comparable to a
rescaling error which enables more than 70 bits of precision after bootstrapping while consuming
only 1-2 levels. Due to the high precision of the proposed bootstrapping algorithm, it is the
first bootstrapping resistant to the security vulnerability of CKKS found by Li and Micciancio
(Eurocrypt 2021). In addition, we introduce methods to reduce the size of public keys required
for blind rotations generated by a secret key holder.
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1 Introduction

Homomorphic encryption (HE) is a form of encryption that enables computations on encrypted
data without access to a secret key. Most HE schemes rely on Learning with Errors (LWE) [1]
or Ring Learning with Errors (RLWE) [2] problem, and their ciphertexts contain small “noise”
which ensures security. However, the noise grows during computations and eventually can destroy
the message, and thus the number of operations which can be computed in encrypted form is
limited. Since the first construction of fully homomorphic encryption (FHE) scheme by Gentry [3],
significant progress has been made in the direction of research on HE. Gentry’s celebrated idea of
bootstrapping allows refreshing the noise of a ciphertext and more computations to be performed
on the ciphertext.

The most common FHE schemes can be categorized into FHEW-type, BGV/BFV-type and
CKKS-type. FHEW-type schemes (such as FHEW [4] and TFHE schemes [5]) are based on LWE
and primarily work with boolean circuits. The core idea of their bootstrapping procedure is a so-
called blind rotation technique [5, 6, 7]. BGV/BFV-type schemes [8, 9, 10] are commonly designed
for computations over finite rings, and CKKS-type schemes [11, 12] are designed for computations
over real and complex numbers. While BGV, BFV, and CKKS are all based on RLWE and their
encryption differs only in encoding, the existing bootstrapping algorithms for these three schemes
are different.

Both BGV and BFV are exact schemes and an error accumulated during computations can
eventually destroy the message. All known bootstrapping techniques for BGV and BFV schemes
and their RNS variants [13, 14, 15] are performed by extracting digits from a decrypted result
homomorphically. However, the complexity of digit extraction increases with the size of plain-
text modulus and thus significant limitations should be applied to the plaintext modulus to make
bootstrapping secure and practical.

Meanwhile, an error is considered as a part of the message in CKKS so that the bit extraction
technique cannot be applied. Cheon et al. [16] proposed the first bootstrapping procedure for
CKKS based on the polynomial approximation to a modular reduction function in a decryption
algorithm. Subsequent studies have focused on approximating the modular reduction function more
precisely to improve accuracy [17, 18, 19, 20, 21, 22].

However, such an approximation approach produces additional errors that have a significant
impact on the quality of a message. Besides, to achieve a better quality of approximations, the
previous methods consume a huge number of multiplicative levels and it causes the modulus of a
ciphertext after bootstrapping to be much smaller than that of the fresh ciphertext. It leads to the
fact that large RLWE parameters are required to make this bootstrapping procedure feasible. In
practice, the ring dimension of RLWE is set to 216 or higher for security purpose [16, 18, 20, 23].

Moreover, Li and Micciancio [24] recently discovered a vulnerability of CKKS scheme based on
possible leaks of information about secret keys through noise analysis of the decrypted message.
Their attack shows that the traditional formulation of IND-CPA security (or indistinguishability
under chosen plaintext attacks) achieved by CKKS does not adequately capture the security of
CKKS against passive adversaries, and that a different and stronger definition of IND-CPAD (or
indistinguishability under chosen plaintext attacks with decryption oracles) is required to evaluate
the security of CKKS. The only known workarounds such as noise flooding techniques [3, 24]
in the decryption state, reduce the precision of the message. In practice, the precision of the
message is reduced by about 30 bits after the workaround. This arises security concerns of existing
bootstrapping methods. Previous bootstrapping approaches preserve only about 25-35 bits of
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precision of a message [18, 20]. More levels and large scaling factors are required to guarantee
additional 30 bits precision and is hardly possible in practice to resist the vulnerability in [24].

In this paper, we propose a new bootstrapping technique that does not use polynomial approx-
imation to evaluate the modular reduction function. We combine the blind rotation technique used
in bootstrapping for FHEW-type schemes [4, 5] and the RLWE ciphertext repacking technique [25]
to avoid limitations of existing techniques. It produces an error as small as a rescaling error and
consumes only 1-2 levels. Compared to previous CKKS bootstrapping techniques, our technique
almost does not lose the precision of the message and is suitable for employing noise flooding
workarounds to resist the vulnerability in [24]. We implement our bootstrapping technique using
RLWE ring dimension of 213, while preserving more than 70 bits of precision.

We show that the new bootstrapping technique is also applicable to BGV and BFV schemes
with only minor modifications on the proposed algorithm. Unlike the previous bootstrapping, our
technique does not have restrictions on the plaintext modulus and allows to perform bootstrap-
ping for smaller ring dimension. This is possible because all the procedures in our bootstrapping
technique are almost independent of message size and plaintext space.

We also provide a compact representation technique for reducing the size of public keys. It
enables a secret key holder to generate a smaller size of public keys. This brings the effect of
reducing the communication overhead. A computational party should reconstruct the public keys
for performing homomorphic operations. We present the additional technique to reconstruct the
public keys and perform blind rotations on-the-fly without storing all of them.

1.1 Technical Overview

Let N be the ring dimension and q be the ciphertext modulus. R := Z[X]/(XN + 1) denotes the
2N -th cyclotomic ring and its quotient ring is denoted by Rq := R/qR. Given an RLWE ciphertext
ct = (a, b) ∈ R2

q , the decryption query is defined as

ct(s) = a · s + b = m + e ∈ Rq,

where s is a secret key and e is a small error. When the modulus q is small and the additional
homomorphic operations can destroy the message m, it is required to increase this small modulus
to a bigger modulus Q > q and produce a new ciphertext ctboot = (aboot, bboot) ∈ R2

Q such that

ctboot(s) = aboot · s + bboot = m + eboot ∈ RQ.

The previous CKKS bootstrapping methods start from the ciphertext ct = (a, b) ∈ R2
q represented

in a higher modulus Q. Then the decryption query becomes

ct(s) = a · s + b = m + e + q · u ∈ RQ (1)

for some small polynomial u. After a homomorphic linear transformation, the ciphertext contains
mi + ei + q · ui in each slot, where mi, ei and ui are i-th coefficients of polynomials m, e and
u, respectively. A polynomial approximation of the modular reduction function removes q · ui
parts from the ciphertext. The final ciphertext, which encrypts m in a higher modulus Q′ where
q < Q′ < Q, is obtained through another homomorphic linear transformation. As mentioned above,
a major difficulty of this method is accurate polynomial approximation of the modular reduction
function.
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Our bootstrapping technique greatly differs from the previous bootstrapping methods. To
remove q · u part from the equation (1), we compute encryption of −q · u by the blind rotation
technique used in the FHEW-type bootstrapping algorithm [4, 5]. The main idea of our approach
is to preprocess the ciphertext ct and extract the encryption of a small polynomial u modulo 2N
to obtain a ciphertext ctprep =

(
aprep, bprep

)
∈ R2

2N satisfying

ctprep(s) = aprep · s + bprep = −u ∈ R2N .

Then we apply the blind rotation technique to ctprep and repack the results by using the RLWE
ciphertext repacking technique [25]. This procedure that we call ScaledMod gives an encryption
ctsm = (asm, bsm) ∈ R2

Q of the scaled value q · u and it satisfies

ctsm(s) = asm · s + bsm = −q · u + esm ∈ RQ.

Finally, we add the ciphertext ct and ctsm modulo Q to eliminate q · u term from ct and increase
the size of the modulus from q to Q. Since the error grows linearly during ScaledMod procedure,
we can adjust the error esm to be comparable to the rescaling error with only a single rescaling.

1.2 Related Works

Ducas and Micciancio [4] introduced a blind rotation technique based on RGSW [26] and achieved
bootstrapping time less than a second for evaluation of boolean operations in encrypted form. One
of the main advantages of the blind rotation technique is that it introduces only small controllable
additive error. Chillotti et al. [5, 27] proposed a TFHE scheme over the torus and several opti-
mization methods for FHEW. Recently, Micciancio and Polyakov [28] generalized it to unify the
original and extended variants of both FHEW and TFHE.

