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Abstract. We construct a concretely efficient Zero Knowledge (ZK)
Oblivious RAM (ORAM) for ZK Proof (ZKP) systems based on au-
thenticated sharings of arithmetic values. It consumes 2 logn oblivious
transfers (OTs) of length-2σ secrets per access of an arithmetic value,
for statistical security parameter σ and array size n. This is an asymp-
totic and concrete improvement over previous best (concretely efficient)
ZK ORAM BubbleRAM of Heath and Kolesnikov ([HK20a], CCS 2020),
whose access cost is 1

2
log2 n OTs of length-2σ secrets.

ZK ORAM is essential for proving statements that are best expressed as
RAM programs, rather than Boolean or arithmetic circuits.

Our construction is private-coin ZK. We integrate it with [HK20a]’s ZKP
protocol and prove the resulting ZKP system secure.

We implemented PrORAM in C++. Compared to state-of-the-art Bub-
bleRAM, PrORAM is ≈10× faster for arrays of size 220 of 40-bit values.
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1 Introduction

Zero Knowledge (ZK) proofs (ZKP) allow an untrusted prover P to convince
an untrusted verifier V of the truth of a given statement while revealing nothing
additional. ZKPs are foundational cryptographic objects useful in many contexts.
Early ZK focused on proofs of specific statements, but more recent systems
handle arbitrary statements, so long as the statements are encoded as circuits.

Motivation. Unfortunately, many statements are more easily and efficiently
expressed as RAM machine programs rather than circuits. Indeed, most stan-
dard algorithms are formalized for RAM machines.1 Importantly, recent work,
e.g. [HK20a], shows that support for writing proof statements as arbitrary C

programs is within reach. ORAM is a major cost factor in [HK20a]’s ZK virtual
machine, responsible for 1/3 to 1/2 or more of the total cost, since ORAM is
accessed at each CPU step. An efficient ZK ORAM would greatly improve the
performance of (already practical) ZK virtual machine of [HK20a].

1 RAM machines reduce to circuits, but improving the reduction will allow more effi-
cient proofs.
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Most ORAM research targets either (1) an untrusted server holding a client’s
private data or (2) the secure multiparty computation setting. ZK ORAMs have
been less studied. ZK, as compared to these more explored settings, gives a
crucial advantage: P can precompute the order in which the proof circuit will
access each RAM element. Prior work [HK20a] has shown that this knowledge
suffices to build a circuit-based ORAM that incurs only 1

2 log2 n oblivious trans-
fers (OTs) per access. While the constant factor of this approach is excellent,
the log2 scaling can be costly for large RAMs.

Our work. We construct an efficient ZK ORAM that we call PrORAM.
PrORAM consumes only 2 log n OTs per access. Note, ZK-ORAM’s security has
not been defined standalone; rather, its functionality and security are considered
together with a complete ZKP system, e.g., in [HK20a]. We follow a similar
approach: our ZK-ORAM construction is modular, but we prove security of
the complete ZKP system, implementing arithmetic circuit with RAM access.
Based on this, we then motivate and present a ZK ORAM definition for a specific
execution environment.

Our approach. We use the [JKO13] ZK framework, which converts any
sound, correct, and verifiable garbling scheme into a malicious-verifier ZKP.

1.1 High level intuition of our approach

Informally, ORAM is an object implementing a persistent memory. The RAM
is initialized and accessed by a computation, such as an arithmetic circuit. ZK
ORAM and the computation must together realize a secure ZKP system.
P and V evaluate the proof circuit or program by jointly processing it gate-

by-gate. The validity of the proof is ensured by the fact that each circuit wire
holds an authenticated secret share that P cannot forge.

Our prover P stores the RAM locally on her system, but the authenticated
contents are masked by one-time-pad masks chosen by V. Because P stores the
RAM locally and because she knows the RAM access order, she can directly
access each requested index. From here, the crucial problem is that each RAM
slot is masked by a distinct value chosen by V. To ensure V, who does not know
the access order, can authenticate a value read from the RAM, the value must
have a mask that is independent of the accessed index. Thus, RAM essentially
reduces to ‘aligning’ masks without leaking the RAM access order to V. We
arrange mask alignment by allowing P to authentically and obliviously permute
V’s chosen masks into a desired order.

For a RAM with n slots, a single permutation on 2n elements suffices to
support the next n accesses. Using a permutation network, this can be achieved
by 2n log n OTs. Thus, each access consumes amortized 2 log n OTs.

1.2 Contribution

We construct a private-coin ZK ORAM, PrORAM, that uses only 2 log n OTs
per access, while previous ZK ORAM has cost 1/2 log2 n. We instantiate our
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ORAM in the [JKO13] ZK framework, resulting in a ZKP protocol with 2 rounds
(4 flows) of communication when using standard OT, such as [KOS15].2

– We present PrORAM in technical detail, and prove it correct.

– We integrate PrORAM into the arithmetic ZK protocol of [HK20a]. Thus,
our construction allows proofs of arbitrary arithmetic statements encoded as
circuits with access to a highly efficient RAM. Note, [HK20a]’s ZK virtual
machine is a circuit; our ORAM can be directly plugged in their ZK VM.

– We formalize the resulting construction in the [JKO13] garbled-circuit based
ZK proof framework and prove the system correct and secure.

– We propose a definition of ZK ORAM for a specific execution environment.
Security of our ZKP system implies ZK ORAM security of PrORAM.

– We implemented our approach in C++ and we explore its concrete perfor-
mance. As compared to BubbleRAM [HK20a], a state-of-the-art ORAM for
the same setting, and for size 220 RAMs, PrORAM improves communication
by > 4× and runs > 10× faster on a commodity laptop. Our more signifi-
cant computation improvement follows from the fact that our algorithms are
friendlier to cache than BubbleRAM’s (see Section 9).

2 Related Work

Our contribution is an efficient ORAM for an interactive Zero Knowledge pro-
tocol. In our review of related work, we discuss both ZK protocols and ORAMs.
For lack of space, we postpone the detailed discussion of related work to Sup-
plementary Material (Section 10). Here we provide comparison with prior work
in the setting of concretely efficient interactive ZK.

Consider the prover P, interacting with V, wishing to convince him, that she,
P, holds a satisfying assignment to a circuit. One line of work builds linear-sized
proofs [JKO13,FNO15,HK20c,HK20a,WYKW20]. This line of work is attractive
because it features costs that scale linearly in the circuit size with low constants.
Thus, if P and V wish to finish a proof as fast as possible, these constructions
are excellent choices.

[JKO13] was the first work to construct concretely efficient proofs of arbi-
trary circuits by reducing ZKPs to garbled circuits (GCs). Recent work [HK20a]
proposed a concretely efficient (running at 2.1KHz on a commodity laptop) ZKP
system for RAM programs, and a ZK ORAM, BubbleRAM. BubbleRAM has
amortized complexity 1/2 log2 n per access of an array of n elements.

