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Abstract

Cryptographic constructions based on ring learning with errors (RLWE) have emerged as one of the

front runners for the standardization of post quantum public key cryptography. As the standardization

process continues, optimizing specific parts of proposed schemes becomes a worthwhile endeavor. In this

work we focus on using error correcting codes to alleviate a natural trade-off present in most schemes;

namely, we would like a wider error distribution to increase security, but a wider error distribution comes

at the cost of an increased probability of decryption error. The motivation of this work is to improve the

security level of RLWE-based public key encryption (PKE) while keeping the target decryption failure

rate (DFR) achievable using error-correcting codes. Specifically, we explore how to implement a family

member of error correcting codes, known as polar codes, in RLWE-based PKE schemes in order to

effectively lower the DFR. The dependency existing in the additive noise term is handled by mapping

every error term (e.g., e, t, s, e1, e2) under canonical embedding to the space H where a product in the

number field K gives rise to a coordinate-wise product in H . An attempt has been made to make the

modulation constellation (message basis) fit in with the canonical basis. Furthermore, we exploit the

actuality of some error terms known by the decoder to further lower the DFR. Using our method, the

DFR is expected to be as low as 2−298 for code rate 0.25, n = 1024, q = 12289 and binomial parameter

k = 8 as is exactly the setting of the post-quantum scheme NewHope; DFR is 2−156 for code rate

0.25, n = 1024, q = 12289, k = 16. This new DFR margin enables us to improve the security level by

9.4% compared with NewHope. Moreover, polar encoding and decoding have quasi-linear complexity

O(N logN) and they can be implemented in constant time.
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I. INTRODUCTION

A. Error-Correcting for Ring-LWE-Based Public Key Encryption

As the world’s top tech companies and research labs compete in the race to build a quantum computer,

real world public key cryptography, such as digital signature schemes, public key encryption, and key

exchange protocols, must be made quantum resistant. The RLWE problem was introduced in [1] in

2010, expanding on the classical version of the problem (i.e., LWE) introduced by Regev in [2]. Since

then, cryptography based on the RLWE problem has become one of the most attractive post quantum

candidates. Its quantum security relies on the worst-case approximate SIVP (shortest independent vector

problem) on ideal lattices and it gives better efficiency compared with plain LWE because of the ring

structure. Many of the prominent submissions to the NIST’s call for proposals [3], for example NewHope

[4] and LAC [5], are based on RLWE cryptography. Though neither of the two advanced to NIST’s third

round after a tough decision was made between a module-LWE scheme, Kyber, and the RLWE-based

ones, academic and industrial study on RLWE cryptography and their applications never stops. One topic

of pressing importance is to refine such schemes for better efficiency and security. In this work, we focus

on the issue of error correcting for RLWE-based public key encryption.

Among the RLWE-based public key exchange protocols, there are essentially two major approaches

to the problem of sharing a ephemeral secret key that can be used to protect further communication; the

reconciliation approach of [6] and the encryption approach of [7]. In the former approach, both parties

agree on a shared value from some pseudorandom signals with the help of a robust extractor. It is the latter

on which our work is focused, where the protocol resembles the compact RLWE public key encryption

scheme first described in [8]. Taking NewHope for example, the binary secret to be shared is encoded with

repetition codes, mapped to {0, bq/2c}n and then added to a sequence of error terms jointly produced by

both parties. There will be a residue noise term after the decryption operation. Upon getting the decrypted

secret, the decoder then sum up the symbols corresponding to the repeated secret bits and infer if the

secret should be 0 or 1 according to a threshold. Taking the telecommunication system as an analogy,

this is exactly a hard-decision decoding process. Similar ideas can be found in [9], where encoding is

done byte-wise rather than bit-wise. Unsurprisingly, this error-correcting scheme cannot give the optimal

decoding performance. Decreasing the DFR is of major importance for several reasons. Firstly, if we

seek CCA security of the above cryptosystem using the classical Fujisaki-Okamoto transform [10], the

NIST standardization targets at a failure rate lower than 2−128. Secondly, more capable error correction

can save the bandwidth by allowing a longer ephemeral key to be shared without increasing the length

of cipher text or compromising the DFR. Finally, more capable error correction allows larger error term



3

e, t, s, e1, e2, increasing the hardness of the underlying RLWE problem and therefore the security of the

cryptosystem.

To improve the error correction and security of RLWE-based PKE, some researchers have exploited the

goodness of multi-dimensional lattices. For example, Leech lattice which gives the densest sphere packing

of it dimension is used in [11] to encode bit strings as 24-dimensional symbols. The corresponding

decoding problem is solved by CVP algorithm. An alternative way to reduce DFR is to apply error-

correcting codes (ECC), a method that appears in LAC and is remarked to be distinguishable in NIST

report [12]. In [13], Fritzmann et al. considered how much the RLWE-based PKE protocol, NewHope

Simple, can profit from BCH codes, LDPC codes, and a hybrid of the two regarding the DFR. They

achieve a DFR of 2−140 using these codes, but it is unclear whether the decoding algorithms are constant

time. In an independent line of work, Saarinen designed a linear block code called XEf and implemented

it in Hila5 which is a RLWR (ring learning with rounding)-based PKE scheme [14]1. This method is able

to share 256 bits of message and additional 240 bits of redundancy at DFR below 2−128. The decoding

algorithm runs in constant time, which provides resilience to side channel attacks.

How to deal with the dependency existing in the residue noise term of RLWE-based PKE is closely

related to the DFR estimation no matter error-correcting codes are applied or not [13], [15], [16].

Fritzmann et al. gave upper bounds on DFR using their error-correcting codes assuming that the residue

noise can be seen as independent [13]. They claimed to improve the security level of NewHope Simple

by 31.76% for n = 1024, q = 12289 targeting at DFR=2−140. D’Anvers et al. assume the residue noise

is independent conditional on its norm. This method can be applied to calculate the DFR for LAC where

the error term is ternary but impractical for wider error distribution and true discrete Gaussian errors

[15]. Song et al. formulated the NewHope round 2 as a digital communication system and solved a part

of the dependency. They claimed to improve the security by 7.2% (n = 1024, q = 12289) targeting at

a DFR of 2−140 as well [16].

B. Contribution

The contribution of this paper is as follows.

1) We are the first to formulate the RLWE-based PKE as an i.i.d. fading channel with channel state

information (CSI) available to the receiver without any “independence” assumptions.

a) Given the residue noise term e · t − s · e1 + e2, we are the first, without any assumptions,

to completely unfasten the dependency between the coefficients by mapping every noise

1Hila5 has been withdrawn from the NIST Post Quantum Cryptography standardization process, but the XEf code appears in

new entry called Round5.
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term to canonical basis where the polynomial multiplication is converted to coordinate-wise

multiplication of two vectors2.

b) We formulate the RLWE-based PKE model as an i.i.d. fading channel with CSI known to

the receiver while the transmitter only knows the channel distribution information (CDI). We

derive this novel formulation by exploiting the actuality that Alice, at the decryption stage,

knows some partial information of the residue noise, i.e., e and s sampled by herself at key

generation stage.

c) Taking telecommunication system as an analogy, mapping a single bit 0 or 1 of the plain text

to a symbol on the constellation {0, bq/2c} is called modulation. To make the modulation

scheme fit in with the i.i.d. fading channel in canonical basis, we proposed a new modulation

scheme at the cost of error tolerance.

2) We give the explicit construction of polar codes for RLWE-based PKE channel model. The encoding

and decoding routines allow quasi-linear (i.e., O(N logN)) and constant-time implementations.

Experimental results and theoretical estimation of DFR are also given. Specifically, we derive a

new DFR of 2−298 for q = 12289, n = 1024, r = 2 (r =
√
k/2) and code rate=0.25; we derive

a new DFR of 2−156 for r = 2.83 (k = 16) and code rate=0.25. The DFR margin enables us to

improve the security by 9.4% while keeping the target DFR of 2−140 (2−128 as well) achievable.

C. Roadmap

This paper is organized as follows. A review of the necessary algebraic number theory, some basics of

fading channels and polar codes can be found in Section II. In Section III we explain how to formulate a

typical RLWE-based PKE scheme as an i.i.d. fading channel. How to handle the dependency in canonical

basis is also demonstrated. Section IV gives a high-level description of RLWE-based PKE with the

proposed polar coding scheme. Section V gives the explicit construction of polar codes for RLWE channel.

Section VI analyzes the DFR theoretically and experimentally when polar decoding (SC decoding) is

applied. Section VII discusses the security improvement derived by the new DFR margin. Section VIII

concludes this paper.