Several recent studies [29, 30, 31, 32, 33] have applied the blind rotation technique in conjunction
with other FHE schemes. It is shown that conversions between LWE and RLWE combined with
the blind rotation can be an efficient base technique for evaluating non-polynomial functions for
FHE such as sign functions and other neural network activation functions [29, 30]. However, none
of them considered applying this technique to bootstrapping of BGV, BFV, and CKKS schemes.

1.3 Organization

This paper is organized as follows. In Section 2, we start with some preliminaries on lattice-based
structures and operations with them. In Section 3, we present the core algorithm ScaledMod for our
bootstrapping. In Section 4, we describe full bootstrapping algorithms for CKKS, BGV and BFV.
In Section 5, we present a compact representation of public keys and how to reconstruct them. In
Section 6, we provide complexity and error analysis and compare our bootstrapping precision with
previous methods. We conclude in Section 7.

2 Preliminaries

All logarithms are base 2 unless otherwise indicated. For two vectors ~a and ~b, we denote their
inner product by 〈~a,~b〉. Let N be a power of two, we denote the 2N -th cyclotomic ring by R :=
Z[X]/(XN + 1) and its quotient ring by RQ := R/QR. Ring elements are indicated in bold, e.g.
a = a(X). We write the floor, ceiling and round functions as b·c, d·e and b·e, respectively. For
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q ∈ Z, q > 1 we identify the ring Zq with (−q/2, q/2] as the representative interval, and for x ∈ Z
we denote the centered remainder of x modulo q by [x]q ∈ Zq.

We extend these notations to elements of R by applying them coefficient-wise. For a = a0 +a1 ·
X + · · ·+aN−1 ·XN−1 ∈ R, we denote the `∞ norm of a as ‖a‖∞ = max0≤i<N {|ai|}. There exists
a constant δR such that ‖a · b‖∞ ≤ δR ‖a‖∞ ‖b‖∞ for any a, b ∈ R. For R = Z[X]/(XN + 1), we
use the bound δR = 2

√
N as shown in [34].

We use a← S to denote uniform sampling from the set S. We denote sampling according to a
distribution χ by a← χ. χerr denotes a discrete Gaussian distribution with a standard deviation
σerr. χkey denotes ternary distribution such that each coefficient is chosen from {−1, 0, 1} and is
used for secret key generation. We do not consider sparse keys as they are a subject of security
concerns [35, 36] and are also not supported by the Homomorphic Encryption standardization
document [37].

2.1 Basic Lattice-based Encryption

For positive integers q and n, basic LWE encryption of m ∈ Z under the secret key ~s ← χkey is
defined as

LWEq,~s(m) = (~a, b) = (~a,−〈~a,~s〉+ e+m) ∈ Zn+1
q ,

where ~a← Znq , and error e← χerr. We occasionally drop subscripts q and ~s when they are obvious

from the context. We use the notation LWE0
q,~s(m) if the error e is zero.

For a positive integer Q and a power of two N , basic RLWE encryption of m ∈ R under the
secret key s← χkey is defined as

RLWEQ,s(m) := (a,−a · s + e + m) ∈ R2
Q,

where a ← RQ, and ei ← χerr for each coefficient ei of e, i ∈ [0, N − 1]. As with LWE, we will
occasionally drop subscripts Q and s. We also use the notation RLWE0

Q,s(m) if the error e is zero.
A ciphertext ct = RLWEQ,s(m) = (a, b) ∈ R2

Q is decrypted by computing

RLWE−1Q,s(a, b) := a · s + b = m + e ∈ RQ.

We use shorthand notation ct(s) := RLWE−1Q,s(ct).

We assume that (t0, · · · , td−1) is a gadget decomposition of t ∈ RQ if t =
∑d−1

i=0 gi · ti where
~g = (g0, . . . , gd−1) is a gadget vector. For a power of two modulus Q, we use a base power gadget
vector (1, B1, . . . , Bd−1) with a power of two B. We use the RNS gadget vector ([q̂−1j ]qj · q̂j)0≤j<d,
where q̂j =

∏
i 6=j qi and the modulus Q is chosen as the product Q =

∏
0≤j<d qj of different primes.

We adapt the definitions of RLWE′ and RGSW from [28]. For a gadget vector ~g, we define

RLWE′s(m) := (RLWEs(g0 ·m),RLWEs(g1 ·m), · · · ,RLWEs(gd−1 ·m)) ∈ R2d
Q

and
RGSWs(m) :=

(
RLWE′s(s ·m),RLWE′s(m)

)
∈ R2×2d

Q .

The scalar multiplication between an element in RQ and RLWE′ ciphertext is defined as

� : RQ × RLWE′ → RLWE
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using the following rule

t� RLWE′s(m) = 〈(t0, · · · , td−1), (RLWEs(g0 ·m), · · · ,RLWEs(gd−1 ·m))〉

=
d−1∑
i=0

ti · RLWEs(gi ·m) = RLWEs

(
d−1∑
i=0

gi · ti ·m

)
= RLWEs(t ·m) ∈ R2

Q,

where (t0, · · · , td−1) is a gadget decomposition of t ∈ RQ. For each error ei in RLWEs(gi ·m), the

error after multiplication is equal to
∑d−1

i=0 ti · ei which is small as ti and ei are small.
The multiplication between RLWE and RGSW ciphertexts is defined as

~ : RLWE× RGSW→ RLWE

and specifically,

RLWEs(m1) ~ RGSWs(m2) = (a, b) ~
(
RLWE′s(s ·m2),RLWE′s(m2)

)
= a� RLWE′s(s ·m2) + b� RLWE′s(m2)

= RLWEs(a · s ·m2) + RLWEs(b ·m2)

= RLWEs((a · s + b) ·m2)

= RLWEs(m1 ·m2 + e1 ·m2) ∈ R2
Q.

This result represents an RLWE encryption of the product m1 ·m2 with an additional error term
e1 · m2. In order to have RLWEs(m1) ~ RGSWs(m2) ≈ RLWEs(m1 · m2), it is necessary to
make the error term e1 · m2 to be small. It can be achieved by using monomials for m2 as
m2 = ±Xυ.The multiplication between RLWE ~ RGSW is naturally extended to RLWE′ ~ RGSW
by applying RLWE ~ RGSW to each component of RLWE′. Note that RGSW0(1) := I2 ⊗ ~g is a
trivial RGSW encryption of 1 under any key s, where I2 is a 2× 2 identity matrix and ⊗ is a tensor
product.

2.2 Key Switching in RLWE

Key switching operation converts a ciphertext RLWEs1(m) encrypted by a secret key s1 to a
ciphertext RLWEs2(m) encrypted by a new secret key s2. There are different variants of the key
switching technique and readers can refer to literature such as [38] for more details. We focus on
the BV key switching type [39] and its RNS variants [40] that fit our approach.

• KeySwitchGen(s1, s2): Outputs RLWE′s2(s1).

• KeySwitchs1→s2
(RLWEs1(m)): Given RLWEs1(m) = (a, b), it evaluates

RLWEs2(m) = a� RLWE′s2(s1) + (0, b) (mod Q).

RLWE′s2(s1) generated by KeySwitchGen is a public key switching key. The key switching error is
equal to the error of R� RLWE′ multiplication.

Remark. Key switching usually requires another auxiliary modulus to manage the error growth.
However, we do not employ an auxiliary modulus as the key switching error in our approach will
be managed in a different way.
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2.3 Automorphism in RLWE

In order to perform some operations in FHE, we use automorphism procedure over R. There are
N automorphisms of R, namely ψt : R → R given by a(X) 7→ a(Xt) for t ∈ Z∗2N . Automorphism
procedure over RLWE instances can be defined as

• EvalAuto(RLWEs(m), t): Given RLWEs(m(X)) = (a(X), b(X)), it applies ψt to a(X) and
b(X) and obtains (a(Xt), b(Xt)) which is an RLWE encryption of m(Xt) under the secret key
s(Xt). Then it performs key switching from s(Xt) to s(X) and outputs RLWEs(m(Xt)) =
RLWEs(ψt(m)).

The additional error after applying an automorphism is equal to key switching error as an auto-
morphism ψt is a norm-preserving map.