Our ZK ORAM PrORAM is built to work with the in [HK20a]’s arithmetic
protocol. PrORAM improves performance of ZK ORAM to 2 log n, thus asymp-
totically improving over BubbleRAM.

2 In our implementation, we use Ferret OT [YWL+20], which greatly improves com-
munication. Ferret processes OTs in very large chunks, requiring additional rounds
for each next chunk. This round complexity increase is small and contributes little
to total runtime. E.g., in concrete terms, two added rounds give ≈ 223 OTs.
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Recently, BubbleCache [HYDK21] enhanced BubbleRAM by adding multi-
level ORAM caching. The idea is to “spread out” the BubbleRAM schedule and
hope for the best (i.e., that the required array element won’t be needed too soon,
in which case a cache miss occurs, with a corresponding performance penalty).
BubbleCache has worse worst-case performance than BubbleRAM, and hence
PrORAM correspondingly improves over BubbleCache as well. See Section 9 for
an expanded comparison between PrORAM and BubbleCache.

3 Notation

– P is the prover. We refer to P by she, her, hers, etc.

– V is the verifier. We refer to V by he, him, his, etc.

– σ is the statistical security parameter (e.g., 40).

– κ is the computational security parameter (e.g., 128).

– x ∈$ S denotes that the value x is drawn uniformly from the set S.

– 〈x, y〉 denotes a pair of values where x is held by V and y is held by P.

– We write a , b to denote that a is defined to be b.

– p denotes a prime integer.

– We work with authenticated sharings of values held between V and P. The
authentic sharing of a value x ∈ Zp is denoted by JxK. We define authentic
sharings and an algebra over such sharings in Section 4.1. A sharing consists
of two shares, one held by V and one by P.

– Authenticated sharings use uniform masks chosen by V. It is sometimes con-
venient to make this mask explicit. JxKM is an authenticated share of x that
uses the mask M (see Section 4.3).

– We also work with standard additive sharings. We denote the additive sharing
of a value x ∈ Zp by LxM. Additive sharings are discussed in Section 4.4.

– We view RAMs as arrays of values, and hence work extensively with arrays:

• In general we use capital variables to denote arrays, e.g. A.

• When clear from context, n denotes the number of array slots. When needed
for precision, we use |A| to denote the number of array slots in A.

• We consider arrays where each array slot may hold more than one integral
value. When clear from context, s denotes the slot size, i.e., the number of
integer values stored in each array slot.

Flexibly sized array slots both allow arrays of complex objects and also are
crucial for preventing P from accessing an arbitrary RAM slot rather than
the program-dictated slot: we store an explicit RAM index in each slot and
perform an equality check as part of the ZK proof.

• The set (Zsp)n denotes the prime field arrays of n slots each with size s.

• A[i] denotes the value stored in the ith slot of A. We use zero-based indexing.

• A[i := x] denotes an array update. The expression A[i := x] is a new array
whose contents are identical to A except that slot i is set to x. This notation
does not denote a program statement that mutates an array in computer
memory, but rather denotes the construction of a fresh mathematical object.
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• When clear from context, we extend notation over field elements to arrays.
For example, if A and B are two arrays of field elements with matching
length and slot size, A + B denotes the array containing the pointwise
addition of the contents. We similarly extend share notation to arrays, JAK
denotes an array where each element is an authentic sharing. We also extend
array access notation: JA[i]K is the sharing of the ith element of array A.

• If i ≤ j, then A[i..j] denotes the subarray of elements A[i]..A[j − 1]. The
subarray does not include the jth element. We write A[i..] to denote the
subarray starting from index i and containing all subsequent elements of A.

• [·] denotes the empty array. [a] denotes an array holding only the value a.
• We sometimes concatenate arrays. A | B is the composite array containing

each element of A followed by each element of B.
– We work with permutations that map points in time to array locations being

accessed. We represent such permutations by arrays over the natural numbers
such that for a given permutation π, π[t] = i indicates that location i is
accessed at time t.

– It will be convenient to keep track of a complementary view of the access order
that we refer to as a timetable. A timetable T is an array over the natural
numbers such that T [i] = t indicates that location i was last written at time
t. In general, a timetable is not a permutation.

4 Preliminaries

In this section, we present technical background to our work needed to un-
derstand our contribution. In particular, we review [HK20a]’s arithmetic ZK
protocol and discuss permutation networks.

4.1 Authenticated Share Algebra

We now review authenticated secret shares and the operations they support.
Our ORAM is built on this share algebra.We use [HK20a]’s efficient arithmetic
protocol, where the parties operate over shares using a combination of local
operations and OT. Crucially, although the parties compute using OT, each of
P’s OT inputs can be precomputed from her proof witness. Thus, all OTs can
be executed in parallel, and the resulting protocol runs in constant rounds.

Authenticated Shares. In the protocol, P and V hold authenticated shar-
ings of values in a field Zp for a σ-bit prime p (our implementation instantiates
p as 240 − 87, the largest 40 bit prime). An authenticated sharing consists of
two shares, one held by V and one by P. We denote a sharing where V’s share
is s ∈ Zp and P’s share is t ∈ Zp by writing 〈s, t〉. At the start of the protocol,
V samples a non-zero global value ∆ ∈$ Z×p . Consider a sharing 〈X,x∆ − X〉
where X ∈ Zp is chosen by V. A sharing of this form is a valid sharing of the
semantic value x ∈ Zp. We use the shorthand JxK to denote a valid sharing:

JxK , 〈X,x∆−X〉

Sharings have two key properties:
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1. V’s share gives no information about the semantic value. This holds trivially:
V’s share is independent of x.

2. P’s share is ‘unforgeable’: P cannot use x∆ − X to construct y∆ − X for
y 6= x. We ensure this by hiding from P both the additive mask X and the
authentication value ∆. This, combined with the fact that (1) the multiples
of ∆ are uniformly distributed over the field, and (2) the chosen prime p is
large enough to achieve our desired security ensures that P can forge JyK
only by guessing y∆−X, which only succeeds with probability 1

p−1 .

Opening shares. P must, at distinguished parts of the circuit, open her
shares to V. Let JxK be a valid authenticated sharing. When the two parties
agree to open a share, we require that V knows the expected value x. This
information is dictated by the circuit; thus P opening a share to V proves that
the share represents a specific constant value. To complete the opening, P sends
her share x∆ − X to V, and V checks that the share is indeed valid (recall, V
knows ∆ and X). For complex proofs, P might open many shares to V. Thus,
[HK20a] adds a simple optimization: rather than sending each share separately,
P instead accumulates a hash digest of all opened shares and sends this to V. V
can locally reconstruct the same hash and check that the two are equal. Thus,
P sends only κ bits to open an arbitrary number of sharings.

