
zkCNN: Zero Knowledge Proofs for Convolutional Neural
Network Predictions and Accuracy

Tianyi Liu

Texas A&M University and Shanghai

Key Laboratory of Privacy-Preserving

Computation

tianyi@tamu.edu

Xiang Xie

Shanghai Key Laboratory of

Privacy-Preserving Computation

xiexiang@matrixelements.com

Yupeng Zhang

Texas A&M University

zhangyp@tamu.edu

ABSTRACT
Deep learning techniques with neural networks are developing

prominently in recent years and have been deployed in numerous

applications. Despite their great success, in many scenarios it is

important for the users to validate that the inferences are truly

computed by legitimate neural networks with high accuracy, which

is referred to as the integrity of machine learning predictions. To

address this issue, in this paper, we propose zkCNN, a zero knowl-

edge proof scheme for convolutional neural networks (CNN). The

scheme allows the owner of the CNN model to prove to others

that the prediction of a data sample is indeed calculated by the

model, without leaking any information about the model itself. Our

scheme can also be generalized to prove the accuracy of a secret

CNN model on a public dataset.

Underlying zkCNN is a new sumcheck protocol for proving fast

Fourier transforms and convolutions with a linear prover time,

which is even faster than computing the result asymptotically. We

also introduce several improvements and generalizations on the

interactive proofs for CNN predictions, including verifying the

convolutional layer, the activation function of ReLU and the max

pooling. Our scheme is highly efficient in practice. It can support

the large CNN of VGG16 with 15 million parameters and 16 layers.

It only takes 88.3 seconds to generate the proof, which is 1264×
faster than existing schemes. The proof size is 341 kilobytes, and

the verifier time is only 59.3 milliseconds. Our scheme can further

scale to prove the accuracy of the same CNN on 20 images.

CCS CONCEPTS
• Security and privacy→ Cryptography.

KEYWORDS
Zero knowledge proofs; Machine learning; Convolutional Neural

Networks

ACM Reference Format:
Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. zkCNN: Zero Knowledge

Proofs for Convolutional Neural Network Predictions and Accuracy. In

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3485379

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’21), November 15–19, 2021, Virtual Event, Republic of
Korea. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/3460120.

3485379

1 INTRODUCTION
Deep learning with neural networks has seen a great success in

many machine learning tasks in recent years, being deployed in

various applications and products in practice. In deep learning,

convolutional neural networks (CNN) are particularly useful in the

domain of computer vision for image classifications and recognition.

Despite their excellent performance, there are many security issues

when applying CNN models. In many scenarios, we need to guar-

antee that the results are indeed predictions of a particular CNN

model, which is referred to as the integrity of machine learning. A

naïve solution to address the integrity issue is to publish the CNN

models. However, as the models are usually trained on valuable

and sensitive datasets and are important intellectual properties of

the owners, it is often impossible in practice to share the models.

In this paper, we propose zero knowledge CNN predictions and

accuracy schemes to address the issues above. The cryptographic

primitive of zero knowledge proof (ZKP) allows a prover to con-

vince a verifier that a computation on the prover’s secret input is

correctly calculated through a short proof. Zero knowledge proofs

guarantee that if the prover sends a wrong result of the computa-

tion, it can only pass the verification with a negligible probability,

which is the soundness property. At the same time, the proof leaks

no information about the prover’s secret input, which is the zero

knowledge property. Prover’s secret input is usually referred to as

the witness or auxiliary input. In the scenario of zero knowledge

CNN, the witness is the parameters of the CNN model. The owner

of the secret model can prove to the users that the predictions are

correctly computed using her CNN model, while preserving the

privacy of the model.

Applications of zero knowledge machine learning. With the

strong guarantees on the privacy and integrity, zero knowledge

machine learning has the potential to enable many new applications

in practice. First, machine-learning-as-a-service (MLaaS) such as

Amazon Forecast andAmazon FraudDetector [1] offers cloud-based

platforms for predictive data analytics through machine learning

as a paid service. However, the clients do not have access to the

machine learning models, which are intellectual properties of the

companies, and have to trust that the predictions are computed

as promised. Using zero knowledge machine learning, the service

provider can prove that the models are of high quality and accuracy,

and the predictions are indeed computed by the same models. It

https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3460120.3485379

provides the integrity for MLaaS, while preserving the privacy of

the models. Second, reproducibility is a challenging problem in

machine learning. Some machine learning models or algorithms are

claimed to achieve high accuracy, yet it is challenging to validate

these claims inmany cases. Zero knowledgemachine learning offers

a partial solution to this issue. By attaching a ZKP for the claimed

accuracy, it at least shows that there exists such a machine learning

model known by the owner, due to the knowledge soundness of

the ZKP. Moreover, in some ZKP schemes, including our schemes

proposed in this paper, the time to verify the result is much faster

than computing it. This property further reduces the burden of the

verifier to validate the accuracy of the machine learning models.

In a different setting, zero knowledge machine learning can also

support predictions of public models on private datasets. As pointed

out by [46], in this setting, zero knowledge machine learning can be

applied to test the accuracy of a model on private benchmarks. The

data owner can evaluate the model on her sensitive data to help

the trainer improve the quality of the model, while preserving the

privacy of the data. Zero knowledge machine learning can also be

used to prove that there are adversary examples for a public model

where two inputs are “close” to each other but are classified into

two different categories. Our scheme can be modified to support

this setting with minimal changes.

Our Contributions. While there are general-purpose zero knowl-

edge proof schemes that work for any computations modeled as

arithmetic circuits, they introduce a high overhead on the prover

and existing schemes do not scale to the size of CNN models and

predictions. In this paper, we propose efficient zero knowledge

proof schemes for CNN predictions and accuracy that scale to large

CNN models in practice. In particular, our contributions include:

• Sumcheck protocol for FFT and convolutions. First, we pro-
pose a new sumcheck protocol for two-dimensional (2-D) con-

volutions. The key ingredient of the protocol is an efficient sum-

check for the fast Fourier transform (FFT)
1
where the additional

time to generate the proof is𝑂 (𝑁) for a vector of size 𝑁 . This is

indeed asymptotically better than the complexity to compute the

FFT in𝑂 (𝑁 log𝑁). This is another example of common computa-

tions in the literature besides the matrix multiplication where the

prover time of the sumcheck is sublinear in the time to compute

the result [41]. Using the protocol as a building block, we propose

the sumcheck protocol for 2-D convolutions and the prover time

is 𝑂 (𝑛2) for two inputs of 𝑛 × 𝑛 and 𝑤 ×𝑤 . The prover time is

equal to the size of the input and the output asymptotically and

thus is optimal. The proof size is 𝑂 (log𝑛). We further propose a

protocol to achieve a sublinear verifier time of 𝑂 (log
2 𝑛) with a

proof size of 𝑂 (log
2 𝑛).

Our new sumcheck protocol for FFT may be of independent inter-

est as a stand-alone primitive. For example, in [52], the authors

applied the interactive proofs to delegate the computation of poly-

nomial evaluations from the verifier to the prover. The scheme

uses an FFT circuit of size𝑂 (𝑁 log𝑁) and depth𝑂 (log𝑁). With

our new sumcheck protocol, we are able to reduce the prover

time of this delegation from 𝑂 (𝑁 log𝑁) to 𝑂 (𝑁). In [42], the

1
Sometimes discrete Fourier transform (DFT) or number theoretic transform (NTT)

are used for the transform on finite fields. In this paper, we use the general name of

FFT and our protocols work on a finite field.

authors proposed to verify the computation of a high-performing

but untrusted ASIC (application specific integrated circuit) by

a relatively slower but trusted ASIC through interactive proofs,

and the FFT circuit is an important application used in the bench-

mark. With our new sumcheck protocol, the area and energy

of the untrusted ASIC devoted to generating the proof can be

even smaller than those for computing FFT, and the cost of the

verifier ASIC is also reduced by a logarithmic factor, making the

verifiable ASICs faster than the baseline of computing FFT using

the slow but trused ASIC [42, Figure 11].

• Efficient interactive proofs for CNN predictions. Second,
we propose several improvements and generalizations of the

sumcheck protocol and the doubly efficient interactive proofs

(usually referred as the GKR protocol) for CNN predictions. (1)

We introduce generalized addition gates andmultiplications gates

so that additions with fan-in larger than 2 and inner products can

be implemented with a single sumcheck. (2) With the techniques

in [51], we extend the generalized gates to take inputs from any

layers without any overhead on the prover time. (3) We further

improve the sumcheck protocol for the convolutional layer in

CNN to reduce the prover time of IFFT by a factor of ch𝑖𝑛 for

convolutions on inputs with ch𝑖𝑛 channels. (4) We design an effi-

cient gadget of circuit to compute the ReLU activation function

and the max pooling together with a single bit-decomposition

per number.

• Implementation and evaluations. We fully implement our

zero knowledge convolutional neural network system, named

zkCNN. We test it on large CNNs such as VGG16 with 15 mil-

lion parameters on the CIFAR-10 dataset [31]. It takes 88.3s to

generate a proof of prediction, and 59.3ms to verify the proof.

The proof size is 341KB. The prover time is 1264× faster than the

existing scheme in [34]. Our system can also scale to prove the

accuracy of the same model on 20 images.

1.1 Related Work

Zero knowledge machine learning. The most relevant work to

our paper is vCNN [34] and ZEN [23] on zero knowledge neural net-

work predictions. vCNN supports convolutional neural networks

and verifies the convolutions through polynomial multiplications.

It combines the regular quadratic arithmetic program (QAP) and

the polynomial QAP in pairing-based zero knowledge proofs using

commit-and-prove. We verify the convolutions directly using the

sumcheck protocol and our approach is 34× faster than vCNN (see

Section 5.1). In [23], Feng et al. proposed quantization techniques

that are friendly to zero knowledge proofs to support real numbers.

We use the quantization approach proposed in [28] and we believe

the techniques in [23] are compatible with our scheme and inte-

grating them is left as future work. We compare our zkCNN with

vCNN and ZEN in Section 5.2 and show that the prover time of

zkCNN is orders of magnitude faster than vCNN and ZEN.

Ghodsi et al. proposed SafetyNets [25], a scheme to prove the

correctness of neural network inferences using the GKR protocol.

The scheme assumes that the model and the data are known to both

the prover and the verifier, and it is essentially a verifiable compu-

tation scheme where the verifier time is faster than computing the

inference locally. The scheme does not guarantee the privacy of the

model or the input. The scheme in [56] verifies the correctness of

predictions of several machine learning models including shallow

neural network, and provides privacy and integrity simultaneously.

Keuffer et al. [29] propose a scheme to verify machine learning

models by combining the GKR protocol and QAP-based protocols

to handle linear layers and non-linear layers, respectively. Other

than neural networks, Zhang et al. [50] proposed an efficient zero

knowledge proof scheme for decision tree predictions and accuracy.

The techniques are dedicated to decision tree models. Wu et al. [47]

designed a distributed zero knowledge proof system and proved

the integrity of training a linear regression model as a benchmark.

Interactive proofs. In the seminal work of [26], Goldwasser et al.

proposed the doubly efficient interactive proof for layered arith-

metic circuits. Later, Cormode et al. improved the prover time of

the GKR protocol from 𝑂 (|𝐶 |3) to 𝑂 (|𝐶 | log |𝐶 |) for circuits of size
|𝐶 | using multilinear extensions in [20]. Several follow-up papers

further reduced the prover time for circuits with special struc-

tures [41, 43, 55]. Notably Justin Thaler proposed a highly-efficient

sumcheck protocol for matrix multiplications between 𝑛 × 𝑛 ma-

trices where the additional prover time is 𝑂 (𝑛2), which is faster

than computing the result in 𝑂 (𝑛3). Our sumcheck protocol for

FFT provides the another example where the prover time is even

faster than computing the result. Recently Xie et al. [48] proposed

a variant of the GKR protocol with𝑂 (|𝐶 |) prover time for arbitrary

layered arithmetic circuits, and Zhang et al. [51] generalized the

GKR protocol to general circuits instead of layered circuit without

any overhead on the prover time.

In [53], Zhang et al. extended the GKR protocol to an argument

system using polynomial commitments. Subsequent works [39,

44, 48, 52, 54] followed the framework and constructed efficient

zero knowledge argument schemes based on interactive proofs. We

follow the same framework and constructs zkCNN schemes using

interactive proofs and polynomial commitments.

Zero knowledge proofs. Other than interactive proofs, there are

many recent schemes of zero knowledge succinct argument of

knowledge (zk-SNARK) [6, 8–10, 12, 13, 15, 18, 27, 30, 36, 37] based

on pairing, discrete-log, MPC-in-the-head and interactive oracle

proofs. They provide succinct proof size on the size of the statement,

but incur a high overhead on the running time and the memory

usage of the prover. Therefore, these systems are not able to scale to

the size of CNN predictions (see Section 5). Recent zero knowledge

protocols based on vector oblivious linear evaluation [7, 22, 45, 49]

are efficient in the execution time and the memory overhead, but

the communication is linear in the size of the statement (several

GBs in practice), and the schemes cannot be made non-interactive

and are not publicly verifiable.

2 PRELIMINARIES
We use negl(·) : N → N for the negligible function, where for

any positive polynomial 𝑓 (·), negl(𝑘) < 1

𝑓 (𝑘) for sufficiently large

integer𝑘 . Let 𝜆 denote the security parameter. “PPT" stands for prob-

abilistic polynomial time. We use 𝑓 (), 𝑔() for polynomials, 𝑥,𝑦, 𝑧

for vectors of variables and 𝑔,𝑢, 𝑣 for vectors of values. 𝑥𝑖 denotes

the 𝑖-th variable in 𝑥 . For a multivariate polynomial 𝑓 , its “variable-

degree” is the maximum degree of 𝑓 in any of its variables. We

denote {0, 1, . . . ,𝑚 − 1} as [𝑚].

Figure 1: An example of convolutional neural network.

2.1 Convolutional Neural Networks
A convolutional neural network consists of a pipeline of layers,

typically including a convolutional layer, an activation layer and

a pooling layer. A series of the three previous layers is followed

by several fully connected layers and an output layer. Each layer

receives input and processes it to produce an output that serves

as input to the next layer. Figure 1 shows a simple example of a

convolutional neural network.

Convolutional layer. A convolutional layer computes the dot

product between a small weight matrix and the neighborhood of

an element in the input data; this process is repeated by sliding

the weight matrix step by step. The computation can be viewed

as a two-dimensional (2-D) convolution, and each weight matrix

is usually referred to as a kernel or filter. Formally, we define the

result of a 2-D convolution between two matrices 𝑋 and𝑊 of size

𝑛 × 𝑛 and𝑤 ×𝑤 as a (𝑛 −𝑤 + 1) × (𝑛 −𝑤 + 1) matrix𝑈 = 𝑋 ∗𝑊
such that

𝑈 𝑗,𝑘 =
∑𝑤−1,𝑤−1

𝑡=0,𝑙=0

𝑋 𝑗+𝑡,𝑘+𝑙 ·𝑊𝑡,𝑙 (1)

for 𝑗, 𝑘 = 0, . . . , 𝑛 − 𝑤 .
2
In convolutional neural networks, the

data samples are represented as matrices and 2-D convolutions

are applied in each layer. The input and the output of each layer

usually have an additional dimension, referred to as the channels.
For example, a colored image has 3 channels: red, green and blue.

After a convolution, the number of channels in the output is the

same as the number of kernels in a convolutional layer. We use

ch𝑖𝑛, ch𝑜𝑢𝑡 to denote the number of input and output channels in a

convolutional layer, respectively. Let𝑊𝑖 be the model parameters

in layer 𝑖 , which consists of ch𝑜𝑢𝑡,𝑖 matrices of size𝑤𝑖 ×𝑤𝑖 × ch𝑖𝑛,𝑖 .
The input 𝑋𝑖 is represented as ch𝑖𝑛,𝑖 matrices of size 𝑛𝑖 ×𝑛𝑖 . We use

the notation𝑊𝑖 [𝜏, 𝜎, 𝑡, 𝑙] to represent𝑊𝑖 ’s value at index (𝜏, 𝜎, 𝑡, 𝑙),
and 𝑋𝑖 [𝜎, 𝑗, 𝑘] to represent 𝑋𝑖 ’s value at index (𝜎, 𝑗, 𝑘). Then the

convolutional layer 𝑖 for each data sample computes

𝑈𝑖 [𝜏, 𝑗, 𝑘] =
∑ch𝑖𝑛,𝑖−1

𝜎=0

∑(𝑤𝑖−1),(𝑤𝑖−1)
𝑡=0,𝑙=0

𝑋𝑖 [𝜎, 𝑗, 𝑘] ·𝑊𝑖 [𝜏, 𝜎, 𝑡, 𝑙] .
(2)

Where 0 ≤ 𝜏 < ch𝑜𝑢𝑡,𝑖 , 0 ≤ 𝑗, 𝑘 < 𝑛𝑖 −𝑤𝑖 + 1. This is ch𝑖𝑛,𝑖 · ch𝑜𝑢𝑡,𝑖
2-D convolutions in the form of Equation 1.