2A concurrent work also used canonical embedding to analyse the statistical framework of RLWE-based cryptography [17],

[18]; the novel contribution of our work is to derive an i.i.d. channel model under canonical embedding and to use the CSI for

error-correction.
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II. PRELIMINARIES

A. Algebraic Number Theory

We review the necessary concepts from algebraic number theory required for our discussion of ring-

LWE. In particular, we will relate many of our definitions to power-of-two cyclotomic fields, which are

popular in modern cryptography.

A number field K is a finite degree field extension of the rationals Q. Any number field K may

be defined by adjoining some element α ∈ C and setting K = Q[α]. Let α have minimal polynomial

f(X) ∈ Q[X]. Then, the degree of K over Q is precisely the degree n of f(X), and there exists a

canonical isomorphism K ∼=
Q[X]

f(X)
defined by sending α to X . Because f(α) = 0, K can be seen as

a vector space over Q endowed with a basis {1, α, ..., αn−1} known as the power basis. In this paper

we are interested in power-of-two cyclotomic fields, where the mth cyclotomic field for 2-power m is

defined by K ∼=
Q[X]

xn + 1
, n = φ(m) = m/2. Equivalently, we define K = Q[ζm], where ζm is the mth

root of unity which has minimum polynomial xn + 1.

A number field K of degree n permits n ring embeddings σi : K → C, i = 1, ..., n, which correspond to

n distinct injective ring homomorphisms mapping α to the other roots of its minimum polynomial f(X).

These embeddings are split into the s1 real embeddings, with images in R, and s2 complex conjugate

pairs of complex embeddings, ordered such that σs1+j = σs1+s2+j . Hence we have n = s1 + 2s2. Now

we define the canonical embedding σ : K → Rs1 × C2s2 as the map

σ(x) = (σ1(x), ..., σn(x)).

More precisely, we say that this is a map from K into the space

H = {(x1, ..., xn) ∈ Rs1 × C2s2 |xs1+j = xs1+s2+j , ∀1 ≤ j ≤ s2} ⊂ Cn

and observe that H is isomorphic to Rn as a complex conjugate pair space, which can be seen by

considering the orthonormal basis {h1, ...,hn} of H , where hi = ei, 1 ≤ i ≤ s1 and hi = 1√
2
(ei +

ei+s2),hi+s2 =
√
−1√
2

(ei − ei+s2), s1 < i ≤ s1 + s2, and ei ∈ Cn be a vector with 1 in its i-th coordinate

and 0s in other positions. This isomorphism allows us to define `p norms on K by setting |x|p = ‖σ(x)‖p
for x ∈ K. We also remark that under the embedding σ multiplication in K maps to coordinatewise

multiplication in H .

B. Sample Ring-LWE Public Key Encryption Scheme

For concreteness, we give an example of a public key scheme based on ring-LWE. This scheme is well

known in the literature, and was first described in [8]. Many ring-LWE schemes and protocols, including
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NewHope and LAC, closely resemble this scheme. The scheme is paramaterized by an integer modulus

q, dimension n, and error distribution χ over Rq. We will take the example of NewHope and view Rq

as
Zq[X]

xn + 1
and define sampling from χ to be sampling each coefficient of the polynomial s from the

discrete Gaussian over Z. The scheme proceeds as follows.

• Alice samples a secret key s ← χ and publishes as a public key an ring-LWE sample (a, b) =

(a, a · s+ e) ∈ Rq ×Rq, where a is uniformly random and e← χ.

• Bob encrypts a message m ∈ {0, 1}n as (c1, c2) = (a · t+ e1, b · t+ e2 + b q2c ·m), where e1, e2, t

are sampled independently from χ.

• Alice decrypts using s by computing d := c2 − c1 · s = b q2c ·m+ e · t− s · e1 + e2.

Alice then recovers the message m by decoding: if the ith coordinate of d is closer to 0 than bq/2c, Alice

assumes the ith coordinate of m was 0, otherwise she assumes it was 1. We observe a few key facts about

this scheme that we will need for our work. Firstly, although its formal security proof may be found in

[8], the main idea is that b, c1 and c2 leak no information because they are ring-LWE samples, which are

assumed to be pseudorandom by the hardness of the ring-LWE decision problem. However, one could

alternate the encoding term b q2c ·m without affecting security, as long as the encoding is independent of

the actualization of the variables s, e, e1, e2, t. We will use this fact implicitly while constructing polar

codes in the sequel. Secondly, we observe that Alice knows the actualization of s and e, and so may

use these for decoding. Finally, although we assumed m is a binary message of length n, typically one

encodes a shorter message into n coordinates by introducing redundancy for error correction.

C. Fading Channel

In wireless communications, a fading channel arises due to a time-varying attenuation of signal quality

caused by either the propagation environment or by movement of the transmitter/receiver. We consider a

discrete-time fading channel model W

yi = hixi + zi, i = 1, · · · , N,

where hi is the channel gain, zi is additive white Gaussian noise (AWGN) and N is the frame length.

Denote by Tc the coherence interval of a fading channel W . In the context of a fading channel with

memory, the channel gain hi is believed to be a constant within one coherence interval and varies indepen-

dently as the next coherence interval approaches. The realization of hi is called channel state information

(CSI) and the distribution of hi is called channel distribution information (CDI). When designing a

telecommunication system, we prefer i.i.d. fading channels where hi are independent. There are a few

methods to deal with the correlation. Let m = Tc > 1 and N/m = n. Since a fading channel with
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coherence interval Tc can be seen as m parallel sub-channels, bit-interleaved coded modulation (BICM)

technique can be used to deal with the correlation between sub-channels [19], [20]. Another solution

is to use multilevel codes [21], [22], [23] to design a coded modulation scheme with signal points in

an m−dimensional signal space. In [24], a properly chosen lattice partition chain Λ1/ · · · /Λl−1/Λl is

employed to design multi-level polar codes to achieve fading channel capacity. In this case, the dimension

m of Λ1 is properly chosen such that the channel gain hi is assumed to be a constant amid the whole

transmission of m symbols, i.e. Tc = m. A component code Ci at the ith level of the partition chain

is designed in order to achieve the capacity of a Λi/Λi+1 fading channel. The component codes are

combined by construction D giving rise to a lattice which is good for the fading channel. For more

information of the multi-level construction and the Λi/Λi+1 channel, see [24] and [23]. We give an

example of a mod Z channel and a Z/2Z channel as follows and the fading version will be given in

Section III.

Example 1: A mod Z channel is an additive white Gaussian noise (AWGN) channel with input re-

stricted to a ∈ V(Z) where V(Z) is the fundamental region 3 of Z. At the receiver’s end, there is a mod

V(Z) operation giving the equivalent channel output as

y = a+ n mod Z = (a+ n′) mod Z,

where n is the AWGN noise and n′ = n mod Z.

Example 2: A Z/2Z channel is an AWGN channel with input restricted to r ∈ (Z + a) ∩ V(2Z) for

some offset a ∈ R. At the receiver’s end, the equivalent channel output is

y = r + n mod 2Z = r + n′ mod 2Z.

It can be viewed as a mod 2Z channel with input restricted to a set of elements of Z + a that fall in

V(2Z).

In the special case of Tc = 1, channel W is referred to as an identically independently distributed

(i.i.d.) fading channel. The design and performance of error-correcting codes for i.i.d. fading channels

with/without CSI is well studied [25], [26], [27], [28], [29]. In [24], Liu etc., proposed a polar coding

scheme for i.i.d. fading channels to achieve the Ergodic capacity. Unlike previous work of [27] in which

CSI is given to both ends of communication, in Liu’s scheme CSI is only known to the receiver which

is more ordinary and frequent in practice.

3A fundamental region of a lattice Λ is a region that includes one and only one point from each coset of Λ in Rn. Algebraically,

V(Λ) is a set of coset representatives for all the cosets of Λ in Rn, e.g., we can define V(Z) to be [0, 1) but not necessarily

the fundamental Voronoi cell [−0.5, 0.5).
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D. Polar Codes for BDMS Channels

Polar codes, introduced by Arıkan in [30], are linear block codes of length N = 2n for a positive

integer n that achieves the capacity of any binary discrete memoryless symmetric (BDMS) channels

asymptotically4. We firstly recall some basics of the polar coding for a BDMS channel. Given a BDMS

channel W , there are two commonly used metrics in information theory to measure the quality of W :

the mutual information5 and the reliability.

Definition 1 (Mutual information of BDMS channels): The mutual information I(W ) ∈ [0, 1] of a

BDMS channel W : X → Y is the maximum rate at which information can be successfully transmitted

from the transmitter to the receiver.

I(W ) ,
∑
y∈Y

∑
x∈X

1

2
W (y|x) log

W (y|x)
1
2W (y|0) + 1

2W (y|1)
,

In here, we use the definition of symmetric mutual information assuming uniform channel input which

is also the capacity of the BDMS channel. We use the notations I(W ) and I(Y ;X) interchangeably to

denote the mutual information of W .