Linear Operations. We can induce a vector space structure over authen-
ticated sharings where sharings are vectors and publicly agreed constants are
scalars. The vector space operations (addition, subtraction, and scaling by pub-
lic constants) allow the parties to locally perform linear operations over sharings:

– To compute an authenticated sharing of a sum of shares, parties locally add
their respective shares:

JxK + JyK = 〈X,x∆−X〉+ 〈Y, y∆− Y 〉
, 〈X + Y, (x+ y)∆− (X + Y )〉 = Jx+ yK

To authentically subtract sharings, parties subtract their respective shares.
– To authentically scale a sharing by a public constant, the parties locally

multiply their respective shares by the constant:

cJxK = c〈X,x∆−X〉 , 〈cX, cx∆− cX〉 = JcxK

The parties also have access to a unit vector:

J1K , 〈∆, 0〉

Here, the sharing mask X is 0 − ∆. Note that the mask X is not known to
P because P does not know ∆. With this unit vector, the parties can locally
construct authenticated sharings of arbitrary publicly agreed values.

Vector-Scalar Multiplication. It is not sufficient to only consider linear
operations. We also need a form of non-linear operation; we use a form of vector-
scalar multiplication where the scalar is known to be in {0, 1}, but is unknown to
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V. (Vector-scalar multiplication where P chooses scalar a ∈ Zp can be achieved
by dlog pe applications of this special form.)

Let x ∈ {0, 1} be held by P and let y1, ..., yn ∈ Zp be a vector of field
elements. Let the parties hold sharings Jy1K, ..., JynK and suppose they wish to
compute Jxy1K, ..., JxynK (while P’s input x is not authenticated, it could be
verified later by an appropriately applied opening). First, P locally multiplies
her shares by x. Thus the parties together hold:

〈Y1, xy1∆− xY1〉, ..., 〈Yn, xyn∆− xYn〉

These intermediate sharings are invalid: the shares in the ith sharing do not sum
to yi∆. To resolve this, the parties participate in a single 1-out-of-2 OT where V
acts as the sender. V uniformly draws n values Y ′i ∈$ Zp and allows P to choose
between the following two vectors:

Y ′1 , ..., Y
′
n Y ′1 − Y1, ..., Y ′n − Yn (1)

P chooses based on x and receives as output the vector Y ′1 − xY1, ..., Y ′n − xYn.
The parties can now compute a valid authenticated sharing for each vector index:

〈Y ′i , xyi∆− xYi − (Y ′i − xYi)〉 = 〈Y ′i , xyi∆− Y ′i 〉 = JxyiK

A vector-scalar multiplication of a length n vector requires a 1-out-of-2 OT of
ndlog pe-bit secrets. In practice, we instantiate multiplication with the Ferret OT
technique [YWL+20].

4.2 Implementing Standard Circuit Gates

Typical circuits include multiplication gates, not special vector-scalar gates
where P chooses the scalar, as described above. There is a simple reduction from
standard multiplication gates to [HK20a]’s vector-scalar multiplication gates and
opening gates (an opening gate on input JxK simply requires P to open her share
to V, see Section 4.1): To authentically compute JabK from inputs JaK and JbK,
instead compute a′J1, bK 7→ Ja′, a′bK by vector-scalar multiplication where P
chooses a′ freely, and then check that the Ja− a′K = J0K using an opening gate.
This check forces P to choose a′ = a, and prevents her from multiplying incor-
rectly. We choose to keep vector-scalar gates and opening gates because these
gates are highly efficient and because this reduction is simple. Each standard
multiplication gate uses one vector-scalar gate and one opening gate.

Vector-scalar gates also allow P to provide input bits. To input P’s private
bit x, the parties compute xJ1K = JxK using a vector-scalar gate.

Other standard gates, e.g. addition and subtraction, are directly handled by
the construction and do not require opening gates.

4.3 Explicit-Mask Sharings

Section 4.1 introduced an algebra over authenticated sharings. In the algebra as
presented so far, we consider tuples of the form 〈X,x∆−X〉 where X ∈$ Zp is
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a uniform mask. For the purposes of our construction, it will be convenient to
also consider sharings that use a specific mask chosen by V. Thus, we introduce
new notation for a sharing masked by a particular value:

JxKM , 〈M,x∆−M〉

That is, JxKM is a sharing of x where the parties use the specific mask M , rather
than an arbitrary mask.

We extend this notation to arrays: if A,B are equal-length arrays of Zp
elements, then JAKB denotes an authentic share of A where each mask is in B:

JA[i]KB = 〈B[i], A[i]∆−B[i]〉

For convenience, we extend this notation so that we can mask a short array by
a long array: the above array notation holds even if B is longer than A.

4.4 Standard Additive Sharings

Our construction relies on the parties’ ability to manipulate secret masks chosen
by V and unknown to P. The algebra presented in Section 4.1 is not suitable,
because it only supports sharings where P knows in cleartext each semantic
value. We therefore also consider more traditional additive secret shares where
neither party knows the underlying value.

Let x ∈ Zp be an arbitrary value. In an additive share of x, V holds a uniform
mask M ∈ Zp and P holds x −M : together the parties hold 〈M,x −M〉. We
use the shorthand LxM to denote such a pair:

LxM , 〈X,x−X〉

The difference between authenticated sharings (Section 4.1) and additive shar-
ings is that P does not know semantic values corresponding to additive sharings.

The parties can operate over additive sharings in the same way they can
authenticated sharings: namely, we induce a vector space structure over addi-
tive sharings such that parties can add, subtract, multiply by public constants,
and construct sharings of constants. Additionally, the parties can operate non-
linearly by vector-scalar multiplication where P chooses the scalar. The needed
protocol is identical to the vector-scalar protocol reviewed in Section 4.1.

Finally, V can construct a sharing LxM for a value x ∈ Zp that he chooses. To
do so, V simply samples a uniform mask M ∈$ Zp and sends to P x−M .

4.5 Additive sharing permutations programmed by P

In our construction, V chooses random masks that are used to authenticate the
RAM content. P is then given the opportunity to arrange these masks as she
likes so that she can implement the RAM access order. So, we need a capability
by which P can rearrange V’s chosen masks. The parties thus construct additive
shares of the masks which can then be manipulated by P.
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More precisely, V chooses an array of random masks K ∈$ (Zsp)n, and the
random masks are shared such that the parties hold LKM. Now, the parties must
compute Lπ(K)M for π chosen by P. To apply an arbitrary permutation, we
employ a particular circuit construction called a Waksman permutation net-
work [Wak68]. This recursively constructed circuit builds a permutation of n
elements from many permutations of two elements: i.e., from ‘swap’ gates. In
our context, a swap gate allows P to conditionally swap two shares LaM and LbM
based on her private bit r ∈ {0, 1}. Precisely, the gate is specified as follows:

swap(r, a, b) ,

{
(a, b) if r = 0

(b, a) otherwise

To implement this gate, the parties compute a conditional difference LδM , rLa−
bM and output the pair La − δ, b + δM. A swap gate is computed by a single
vector-scalar multiplication and linear operations. The gate can be computed
even though P knows neither a nor b.