2
Throughout this paper, the size of stride is 1 for simplicity, and thus no padding is

needed. Our result could be easily extended to other stride size.

Activation layer. After the convolutional layer, an activation func-

tion 𝑓 is then applied to 𝑈𝑖 element-wise to build the nonlinear

relationships between input and output. Piecewise linear functions

such as ReLU 𝑓 (𝑥) = max(𝑥, 0) and Sigmoid function 𝑓 (𝑥) = 1

1+𝑒−𝑥
are the most commonly used activation functions due to their out-

standing performance in the training phase.

Pooling layer. Pooling layers are then used to reduce the dimen-

sions of the feature maps, thus reducing the number of parame-

ters to learn and the amount of computation performed in the

CNN. Two common pooling methods are average pooling and

max pooling, where AvgPool(𝑥0, ..., 𝑥𝑘−1
) = (𝑥0+, ..., +𝑥𝑘−1

)/𝑘 and

MaxPool(𝑥0, ..., 𝑥𝑘−1
) = max𝑘 (𝑥0, ..., 𝑥𝑘−1

). The pooling layer slides
a kernel over the result of the activation layer 𝑓 (𝑈𝑖) and do the

above two operations within the region covered by the kernel. The

result of pooling, denoted as 𝑋𝑖+1, is then fed into the next convo-

lutional layer as the input.

Fully connected layer. Finally, at the end of a series of convo-

lutions, activations and poolings, several fully connected layers

are applied in CNN. In each fully connected layer, the input is

multiplied by a weight matrix and added with a bias vector.

Output layer. The output layer typically applies a Softmax func-

tion to compute a probability distribution for categorical classifi-

cation problems. In the inference phase, it is enough to calculate

the maximal value over the output of the last fully connected layer

as the prediction of the most likely outcome. Therefore, in our

construction, we omit the computation of Softmax.

Finally, to classify multiple input data samples, an additional

dimension is introduced to the input of each layer and the compu-

tations are performed independently on each data sample with the

same kernels, activations and pooling.

2.2 Interactive Proofs
An interactive proof is an interactive protocol between a prover P
and a verifierV . The protocol runs in several rounds, allowingV
to ask questions in each round based on P’s answers in previous

rounds. We formalize this in terms of P trying to convinceV that

𝐶 (𝑥) = 𝑦, and give the formal definitions below.

Definition 2.1. Let 𝐶 be a function. A pair of interactive ma-

chines ⟨P,V⟩ is an interactive proof for 𝐶 with soundness 𝜖 if the

following holds:

• Completeness. For every 𝑥 such that 𝐶 (𝑥) = 𝑦 it holds that

Pr[⟨P,V⟩(𝑥) = 𝑎𝑐𝑐𝑒𝑝𝑡] = 1.

• 𝜖-Soundness. For any 𝑥 with𝐶 (𝑥) ≠ 𝑦 and any P∗ it holds that
Pr[⟨P∗,V⟩ = 𝑎𝑐𝑐𝑒𝑝𝑡] ≤ 𝜖

We say an interactive proof scheme has succinct proof size and

verifier time if they are 𝑂 (polylog(|𝐶 |, |𝑥 |)).

2.2.1 Sumcheck Protocol. Sumcheck protocol is one of the most im-

portant interactive proofs in the literature. The sumcheck problem

is to sum a multivariate polynomial 𝑓 : Fℓ → F on all binary in-

puts:

∑
𝑏1,𝑏2,...,𝑏ℓ ∈{0,1} 𝑓 (𝑏1, 𝑏2, ..., 𝑏ℓ). Directly computing the sum

requires exponential time in ℓ , as there are 2
ℓ
combinations of

𝑏1, . . . , 𝑏ℓ . Lund et al. [35] proposed a sumcheck protocol that al-

lows a verifierV to delegate the computation to a computationally

Protocol 1 (Sumcheck). The protocol proceeds in ℓ rounds.
• In the first round, P sends a univariate polynomial

𝑓1 (𝑥1)
𝑑𝑒𝑓
=

∑
𝑏2,...,𝑏ℓ ∈{0,1}

𝑓 (𝑥1, 𝑏2, . . . , 𝑏ℓ) ,

V checks 𝐻 = 𝑓1 (0) + 𝑓1 (1). ThenV sends a random chal-
lenge 𝑟1 ∈ F to P.
• In the 𝑖-th round, where 2 ≤ 𝑖 ≤ ℓ − 1, P sends a univariate
polynomial

𝑓𝑖 (𝑥𝑖)
𝑑𝑒𝑓
=

∑
𝑏𝑖+1,...,𝑏ℓ ∈{0,1}

𝑓 (𝑟1, . . . , 𝑟𝑖−1, 𝑥𝑖 , 𝑏𝑖+1, . . . , 𝑏ℓ) ,

V checks 𝑓𝑖−1 (𝑟𝑖−1) = 𝑓𝑖 (0) + 𝑓𝑖 (1), and sends a random
challenge 𝑟𝑖 ∈ F to P.
• In the ℓ-th round, P sends a univariate polynomial

𝑓ℓ (𝑥ℓ)
𝑑𝑒𝑓
= 𝑓 (𝑟1, 𝑟2, . . . , 𝑟𝑙−1

, 𝑥ℓ) ,
V checks 𝑓ℓ−1 (𝑟ℓ−1) = 𝑓ℓ (0) + 𝑓ℓ (1). The verifier gener-
ates a random challenge 𝑟ℓ ∈ F. Given oracle access to an
evaluation 𝑓 (𝑟1, 𝑟2, . . . , 𝑟ℓ) of 𝑓 , V will accept if and only
if 𝑓ℓ (𝑟ℓ) = 𝑓 (𝑟1, 𝑟2, . . . , 𝑟ℓ). The instantiation of the oracle
access depends on the application of the sumcheck protocol.

unbounded proverP, who can convinceV that𝐻 is the correct sum.

We provide a description of the sumcheck protocol in Protocol 1.

Lemma 1. Protocol 1 is an interactive proof for𝐻 =
∑
𝑏1,𝑏2,...,𝑏ℓ ∈{0,1}

𝑓 (𝑏1, 𝑏2, ..., 𝑏ℓ) that is complete and sound with 𝜖 = ℓ
|F | by Defini-

tion 2.1.

The proof size of the sumcheck protocol is 𝑂 (ℓ) if the variable
degree of 𝑓 is constant, which is the case in our protocols. This

is because in each round, P sends a univariate polynomial of one

variable in 𝑓 , which is of constant size. The verifier time of the

protocol is 𝑂 (ℓ). The prover time depends on the degree and the

sparsity of 𝑓 , and we will give the complexity later in our scheme.

Definition 2.2 (Identity function). Let 𝛽 : {0, 1}ℓ ×{0, 1}ℓ → {0, 1}
be the identity function such that 𝛽 (𝑥,𝑦) = 1 if 𝑥 = 𝑦, and 𝛽 (𝑥,𝑦) =
0 otherwise. Suppose

˜𝛽 is the multilinear extension of 𝛽 . Then ˜𝛽

can be expressed as:
˜𝛽 (𝑥,𝑦) = ∏ℓ

𝑖=1
((1 − 𝑥𝑖) (1 − 𝑦𝑖) + 𝑥𝑖𝑦𝑖).

Definition 2.3 (Multilinear Extension [21]). Let𝑉 : {0, 1}ℓ → F be
a function. The multilinear extension of 𝑉 is the unique polynomial

𝑉̃ : Fℓ → F such that 𝑉̃ (𝑥1, 𝑥2, ..., 𝑥ℓ) = 𝑉 (𝑥1, 𝑥2, ..., 𝑥ℓ) for all
𝑥1, 𝑥2, . . . , 𝑥ℓ ∈ {0, 1}. 𝑉̃ can be expressed as:

𝑉̃ (𝑥1, 𝑥2, ..., 𝑥ℓ) =
∑

𝑏∈{0,1}ℓ
˜𝛽 (𝑥, 𝑏) ·𝑉 (𝑏)

=
∑

𝑏∈{0,1}ℓ
∏ℓ

𝑖=1

((1 − 𝑥𝑖) (1 − 𝑏𝑖) + 𝑥𝑖𝑏𝑖)) ·𝑉 (𝑏) ,
where 𝑏𝑖 is 𝑖-th bit of b.

Multilinear extensions of arrays andmatrices. Inspired by the
closed-form equation of the multilinear extension given above,

we can view an array a = (𝑎0, 𝑎1, . . . , 𝑎𝑁−1) as a function 𝑎 :

{0, 1}log𝑁 → F such that ∀𝑖 ∈ [0, 𝑁 − 1], 𝑎(𝑖1, . . . , 𝑖log𝑁) = 𝑎𝑖 .

Here we assume 𝑁 is a power of 2. Therefore, in this paper, we

abuse the use of multilinear extension on an array as the multilin-

ear extension 𝑎 of 𝑎. Similarly, we use the multilinear extension

on an 𝑁 ×𝑀 matrix 𝐴 as the multilinear extension of the function

𝐴 : {0, 1}log𝑁+log𝑀 → F defined by the matrix.

2.2.2 GKR Protocol. Using the sumcheck protocol as a building

block, Goldwasser et al. [26] showed an interactive proof protocol

for layered arithmetic circuits. Let 𝐶 be a layered arithmetic circuit

with depth 𝑑 over a finite field F. Each gate in the 𝑖-th layer takes

inputs from two gates in the (𝑖 + 1)-th layer; layer 0 is the output

layer and layer 𝑑 is the input layer. Following the convention in

prior work [20, 41, 48, 52, 53], we denote the number of gates in the

𝑖-th layer as 𝑆𝑖 and let 𝑠𝑖 = ⌈log 𝑆𝑖 ⌉. (For simplicity, we assume 𝑆𝑖 is a

power of 2, and we can pad the layer with dummy gates otherwise.)

We then define a function 𝑉𝑖 : {0, 1}𝑠𝑖 → F that takes a binary

string 𝑏 ∈ {0, 1}𝑠𝑖 and returns the output of gate 𝑏 in layer 𝑖 , where

𝑏 is called the gate label. With this definition,𝑉0 corresponds to the

output of the circuit, and 𝑉𝑑 corresponds to the input layer. Finally,

we define two additional functions 𝑎𝑑𝑑𝑖 ,𝑚𝑢𝑙𝑡𝑖 : {0, 1}𝑠𝑖−1+2𝑠𝑖 →
{0, 1}, referred to as wiring predicates in the literature. 𝑎𝑑𝑑𝑖 (𝑚𝑢𝑙𝑡𝑖)

takes one gate label 𝑧 ∈ {0, 1}𝑠𝑖−1
in layer 𝑖 − 1 and two gate labels

𝑥,𝑦 ∈ {0, 1}𝑠𝑖 in layer 𝑖 , and outputs 1 if and only if gate 𝑧 is an

addition (multiplication) gate that takes the output of gate 𝑥,𝑦 as

input. Taking the multilinear extensions of 𝑉𝑖 , 𝑎𝑑𝑑𝑖 and𝑚𝑢𝑙𝑡𝑖 , for

any 𝑔 ∈ F𝑠𝑖 ,

𝑉̃𝑖 (𝑔) =
∑

𝑥,𝑦∈{0,1}𝑠𝑖+1 𝑓𝑖 (𝑔, 𝑥,𝑦)

=
∑

𝑥,𝑦∈{0,1}𝑠𝑖+1 (
˜𝑎𝑑𝑑𝑖+1 (𝑔, 𝑥,𝑦) (𝑉̃𝑖+1 (𝑥) + 𝑉̃𝑖+1 (𝑦))

+ ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑔, 𝑥,𝑦)𝑉̃𝑖+1 (𝑥)𝑉̃𝑖+1 (𝑦)) , (3)

With Equation 3, the GKR protocol proceeds as follows. The prover

P first sends the claimed output of the circuit to V . From the

claimed output,V defines polynomial 𝑉̃0 and computes 𝑉̃0 (𝑔) for
a random 𝑔 ∈ F𝑠0

.V and P then invoke a sumcheck protocol on

Equation 3 with 𝑖 = 0. As described in Section 2.2.1, at the end of

the sumcheck, V needs an oracle access to 𝑓𝑖 (𝑔,𝑢, 𝑣), where 𝑢, 𝑣
are randomly selected in F𝑠𝑖+1 . To compute 𝑓𝑖 (𝑔,𝑢, 𝑣),V computes

˜𝑎𝑑𝑑𝑖+1 (𝑔,𝑢, 𝑣) and ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑔,𝑢, 𝑣) locally (they only depend on the

wiring pattern of the circuit, not on the values), asks P to send

𝑉̃1 (𝑢) and 𝑉̃1 (𝑣) and computes 𝑓𝑖 (𝑔,𝑢, 𝑣) to complete the sumcheck

protocol. In this way,V and P reduce a claim about the output to

two claims about values in layer 1. V and P then combines the

two claims into one through a random linear combination, and

run a sumcheck protocol on Equation 3 for layer 𝑖 + 1, and then

recursively all the way to the input layer. The formal GKR protocol

and its properties are presented in Protocol 2 in Appendix A.

2.3 Zero Knowledge Arguments
A zero knowledge argument scheme is a protocol between a PPT

prover P and a verifierV , where at the end of the protocol,V is

convinced by P that the result of a computation𝐶 on a public input

𝑥 and prover’s secret witness𝑤 is 𝑦 = 𝐶 (𝑥,𝑤). A zero knowledge

argument has (1) correctness:V always accepts if the result and the

proof are honestly computed by P; (2) soundness:V rejects with all

but negligible probability if the result is not correctly computed; (3)

zero knowledge: the proof leaks no information about the witness

𝑤 beyond the fact the 𝐶 (𝑥,𝑤) = 𝑦. We give the formal definitions

of zero knowledge arguments in Definition B.1 of Appendix B.

Following the framework in [44, 48, 52, 53], the GKR protocol

can be lifted to a zero knowledge argument scheme using zero
knowledge polynomial commitments. The observation is that in the

last round of the GKR protocol 2, the verifier needs the multilinear

extension of the input of the circuit evaluated at two random points.

To allow secret witness from the prover, it suffices for the prover

to commit to the multilinear extension of the witness, and later

opens the polynomial evaluations to complete the reduction of the

GKR protocol. We follow the same framework to build our zero

knowledge CNN, and we give the formal definitions in Appendix B.

In our implementation, we use the polynomial commitment

scheme in [39, 44]. The security is based on the discrete-log as-

sumption and the scheme does not require trusted setup. For a

polynomial of size 𝑁 , the prover time is 𝑂 (𝑁) modular exponenti-

ation, and the proof size and the verifier time are 𝑂 (
√
𝑁).

3 NEW SUMCHECK FOR CONVOLUTIONS
Convolution is undoubtedly the most important layer of CNNs

and takes the most computational resources in CNN predictions.

There are three existing approaches to support convolutions in zero

knowledge proof schemes. The first one is to implement convolu-

tions naively using addition and multiplication gates. Though the

circuit, and thus the ZKP backend, is very simple, the size of the

circuit is big, which is 𝑂 (𝑛2 ·𝑤2) for a 2-D convolution between

two inputs of 𝑛 × 𝑛 and𝑤 ×𝑤 . The second approach is to compute

convolutions using FFT implemented as a circuit. The circuit is of

𝑂 (𝑛2
log𝑛) size and 𝑂 (log𝑛) depth (assuming 𝑤 < 𝑛), and there

are candidates of ZKP on the butterfly circuit of FFT (e.g., [52]).

Though asymptotically better, for typical convolutions in CNNs

usually𝑤 << 𝑛 and the circuit size of FFT is comparable or even

larger than the first naive approach, with an overhead on the depth.

The third approach relies on the fact that convolution is equiva-

lent to the polynomial multiplication between the two polynomials

represented by the inputs. Instead of computing the convolution,

given the result of the convolution we can test the equality of the

polynomial multiplication at a random point and the security is

guaranteed by the Schwartz-Zipppel lemma [38, 57]. The circuit or

ZKP to evaluate polynomials at a random point is of size𝑂 (𝑛2+𝑤2).
vCNN [34] took this approach and further improves the check by

combining a regular QAP and a polynomial-QAP. However, in this

approach the prover has to additionally commit to the result of

the convolution. As the commitments are usually the bottleneck of

ZKP schemes, the overhead of this approach is still high in practice.