2.4 Rescaling in RLWE

Rescaling is used in RLWE to control the error or message growth. We consider rescaling of RLWEQ,s
instance by q that divides Q.

• Rescale(RLWEQ,s(m), q): Given RLWEQ,s(m) = (a, b) ∈ R2
Q, it outputs

RLWEQ/q,s

(
1

q
m

)
=

(⌊
a

q

⌉
,

⌊
b

q

⌉)
∈ R2

Q/q.

The rescaling procedure also divides the error of ct by q, but introduces additional rescaling error
ers. The rescaling error ers is small [41] and it’s norm ‖ers‖∞ is bounded by 1

2(1 + δR) for ternary
secret key.

2.5 RLWE based Schemes

We briefly present the encryption procedures for the three most common FHE schemes based on
RLWE. The main difference of encryption in all these schemes is in the message representation and
encoding procedures.

In the BGV scheme with the plaintext modulus t, a plaintext m is encoded in the least significant
bits in RQ and its encryption is given as follows:

EncBGV(m) = (a,−a · s + t · e + m).

In the BFV scheme with the plaintext modulus t, a plaintext m is encoded in the most significant
bits in RQ and its encryption is given as follows:

EncBFV(m) =

(
a,−a · s + e +

⌊
Q

t
·m
⌉)

.

The CKKS scheme is an approximate homomorphic encryption scheme and RLWE errors are con-
sidered a part of messages. Its encryption of a plaintext m is given as follows:

EncCKKS(m) = (a,−a · s + e + m) .

All encryption algorithms described above assume that the message is already encoded into the
polynomial m. Encoding techniques for BGV and BFV can be found in [8, 9, 10] and for CKKS
in [11, 12].
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3 Scaled Modulus Raising

In this section, we present the core algorithm ScaledMod used in our bootstrapping in Section 4.
The algorithm transforms RLWE0

2N,s(u), where ‖u‖∞ < N/2, to RLWEQ,s(∆ ·u) for a scaling factor
∆ and a large modulus Q.

3.1 ScaledMod Procedure

We first extract LWE0
2N,~s(ui) ciphertexts from an RLWE0

2N,s(u) ciphertext. For each extracted LWE

ciphertext, we perform the blind rotation with an initial function f = −
∑c

j=−c ∆ · j · Xj ∈ RQ,

where ‖u‖∞ ≤ c <
N
2 for some c, and obtain RLWE encryptions of u(i) which has a constant term

of ∆ · ui. Finally, we repack our RLWE encryptions of u(i) into a single RLWE encryption of ∆ · u.
The flow of the proposed ScaledMod procedure is as follows.

• ScaledMod(RLWE0
2N,s(u),∆, Q): Outputs RLWEQ,s (∆ · u)

RLWE0
2N,s(u)

Extract−−−−−→ {LWE0
2N,~s(ui)}

BlindRotate−−−−−−−−−→ {RLWEQ,s (f ·Xui)}
Repack
−−−−−→ RLWEQ,s (∆ · u)

Now we describe each part of the ScaledMod algorithm in detail.

Step 1. Extraction.

We start with a pair (a, b) = RLWE0
2N,s(u). Since the error is zero, we have s ·a+b = u (mod 2N).

Multiplication of two polynomials a and s in R2N is described as

s · a =
N−1∑
i=0

 i∑
j=0

sj · ai−j −
N−1∑
j=i+1

sj · ai−j+N

Xi (mod 2N).

Let ~s = (s0, ..., sN−1) be a vector of coefficients of s. We can extract LWE0
2N,~s(ui) = (~a(i), bi) for all

i ∈ [0, N − 1] from a ∈ RLWE0
2N,s(u), where

~a(i) = (ai, ai−1, . . . , a0,−aN−1,−aN−2, . . . ,−ai+1).

Step 2. Blind Rotation.

BlindRotate procedure transforms a single LWE ciphertext LWE0
2N,~s(u) = (~α, β) obtained from

Extract into RLWE encryption of f · Xu where f = −
∑c

j=−c ∆ · j · Xj for ‖u‖∞ ≤ c < N
2 . The

result will be accumulated into the RLWE ciphertext that we call ACC. Blind rotation public keys
brk =

{
RGSWQ,s(s+i ),RGSWQ,s(s−i )

}
i∈[0,N−1] where{

s+i = 1, if si = 1
s+i = 0, otherwise

,

{
s−i = 1, if si = −1
s−i = 0, otherwise

for i ∈ [0, N − 1] must be generated in advance.
We initialize ACC as ACC = (0, f ·Xβ) = RLWE0

Q,s(f ·Xβ). Then we iteratively compute

RGSW(Xαi·si) = RGSW0(1) + (Xαi − 1) · RGSW(s+i ) + (X−αi − 1) · RGSW(s−i ) (2)
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and update ACC as
ACC← ACC~ RGSWQ,s(Xαi·si).

The equation (2) is correct as for each si ∈ {−1, 0, 1}, at least one of s+i and s−i is zero. The result
of the blind rotation is

RLWEQ,s(f ·Xβ+α0s0+···+αN−1sN−1) = RLWEQ,s(f ·Xu) = RLWEQ,s(uf).

Due to the initial function f and the boundary of ‖u‖∞, the polynomial uf has ∆ ·u as its constant
term. The full algorithm is described in Algorithm 1.

Algorithm 1 Blind rotation

procedure BlindRotate(f, (~α, β), brk =
{
RGSW(s±i )

}
) . β + 〈~α,~s〉 = u ∈ Z2N

ACC←
(
0, f ·Xβ

)
for (i = 0; i < N ; i = i+ 1) do

ACC← ACC~
(
RGSW0(1) + (Xαi − 1) · RGSW(s+i ) + (X−αi − 1) · RGSW(s−i )

)
return ACC = RLWEQ,s(f ·Xu)

We apply the blind rotation to each LWE0
2N,~s(ui) for all i ∈ [0, N − 1] and obtain

RLWEQ,s(f ·Xui) := RLWEQ,s(u(i)) := (ai, bi) ∈ R2
Q

such that

ai · s + bi = u(i) + ebr = ∆ · ui + ∗ ·X + ∗ ·X2 + · · ·+ ∗ ·XN−1 + ebr (mod Q),

where ∗ denotes some value in ZQ. As |ui|≤ c, most coefficients of u(i) are zeros. More precisely,
we have

u(i) = ∆ · ui + ∗ ·X + · · ·+ ∗ ·X2c + 0 ·X2c+1 + · · ·+ 0 ·XN−2c−2 + ∗ ·XN−2c−1 + · · ·+ ∗ ·XN−1.

Remark. It is worth noting that all the errors in our approach are additive which means that the
error grows linearly, so we do not have to control the error with rescaling every time as in usual
key-switching in [40, 42]. Instead, we can postpone rescaling to the end to reduce the complexity.

Step 3. Repacking.

After BlindRotate, we receive N RLWE ciphertexts which encrypt polynomials u(i) introduced
earlier. Only constant coefficients of the encrypted polynomials contain useful information. Thus,
other coefficients of these polynomials must be removed. The goal of Repack procedure is to
combine all constant coefficients of encryption of u(i) into a single encrypted polynomial without
decryption.

Let n = nc be the smallest power of two satisfying n > 2c for some c defined in the initial
function f. Given RLWEQ,s(u(i)) for i ∈ [0, N − 1], Repack algorithm is performed in the following
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two steps. First, we consider a subset of the given ciphertexts as
{
RLWEQ,s(u(nk))

}
k∈[0,N

n
−1]. We

pack these ciphertexts into the following n RLWE ciphertext

N
n
−1∑

k=0

RLWEQ,s(u(nk)) ·Xnk = RLWEQ,s

N
n
−1∑

k=0

u(nk) ·Xnk

 .