A permutation network on n elements (where n is a power of two) consumes
n log n− n+ 1 swap gates; hence we use n log n− n+ 1 oblivious transfers.

5 Technical Overview

In this section, we give high level intuition sufficient to understand our approach.
ORAM is an object implementing a persistent memory array. The RAM

is initialized and accessed by a computation, such as Boolean or arithmetic
circuit, or a CPU built from such circuits. ZK ORAM and the computation must
together realize a secure ZKP system. We formally specify the PrORAM object
and its access functions, and prove correctness of its operation in Section 6; we
prove security of our ZKP system in Section 7; we define (and prove) security
our ZK ORAM in Section 7.4.

Informally, there are three attacks P may attempt on the RAM: 1) modify
a memory value by forging an authentication code, 2) return a stale value, 3)
return a valid authenticated value from a wrong location. The last attack is
easily prevented by storing each array index as an authenticated value alongside
the corresponding RAM element, and checking it on each access, a standard
technique used, e.g., in [HK20a]. In this overview and in the formal constructions
we focus on issue 1) value modification. Preventing the return of stale values is
achieved by enforcing a key invariant that a valid authenticated element cannot
be stored in more than one place; we point this aspect out as we discuss how to
ensure value integrity.

As a thought experiment, suppose that V and P both know the array access
order; we will soon remove this restriction. That is, they know a priori the
locations of each array read and write. Further, suppose that each array element
is stored as an authenticated secret share (Section 4.1) held by both parties.
That is, for an array A, its value at each index i is formatted as follows:

JA[i]K = 〈K[i], A[i]∆−K[i]〉,
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where K[i] is a uniform mask chosen by V. Suppose on the jth array access, the
parties wish to access array slot i. This case is easy: each player can simply read
from RAM slot i in their local memory, and use the already-authenticated array
element as needed in the proof.

Of course, we want to access RAM in an order unknown to V. Here we run
into a problem: on an access of position i, P can still read A[i]∆ − K[i] from
her local array, but V does not have sufficient information to align the matching
mask K[i]. Further, V cannot be allowed to learn the accessed position i, since
this would give her information about the access order.

Instead of giving K[i] to V, we instead allow V to use a fresh mask M [j] and
convey the appropriate matching mask to P. Specifically, we arrange that P will
obtain K[i]−M [j]. Given this information, the parties compute:

〈M [j], (A[i]∆−K[i]) + (K[i]−M [j])〉 = 〈M [j], A[i]∆−M [j]〉 = JA[i]K

This authenticated secret share can be used as a wire in the ZK circuit.
The remaining task is to show how these mask differences are securely con-

veyed to P. We present our solution in several steps. First, we present solutions
that allow for RAMs with constrained access orders; these initial constructions
do not allow arbitrary RAM reads/writes. Then, we use these constrained con-
structions as building blocks upon which we achieve general purpose RAM.

Read-once RAM. As a simplifying assumption, consider an n-element
RAM that is preloaded with authenticated shares. Further, suppose the pro-
gram will read each RAM slot exactly once, though the order in which these
reads occur is unconstrained and is known to P. In this case, the RAM’s read
order can be described by a permutation π on n elements that maps the time of
each access to the accessed array index.

If we consider all n reads simultaneously, then our problem becomes one of
delivering to P a sequence of n mask differences K[i] −M [j], while hiding the
access order from V. To do so, V distributes to the two parties additive secret
shares of the elements of the array of masks K: the parties hold LKM. Let π
specify the permutation on A defining the RAM access order. The parties se-
curely compute Lπ(K)M using the permutation protocol described in Section 4.5.
Informally, this permutation aligns the elements of K, which were originally in
array order, with the order of accesses.

If we recall the syntax of an additive share Lπ(K)[j]M, we find that P’s share
has nearly the form that we need:

Lπ(K)[j]M = 〈Q[j], π(K)[j]−Q[j]〉 = 〈Q[j],K[i]−Q[j]〉,

where Q[j] is a uniform mask.
So far, the access masks M are unconstrained. Thus, V simply sets M [j] =

Q[j], and now each of P’s share of the permuted array has exactly the form
needed to align her share with that of V. This implements read-once RAM: the
parties can read an array of n elements in any order specified by P.

swordRAM. Read-once RAM assumes that the array is preloaded with
values. We also need a capability to write new RAM elements. Thus, we extend
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the above read-once RAM to allow for writes. However, the write capability we
add is highly constrained : the parties must agree on and both know the order in
which the array contents are written. For concreteness, we use a sequential write
order, meaning that the jth write stores an element in the jth array slot. Array
reads and writes may be arbitrarily interspersed with the restriction that each
read occurs after the write to the accessed slot. As with our read-once RAM, we
enforce that the program must read each array slot exactly once. We call this
intermediate RAM a swordRAM (Sequential-Write, One-time ReaD RAM).

With the idea for read-once RAMs established, swordRAM is trivial. As
argued in the beginning of this section, if each party knows the RAM access
order, our task is easy: the parties trivially obtain matching authentication codes.
Thus, swordRAM writes are simple, since both parties agree that the elements
should be written sequentially, and hence the order is known to each. There is
one subtlety in aligning the authentication masks used in RAM writes with the
array slot masks K[i], but this is easily addressed. Specifically, V simply sends
the difference between the two masks to P on each RAM write.

General Purpose ZK ORAM. swordRAMs are highly restrictive. Never-
theless, there is an efficient reduction from general purpose RAM to swordRAM.
We call this reduction PrORAM. A PrORAM of n elements is built on a swor-
dRAM of 2n elements. There is no single one-to-one mapping from PrORAM
slots to swordRAM slots. Rather, the swordRAM should be viewed as a run-
ning log of the PrORAM accesses; each PrORAM access corresponds to a single
write and a single read in the swordRAM. At all times, we ensure that there are
exactly n swordRAM slots that have been written to but not yet read, and it is
exactly these n slots that hold the current PrORAM content. To track the rela-
tionship between PrORAM slots and swordRAM slots, the prover P maintains
a clear-text data structure that we refer to as the timetable. A timetable T maps
each PrORAM index i to the swordRAM slot where that element is currently
stored.

The PrORAM is maintained as follows:

– To initialize a size-n PrORAM we perform a sequence of n writes to a fresh
capacity-2n swordRAM. Correspondingly, P initializes T : at initialization,
each PrORAM slot i is stored in swordRAM slot i.

– To access RAM slot i, P first looks up T [i] and reads from the correspond-
ing swordRAM slot. Because of swordRAM’s tight restrictions, this read
‘exhausts’ the accessed swordRAM slot, and so the parties must write back
an element to the array. In the case of RAM write, the write-back element
will be the written element. In the case of a RAM read, the write-back ele-
ment will be the same element that was read. P then updates T , indicating
that PrORAM slot i is now stored in the newly written swordRAM slot.