Definition 2 (Bhattacharyya parameter of BDMS channels): The Bhattacharyya parameter Z(W ) ∈

[0, 1] is a measure of channel reliability for a BDMS channel W .

Z(W ) ,
∑
y∈Y

√
W (y|0)W (y|1),

A small Z(W ) indicates a more reliable channel while a large Z(W ) implies a channel with more

inference.

The capacity-achieving nature of polar codes arises from the so-called channel polarization phenomenon

as a result of recursive applications of Arıkan’s transform to identical W s and their synthesized derivatives.

The overall recursive transform can be done in a channel combining phase and a channel splitting phase.

In the channel combining phase, a linear transformation defined as X1:N = U1:NGN is performed

on a vector U1:N ∈ X 1:N over GF (2), where GN = BN

 1 0

1 1

⊗n. BN is a permutation matrix:

if U ′1:N = U1:NBN and n = log2N , the i′ = ((bn, · · · , b2, b1)2 + 1)-th coordinate of U ′1:N is the

i = ((b1, b2, · · · , bn)2 + 1)-th coordinate of U1:N . By taking X1:N as the raw input of W , one derives a

combined channel WN : X 1:N → Y1:N with a transition probability of

WN (y1:N |u1:N ) =
∏

i∈{1,··· ,N}

W (y(i)|x(i) = (u1:NGN )i), (1)

4In fact, the generalizations of polar codes are extended to arbitrary block length and a large class of channels.
5The maximum mutual information over all possible channel input distributions is the channel capacity.
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where (·)i denotes i-the coordinate. Since GN induces a one-to-one mapping between U1:N and X1:N ,

the mutual information of WN is

I(WN ) = I((Y 1:N ;U1:N )) = NI(W ). (2)

In the channel splitting phase, WN is further split back into N synthesized channels W (i)
N : X →

YN ×X i−1 whose transition probability is defined by

W
(i)
N (y1:N , u1:i−1|u(i))=

∑
U i+1:N∈XN−i

1

2N−1
WN (Y 1:N |U1:N ). (3)

It is proved in [30] that Arıkan’s transform preserves the mutual information in the sense that

I(WN ) = NI(W ) =
∑

i∈{1,··· ,N}

I(W
(i)
N ).

More importantly, the quality of the synthesized channels polarizes asymptotically as the recursion

proceeds.

Theorem 1 (Channel polarization of mutual information[30]): For any BDMS channel W , the synthe-

sized channels W (i)
N polarize in the sense that, for any fixed δ ∈ (0, 1), as N goes to infinity through

powers of two, the fraction of indices i ∈ {1, · · · , N} for which I(W
(i)
N ) ∈ (1− δ, 1] goes to I(W ) and

the fraction for which I(W
(i)
N ) ∈ [0, δ) goes to 1− I(W ).

The channel polarization theorem from above can also be stated in the metric of Bhattacharyya parameter

by replacing I(W
(i)
N ) by Z(W

(i)
N ).

For any desired transmission rate R < I(W ), we can partition {1, · · · , N} into a subset A and its

complement AC such that (i) |A| = bNRc and (ii) for any i ∈ A and j ∈ AC , Z(W
(i)
N ) ≤ Z(W

(j)
N ).

Given the “best” bNRc channels indexed by A, one can construct polar codes following the encoding

rule:

X1:N = UAGN (A)⊕ UACGN (AC),

where UA is the binary message vector of length bNRc and UAC is some pre-determined information

known to both encoder and decoder , e.g., UAC = 0. In this manner, the useful information is transmitted

via the most reliable synthesized channels. A question may arise on how to efficiently calculate Z(W
(i)
N ).

A brief review can be found in Section II-E and Section V-C but a detailed description of these methods

are beyond the scope of this work.

The successive cancellation (SC) decoder is the initial decoding algorithm for polar codes. It gives an

estimation of u(i), the i-th coordinate of U1:N , in the natural order of i. Given a polar code initialized



10

by code length N , information set A, and frozen bits UAC , one can derive the recovered message ū(i)

of u(i) in sequential order of index i according to the decoding rule specified as

ū(i) =


u(i) i ∈ AC ,

0 L
(i)
N (y1:N , ū1:i−1) ≥ 1 and i ∈ A,

1 otherwise,

where ū1:i−1 is the estimation of u1:i−1 recovered before ū(i) and L
(i)
N (y1:N , ū1:i−1) is the likelihood

ratio function defined as

L
(i)
N (y1:N , ū1:i−1) =

W
(i)
N (y1:N , ū1:i−1|u(i) = 0)

W
(i)
N (y1:N , ū1:i−1|u(i) = 1)

.

Denote by Pe the averaged probability of block decoding error. As a result of polar encoding and SC

decoding, it is proved in [30] that Pe is upper bounded as follows.

Theorem 2 (Decoding Performance [30]): For any BDMS channel W and any choices of parameter

(N,R,A),

Pe ≤
∑
i∈A

Z(W
(i)
N ).

E. Channel Degradation and Upgradation

The construction of polar codes can be addressed if all the Bhattacharyya parameters of synthesized

channels can be efficiently calculated. In [30], an efficient solution to compute Z(W
(i)
N ) for binary erasure

channels (BEC) is given while it is suggested to use Monte-Carlo method to deal with more general BDMS

channels. R. Mori and T. Tanaka made an attempt to solve this problem for arbitrary symmetric binary-

input memoryless (BMS) channels using density evolution [31], [32], [33] of belief propagation (BP)

decoding. However, they also mentioned that it was unclear how to handle the computational efficiency

when the block length N was large and the requirement for precision was high. In [34], a quantization

method was proposed to construct a degraded or upgraded approximation of a general BMS channel. If

the degraded or upgraded relation exists, one can approximate Z(W
(i)
N ) efficiently.

Definition 3 (Degraded and Upgraded Channel, [34]): A channel Q : X → Z is (stochastically)

degraded with respect to a channel W : X → Y if there exists a channel P : Y → Z such that

Q(z|x) =
∑
y∈Y
W(y|x)P(z|y)
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for all z ∈ Z and x ∈ X . We denote by Q � W the relation that Q is degraded with respect to W .

Conversely, we denote by Q′ � W the relation that Q′ is upgraded with respect to W if there exists a

channel Q′ : X → Z ′ and a channel P : Z ′ → Y such that

W(y|x) =
∑
z′∈Z′

Q′(z′|x)P(y|z′)

for y ∈ Y and x ∈ X .

Moreover, the synthesized channels of Q,W,Q′ under Arıkan’s transform also fulfill the channel degra-

dation and upgradation relation.

Lemma 1 (restatement of Lemma 4.7 in [35]): Given BMS channelsW,Q, and Q′, we denote byW(i)
N ,

Q(i)
N and Q′(i)N for i ∈ [1, N ] the synthesized channels obtained by Arıkan transformation. If Q′ � W � Q

for all i, then Q′(i)N � W
(i)
N � Q

(i)
N .

If the channel degradation or upgradation relation is set up, their channel capacity, reliability and error

probability will be related as follows.

Lemma 2 ([34]): Let W be a BMS channel and suppose there exists the other channel Q such that

Q � W . Then

C(Q) ≤ C(W),

Z(Q) ≥ Z(W),

Pe(Q) ≥ Pe(W).

The inequality will reverse if we replace “degraded” by “upgraded”.

III. RLWE CHANNEL MODEL

A. RLWE Channel Model in Canonical Basis

Definition 4: The real multivariate normal distribution has density function

f(x;µ,Σ) =
e−

1

2
(x−µ)T Σ−1(x−µ)√
|2πΣ|

x ∈ Rn

where |·| denotes the determinant, µ = E[X] ∈ Rn, Σ = E
[
(X − µ)(X − µ)T

]
; we write X ∼ N (µ,Σ).

One natural generalization would be to consider Z ∼ NC(µ,Γ), the complex multivariate normal, with

density function

f(z;µ,Γ) =
e−(z−µ)∗Γ−1(z−µ)

|πΓ|
z ∈ Cn,

where z∗ denotes the Hermitian transpose of the vector z, µ is the (possibly complex) mean and Γ =

E[(Z − µ)(Z − µ)∗].
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Let ζ be the 2nth root of unity for a 2-power n. The canonical embedding σ : K → Cn maps the 2nth

cyclotomic number field K to the space H which is endowed with an orthogonal basis defined by the

columns of the matrix

B =



1 ζ ζ2 · · · ζn−1

1 ζ3 ζ6 · · · ζ3(n−1)

1 ζ5 ζ10 · · · ζ5(n−1)

...
...

...
...

...

1 ζ(2n−1) ζ(2n−1)2 · · · ζ(2n−1)(n−1))


n×n

.

