
A Novel Proof of Shuffle: Exponentially Secure
Cut-and-Choose

Thomas Haines1 and Johannes Müller2[0000−0003−2134−3099]

1 Norwegian University of Science and Technology, Norway,
firstname.lastname@ntnu.no

2 SnT, University of Luxembourg, Luxembourg,
firstname.lastname@uni.lu

Abstract. Shuffling is one of the most important techniques for privacy-
preserving protocols. Its applications are manifold, including, for ex-
ample, e-voting, anonymous broadcast, or privacy-preserving machine-
learning. For many applications, such as secure e-voting, it is crucial
that the correctness of the shuffling operation be (publicly) verifiable.
To this end, numerous proofs of shuffle have been proposed in the liter-
ature. Several of these proofs are actually employed in the real world.
In this work, we propose a generic compiler which can transform any
“shuffle-compatible” Σ-protocol (including, among others, Σ-protocols
for re-randomization, decryption, or key shifting) into a Σ-protocol for
permutations of the underlying relation. The resulting proof of shuffle is
black-box, easily implementable, simple to explain, and comes with an
acceptable computational overhead over the state-of-the-art. Because we
machine-checked our compiler in Coq, the new proof of shuffle is partic-
ularly suitable for applications that require a superior level of security
assurance (e.g., high-stake elections).

1 Introduction

Proofs of shuffles are fundamental building blocks in many privacy-pre-
serving technologies. Most prominently, they are employed in verifiable
mix nets [26] that are often used for secure e-voting. Numerous proofs
of shuffles have been proposed in the literature. Some of them, such as
the state-of-the-art proofs of shuffles by Terelius-Wikström [42, 44] and
Bayer-Groth [5], were deployed in government elections in Switzerland,
Estonia, Australia, and Norway. Additionally, they have also processed
millions of ballots in low-stake elections. However, these state-of-the-art
proof systems have some disadvantages:

1. Design complexity: Implementing cryptography is notoriously diffi-
cult [20, 25, 27, 40, 41], and this is even more the case for the highly
complex proofs of shuffles from [5, 14, 42, 44]. Theoretical superiority



can be useless if a protocol is not implemented correctly in practice.
Indeed, the vVote project [11] in the Australian state of Victoria took
this issue into account: they used a technique called random partial
checking [28] since it was easier to implement even though it provides
weaker security from a theoretical perspective.

2. Cryptographic security proofs: Due to their complexity, cryptographic
security proofs tend to be error-prone. For example, the original proof
of the OAEP construction [6] needed to be fixed multiple times [16,
17, 39]. On the contrary, machine-checked proofs (e.g., [1] for OAEP)
in reasonable frameworks guarantee higher assurance. However, there
do not exist such proofs in the literature for the state-of-the-art proofs
of shuffles [5, 14], even though this would be particularly desirable due
to their involved concepts.

3. Specific design: In order to build modular security protocols (e.g., e-
voting protocols), it is advantageous if sub-protocols (e.g., mix nets)
are black-box. By this, interfaces can be simplified, and sub-protocols
can be replaced/updated more easily. Unfortunately, state-of-the-art
proofs of shuffles [5, 14, 42, 44] have very specific protocol structures
and can thus support particular data structures only.

In applications like electronic voting, mix nets are by far the most
complicated pieces of cryptography implemented, and, overwhelmingly,
see utterly inadequate scrutiny, even compared to the poor base level for
deployed e-voting schemes, more generally. Given the long list of verifiable
mix nets shown to be flawed (see, e.g., [29–32, 43]), a trusted methodology
for checking the security of verifiable mix nets—both in the design and
implementation—is of paramount importance. Indeed, the SwissPost e-
voting system for national elections in Switzerland was withdrawn from
use in 2019 in part due to an insecure mix net implementation [25]. Unlike
in regularly used security protocols (e.g., key exchange), efficiency is of
less concern in high-stake e-voting. Instead, for such elections, it is far
more important that the e-voting system does in fact provide the security
properties it is supposed to achieve; in short: “security assurance � top-
notch performance”.

In this paper, we follow a novel and radically different approach in
order to address the aforementioned requirements. We propose a con-
ceptually simple and widely applicable proof of shuffle that we machine-
checked in Coq to demonstrate its superior level of security assurance.
More precisely, we provide the following contributions.

Contributions.

2



1. We introduce and formalize the notion of shuffle-compatible Σ-proto-
cols (SCSP). We show that several commonly used Σ-protocols are
shuffle-compatible. This includes, among others, Σ-protocols for re-
encryption of arbitrary homomorphic ciphertexts, for re-randomisation
of arbitrary homomorphic commitments (including lattice-based ones),
for key shifting in ElGamal PKE, and for decryption in ElGamal PKE.

2. We propose a generic and conceptually simple compiler which can
transform any SCSP into a Σ-protocol for permutations of the under-
lying relation. The resulting proofs of shuffle have particularly inter-
esting properties in the interactive setting.

3. We provide machine-checked (and cryptographic) security proofs for
the generic compiler and the SCSPs mentioned before. To this end,
we used the interactive theorem prover Coq [7].3

Structure of the paper. We start with related work in Sec. 2. After that,
in Sec. 3, we describe the main technical idea of our generic compiler as
well as a number of interesting Σ-protocols to which it can be applied.
In Sec. 4, we formalize the notion of SCSP and show that the interesting
Σ-protocols from Sec. 4 provide this property. We describe our generic
compiler in Sec. 5 and analyze its complexity in Sec. 6. We conclude in
Sec. 7.

2 Related Work

2.1 Proofs of shuffle

Proofs of shuffles are often used to make mix nets verifiable. Beyond
proofs of shuffles, several different techniques have been proposed for this
purpose (see [26] for a recent systemization-of-knowledge). Since proofs of
shuffles are the only known technique to provide an ideal verifiability level
for mix nets (i.e., where manipulating at least one message is detected
with overwhelming probability), we will restrict our attention to proofs
of shuffles in what follows.

In practice, the most common proofs of correct shuffle are [42, 44]
(which are foundation of the prominent Verificatum mix net [45]) and [5].
There are also more efficient proofs of correct shuffle which have since
emerged [13–15]. These new proofs are roughly three times faster than [5,
42, 44] but require trust assumptions which are typically undesirable in
practice (see [26]).

3 The Coq code can be found at https://www.dropbox.com/s/7q9k504hie144x7. We
will later make it available at a public git repository.

3



Historically, the first technique for verifiable mix nets was proposed
in [35]. Their technique was a straightforward cut-and-choose zero-know-
ledge proof. The proof is fairly effective but was considered to be compu-
tational impractical. We show the cut-and-choose based approach intro-
duced in this paper is not only more generic and machine-checked but it
also has acceptable performance overhead compared with state-of-the-art
protocols [5, 42, 44] (see Sec. 6). More specifically, in the most common
case (mixing ElGamal ciphertexts) our proof of shuffle either has, de-
pending on the batch techniques we apply, computational cost or size
within a small factor of the state-of-the-art, but not both at the same
time. We leave as future work the investigation of batch techniques which
would reduce both size and computational cost. Nevertheless, we believe
that, for applications like high-stake e-voting, the simplicity, generality
and machine-checked security of our approach more than justifies the
performance trade-off.