Let u(0,n) :=
∑N

n
−1

k=0 u(nk) ·Xnk. Let u(0,n) :=
∑N

n
−1

k=0 u(nk) ·Xnk. Since n > 2c, u(0,n) has coefficients
∆ · unk at Xnk as

u(0,n) = ∆ · u0 + ∗ ·X + · · ·+ ∗ ·Xn−1 + ∆ · un ·Xn + · · ·+ ∆ · u2n ·X2n + · · ·+ ∗ ·XN−1

where ∗ denotes some value in ZQ. In a similar way, we pack subsets{
RLWEQ,s(u(i+nk))

}
k∈[0,N

n
−1] into RLWEQ,s(u(i,n)) for all i ∈ [1, n− 1] where u(i,n) has coefficients

∆ · ui+nk at Xnk.
Second, we adapt the repacking technique from [25]. We consider a pair RLWEQ,s(u(0,n)) and

RLWEQ,s(u(n
2
,n)). Notice that the automorphism ψ1+ 2N

n
applied to u(0,n) preserves all coefficients at

Xnk, for k ∈ [0, Nn −1], changes the sign of coefficients at Xnk+n
2 , and shuffles the other coefficients

with possible changes in sign. We only focus on the coefficients of Xnk and Xnk+n
2 and do not

track how this automorphism operates on the other coefficients. We can merge RLWEQ,s(u(0,n))
and RLWEQ,s(u(n

2
,n)) as

RLWE(2u(0,n
2
)) = RLWE(u(0,n)) +X

n
2 · RLWE(u(n

2
,n))

+ EvalAuto

(
RLWE(u(0,n))−X

n
2 · RLWE(u(n

2
,n)), 1 +

2N

n

)
,

where u(0,n
2
) is a polynomial which has coefficients ∆ · unk

2
at X

nk
2 . We apply the same procedure

to pairs RLWEQ,s(u(i,n)) and RLWEQ,s(u(i+n
2
,n)) for all i ∈ [1, n2 − 1] and obtain RLWEQ,s(2u(i,n

2
)).

We continue this merging process until we get

RLWEQ,s(n · u(0,1)) = RLWEQ,s(n ·∆ · u).

The full Repack algorithm is described in Algorithm 2.

Remark. We obtain RLWEQ,s(n ·∆ ·u) instead of RLWEQ,s(∆ ·u) during the ScaledMod procedure
and accumulate errors during the blind rotations and repacking procedures. By modifying the initial
state, we can address the first issue. We start with [n]−1Q ·∆ instead of ∆ when Q and n are coprime.
When Q is a power of two, we start with RLWE modulus Q ·n and then rescale by n. For the second
issue we use an auxiliary modulus p > Esm and do all the computations modulo Q · p instead of Q
and rescale the result by p in the end. To do that, we also start with ∆ · p instead of ∆. Finally we
obtain RLWEQ,s(∆ · u) with only rescaling error esm = ers.

4 Bootstrapping

In this section, we present the whole procedure of the new bootstrapping technique which uses
ScaledMod algorithm as a core functionality. We mainly deal with the CKKS scheme and then
briefly describe how to adopt our bootstrapping technique for the BGV and BFV schemes.
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Algorithm 2 Repacking

procedure Repack({RLWEQ,s(u(i))}i∈[0,N−1], n) . power of two n s.t. n ≤ N
for (i = 0; i < n; i = i+ 1) do

ct(i,n) ← RLWEQ,s(u(i))
for (j = 1; j < N

n ; j = j + 1) do

ct(i,n) ← ct(i,n) +Xnj · ct(i+nj)
for (k = n; k > 1; k = k

2 ) do

for (i = 0; i < k
2 ; i = i+ 1) do

ct(i,
k
2
) ← ct(i,k) +X

k
2 · ct(i+

k
2
,k)

ctrot ← EvalAuto
(
ct(i,k) −X

k
2 · ct(i+

k
2
,k), 1 + 2N

k

)
ct(i,

k
2
) ← ct(i,

k
2
) + ctrot

return ct(0,1) = RLWEQ,s(n ·∆ · u)

4.1 Bootstrapping for CKKS

Given a ciphertext ct = RLWEq,s(m) = (a, b) ∈ R2
q for a small modulus q, the goal of the CKKS

bootstrapping is to obtain a ciphertext ctboot = RLWEQ,s(m) = (aboot, bboot) ∈ R2
Q of the same

message m for a bigger modulus Q > q. It starts from the decryption query of ct in the higher
modulus Q represented by

ct(s) = a · s + b = m + e + q · v ∈ RQ

for some small polynomial v. To remove the q · v part, existing CKKS bootstrapping methods
mainly use homomorphic linear transformations and evaluation of approximating polynomials for
modular reduction functions.

On the other hand, our new bootstrapping technique makes use of a blind rotation technique to
remove q · v part instead of using polynomial approximation and homomorphic linear transforma-
tions. The ScaledMod algorithm is presented in the previous section which uses the blind rotation
technique as a sub-algorithm and can be used to compute q · v. As a first step, the ciphertext is
preprocessed to get a ciphertext suitable for ScaledMod. After obtaining the result of ScaledMod,
we add it with the other preprocessed ciphertext and the final result will be a bootstrapped cipher-
text. The preprocessing procedure is different depending on the structure of the scheme and the
detailed descriptions are given in the following subsections.

4.1.1 Multiprecision CKKS.

In the multiprecision CKKS scheme [11], the ciphertext modulus q is a power of two. Given a
ciphertext ct = (a, b) ∈ R2

q for a small modulus q, the decryption query is described as

ct(s) = a · s + b = m + e (mod q) = m + e + q · v.

Let q′ = q/2N and ‖m + e‖∞ ≤ γ < q
4 −

q′

2 · (δR + 1) for some γ. Firstly, we compute ct′ = ct

(mod q′) =
(
[a]q′ , [b]q′

)
∈ R2

q′ and obtain

ct′(s) = [a]q′ · s + [b]q′ = m + e (mod q′) = m + e + q′ · u.
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Due to q′ · u = [a]q′ · s + [b]q′ − (m + e), we have

‖u‖∞ <
1

2
(δR + 1) +

γ

q′
<
N

2

for ternary secret key. Now both a − [a]q′ and b − [b]q′ are divisible by q′, thus we can obtain a
ciphertext

ctprep = (aprep, bprep) =

(
a− [a]q′

q′
,
b− [b]q′

q′

)
∈ R2

2N .

It is easy to see that the preprocessed ciphertext ctprep = RLWE0
2N,s(−u), so we can evaluate

ScaledMod(ctprep, q
′, Q) by setting c =

⌊
1
2(δR + 1) + γ

q′

⌋
for the initial function f and obtain

ctsm = RLWEQ,s(−q′ · u) with an error esm such that

ctsm(s) = asm · s + bsm = −q′ · u + esm (mod Q).

We add it with ct′ modulo Q and finally obtain the ciphertext ctboot = ctsm + ct′ (mod Q) as

ctboot(s) = aboot · s + bboot = m + e + q′ · u− q′ · u + esm = m + e + esm (mod Q).

The full bootstrapping algorithm is described in Algorithm 3.

Algorithm 3 Bootstrapping for CKKS

procedure Bootstrap-CKKS(ct = (a, b) ∈ R2
q)

Preprocess(ct)→ ct′, ctprep . ct(s) = m + e + q · v ∈ R
• ct′ ← ct (mod q′) . ct′(s) = m + e + q′ · u ∈ R
• ctprep ←

(
ct−ct′

q′

)
. ctprep(s) = −u ∈ R2N

ScaledMod(ctprep, q
′, Q)→ ctsm . ctsm(s) = −q′ · u + esm ∈ RQ

Combine(ctsm, ct
′)→ ctboot

• ctboot ← ctsm + ct′ (mod Q) . ctboot(s) = m + e + esm ∈ RQ
return ctboot = (aboot, bboot) ∈ R2

Q

Sparsely Packed Ciphertext The bootstrapping complexity can be reduced with sparse pack-
ing [12]. Let ct be an encryption of a sparsely packed plaintext m which encodes n = ns values
where n ≤ N

2 . The main idea is to reduce the number of coefficients of u which will be inputs of
the blind rotations in ScaledMod procedure. We firstly prepare ct′ and ctprep as previously and
execute an additional preprocessing for ct′ to obtain ct′′. Then we apply a variant of ScaledMod
to ctprep and combine it to ct′′.