– Because the number of reads/writes to a swordRAM are bounded, we must
periodically refresh the PrORAM. Each PrORAM access consumes one
swordRAM read and one swordRAM write. After n PrORAM accesses, we
exhaust all 2n available swordRAM writes (recall, n writes were used to
initialize) and n of the available 2n swordRAM reads. The remaining n
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– Inputs: Parties agree on a swordRAM capacity n and a slot width s. P inputs
a permutation on n elements π, denoting the order in which she wishes to read
swordRAM elements.

– Outputs: Let K ∈$ (Zs
p)n be uniform masks drawn by V. Parties output a

swordRAM ([·], π, 0,K, [·], Lπ(K)M).
– Protocol:
• V samples a length-n array of uniform values K ∈$ (Zs

p)n.
• V constructs an additive sharing LKM by sampling uniform masksR ∈$ (Zs

p)n

and sending K −R to P.
• V and P compute Lπ(K)M via a permutation network (see Section 4.5).
• The swordRAM ([·], π, 0,K, [·], Lπ(K)M) is now defined; the parties output

their respective components.

Fig. 1. Initializing an empty capacity-n swordRAM. The parties output a swordRAM
that encodes an empty array and that is ready for n writes and n reads. The n reads
will happen as specified by the the access order π.

reads suffice for us to fetch the current PrORAM content and store it into a
freshly initialized swordRAM. By doing so, we “refresh” the PrORAM and
are ready for n more accesses.

The crucial point is that because P knows the entire PrORAM access order
O in advance, she can play out the above reduction “in her head” to obtain the
corresponding read order π for the underlying swordRAM. π is then used to
initialize a swordRAM that will precisely service the access order O.

Efficiency. PrORAM is efficient. Essentially the only cost is in permuting
additive shares of the array K. For every n PrORAM accesses we initialize 2n
swordRAM reads and thus consume a permutation of 2n masks. A permutation
of 2n elements costs 2n log 2n − 2n + 1 OTs via a permutation network, and
hence each PrORAM access consumes amortized 2 log n OTs.

The remainder of this paper presents the above in technical detail.

6 PrORAM Formal Constructions

In this section, we present PrORAM in formal detail. Section 7 formalizes our
construction’s security.

6.1 swordRAM

Recall from Section 5 that we decompose the problem of building a RAM into two
parts: first we construct a ‘sequential write, one-time read RAM’ (swordRAM)
that only supports one read and one write per RAM slot, and where writes
must occur in sequential order. Then we build a general purpose ORAM on
top of swordRAM. We therefore start by defining swordRAM. Syntactically, a
capacity-n swordRAM is a six-tuple:

(A, π, r,K, JAKK , Lπ(K)M)
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– Inputs: Parties input a capacity-n swordRAM:

(A, π, r,K, JAKK , Lπ(K)M)

Let i be the read index: i , π[r]. It is illegal to call this functionality if i ≥ w.
– Outputs: Parties output the read value JA[i]K and the updated swordRAM:

(A, π, r + 1,K, JAKK , Lπ(K)M)

– Protocol:
• Consider the sharing Lπ(K)[r]M = LK[i]M. Suppose LK[i]M = 〈M,K[i]−M〉.

Note, V knows M : he simply looks up the rth element of his share of Lπ(K)M.
• P fetches her share JA[i]KK = A[i]∆−K[i].
• Parties compute and output:

〈M, (A[i]∆−K[i]) + (K[i]−M)〉 = 〈M,A[i]∆−M〉 = JA[i]K

• Parties increment r and output the updated swordRAM.

Fig. 2. Reading from a swordRAM. This procedure does not take an index as an
argument. Rather, the index is defined by the permutation π chosen at initialization
(cf. Figure 1).

– Inputs: Parties input a capacity-n swordRAM:

(A, π, r,K, JAKK], Lπ(K)M)

It is illegal to call this functionality if |A| ≥ n. The parties input a sharing of a
value a with mask M : JaKM .

– Outputs: Parties output the updated swordRAM:

(A | [a], π, r,K, JA | [a]KK , Lπ(K)M)

I.e., the parties output a swordRAM where a is appended to A.
– Protocol:
• Let w = |A|. Recall, the mask for swordRAM slot w is K[w] known to V. V

sends to P the mask difference M −K[w].
• P computes:

(a∆−M) + (M −K[w]) = a∆−K[w]

This is P’s share of JaKK[w]. P appends a to A and appends her share of
JaKK[w] to the encrypted array.

• Both parties output the updated swordRAM.

Fig. 3. Writing to a swordRAM. Recall that writes to swordRAM are sequential : the
shared element a is appended to the array A.

Each of these elements are as follows:

– A ∈ (Zsp)∗ denotes the cleartext array encoded by the swordRAM. As we
write to the swordRAM, A will grow in length. A is known only to P.
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– π is a permutation on n elements. π denotes the read order of the swordRAM.
π is known only to P. Note, the read order does not fully specify the access
order, as writes may be arbitrarily interspersed with the constraint that each
element is written before it is read.

– r ∈ N denotes the number of swordRAM reads that have occurred so far. In
a valid swordRAM, r ≤ |A| ≤ n. Both P and V maintain local copies of r.

– K ∈$ (Zsp)n is an n-element array with slots of size s, i.e. each slot K holds
s values. K[i] stores uniform masks used as swordRAM authenticators. K[i]
is drawn uniformly by V and is unknown to P. We need more than one mask
per swordRAM slot to support arrays of more general objects. In particular,
in our RAMs we operate with value-index tuples (v, i), which allows us to
perform an index check, preventing P from providing an invalid permutation
and illegally substituting one RAM value for another.
Although we use s masks for a single RAM slot, we are careful that any
operations the parties perform are applied to the masks as a unit; hence,
there is no opportunity for a cheating P to ‘break apart’ the contents within
a single RAM slot.

– JAKK is the authenticated secret sharing of A masked by K. Informally, this
is the authenticated array. On a read, P indexes directly into this array and
then aligns her share with V’s (as described in Section 5).

– Lπ(K)M is an additive secret sharing of the array K permuted according to
π. These sharings are the values that P needs to align her shares with V’s
(as described in Section 5).

With syntax established, we describe operations over swordRAMs.
Initialize. Figure 1 lists the procedure for constructing a fresh swordRAM.

At initialization, the encoded array A is empty (i.e., has size 0), so most of the
swordRAM components are trivially initialized. The objective of initialization is
to prepare for all n future reads. To do so, P provides as input the read order
permutation π and V chooses a mask array K. The parties compute Lπ(K)M via a
permutation network (Section 4.5). This permutation provides to P the specific
values that she needs to align her shares with V’s on each read. We emphasize
that swordRAM permutations account for almost all of our ORAM’s cost.