To test the practicality, we simulated a test election using commod-
ity hardware with 1,000,000 voters. We employed the proof of shuffle
produced by our transform on the ElGamal re-encryption SCSP imple-
mented over the prime-order Ristretto subgroup of Curve25519 using
curve25519-dalek [34] and the optimisations detailed in Sec. 6.3. The
proof generation and verification time was 40 minutes. The proof size is
128 megabytes (which is denominated by sending the encrypted votes).
Larger elections might require either additional cores or checking the proof
overnight.

2.2 Machine-checked proofs

Interactive theorem provers are tools to encode mathematically rigorous
definitions and algorithms. Desired properties can be encoded as theorems
which are interactively proved (machine-checked).

The machine-checked proofs of our compiler and the SCSPs are in the
interactive theorem prover Coq [8]. Coq is based upon Coquand’s Cal-
culus of Constructions and has been developed for decades. A significant
body of work has already been completed on verifying cryptography in
Coq, most notably, the CertiCrypt project [2]. Because the proofs we give
are straight reductions without utilizing game hopping, we do not use Cer-
tiCrypt. Moreover, CertiCrypt appears to have been abandoned in favor
of EasyCrypt.4 EasyCrypt is a separate interactive proof system which
is designed specifically for verifying cryptographic proofs. Early versions

4 See http://certicrypt.gforge.inria.fr/\#related

4



of EasyCrypt were compatible with CertiCrypt but this has since been
discontinued. EasyCrypt is seeing exciting developments but at present
is far less mature than Coq.

Interactive theorem provers, particularly mature ones, give higher con-
fidence in the security of the proofs. However, do they not (necessarily)
increase confidence in the definitions. For this reason, we prove our trans-
form under established definitions. We use the definition of a Σ-protocol
from [24] which was subsequently refined in [23].

One advantage of using Coq is that we able to take advantage of it’s
well-established code extraction facility to produce practical implementa-
tions of the verified specifications. This has been done before by Haines
et al. [23, 24] who proved the security of the underlying sigma protocol in
the Terelius-Wikström [42, 44] proof of shuffle and used the extraction fa-
cility to produce a verifier to check real elections. Compared to their work
ours is more general in that Terelius-Wikström was only proved for re-
encryption and re-randomisation whereas we cover a much wider class of
underlying relations. Moreover, they only checked the completeness and
zero-knowledge of the underlying sigma protocol but not that this suffices
for the completeness and zero-knowledge of the Terelius-Wikström mix
net. In contrast we machine check the entire proof of shuffle.

3 Technical Overview

We first describe the main idea of our generic proof of shuffle. We then
elaborate on a number of concrete interesting applications.

3.1 Main idea

We now explain the main idea of the generic compiler which takes as input
an arbitrary SCSP for relation R and outputs a (standard) Σ-protocol
for relation

RShuffle = {((xj), π), (yj , y
′
j)j∈[τ ]) : ∀j ∈ [τ ] : ((xj), (yj , yπ(j))) ∈ R},

where τ denotes the size of the shuffled vector.5 To illustrate our approach,
we first describe the notion of SCSPs, i.e., how they differ from general
Σ-protocols. After that, we explain the main technique of our compiler.

Shuffle-compatible Σ protocols (SCSP). In general, a Σ-protocol for re-
lation R is a particular form of interactive zero-knowledge proof between

5 We will refine RShuffle further below.

5



a prover P and verifier V . The joint input for P and V is a statement y,
and the secret input to P is a witness x for y, i.e., (x, y) ∈ R. In the first
step, the prover creates a so-called commitment a, sends it to the verifier,
who then replies with a random challenge e in the second step. In the
third step, the prover computes a response z which it sends to the verifier.
Eventually, the verifier on input statement y and transcript (a, e, z) either
outputs “accept” or “reject”. Each Σ-protocol guarantees completeness
(if the prover and the verifier run their specified programs and (x, y) ∈ R,
then the verifier outputs “accept”), special soundness (if the prover is able
to output valid responses z and z′ for two different challenges e and e′

but for the same commitment a, then the prover knows a witness x for
statement y), and special honest verifier zero-knowledge (the interaction
between the prover and the verifier can be simulated when the challenge
e is given). The formal definition of a Σ-protocol is given in Sec. 4.1.

Now, a SCSP is essentially a (standard) cut-and-choose Σ-protocol,
where the statement y is of the form (prm, c0, c1). That is, the state-
ment consists of some parameters prm and two elements c0 and c1; for
example, a public key and two ciphertexts. In the commitment phase,
the prover constructs an intermediary value a between c0 and c1. Af-
ter it receives a challenge bit e, the prover responds with a message z
that reveals the relationship between a and ce. In particular, the verifier
can check the correctness of the transcript (a, e, z) using only the par-
tial statement (prm, ce). We will formally define the notion of SCSPs in
Sec. 4.2. As we shall see below, many interesting Σ-protocols are actually
shuffle-compatible.

Compiler. Let us now explain the main concept of our generic compiler.
The compiler takes as input a SCSP for relation R, and outputs a (stan-
dard) Σ-protocol ΣShuffle for relation

RShuffle = {(((xj)j∈[τ ], π), (prm, (cj0)j∈[τ ], (c
j
1)j∈[τ ])) :

∀j ∈ [τ ] : (xj , (prm, c
π(j)
0 , cj1)) ∈ R}.

To this end, the compiler constructs ΣShuffle (Fig. 1) as follows:

Commit phase: The prover P first runs the commit algorithm of the
underlying SCSP for each entry j to obtain a commitment aj (plus
some internal state αj). Then, the prover shuffles (aj)j∈[τ ] accord-
ing to a uniformly random permutation πa, and returns commitment
(aπa(j))j∈[τ ].

Response phase: The prover first runs the response algorithm of the
underlying SCSP for each entry j to obtain a response zj . If the chal-

6



lenge bit e was 0, the prover responds with (π ◦ πa, (zπa(j))j∈[τ ]), and

otherwise with (πa, (z
πa(j))j∈[τ ]). That is, the prover either “opens”

the right links while the left ones remain hidden by πa, or the prover
“opens” the left links while the right ones remain hidden by π.

Verification phase: The verifier checks whether the opened links are
correct, i.e., for each j, the verifier runs the check of the underlying

SCSP for partial statement (prm, c
πz(j)
e ) and transcript (aj , e, zj).

We will define ΣShuffle formally in Sec. 5. We provide both a machine-
checked proof of our compiler in Coq [7] (module ProofOfShuffle) as
well as a cryptographic one (App. D).

3.2 Applications

We list a number of concrete SCSPs that can be transformed by our
generic compiler into Σ-protocols of shuffle with interesting applications.
We formally define these examples in App. A. The following list is by no
means exhaustive; there likely exists many further potentially interesting
SCSPs.

Re-encryption of ciphertexts. In every homomorphic PKE scheme, it is
possible to re-encrypt a given ciphertext c = Enc(pk,m; r) into a different
ciphertext c′ = Enc(pk,m; r′) (which still encrypts the same message m
under the same public key pk but with different randomness r′) without
knowledge of the secret key sk, message m, or randomness r. Promi-
nent examples of such schemes include ElGamal PKE [19] and Paillier
PKE [36]. We will show in App. A that a (common) generic Σ-protocol
for proving that c′ is a re-encryption of c is actually SCSP. Now, by
transforming this SCSP with our generic compiler from Sec. 5, we can
use the resulting Σ-protocol for making any re-encryption mix net verifi-
able [26]. These protocols are often used in secure e-voting to guarantee
vote privacy (e.g., in Civitas [10]).