In this section, we propose a new protocol to verify the correct-

ness of convolutions. The additional prover time is𝑂 (𝑛2), which is

asymptotically optimal and is even faster than computing the con-

volution. The protocol does not involve additional commitments

from the prover and can be embedded in general-purpose ZKP

schemes based on the GKR protocols. The key ingredient of our

scheme is a new sumcheck protocol for FFT with linear prover time.

3.1 New Sumcheck for Fast Fourier Transform
FFT transforms a polynomial from its coefficients to its evalua-

tions at powers of the root of unity. Formally speaking, let c =

(𝑐0, 𝑐1, . . . , 𝑐𝑁−1) be the vector of coefficients of a polynomial, a =

(𝑎0, 𝑎1, . . . , 𝑎𝑀−1) be the vector of evaluations at (𝜔0, 𝜔1, . . . , 𝜔𝑀−1),

where 𝜔 is the 𝑀-th root of unity such that 𝜔𝑀 = 1 mod 𝑝 . We

always work in a finite field and we omit mod 𝑝 in the following.

Here the length of c and a are padded to the nearest powers of 2.

By the definition of polynomial evaluations, 𝑎 𝑗 =
∑𝑁−1

𝑖=0
𝑐𝑖𝜔

𝑗𝑖
for

𝑗 = 0, 1, . . . , 𝑀 − 1, which can also be written as a matrix-vector

multiplication a = 𝐹 · c, where 𝐹 is the standard Fourier matrix:

𝐹 =

©­­­­­­­«

1 1 1 . . . 1

1 𝜔1 𝜔2 . . . 𝜔𝑁−1

1 𝜔2 𝜔4 . . . 𝜔2(𝑁−1)

.

.

.
.
.
.

.

.

.
.
.
.

1 𝜔𝑀−1 𝜔2(𝑀−1) . . . 𝜔 (𝑀−1) (𝑁−1)

ª®®®®®®®¬
(4)

The key property of the FFT algorithm is that as 𝜔𝑀 = 1, there

are only 𝑀 distinct values in the Fourier matrix 𝐹 and a can be

computed in quasi-linear time using the divide-and-conquer tech-

nique [19]. We omit the algorithm of FFT, but will utilize the same

property in the design of our sumcheck protocol.

In our setting, given the multilinear extension of a evaluated at

a random point, we want to reduce its correctness to the evaluation

of the multilinear extension of c. The evaluations can either be

computed directly on c and a, or be given by the prover during the

GKR protocols. To do so, we first turn the equation of polynomial

evaluation to the form of multivariate polynomials:

𝑎(𝑦) =
∑

𝑥 ∈{0,1}log𝑁
𝑐 (𝑥)𝐹 (𝑦, 𝑥) , (5)

for𝑦 ∈ {0, 1}log𝑀
. Here 𝑎(·) and 𝑐 (·) are multilinear extensions of a

and c, and 𝐹 (·, ·) is the multilinear extension defined by the Fourier

matrix 𝐹 such that 𝐹 (𝑦, 𝑥) is the (𝑦, 𝑥)-th entry in 𝐹 . As 𝑥,𝑦 are

binary strings, we further denote the values represented by 𝑦, 𝑥 as

Y,X ∈ F, and thus 𝐹 (𝑦, 𝑥) = 𝜔YX . The equation basically replaces

the univariate indices 𝑖 ∈ [𝑁], 𝑗 ∈ [𝑀] by 𝑥 ∈ {0, 1}log𝑁 , 𝑦 ∈
{0, 1}log𝑀

. To run the sumcheck protocol on Equation 5, we rely on

the algorithm proposed in [41, 48]. Given the evaluation 𝑎(𝑢) of 𝑎(·)
at a random point 𝑢 ∈ Flog𝑀

, if the prover can initialize the values

of 𝑐 (𝑥) and 𝐹 (𝑢, 𝑥) on all 𝑥 ∈ {0, 1}log𝑁
, there is an algorithm for

the prover to generate all messages in the sumcheck protocol in

𝑂 (𝑁) time. The algorithm applies dynamic programming [41] and

the initialization is referred as the bookkeeping tables in [48]. We

give the algorithm for our particular sumcheck on Equation 5 in

Algorithm 1 for completeness.

In the input of Algorithm 1, the array A𝑐 is simply c itself by
the definition of the multilinear extension. The challenging part is

to calculate A𝐹 , i.e., 𝐹 (𝑢, 𝑥) ∀𝑥 ∈ {0, 1}log𝑁
. Existing techniques

in [48, 51] cannot be applied here, as 𝐹 (𝑦, 𝑥) is not sparse. It is the
multilinear extension defined by the Fourier matrix 𝐹 in Equation 4

with 𝑂 (𝑀𝑁) nonzero values. Computing A𝐹 naively would take

𝑂 (𝑀𝑁) time in total.

In order to reduce the prover time, we write 𝐹 (𝑢, 𝑥) as:

𝐹 (𝑢, 𝑥) =
∑

𝑧∈{0,1}log𝑀
˜𝛽 (𝑢, 𝑧)𝐹 (𝑧, 𝑥)

=
∑

𝑧∈{0,1}log𝑀
˜𝛽 (𝑢, 𝑧)𝜔XZ

=
∑

𝑧∈{0,1}log𝑀
˜𝛽 (𝑢, 𝑧)𝜔X(𝑧0 ·2log𝑀−1+𝑧1 ·2log𝑀−2+···+𝑧

log𝑀−1
) ,

(6)

Algorithm 1 Sumcheck(𝑐,A𝑐 , 𝐹 ,A𝐹 , 𝑟1, . . . , 𝑟log𝑁)

Input: Arrays A𝑐 and A𝐹 storing 𝑐 (𝑥) and 𝐹 (𝑢, 𝑥) on all

𝑥 ∈ {0, 1}log𝑁
, random 𝑟1, . . . , 𝑟log𝑁 ;

Output: log𝑁 sumcheck messages for

∑
𝑥 ∈{0,1}log𝑀 𝑐 (𝑥)𝐹 (𝑢, 𝑥).

Each message consists of 3 elements;

1: for 𝑖 = 1, . . . , log𝑁 do
2: for 𝑏 ∈ {0, 1}ℓ−𝑖 do // 𝐵 is the number represented by 𝑏.
3: for 𝑡 = 0, 1, 2 do
4: 𝑐 (𝑟1, . . . , 𝑟𝑖−1, 𝑡, 𝑏) = A𝑐 [𝐵] · (1−𝑡) +A𝑐 [𝐵+2

ℓ−𝑖] ·𝑡
5: 𝐹 (𝑟1, . . . , 𝑟𝑖−1, 𝑡, 𝑏) = A𝐹 [𝐵] · (1−𝑡)+A𝐹 [𝐵+2

ℓ−𝑖] ·𝑡
6: for 𝑡 ∈ {0, 1, 2} do // Aggregate messages in round 𝑖 .
7: Send

∑
𝑏∈{0,1}ℓ−𝑖 𝑐 (𝑟1, . . . , 𝑟𝑖−1, 𝑡, 𝑏) · 𝐹 (𝑟1, . . . , 𝑟𝑖−1, 𝑡, 𝑏)

8: for 𝑏 ∈ {0, 1}ℓ−𝑖 do // Update the arrays.
9: A𝑐 [𝐵] = A𝑐 [𝐵] · (1 − 𝑟𝑖) + A𝑐 [𝐵 + 2

ℓ−𝑖] · 𝑟𝑖
10: A𝐹 [𝐵] = A𝐹 [𝐵] · (1 − 𝑟𝑖) + A𝐹 [𝐵 + 2

ℓ−𝑖] · 𝑟𝑖

whereZ = 𝑧0 · 2log𝑀−1 +𝑧1 · 2log𝑀−2 + · · · +𝑧
log𝑀−1

is the number

represented by the binary string 𝑧 with 𝑧0 being the most significant

bit. By the closed-form of
˜𝛽 given in Section 2.2.1, the equation

above is equal to

∑
𝑧∈{0,1}log𝑀

∏
log𝑀−1

𝑖=0

((1 − 𝑢𝑖) (1 − 𝑧𝑖) + 𝑢𝑖𝑧𝑖)

· 𝜔X·
∑log𝑀−1

𝑗=0
2

log𝑀−1−𝑗𝑧 𝑗

=
∑

𝑧∈{0,1}log𝑀

∏
log𝑀−1

𝑖=0

((1 − 𝑢𝑖) (1 − 𝑧𝑖) + 𝑢𝑖𝑧𝑖)

· 𝜔
∑log𝑀−1

𝑗=0
2

log𝑀−1−𝑗 · (X ·𝑧 𝑗)

=
∑

𝑧∈{0,1}log𝑀

∏
log𝑀−1

𝑖=0

((1 − 𝑢𝑖) (1 − 𝑧𝑖) + 𝑢𝑖𝑧𝑖)

·
∏

log𝑀−1

𝑗=0

(𝜔2
log𝑀−1−𝑗

)X·𝑧 𝑗 .

(7)

Note that 𝜔2
log𝑀−1−𝑗

= 𝜔
𝑀

2
𝑗+1

above is the 2
𝑗+1

-th root of unity. We

use the same notation as in [19] to denote it as 𝜔
2
𝑗+1 . Then the

equation above is

=
∑

𝑧∈{0,1}log𝑀

log𝑀−1∏
𝑖=0

((1 − 𝑢𝑖) (1 − 𝑧𝑖) + 𝑢𝑖𝑧𝑖) ·
log𝑀−1∏

𝑗=0

𝜔
X·𝑧 𝑗
2
𝑗+1

=
∑

𝑧∈{0,1}log𝑀

∏
log𝑀−1

𝑖=0

((1 − 𝑢𝑖) (1 − 𝑧𝑖) + 𝑢𝑖𝑧𝑖) · 𝜔X·𝑧𝑖
2
𝑖+1

=
∏

log𝑀−1

𝑖=0

∑
𝑧𝑖 ∈{0,1}

((1 − 𝑢𝑖) (1 − 𝑧𝑖) + 𝑢𝑖𝑧𝑖) · 𝜔X·𝑧𝑖
2
𝑖+1

=
∏

log𝑀−1

𝑖=0

(
(1 − 𝑢𝑖) + 𝑢𝑖 · 𝜔X

2
𝑖+1

)
. (8)

An easy way to check the correctness of the equation above is that

both 𝐹 (𝑢, 𝑥) and Equation 8 are multilinear extensions of matrix 𝐹 .

By the uniqueness of multilinear extensions, they must be equal as

long as they agree on all binary inputs. Therefore, by substituting 𝑢

with any binary string, it is not hard to see that they are the same,

because𝑢𝑖 is a selector to choose the right𝜔
X
2
𝑖+1 to multiply together

in Equation 8. Moreover, if we take a closer look at each parenthesis,

Algorithm 2 A𝐹 ← Initialize(𝜔,𝑢, 𝑁)

Input:𝑀-th root of unity 𝜔 , random point 𝑢 ∈ Flog𝑀
and the

degree 𝑁 ;

Output: A𝐹 storing 𝐹 (𝑢, 𝑥) for all 𝑥 ∈ {0, 1}log𝑁
.

1: A𝐹 [0] = 1;

2: for 𝑖 = 0, . . . , log𝑁 − 1 do
3: for 𝑗 = 2

𝑖+1 − 1, . . . , 0 do
4: A𝐹 [𝑗] = A𝐹 [𝑗 mod 2

𝑖] ·
(
(1 − 𝑢𝑖) + 𝑢𝑖 · 𝜔 𝑗

2
𝑖+1

)
// In round 𝑖 , (𝜔

2
𝑖+1)X has 2

𝑖+1 possible values ∀X ∈ [𝑁], indexed by
𝑗 = X mod 2

𝑖+1.

5: return A𝐹 ;

𝜔
2
𝑖+1 is the 2

𝑖+1
-th root of unity, and 𝜔X

2
𝑖+1 only has 2

𝑖+1
distinct

values for all X ∈ [𝑁], which is exactly the property used in the

standard FFT algorithm. Therefore, instead of computing 𝐹 (𝑢, 𝑥)
for every 𝑥 ∈ {0, 1}log𝑁

one by one, we divide the computation in

log𝑀 iterations. In each iteration 𝑖 , the prover computes a running

product for each 𝑥 with the first 𝑖-th parenthesis in Equation 8 from

the last iteration. Specifically, the prover precomputes all𝑀 distinct

values of 𝜔
𝑗

2
𝑖+1 for 0 ≤ 𝑖 < log𝑁 − 1, 0 ≤ 𝑗 < 2

𝑖+1
(which are the

points to evaluate anyway), calculates all 2
𝑖+1

different values of

((1 − 𝑢𝑖) + 𝑢𝑖𝜔 𝑗

2
𝑖+1) in iteration 𝑖 and multiplies them to 2

𝑖
distinct

running products in iteration 𝑖−1. In the last iteration, the algorithm

outputs 𝑁 values for 𝐹 (𝑢, 𝑥) ∀𝑥 ∈ {0, 1}log𝑁
, and the total running

time is 𝑂 (𝑀 + 𝑁). The algorithm is presented in Algorithm 2.

Together with Algorithm 1, we are able to construct an algorithm

for the prover to generate all proofs in the sumcheck protocol on

Equation 5 in time 𝑂 (𝑀 + 𝑁). The proof size is 𝑂 (log𝑁) and the

verifier time is 𝑂 (log𝑁), given oracle accesses of 𝑐 (·) and 𝐹 (·).

Reducing the verifier time. Though our new protocol has op-

timal prover time and good proof size, it introduces an overhead

on the verifier time. In particular, the oracle accesses of 𝑐 (·) and
𝑎(·) are usually provided by the prover or computed on verifier’s

input as in existing approaches mentioned above, but our proto-

col requires an additional evaluation of 𝐹 (·) at a random point. It

takes linear time if the verifier evaluates it on her own using a

similar algorithm as the prover in Algorithm 2. We further show

an approach to delegate this computation through a sequence of

sumcheck protocols.

Our approach follows exactly the same algorithm to compute

A𝐹 , the bookkeeping table, in Algorithm 2. Recall that A𝐹 stores

𝐹 (𝑢, 𝑥) ∀𝑥 ∈ {0, 1}log𝑁
, thus 𝐹 (𝑢, 𝑣) is the multilinear extension of

A𝐹 evaluated at 𝑣 . Moreover, in Algorithm 2, the values in A𝐹 in

the 𝑖-th round are computed from the values in the (𝑖 − 1)-th round

by the equation in Step 4. Therefore, we abuse the notation and use

𝐴
(𝑖)
𝐹
(·) : {0, 1}𝑖+1 → F to denote the array A𝐹 in the 𝑖-th round for

𝑖 = 0, . . . , log𝑁 −1, and 𝐴̃
(𝑖)
𝐹
(·) : F𝑖+1 → F to denote its multilinear

extension. Then 𝐹 (𝑢, 𝑣) = 𝐴̃
(log𝑁−1)
𝐹

(𝑣), and we can write 𝐴
(𝑖)
𝐹
(·)

as an equation of 𝐴
(𝑖−1)
𝐹
(·):

𝐴
(𝑖)
𝐹
(𝑥, 𝑏) = 𝐴

(𝑖−1)
𝐹
(𝑥) ((1 − 𝑢𝑖) + 𝑢𝑖 · 𝜔𝑖+1 (𝑥, 𝑏)), (9)

for all 𝑥 ∈ {0, 1}𝑖 , 𝑏 ∈ {0, 1}, where 𝜔𝑖+1 (𝑥, 𝑏) = 𝜔
𝑗

2
𝑖+1 for 𝑗 =∑𝑖

𝑘=0
𝑥𝑘2

𝑘+1 + 𝑏, the number in F represented by (𝑥, 𝑏) in binary.

Equation 9 is exactly the same as Step 4 in Algorithm 2 with binary

indices. Then by Definition 2.3,

𝐴̃
(𝑖)
𝐹
(𝑥, 𝑏) =

∑
𝑧∈{0,1}𝑖

˜𝛽 (𝑥, 𝑧)𝐴̃(𝑖−1)
𝐹
(𝑧) ((1−𝑢𝑖)+𝑢𝑖 ·𝜔̃𝑖+1 (𝑧, 𝑏)), (10)

for all 𝑥 ∈ F𝑖 , 𝑏 ∈ F, as both sides agree on the Boolean hypercube

by Equation 9, and are both multilinear in 𝑥 and 𝑏.