The additional preprocessing for ct′ is zeroizing certain coefficients of u. We take a similar
approach used in the original CKKS bootstrapping [16] which is presented in Algorithm 4. It
increases the modulus of ct′ from q′ to Q and then applies automorphisms and additions to ct′.
After the zeroizing procedure, we obtain a ciphertext ct′′ which is described as

ct′′(s) = a′′ · s + b′′ = m + e′′ + q′ · u′ (mod Q′),

where Q′ = Q · 2nN and u′ has same coefficients as u at degrees which are multiples of N
2n and zero

coefficients at other degrees. Notice that since m is a sparsely packed plaintext, the message in
each slot does not change under the automorphisms used in ZeroizeCoeffs.
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Due to the structure of u′, given ctprep = RLWE0
2N,s(−u) as an input of ScaledMod, we can

evaluate the blind rotations only for the subset of coefficients
{
u N

2n
·i

}
for i ∈ [0, 2n − 1], instead

of evaluating for every coefficient of u. It reduces the number of blind rotations to 2n and also
reduces the number of iterations of the Repack algorithm. The output of the variant ScaledMod is
ct′sm which satisfies

ct′sm(s) = a′sm · s + b′sm = −q′ · u′ + e′sm (mod Q′)

and we combine it with ct′′ to have ctboot = ct′′ + ct′sm (mod Q′) which satisfies

ctboot(s) = aboot · s + bboot = m + e′′ + q′ · u′ − q′ · u′ + e′sm = m + e′′ + e′sm (mod Q′).

Algorithm 4 Zeroizing coefficients

procedure ZeroizeCoeffs(ct′, n)
ct′′ ← ct′ (mod Q)
for (k = N ; k > 2n; k = k/2) do

ct′′ ← EvalAuto(ct′′, k + 1) + ct′′ (mod Q)

ct′′ ← Rescale(ct′′, N2n)

return ct′′

4.1.2 RNS-CKKS.

In the RNS-CKKS scheme [12], the modulus q is not a power of two but a product of primes, so
the preprocessing steps are different. We start from the decryption query for the given ciphertext
ct = (a, b) ∈ R2

q described as

ct(s) = a · s + b = m + e + q · v ∈ R.

Let ‖m + e‖∞ ≤ γ < q
4 −

q
4N · (δR + 1) for some γ. We first compute ct′ = 2N · ct (mod q) =

([2N · a]q, [2N · b]q) ∈ R2
q to obtain

ct′(s) = [2N · a]q · s + [2N · b]q = 2N ·m + 2N · e + q · u ∈ R,

where

‖u‖∞ <
1

2
(δR + 1) +

2N

q
· γ < N

2
.

Now both 2N ·a− [2N ·a]q and 2N ·b− [2N ·b]q are divisible by q, thus we can obtain a ciphertext

ctprep = (aprep, bprep) =

(
2N · a− [2N · a]q

q
,
2N · b− [2N · b]q

q

)
∈ R2

2N .

Again for the preprocessed ctprep = RLWE0
2N,s(−u), we can evaluate ScaledMod(ctprep, q,Qp) by

setting c =
⌊
1
2(δR + 1) + γ

q′

⌋
for the initial function f and obtain a ciphertext ctsm(s) = (asm, bsm)

which satisfies
ctsm(s) = asm · s + bsm = −q · u + esm (mod Qp),
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where p is an auxiliary prime which we will rescale by later. Now we add ct′′ = ctsm + ct′ modulo
Qp and it satisfies

ct′′(s) = a′′ · s + b′′ = 2N ·m + 2N · e + q · u− q · u + esm

= 2N ·m + 2N · e + esm (mod Qp).

To get rid of the scaling factor 2N in the message, we multiply ct′′ by p
2N and rescale the result

by p as ctboot = Rescale( p
2N · ct

′′, p), then we have

ctboot(s) = aboot · s + bboot = m + e +
1

2N
· esm + ers (mod Q).

The full bootstrapping algorithm is described in Algorithm 5.

Algorithm 5 Bootstrapping for RNS-CKKS

procedure Bootstrap-RNS-CKKS(ct = (a, b) ∈ R2
q)

Preprocess(ct)→ ct′, ctprep . ct(s) = m + e + q · v ∈ R
• ct′ ← 2N · ct (mod q) . ct′(s) = 2N ·m + 2N · e + q · u ∈ R
• ctprep ←

(
2N ·ct−ct′

q

)
. ctprep(s) = −u ∈ R2N

ScaledMod(ctprep, q,Qp)→ ctsm . ctsm(s) = −q · u + esm ∈ RQp
Combine(ctsm, ct

′)→ ctboot
• ct′′ ← ctsm + ct′ (mod Qp) . ct′′(s) = 2N ·m + 2N · e + esm ∈ RQp
• ctboot ← Rescale

( p
2N · ct

′′, p
)

. ctboot(s) = m + e + 1
2N · esm + ers ∈ RQ

return ctboot = (aboot, bboot) ∈ R2
Q

4.2 Bootstrapping for BGV

Given a plaintext space Rt for some t which is normally taken as a prime power, the decryption
query of the BGV scheme is

ct(s) = a · s + b = m + t · e + q · v ∈ R.

The bootstrapping algorithm for BGV is similar to that for CKKS with the only difference
that public keys are generated with errors of the form t · e for multiprecision BGV and 2Nt · e for
RNS-BGV instead of e and the automorphism and rescale in Repack procedure are evaluated in
accordance with BGV style.

4.2.1 Multiprecision BGV.

Assume that we have a BGV ciphertext ct = (a, b) ∈ R2
q for a small modulus q where

ct(s) = a · s + b = m + t · e (mod q) = m + t · e + q · v.

Let q′ = q/2N and ‖m + t · e‖∞ ≤ γ < q
4 −

q′

2 · (δR + 1) for some γ. We compute ct′ = ct

(mod q′) =
(
[a]q′ , [b]q′

)
∈ R2

q′ and have

ct′(s) = [a]q′ · s + [b]q′ = m + t · e (mod q′) = m + t · e + q′ · u,
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where

‖u‖∞ <
1

2
(δR + 1) +

γ

q′
<
N

2

for ternary secret key. Both a−[a]q′ and b−[b]q′ are divisible by q′ and thus, we obtain a ciphertext

ctprep = (aprep, bprep) =

(
a− [a]q′

q′
,
b− [b]q′

q′

)
∈ R2

2N .

We set c =
⌊
1
2(δR + 1) + γ

q′

⌋
and apply ScaledMod(ctprep, q

′, Q) to obtain ctsm = RLWEQ,s(−q′ ·u)

with an error t·esm. Finally, we add ctsm and ct′ modulo Q and have the ciphertext ctboot satisfying

ctboot(s) = aboot · s + bboot

= m + t · e + q′ · u− q′ · u + t · esm
= m + t · (e + esm) (mod Q),

It shows that ctboot is a BGV encryption of m with noise t · (e + esm) and modulus Q. The full
algorithm for bootstrapping in BGV is described in Algorithm 6.

Algorithm 6 Bootstrapping for BGV

procedure Bootstrap-BGV(ct = (a, b) ∈ R2
q)

Preprocess(ct)→ ct′, ctprep . ct(s) = m + t · e + q · v ∈ R
• ct′ ← ct (mod q′) . ct′(s) = m + t · e + q′ · u ∈ R
• ctprep ←

(
ct−ct′

q

)
. ctprep(s) = −u ∈ R2N

ScaledMod(ctprep, q
′, Q)→ ctsm . ctsm(s) = −q′ · u + t · esm ∈ RQ

Combine(ctsm, ct
′)→ ctboot

• ctboot ← ctsm + ct′ (mod Q) . ctboot(s) = m + t · (e + esm) ∈ RQ
return ctboot = (aboot, bboot) ∈ R2

Q

4.2.2 RNS-BGV.

We start from the decryption query for a given RNS-BGV ciphertext ct = (a, b) ∈ R2
q described

as
ct(s) = a · s + b = m + t · e + q · v ∈ R.

Assume that ‖m + t · e‖∞ ≤ γ < q
4 −

q
4N · (δR + 1) for some γ. We compute ct′ = 2N · ct

(mod q) = ([2N · a]q, [2N · b]q) ∈ R2
q and have

ct′(s) = [2N · a]q · s + [2N · b]q = 2N ·m + 2Nt · e + q · u ∈ R,

where

‖u‖∞ <
1

2
(δR + 1) +

2N

q
· γ < N

2
.