Re-randomization of commitments. In every homomorphic commitment
scheme, it is possible to re-randomize a commitment c = Com(pk,m; r)
into a different commitment c′ = Com(pk,m; r′) without knowledge of
the opening (m, r). A prominent example of such schemes is Pedersen’s
one [37]. Similarly to the previous application, a (common) generic Σ-
protocol for proving that c′ is a re-randomized commitment of c is shuffle-
compatible as well.

7



In the case of homomorphic commitments (unlike encryption), it is
particularly interesting that our novel compiler can, in principle, not only
be used to construct an efficient proof of shuffle for “traditional” com-
mitment schemes but also for lattice-based ones. The reason is that a
number of zero-knowledge proofs for the required underlying relations
have been proposed (e.g., [4, 12]) that can be employed very efficiently in
our scenario because they can be amortized by performing many of them
in parallel.

Key shifting in ElGamal PKE. In several applications of the ElGamal
PKE, the key is distributed across multiple authorities. For this reason,
we need to do a key shifting (sometimes called partial decryption) mix [18]
rather than a decryption mix. In addition, to prevent senders tracking
their own ciphertext through the mix net, we want to simultaneously
re-randomise and do a key shift at each point.

Decryption of ElGamal ciphertexts. A commonly used Σ-protocol for
proving that an ElGamal ciphertext was decrypted correctly is shuffle-
compatible as well.

4 Sigma Protocols

In this section, we first recall the general concept of Σ-protocols. Af-
ter that, we describe a class of Σ-protocols which are compatible with
the novel proof of shuffle that we will introduce in Sec. 5. This class
includes numerous Σ-protocols for commonly used relations, such as re-
randomisation of commitments or ciphertexts, decryption, and key shift-
ing (see App. A).

4.1 General Sigma Protocols

We start with recalling the general definition of Σ-protocols.

Definition 1 (Sigma protocol). Let R ⊆ X × Y be an NP relation.
A Σ-protocol for R with challenge length t ≥ 1 is a pair of probabilistic
polynomial-time (ppt) interactive Turing machines (P, V ), where

– the prover P takes as input a witness-statement pair (x, y) ∈ R,

– the verifier V takes as input a statement y ∈ Y, and returns 0 or 1,

– the structure of the interaction between P and V is as follows:

1. P : compute commitment a and send a to V

8



2. V : compute challenge e
r←− {0, 1}t and send e to P

3. P : compute response z and send z to V
4. V : output either 0 or 1 (as a function of y and (a, e, z)).

– completeness (Def. 2), special soundness (Def. 3), and special honest
verifier zero-knowledge (Def. 4) are guaranteed.

We say that trans(〈P (x, y), V (y)〉) := (a, e, z), where a, e, z are as above,
is a transcript of the conversation between P and V . We say that (a, e, z)
is an accepting transcript (for y) if and only if V returns 1 in this con-
versation.

Definition 2 (Completeness). Let (P, V ) be as in Def. 1. We say that
(P, V ) achieves completeness if and only if for all (x, y) ∈ R:

Pr (〈P (x, y), V (y)〉 = 1) = 1.

Definition 3 (Special soundness). Let (P, V ) be as in Def. 1. We say
that (P, V ) achieves special soundness if and only if there exists a poly-
nomial-time extractor algorithm Ext, where

– Ext takes as input statement y ∈ Y, and two accepting transcripts
(a, e, z), (a, e′, z′) where e 6= e′,

– Ext outputs witness x such that (x, y) ∈ R.

Definition 4 (Special honest verifier zero-knowledge). Let (P, V )
be as in Def. 1. We say that (P, V ) achieves special honest verifier zero-
knowledge if and only if there exists a ppt simulator algorithm Sim, where

– Sim takes as input statement y ∈ Y and challenge e,
– Sim outputs an accepting transcript (a, e, z) such that

Sim(y, e) = trans(〈P (x, y), V e(y)〉)

holds true (i.e., the simulator’s output Sim(y, e) and the transcript
between P (x, y) and V (y) who chooses challenge e have same distri-
butions).

4.2 Shuffle-Compatible Sigma Protocols (SCSP)

We now characterize those Σ-protocols which are compatible with the
proof of shuffle introduced in Sec. 5.

The main characteristic of these SCSP is that the public statement
y can be expressed as y = (prm, c0, c1), where c0 will be the “input”

9



element to the shuffle and c1 will be the “output” element. Now, for a
given challenge e ∈ {0, 1},6 the input to the verifier’s final check can be
restricted to the partial public statement (prm, ce) (and the transcript
(a, e, z) as before). Furthermore, SCSPs require the following stronger
variant of special honest verifier zero-knowledge: the simulator Sim takes
as input the challenge e ∈ {0, 1} (as before) but only the partial public
statement (prm, ce).

Definition 5 (Shuffle-compatible sigma protocol). Let R ⊆ X ×Y
be an NP relation where elements from Y are of the form (prm, c0, c1). A
shuffle-compatible Σ-protocol (SCSP) (with challenge length 1) is a pair
of ppt interactive Turing machines (P, V ), where

– the prover P takes as input a witness-statement pair (x, (prm, c0, c1)) ∈
R,

– the verifier V takes as input a statement y = (prm, c0, c1), and returns
0 or 1,

– the structure of the interaction between P and V is as follows:

1. P : compute (a, α)← Com(x, y) and send commitment a to V

2. V : compute challenge e
r←− {0, 1} and send e to P

3. P : compute response z ← Resp(x, y, (a, α), e) and send z to V

4. V : output 0/1← Check((prm, ce), (a, e, z))

– completeness (Def. 2), special soundness (Def. 3), and a variant of
special honest verifier zero-knowledge (Def. 6) are guaranteed.

We say that (a, e, z) is an accepting transcript if and only if V outputs
1, i.e., Check((prm, ce), (a, e, z)) = 1, in this conversation.

Definition 6 (Shuffle-compatible special honest verifier ZK). Let
(P, V ) be as in Def. 5. We say that (P, V ) achieves shuffle-compatible
special honest verifier zero-knowledge if and only if there exists a ppt
simulator algorithm Sim, where

– Sim takes as input partial statement (prm, ce) and challenge e,

– Sim outputs an accepting transcript (a, e, z) such that

Sim(prm, ce, e) = trans(〈P (x, y), V e(y)〉)

holds true.

6 Without loss of generality, we restrict our attention to Σ-protocols with challenge
length t = 1.

10



The Coq definition of a shuffle-compatible Σ-protocol is the mod-
ule type SigmaOfFunction. This module defines a shuffle-compatible Σ-
protocol as a Σ-protocol with the restrictions on the verifier and simula-
tor.

In App. A, we included SCSPs (and accompanying proofs) for many
common relationships including re-encryption of ciphertexts for arbitrary
homomorphic public key encryption schemes, re-randomisation of com-
mitments for homomorphic commitment schemes, re-randomisation of
lattice-based commitments.

5 Transform

In this section, we present our main contribution: a generic Σ-protocol of
correct shuffle ΣShuffle which can invoke any SCSP, as specified in Def. 5.
The protocol ΣShuffle is described in Fig. 1. The formal relation to be
proven is

RShuffle = {(((xj)j∈[τ ], π), (prm, (cj0)j∈[τ ], (c
j
1)j∈[τ ])) :

∀j ∈ [τ ] : (xj , (prm, c
π(j)
0 , cj1)) ∈ R},

where R is the relation of the underlying shuffle-compatible Σ-protocol.
We refer to Sec. 3 for the main idea of ΣShuffle.