Starting from 𝐹 (𝑢, 𝑣) = 𝐴̃
(log𝑁−1)
𝐹

(𝑣), the verifier and the prover
can reduce its correctness to the evaluation of 𝐴̃

(𝑖)
𝐹
(·) at a random

point through a sumcheck protocol on Equation 10 for 𝑖 = log𝑁 −
1, . . . , 0. In the last round, as defined in Step 1 of Algorithm 2, 𝐴̃

(0)
𝐹
(·)

is simply the constant 1. As the size of
˜𝛽 (·), 𝐴̃(𝑖)

𝐹
(·) and 𝜔̃𝑖+1· in

the 𝑖-th sumcheck are 𝑂 (2𝑖), the prover time is 𝑂 (2𝑖) using the

dynamic programming technique in Algorithm 1. The proof size in

the 𝑖-th sumcheck is𝑂 (𝑖). It remains to show that the verifier time is

also logarithmic. The verifier time during the 𝑖-th sumcheck is𝑂 (𝑖).
However, at the end of each sumcheck, the verifier has to evaluate

˜𝛽 (·) and ((1−𝑢𝑖) +𝑢𝑖𝜔̃𝑖+1 (·)) at a random point to obtain 𝐴̃
(𝑖−1)
𝐹
(·)

at the random point for the next sumcheck. By the closed-form of

˜𝛽 in Definition 2.2, it can be evaluated at a random point in time

𝑂 (𝑖). By the closed-form of multilinear extension in Definition 2.3,

𝜔̃𝑖+1 (𝑟) =
∑
𝑥 ∈{0,1}𝑖+1 𝛽 (𝑟, 𝑥)𝜔

𝑗

2
𝑖+1 for 𝑗 =

∑𝑖+1
𝑘=0

𝑥𝑘2
𝑘
, which equals

to

∏𝑖+1
𝑘=0
((1 − 𝑟𝑘) + 𝑟𝑘𝜔2

𝑘

2
𝑖+1) and can also be evaluated in time𝑂 (𝑖).

Therefore, with this approach, the total prover time remains 𝑂 (𝑁)
and the total verifier time is reduced to 𝑂 (log

2 𝑁), while the total
proof size increases to 𝑂 (log

2 𝑁).

3.2 Two-Dimensional Convolutions
With our new sumcheck protocol for FFT as a building block, we

construct a protocol to validate 2-D convolutions.

Inverse FFT. Inverse FFT (IFFT) can be viewed as FFT with a dif-

ferent root of unity [19],

𝑎 𝑗 =
∑𝑁−1

𝑖=0

𝑐𝑖𝜔
𝑗𝑖 ⇔ 𝑐𝑖 =

1

𝑀

∑𝑀−1

𝑗=0

𝑎 𝑗𝜔
−𝑗𝑖 ,

for 𝑖 ∈ [𝑁], 𝑗 ∈ [𝑀]. As 𝑀 is known and its inverse exists in a

finite field, we can just apply the same sumcheck protocol with

linear prover time to validate the result of IFFT.

2-D convolution to 1-D convolution.As introduced in Section 2.1,
a convolutional layer in CNN computes the 2-D convolution be-

tween the input and the kernel. Here we show that the computation

can be reduced to a 1-D convolution. Following Equation 1 in Sec-

tion 2.1, let 𝑋,𝑊̄ ∈ F𝑛2

be

𝑋𝑡𝑛+𝑙 = 𝑋𝑛−1−𝑡,𝑛−1−𝑙 , 0 ≤ 𝑡 < 𝑛, 0 ≤ 𝑙 < 𝑛

𝑊̄𝑡𝑛+𝑙 =

{
𝑊𝑡,𝑙 , 0 ≤ 𝑡, 𝑙 < 𝑤

0, otherwise

𝑈 𝑗 =
∑𝑗

𝑖=0

𝑋 𝑗−𝑖𝑊̄𝑖

Equation 1 is

𝑈 𝑗,𝑘 =
∑(𝑤−1),(𝑤−1)

𝑡=0,𝑙=0

𝑋 𝑗+𝑡,𝑘+𝑙𝑊𝑡,𝑙

=
∑(𝑤−1),(𝑤−1)

𝑡=0,𝑙=0

𝑋 (𝑛−1−𝑗−𝑡) ·𝑛+(𝑛−1−𝑘−𝑙)𝑊̄𝑡 ·𝑛+𝑙

=
∑(𝑛−1),(𝑛−1)

𝑡=0,𝑙=0

𝑋 (𝑛−1−𝑗−𝑡) ·𝑛+(𝑛−1−𝑘−𝑙)𝑊̄𝑡 ·𝑛+𝑙

=
∑𝑛2−1−𝑗 ·𝑛−𝑘

𝑖=0

𝑋𝑛2−1−𝑗 ·𝑛−𝑘−𝑖𝑊̄𝑖

= 𝑈𝑛2−1−𝑗 ·𝑛−𝑘

(11)

Thus 𝑈 can be computed through 1-D convolution between 𝑋,𝑊̄ ,

vectors defined by the input and the kernel of a convolutional layer.

Computing 1-D convolution using FFT. It is well-known that

1-D convolution is the same as multiplications between two uni-

variate polynomials. We abuse the notation to denote the uni-

variate polynomials with coefficients 𝑋,𝑊̄ as 𝑋 (𝜂),𝑊̄ (𝜂), then
𝑈 (𝜂) = 𝑋 (𝜂)𝑊̄ (𝜂) ⇔ 𝑈 𝑗 =

∑𝑗

𝑖=0
𝑋 𝑗−𝑖𝑊̄𝑖 by taking 𝑈 as the first

𝑛2
coefficients of𝑈 (𝜂).
Finally, polynomial multiplications can be calculated using FFT

and IFFT in three steps. First, we transform 𝑋 (𝜂) and 𝑊̄ (𝜂) from
coefficients to evaluations at powers of the root of unity, denoted by

FFT(𝑋) and FFT(𝑊̄). Here we implicitly assume that𝑊 is padded

to 𝑛2
and both are evaluated at 2𝑛2

points. Then we compute the

Hadamard product (element-wise product) of the vectors, and fi-

nally transform the result back to the coefficients through IFFT. The

algorithm is given as:

𝑈 = 𝑋 ∗ 𝑊̄ = IFFT(FFT(𝑋) ⊙ FFT(𝑊̄)) (12)

where “⊙” denotes Hadamard product. With the equation above,

we are able to verify the computation of 2-D convolutions using

three sumcheck protocols, one for FFT, one for Hadamard product

and one for IFFT. The real protocol also deals with the indexing

and padding, but they do not introduce any major overhead.

Complexity. The prover time of our protocol is 𝑂 (𝑛2), which is

asymptotically optimal and is faster than computing the convolu-

tion. The proof size is 𝑂 (log
2 𝑛) and the verifier time is 𝑂 (log

2 𝑛),
given oracle accesses to the multilinear extensions of the input and

the output.

4 ZERO KNOWLEGE CONVOLUTIONAL
NEURAL NETWORKS

We present our zero knowledge CNN scheme in this section. We

start with the formal definitions of zkCNN, and then introduce

several improvements on the sumcheck and the GKR protocol tai-

lored for CNN predictions, and describe our design for activation

functions and pooling that lead to concrete efficiency in practice.

4.1 Definitions
In our setting, the prover owns a pre-trained CNN model that is

sensitive, and proves to the public that an input data sample is

correctly classified using the CNN model. The prover commits to

the parameters of the CNN first, and then later the verifier queries

for the prediction of the data sample. The prover generates a proof

together with the prediction to convince the verifier of its validity.

Similar to existing schemes [23, 34], we assume that the structure

of the CNN (e.g., number of layers, dimensions of kernels and acti-

vation fuctions) is known to the verifier. Admittedly the structure

of CNN also leaks information in some scenarios. The structure

can further be hidden by introducing upper bounds on the depth

and dimensions and selectors from a set of activation functions, or

through proof compositions of zero knowledge proofs. Our scheme

in this paper only protects the privacy of the parameters while

ensuring the integrity of predictions, which is the first step for zero

knowledge CNN and the extensions are left as future work.

Formally speaking, let W be the parameters of a CNN model

where the dimensions are given in Section 2.1, andX ∈ F𝑛1×𝑛1×ch𝑖𝑛,1

be a data sample. Let 𝑦 = pred(W,X) be the prediction of X using

the CNN as described in Section 2.1. A zero knowledge CNN scheme

(zkCNN) consists of the following algorithms:

• pp ← zkCNN.KeyGen(1𝜆): Given the security parameter, the

algorithm generates the public parameters pp.
• comW ← zkCNN.Commit(W, pp, 𝑟): The algorithm commits

the parametersW of the CNN model using the randomness 𝑟 .

• (𝑦, 𝜋) ← zkCNN.Prove(W,X, pp, 𝑟): Given a data sample X, the
algorithm runs CNN prediction algorithm to get 𝑦 = pred(W,X)
and generates the proof 𝜋 .

• {0, 1} ← zkCNN.Verify(comW,X, 𝑦, 𝜋, pp): The algorithm veri-

fies the prediction 𝑦 with the commitment comW, the proof 𝜋

and the input X.

A zkCNN scheme is sound, where the probability that the prover

returns a wrong prediction and passes the verification is negligible;

it is also zero knowledge, where the proof leaks no information

about the prover’s model W. We give the formal definitions in Ap-

pendix C. A Zero knowledge CNN accuracy scheme simply repeats

the zkCNN predictions on multiple data samples and compares the

predictions with the labels to calculate the accuracy. The defini-

tions can be modified slightly to accommodate zkCNN accuracy

and we omit the formal definitions. Moreover, our constructions

can also support zero knowledge predictions for secret input data

with public CNNmodels, and both secret input and secret models in

a straight forward way, which may be useful in other applications.

This is because our scheme is a commit-and-prove SNARK [16].

This is in contrast to zero knowledge proofs based on MPC tech-

niques [7, 22, 45, 49], where there are different trade-offs on the

public and private data and models.

4.2 Generalizations of GKR for CNN
In this section, we introduce several improvements and generaliza-

tions for the sumcheck and the GKR protocol, which lead to better

performance for CNN predictions.

4.2.1 Generalized addition and multiplication gates. As described
in the preliminaries, the GKR protocol reduces layer 𝑖 to layer

𝑖 + 1 through Equation 3 in Section 2.2.2. Because of the definition

of 𝑎𝑑𝑑𝑖 (𝑧, 𝑥,𝑦), each addition gate can only take two inputs and

it takes log𝑛 layers to sum 𝑛 values in the circuit. Justin Thaler

partially addressed this issue in [41] by observing that the circuit

of an addition tree can be represented as a single sumcheck. Here

we consider the more general case of addition gates with multiple

inputs, as well as the sum of multiple products. We define

˜𝑋𝑎𝑑𝑑𝑖 (𝑧, 𝑥) =
{

1, if 𝑉𝑖+1 (𝑥) is added to 𝑉𝑖 (𝑧)
0, otherwise

˜𝑋𝑚𝑢𝑙𝑡𝑖 (𝑧, 𝑥,𝑦) =
{

1, if 𝑉𝑖+1 (𝑥) ·𝑉𝑖+1 (𝑦) is added to 𝑉𝑖 (𝑧)
0, otherwise

for all 𝑥,𝑦 ∈ {0, 1}𝑠𝑖+1 and 𝑧 ∈ {0, 1}𝑠𝑖 . With the new definitions,

we can write the multilinear extensions of layer 𝑖 as:

𝑉̃𝑖 (𝑧) =
∑

𝑥 ∈{0,1}𝑠𝑖+1
˜𝑋𝑎𝑑𝑑𝑖 (𝑧, 𝑥) · 𝑉̃𝑖+1 (𝑥)

+
∑

𝑥,𝑦∈{0,1}𝑠𝑖+1
˜𝑋𝑚𝑢𝑙𝑡𝑖 (𝑧, 𝑥,𝑦) · 𝑉̃𝑖+1 (𝑥) · 𝑉̃𝑖+1 (𝑦)

=
∑

𝑥,𝑦∈{0,1}𝑠𝑖+1

(
˜𝛽 (𝑦, ®0) · ˜𝑋𝑎𝑑𝑑𝑖 (𝑧, 𝑥) · 𝑉̃𝑖+1 (𝑥)

+ ˜𝑋𝑚𝑢𝑙𝑡 (𝑧, 𝑥,𝑦) · 𝑉̃𝑖+1 (𝑥) · 𝑉̃𝑖+1 (𝑦)
)

(13)

With the equation above, we can compute common functions

such as additions with fan-in ≥ 2 and inner products with a single

sumcheck
3
. Note that for inner products this is better than using

the sumcheck for addition trees in [41], which takes 2 layers of the

circuit. The prover time remains linear by generalizing the algo-

rithms for the prover in [48], and we omit the formal algorithms. In

practice, this generalization reduces the proof size by a logarithmic

factor for proving CNN predictions, and improves the concrete

efficiency of the prover. Furthermore, we can also supports scalar

multiplications with constants for free by replacing the 1 in
˜𝑋𝑎𝑑𝑑

and
˜𝑋𝑚𝑢𝑙𝑡 with the scalars.

4.2.2 Taking inputs from arbitrary layers. Recently Zhang et al. [51]
proposed a variant of the GKR protocol where a gate can take input

from arbitrary layers above, instead of only the previous layer,

without introducing any overhead on the prover time.We show that

our generalization above is compatible the techniques in [51]. The

motivation is that CNN consists of multiple convolutional layers

and fully-connected layers. The kernels and the weight-matrices of

these layers are the witness from the prover in our zkCNN. When

provided at the input layer, they have to be relayed all the way

to the corresponding convolutional or fully-connected layers to

perform the real computation, which introduces a considerable

overhead on the size of the circuit and thus the prover time. Instead,

we design an efficient circuit where each convolutional or fully-

connected layer connects directly to the witness. See Figure 2 for

the structure of our circuit. In this circuit, a generalized addition

gate or multiplication gate takes input from either the layer above

or from the input layer. To support such a structure, we further

extend our protocol above by applying the same techniques in [51].

Following the ideas in [51], we denote the subset of values in

the input layer connecting to the 𝑖-th layer as 𝑉𝑖,in of size 𝑆𝑖,in and

𝑠𝑖,in = ⌈log 𝑆𝑖,in⌉, and its multilinear extension as 𝑉̃𝑖,in (·). We also

separately define the generalized addition gates between the 𝑖-th

and the (𝑖 + 1)-th, the 𝑖-th and the input layer as
˜𝑋𝑎𝑑𝑑𝑖,𝑖+1 (𝑧, 𝑥),

˜𝑋𝑎𝑑𝑑𝑖,in (𝑧, 𝑥). Similarly, we define the generalized multiplication

3
The technique also works for matrix multiplications. However, Justin Thaler [41]

proposed a better sumcheck for matrix multiplication with a quadratic prover time in

the dimension, and we take his approach in our implementation.

gates respectively as
˜𝑋𝑚𝑢𝑙𝑡𝑖,𝑖+1,𝑖+1 (𝑧, 𝑥,𝑦), ˜𝑋𝑚𝑢𝑙𝑡𝑖,in,in (𝑧, 𝑥,𝑦) and

˜𝑋𝑚𝑢𝑙𝑡𝑖,𝑖+1,in (𝑧, 𝑥,𝑦) for inputs both from layer 𝑖 + 1, both from

input layer and one from layer 𝑖 + 1 one from input. With these

definitions, it suffices to write the multilinear extension for layer 𝑖

in Figure 2 as:

𝑉̃𝑖 (𝑧) =
∑

𝑥 ∈{0,1}𝑠𝑖+1
˜𝑋𝑎𝑑𝑑𝑖,𝑖+1 (𝑧, 𝑥) · 𝑉̃𝑖+1 (𝑥)

+
∑

𝑥 ∈{0,1}𝑠𝑖,in
˜𝑋𝑎𝑑𝑑𝑖,in (𝑧, 𝑥) · 𝑉̃𝑖,in (𝑥)

+
∑

𝑥,𝑦∈{0,1}𝑠𝑖+1
˜𝑋𝑚𝑢𝑙𝑡𝑖,𝑖+1,𝑖+1 (𝑧, 𝑥,𝑦) · 𝑉̃𝑖+1 (𝑥)𝑉̃𝑖+1 (𝑦)

+
∑

𝑥,𝑦∈{0,1}𝑠𝑖,in
˜𝑋𝑚𝑢𝑙𝑡𝑖,in,in (𝑧, 𝑥,𝑦) · 𝑉̃𝑖,in (𝑥)𝑉̃𝑖,in (𝑦)

+
∑

𝑥 ∈{0,1}𝑠𝑖+1 ,
𝑦∈{0,1}𝑠𝑖,in

˜𝑋𝑚𝑢𝑙𝑡𝑖,𝑖+1,in (𝑧, 𝑥,𝑦) · 𝑉̃𝑖+1 (𝑥)𝑉̃𝑖,in (𝑦).