Both 2N · a− [2N · a]q and 2N · b− [2N · b]q are divisible by q and thus, we obtain a ciphertext

ctprep = (aprep, bprep) =

(
2N · a− [2N · a]q

q
,
2N · b− [2N · b]q

q

)
∈ R2

2N .
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For the preprocessed ciphertext ctprep = RLWE0
2N,s(−u), we can evaluate

ScaledMod(ctprep, q,Q) by setting c =
⌊
1
2 (1 + δR) + 2N

q · γ
⌋

and obtain ctsm satisfying

ctsm(s) = asm · s + bsm = −q · u + 2Nt · esm (mod Q).

Now we add ct′′ = ctsm + ct′ modulo Q and have

ct′′(s) = a′′ · s + b′′ = 2N ·m + 2Nt · e + q · u− q · u + 2Nt · esm
= 2N · (m + t · e + t · esm) (mod Q),

To get rid of scaling factor 2N from the message, we multiply ct′′ by [(2N)−1]Q, and obtain ctboot
satisfying

ctboot(s) = aboot · s + bboot = m + t · (e + esm) (mod Q).

It shows that ctboot is a RNS-BGV encryption of m with noise t · (e + esm) and modulus Q. The
full algorithm is described in Algorithm 7.

Algorithm 7 Bootstrapping for RNS-BGV

procedure Bootstrap-RNS-BGV(ct = (a, b) ∈ R2
q)

Preprocess(ct)→ ct′, ctprep . ct(s) = m + t · e + q · u ∈ R
• ct′ ← 2N · ct (mod q) . ct′(s) = 2N ·m + 2Nt · e + q · u ∈ R
• ctprep ←

(
2N ·ct−ct′

q

)
. ctprep(s) = −u ∈ R2N

ScaledMod(ctprep, q,Q)→ ctsm . ctsm(s) = −q · u + 2Nt · esm ∈ RQ
Combine(ctsm, ct

′)→ ctboot
• ct′′ ← (ctsm + ct′) (mod Q) . ct′′(s) = 2N · (m + t · e + t · esm) ∈ RQ
• ctboot ← ([(2N)−1]Q) · ct′′ (mod Q) . ctboot(s) = m + t · e′ ∈ RQ

return ctboot = (aboot, bboot) ∈ R2
Q

4.3 Bootstrapping for BFV

The decryption query of the BFV scheme is

ct(s) = a · s + b =
Q

t
·m + e +Q · v ∈ R.

The goal of bootstrapping for BFV is to reduce the accumulated error instead of increasing the
modulus size. During the bootstrapping procedure, the previous big error e is removed and replaced
with a small refreshed error generated from ScaledMod and rescaling.

4.3.1 Multiprecision BFV.

Bootstrapping for multiprecision BFV scheme with a power of two Q starts with a ciphertext
ct = (a, b) ∈ R2

Q such that

ct(s) = a · s + b = e +
Q

t
m ∈ RQ.
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Let Q′ = Q/2N and t ·e ≤ γ < Q
4 −

Q′

2 · (δR+1) for some γ. We first multiply t by ct as ct′ = t ·ct
(mod Q) and have

ct′(s) = [t · a]Q · s + [t · b]Q = t · e +Q · v.

We compute ct′′ = ct′ (mod Q′) and have

ct′′(s) = [t · a]Q′ · s + [t · a]Q′ = t · e +Q′ · u,

where

‖u‖∞ <
1

2
(1 + δR) +

γ

Q′
<
N

2
.

Now we obtain the preprocessed ciphertext ctprep = 1
Q′ · (ct

′ − ct′′) with

ctprep(s) = aprep · s + bprep = −u + 2N · v ∈ R.

For c =
⌊
1
2(1 + δR) + γ

Q′

⌋
, ScaledMod(ctprep,−Q′, Qt) outputs the ciphertext ctsm satisfying

ctsm(s) = asm · s + b = Q′ · u + esm (mod Qt).

We evaluate ct′′′ = ctsm + t · ct− ct′′ (mod Qt) and have

ct′′′(s) = a′′′ · s + b′′′ = Q′ · u + esm + t · e +Q ·m− t · e−Q′ · u = esm +Q ·m (mod Qt).

Finally we rescale ct′′′ by t and obtain ctboot satisfying

ctboot(s) = aboot · s + bboot =
1

t
· esm + ers +

Q

t
·m (mod Q).

The full algorithm is described in Algorithm 8.

Algorithm 8 Bootstrapping for BFV

procedure Bootstrap-BFV(ct = (a, b) ∈ R2
Q)

Preprocess(ct)→ ct′, ct′′, ctprep . ct(s) = e + Q
t ·m ∈ RQ

• ct′ ← t · ct (mod Q) . ct′(s) = t · e +Q · v ∈ R
• ct′′ ← ct′ (mod Q′) . ct′′(s) = t · e +Q′ · u ∈ R
• ctprep ←

(
ct′−ct′′

Q′

)
(mod 2N) . ctprep(s) = −u ∈ R2N

ScaledMod(ctprep,−Q′, Qt)→ ctsm . ctsm(s) = Q′ · u + esm ∈ RQt
Combine(ctsm, ct, ct

′′)→ ctboot
• ct′′′ ← ctsm + t · ct− ct′′ (mod Qt) . ct′′′(s) = esm +Q ·m ∈ RQt
• ctboot ← Rescale (ct′′′, t) . ctboot(s) = 1

t · esm + ers + Q
t ·m ∈ RQ

return ctboot = (aboot, bboot) ∈ R2
Q
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4.3.2 RNS-BFV.

Bootstrapping for RNS-BFV also starts with a ciphertext ct = (a, b) ∈ R2
Q such that

ct(s) = a · s + b = e +
Q

t
·m (mod Q).

Let t · e ≤ γ < Q
4 −

Q
4N · (δR + 1) for some γ. We compute ct′ = t · ct (mod Q) and ct′′ = 2N · ct′

(mod Q) and we have

ct′(s) = [t · a]Q · s + [t · b]Q = t · e +Q · v ∈ R

and
ct′′(s) = [2Nt · a]Q · s + [2Nt · b]Q = 2Nt · e +Q · u ∈ R.

where

‖u‖∞ <
1

2
(1 + δR) +

2N

Q
· γ < N

2
.

Now we obtain a preprocessed ciphertext ctprep = 1
Q · (2N · ct

′ − ct′′) with

ctprep(s) = aprep · s + bprep = −u + 2N · v ∈ R.

For an auxiliary prime p and c =
⌊
1
2 (1 + δR) + 2N

Q · γ
⌋
, ScaledMod(ctprep,−Q,Qpt) outputs

ctsm satisfying
ctsm(s) = asm · s + bsm = Q · u + esm (mod Qpt).

We evaluate ct′′′ = ctsm + 2Nt · ct− ct′′ (mod Qpt) and have

ct′′′(s) = a′′′ · s + b′′′ = Q · u + esm + 2Nt · e + 2NQ ·m− 2Nt · e−Q · u
= esm + 2NQ ·m (mod Qpt).

Finally we multiply ct′′′ by p
2N , and rescale the result by p, then obtain ctboot satisfying

ctboot(s) = aboot · s + bboot =
1

2Nt
· esm + ers +

Q

t
·m (mod Q).

The full algorithm is described in Algorithm 9.

5 Compact Representation of Blind Rotation Keys

As presented in Section 3, blind rotation keys should be precomputed by a secret key holder
for BlindRotate procedure. As a ring dimension increases, the amount of memory required to
represent blind rotation keys increases dramatically. It is difficult for the secret key holder to
generate and transfer the heavy blind rotation keys to the computational side which performs all
the computations. The computational side is also limited to store all the blind rotation keys.