We provide two proofs that ΣShuffle is a Σ-protocol for relationRShuffle.
The first proof is a machine-checked one using Coq. The Coq encoding
of the transform is given by the module ProofOfShuffle. The module
defines the proof of shuffle as defined in Fig. 1 and then proves that it is
a Σ-protocol for the relation ΣShuffle. The second proof is a cryptographic
proof which is provided in App. D.

6 Complexity

The basic complexity (computational performance and proof size) of the
new proof of shuffle is straightforward. At the same time, the new proof of
shuffle comes with some interesting properties that make its performance
more multifaceted. To illustrate this, in what follows, we first elaborate on
the proof’s basic complexity and then we describe useful trade-offs in the
interactive setting as well as some optimisations. After that, we compare
the complexity of the new proof of shuffle with state-of-the-art protocols.
Eventually, we provide concrete values for performance and proof size for
large-scale elections.

11



ΣShuffle

P (((xj)j∈[τ ], π), (prm, (c
j
0)j∈[τ ], (c

j
1)j∈[τ ])) V (prm, (cj0)j∈[τ ], (c

j
1)j∈[τ ])

πa
$←− Π

∀j ∈ [τ ] :

(aj , αj)← Com(xj , (prm, c
π(j)
0 , cj1))

(aπa(j))j∈[τ ] parse as (ãj)j∈[τ ]

e
$←− {0, 1}

e

if e = 0 then

πz ← π ◦ πa
else

πz ← πa

∀j ∈ [τ ] :

zj ← Resp(xj , (prm, c
π(j)
0 , cj1), (a

j , αj), e)

πz , (z
πa(j))j∈[τ ] parse as π̃z , (z̃

j)j∈[τ ]∧
j∈[τ ]

Check((prm, c
π̃z(j)
e ), (ãj , e, z̃j))

Fig. 1: Σ-protocol of correct shuffle ΣShuffle. The protocol ΣShuffle invokes the abstract
SCSP Σ specified in Def. 5. In particular, the algorithms Com, Resp, and Check em-
ployed in ΣShuffle are the ones of the underlying shuffle-compatible Σ-protocol.

6.1 Basic complexity

Let s be the proof size of the underlying Σ-protocol and let cP and cV
be the prover and verifier complexity in Σ, respectively. Then, the proof
size of ΣShuffle is τ · s group and field elements and the permutation. The
prover’s complexity is τ · cP , and the verifier’s complexity is τ · cV , where
τ is the number of items being shuffled. Consequently, if λ is the number
of times we repeat ΣShuffle to improve the soundness level down to 2−λ,
then the proof size is τ · s · λ, the prover’s complexity is τ · cp · λ, and the
verifier’s complexity is τ · cV · λ.7

7 We have assumed that both Com and Resp contain at least one expensive operation
(such as exponentiation) which will dwarf the cost of handling the permutations.

12



6.2 Interactive vs non-interactive

Existing protocols in the literature do not gain much performance ad-
vantage by reducing the security parameter λ. On the contrary, the new
proof of shuffle has linear complexity for both the prover and verifier in
λ. This means that the interactive variant provides the following inter-
esting trade-off. For example, if we use our protocol for secure e-voting,
then we can first run an interactive variant with low security parameter,
say λ = 10, which will allow the generation of a proof hundreds of times
faster (in the online phase) than any other proof of shuffle. This will give
99.9% immediate confidence in the integrity of the election outcome while
a higher confidence can be produced in the coming hours.

6.3 Optimisations

We describe two options to optimize the new proof of shuffle: amortising
and pre-computation.

Amortising. In all examples considered in App. A, it is possible to sig-
nificantly reduce the computational cost by amortising the underlying
operations. In the case of the lattice example, this is explicit. The ElGa-
mal example presents two possible ways to amortise:

Speed Since all exponentations are to a fixed base, we can use Gor-
don’s [21] Radix-R method. More precisely, if we are handling x ci-
phertexts in a group order y, then we set R as 2d where d is chosen
to minimise 2d log2d 2y + x log 2d2y. Consequently, in practice, when
handling millions of ciphertexts on a group of order roughly 2256, this
reduces the cost of exponentiation to less than 1

10 of the cost of a
normal exponentiation.

Space Batch techniques could be applied to reduce the size of the proof,
for instance [38]. It is straightforward to apply such techniques (in
the ElGamal examples) to get a proof with a number of group and
field elements independent of the number of messages. However, the
suggested computational optimisations would no longer be effective.

Pre-Computation. In prominent use cases (like electronic voting), there
is a significant period of time (vote casting period), followed by a shorter
period in which the proof must be computed (tally phase). It is there-
fore advantageous when proof of shuffles have the option to do significant
amounts of their computation before knowing the exact ciphertexts to be

13



mixed. This is similar to the application scenario of modern secure multi-
party computation (MPC) protocols which split their computational cost
into a rather slow offline phase (which can be computed ahead of time
without knowing the inputs) and a very fast online phase (which de-
pends on the specific inputs). Similarly, as explained next, our new proof
of shuffle offers a particularly useful offline/online split since the offline
computation does not depend on the exact number of items to be shuffled
(in contrast to all other state-of-the-art proofs).8

Observe that in the re-randomisation examples considered in App. A,
the prover’s computationally most expensive parts are independent of the
statement to proven. More precisely, in the ElGamal-based examples, only
the commitment algorithm Com contains exponentations and these can
be executed without knowledge of the statement; all other calculations
by the prover are computationally minor. Similarly, in the lattice-based
examples, computationally expensive Gaussian sampling appears only in
the commitment algorithm Com and can be executed independently of
the statement. Therefore, all expensive steps in these examples can be
pre-computed in an offline phase so that the online phase is blazingly
fast.

6.4 Comparison

Size Offline cP Online cP Complexity cV
Our protocol (speed) τ(4G+ 128(2G+ F + log(τ))) 24τ 0 24τ

Our protocol (space) τ4G+ 128(2G+ F + τ log(τ)) 0 256τ 256τ

[5] τ4G+ 11mG+ 5nF 0 2 log(m)τ 4τ

[42, 44] τ(11G+ 2F ) 0 5τ 8τ

Table 1: Comparison of ΣShuffle applied to re-encryption of ElGamal ciphertexts with
state-of-the-art protocols [5] and [42, 44]. The security parameter is λ = 128. We denote
the prover’s computational complexity by cP and the verifier’s one by cV . We denote
by F the size of a field element and by G the size of a group element.

In practice, proofs of shuffles are most commonly used for re-encryption
of ElGamal. Therefore, we compare the efficiency of our compiler (using
the computational optimisations) in this case with the state-of-the-art
protocols [5, 42, 44] for the concrete choice of security parameter λ = 128.

8 There are approaches to overcome this for the state-of-the-art proofs (e.g. appending
dummy ciphertexts to reach some limit) but they complicate the protocols.

14



We measure size as the combination of the proof size and the statement
since both must be sent in practice. We denote by F the size of a field
element and by G the size of a group element. We measure computational
complexity in the number of exponentiations.9 We have chosen to present
the other proofs in their most efficent variants which do not seperate the
online and offline phases. While, it is possible to do some pre-computation
in both [5] and [42, 44] there is still O(τ) exponentiations in the online
phase.