Read. swordRAM reads (Figure 2) are entirely local operations: indeed,
initialization already properly arranged that P will receive the correct mask
alignment values on each read. P directly accesses the correct index of JAKK
and then aligns her share with V’s using Lπ(K)M[r].

Write. swordRAM writes (Figure 3) append values to the array A. The
swordRAM authenticated array should be masked by the specific array K, but
the parties write an arbitrary share JaK. To properly store this value, V sends a
difference between the mask on JaK and the target mask in K. P uses this value
to align her share such that it can be properly appended.

As an aside, swordRAM performs no checking on the order in which P de-
cides to read values: P freely chooses the read-order π. However, we next will
perform a reduction from general purpose RAM to swordRAM. In this reduction,
we explicitly include copies of each index identifier in the swordRAM. By this
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mechanism, the reduction fully constrains the permutation π, since the parties
will check that each read yields the expected index identifier.

It will be convenient to abstract over some of the swordRAM detail. We give
a shorthand for a swordRAM that encodes an array A with r remaining reads
given by a read order π. Specifically we write ρ(A, π, r):

ρ(A, π, r) , (A, π, r,K, JAKK , Lπ(K)M)

where K ∈$ (Zsp)n is uniform and the masks on Lπ(K)M are uniform.

6.2 swordRAM to PrORAM

Recall that we implement general purpose RAM by a reduction to swordRAM.
We call this reduction PrORAM.

At a high level, a PrORAM implementing a size-n array operates in blocks of
n accesses. Each block is handled by a distinct data structure, which is updated
on each of the n accesses. After n accesses, we create a fresh data structure
to support the next n accesses. We initialize the new structure by moving the
contents of the old one, and then we retire the old data structure, and so on.

Each data structure is a capacity-2n swordRAM (with accompanying meta-
data), which is initialized to contain the (current state of the) array A in the
canonical order A[0], ..., A[n− 1]. Of course, to initialize a swordRAM, we need
an appropriate read order π. This permutation π must achieve two tasks: (1) it
must encode the order of the next n accesses and (2) it must encode the order
of the n reads needed to copy its content into the next swordRAM block in
canonical order before being retired. That is, the first n (of the 2n total) reads
of the capacity-2n swordRAM service the n PrORAM requests for data, and the
next n accesses read the array A as part of moving to the next PrORAM data
structure. In total, there are 2n swordRAM reads, which can be encoded in a
permutation π over 2n elements. We formally describe how to construct π based
on the array’s access order in Section 6.3.

PrORAM Syntax. We denote a PrORAM that encodes a cleartext array A
with access order O by writing A, O . A size-n PrORAM is a four-tuple:

A, O , (A,O, ρ(H,π, r), T )

These elements are as follows:

– A ∈ (Zsp)n is the cleartext content of the PrORAM. A is known only to P.
– O is a list of all indexes accessed by the RAM and is known as the access

order. O is maintained in cleartext by P and is unknown to V. P can pre-
compute O by running the proof in cleartext and logging all RAM accesses.
For simplicity, assume O initially has length that is a multiple of n. P can
pad O with extra zeros to reach the next multiple of n.
As we perform accesses, the access order shrinks: each access removes the
first element of O to reflect that the access has already been handled.
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– ρ(H,π, r) is a capacity-2n swordRAM over an array H that we refer to as
the log. Informally, the swordRAM logs each PrORAM access. The swor-
dRAM’s remaining reads π[r..] correspond to O. ρ(H,π, r) is the authenti-
cated component of PrORAM, and PrORAM’s array accesses are ultimately
authenticated via the mechanisms of this swordRAM.

– T is the timetable maintained in cleartext by P. The timetable maps each
array index to the last timestep when that index was accessed. That is, for
each array index i, T [i] is a pointer into the log denoting where A[i] was last
logged. The timetable is unknown to V.

6.3 Scheduling the underlying swordRAM

Recall, we are working with an n-element PrORAM that facilitates operations on
an n-element array A. In this section, we formally describe how to derive a swor-
dRAM read order π given a length-n PrORAM access order. Recall from Sec-
tion 6.2 that the permutation π must account both for the block of the next n
PrORAM accesses and for the reads needed to copy array contents to a fresh
PrORAM such that we can support more accesses.

Figure 4 presents schedule, an algorithm that computes π, the order in which
the underlying swordRAM will obliviously read the elements of the log. schedule
takes as input the given access order O. swordRAM writes are sequential, and
need not be scheduled, though the read schedule does depend on writes.

As explained in Section 6.2, each PrORAM data structure A, O is initialized
with the array A in canonical order (initialization is discussed in Section 6.5).

To explain schedule, we first discuss how a single PrORAM access is mapped
to the swordRAM. At initialization, the underlying capacity-2n swordRAM
stores all n elements of A in its first n available slots; the remaining n slots
are not yet written and no reads have yet been used. Suppose that P wishes
to read PrORAM slot A[i]. The swordRAM’s read order permutation π should
reflect this access: the first entry of π should indicate that slot i is read at time
0 (i.e., π[0] = i). Recall that swordRAM slots can be read only once. Therefore,
to allow the PrORAM slot A[i] to be read a second time, we must write back
a value to the swordRAM. Because swordRAM writes occur sequentially, this
write will place the new value into slot n. To account for this write, we should
keep track of the new location of A[i] which is done using a timetable T . As a
side remark, T is initialized to [0, 1, ..., n − 1], reflecting the fact that initially
each element of A is stored in the swordRAM in canonical order.

Scheduling many accesses simply repeatedly applies the following basic pro-
cedure for accesses j = 0, 1, . . . , n−1: Let i be the queried index on access j. We
(1) look up the location of element i in the swordRAM based on T , (2) update
π such that slot i is read at time j (i.e., π[j] = i), (3) allocate the next available
swordRAM write slot as the fresh location for element i, (4) update T to record
that element i is stored in the fresh location.

schedule (Figure 4) implements this procedure. schedule accepts an access
orderO and outputs a permutation on 2n elements (encoded as an array) suitable
for a swordRAM.
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schedule(O) :

. Initialize a timetable to track which element will live where.

. Initially, the swordRAM will store elements in canonical order.

T ← [0..n]

return schedule− suffix(O, T , n)

schedule− suffix(O, T , r) :

π ← 0r+n . Initialize an array π to hold the remaining swordRAM reads

. Schedule a swordRAM read corresponding to each tth PrORAM access.

for t ∈ [0..r] :

i← O[t] . Look up the target index of the tth access.

slot ← T [i] . Look up the swordRAM slot that holds i.

π[t]← slot . slot should be read on the tth swordRAM read.

. Index i will be written back into the end of the swordRAM.

. Keep track of this write in the timetable.

T [i]← 2n− r + t

. After all n accesses, we prepare to move elements to a fresh swordRAM.