Recall the definition of canonical embedding in Section II-A, i.e.,

σ(x) = (σ1(x), ..., σn(x)),

where the conjugate pairs are σi(x) and σi+n/2(x). We observe that we have re-ordered the embedding

in the basis of B where σi(x) is the complex conjugate of σn−i+1(x) for 1 ≤ i ≤ n/2. This can

be interpreted as a permutation of coordinates and it does not change the homomorphism relationship.

Moreover, we can also represent Cn with Rn by mapping the first n/2 embeddings to their real and

complex parts, i.e., we rewrite the canonical embedding as σ′ : K → Rn

σ′(x) = (<[σ1(x)],=[σ1(x)], ...,<[σn/2(x)],=[σn/2(x)]).

The corresponding basis B̃ of σ′(x) is

B̃ =



1 <[ζ] <[ζ2] · · · <[ζn−1]

0 =[ζ] =[ζ2] · · · =[ζn−1]

1 <[ζ3] <[ζ6] · · · <[ζ3(n−1)]

0 =[ζ3] =[ζ6] · · · =[ζ3(n−1)]

1 <[ζ5] <[ζ10] · · · <[ζ5(n−1)]

0 =[ζ5] =[ζ10] · · · =[ζ5(n−1)]
...

...
...

...
...

1 <[ζ(n−1)] <[ζ(n−1)2] · · · <[ζ(n−1)(n−1)]

0 =[ζ(n−1)] =[ζ(n−1)2] · · · =[ζ(n−1)(n−1)]


n×n

.
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Note that both B and B̃ are orthogonal matrices. The determinant of B is
√
n
n while that of B̃ is

(
√
n/2)n.

We already given an RLWE-based PKE instance in Section II-B. Now we consider the problem of

decoding the message m from the polynomial

y = bq
2
c ·m+ e · t− s · e1 + e2 mod Rq, (4)

where e · t and s · e1 are convolution of polynomials in Z[x]/(1 + xn). To visualize the decoding step of

RLWE-based PKE as a channel decoding problem, we rewrite formula (4) in vector form as

y = bq
2
c ·m + E · t− S · e1 + e2 mod Rq, e, t, e1, e2 ← N (0, r2I), (5)

where m, t, e2, e2 are vectors, E is a negacyclic matrix with the first column to be the coefficients of the

polynomial e and S is also a negacyclic matrix defined in the same manner. Note that the coefficients

of e, t, s, e1, e2 should be drawn from discrete Gaussian DZ,r. We use continuous normal distribution

N (0, r2) instead to simplify the distribution analysis of the noise term. Formula (5) can be viewed as a

channel model where y is the channel output vector, m is the codewords to be modulated as bq/2c ·m

and E · t− S · e1 + e2 is the channel noise. In this work, we refer to formula (5) as a RLWE channel.

Theorem 3 (Diagonalization of negacyclic matrix,[36]): Let N(x) be an n×n negacyclic matrix whose

first column is x. Then

N(x) = G∗diag(λ1(x), λ2(x), · · · , λn(x))G,

where the element Gp,q = 1√
n
w(2p−1)(q−1), w is the 2nth root of unity, G∗ is the conjugate transpose of

G and λj(x) =
∑n

k=1 xkw
(2j−1)(k−1).

According to Theorem 3 this RLWE channel can be formulated as

By = Bbq
2
cm +BB−1diag(e)Bt−BB−1diag(s)Be1 +Be2, mod BRq (6)

which is equivalent to the polynomial description under canonical embedding σ : K → Cn as

σ(y) = σ(bq
2
cm) + σ(e)σ(t)− σ(s)σ(e1) + σ(e2) mod BRq. (7)

If we chop off the bottom half of the vectors in equation (6) (i.e., the conjugates) and separate the real

part from the imaginary part, we derive the RLWE channel as
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

<[B1y]

=[B1y]

<[B2y]

=[B2y]
...

<[Bn

2
y]

=[Bn

2
y]


︸ ︷︷ ︸

Y

=



<[B1b q2cm]

=[B1b q2cm]

<[B2b q2cm]

=[B2b q2cm]
...

<[Bn

2
b q2cm]

=[Bn

2
b q2cm]


︸ ︷︷ ︸

X

+



<[σ1(e)σ1(t)− σ1(s)σ1(e1) + σ1(e2)]

=[σ1(e)σ1(t)− σ1(s)σ1(e1) + σ1(e2)]

<[σ2(e)σ2(t)− σ2(s)σ2(e1) + σ2(e2)]

=[σ2(e)σ2(t)− σ2(s)σ2(e1) + σ2(e2)]
...

<[σn

2
(e)σn

2
(t)− σn

2
(s)σn

2
(e1) + σn

2
(e2)]

=[σn

2
(e)σn

2
(t)− σn

2
(s)σn

2
(e1) + σn

2
(e2)]


︸ ︷︷ ︸

N

modB̃Rq, (8)

where Bj represents the jth row of B, Y = B̃y = σ′(y), and X = B̃b q2cm = σ′(b q2cm). To see the how

the noise term N is distributed, we rewrite formula (8) for all the odd indices i = 1, 3, 5, · · · , n/2− 1 as

 σ′i(y)

σ′i+1(y)

 =

 σ′i(b
q
2cm)

σ′i+1(b q4cm)

+

 σ′i(e) −σ′i+1(e)

σ′i+1(e) σ′i(e)

 σ′i(t)

σ′i+1(t)


−

 σ′i(s) −σ′i+1(s)

σ′i+1(s) σ′i(s)

 σ′i(e1)

σ′i+1(e1)

+

 σ′i(e2)

σ′i+1(e2)

 , (9)

where B̃i(·) = σ′i(·) and B̃i+1(·) = σ′i+1(·). Under embedding σ : K → Cn, the spherical normal

distributed vectors, e and t, are mapped to complex spherical normal vectors, σ(e), σ(t) ∼ NC(0, nr2I).

As for the embedding σ′ : K → Rn, the spherical normal N (0, r2I) is transformed to a new spherical

normal with distribution N (0, nr2/2I). Since e, t are coordinate-wise i.i.d. their embedding σ(e), σ(t),

σ′(e), σ′(t) are coordinate-wise independent as well. We observe from formula (9) that every odd-

indexed coordinate and the next even-indexed coordinate are somehow correlated because they share

the same σ′i(e), σ
′
i+1(e), σ′i(t), σ

′
i+1(t), σ′i(s), σ

′
i+1(s) and σ′i(e1), σ′i+1(e1) although σ′i(e2), σ′i+1(e2) are

independent.

To further refine the RLWE channel model, we can rewrite formula (8) and (9) as

B̃y = B̃bq
2
cm + N, mod B̃Rq (10)

where for i = 1, 2, · · · , n, Ni = Hi ∗ Zi, Zi ← N (0, nr
2

2 ), and

Hi =
√
σ∗di/2e(e)σdi/2e(e) + σ∗di/2e(s)σdi/2e(s) + 1.
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Fig. 1. Switch of constellation diagram.

Because of the correlation between every two coordinates, Hi and Hj are independent for two different

indices i, j as long as di/2e 6= dj/2e; otherwise Hi = Hj . Similarly, Zi and Zj are correlated if

di/2e = dj/2e; otherwise they are independent.

Unlike in NewHope and other RLWE-based encryption schemes where the plain text is encoded

and decoded in the polynomial basis, we will carry out encoding and decoding in canonical basis.

Observe that the channel given by formula (10) is almost a fading channel with coherence interval

Tc = 2 coordinates except that the symbols to be transmitted after modulation, i.e., B̃b q2cm, are not

coordinate-wise independent. In next subsection, we will adjust the modulation scheme such that a tailored

constellation diagram can fit in with the fading channel.

B. A Tailored Constellation Diagram

The RLWE channel in formula (5) can be interpreted as n parallel Z/2Z channels where the message

m ∈ {0, 1}n is mapped to symbols on the constellation diagram {0, b q2c}
n. The mod Rq operation defines

a valid constellation space as an n−dimensional cube Λ with vertices {0, q}n. To ease the description of

how we design a new constellation diagram in canonical basis, we make a modification to the modulation

scheme in formula (5): the message m ∈ {−1, 1}n is mapped onto the constellation diagram {±b q4c}
n

and the valid constellation space is a cube Λ with vertices {±b q2c}
n. This modification will preserve

the capacity of the Z/2Z channel because they are statistically equivalent if we ignore geometrical

approximation caused by the round-off operation b·c.

According to formula (10), after applying the canonical embedding, the constellation diagram turns
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into B̃{±b q4c}
n. Similarly, we can obtain the new constellation space Λ′ = B̃Λ by rotating Λ and scaling

it up by a factor of
√
n/2.