As can seen from Table 1, our protocol is either:

– much faster in the online phase and only a small factor different overall
with a proof size roughly 40 times larger than the state-of-the-art,

– or of comparable size with with a proof roughly 40 times larger.

6.5 Concrete efficiency

Note that the motivation of using our work with ElGamal is not higher
performance than state-of-the-art protocols but simpler and thus less
error-prone implementation as well as superior security assurance due to
machine-checked proofs. We have seen that this unique property comes at
a cost; the performance of our new proof of shuffle is significantly worse
than the state-of-the-art. Nevertheless, if we enter concrete values, we
shall see that the space optimised variant still offers acceptable perfor-
mance even for large scale elections.

Consider an election with 1,000,000 voters using the proof of shuf-
fle produced by our transform on the ElGamal re-encryption SCSP im-
plemented over the prime-order Ristretto subgroup of Curve25519 using
curve25519-dalek [34]. Depending on the optimisations used, we either
have a proof generation and verification time of 4 minutes and a proof
size of 8.3 gigabytes, or a proof generation and verification time of 40
minutes and a proof size of 128 megabytes. In practice, we expect the lat-
ter would be preferred. Larger elections might require either additional
cores or checking the proof overnight.

7 Conclusion

We have presented a novel proof of shuffle with black box applicability,
simple design and machine-checked proofs. Our technique converts any

9 Protocol [5] has an additional parameters m and n such that τ = m · n where m is
often set to 8 in practice. We have drawn on [22] for the analysis of [42].

15



shuffle-compatible Σ-protocol into a proof of shuffle for the underlying
relation. We have shown that the computational cost of our technique
(when used on a re-encryption ElGamal shuffle) is within a small factor
of the state-of-the-art. Interactive versions of the techniques can provide
highly efficient and small proofs with a small error term. We have, also,
shown that our technique is applicable to verifiably shuffling lattice-based
commitments.

Future work

Mixing post-quantum encryption schemes. It is relatively straightforward
to construct a shuffle-compatible Σ-protocol for lattice-based encryp-
tion schemes (e.g., [9]) using zero-knowledge proofs of linear relations
(e.g., [3]). However, to do so, would be computationally expensive and
result in large proofs. An interesting area of future work is to develop
amortised proofs of linear relations to allow efficient shuffling of these
encryption schemes following the idea of our novel proof of shuffle.

Batch techniques. We have mentioned techniques which give either sig-
nificant speed ups or reduced size. However, the techniques appear to be
mutually exclusive. We leave as future work the investigation of comb-
ing the techniques to gain both increased computational efficiency and
reduced size.

Acknowledgements

Thomas Haines was supported by Research Council of Norway and the
Luxembourg National Research Fund (FNR), under the joint INTER
project SURCVS (INTER/RCN/17/11747298/SURCVS/Ryan). Johannes
Mueller was supported by the Luxembourg National Research Fund (FNR),
under the CORE Junior project FP2 (C20/IS/14698166/FP2/Mueller).

Bibliography

[1] G. Barthe, B. Grégoire, Y. Lakhnech, and S. Z. Béguelin. Beyond
Provable Security Verifiable IND-CCA Security of OAEP. In Topics
in Cryptology - CT-RSA 2011. Proceedings, volume 6558 of Lecture
Notes in Computer Science, pages 180–196. Springer, 2011.

[2] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal Cer-
tification of Code-Based Cryptographic Proofs. In 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2009), pages 90–101. ACM, 2009.

16



[3] C. Baum, I. Damg̊ard, V. Lyubashevsky, S. Oechsner, and C. Peikert.
More Efficient Commitments from Structured Lattice Assumptions.
In SCN, volume 11035 of Lecture Notes in Computer Science, pages
368–385. Springer, 2018.

[4] C. Baum and V. Lyubashevsky. Simple Amortized Proofs of Short-
ness for Linear Relations over Polynomial Rings. IACR Cryptol.
ePrint Arch., 2017:759, 2017.

[5] S. Bayer and J. Groth. Efficient Zero-Knowledge Argument for Cor-
rectness of a Shuffle. In Advances in Cryptology - EUROCRYPT
2012. Proceedings, volume 7237 of Lecture Notes in Computer Sci-
ence, pages 263–280. Springer, 2012.

[6] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption. In
Advances in Cryptology - EUROCRYPT ’94, Proceedings, volume
950 of Lecture Notes in Computer Science, pages 92–111. Springer,
1994.

[7] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development - Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2004.

[8] Y. Bertot, P. Castéran, G. Huet, and C. Paulin-Mohring. Interactive
theorem proving and program development : Coq’Art : the calculus
of inductive constructions. Texts in theoretical computer science.
Springer, 2004.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) Fully Ho-
momorphic Encryption without Bootstrapping. ACM Trans. Com-
put. Theory, 6(3):13:1–13:36, 2014.

[10] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a
Secure Voting System. In 2008 IEEE Symposium on Security and
Privacy (S&P 2008), pages 354–368. IEEE Computer Society, 2008.

[11] C. Culnane, P. Y. A. Ryan, S. A. Schneider, and V. Teague. vVote: A
Verifiable Voting System. ACM Trans. Inf. Syst. Secur., 18(1):3:1–
3:30, 2015.

[12] R. del Pino, V. Lyubashevsky, G. Neven, and G. Seiler. Practical
Quantum-Safe Voting from Lattices. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
CCS 2017, pages 1565–1581. ACM, 2017.

[13] P. Fauzi and H. Lipmaa. Efficient Culpably Sound NIZK Shuffle
Argument Without Random Oracles. In Topics in Cryptology - CT-
RSA 2016, Proceedings, pages 200–216, 2016.

17



[14] P. Fauzi, H. Lipmaa, J. Siim, and M. Zajac. An Efficient Pairing-
Based Shuffle Argument. In Advances in Cryptology - ASIACRYPT
2017, Proceedings, Part II, pages 97–127, 2017.

[15] P. Fauzi, H. Lipmaa, and M. Zajac. A Shuffle Argument Secure in
the Generic Model. In Advances in Cryptology - ASIACRYPT 2016,
Proceedings, Part II, pages 841–872, 2016.

[16] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP
Is Secure under the RSA Assumption. In Advances in Cryptology -
CRYPTO 2001, Proceedings, volume 2139 of Lecture Notes in Com-
puter Science, pages 260–274. Springer, 2001.

[17] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP
Is Secure under the RSA Assumption. J. Cryptol., 17(2):81–104,
2004.

[18] J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and K. Sako. An Im-
plementation of a Universally Verifiable Electronic Voting Scheme
based on Shuffling. In Financial Cryptography, volume 2357 of Lec-
ture Notes in Computer Science, pages 16–30. Springer, 2002.

[19] T. E. Gamal. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In Advances in Cryptology, Proceed-
ings of CRYPTO ’84, Proceedings, volume 196 of Lecture Notes in
Computer Science, pages 10–18. Springer, 1984.

[20] P. Gaudry and A. Golovnev. Breaking the Encryption Scheme of
the Moscow Internet Voting System. In Financial Cryptography
and Data Security - 24th International Conference, FC 2020, volume
12059 of Lecture Notes in Computer Science, pages 32–49. Springer,
2020.

[21] D. M. Gordon. A Survey of Fast Exponentiation Methods. J. Algo-
rithms, 27(1):129–146, 1998.

[22] R. Haenni and P. Locher. Performance of Shuffling: Taking It to
the Limits. In Financial Cryptography Workshops, volume 12063 of
Lecture Notes in Computer Science, pages 369–385. Springer, 2020.