. Thus, we schedule a read of each element in canonical order.

for i ∈ [0..n] :

slot ← T [i] . Look up the swordRAM slot that holds i.

π[i+ r]← slot . slot should be read on the (i+ n)th swordRAM read.

return π

Fig. 4. Scheduling swordRAM accesses. schedule takes as an argument a PrORAM
access order O and outputs a corresponding swordRAM read order permutation π.
PrORAM supports schedules of arbitrary length, but schedule only sets up the next n
accesses in the schedule, and hence only looks at the first n entries of O.

schedule delegates to a more general procedure schedule− suffix which generates a
length r + n suffix of a read order permutation. While this more general call is never
exercised in our execution (except directly via schedule), we use it to define validity of
a general PrORAM state, in which some accesses may have occurred: a valid PrORAM
must have a schedule equal to one (correctly) generated by schedule− suffix.

After allocating reads for the n accesses, schedule indicates that the last n
entries in the permutation should match the current timetable. This detail is
used to move the contents of an old data structure into a new one: after n
accesses, we read the array contents in canonical order. The order of these last
n reads is exactly what is stored in the final state of T .

schedule highlights the key points of the reduction from RAM to swordRAM:
map each array access to a swordRAM slot and continually update which array
element is where. Of course, the reader must keep in mind the duality of our pre-
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sentation as an iterative processing in response to queries, and the precomputed
non-interactive one-shot schedule chosen before each block of n accesses.

6.4 PrORAM Validity

Before we specify PrORAM operations, we establish a validity condition that
connects the PrORAM to its underlying swordRAM. This condition is the in-
variant that allows us to prove PrORAM is correct over many accesses.

As explained in Section 5, the swordRAM should be viewed as a log of the
accesses to the PrORAM. PrORAM validity ensures that its swordRAM both
(1) stores a log that properly reflects the PrORAM’s current content and (2)
has a read order that reflects PrORAM’s future accesses.

Definition 1 (PrORAM Validity). Let A, O = (A,O, ρ(H π, r), T ) be a
size-n PrORAM. We say that this PrORAM is valid if:

1. For each PrORAM index i:

H[T [i]] = (A[i], i)

2. Let w , |H| be the number of elements written to the underlying swordRAM:

schedule− suffix(O, T , n− w) = π[r..]

Less formally, these two conditions ensure the following:

1. If we look up each element’s location in the timetable and then find each
location in the log, then we recover the array A. This ensures that the swor-
dRAM properly stores the array A. Note, we store each element A[i] in a
pair with its index i. This allows RAM accesses to check that the queried
index matches the stored index, ensuring that P cannot substitute one RAM
element for another.

2. If we construct a partial swordRAM schedule from the access order and the
current timetable, then we obtain a new copy of the remaining swordRAM
read order. This ensures that the remaining swordRAM reads properly reflect
the array access order O.

6.5 PrORAM Operations

Figures 5 to 7 list the operations over PrORAMs:

– Figure 5 indicates how a new PrORAM is initialized. The parties select an
array of n sharings JAK as the initial array state, then sequentially write
these elements into a fresh swordRAM. The procedure also sets up the swor-
dRAM schedule and P’s timetable T . The swordRAM schedule is set using
schedule, and at initialization each PrORAM slot lives in the corresponding
swordRAM slot: T is initialized to [0, 1, ..., n− 1].
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– Inputs: Parties input an array of n authenticated secret shares JAK that form
the initial state of the array (for example, parties might use J0Kn). P inputs the
array access order O.

– Outputs: Parties output a valid initialized PrORAM:

(A,O, ρ(H,π, 0), T )

where T = [0, 1, ..., n− 1] and the log H is equal to A.
– Protocol:
• P initializes her timetable T as [0, 1, ..., n − 1]. That is, in the initial state

of the PrORAM, each index i is in log slot i.
• P computes π , schedule(O). π is the swordRAM read order.
• Parties initialize an empty swordRAM to hold the log H; P uses π to per-

form this initialization.
• Parties perform n writes to the swordRAM where the ith write stores the

pair JA[i], iK (each i is a public constant, so the parties use the protocol’s
support for constants to encode these indexes). After all n writes, the swor-
dRAM holds A in order, where each slot is explicitly marked with its index.

• The PrORAM (A,O, ρ(A, π, 0), T ) is now defined; the parties output their
respective components.

Fig. 5. The PrORAM initialization procedure initialize. initialize takes as arguments (1)
an authenticated size-n array JAK and (2) an access order O. initialize outputs a fresh
PrORAM A, O .

– Figure 6 indicates how the parties access a PrORAM index. To access ele-
ment i, the parties first read from the underlying swordRAM and retrieve a
pair JA[i], i′K. The parties check that i = i′ by opening P’s share of i − i′.
This check ensures that P cannot substitute one array value for another.

– Figure 7 is a helper procedure that allows the parties to refresh the PrORAM
after every n accesses. To perform this refresh, the parties read the latest
copy of every RAM slot from the swordRAM, then write these values back
into a fresh swordRAM. We call the refresh procedure once every n accesses.

Crucially, each PrORAM operation preserves validity. We argue this formally
in our proof of correctness.

Implementing read and write. access takes a general function f as an ar-
gument; accessing A[i] also writes back f(A[i]). We quickly show that this is
sufficient to implement the standard read and write array operations:

read(A, O , JiK) , access(A, O , JiK, JxK 7→ JxK)

write(A, O , JiK, JyK) , access(A, O , JiK, JxK 7→ JyK)

To implement read, we call access with the identity function: read simply writes
back the read element. To implement write, we call access with a constant func-
tion that ignores the read element and returns the written element y.
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– Inputs: Parties input:
1. A size-n PrORAM A, O .
2. A shared index JiK.
3. An agreed upon function f used to update the selected element. f should

be described as a circuit computable by the algebraic protocol (Section 4.1).
– Outputs: Parties output:

1. The selected value JA[i]K.
2. The updated array A[i := f(A[i])], O[1..] .

– Protocol:
• Let A, O = (A,O, ρ(H,π, r), T ).
• If |H| = 2n, parties call refresh (Figure 7) and replace the PrORAM by the

output of the refresh operation.
• Parties perform a read on ρ(H,π, r) (Figure 2). Let ρ(H,π, r + 1) be the

updated swordRAM and let Jx, i′K be the read value.
• P opens her share of Ji− i′K = J0K. If P’s share is not a share of 0, V aborts.

This check prevents P from accessing an element A[j] for j 6= i.
• Parties jointly compute Jf(x)K via the algebraic protocol.
• Parties write J(i, f(x))K to ρ(H,π, r+ 1) (Figure 3). Let ρ(H|f(x), π, r+ 1)

be the updated swordRAM.
• Parties output JxK.
• Parties output (A[i := f(A[i])],O[1..], ρ(H|f(x), π, r+1), T [i := |H|]). That

is, they output A[i := f(A[i])], O[1..] , which is the PrORAM updated to
include the new write.