As discussed in last subsection, the coherence interval Tc of the residue noise equals to 2 coordinates

while the constellation symbol B̃b q4cm has memory throughout n coordinates. In a communication system,

the interleaving technique can be used to alleviate the correlation of the source by permuting symbols

of different code blocks. Unfortunately, interleaving is impractical in the RLWE channel because there

is only one code block of length n. At the cost of distance between the constellation symbols, we tailor

the constellation space Λ′ to fit in with the fading channel with correlation Tc.

Essentially, we are looking for a new modulation scheme meeting two conditions: (a) we desire the

symbols after modulation (or the modulated message) to be coordinate-wise i.i.d.; in other words, we

expect a valid constellation diagram inside the space Λ′ such that for coordinate-wise i.i.d. message m,

the modulated message is coordinate-wise i.i.d. as well; (b) the new modulation scheme gives us a Z/2Z

channel. Conceptually, the maximal n-dimensional cube Λ′′ enclosed in Λ′ and parallel to Λ is our target

constellation space. In this case, the symbols to be transmitted can be easily made to be binary and i.i.d.

if we divide the cube Λ′′ equally into 2n small cubes and select all the centers of the small cubes to be

the constellation diagram. However, looking for such a Λ′′ in practice is not tractable when the dimension

n is large and we are unclear about in what direction and by what degree the cube Λ′ is rotated with

respect to Λ. Instead, we compromise and use the cube Λ′′ which is parallel to Λ and is enclosed in the

maximal ball inscribed in Λ′. In this manner, we can make sure there always exists such a constellation

space Λ′′ and it is straightforward to calculate its size. Figure 1 illustrates this idea in the 2-dimensional

case. If the side length of Λ is q, the side of Λ′ turns out to have length q
√
n/2, and the side of Λ′′ will

be q/
√

2. Observe that Λ′ =
√

2B̃Λ′′.

C. Tailored RLWE Channel Model in Canonical Basis

Given the tailored constellation space Λ′′ and its corresponding constellation diagram, we now have a

tailored RLWE channel model in the canonical basis:

y = bq
2
c 1√

2
m + N, mod Λ′′, (11)

where m ∈ {0, 1}n, Ni = Hi ∗ Zi and Zi ← N (0, nr2/2) for 1 ≤ i ≤ n. As discussed in formula (10),

Hi and Hj are independent for two different indices i, j as long as di/2e 6= dj/2e; otherwise Hi = Hj .

Hi =
√
σ∗di/2e(e)σdi/2e(e) + σ∗di/2e(s)σdi/2e(s) + 1,

where σdi/2e(e), σdi/2e(s) ← NC(0, nr2). Similarly, Zi and Zj are independent if di/2e 6= dj/2e

otherwise they are correlated.
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We observe that the tailored channel model in formula (11) can be seen as a fading channel where Hi

is the channel gain and Zi is the additive noise. A family of fading channels (e.g., i.i.d. fading, block

fading, compound fading) are well studied in existing work of [25], [27], [26], [24], [37] and explicit

constructions of error-correcting codes are given. In this work, since Hi and Zi have the same coherence

interval of two coordinates, our strategy is to divide the n parallel channels into two groups of i.i.d.

channels and we construct two parallel polar codes of equal block length n/2 for the two Z/2Z fading

channels. Note that in this work we use parameters similar to NewHope, e.g., q = 12289, n = 1024,

r ∈ {1, 2, 6, 9} where the values of r correspond to the ‘Short’ and ‘Tall’ parameters in [38].

Denote by L and L′ two one-dimensional lattices b q2c
1√
2
Z and q 1√

2
Z respectively. The above channel

model can also be written as a fading L/L′ channel, i.e.,

Yi = bq
2
c 1√

2
mi +Hi ∗ Zi, mod q

1√
2
Z, i = 1, · · ·n, (12)

where mi ∈ {0, 1} and the channel input X is restricted to the discrete alphabet X = L ∩ R(L′) =

{0, b q2c
1√
2
}. Since Alice knows exactly what e and s is, she knows both the distribution and realization

of the channel gain Hi. At the transmitter’s end, Bob only knows the distribution of Hi. Both of them

know the distribution of Zi. How to achieve the ergodic capacity of such an i.i.d. fading channel using

polar codes is well studied in [24] and we are about to adapt their strategy to our tailored RLWE channel

model. A diagram of a fading L/L′ channel with CSI available to the decoder is shown in Figure 2.

Denote by W : X → (Ỹ ,H) the fading L/L′ channel with CSI available to the decoder. The transition

Fig. 2. A block diagram of a fading L/L′ channel.

probability of W is

PỸ ,H|X(ỹ, h|x) = PY,H|X(y = ỹ + L′, h|x)
dỹ

dy

= PH(h)PY |H,X(y = ỹ + L′|h, x)

= PH(h)
∑
λ∈L′

1√
2πhσ

exp

{
−(ỹ + λ− x)2

2σ2h2

}
, (13)
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where σ =
√

n
2 r. The distribution of H is

PH(h) =
1

2σ4
h(h2 − 1) exp

{
−h

2 − 1

2σ2

}
=

2h(h2 − 1)

n2r4
e−

(h2−1)

nr2 , h > 1.

The pdf of H in terms of various choices of parameter r is illustrated in Figure 3.
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Fig. 3. Probability density function of fading coefficient H.

As discussed in [39] and [24], the capacity of the fading L/L′ channel is given by

C(L/L′, σ2) = EH
[
C(L′, (hσ)2)

]
− EH

[
C(L, (hσ)2)

]
= EH

[
h(L, (hσ)2)

]
− EH

[
h(L′, (hσ)2)

]
+ log |L/L′|,

where EH [·] denotes the expectation over the fading coefficient, h(L, σ2) and h(L′, σ2) are differential

entropies of mod-L and mod-L′ channels respectively, and |L/L′| is the order of the partition L/L′.

Specifically, h(L, σ2) is given by

h(L, (hσ)2) = −
∫
R(L)

fL,(hσ)2(n
′) log fL,(hσ)2(n

′)dn′,

fL,(hσ)2(n
′) =

∑
λ∈L

g(hσ)2(n
′ + λ), n′ ∈ R(L),

where R is a fundamental region of lattice L, g(hσ)2(n) is the density function of n← N (0, h2σ2). We

refer to fL,(hσ)2 as L-aliased Gaussian density function or L-periodic Gaussian density function which

is defined by summing up a set of copies of a Gaussian density function centered at the every lattice

point of L. The value of an L-aliased Gaussian variable n′ is restricted to any fundamental region of



19

L such that the integral of its density function over R(L) is obviously 1. See Figure 4 for the Ergodic

capacity of the fading L/L′ channel W : X → (Ỹ ,H) with respect to different choices of r. In a

communication system, the signal-to-noise ratio (SNR) is a measure of how much useful information

can be transmitted from information source to recipient. It is defined as the ratio of the signal strength

over the noise strength6.
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Fig. 4. Capacity of RLWE channel vs SNR given X ∈ {0, b q
2
c 1√

2
}, n = 1024, q = 12289.

Observe that the fading L/L′ channel W is a BMS channel in the sense that the equation PỸ ,H|X(ỹ, h|x =

0) = PỸ ,H|X(π(ỹ, h)|x = b q2c
1√
2
) holds for a permutation π(ỹ, h) = ([b q2c

1√
2
− ỹ] mod-q 1√

2
Z, h) over

the outputs (ỹ, h). Thus, we can achieve the capacity of the W with an equiprobable input distribution,

i.e. X is uniformly random over X .

IV. DESCRIPTION OF THE ENCRYPTION SCHEME

Table I gives a high-level description of the RLWE-based PKE scheme using polar codes which are

customized for our tailored RLWE channel model in canonical basis. The functions PolarEnc(·) and

PolarDec(·) are encoding and decoding algorithms of polar codes which will be explicitly introduced in

the sequel.

Remark 1: Unlike most RLWE encryption schemes (e.g., NewHope and LAC) where the error distri-

bution χ is defined over Rq, we use the definition of χ when the Ideal Learning With Errors problem

6Different r induces different SNR. The calculation of SNR with respect to the fading L/L′ channel is given in Appendix A
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was initially proposed by D. Stehlé, R. Steinfeld et al. in [40] where χ is defined on R/[0, q). Moreover,

in the formal definition of ring-LWE hard problems when it introduced in [8], [41], the error distribution

is also continuous over the field tensor product K ⊗Q R.

Remark 2: A plaintext m is uniquely mapped to a symbol b q2c
1√
2
PolarEnc(m) on the constellation

diagram in canonical basis and then it is switched to polynomial basis as vector v. Note that v ∈

(R/[0, q))n but not in Rq. We see it reasonable since χ is also real and continuous.