[23] T. Haines, R. Goré, and B. Sharma. Did you mix me? Formally
verifying verifiable mix nets in voting. In 2021 IEEE Symposium on
Security and Privacy, SP 2021. IEEE, 2021.

[24] T. Haines, R. Goré, and M. Tiwari. Verified Verifiers for Verifying
Elections. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, pages 685–702.
ACM, 2019.

[25] T. Haines, S. J. Lewis, O. Pereira, and V. Teague. How not to prove
your election outcome. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, pages 644–660. IEEE, 2020.

18



[26] T. Haines and J. Müller. SoK: Techniques for Verifiable Mix Nets. In
33rd IEEE Computer Security Foundations Symposium, CSF 2020,
pages 49–64. IEEE, 2020.

[27] J. A. Halderman and V. Teague. The New South Wales iVote System:
Security Failures and Verification Flaws in a Live Online Election. In
VoteID 2015, Proceedings, volume 9269 of Lecture Notes in Computer
Science, pages 35–53. Springer, 2015.

[28] M. Jakobsson, A. Juels, and R. L. Rivest. Making Mix Nets Robust
for Electronic Voting by Randomized Partial Checking. In Proceed-
ings of the 11th USENIX Security Symposium, 2002, pages 339–353.
USENIX, 2002.

[29] S. Khazaei, B. Terelius, and D. Wikström. Cryptanalysis of a uni-
versally verifiable efficient re-encryption mixnet. In EVT/WOTE.
USENIX Association, 2012.

[30] S. Khazaei and D. Wikström. Randomized partial checking revisited.
In CT-RSA, volume 7779 of Lecture Notes in Computer Science,
pages 115–128. Springer, 2013.

[31] R. Küsters and T. Truderung. Security Analysis of Re-Encryption
RPC Mix Nets. In IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016,
pages 227–242, 2016.

[32] R. Küsters, T. Truderung, and A. Vogt. Formal Analysis of Chau-
mian Mix Nets with Randomized Partial Checking. In 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 2014, pages 343–358, 2014.

[33] A. Langlois and D. Stehlé. Worst-Case to Average-Case Reductions
for Module Lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

[34] I. A. Lovecruft and H. De Valence. curve25519 dalek. https://doc.
dalek.rs/curve25519_dalek/.

[35] W. Ogata, K. Kurosawa, K. Sako, and K. Takatani. Fault tolerant
anonymous channel. In ICICS, volume 1334 of Lecture Notes in
Computer Science, pages 440–444. Springer, 1997.

[36] P. Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Advances in Cryptology - EUROCRYPT ’99,
Proceeding, volume 1592 of Lecture Notes in Computer Science, pages
223–238. Springer, 1999.

[37] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. In Advances in Cryptology - CRYPTO
’91, Proceedings, volume 576 of Lecture Notes in Computer Science,
pages 129–140. Springer, 1991.

19



[38] K. Peng, C. Boyd, and E. Dawson. Batch zero-knowledge proof
and verification and its applications. ACM Trans. Inf. Syst. Secur.,
10(2):6, 2007.

[39] V. Shoup. OAEP Reconsidered. J. Cryptol., 15(4):223–249, 2002.
[40] M. A. Specter, J. Koppel, and D. J. Weitzner. The Ballot is Busted

Before the Blockchain: A Security Analysis of Voatz, the First In-
ternet Voting Application Used in U.S. Federal Elections. In 29th
USENIX Security Symposium, USENIX Security 2020, pages 1535–
1553. USENIX Association, 2020.

[41] D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti,
M. MacAlpine, and J. A. Halderman. Security Analysis of the Es-
tonian Internet Voting System. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security,
pages 703–715. ACM, 2014.

[42] B. Terelius and D. Wikström. Proofs of Restricted Shuffles. In
Progress in Cryptology - AFRICACRYPT 2010. Proceedings, volume
6055 of Lecture Notes in Computer Science, pages 100–113. Springer,
2010.

[43] D. Wikström. Five Practical Attacks for “Optimistic Mixing for Exit-
Polls”. In Selected Areas in Cryptography, volume 3006 of Lecture
Notes in Computer Science, pages 160–175. Springer, 2003.

[44] D. Wikström. A Commitment-Consistent Proof of a Shuffle. In Infor-
mation Security and Privacy, 14th Australasian Conference, ACISP
2009, Proceedings, volume 5594 of Lecture Notes in Computer Sci-
ence, pages 407–421. Springer, 2009.

[45] D. Wikström. Verificatum, 2018.

A Examples of Shuffle-Compatible Sigma Protocols

We provide several examples of shuffle-compatible Σ-protocols: re-encryp-
tion of arbitrary homomorphic ciphertexts, re-randomisation of arbitrary
homomorphic commitments, key shifting in ElGamal PKE, and decryp-
tion in ElGamal PKE. They can all be transformed into proofs of shuffles
of the respective underlying relation using the generic compiler introduced
in Sec. 5.

A.1 Abstract Re-Encryption

We define a shuffle-compatible Σ-protocol for re-encryption of ciphertexts
in arbitrary homomorphic PKE schemes. In particular, this Σ-protocol

20



can be applied in popular PKE schemes such as the ones by ElGamal [19]
and Paillier [36]. We have defined and analyzed an instance of this Σ-
protocol in Coq (see module AbstractReEncryptionSigma).

Before we describe the shuffle-compatibleΣ-protocol for re-encryption,
we first recall the notion of homomorphic PKE schemes.

Definition 7 (Homomorphic PKE). Let (KeyGen,Enc,Dec) be a PKE.
We say that (KeyGen,Enc,Dec) is homomorphic if and only if for all
(pk, sk)← KeyGen, the following properties are guaranteed:

1. The message space (Mpk, ◦) and the ciphertext space (Cpk, ·) are mo-
noids.

2. The randomness space (Fpk,�) is a group.
3. For all messages m,m′ ∈ Mpk and all randomness elements r, r′ ∈
Fpk, we have that

Enc(pk,m; r) · Enc(pk,m′; r′) = Enc(pk,m ◦m′, r � r′)

holds true.

In what follows, we write M =Mpk, C = Cpk, and F = Fpk if the public
key pk is obvious from the context. We also write 1 = 1M to denote the
unity in M.

Let (KeyGen,Enc,Dec) be a homomorphic PKE. Then, a given cipher-
text c0 can be re-encrypted as follows (without knowledge of the secret
key sk):

1. r
$←− F

2. c1 ← c0 · Enc(pk, 1; r)

Observe that the resulting ciphertext c1 decrypts to the same message as
c0 under sk. The respective formal relation between c0 and c1 is:

RReEnc = {(r, (pk, c0, c1)) : r ∈ F ∧ c1 = c0 · Enc(pk, 1; r)}.

The following protocol is a SCSP for the re-encryption relation RReEnc

(we refer to Def. 5 for the structure of shuffle-compatible Σ-protocols):

– Com takes as input statement (pk, c0, c1). It then samples α
$←− F and

computes commitment a← c0 · Enc(pk, 1;α).
– Resp takes as input witness r, statement (pk, c0, c1), commitment a,

state α, and challenge bit e. It computes response z ← α if e = 0 and
z ← r−1 � α if e = 1.

21



– Check takes as input partial statement (pk, ce) and the transcript
(a, e, z). It outputs accept if and only if z ∈ F and a = ce ·Enc(pk, 1; z)
hold true.