By executing the sumcheck protocol on the equation above, the

verifier and the prover can directly reduce 𝑉̃𝑖 (𝑧) to two evaluations
of 𝑉̃𝑖+1 (·) and two evaluations of 𝑉̃𝑖,in (·). The prover time is𝑂 (𝑆𝑖 +
𝑆𝑖+1 + 𝑆𝑖,in) as there are a constant number of sums in the equation.

Reducing to a single evaluation of the input. After the sum-

check of layer 𝑖 , the verifier and the prover can proceed to layer 𝑖 +1

in the same way as the GKR protocol 2. However, when reaching

to the input layer, the verifier has received two evaluations about

the input per layer. Moreover, they are evaluations of 𝑉̃𝑖,in (·), the
subset of 𝑉in connected to layer 𝑖 . In order to combine them to a

single evaluation of the multilinear extension of the input 𝑉̃in (·),
we take the approach in [51].

Suppose the evaluations received from layer 𝑖 are 𝑉̃𝑖,in (𝑧𝑖,0) and
𝑉̃𝑖,in (𝑧𝑖,1), the verifier generates 𝑟𝑖,0, 𝑟𝑖,1 ∈ F for layer 𝑖 and com-

bines all the evaluations through a random linear combination:∑
𝑖

(
𝑟𝑖,0𝑉̃𝑖,in (𝑧𝑖,0) + 𝑟𝑖,1𝑉̃𝑖,in (𝑧𝑖,1)

)
=

∑
𝑖

©­«𝑟𝑖,0
∑

𝑧∈{0,1}𝑠in
𝐶𝑖 (𝑧𝑖,0, 𝑧)𝑉̃in (𝑧) + 𝑟𝑖,1

∑
𝑧∈{0,1}𝑠in

𝐶𝑖 (𝑧𝑖,1, 𝑧)𝑉̃in (𝑧)
ª®¬

=
∑

𝑧∈{0,1}𝑠in 𝑉̃in (𝑧)
(∑

𝑖

(
𝑟𝑖,0𝐶𝑖 (𝑧𝑖,0, 𝑧) + 𝑟𝑖,1𝐶𝑖 (𝑧𝑖,1, 𝑧)

))
(14)

where 𝐶𝑖 (𝑧𝑖 , 𝑧) is defined as:

𝐶𝑖 (𝑧𝑖 , 𝑧) =
{

1, if the 𝑧𝑖 -th value in 𝑉𝑖,in is the 𝑧-th value in 𝑉in

0, otherwise

By running the sumcheck protocol on the equation above, the veri-

fier reduces multiple evaluations on 𝑉̃𝑖,in (·) to a single evaluation

of 𝑉̃in (·). The prover time is linear in 𝑆in and the size of the circuit.

4.2.3 Convolutional layer. In Section 3.2, we proposed an efficient

protocol to verify the result of the 2-D convolution between one

input and one kernel. However, in practice, there are multiple chan-

nels and kernels in each convolutional layer of a CNN, as described

in Section 2.1. It turns out that we can do better than naively re-

peating our protocol for a single convolution multiple times. We

present our improved protocol in this section.

Formally speaking, we represent the computation of an entire

convolutional layer given by Equation 2 by FFT, IFFT and Hadamard

product. Recall that the input data to a convolutional layer is 𝑋 ∈
Fch𝑖𝑛×𝑛×𝑛 and the kernel is𝑊 ∈ Fch𝑜𝑢𝑡×ch𝑖𝑛×𝑤×𝑤 . Here with omit

the subscript of layer 𝑖 for the ease of notations. The convolutional

layer computes 𝑈 ∈ Fch𝑜𝑢𝑡×(𝑛−𝑤+1)×(𝑛−𝑤+1) where for each 0 ≤
𝜏 < ch𝑜𝑢𝑡 , 0 ≤ 𝑗, 𝑘 < 𝑛 −𝑤 + 1,

𝑈 [𝜏, 𝑗, 𝑘] =
∑ch𝑖𝑛−1

𝜎=0

∑(𝑤−1),(𝑤−1)
𝑡=0,𝑙=0

𝑋 [𝜎, 𝑗, 𝑘] ·𝑊 [𝜏, 𝜎, 𝑡, 𝑙]

=
∑ch𝑖𝑛−1

𝜎=0

∑𝑛2−1−𝑗𝑛−𝑘
𝑖=0

𝑋𝜎 [𝑛2 − 1 − 𝑗𝑛 − 𝑘 − 𝑖] · 𝑊̄𝜏,𝜎 [𝑖] .

This is a generalization of Equation 11, where 𝑋𝜎 is the vector

defined by the 𝜎-th channel of data𝑋 , and𝑊̄𝜏,𝜎 is the vector defined

by the (𝜏, 𝜎)-th kernel. If we apply the algorithm in Equation 12

naively, there are ch𝑖𝑛 · ch𝑜𝑢𝑡 FFTs and IFFTs and the prover time

is 𝑂 (ch𝑖𝑛 · ch𝑜𝑢𝑡 · 𝑛2). Instead, we utilize the linearity of the FFT

algorithm. Let 𝑈𝜏 be the vector defined by the 𝜏-th channel of the

output𝑈 , as we show in Section 3.2, we have

𝑈𝜏 =
∑ch𝑖𝑛−1

𝜎=0

𝑋𝜎 ∗ 𝑊̄𝜏,𝜎

=
∑ch𝑖𝑛−1

𝜎=0

IFFT(FFT(𝑋𝜎) ⊙ FFT(𝑊̄𝜏,𝜎))

= IFFT

(∑ch𝑖𝑛−1

𝜎=0

FFT(𝑋𝜎) ⊙ FFT(𝑊̄𝜏,𝜎)
)
.

(15)

Note that the total number of IFFTs in Equation 15 is only ch𝑜𝑢𝑡 for
𝜏 ∈ [ch𝑜𝑢𝑡]. By running our sumcheck protocols in Section 3, the

prover time of the IFFT is reduced to𝑂 (ch𝑜𝑢𝑡 ·𝑛2). Though the total
complexity remains the same, the efficiency in practice is improved.

Moreover, by applying the GKR protocol with our generalized ad-

dition and multiplication gates, the sum of Hadamard products in

Equation 15 can also be validated with a single sumcheck.

4.3 Design of Zero Knowledge CNN
In this section, we present the full design of our zero knowledge

CNN scheme. The structure of our zkCNN is shown in Figure 2.

As shown in the figure, the input consists of the data sample 𝑋

for CNN prediction, the secret witness of the CNN model𝑊 from

the prover, and the additional auxiliary inputs from the prover for

computing functions such as ReLU andmax pooling efficiently. Each

convolutional layer takes the input from the previous layer, takes

the kernels from𝑊 and executes our new sumcheck protocol in

Section 3.2 and 4.2. The fully-connected layer takes the input from

the previous layer and the weight matrix from𝑊 and executes the

sumcheck protocol for matrix multiplication in [41]. The activation

layer and the pooling layer takes the input from the previous layer

and the auxiliary input, and we explain the details of our design

for these layers below. Such connections are supported by our

generalized GKR protocols in Section 4.2 without any overhead.

Converting real numbers. In practice, the parameters of the CNN

model and the data samples are often represented as real numbers.

In our scheme, we use the existing technique of quantization in [28]

to encode them as integers in the finite field. The quantization

scheme is an affine mapping of integers 𝑞 to real numbers 𝑎. In

particular, 𝑎 = 𝐿(𝑞 − 𝑍), where quantization parameter 𝐿 is a real

number called the scale of the quantization and 𝑍 is an integer

called the zero-point of the quantization. Using the quantization, we
represent each value of the data samples and the model parameters

as a 𝑄-bit integer 𝑞. For the input matrix to each layer and each

Figure 2: The design of our zkCNN structure.

kernel, there is a single zero-point 𝑍 , represented by a𝑄 bit integer.

The representation of the scale is explained below.

With this representation, the addition of two real numbers with

the same scale can naturally be expressed as integer addition. In

particular, for 𝑎1 = 𝐿(𝑞1 − 𝑍1) and 𝑎2 = 𝐿(𝑞2 − 𝑍2), 𝑎1 + 𝑎2 =

𝐿(𝑞1 + 𝑞2 − 𝑍1 − 𝑍2). To perform real-number multiplications with

different scales, i.e., 𝑎3 = 𝑎1 · 𝑎2, we have

𝐿3 (𝑞3 − 𝑍3) = 𝐿1 (𝑞1 − 𝑍1) · 𝐿2 (𝑞2 − 𝑍2)

⇔ 𝑞3 = 𝑍3 +
𝐿1𝐿2

𝐿3

(𝑞1 − 𝑍1) · (𝑞2 − 𝑍2) .

Everything except
𝐿1𝐿2

𝐿3

is an integer and can be computed directly

by the arithmetic circuit. Following the approach in [28], let 𝑒 =
𝐿1𝐿2

𝐿3

be a real number, we normalize it as 2
−𝐸 · 𝑒 , where 𝑒 is an

integer called the normalized scale. Therefore, 𝑞3 = 𝑍3+2
−𝐸 ·𝑒 · (𝑞1−

𝑍1) · (𝑞2 − 𝑍2) where the multiplications are over integers in the

finite field and 2
−𝐸

can be computed using a bit decomposition and

shift in the arithmetic circuit. In this way, similar to the zero-point

𝑍 , the normalized scale 𝑒 for the entire layer is also provided by

the prover as part of the model.

The equations above naturally generalizes to the convolutions

and matrix multiplications, as they consist of multiplications and

additions with the same scale. To verify these computations in

our protocol, the sumcheck protocols can be executed directly on

(𝑞 − 𝑍) in the finite field. The normalized scale and the zero-point

will be incorporated at the end. Moreover, because of the properties

of ReLU and max pooling which will be presented below, they can

also be computed on (𝑞−𝑍) and the scaling can be deferred further

to the output of the pooling.

Computing ReLU. The ReLU function ReLU(𝑥) = max(𝑥, 0) is
applied element-wise after each convolutional layer. In our design,

we denote a negative value 𝑥 as 𝑝 − |𝑥 | in the finite field, where |𝑥 |
is the absolute value of 𝑥 . Suppose |𝑥 | is in the range [0, 2𝑄 − 1],
i.e. |𝑥 | can be represented by 𝑄 bits (the same as the quantization

𝑞 above), then we ask the prover to provide the bit decomposition

(𝑏0, . . . , 𝑏𝑄−1) of |𝑥 |, as well as an additional bit 𝑏𝑄 denoting neg-

ative (0) or positive (1), as the auxiliary input to compute ReLU.

Following the techniques in the literature [37], the protocol checks

(1) The auxiliary inputs are binary: 𝑏𝑖 (𝑏𝑖 − 1) = 0 ∀𝑖 = 0, . . . , 𝑄 ;

(2) They are the bit decomposition of |𝑥 |: 𝑏𝑄 (𝑥 −
∑𝑄−1

𝑖=0
𝑏𝑖 · 2𝑖) +

(1 − 𝑏𝑄) (𝑥 +
∑𝑄−1

𝑖=0
𝑏𝑖 · 2𝑖) = 0.

(3) With the bit-decomposition of 𝑥 , the protocol computes the

result of ReLU together with the truncation by keeping only

𝑄 ′ most significant bits to avoid overflow: ReLU(𝑥) = 𝑏𝑄 ·∑𝑄′−1

𝑖=0
𝑏𝑖+𝑄−𝑄′2𝑖 .

Computing composition ofmaxpooling andReLUefficiently.
A pooling layer is applied after an activation layer to reduce the

dimension of the data. Max pooling works better than average

pooling in practice for computer vision tasks such as image classi-

fications [40]. However, due to efficiency considerations, existing

schemes [23, 25] usually use average pooling instead of max pool-

ing, as the former is a linear function while the latter requires

comparisons in the circuit. In this paper, we propose a simple ap-

proach to compute the composition of max pooling and ReLU with

only a small overhead.

The composition of ReLU and max pooling layers compute

max{ReLU(𝑥0), ..., ReLU(𝑥𝑘−1
)} with size 𝑘 . The prover is required

to provide the result of the above function 𝑥max as an auxiliary

input. Then by the property of ReLU and maximum,

(1) 𝑥max − 𝑥 𝑗 ≥ 0 ∀𝑗 ∈ [𝑘].
(2) If 𝑥𝑖s are not all negative numbers, then ∃ 𝑗 ∈ [𝑘], such that

𝑥max − 𝑥 𝑗 = 0; otherwise 𝑥max = 0.

The first condition can be checked by bit-decomposing each 𝑥max −
𝑥 𝑗 with 𝑄 bits as the auxiliary input from the prover (the 𝑄 + 1-th

bit denoting the sign of the number is not necessary, as it is always

non-negative). The checks are exactly the same as the first two

checks in the computation of ReLU above. The second condition is

equivalent to 𝑥max ·
∏𝑘−1

𝑗=0
(𝑥max−𝑥 𝑗) = 0. Finally, to avoid overflow,

the prover also provides the bits of 𝑥max and the circuit validates the

bit decomposition. Overall, comparing to computing ReLU above,

the prover only additionally provides 𝑥max and its bits, and the

protocol checks one additional bit decomposition.

4.4 Putting Everything Together
With the building blocks presented in Section 3 and 4, we construct

a scheme of zero knowledge CNN predictions. The prover commits

to the parameters W of a CNN model using a polynomial com-

mitment scheme. Given an input data X, the prover computes the

prediction of pred(W,X) together with the auxiliary input shown

in Figure 2. The prover further commits to the additional auxiliary

input using the polynomial commitment scheme. The prover and

the verifier then invoke the sumcheck protocols and our general-

ized GKR protocols for matrix multiplications ([41]), convolutional

layers (Section 3.2 and 4.2) and pooling and activation functions

(Section 4.3) to reduce the correctness of the prediction to an evalu-

ation of the multilinear extension of the input in Figure 2. Finally,

the prover opens the polynomial commitments of the witness and

auxiliary input at the evaluation point and completes the proof.

The full protocol is presented in Protocol 3 in Appendix C.

Theorem 4.1. Protocol 3 is correct and sound by Definition C.1.

We present a proof sketch in Appendix C. We then take existing

approaches in [17, 48] to turn the protocol to a zero knowledge

argument. In particular, we use the zero knowledge sumcheck and

28 210 212 214 216 218
Input size

10−5
10−4
10−3
10−2
10−1
100
101
102
103
104

Pr
ov

er
 ti

m
e

(s
)

ours
fft-circuit
fft-naive

Figure 3: Sumcheck for FFT.
the low degree extensions together with polynomial commitments

to achieve zero knowledge. As shown in [48], the overhead is small

in practice compared to the plain version without zero knowledge.

We omit the formal protocol and the proof for the zero knowledge

version of zkCNN in this paper. Finally, we remove the interactions

in our zero knowledge CNN scheme using the Fiat-Shamir Heuris-

tic [24] in the random oracle model. The transformation only incurs

a negligible soundness loss [11].

Complexity.The prover time of the interactive proof in our scheme

is𝑂 (∑𝑚
𝑖=0
(𝑛2

𝑖
ch𝑖𝑛,𝑖ch𝑜𝑢𝑡,𝑖 +𝑛2

𝑖
ch𝑜𝑢𝑡,𝑖𝑄)), where𝑄 is the maximum

bit-length for bit decomposition in ReLU and max pooling. The

proof size and verifier time are 𝑂 (∑𝑚
𝑖=0
(log

2 (𝑛2

𝑖
ch𝑖𝑛,𝑖ch𝑜𝑢𝑡,𝑖) +

log(𝑛2

𝑖
ch𝑜𝑢𝑡,𝑖𝑄))). In addition, our scheme involves a polynomial

commitment of size 𝑆in =
∑𝑚
𝑖=0
(𝑤2

𝑖
ch𝑖𝑛,𝑖ch𝑜𝑢𝑡,𝑖 + 𝑛2

𝑖
ch𝑜𝑢𝑡,𝑖𝑄). Us-

ing the polynomial commitment scheme in [44], the prover time of

this part is 𝑂 (𝑆in), the proof size and the verifier time are 𝑂 (
√
𝑆in).

Our scheme can be modified to a zero knowledge CNN accuracy

scheme. The protocol is executed on the circuit in Figure 2 for

multiple input samples, followed by a circuit to compare the results

with the labels and computes the accuracy. Finally, our schemes

can be made non-interactive using the Fiat-Shamir heuristic [24]

with a negligible soundness loss [11].

5 IMPLEMENTATION AND EVALUATIONS
We implemented our zero knowledge proof scheme for CNN, zkCNN,

and we present the experimental results in this section.