Parameters are n, q; error distribution χ on (R/[0, q))n

Alice (Server) Bob (Client)

a← Rq

s, e← χ t, e1, e2 ← χ

b = a · s + e mod Rq
(b,a)−−−→

c1 = a · t + e1 mod Rq

v = B̃−1b q
2
c 1√

2
PolarEnc(m)

c2 = b · t + e2 + v mod Rq

y = c2 − c1 · s mod Rq
(c1,c2)←−−−−

B̃y = B̃v + N mod B̃Rq

m = PolarDec(B̃y)

TABLE I

A RLWE PUBLIC KEY ENCRYPTION SCHEME WITH POLAR CODING AND DECODING.

One may notice in Table I that Alice finally derives a mod-B̃Rq channel (or equivalently a mod-Λ′

channel) as in Figure 1 rather than the mod-Λ′′ in formula (11) (or equivalently the mod-L′ channel in

(12)). Questions arise whether the tailored RLWE channel model in formula (11) makes sense and how

it will behave if we construct a polar code for the mod-Λ′′ channel when we actually have a mod-Λ′

channel. Lemma 3 illustrates the channel degradation relation between the above two different but related

channels.

Lemma 3: (Channel Degradation Relation Between RLWE Channel and Its Tailored Variant) Let Λ′

be the constellation space and let Λ′′ be its tailored variant as in Figure 1. Given the tailored RLWE

channel model as in formula (11) with CSI Hi known to the decoder as in Figure 2, the fading Ln/Λ′′

channel is degraded with respect to the fading Ln/Λ′ channel.

Proof 1: Denote by W ′ the fading Ln/Λ′ channel y′ = x + h ∗ z mod Λ′ where y′ ∈ R(Λ′),

x ∈ Ln ∩ R(Λ′) is the channel input, h is the channel gain and z is the Gaussian noise. In the same

fashion, we define the fading Ln/Λ′′ channel W ′′ as y′′ = x + h ∗ z mod Λ′′ where y′′ ∈ R(Λ′′),

x ∈ Ln ∩R(Λ′′).
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As formula (13) indicates, the L/L′ fading channel with CSI known to the receiver in formula (12) can

be viewed as an independent combination of channel gain H and a L/L′ Gaussian channel. Therefore,

with no loss of generality, we can view the channel gain h as a constant. We can rewrite channel W ′ as

W ′ : y′ = x+ z′ mod Λ′ where z′ ∼ N (0, h2σ2) and rewrite W ′′ as W ′′ : y′′ = x+ z′ mod Λ′′ where

z′ ∼ N (0, h2σ2). The channel transition probability of W ′ is

W ′(y′|x) =
∑
λ′∈Λ′

g(hσ)2(y
′ − x+ λ′), y′ ∈ R(Λ′)

=
∑
λ′∈Λ′

g(hσ)2(n
′ + λ′), n′ ∈ R(Λ′) (14)

where g(hσ)2 represents the density function of N (0, (hσ)2I). The channel transition probability of W ′′

is

W ′′(y′′|x) =
∑
λ′′∈Λ′′

g(hσ)2(y
′′ − x+ λ′′), y′′ ∈ R(Λ′′)

=
∑
λ′′∈Λ′′

g(hσ)2(n
′′ + λ′′), n′′ ∈ R(Λ′′)

(a)
=
∑
λ′∈Λ′

g(hσ)2(n
′ B̃
−1

√
2

+ λ′
B̃−1

√
2

), n′ ∈ R(Λ′)

=
∑
λ′∈Λ′

g(hσ)2

(
B̃−1

√
2

(n′ + λ′)

)
, n′ ∈ R(Λ′)

=
∑
λ′∈Λ′

g(hσ
√

2B̃)2(n
′ + λ′), n′ ∈ R(Λ′) (15)

where the equality (a) is due to the relation Λ′ =
√

2B̃Λ′′, λ′ =
√

2B̃λ′′, and n′ ∈ R(Λ′), n′′ ∈ R(Λ′′).

We observe from equation (15) that channel W ′′ is statistically equivalent to W ′′ : y′′ = x+ z′′ mod Λ′

where z′′ ∼ N (0, (hσ
√

2B̃)2). Since the transition probabilities in equation (14) and equation (15) are

two Λ′-aliased Gaussian distributions featured with variances (hσ)2 < (hσ
√

2B̃)2, we can prove W ′′ is

degraded with respect to W ′ by introducing an intermediate Ln/Λ′ channel W ′′′ with additive Gaussian

noise z′′′ ∼ N (0, (hσ
√

2B̃)2 − (hσ)2) such that W ′′ is a concatenation of W ′ and W ′′′, i.e.,

(x+ z′′) mod Λ′ = (x+ z′ + z′′′) mod Λ′

=
(
(x+ z′) mod Λ′

)
+ z′′′ mod Λ′.

The above concatenation satisfies the definition of channel degradation (Definition 3).

Give the channel degradation relation between the fading Ln/Λ′ channel W ′ and the fading Ln/Λ′′

channel W ′′, we can guarantee that the polar codes constructed for W ′′ also fit in with W ′. How to

explicitly construct polar codes will be shown in next section.
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V. POLAR CODING FOR THE TAILORED RLWE CHANNEL

As discussed in Section II-D, we need a BDMS channel before we can adapt the polar coding methods,

including calculating the Bhattacharyya parameters of the synthesized channels, defining the information

indices and frozen indices, encoding and SC decoding. We have already proved the fading L/L′ channel

W : X → (Ỹ ,H) as in formula (12) is a BMS channel in Section III-C. Since we assume the channel

gain H and Gaussian noise Z to be continuous and so is the channel output, we need to discretize

the channel output H, Ỹ before constructing polar codes. An elegant channel quantization scheme was

proposed in [24] where the two output H and Ỹ are quantized independently with reasonable loss of

channel capacity. Basically, the channel gain H is quantized into a series of discrete values with uniform

occurrence probability. As for the output Ỹ , we will decompose the L/L′ channel into multiple BDMS

channels such that the overall channel capacity almost preserves with negligible loss.

A. Quantization of the Fading Coefficient

As discussed in previous sections, the fading L/L′ channel with CSI available to the decoder is

statistically equivalent to an independent combination of the fading coefficient H and an L/L′ channel

with additive Gaussian noise of variance (hσ)2. Therefore, we can firstly quantize H then the L/L′

channel. Define an ascending sequence {αi} in the following form

α1 = 1, α2, · · · , αm, αm+1 = +∞,

so that for 1 ≤ i ≤ m we have ∫ αi+1

αi

PH(h)dh =
1

m
.

We take the centroid with respect to the interval (αi, αi+1) as the quantized alphabet Hq = {hi} for

i = 1, · · · ,m where hi is calculated as follows.

hi =

∫ αi+1

αi

mhPH(h)dh.

B. Degrading Transform Quantization

As in Figure 2 we viewed the tailored RLWE channel as an i.i.d. fading channel. For such a channel,

polar codes are constructed in [24] to achieve the ergodic capacity C(W ) as long as the receiver knows

the CSI and the transmitter knows the CDI. Given N (N = 2m,m ∈ Z) i.i.d. tailored RLWE channels

W : X → (Ỹ ,H), we define the channel input as X1:N = U1:NGN where U1:N ∈ {0, 1}1:N and GN

is the generator matrix7. We obtain N synthesized channels W (i)
N : U (i) → (U1:i−1, Ỹ 1:N , H1:N ) for

7We are using the notation from coding theory where capital N indicates the block length of a channel; it is equal to the

degree n of the 2n-th cyclotomic polynomial xn + 1.
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1 ≤ i ≤ N by performing channel combining and channel splitting. The Bhattacharyya parameter for W

is given by

Z(W )
4
=
∑
ỹ,h

√
PỸ ,H|X(ỹ, h|0)PỸ ,H|X(ỹ, h|1).

To compute Z(W
(i)
N ) efficiently, we employ the degrading transform proposed in [34] to quantize a BMS

channel W with continuous output alphabet into a degraded and approximated channel WQ with finite

output alphabet size. Intuitively, the finer the quantized output alphabet is, the better WQ approximates

W . Since we have already quantized H as hi for i = 1, · · · ,m, we can consider hi as a constant and

quantize the L/L′ channel Whi
: Ỹ ← X,hi for each hi.

We define the likelihood ratio (LR) of a channel W as

λ(ỹ, hi):=
WỸ |X,hi

(ỹ|0, hi)
WỸ |X,hi

(ỹ|b q2c
1√
2
, hi)

, (16)

where the transition probability WỸ |X,hi
is

WỸ |hi,X
(ỹ|0, hi) = fL′,0,h2

iσ
2(ỹ) =

∑
λ∈L′

g0,(hiσ)2(ỹ + λ),

WỸ |hi,X
(ỹ|bq

2
c 1√

2
, hi) = fL′,b q

2
c 1√

2
,h2

iσ
2(ỹ) =

∑
λ∈L′

gb q
2
c 1√

2
,(hiσ)2(ỹ + λ).