We now show that this protocol is a SCSP for relation RReEnc:

– Completeness: Follows from observation.
– Special soundness: The extractor Ext takes as input two accepting

transcripts (a, 0, z) and (a, 1, z′) with the same commitment a and
returns r̃ ← (z′)−1 � z.

– Shuffle-compatible special honest verifier zero-knowledge: The simu-

lator Sim takes as input (pk, ce, e), chooses z
$←− F and sets a ←

ce · Enc(pk, 1; z).

A.2 Abstract Re-Randomisation of Commitments

It is possible to define a shuffle-compatibleΣ-protocol for re-randomisation
of commitments in arbitrary homomorphic commitment schemes (e.g.,
Pedersen commitments [37]). The Coq definition and proof are given
in AbstactReRandomSigma. Since the construction of this abstract Σ-
protocol is analogous to the one of abstract re-encryption (see above),
we decided not to present here. Instead, we will demonstrate in the next
example that by modifying this generic Σ-protocol, we can also capture
re-randomisation of homomorphic lattice-based commitments.

A.3 Re-Randomisation of Lattice-Based Commitments

We now define a SCSP for re-randomisation of lattice-based commit-
ments. To this end, we need to relax the notion of “shuffle-compatible”
(as specified below) because the randomisation space of lattice-based com-
mitments does not allow uniformly distributed samples. This prevents us
from directly revealing random values as in the abstract Σ-protocol (see
above). In order to solve this issue, we will use an underlying efficient
Σ-protocol with relaxed security properties to prove knowledge of the
randomness. More precisely, our construction works as follows.

For the sake of concreteness, we consider the lattice-based commit-
ment scheme proposed in [12]. We recall its details in App. C. This com-
mitment scheme is additively homomorphic10 and we consequently show

10 The additively homomorphic property is restricted by the norm of the randomness
but the parameters chosen in [12] allow for even up to 80 additions. This suffices for
our purposes where we need only two homomorphic additions in the scheme and in
the proof.

22



that c1 is a re-randomisation of c0 by showing that c1 − c0 is a commit-
ment to 0. The respective formal relation between c0 and c1 is:

RReRand = {(r, (C, c0, c1)) : c1 − c0 = Cr ∧ ‖r‖ ≤ Br}.

As mentioned above, the randomisation space Dn·(2d+1)
σ does not al-

low uniformly distributed samples. We will thus employ an underlying
non-interactive zero-knowledge proof (Prover,Verifier) from [12] for the
relationship

ROpen = {(r, (C, c)) : c = Cr ∧ ‖r‖ ≤ Br}.

This non-interactive zero-knowledge proof is particularly useful for
application because it can be amortized by performing many of them in
parallel. Technically, this proof is based on a Σ-protocol which provides
computational completeness and the following relaxed notion of special
soundness. Let ROpen be as defined above, and let

R′Open = {(r, (C, c)) : c = Cr ∧ ‖r‖ ≤ B′r},

where B′r is a certain less restrictive bound, i.e., ROpen ⊂ R′Open (see [12]
for details). Now, the notion of special soundness that is provided by
this Σ-protocol allows the knowledge extractor algorithm to also return
witnesses from the larger relation R′Open. This generalisation of special
soundness is commonly used in the literature and results into more effi-
cient lattice-based Σ-protocols.

In what follows, we define the Σ-protocol for the re-randomisation
relation RReRand:

– Com takes as input statement (C, c0, c1), picks α ← Dn·(2d+1)
σ , and

returns a← C(α− c0).
– Resp takes as input witness r, statement (C, c0, c1), commitment a,

state α, challenge bit e, and returns response z ← Prover(α+e ·r,a+
ce).

– Check takes as input partial statement (C, ce), transcript (a, e,z),
and returns Verify(z,a+ ce).

If we generalize our definition of SCSPs (Def. 5) such that complete-
ness can be computational and knowledge soundness can be extended to
larger relations R′, then the Σ-protocol for re-randomisation of lattice-
based commitments described above is shuffle-compatible as well. Simi-
larly, we would also need to adapt our generic compiler (Sec. 5) to being
able to transform these Σ-protocols.

23



Since these modifications would result into even more complex machine-
checked proofs, a full formal treatment is clearly beyond the scope of a
single paper. As mentioned in Sec. 3, we leave this challenge as interesting
future work.

A.4 ElGamal Key Shifting

We define a SCSP for re-encrypting and key-shifting a ciphertext in the
ElGamal PKE (see App. B for its definition).

A given ElGamal ciphertext c0 = (c′0, c
′′
0) can be re-encrypted and key-

shifted from the public key (g0, pk) to public key (g1, pk), where g1 = gsk
0

and sk is the current mixers share of the key, as follows:

1. r
$←− Zq

2. c1 ← ((c′0 · gr0)sk, c′′0 · pkr)

The resulting ciphertext c1 then decrypts to the same message as c0 under
the new key pair. The respective formal relation between c0 and c1 is:

RReEnc+KeyShift = {((sk, r), (((g0, pk), (g1, pk)), c0, c1)) :

sk ∈ Zq ∧ c1 = ((c′0 · gr0)sk, c′′0 · pkr) ∧ g1 = gsk
0 }.

The following protocol is a SCSP for the key-shifting and re-encryption
relation RReEnc+KeyShift (we refer to Def. 5 for the structure of SCSPs):

– Com takes as input witness (sk, r) and statement (((g0, pk), (g1, pk)),
c0, c1). It then samples (α0, α1) uniformly at random from Zq and
computes commitment a← ((c′0 · g

α0
0 )α1 , c′′0 · pkα0 , gα1

0 ).
– Resp takes as input witness (sk, r), statement (((g0, pk), (g1, pk)), c0, c1),

commitment a, state α, and challenge bit e. It computes response
z ← (α0 − r ∗ e, α1/ske).

– Check takes as input partial statement (((g0, pk), (g1, pk)), ce) and the

transcript (a, e, z). For e = 1 it outputs accept if and only if (c′1
z′′ ·

a′′′z
′
, c′′1 · pkz

′
, gz

′′
1 ) = a hold true. For e = 0 it outputs accept if and

only if ((c′0 · gz
′

0 )z
′′
, c′′0 · pkz

′
, gz

′′
0 ) = a hold true.

The Coq definition and proof is given in ElGamalSigmaKeyShift.

A.5 ElGamal Decryption.

We define a SCSP for decrypting a ciphertext in the ElGamal PKE (see
App. B for its definition).

A given ElGamal ciphertext c = (c′, c′′) can be decrypted as follows:

24



1. ds← (c′)sk

2. m← ds−1 · c′′

We call the element ds the decryption share. Notice that given ds the
message can be computed without knowledge of sk. The respective formal
relation between c and ds is:

RDec = {(sk, (pk, c, ds)) : sk ∈ Zq ∧ pk = gsk ∧ ds = (c′)sk }.

The following protocol is a SCSP for the decryption relation RDec (we
refer to Def. 5 for the structure of shuffle-compatible Σ-protocols):

– Com takes as input statement (pk, c, ds). It then samples α uniformly
at random from Zq and computes commitment a← ((c′)α, gα).

– Resp takes as input witness sk, statement (pk, c, ds), commitment a,
state α, and challenge bit e. It computes response z ← α · (sk)−e.