Software. The scheme is implemented in C++ and there are around

5000 lines of code. Some of our algorithms on the sumcheck protocol

and the GKR protocol are based on the open-source implementation

of [48, 51, 52]. We use the polynomial commitment scheme in [39,

44] because of its good prover time and reasonable proof size for

the witness in our experiments. The security of the scheme relies

on the discrete-log assumption. The prover time is 𝑂 (𝑁) and the

proof size and the verifier time are 𝑂 (
√
𝑁) for a polynomial of size

𝑁 . We replace the Curve-25519 in the implementation of [39] with

Curve BLS12-381 [14], as the order of Curve-25519 does not have

a root of unity of a large power of 2 and thus is not FFT friendly.

Curve BLS12-381 offers 128-bits of security and we use the mcl

library [4] for its field and curve operations.

Hardware.We run all of the experiments on a machine with AMD

EPYC 7R32 64-Core Processor and 128GB of RAM. Our current

implementation is not parallelized and we only utilize a single CPU

core. The large memory is used to run experiments on large CNNs

(VGG16 with 15 million parameters) and multiple images. On one

hand the memory usage is actually the bottleneck to further scale

zkCNN and it is an interesting future work to improve it. On the

other hand the memory usage and the scalability are already orders

of magnitude better than existing SNARKs (See Section 5.2). We

report the average running time of 10 executions.

5.1 New Sumcheck for FFT and Convolution
We first benchmark the performance of our new sumcheck proto-

col for FFT and 2-D convolutions. We exclude the running time

and the proof size of the protocol to delegate the verifier’s com-

putation via Equation 10. This is because in applications such as

CNN predictions in Section 5.2, the same Fourier matrix is used in

many FFTs/convolutions and it is actually faster to compute the

evaluation of its multilinear extension at a random point.

FFT. Figure 3 shows the prover time of our new sumcheck protocol

for FFT in Section 3.1. As shown in the figure, the prover time of our

new protocol is very fast in practice. It only takes 0.6ms to generate

the proof for a vector of size 2
10
, and 0.1s for a vector of size 2

18
.

The prover time grows strictly linearly with the size of the vector,

as indicated by the complexity of our protocol. We compare the

performance of our protocol with two baseline approaches: the GKR

protocol on the FFT circuit and the naive sumcheck on Equation 5.

Comparing to the baseline of the FFT circuit, our prover time is 17×
faster for 𝑛 = 2

8
and 33.2× faster for 𝑛 = 2

18
. The gap increases as

the prover time of the baseline is 𝑂 (𝑛 log𝑛). The proof size of our
protocol is 15.4–35.4× smaller than the baseline, as our protocol

consists of a single sumcheck, while the depth of the circuit in the

baseline is log𝑛. The verifier time of the two schemes are similar.

Comparing to the second baseline of naive sumcheck on Equa-

tion 5, our new protocol is significantly faster. The prover time is

already 80× faster than the naive sumcheck for a vector of size 2
8
,

and the gap grows dramatically with the size as the complexity

of the naive sumcheck is quadratic. The naive approach runs out

of memory for 2
14

and the shaded bars in the figure denote esti-

mations. The proof size and the verifier time of the two schemes

are exactly the same, as they are different algorithms for the same

sumcheck on Equation 5.

Convolution. Figure 4 shows the prover time of the our proto-

col for convolutions and compares it with the GKR protocol on a

circuit computing 2-D convolutions naively using multiplications

and additions. The experiment is for a single convolution, and we

vary the size of the input from 32 × 32 to 256 × 256, and the kernel

size from 4 × 4 to half of the dimension of the input (this is the

maximum kernel size for convolutions in CNN without padding).

As shown in the figure, the prover time is improved significantly

over the baseline. It only takes 4.7ms to generate the proof for a

convolution on 32 × 32 and 4 × 4 matrices, which is already 1.6×
faster than the 7.7ms in the naive approach. The speedup grows

dramatically with the size of the kernel. For a convolution between

input 32 × 32 and kernel 16 × 16, our prover time is 8.5× faster

than the baseline; for a convolution on the largest instance of input

256 × 256 and kernel 64 × 64, our speedup is 291×. Moreover, the

prover time almost remains the same for the same input size. This is

because the kernel has to be padded to the size of the input anyway

to perform FFT, thus different kernel sizes do not make a difference

for the same input size in our protocol.

32×32 64×64 128×128 256×256 256×256
Input size

10−3
10−2
10−1
100
101
102
103

Pr
ov

er
 ti

m
e

(s
)

4
8 16 4

8
1632

4
8
16
3264

4
8
16
32
64128

4 8
16
32
64128

ours-sumcheck
naive-sumcheck
ours-computing
naive-computing

Figure 4: Sumcheck for a single convolution.

Proof size and verifier time. Our proof size and verifier time are

slightly worse than the baseline. The proof size of our protocol

ranges from 5.6KB to 8.4KB, while it is 3.9KB to 7.1KB in the naive

approach. This is because our protocol has three sumchecks for

FFT, Hadamard product and IFFT to compute the convolution, and

the naive approach has two sumchecks, one for all multiplications

and one for addition trees. The proof size is linear in the number

of sumchecks and logarithmic in the size of each sumcheck. The

verifier time in both protocols are extremely fast. Here we do not

count the time to compute the multilinear extensions of the input

and the output, as they are given by the prover during the reductions

of the GKR protocols from other layers. The verifier time is only

logarithmic, and ranges from 0.1ms (32 × 32 and 4 × 4) to 0.3ms

(256 × 256 and 128 × 128) in our protocol, and ranges from 0.1ms to

0.2ms in the baseline.

Comparing to computing the result. As another benchmark, we fur-

ther measure the time to compute the result of the convolutions for

the input size of 256 × 256 using FFT and naive multiplications and

additions. As shown in Figure 4, the additional prover time of our

sumcheck protocol is only 1.8× slower than computing the result

using FFT. The prover time is slower than the naive computation

by 8× on the small kernel of 4 × 4, but is 31× faster on the large

kernel of 128 × 128. The result agrees with the optimal complexity

of our sumcheck protocol and shows that the overhead to generate

the proof is very small in practice.

Comparing to other approaches. To further demonstrate the effi-

ciency of our protocol, we compare the running time with the

approach of verifying convolutions in [34]. In [34, Figure 6], it

takes around 2.5s to generate the proof for a convolution between

an input of size 10,000 and a kernel of size 10. On a larger instance

of input 128× 128 =16,384 and kernel 4× 4 = 16 in our scheme, the

prover time is only 0.072s, which is 1–2 orders of magnitude faster.

5.2 Performance of zkCNN
In this section, we evaluate the performance of our zkCNN system.

Datasets and CNNs.We use two datasets: MNIST [33] and CIFAR-

10 [31]. MNIST is a dataset of hand-written digits. The images are

of size 28×28×1. There are 50,000 training data samples and 10,000

testing data sample, classified into 10 categories of digits 0–9. The

CIFAR-10 dataset consists of 60,000 images in 10 classes including

airplane, automobile and so on. The images are of size 32 × 32 × 3.

There are 50,000 training images and 10,000 testing images.

LeNet VGG11 VGG16

sumcheck 0.280s 28.9s 57.7s

poly commit 0.161s 19.0s 30.6s

Total prover 0.441s 47.8s 88.3s
sumcheck 0.900ms 2.70ms 3.80ms

poly commit 4.90ms 36.5ms 55.5ms

Total verifier 5.80ms 39.3ms 59.3ms

sumcheck 45.9KB 110KB 147KB

poly commit 25.4KB 194KB 194KB

Total proof 71.3KB 304KB 341KB

Table 1: Performance of zkCNN.

We test both small CNNs and relatively large CNNs in this paper.

For the small CNN, we use the LeNet [32] with 61,706 parame-

ters, consisting of 2 convolutional layers, 2 pooling layers and 3

fully-connected layers. For large CNNs, we use the VGG11 and

VGG16 [40] with 9.7 million and 15.2 million parameters respec-

tively. In VGG11, there are 8 convolution layers, 5 pooling layers

and 3 fully connected layers. VGG16 has 5 more convolutional lay-

ers than VGG11. LeNet, VGG11 and VGG16 can use both average

and max pooling in the pooling layers.

Performance of zkCNN. Table 1 summarizes the performance of

our zkCNN system on various CNNs, with the breakdown of the

sumcheck protocols and the polynomial commitment. As shown in

the table, the performance of zkCNN is very efficient in practice. It

only takes 0.44s to generate a proof for a prediction of LeNet on

an MNIST data sample. For a large CNN of VGG16 with 15 million

parameters and 16 layers on CIFAR-10, the prover time is only 88

seconds. The proof size is 71.3KB for LeNet and 341KB for VGG16,

both significantly smaller than the size of the parameters of the

models. The verifier time of zkCNN is extremely fast in practice,

thanks to the sublinear verifier of the GKR protocol on highly

structured computations including our zkCNN in Figure 2. It only

takes 5.8ms to verify a prediction of LeNet, and 59.3ms to verify a

prediction of VGG16. They are even faster than computing the CNN

predictions locally, thus our zkCNN both protects the privacy of

the CNN models and improves the efficiency of the verifier. Finally,

the maximum memory usage of our zkCNN on VGG16 is 24GB,

which is reasonable for a personal computer.

The breakdown of the prover time further shows the improve-

ment of our new sumcheck and GKR protocols. Though the com-

putation of CNN predictions is significantly larger than the size of

the input and the model, our scheme is able to bring down the cost

of this part to around half of the total prover time.

Our models are trained using TensorFlow [5] with the post-

training quantization to be compatible with the quantization tech-

nique we use to encode real numbers. We use 8-bit integer for the

quantized number 𝑞 and 32-bit integer for the normalized scale 𝑒

as in [28]. Our LeNet achieves 98.85% accuracy on MNIST, and our

VGG11 and VGG16 achieves 88.7% and 90.3% accuracy on CIFAR-10.

Comparison to existing schemes. We then compare the perfor-

mance of zkCNN with existing schemes in Table 2. We change the

pooling in LeNet to average pooling to be consistent with [23, 34].

We executed their open-source implementations [2] and [3] on the

same machine to obtain their performance. As shown in the table,

the prover time of zkCNN is 11.2× faster than vCNN on LeNet

LeNet (average pooling)

prover proof verifier

Ours 0.49s 63.6KB 5.5ms

vCNN [34] 5.49s 0.34KB 84ms

LeNet (CIFAR-10 & average pooling)

prover proof verifier

Ours 0.56s 68.4KB 5.6ms

ZEN [23] 119.5s 0.28KB 18.6ms

VGG16

Ours 88.3s 341KB 59.3ms

vCNN [34] 31 hours
∗

0.34KB 20s
∗

Table 2: Comparison to existing schemes. ∗means estimated.

(with average pooling as in [34]) and 1264× faster than vCNN on

VGG16. In fact vCNN cannot scale to VGG16 and the numbers are

estimated. As ZEN only supports LeNet on CIFAR-10, we further

test our zkCNN on the same CNN and dataset and our prover time

is 0.56s, 213× faster than ZEN. The result dramatically improves

the state-of-the-art on zero knowledge neural network predictions

and makes it possible to prove large CNN predictions in minutes.

The proof size of zkCNN is worse than vCNN and ZEN, as they are

using the pairing-based SNARK with a constant size proof. How-

ever, zkCNN does not have a trusted setup and a common reference

string of tens of GBs as in [23, 34]. The SNARK in [23] could be

replaced by others to remove the trusted setup and the large com-

mon reference string, but doing so would increase the proof size.

vCNN [34] has to use the SNARK in [27] as the protocol heavily

relies on the conversion between the QAP and the polynomial-QAP.

Zero knowledge proofs for CNN accuracy. Finally, we demon-

strate our zkCNN for proving the accuracy of the CNN models on

multiple input samples, which has not been explored in existing

works due to the issue of scalability. Figure 5 in the appendix shows

the prover time, proof size and verifier time of proving the accuracy

of VGG16. It takes 520s to prove the accuracy on a dataset of 20

images, which is faster than repeating the single prediction 20 times,

as the convolutions and matrix multiplications are performed on

the same parameters. For 20 images, the proof size is only 635KB

and the verifier time is only 121ms. The sudden jumps in the proof

size and the verifier time are due to the polynomial commitment

scheme. The size of the witness is padded to the nearest power of

2, which increases to 2
26

from 2
25

at 3 images and 2
27

at 10 images.

It significantly affects the proof size and the verifier time, but not

the prover time as the prover time mostly depends on the number

of nonzero elements in the witness. Moreover, the proof size does

not increase significantly at 10 images as the witness is arranged

as a

√
𝑁 ×
√
𝑁 matrix in the polynomial commitment scheme, and

the number of rows is set to 2
13

for both 𝑁 = 2
26

and 𝑁 = 2
27
.

ACKNOWLEDGMENTS
We would like to thank Gaofeng Huang and Junjie Shi for help-

ing train plain CNN models. This material is based upon work

supported by DARPA under Contract No. HR001120C0087. Any

opinions, findings and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily re-

flect the views of DARPA. The third author is generously supported

by a research award from Latticex Foundation.

REFERENCES
[1] [n.d.]. Amazon Machine Learning Services. https://docs.aws.amazon.com/

whitepapers/latest/aws-overview/machine-learning.html.

[2] [n.d.]. Implementation of vCNN: Verifiable Convolutional Neural Network based

on zk-SNARKs. https://github.com/snp-labs/VCNN.

[3] [n.d.]. Implementation of ZEN: Efficient Zero-Knowledge Proof for Neural

Networks. https://github.com/UCSB-TDS/ZEN.

[4] [n.d.]. mcl. https://github.com/herumi/mcl/.

[5] 2021. TensorFlow. https://www.tensorflow.org/.

[6] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-

maniam. 2017. Ligero: Lightweight sublinear arguments without a trusted setup.

In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security.

[7] Carsten Baum, Alex J. Malozemoff, Marc Rosen, and Peter Scholl. 2020.

Mac’n’Cheese: Zero-Knowledge Proofs for Arithmetic Circuits with Nested Dis-

junctions. Cryptology ePrint Archive, Report 2020/1410. https://eprint.iacr.org/

2020/1410.

[8] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2019. Scal-

able zero knowledge with no trusted setup. In Annual International Cryptology
Conference. Springer, 701–732.

[9] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. [n.d.]. SNARKs for C: Verifying program executions succinctly and in zero

knowledge. In CRYPTO 2013.
[10] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments

for R1CS. In Advances in Cryptology – EUROCRYPT 2019. Springer International
Publishing, 103–128. https://doi.org/10.1007/978-3-030-17653-2_4

[11] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. 2016. Interactive oracle

proofs. In Theory of Cryptography Conference. Springer, 31–60.
[12] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. [n.d.]. Suc-

cinct Non-Interactive Zero Knowledge for a von Neumann Architecture. In

Proceedings of the USENIX Security Symposium, 2014.
[13] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venki-

tasubramaniam, Tiancheng Xie, and Yupeng Zhang. 2020. Ligero++: A New

Optimized Sublinear IOP. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. 2025–2038.

[14] Sean Bowe. [n.d.]. BLS12-381: New zk-SNARK Elliptic Curve Construction.

[15] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. [n.d.]. Bul-

letproofs: Short Proofs for Confidential Transactions and More. In Proceedings of
the Symposium on Security and Privacy (SP), 2018, Vol. 00. 319–338.

[16] Matteo Campanelli, Dario Fiore, and Anaïs Querol. [n.d.]. LegoSNARK: Modular

Design and Composition of Succinct Zero-Knowledge Proofs.. In CCS 2019.
[17] Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. 2017. A Zero

Knowledge Sumcheck and its Applications. CoRR abs/1704.02086 (2017).

arXiv:1704.02086 http://arxiv.org/abs/1704.02086

[18] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,

and Nicholas Ward. 2020. Marlin: Preprocessing zksnarks with universal and

updatable srs. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 738–768.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[20] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. [n.d.]. Practical

Verified Computation with Streaming Interactive Proofs. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference (ITCS ’12).

[21] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. 2012. Practical

verified computation with streaming interactive proofs. In ITCS 2012. 90–112.
[22] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2020. Line-Point Zero

Knowledge and Its Applications. Cryptology ePrint Archive, Report 2020/1446.

https://eprint.iacr.org/2020/1446.

[23] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. 2021.

ZEN: Efficient Zero-Knowledge Proofs for Neural Networks. Cryptology ePrint

Archive, Report 2021/087. https://eprint.iacr.org/2021/087.

[24] Amos Fiat and Adi Shamir. [n.d.]. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In Crypto 1986.
[25] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. 2017. SafetyNets: Verifiable

Execution of Deep Neural Networks on an Untrusted Cloud. InAdvances in Neural
Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. 4672–4681.

[26] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2015. Delegating

Computation: Interactive Proofs for Muggles. J. ACM 62, 4, Article 27 (Sept.