Figure 5 depicts WỸ |X,hi
and λ(ỹ, hi) by giving some examples when q = 12289, r = 2 and hi = 10, 20.

We can see it in Figure 5 that the channel Whi
: Ỹ ← X,hi is BMS with Ỹ continuously located over

the interval [0, q/
√

2). There exists a permutation function π(ỹ) = (b q2c
1√
2
− ỹ) mod q/

√
2 such that

W (ỹ|0, hi) = W (π(ỹ)|b q2c
1√
2
, hi). Intuitively, the BMS channel Whi

can be decomposed into infinite

binary symmetric channel (BSC) channels Wc : Ỹc ← X,hi where the output is Ỹc ∈ {yc, π(yc)} for

continuous yc ∈ [0, q/
√

2) , X ∈ {0, b q2c
1√
2
} and the crossover probability is the corresponding proba-

bility density W (ỹc|X,hi). If we focus on the likelihood ratio λ(ỹc, hi) ≥ 1, the crossover probability

of BSC channel Wc is 1
λ(ỹc,hi)+1 . The capacity of this BSC is

C[λ(ỹc, hi)] = 1− λ(ỹc, hi)

λ(ỹc, hi) + 1
log

λ(ỹc, hi) + 1

λ(ỹc, hi)
− 1

λ(ỹc, hi) + 1
log (λ(ỹc, hi) + 1),

where λ(ỹc, hi) ≥ 1. Quantitatively, the continuous decomposition of Whi
preserves the channel capacity

in the sense that

C(Whi
) =

∫
λ(ỹ,hi)≥1

(WỸ |X,hi
(ỹ|0, hi) +WỸ |X,hi

(ỹ|bq
2
c 1√

2
, hi))C[λ(ỹ, hi)] dỹ,
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(d) hi = 30, r = 2, q = 12289

Fig. 5. The probability density and likelihood ratio of W : X,hi → Ỹ .

where the integral interval is restricted to ỹ such that λ(ỹ, hi) ≥ 1. If we ignore the subtle geometrical

error introduced by rounding b·c, we can observe a symmetry feature in the graphs in Figure 5 and we

find that the valid integral interval is

A := [0, bq
2
c 1

2
√

2
] ∪ [bq

2
c 3

2
√

2
, q

1√
2

].

We divide the interval A into ν segments Aj for j ∈ [ν] such that

Aj =

{
ỹ ∈ A :

j − 1

ν
≤ C[λ(ỹ, hi)] <

j

ν

}
=

{
ỹ ∈ A :

1

h−12

(
ν−i+1
ν

) − 1 ≤ λ(ỹ, hi) <
1

h−12

(
ν−i
ν

) − 1

}
,

where h2(·) is the binary entropy function. Each Aj corresponds to a BSC channel with crossover

probability

pj =

∫
Aj
WỸ |X,hi

(ỹ|b q2c
1√
2
, hi)dỹ∫

Aj
WỸ |X,hi

(ỹ|b q2c
1√
2
, hi)dỹ +

∫
Aj
WỸ |X,hi

(ỹ|0, hi)dỹ
, (17)
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where ∫
Aj

WỸ |X,hi
(ỹ|0, hi)dỹ =

∫
Aj

∑
λ∈L′

g0,(hiσ)2(ỹ + λ)dỹ∫
Aj

WỸ |X,hi
(ỹ|bq

2
c 1√

2
, hi)dỹ =

∫
Aj

∑
λ∈L′

gb q
2
c 1√

2
,(hiσ)2(ỹ + λ)dỹ.

Since lattice L′ is infinite, we can numerically approximate fL′,0,h2
iσ

2(ỹ), fL′,b q
2
c 1√

2
,h2

iσ
2(ỹ) then λ(ỹ, hi), Aj

and pj .

If we define zj and its conjugate z̄j to be the channel output of the BSC associated with Aj , we will

obtain the quantized output alphabet of Whi
as

Z := {z1, z̄1, z2, z̄2, · · · , zν , z̄ν}.

If we denote by WQ the quantized version of the original fading L/L′ channel W : X → Ỹ ,H , the

output alphabet of WQ is Hq ⊗ Z := {hi} ⊗ {z1, z̄1, · · · , zν , z̄ν} for i ∈ [m] and j ∈ [ν] where ⊗ is a

tensor product of two sets.

Lemma 4: The channel WQ : X → Z,Hq is degraded with respect to W .

Proof 2: We supply an intermediate channel WP : (Ỹ ,H)→ (Z,Hq) such that

WP (z, hq|ỹ, h) =


1,

1,

0,

if z = zj , ỹ ∈ Aj , and hq = hi, h ∈ [αi, αi+1),

if z = z̄j , π(ỹ) ∈ Aj , and hq = hi, h ∈ [αi, αi+1),

otherwise.

We can find there exits a channel degradation relation such that

WQ(z, hq|x) =

∫
WỸ ,H|X(ỹ, h|x)WP (z, hq|ỹ, h)dỹ dh.

Corollary 1: Given that WQ : X → Z,Hq is degraded with respect to W , the capacity, Bhattacharyya

parameter and frame error rate are of the two channels are related as follows.

C(WQ) ≤ C(W ),

Z(WQ) ≥ Z(W ),

Pe(WQ) ≥ Pe(W ).

Proof 3: As a corollary of Lemma 2 and 4.

It is also indicated in [34] that the capacity loss introduced by the degrading transform is no greater

than 1/ν. If we choose large alphabet size m and 2ν, the loss of capacity is negligible and so is Z(·)

and Pe(·). We also verified our channel quantization scheme with respect to the channel capacity. As is
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Fig. 6. A comparison between C(W ) and C(WQ) for different r, when m = 20, ν = 50.

shown in Figure 6, for m = 20, ν = 50 and multiple choices of r, C(WQ) is comparable to C(W ) with

only negligible difference.

To summarize, what the degrading transform does is to convert the RLWE channel W with continuous

output alphabet into a BDMS channel WQ with finite output, which can be viewed as a combination of

m× ν BSC channels. In this way the Z(WQ) can be calculated according to Definition 2.

C. Polar Encoding and SC Decoding

Given the BDMS channel WQ obtained by channel quantization, we can adapt the polar encoding and

decoding method introduced in Section II-D to WQ. Recall that the output alphabet of WQ is m × 2ν.

As the channel combining and splitting process continue, the alphabet size of the synthesized channels

W
(i)
QN will increase exponentially as the recursion proceeds. To handle this problem, we employ an

approximation method proposed in [42] which can reduce the alphabet size of a BDMS channel with

negligible and traceable loss of performance by merging some of the output symbols.

After we finish computing the Bhattacharyya parameters of all the W (i)
QN , we can define the information

set A and frozen set Ac for code rate R. We construct the polar codewords as

x1:N = uAGN (A)⊕ uAcGN (Ac).

Upon observing the signal ỹ1:N and invoking their knowledge of the CSI h1:N , the recipient can apply

the successive cancellation (SC) decoder to ỹ1:N , h1:N and give an estimation of uA according to the
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decision function

u(i) =

 0,

1,

if L(i)
N (ỹ1:N , h1:N , u1:i−1) ≥ 1

otherwise
,

where the likelihood ratio L(i)
N (ỹ1:N , h1:N , u1:i−1) ,

W
(i)
N (ỹ1:N , h1:N , u1:i−1|0)

W
(i)
N (ỹ1:N , h1:N , u1:i−1|1)

can be calculated recur-

sively by SC decoding algorithm in [30]. Note that the input of SC decoder λ(ỹ, h) is given in formula

(16). A block decoding error occurs if u1:N 6= u1:N ; we may interchangeably use block error probability

and DFR in this work. The complexity of both polar encoding and SC decoding are O(N logN).

Additionally, the two algorithms both require constant steps of operations for fixed choices of R,N,A,

making constant-time implementations possible.

VI. RESULTS: PERFORMANCE ANALYSIS AND IMPROVEMENT

According to Theorem 2, the block error probability Pe(N,R,A) of SC decoding is upper bounded

by the sum of Z(W
(i)
N ). Since WQ �W and W (i)

QN �W
(i)
N according to Lemma 1, we derive

Pe(N,R,A) ≤
∑
i∈A

Z(W
(i)
NQ). (18)

Recall it in Figure 6 that the capacity of our tailored RLWE channel deteriorates dramatically because

we use a tailored and shrunk constellation diagram. As a result, for most choices of r which are believed

to be secure in RLWE-based PKE, we cannot obtain a desired DFR lower than 2−128 which is used as

a benchmark in NIST standardization. As explained in Section III-B, we carefully and conservatively

choose a cube Λ′′ which is enclosed in the maximal sphere inscribed in Λ′. Almost surely there exists

other valid choices of Λ′′ lager than the one we choose, though it is not easy at all to figure out the

optimal one. Our solution to this harsh problem is to gradually scale Λ′′ up by a factor t ≥ 1 and run

simulations for each to justify if the numerical results of Pe coincide with the upper bound in formula

(18).