In this section, we provide a possible way to reduce the communication cost and storage size
of blind rotation keys. First, we present a method that the secret key holder generates only a
small amount of public keys and the blind rotation keys are reconstructed on the computational
side instead of being generated by the secret key holder. We also present a method that the
computational side reconstructs the keys and performs blind rotations on the fly, without storing
the whole keys.
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Algorithm 9 Bootstrapping for RNS-BFV

procedure Bootstrap-RNS-BFV(ct = (a, b) ∈ R2
Q)

Preprocess(ct)→ ct′, ct′′, ctprep . ct(s) = e + Q
t ·m ∈ RQ

• ct′ ← t · ct (mod Q) . ct′(s) = t · e +Q · v ∈ R
• ct′′ ← 2N · ct′ (mod Q) . ct′′(s) = 2Nt · e +Q · u ∈ R
• ctprep ←

(
2N ·ct′−ct′′

Q

)
(mod 2N) . ctprep(s) = −u ∈ R2N

ScaledMod(ctprep,−Q,Qpt)→ ctsm . ctsm(s) = Q · u + esm ∈ RQpt
Combine(ctsm, ct, ct

′′)→ ctboot
• ct′′′ ← ctsm + 2Nt · ct− ct′′ (mod Qpt) . ct′′′(s) = esm + 2NQm ∈ RQpt
• ctboot ← Rescale

( p
2N · ct

′′′, pt
)

. ctboot(s) = 1
2Nt · esm + ers + Q

t ·m ∈ RQ
return ctboot = (aboot, bboot) ∈ R2

Q

5.1 Reconstruction of Blind Rotation Keys

For simplicity, we denote s+i and s−i as s±i . First, we notice that RGSWs(s±i ) can be reconstructed
from only RLWE′s(s±) and RLWE′s(s2), where

s± =
N−1∑
i=0

s±i X
i.

Given RLWE′s(s±), RLWE′s(s±i ) can be reconstructed in parallel by using divide-and-conquer al-

gorithm described in Algorithm 10. For each RLWEs(gj · s±i ) = (ai,j , bi,j) in RLWE′s(s±i ), the

reconstruction of RLWE′s(s±i ·s) can be done through the reconstruction of RLWEs(gj · s±i ·s) which
is calculated by

ai,j � RLWE′s(s2) + bi,j · (1, 0) = RLWEs

(
ai,j · s2 + bi,j · s

)
= RLWEs(gj · s±i · s). (3)

After repeating this procedure for all i ∈ [0, N − 1] and j ∈ [0, d− 1], the keys RGSWs(s±i ) =(
RLWE′s(s±i ),RLWE′s(s±i · s)

)
can be fully reconstructed.

Algorithm 10 Reconstruct blind rotation keys

procedure Reconst-All(RLWE′s(s±))
brk±0 ← RLWE′s(s±)
for (n = N ;n > 1;n = n/2) do

for (i = 0; i < N ; i = i+ n) do
tmp±i ← EvalAuto(brk±i , n+ 1)
brk±i = brk±i + tmp±i
brk±i+n/2 = X−N/n · (brk±i − tmp±i )

return
{
brk±i

}
=
{
RLWE′(N · s±i )

}
for i ∈ [0, N − 1]

EvalAuto(RLWE′(·), ·) in Algorithm 10 denotes the operation of performing the same EvalAuto

for all the RLWE elements in RLWE′(·). EvalAuto by 2N/2k + 1 maintains the 2k · i-th coefficients
and changes the signs of 2k · i+ 2k−1-th coefficients for an integer i. When the other coefficients are
zeros, we can obtain the ciphertext with only 2k · i-th coefficients or 2k · i+ 2k−1-th coefficients by
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addition or subtraction of the original ciphertext and its rotation, respectively. By repeating this
procedure, we obtain a ciphertext with only one non-zero coefficient, which is an encryption of s±i .

In Algorithm 10, the coefficients that are not removed are doubled after each evaluation of
automorphism and addition. Therefore, the target coefficient will eventually be multiplied by N
and the algorithm outputs RLWE′(N · s±i ). There are two possible ways to remove the additional
multiplicand N from the polynomial. If Q is coprime with N , the input ciphertext can be multiplied
initially by N−1 (mod Q), i.e. we start with RLWE′Q,s([N ]−1Q · s±). Otherwise, if Q is a power of

two we start with QN and rescale RLWE′QN,s(N · s±i ) by N .

5.2 Performing Blind Rotations On the Fly

To avoid the computational side storing all blind rotation keys, it can reconstruct the blind rotation
key for each blind rotation step on the fly, and discard it after.

To reconstruct RLWE′s(s±i ) for specific i, we multiply RLWE′s(s±) by X−i to have s±i as the
constant term, and then make all other coefficients zeros by applying the sequence of automorphisms
and additions. Algorithm 11 sums up the reconstruction of RLWE′s(s±) for a single i. We remove
N from the result in a similar way as we did in Section 5.1.

Algorithm 11 Reconstruct for performing blind rotation on the fly

procedure Reconst(RLWE′s(s±), i)
brk±i ← RLWE′s(s±) ·X−i
for (n = N ;n > 1;n = n/2) do

brk±i ← EvalAuto(brk±i , n+ 1) + brk±i
return brk±i = RLWE′s(N · s±i )

Furthermore, we can either reconstruct RLWE′s(s±i ·s) as explained in Section 5.1, or evaluate the

blind rotation step i using only RLWE′s(s2) and RLWE′s(s±i ). For the latter case, we first evaluate

RLWE′s(Xαi·si) = RLWE
′0(1) + (Xαi − 1) · RLWE′s(s+i ) + (X−αi − 1) · RLWE′s(s−i ). (4)

For given ACC = RLWEs(f ·Xβ+α0s0+···+αi−1si−1) = (a, b), we multiply a and b by RLWE′s(Xαi·si).

a� RLWE′s(Xαi·si) = RLWEs(a ·Xαi·si) = (a′, b′)

b� RLWE′s(Xαi·si) = RLWEs(b ·Xαi·si)

Then we evaluate RLWEs(a · s ·Xαi·si) as

a′ � RLWE′s(s2) + (b′, 0) = RLWEs(a′ · s2 + b′ · s) = RLWEs(a · s ·Xαi·si).

Finally, we add RLWEs(a · s ·Xαi·si) and RLWEs(b ·Xαi·si) to obtain the updated ACC as

ACC← RLWEs(a · s ·Xαi·si) + RLWEs(b ·Xαi·si)

= RLWEs((a · s + b) ·Xαi·si) = RLWEs(f ·Xβ+α0s0+···+αisi).

The full algorithm is described in Algorithm 12.
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Algorithm 12 Reconstruct key and blind rotation on the fly

procedure Reconst-Otf(f, (~α, β),RLWE′s(s±),RLWE′s(s2)) . β + 〈~α,~s〉 = u
ACC = (ACCa, ACCb)←

(
0, f ·Xβ

)
for (i = 0; i < N ; i = i+ 1) do

brk±i ← Reconst(RLWE′s(s±), i)
brk±i ← Rescale(brk±i , N)

cti ← RLWE
′0(1) + (Xαi − 1) · brk+i + (X−αi − 1) · brk−i

(cta, ctb)← ACCa � cti
ACC← cta � RLWE′s(s2) + (ctb, 0) + ACCb � cti

return ACC = RLWEQ,s(f ·Xu)

6 Analysis and Implementation

In this section, we analyze the computational complexity and the size of public keys for each
bootstrapping algorithm, and present proof-of-concept implementation results with theoretical error
analysis.

6.1 Complexity Analysis

The proposed bootstrapping algorithm consists of a number of multiplications� between an element
inRQ and RLWE′Q ciphertext, which is a bottleneck operation in both ScaledMod and reconstruction
algorithms. Thus, it is convenient to analyze the computational complexity by the number of �
operations. We choose � for our analysis rather than lower level operations, since it depends on
whether we are in multiprecision or RNS case. We also analyze the public key size by the number
of RLWE′ ciphertexts generated by the secret key holder and stored by the computational side.

The blind rotation requires 2N � operations for each coefficient of u, which can be easily
checked from Algorithms 1. In the repacking procedure, only EvalAuto requires 2nc � operations,
where nc ≤ N is defined initially depending on the function f. Therefore, the full bootstrapping
algorithm requires 4Nns + 2nc � operations, where ns is the number of slots in the message. In
this general case, the secret key holder generates 4N RLWE′ ciphertexts for the blind rotation keys
and the computational side should store all keys.