2015), 64 pages.

[27] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II. 305–326.

[28] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew

Howard, Hartwig Adam, and Dmitry Kalenichenko. 2017. Quantization and

Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference.

arXiv:1712.05877 [cs.LG]

[29] Julien Keuffer, Refik Molva, and Hervé Chabanne. 2018. Efficient Proof Composi-

tion for Verifiable Computation. In Computer Security - 23rd European Symposium
on Research in Computer Security, ESORICS 2018, Barcelona, Spain, September 3-7,
2018, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11098). Springer,
152–171.

[30] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, andDawn

Song. 2020. MIRAGE: Succinct Arguments for Randomized Algorithms with

Applications to Universal zk-SNARKs. 2129–2146.

[31] Alex Krizhevsky. 2012. Learning Multiple Layers of Features from Tiny Images.

University of Toronto (05 2012).
[32] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning

applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324. https:

//doi.org/10.1109/5.726791

[33] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.

http://yann.lecun.com/exdb/mnist/. (2010). http://yann.lecun.com/exdb/mnist/

[34] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. 2020. vCNN: Verifiable

Convolutional Neural Network based on zk-SNARKs. Cryptology ePrint Archive,

Report 2020/584. https://eprint.iacr.org/2020/584.

[35] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. 1992. Algebraic

Methods for Interactive Proof Systems. J. ACM 39, 4 (Oct. 1992), 859–868.

[36] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic:

Zero-Knowledge SNARKs from Linear-Size Universal and Updateable Structured

Reference Strings. Cryptology ePrint Archive, Report 2019/099. https://eprint.

iacr.org/2019/099.

[37] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:

Nearly practical verifiable computation. In S&P 2013. 238–252.
[38] Jacob T Schwartz. 1979. Probabilistic algorithms for verification of polynomial

identities. In International Symposium on Symbolic and Algebraic Manipulation.
Springer, 200–215.

[39] Srinath Setty. 2020. Spartan: Efficient and general-purpose zkSNARKs without

trusted setup. In Annual International Cryptology Conference. Springer, 704–737.
[40] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. arXiv:1409.1556 [cs.CV]

[41] Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation. In

Advances in Cryptology – CRYPTO 2013, Ran Canetti and Juan A. Garay (Eds.).

[42] Riad S Wahby, Max Howald, Siddharth Garg, Abhi Shelat, and Michael Walfish.

2016. Verifiable asics. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE,
759–778.

[43] Riad S Wahby, Ye Ji, Andrew J Blumberg, Abhi Shelat, Justin Thaler, Michael

Walfish, and Thomas Wies. 2017. Full accounting for verifiable outsourcing. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM.

[44] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.

2018. Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 926–943.

[45] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2020. Wolverine:

Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean

and Arithmetic Circuits. Cryptology ePrint Archive, Report 2020/925. https:

//eprint.iacr.org/2020/925.

[46] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. 2021.

Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications

to Machine Learning. Cryptology ePrint Archive, Report 2021/730. https:

//ia.cr/2021/730.

[47] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion

Stoica. 2018. DIZK: A Distributed Zero Knowledge Proof System. In 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018. USENIX Association, 675–692.

[48] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and

Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover

Computation. In Advances in Cryptology (CRYPTO).
[49] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:

Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials

over Any Field. Cryptology ePrint Archive, Report 2021/076. https://eprint.iacr.

org/2021/076.

[50] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. 2020. Zero

Knowledge Proofs for Decision Tree Predictions and Accuracy. In CCS ’20: 2020
ACM SIGSAC Conference on Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020. ACM, 2039–2053.

[51] Jiaheng Zhang, Weijie Wang, Yinuo Zhang, and Yupeng Zhang. 2020. Doubly

Efficient Interactive Proofs for General Arithmetic Circuits with Linear Prover

Time. Cryptology ePrint Archive, Report 2020/1247. https://eprint.iacr.org/2020/

1247.

[52] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. [n.d.]. Trans-

parent Polynomial Delegation and Its Applications to Zero Knowledge Proof. In

S&P 2020.
[53] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2017. vSQL: Verifying arbitrary SQL queries over

https://docs.aws.amazon.com/whitepapers/latest/aws-overview/machine-learning.html
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/machine-learning.html
https://github.com/snp-labs/VCNN
https://github.com/UCSB-TDS/ZEN
https://github.com/herumi/mcl/
https://www.tensorflow.org/
https://eprint.iacr.org/2020/1410
https://eprint.iacr.org/2020/1410
https://doi.org/10.1007/978-3-030-17653-2_4
https://arxiv.org/abs/1704.02086
http://arxiv.org/abs/1704.02086
https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2021/087
https://arxiv.org/abs/1712.05877
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://yann.lecun.com/exdb/mnist/
https://eprint.iacr.org/2020/584
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/099
https://arxiv.org/abs/1409.1556
https://eprint.iacr.org/2020/925
https://eprint.iacr.org/2020/925
https://ia.cr/2021/730
https://ia.cr/2021/730
https://eprint.iacr.org/2021/076
https://eprint.iacr.org/2021/076
https://eprint.iacr.org/2020/1247
https://eprint.iacr.org/2020/1247

dynamic outsourced databases. In Security and Privacy (SP), 2017 IEEE Symposium
on. IEEE, 863–880.

[54] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-

alampos Papamanthou. 2017. A Zero-Knowledge Version of vSQL. Cryptology

ePrint.

[55] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2018. vRAM: Faster verifiable RAM with program-

independent preprocessing. In Proceeding of IEEE Symposium on Security and
Privacy (S&P).

[56] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, Xiaodong Lin, Sheng-

shan Hu, and Minxin Du. 2019. VeriML: Enabling Integrity Assurances and Fair

Payments for Machine Learning as a Service. arXiv:1909.06961 [cs.CR]

[57] Richard Zippel. 1979. Probabilistic algorithms for sparse polynomials. In Interna-
tional Symposium on Symbolic and Algebraic Manipulation. Springer, 216–226.

A GKR PROTOCOL
Theorem A.1. [48]. Let 𝐶 : F𝑆in → F𝑆out be a layered arithmetic

circuit of depth 𝑑 . Protocol 2 is an interactive proof for the function
computed by 𝐶 with soundness 𝑂 (𝑑 log |𝐶 |/|F|). It uses 𝑂 (𝑑 log |𝐶 |)
rounds of interaction and the running time of the prover P is 𝑂 (|𝐶 |).
Let 𝑇 be the time to evaluate all ˜𝑎𝑑𝑑𝑖 and ˜𝑚𝑢𝑙𝑡𝑖 at the corresponding
random points, the running time ofV is𝑂 (𝑆in +𝑆out +𝑑 log |𝐶 | +𝑇).

B ZERO KNOWLEDGE ARGUMENTS
An argument system for an NP relationship R is a protocol between

a computationally-bounded prover P and a verifierV . At the end

of the protocol, V is convinced by P that there exists a witness

𝑤 such that (𝑥 ;𝑤) ∈ 𝑅 for some input 𝑥 . We focus on arguments

of knowledge which have the stronger property that if the prover

convinces the verifier of the statement validity, then the provermust

know𝑤 . We use G to represent the generation phase of the public

parameters pp. Formally, consider the definition below, where we

assume 𝑅 is known to P andV .

Definition B.1. Let R be an NP relation. A tuple of algorithm

(G,P,V) is a zero knowledge argument of knowledge for R if the

following holds.

• Correctness. For every pp output by G(1𝜆) and (𝑥,𝑤) ∈ 𝑅,
⟨P(pp,𝑤),V(pp)⟩(𝑥) = 1

• Knowledge Soundness. For any PPT prover P∗, there exists a
PPT extractor E such that given the access to the entire executing

process and the randomness ofP∗, E can extract a witness𝑤 such

that pp← G(1𝜆), 𝜋∗ ← P∗ (𝑥, pp) and𝑤 ← EP∗ (pp, 𝑥, 𝜋∗), the
following probability is negl(𝜆):

Pr[(𝑥 ;𝑤) ∉ R ∧V(𝑥, 𝜋∗, pp) = 1]
• Zero knowledge. There exists a PPT simulator S such that for

any PPT algorithmV∗, auxiliary input 𝑧 ∈ {0, 1}∗, (𝑥 ;𝑤) ∈ R,
pp output by G(1𝜆), it holds that

View(⟨P(pp,𝑤),V∗ (𝑧, pp)⟩(𝑥)) ≈ SV
∗
(𝑥, 𝑧)

We say that (G,P,V) is a succinct argument system if the total

communication betweenP andV (proof size) are poly(𝜆, |𝑥 |, log |𝑤 |).
In the definition of zero knowledge,SV∗ denotes that the simula-

tor S is given the randomness ofV∗ sampled from polynomial-size

space. This definition is commonly used in existing transparent

zero knowledge proof schemes [6, 10, 15, 44, 52].

Zero knowledge polynomial commitment. Let F be a finite

field, F be a family of ℓ-variate polynomial over F, and 𝐷 be a

variable-degree parameter. We useWℓ,𝑑 to denote the collection of

all monomials in F and 𝑁 = |Wℓ,𝐷 | = (𝐷 + 1)ℓ . A zero knowledge

verifiable polynomial commitment (zkPC) for 𝑓 ∈ F and 𝑡 ∈ Fℓ
consists of the following algorithms:

• pp← zkPC.KeyGen(1𝜆),
• com← zkPC.Commit(𝑓 , 𝑟 𝑓 , pp),
• ((𝑦, 𝜋); {0, 1}) ← ⟨zkPC.Open(𝑓 , 𝑟 𝑓), zkPC.Verify(com)⟩(𝑡, pp)

Definition B.2. A zkPC scheme satisfies the following properties:

• Completeness. For any polynomial 𝑓 ∈ F and value 𝑡 ∈ Fℓ ,
pp ← zkPC.KeyGen(1𝜆), com ← zkPC.Commit(𝑓 , 𝑟 𝑓 , pp), it
holds that

Pr

[
⟨zkPC.Open(𝑓 , 𝑟 𝑓), zkPC.Verify(com)⟩(𝑡, pp) = 1

]
= 1

• Knowledge Soundness. For any PPT adversary A and pp ←
zkPC.KeyGen(1𝜆), there exists a PPT extractor E. Given any

tuple (𝑝𝑝, com∗) and the executing process of A, E can extract

a function 𝑓 ∗ ∈ F and the randomness 𝑟 𝑓 ∗ such that:

Pr


((𝑦∗, 𝜋∗); 1) ← ⟨A(), zkPC.Verify(com∗)⟩(𝑡, pp)

∧(𝑓 ∗, 𝑟 𝑓 ∗) ← E||A(pp, com∗)
∧com∗ = zkPC.Commit(𝑓 ∗, 𝑟 𝑓 ∗ , pp)

∧𝑓 ∗ (𝑡) ≠ 𝑦∗


≤ negl(𝜆) .

• Zero Knowledge. For security parameter 𝜆, polynomial 𝑓 ∈ F ,
pp← zkPC.KeyGen(1𝜆), PPT algorithm A, and simulator S =

(S1,S2), consider the following two experiments:

RealA,𝑓 (pp) :
(1) com← zkPC.Commit(𝑓 , 𝑟 𝑓)
(2) 𝑡 ← A(com)
(3) (𝑦, 𝜋) ← ⟨zkPC.Open(𝑓 , 𝑟 𝑓),A⟩(𝑡)
(4) 𝑏 ← A(com, 𝑦, 𝜋)
(5) Output b

IdealA,SA (pp) :
(1) com← S1 (1𝜆)
(2) 𝑡 ← A(com)
(3) (𝑦, 𝜋) ← ⟨S2,A⟩(𝑡𝑖) ,

given oracle access to 𝑦 = 𝑓 (𝑡) .
(4) 𝑏 ← A(com, 𝑦, 𝜋)
(5) Output b

For any PPT algorithm A and all polynomial 𝑓 ∈ F, there exists
simulator S such that

| Pr[RealA,𝑓 (pp) = 1] − Pr[IdealA,SA (pp) = 1] | ≤ negl(𝜆) .

C DEFINITION, PROTOCOL AND PROOFS OF
ZERO KNOWLEDGE CNN

Definition C.1. We say that a scheme is a zero knowledge convo-

lutional neural network if the following holds:

• Completeness. For any CNN parametersW and data sample X,
pp← zkCNN.KeyGen(1𝜆), comW ← zkCNN.Commit(W, pp, 𝑟),
(𝑦, 𝜋) ← zkCNN.Prove(W,X, pp, 𝑟), it holds that

Pr [zkCNN.Verify(comW,X, 𝑦, 𝜋, pp) = 1] = 1

• Soundness. For any PPT adversaryA, the following probability

is negligible in 𝜆:

Pr



pp← zkCNN.KeyGen(1𝜆)

(W∗, comW∗ ,X, 𝑦∗, 𝜋∗, 𝑟) ← A(1𝜆, pp)
comW∗ = zkCNN.Commit(W∗, pp, 𝑟)
zkCNN.Verify(comW∗ ,X, 𝑦∗, 𝜋∗, pp) = 1

𝑦∗ ≠ pred(W∗,X)



https://arxiv.org/abs/1909.06961

Protocol 2 (GKR). Let F be a finite field. Let 𝐶 : F𝑆in → F𝑆out be a layered arithmetic circuit of depth 𝑑 . P wants to convince that
out = 𝐶 (in) where in is the input fromV , and out is the output. Without loss of generality, we pad 𝑆in and 𝑆out to powers of 2.
(1) Define the multilinear extension of array out as 𝑉̃0.V chooses a random 𝑔 ∈ F𝑠0 and sends it to P. Both parties compute 𝑉0 (𝑔).
(2) P andV run a sumcheck protocol on

𝑉̃0 (𝑔 (0)) =
∑

𝑥,𝑦∈{0,1}𝑠1

(˜𝑎𝑑𝑑1 (𝑔 (0) , 𝑥,𝑦) (𝑉̃1 (𝑥) + 𝑉̃1 (𝑦)) + ˜𝑚𝑢𝑙𝑡1 (𝑔 (0) , 𝑥,𝑦)𝑉̃1 (𝑥)𝑉̃1 (𝑦))

At the end of the protocol, V receives 𝑉̃1 (𝑢 (1)) and 𝑉̃1 (𝑣 (1)). V computes ˜𝑚𝑢𝑙𝑡1 (𝑔 (0) , 𝑢 (1) , 𝑣 (1)), ˜𝑎𝑑𝑑1 (𝑔 (0) , 𝑢 (1) , 𝑣 (1)) and checks
that ˜𝑎𝑑𝑑1 (𝑔 (0) , 𝑢 (1) , 𝑣 (1)) (𝑉̃1 (𝑢 (1)) + 𝑉̃1 (𝑣 (1))) + ˜𝑚𝑢𝑙𝑡1 (𝑔 (0) , 𝑢 (1) , 𝑣 (1)) 𝑉̃1 (𝑢 (1))𝑉̃1 (𝑣 (1)) equals to the last message of the sumcheck.

(3) For 𝑖 = 1, ..., 𝑑 − 1:
• V randomly selects 𝑟𝑖,1, 𝑟𝑖,2 ∈ F and sends them to P.
• P andV run the sumcheck on the equation

𝑟𝑖,1𝑉̃𝑖 (𝑢 (𝑖)) + 𝑟𝑖,2𝑉̃𝑖 (𝑣 (𝑖)) =
∑

𝑥,𝑦∈{0,1}𝑠𝑖+1
((𝑟𝑖,1 ˜𝑎𝑑𝑑𝑖+1 (𝑢 (𝑖) , 𝑥,𝑦) + 𝑟𝑖,2 ˜𝑎𝑑𝑑𝑖+1 (𝑣 (𝑖) , 𝑥,𝑦)) · (𝑉̃𝑖+1 (𝑥) + 𝑉̃𝑖+1 (𝑦))

+(𝑟𝑖,1 ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑢 (𝑖) , 𝑥,𝑦) + 𝑟𝑖,2 ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑣 (𝑖) , 𝑥,𝑦)) · 𝑉̃𝑖+1 (𝑥)𝑉̃𝑖+1 (𝑦))

• At the end of the sumcheck protocol, P sendsV 𝑉̃𝑖+1 (𝑢 (𝑖+1)) and 𝑉̃𝑖+1 (𝑣 (𝑖+1)).
• V computes the following and checks if it equals to the last message of the sumcheck.