Figure 7 compares the upper bound of decoding probability Pe with our simulation results in the

setting of q = 12289, n = 1024, r = 1. The solid lines indicate the upper bound of decoding error

probability Pe with respect to different code rate R. The solid lines with stars represent our simulation

results which, for reasonably small DFR, comply with the upper bound. We aim to achieve Pe = 2−128

at code rate R = 0.25. Obviously it is unachievable when the scale factor t = 1 though our experimental

results indicated by the blue stars comply with our estimation indicated by the blue line. We gradually
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increase t and obtain the corresponding estimation of Pe. We can see that the decoding performance is

improved significantly upon a slightly larger t, e.g., Pe is smaller than 10−60(≈ 2−200) at R = 0.25 for

t = 2. When t = 2, the experiment result, the red star, also complies with its corresponding theoretical

estimation, i.e., the red solid line. It implies that our estimation of Pe for t = 2 is reliable to some extent.

Please note that all these experiments target at relatively large Pe which is feasible to verify.
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Fig. 7. Decoding error probability for RLWE-Based PKE with q = 12289, n = 1024, r = 1 and multiple choices of scale

factor t: simulation results vs. upper bound.

Figure 8 can be interpreted in the same manner as Figure 7. The only different parameter used here is

r = 2. The solid lines in different colors represent our estimation of Pe and the stars are our simulation

results. By making scale factor t as large as 6, the target R and Pe can be achieved. For relatively

large Pe shown in the graph, we observed that our simulation results comply with our estimation when

t = 6, 7, 9, 11, 12. However, when t = 14, simulation results are worse than our estimation, implying that

the constellation diagram Λ′′ is overwhelmingly large and goes beyond the valid domain.

In Figure 9, r = 2.83. We can observe that our estimation are effective for t = 8, 12 but fails for

t > 12. We can see that none of our simulation results comply with the estimation in Figure 10. It implies

that the scaling method cannot be applied for r ≥ 3.46.

Remark 3: The error sources for the scaled and tailored RLWE channel model are concluded as follows:

(a) As t increases, the constellation space Λ′′ may go beyond Λ′ and our model will fail to describe

the statistical feature of the real channel;

(b) The SC decoder takes B̃y to be the channel output of a fading Ln/Λ′′ channel while it is actually

a fading Ln/Λ′/Λ′′ channel according to Table I. This is because Alice firstly performs a mod Rq

operation and then calculates B̃y (equivalent to Ln/Λ′) upon receiving y from Bob. For small r,
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the two have quite close distributions but become less likely as r goes larger. This explain why

our model fails when r ≥ 3.46 in Figure 10.
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Fig. 8. Decoding error probability for RLWE-Based PKE with q = 12289, n = 1024, r = 2 and multiple choices of scale

factor t: simulation results vs. upper bound.
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Fig. 9. Decoding error probability for RLWE-Based PKE with q = 12289, n = 1024, r = 2.83 and multiple choices of scale

factor t: simulation results vs. upper bound.

VII. DISCUSSION: IMPROVING SECURITY USING NEW DFR

There exists a trade-off relation between DFR and security level of RLWE-based PKE. Basically,

larger error term (or large binomial parameter k in NewHope) gives better security but worse DFR. The

motivation of this work is to exploit polar codes to give a safer DFR margin such that we can improve
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Fig. 10. Decoding error probability for RLWE-Based PKE with q = 12289, n = 1024, r = 3.46 and multiple choices of scale

factor t: simulation results vs. upper bound.

the security level while achieving the target DFR. In NIST standardization, this target DFR is 2−128. A

more conservative target 2−140 is used in prior literature [16], [13].

The concrete security analysis of RLWE-based PKE, so far, is based on the hardness of LWE as in [4]8.

Essentially, we will consider (a) a primal attack which consists of constructing and solving unique-SVP

given the LWE samples (b) a dual attack which consists of searching for the shortest vector in a dual

lattice given LWE samples. Table II illustrates the DFR and security of RLWE-based PKE using our

polar coding scheme for different choices of binomial parameter k (r =
√
k/2) and scale factor t. As

we discussed in last section, the scale factor of the constellation diagram cannot be larger than 12 for

k = 8, otherwise the estimation of DFR is no longer valid. We select a more conservative choice t = 11

and achieve DFR= 2−298 for n = 1024, q = 12289, k = 8 using our polar coding scheme as is smaller

than the DFR 2−216 of NewHope round 2 in the same setting. When k = 16, we can achieve a DFR of

2−156 while in [7] NewHope gives a DFR of 2−61 in the same setting. As discussed in Figure 10, our

calculation of DFR for k ≥ 24 (r ≥ 3.46) is no longer applicable.

In conclusion, our polar coding scheme allows RLWE-based PKE to achieve the target DFR 2−140 (and

also 2−128) while improving the security by 9.4% by using larger k = 16. The state-of-the-art study of

this kind can be classified into two categories. In [13], LDPC codes and BCH codes are used to improve

the security level by 31.76% while achieving DFR of 2−140. However, their DFR estimation highly relies

on an “independence assumption” and their error-correcting algorithms are not constant-time. In [16],

8The security estimator is available at https://github.com/tpoeppelmann/newhope.



31

Song et al. gave a tighter bound on DFR without amending the coding scheme of NewHope Simple and

the security is improved by 7.2%.

TABLE II

IMPROVED SECURITY OF RLWE-PKE USING POLAR CODING FOR n = 1024, q = 12289.

k t DFR
cost of primal attacks

classical/quantum [bits]

cost of dual attacks

classical/quantum [bits]

8 6 2−159

259/235 257/233
8 7 2−229

8 9 2−252

8 11 2−298

16 12 2−156 282/256 281/255

24 N/A

k = 14,[16] 2−156 278/252 276/250

k = 66,[13] 2−140 341/309 338/307

VIII. CONCLUSIONS

We have presented the first example of a polar coding technique to improve the DFR of RLWE-based

PKE which takes the advantage of viewing protocol as a fading channel with CSI known to the decoder.

Moreover, switching from polynomial basis to canonical basis unfasten the dependency existing in the

residue noise term though a new correlation is introduced to the message term. The constellation space

is tailored to construct an i.i.d. fading channel at the cost of decoding performance and a scaling method

was employed to compensate the performance loss. Both numerical and theoretical results are given to

verify the DFR estimation. The advantages of our method are as follows.

• We derive an i.i.d. channel model of the residue noise term in H space using canonical embeding.

The actuality that some knowledge of noise term is known by the decoder is exploited to improve

the decoding performance.

• The security is improved by 9.4% while achieving the target DFR of 2−140 in the setting of n =

1024, q = 12289, k = 16 (r = 2.83). This improvement is better than the benchmark 7.2% in [16].

Though it is not an attractive as the record 31.76% in [13], their results rely on an “independence

assumption” that may not hold.

• Polar codes enables constant-time implementation of encoding and decoding while BCH and LDPC

codes employed in [13] do not. The quantity of operations required by encoding and decoding is

solely determined by block length N and code rate R.
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The disadvantages are also given as follows.

• Switching between the two basis by multiplying matrix B̃ and B̃−1 as in Table I increases the

complexity of the protocol.

• To give the i.i.d. channel model, we design a tailored constellation diagram which gives shorter code

distance than the original modulation {0, b q2c}. It will hurt the decoding performance though the

power of polar coding and the scale factor t can counteract its effects to some extent.

APPENDIX

SNR is defined as SNR = Psignal/Pnoise where Psignal and Pnoise denote the signal and noise power,

respectively.The channel model of RLWE-based PKE in polynomial basis is

bq
2
c ·m+ e · t− s · e1 + e2,

where e, t, s, e1, e2 are polynomials in
Zq[x]

xn + 1
whose coordinates are independently drawn from a spheri-

cal normal N (0, σ2I). The multiplication of two polynomials can be interpreted as the convolution of their

coordinates, giving rise to n parallel and correlated channels. If we set message m to be {−b q4c, b
q
4c}

n,

the SNR is roughly
q2

16(2nσ4 + σ2)
.

In the tailored RLWE channel model in formula (11) and (12), polynomials convolutions are trans-

formed to component-wise multiplication in canonical basis. Since we shrink the constellation diagram

as described in Section III-B, we set the message m to be {−b q

4
√

2
c, b q

4
√

2
c}n. The channel gain Hi and

Gaussian noise Zi are independent and their distribution are discussed in detail in formula (11). The SNR

is
q2

32(n2σ4 + nσ2/2)
.
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