When the compact representation method is applied to the secret key, the computational com-
plexity increases by reconstruction of the blind rotation keys. However, the computational side can
reconstruct the keys in the precomputation stage, which does not affect the complexity of boot-
strapping itself. Algorithm 10 shows that the reconstruction of RLWE′s(s±i ) requires d � operations
for each i ∈ [0, N − 1] and the equation (3) shows that the reconstruction of RLWE′s(s±i · s) also
requires d � operations for each i ∈ [0, N − 1]. The total number of � operations in reconstruction
is 2dN . The secret key holder generates RLWE′s(s±) and RLWE′s(s2) which consists of 3 RLWE′

ciphertexts and shifts the responsibility to the computational side to reconstruct the blind rotation
keys.

In another way, the blind rotation keys can be reconstructed and computed by blind rotation
on-the-fly. The reconstruction of RLWE′s(s±i ) requires d logN � operations and the blind rotation
requires 3 � operations for all i ∈ [0, N − 1]. For each coefficient of u, the total number of �
operations is dN logN + 3N . Since the blind rotation is replaced to the on-the-fly method, the
computational side does not have to precompute and store all the blind rotation keys. It stores the
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Table 1: Complexity for each bootstrapping. SH denotes a secret key holder, and CP denotes a
computational side.

Bootstrapping
Method

Storage in # of RLWE′Q Complexity
in # of RQ � RLWE′Qgen by SH stored by CP

General 4N 4N 4Nns + 2nc
Reconst-Boot 3 4N 4Nns + 2nc

Reconst-OTF-Boot 3 3 (3 + d logN)Nns + 2nc

keys sent by the secret key holder and each time reconstructs only RLWE′s(s±i ) for each i ∈ [0, N−1].
In this case, the bootstrapping requires (d logN + 3)Nns + 2nc � operations. Table 1 shows the
storage and computational complexity of each bootstrapping method.

6.2 Error Analysis and Implementation Results

We present theoretical analysis of the error growth to set the proper auxiliary modulus and show
the implementation results with concrete parameters.

6.2.1 Error analysis.

As discussed in Remark 3.1, a rescaling procedure by an auxiliary modulus is required to make the
error esm in the output ciphertext of ScaledMod comparable to the rescaling error ers. We analyze
the error growth in detail by observing each step in ScaledMod and provide a boundary of the
auxiliary modulus. Here, we use the approach in [4] and [28] to write the error in a ciphertext after
ScaledMod. We note that the error in a fresh ciphertext is a Gaussian with standard deviation
σerr. Let B be a digit bound and d be the number of digits of gadget decomposition in RLWE′ and
RGSW encryptions.

The blind rotation starts from the equation (2). The error of each RLWE element of the RGSW
encryption in (2) is a Gaussian with variance 4σ2err and each blind rotation introduces an additive

error that of variance 4dN B2

6 σ
2
err. As shown in Algorithm 1, we perform the same operation for

all i ∈ [0, N − 1] and thus, the total error variance after BlindRotate is σ2br = 4dN2B2

6 σ
2
err.

The first step of Repack adds the N
n resulting ciphertexts of BlindRotate, so the error of each

RLWEQ,s
(
u(i,n)

)
is a Gaussian with variance N

n σ
2
br. For the second step, every EvalAuto introduces

log n additive independent key switching errors of variance σ2ks = dN B2

12 σ
2
err. Finally, the total error

of ScaledMod is a Gaussian with standard deviation

σsm =

√
n2
N

n
σ2br +

n2 − 1

3
σ2ks ≈

√
nNσbr.

Following [11], we can assume that a Gaussian with standard deviation σ is bounded by 6σ and
therefore, the auxiliary modulus should be the size of 6σsm =

√
24dnNNBσerr.

When the compact representation method is applied to the secret key, the error of the blind
rotation keys increases during reconstruction. Algorithm 10 works similar to Repack, so the error
in the blind rotation keys can be found in a similar way. RLWE′s(s±) has a Gaussian error of
variance σ2err and the error in the reconstructed key, RLWE′s(s±i ) is a Gaussian with variance

σ2rc = Nσ2err + N2−1
3 σ2ks ≈ N2

3 σ
2
ks. The error in RLWE′s(s±i · s), which is reconstructed by the
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equation (3), is a Gaussian with variance σ′rc
2 = N

2 σ
2
rc + σ2ks ≈ N3

6 σ
2
ks, as the error in RLWE′s(s±i )

is multiplied by ternary secret key s. The error after blind rotation is a Gaussian with variance
σ′br

2 = N · (4dN B2

12 σ
2
rc + 4dN B2

12 σ
′
rc

2) ≈ 4dN2B2

12
N3

6 σ
2
ks and the total error of ScaledMod with

reconstruction is a Gaussian with standard deviation

σ′sm ≈
√
nNσ′br ≈

√
4dnN3

B2

12

N3

6
σks.

The auxiliary modulus should be the size of 6σ′sm =
√

1
6nNdN

3B2σerr.

Another way is to perform blind rotation directly from RLWE′s(s±i ) and RLWE′s(s2) without
finding RLWE′s(s±i · s). The error of RLWE′s(Xαi·si) in the equation (4) is a Gaussian with variance

4σ2rc and the error variances of RLWEs(b · Xαi·si) and RLWEs(a · s · Xαi·si) are 4dN B2

12 σ
2
rc and

4dN
2

2
B2

12 σ
2
rc + σ2ks, respectively. A single accumulation introduces an additive Gaussian error of

variance 4dN
2

2
B2

12 σ
2
rc. The error after blind rotation on-the-fly is a Gaussian with variance σ′′br

2 ≈
4dN

3

2
B2

12 σ
2
rc ≈ 4dN

3

2
B2

12
N2

3 σ
2
ks, which is the same as σ′br. Therefore, auxiliary modulus should be

the size of 6σ′sm.

6.2.2 Implementation.

We have implemented the version of bootstrapping for multiprecision CKKS described in Section 4
as a proof-of-concept and to demonstrate the error achieved after bootstrapping procedure. It was
implemented using C++, NTL library [43] for multiprecision integer and floating-point arithmetic
and Intel HEXL library [44] for NTT. We experimented for ring dimensions 212 and 213 the result
of which is demonstrated in the Table 2. Our particular implementation is not optimized, but
performance improvement is not the main goal of this research. Recent results presented in [45]
show good performance for blind rotation.

Table 2 shows comparison of CKKS bootstrapping error between our technique and the state-
of-the-art bootstrapping methods [20, 21]. Unlike previous methods, our bootstrapping error is
not determined by polynomial approximation and is comparable to rescaling error. Due to the
small error, our method enables CKKS bootstrapping to work for smaller parameters such as
N = 212, 213 with a better precision. Especially, in N = 213, our bootstrapping preserves more
than 70-bit accuracy which is sufficient to achieve IND-CPAD security. Despite the theoretical error
analysis showed that the auxiliary prime p = 242 and 260 are required for (N,B) = (212, 216)
and (213, 232), respectively, we explored that p = 234 and 249 are enough in practice to make the
bootstrapping error comparable to rescaling error.

7 Conclusion

We demonstrate that the blind rotation technique that was previously used only for FHEW/TFHE
bootstrapping can be used for BGV, BFV, and CKKS bootstrapping as well. For CKKS, our
bootstrapping procedure introduces small rescaling errors instead of big approximation errors as
in previous CKKS bootstrapping methods, which makes our bootstrapping to be IND-CPAD se-
cure [24]. For BGV and BFV, unlike previous bootstrapping methods, our bootstrapping does not
have restrictions on the plaintext modulus.
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Table 2: Comparison of the error performance. ε denotes the average of bootstrapping error and
∆scale denotes the scaling factor which is multiplied to the message to keep the message precision.

Method N ns log (Q · p) logQ log (∆scale) log (ε−1) IND-CPAD

[20] 216 214 1553 240 45 31.6 X

[21] 216 214 1547 533 50 32.6 X

Ours

212
21 110 76 34 34.97 X

210 110 76 34 29.91 X

213
21 219 170 80 79.04 X

25 219 170 80 75.97 X

210 219 170 80 73.58 X

Further improvements are required in terms of efficiency. As we proposed the compact represen-
tation method, we need to reduce the size of a fairly large public key and improve the computational
complexity that increases linearly with the number of slots. We plan to continue research on im-
proving the performance of the proposed bootstrapping technique. We believe that this point of
view for designing bootstrapping algorithms could be helpful in the study of fully homomorphic
encryption schemes.
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