(𝑟𝑖,1 ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑢 (𝑖) , 𝑢 (𝑖+1) , 𝑣 (𝑖+1)) + 𝑟𝑖,2 ˜𝑚𝑢𝑙𝑡𝑖+1 (𝑣 (𝑖) , 𝑢 (𝑖+1) , 𝑣 (𝑖+1)) · (𝑉̃𝑖+1 (𝑢 (𝑖+1))𝑉̃𝑖+1 (𝑣 (𝑖+1)))+

(𝑟𝑖,1 ˜𝑎𝑑𝑑𝑖+1 (𝑢 (𝑖) , 𝑢 (𝑖+1) , 𝑣 (𝑖+1)) + 𝑟𝑖,2 ˜𝑎𝑑𝑑𝑖+1 (𝑣 (𝑖) , 𝑢 (𝑖+1) , 𝑣 (𝑖+1)) · (𝑉̃𝑖+1 (𝑢 (𝑖+1)) + 𝑉̃𝑖+1 (𝑣 (𝑖+1)))

If all checks in the sumcheck pass, 𝑉 uses 𝑉̃𝑖+1 (𝑢 (𝑖+1)) and 𝑉̃𝑖+1 (𝑣 (𝑖+1)) to proceed to the (𝑖 + 1)-th layer. Otherwise,V outputs 0.
(4) At the input layer 𝑑 ,V has two claims 𝑉̃𝑑 (𝑢 (𝑑)) and 𝑉̃𝑑 (𝑣 (𝑑)).V evaluates 𝑉̃𝑑 at 𝑢 (𝑑) and 𝑣 (𝑑) using the input and checks that they

are the same as the two claims. If yes, output 1; otherwise, output 0.

• Zero Knowledge. For security parameter 𝜆, pp ← zkCNN.
KeyGen(1𝜆), for CNN parameters W, PPT algorithm A, and

simulator S = (S1,S2), consider the following two experiments:

RealA,𝑊 (pp):
(1) comW← zkCNN.Commit (W, pp, 𝑟)
(2) X←A(comW, pp)
(3) (𝑦, 𝜋) ← zkCNN.Prove(W,X, pp, 𝑟)
(4) 𝑏 ←A(comW,X, 𝑦, 𝜋, pp)
(5) Output b

IdealA,SA (pp, ℎ):
(1) com← S1 (1𝜆, pp, 𝑟)
(2) X← A(com, pp)
(3) (𝑦, 𝜋) ← SA

2
(com,X, pp, 𝑟), given oracle access

to 𝑦 = pred(W,X).
(4) 𝑏 ← A(com,X, 𝑦, 𝜋, pp)
(5) Output b

For any PPT algorithm A and all CNN models W, there exists

simulator S such that

| Pr[RealA,W (pp) = 1] − Pr[IdealA,SA (pp) = 1] | ≤ negl(𝜆) .

Our zkCNN scheme further satisfies the stronger notion of knowl-

edge soundness, where there exists an extractor to extract the CNN

parameters from a valid proof and prediction with overwhelm-

ing probability, when we use the polynomial commitment scheme

in [39] with knowledge soundness.

Proof sketch of Theorem 4.1. The correctness of our zkCNN

follows the correctness of the sumcheck protocols for convolutions

and matrix multiplications, our generalized GKR protocol on ReLU

and max pooling, and the polynomial commitments.

We prove soundness following the same ideas as the proofs of the

GKR protocol and the GKR-based zero knowledge arguments in [26,

48, 52]. Suppose the prediction sent by P is not correctly computed,

i.e., 𝑦∗ ≠ pred(W,X), but still passes the verification. Let 𝑋̃ ∗𝑚 () be
the multilinear extension of 𝑋 ∗𝑚 = 𝑦 ≠ 𝑋𝑚 , by the Schwartz-Zippel

lemma [38, 57], in Step (2) of Protocol 3, 𝑋̃ ∗𝑚 (𝑟 (𝑚)) ≠ 𝑋̃𝑚 (𝑟 (𝑚))
with all but probability

1

|F | . In Step (3) of Protocol 3, for layer

𝑖 =𝑚,𝑚 − 1,𝑚, . . . , 2, suppose 𝑋̃ ∗
𝑖
(𝑟 (𝑖)) ≠ 𝑋̃𝑖 (𝑟 (𝑖)), where 𝑋̃ ∗𝑖 (𝑟

(𝑖))
denotes the message sent by the adversary as the evaluation of the

multilinear extension of the output of layer 𝑖 , and 𝑋̃𝑖 (𝑟 (𝑖)) denotes
the corresponding message of an honest prover. We differentiate

the following cases:

• If layer 𝑖 is a fully connected layer: Case 1: if 𝑋̃ ∗
𝑖−1
(𝑟 (𝑖−1)) =

𝑋̃𝑖−1 (𝑟 (𝑖−1)) and𝑊̃ ∗
𝑖−1
(𝑟 (𝑖−1)) = 𝑊̃𝑖−1 (𝑟 (𝑖−1)), then as 𝑋̃ ∗

𝑖
(𝑟 (𝑖)) ≠

𝑋̃𝑖 (𝑟 (𝑖)), by Lemma 1 of the sumcheck protocol,V rejects with

all but negligible probability. Case 2: 𝑋̃ ∗
𝑖−1
(𝑟 (𝑖−1)) = 𝑋̃𝑖−1 (𝑟 (𝑖−1))

and𝑊̃ ∗
𝑖−1
(𝑟 (𝑖−1)) ≠ 𝑊̃𝑖−1 (𝑟 (𝑖−1)), proceed to the input layer. Case

3: 𝑋̃ ∗
𝑖−1
(𝑟 (𝑖−1)) ≠ 𝑋̃𝑖−1 (𝑟 (𝑖−1)), then proceed to layer 𝑖 − 1.

• If layer 𝑖 is a convolutional layer: Case 1: if there is 𝑋̃ ∗
𝑖−1
(𝑟 (𝑖−1)) =

𝑋̃𝑖−1 (𝑟 (𝑖−1)) and𝑊̃ ∗
𝑖−1
(𝑟 (𝑖−1)) = 𝑊̃𝑖−1 (𝑟 (𝑖−1)), then as 𝑋̃ ∗

𝑖
(𝑟 (𝑖)) ≠

𝑋̃𝑖 (𝑟 (𝑖)), by Lemma 1 of the sumcheck protocol,V rejects with

all but negligible probability. Note that our new protocols in

Section 3 for the sumcheck of FFT and convolution improve the

prover efficiency with new algorithms. The messages sent by the

prover remain the same as the original sumcheck protocols on

these equations and thus correctness and the soundness of the

Protocol 3 (zkCNN Protocol). Let C be a CNN of𝑚 layers with model parameters W. Let 𝑋1 = X be a data sample as the input,
𝑋𝑚 = 𝑦 be the prediction pred(W,X) of C on X, and 𝑋𝑖 be the output of the 𝑖-th layer of C.
• zkCNN.KeyGen(1𝜆): Run pp← zkPC.KeyGen(1𝜆) and outputs pp.
• zkCNN.Commit(W, pp, 𝑟): Define the multilinear extension of W, viewed as an array by concatenating the parameters of each layer, as
𝑊̃ . P commits to 𝑊̃ by running com𝑊 ← zkPC.Commit(𝑊̃ , pp, 𝑟𝑊) and sendsV com𝑊 .
• ⟨zkCNN.Prove(W, 𝑟𝑊), zkCNN.Verify(comW)⟩(X, pp):
(1) Upon receiving X fromV , P evaluates the CNN to compute the prediction 𝑦 = 𝑋𝑚 , the values in each layer𝑋𝑖 and the auxiliary input

aux for bit-decomposition. P commits to the multilinear extension of aux by running com𝑎𝑢𝑥 ← zkPC.Commit(˜𝑎𝑢𝑥, pp, 𝑟𝑎𝑢𝑥) and
sendsV com𝑎𝑢𝑥 and 𝑦 = 𝑋𝑚 . Without loss of generality, we pad X,W, aux to the maximum length of the three, 𝑁 , and arrange the
input of the circuit as X| |W| |X| |®0 of size 4𝑁 .

(2) V defines the multilinear extension of 𝑦 = 𝑋𝑚 as 𝑋̃𝑚 .V chooses a random 𝑟 (𝑚) and sends it to P. Both parties compute 𝑋̃𝑚 (𝑟 (𝑚)).
(3) For 𝑖 =𝑚,𝑚 − 1, . . . , 2, with 𝑋̃𝑖 (𝑟 (𝑖)),

– If layer 𝑖 is a fully connected layer, P andV run a sumcheck protocol on

𝑋̃𝑖 (𝑥,𝑦) =
∑
𝑧

𝑋̃𝑖−1 (𝑥, 𝑧) · 𝑊̃𝑖−1 (𝑧,𝑦)

using the sumcheck algorithm for matrix multiplication proposed in [41]. At the end of the sumcheck,V receives 𝑋̃𝑖−1 (𝑟 (𝑖−1)) and
𝑊̃𝑖−1 (𝑟 (𝑖−1)), where 𝑊̃𝑖−1 denotes the multilinear extension defined by the model parameters𝑊𝑖 used in layer 𝑖 .

– If layer 𝑖 is a convolutional layer, P and V run sumcheck protocols on Equation 15, which consists of two sumchecks for FFT
and IFFT using the algorithms in Section 3 and one sumcheck for Hadamard product. At the end of the sumcheck, V receives
𝑋̃𝑖−1 (𝑟 (𝑖−1)) and 𝑊̃𝑖−1 (𝑟 (𝑖−1)).

– If layer 𝑖 is an activation and max pooling layer, P and V run the GKR protocol on our optimized circuit for ReLU and max
pooling described in Section 4.3. At the end of the sumcheck,V receives 𝑋̃𝑖−1 (𝑟 (𝑖−1)) and ˜𝑎𝑢𝑥𝑖−1 (𝑟 (𝑖−1)), where ˜𝑎𝑢𝑥𝑖−1 denotes
the multilinear extension defined by auxiliary input 𝑎𝑢𝑥𝑖 used in layer 𝑖 .

(4) At the input layer,V has received 𝑋̃1 (𝑟 (1)) and 𝑊̃𝑖−1 (𝑟 (𝑖−1)), ˜𝑎𝑢𝑥𝑖−1 (𝑟 (𝑖−1)) for 𝑖 =𝑚, . . . , 1. P andV run a sumcheck protocol on
Equation 14 to combine them into a single evaluation. At the end of the sumcheck,V receives ˜𝑖𝑛(𝑟), where ˜𝑖𝑛 denotes the multilinear
extension defined by the entire input of the circuit.

(5) Finally, V validates ˜𝑖𝑛(𝑟𝑖𝑛) by opening the polynomial commitments. In particular, as the size of the input is 4𝑁 , let
𝑟 = (𝑟1, . . . , 𝑟log𝑁+2) and 𝑟− = (𝑟1, . . . , 𝑟log𝑁), P and V run ⟨zkPC.Open(𝑊̃ , 𝑟𝑊), zkPC.Verify(com𝑊)⟩(𝑟−, pp) and
⟨zkPC.Open(˜𝑎𝑢𝑥, 𝑟𝑎𝑢𝑥), zkPC.Verify(com𝑎𝑢𝑥)⟩(𝑟−, pp).V receives 𝑊̃ (𝑟−) and ˜𝑎𝑢𝑥 (𝑟−), and evaluates 𝑋̃1 (𝑟−) locally.V checks
that ˜𝑖𝑛(𝑟) = 𝑋̃1 (𝑟−) · (1 − 𝑟log𝑁+1) (1 − 𝑟log𝑁+2) + 𝑊̃ (𝑟−) · (1 − 𝑟log𝑁+1)𝑟log𝑁+2 + ˜𝑎𝑢𝑥 (𝑟−) · 𝑟

log𝑁+1 (1 − 𝑟log𝑁+2). If the check
and all the verifications of the polynomial commitments and sumchecks pass,V outputs 1; otherwise,V outputs 0.

protocols remain the same. Case 2: 𝑋̃ ∗
𝑖−1
(𝑟 (𝑖−1)) = 𝑋̃𝑖−1 (𝑟 (𝑖−1))

and𝑊̃ ∗
𝑖−1
(𝑟 (𝑖−1)) ≠ 𝑊̃𝑖−1 (𝑟 (𝑖−1)), proceed to the input layer. Case

3: 𝑋̃ ∗
𝑖−1
(𝑟 (𝑖−1)) ≠ 𝑋̃𝑖−1 (𝑟 (𝑖−1)), then proceed to layer 𝑖 − 1.

• If layer 𝑖 is an activation and max pooling layer: Case 1: if there is

𝑋̃ ∗
𝑖−1
(𝑟 (𝑖−1)) = 𝑋̃𝑖−1 (𝑟 (𝑖−1)) and ˜𝑎𝑢𝑥∗𝑖−1

(𝑟 (𝑖−1)) = ˜𝑎𝑢𝑥𝑖−1 (𝑟 (𝑖−1)),
then as 𝑋̃ ∗

𝑖
(𝑟 (𝑖)) ≠ 𝑋̃𝑖 (𝑟 (𝑖)), by Theorem A.1 of the GKR protocol,

V rejects with all but negligible probability. Case 2: 𝑋̃ ∗
𝑖−1
(𝑟 (𝑖−1)) =

𝑋̃𝑖−1 (𝑟 (𝑖−1)) and ˜𝑎𝑢𝑥∗𝑖−1
(𝑟 (𝑖−1)) ≠ ˜𝑎𝑢𝑥𝑖−1 (𝑟 (𝑖−1)), proceed to the

input layer. Case 3: 𝑋̃ ∗
𝑖−1
(𝑟 (𝑖−1)) ≠ 𝑋̃𝑖−1 (𝑟 (𝑖−1)), then proceed to

layer 𝑖 − 1.

Note that in the cases above, at the beginning of each layer 𝑖 , it is

always true that 𝑋̃ ∗
𝑖
(𝑟 (𝑖)) ≠ 𝑋̃𝑖 (𝑟 (𝑖)) because of Case 2. In Case 1,

V rejects with overwhelming probability and in Case 3, we pro-

ceed directly to the input layer. By the reduction above, at layer 1,

either 𝑋̃ ∗
1
(𝑟 (𝑖)) ≠ 𝑋̃1 (𝑟 (𝑖)), or ∃𝑖 s.t. 𝑊̃ ∗𝑖−1

(𝑟 (𝑖−1)) ≠ 𝑊̃𝑖−1 (𝑟 (𝑖−1)),
or ∃𝑖 s.t. ˜𝑎𝑢𝑥∗𝑖−1

(𝑟 (𝑖−1)) ≠ ˜𝑎𝑢𝑥𝑖−1 (𝑟 (𝑖−1)). In Step (4) of Protocol 3,

Case 1: ˜𝑖𝑛
∗ (𝑟𝑖𝑛) = ˜𝑖𝑛(𝑟𝑖𝑛), then by Lemma 1 of the sumcheck on

Equation 14, V rejects with all but negligible probability. Case

2: ˜𝑖𝑛
∗ (𝑟𝑖𝑛) ≠ ˜𝑖𝑛(𝑟𝑖𝑛), then as 𝑋̃1 (𝑟−) is computed by V , either

𝑊̃ ∗ (𝑟−) ≠ 𝑊̃ (𝑟−), or ˜𝑎𝑢𝑥∗ (𝑟−) ≠ ˜𝑎𝑢𝑥 (𝑟−). By the soundness of

the polynomial commitment in Definition B.2,V rejects with over-

whelming probability in zkPC.Verify. Finally, by the union bound,

the probability thatV accepts in all cases above is negligible.

To prove knowledge soundness of Protocol 3, we first extract

W and aux using the extractor of the zkPC. The rest of the proof
stays the same.

0 5 10 15 20
Number of pictures

150
200
250
300
350
400
450
500
550

Ti
m

e
(s

ec
on

ds
)

VGG16 prover time

(a) Prover time

0 5 10 15 20
Number of pictures

450

500

550

600

650

Si
ze

 (k
by

te
s)

VGG16 proof size

(b) Proof size

0 5 10 15 20
Number of pictures

60

70

80

90

100

110

120

Ti
m

e
(m

illi
se

co
nd

s)

VGG16 verifier time

(c) Verifier time

Figure 5: Performance of zkCNN on proving accuracy.

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Convolutional Neural Networks
	2.2 Interactive Proofs
	2.3 Zero Knowledge Arguments

	3 New Sumcheck for Convolutions
	3.1 New Sumcheck for Fast Fourier Transform
	3.2 Two-Dimensional Convolutions

	4 Zero Knowlege Convolutional Neural Networks
	4.1 Definitions
	4.2 Generalizations of GKR for CNN
	4.3 Design of Zero Knowledge CNN
	4.4 Putting Everything Together

	5 Implementation and Evaluations
	5.1 New Sumcheck for FFT and Convolution
	5.2 Performance of zkCNN

	References
	A GKR Protocol
	B Zero Knowledge Arguments
	C Definition, Protocol and Proofs of Zero Knowledge CNN