– Check takes as input partial statement (pk, ce)
11 and the transcript

(a, e, z). For e = 0, it outputs accept if and only if (c′)z = a′ and
gz = a′′ hold true. For e = 1, it outputs accept if and only if dsz = a′

and pkz = a′′ hold true.

We now show that this protocol is a SCSP for relation RDec:

– Completeness: Follows from observation.
– Special soundness: The extractor Ext takes as input two accepting

transcripts (a, 0, z) and (a, 1, z′) with the same commitment a and
returns s̃← z · (z′)−1.

– Shuffle-compatible special honest verifier zero-knowledge: The simula-
tor Sim takes as input (pk, ce, e) (which equals (pk, c, 0) for e = 0 and

(pk, ds, 1) for e = 1), chooses z
$←− Zq and sets a ← (cze, g

z) if e = 0
and a← (cze, pkz) if e = 1.

The Coq definition and proof is given in ElGamalSigmaDec.

B ElGamal Public-Key Encryption Scheme

We recall the definition of the ElGamal public-key encryption scheme [19].

Definition 8 (ElGamal PKE). Let G be a group of prime order q, and
let g be a generator of G. Key generation, encryption, and decryption work
as follows:

11 Note that c0 = c and c1 = ds.

25



– A public/private key pair is of the form (pk, sk) = (gs, s), where s ∈ Zq
is chosen uniformly at random.

– A message m ∈ G is encrypted as c = (c′, c′′) = (gr,m · pkr), where
r ∈ Zq is chosen uniformly at random.

– A ciphertext (c′, c′′) ∈ G2 is decrypted as m̃ = (c′)−sk · c′′.

C Lattice-Based Commitment Scheme by Del Pino et al.

We recall the lattice-based commitment scheme proposed in [3] with the
parameters and notation from [12].

C.1 Definition

Let q and n be integers. Let R be the polynomial ring Z[X]/(Xn + 1),
and Rq be the quotient ring R/qR. Let d ∈ N, let σ ∈ R, and let Br

be a positive real bound. Then, the key space is R(d+1)×(2d+1)
q , the mes-

sage space is Rq, the opening space is {r ∈ R2d+1
q : ‖r‖ ≤ Br}, and the

commitment space is Rd+1
q .

The algorithms of the commitment scheme are defined as follows:

KeyGen(1`)

1. A′
$←− Rd×(d+1)

q

2. A← [A′|Id] ∈ R
d×(2d+1)
q

3. B
$←− R1×(2d+1)

q

4. C ←
[
A
B

]
∈ R(d+1)×(2d+1)

q

5. Return C
Com(C ∈ R(d+1)×(2d+1)

q ,m ∈ Rq)
1. r ← Dn·(2d+1)

σ

2. c← Cr +

[
0
m

]
∈ R(d+1)

q

3. Return (c, r)
Open(C ∈ R(d+1)×(2d+1)

q ,m ∈ Rq, c ∈ Rd+1
q , r ∈ R2d+1

q )

1. If c−Cr =

[
0
m

]
and ‖r‖ ≤ Br, then return 1.

2. Else return 0.

C.2 Security

Del Pino et al. [12] proved that the commitment scheme is computation-
ally binding under the Module Short Integer Solution (M-SIS) problem
and computationally hiding under the Module Learning With Errors (M-
LWE) problem [33].

26



D Transform: Cryptographic Proof

In addition to our machine-checked proof in Coq (see module ProofOf-

Shuffle), we provide a cryptographic proof that the protocol ΣShuffle

(Fig. 1) is a Σ-protocol for relation RShuffle (see Sec. 5).

Lemma 1 (Completeness). If the protocol Σ (Def. 5) guarantees com-
pleteness, then the protocol ΣShuffle (Fig. 1) guarantees completeness.

Proof. Let

((ãj)j∈[τ ], e, (πz, ((z̃
j)j∈[τ ])))

be the transcript of an arbitrary run of ΣShuffle with input

(x, y) = (((xj)j∈[τ ], π), (prm, (cj0)j∈[τ ], (c
j
1)j∈[τ ])) ∈ RShuffle.

We have that the output of V is 1 if and only if for all j ∈ [τ ]

1 = Check((prm, cπ̃z(j)e ), (ãj , e, z̃j))

holds true. Since the prover runs its honest program P , we have that

Check((prm, cπ̃z(j)e ), (ãj , e, z̃j))

=

{
Check((prm, c

πa(π(j))
0 ), (aπa(j), 0, zπa(j))) , e = 0

Check((prm, c
πa(j)
1 ), (aπa(j), 1, zπa(j))) , e = 1

=

{
Check((prm, c

π(j)
0 ), (aj , 0, zj)) , e = 0

Check((prm, cj1), (a
j , 1, zj)) , e = 1

holds true for all j ∈ [τ ], where the second equality follows from the
bijective property of πa. By the definition of R, we have that

(xj , (prm, c
π(j)
0 , cj1)) ∈ R

holds true for all j ∈ [τ ]. Therefore, completeness of ΣShuffle follows from
completeness of Σ.

Lemma 2 (Special soundness). If the protocol Σ (Def. 5) guarantees
special soundness, then the protocol ΣShuffle (Fig. 1) guarantees special
soundness.

27



Proof. Let Ext be the extractor of the underlying protocol Σ. We now
construct an extractor ExtShuffle for ΣShuffle as follows. The extractor
ExtShuffle takes as input a public statement (prm, (cj0)j∈[τ ], (c

j
1)j∈[τ ]) as well

as two accepting transcripts ((ãj)j∈[τ ], 0, (π
0
z , ((z̃

j
0)j∈[τ ]))) and ((ãj)j∈[τ ], 1,

(π1z , ((z̃
j
1)j∈[τ ]))) for (prm, (cj0)j∈[τ ], (c

j
1)j∈[τ ]). For each j ∈ [τ ], the extrac-

tor runs:

1. xj ← Ext((prm, c
π̃0
z(j)

0 , c
π̃1
z(j)

1 ), (ãj , 0, z̃j0), (ãj , 1, z̃j1))
2. π(π̃1z(j))← π̃0z(j)

Then, we have that ((xj)j∈[τ ], π) is a witness for (prm, (cj0)j∈[τ ], (c
j
1)j∈[τ ]).

Lemma 3 (Special honest-verifier zero-knowledge). If the proto-
col Σ (Def. 5) guarantees shuffle-compatible special honest-verifier zero-
knowledge, then the protocol ΣShuffle (Fig. 1) guarantees special honest-
verifier zero-knowledge.

Proof. Let Sim be the “strong” simulator of Σ (Def. 5). We now con-
struct a “standard” simulator SimShuffle for ΣShuffle (Def. 4). The simula-
tor SimShuffle takes as input public statement (prm, (cj0)j∈[τ ], (c

j
1)j∈[τ ]) and

challenge e, and then performs the following steps:

1. πs
$←− Π

2. ∀j ∈ [τ ] : (aj , e, zj)← Sim(prm, ce, e)
3. return ((aπs(j))j∈[τ ], e, (z

πs(j))j∈[τ ])

Since πs is permutation, we have that ((aπs(j))j∈[τ ], e, (z
πs(j))j∈[τ ]) is an

accepting transcript for (prm, (cj0)j∈[τ ], (c
j
1)j∈[τ ]). Furthermore, since πs is

chosen uniformly at random, it has the same distribution as πz in the
real conversation. Thus, the output of ΣShuffle has the same distribution
as the real transcript.

28