Fig. 6. PrORAM access procedure access. access performs the following functions: (1) it
looks up and outputs the queried element JA[i]K, (2) it computes Jf(A[i]K for arbitrary
circuit-encoded function f , and (3) it writes Jf(A[i]K back to the array. If O[0] 6= i
(that is, if P tries to use a bad read order), then V will abort.

– Inputs: Parties input a valid size-n PrORAM (A,O, ρ(H,π, n), T ) such that
|H| = 2n; i.e., the underlying swordRAM has no writes and n reads remaining.

– Outputs: Parties output a valid, refreshed PrORAM (A,O, ρ(H ′, π′, 0), T ′)
such that |H ′| = n; i.e., the new underlying swordRAM has n writes and 2n
reads remaining.

– Protocol:
• Parties perform n swordRAM reads on ρ(H,π, n). Because of the validity

condition (Definition 1) and the definition of schedule (Figure 4), these n
reads fetch the array content: the parties hold JAK.

• Parties call the PrORAM initialize procedure (Figure 5) with JAK and O
and return the resulting PrORAM.

Fig. 7. PrORAM refresh procedure. PrORAM is built on top of swordRAM which
allows only a bounded number of reads/writes. To allow many PrORAM accesses,
we periodically refresh. The refresh procedure simply reads the content of the old
swordRAM into an array, then initializes a fresh PrORAM with the result.

Taking an arbitrary function is flexible. For example, we can implement an
increment function that in-place updates an array slot:

increment(A, O , JiK) , access(A, O , JiK, JxK 7→ Jx+ 1K)
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Thus, we can mutate an array value without using two RAM accesses.

6.6 PrORAM Formal Properties

In this section, we state PrORAM’s formal properties. Due to lack of space, we
defer full proofs of these properties to Supplementary Material.

initialize and access maintain validity:

Theorem 1 (Initialize Correctness). Let JAK be an authenticated share of
an array of n elements and let O be an arbitrary access order over n elements.

initialize(JAK,O) = A, O

where A, O is a valid PrORAM.

Theorem 2 (Access Correctness). Let A, O be a valid n-element PrO-

RAM. Let j , O[0]. Let JiK be a shared RAM index, and let f be a publicly
agreed function. If i = j (i.e., if the shared RAM index matches the access or-
der), then the following holds:

access(A, O , JiK, f) = (JA[i]K, A[i := f(A[i])], O[1..]),

where A[i := f(A[i])], O[1..] is a valid PrORAM.

In short, we show that the operations update the timetable/schedule and
appropriately make use of swordRAM such that validity is maintained.

PrORAM is also concretely efficient:

Theorem 3 (Access Cost). The procedure access (Figure 6) invoked on a size-
n PrORAM consumes amortized 2 log n oblivious transfers of length 2σ secrets.
Additionally, each access transmits amortized 8σ bits.

In short, we inspect the PrORAM algorithms for communication cost, then
amortize costs across each block of n accesses.

7 A Complete ZKP System and Security Proofs

Our approach to defining and proving security. PrORAM naturally inte-
grates with ZKP systems based on authenticated shares, such as the ZKP system
of [HK20a]. To define and prove security of a ZK ORAM construction, including
our PrORAM, one needs to set up a general ZK proof environment which can
generate arbitrary RAM query patterns. The ZKP system of [HK20a] provides
a simple, general, and efficient environment. We embed PrORAM directly into
this protocol, and state and prove the security properties of the resulting system.

We list the following benefits from taking this route:

1. We construct a complete PrORAM-based ZKP system.
2. [HK20a], and hence our complete system, is concretely efficient.
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3. As discussed next, we can reuse the clean and powerful GC-based ZK frame-
work of [JKO13,FNO15] to compile a garbling scheme into a ZKP system.

4. We obtain a simple formalism that can be easily generalized/plugged in
other systems (separate proofs are required, but often may be modeled on
our proof blueprint).

ZK-ORAM Definition. We stress that while we do not define ZK ORAM
in full generality, a natural and generalizable ORAM definition emerges (see Sec-
tion 7.4).

7.1 Casting as a Garbling Scheme

Like [HK20a], we cast our system as a Garbling Scheme (GS), and thus are able
to reuse the convenient and powerful framework of [JKO13]. Their framework
plugs a custom GS (satisfying certain requirements) into their protocol; the
instantiated constant round protocol is a malicious-verifier ZKP system.

In the following, we derive notation from [BHR12], but include changes pro-
posed by recent works that separate the circuit’s logical description from GC
material [HK20c,HK20b]. We explicitly include both the GC material M and
the computed circuit C as arguments to our GS functions.

Before continuing, we discuss the correspondence of our system to a garbling
scheme, as this correspondence may a priori be unintuitive; after all, we do not
construct encryptions of logical gates which are the hallmark of garbled circuits.
Nevertheless, our construction does have components that map cleanly to a GS:

Garbled input labels. In a GS, the GC evaluator receives garbled input
labels. These labels are typically encryption keys that correspond to the logical
values on the input wires. The collection of all input labels is called the encoding
(denoted e), and in most protocols the parties run OTs to send a selection of
input labels (a subset corresponding to the player’s input) from the encoding to
the evaluator. Our labels are more naturally understood as authentication keys,
rather than encryption keys. We send particular authentication mask differences
via OT to enable the authentic multiplication of shares (see Section 4.1). The
collection of all OT messages used for multiplications forms our encoding e.

Garbled material. In a GS, the GC evaluator receives an extra string that
does not depend on her input and is used to evaluate the GC. This string is
called the material (denoted M), and is typically a collection of encrypted truth
tables. While we do not encrypt truth tables, we do send fixed values from V to P
to initialize additive shares and to execute writes to swordRAMs (see Figure 3).
The collection of these extra messages is our material M .

Garbled output label. Similar to the input encoding e, GSs also require an
output decoding (denoted d). In the [JKO13] framework, d is a single, unforge-
able value that indicates a proof; V simply checks that P indeed constructed d
to become convinced. In our construction, the string d is the hash digest of all
of P’s opened shares (see Section 4.1).

Achieving verifiability. The [JKO13] framework requires a GS to be verifi-
able. Informally, this provides for a way to “open” the garbled function to prove
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that it was constructed correctly. One natural way to achieve this, which we
adopt, is for all of V’s randomness be derived from a seed S. Revealing S allows
P to verify the garbled function. GSs and the [JKO13] framework do not provide
a side channel for V to deliver S to P. Therefore, we use e for this purpose: we
simply XOR secret share S and append the shares to the labels of wire 1 of the
circuit. This way, S remains protected until it is opened by V.

7.2 The [JKO13] ZK Framework

To plug a construction into [JKO13]’s ZK protocol, we must prove that the
construction is a verifiable garbling scheme. A verifiable garbling scheme is a
tuple of six algorithms (see [BHR12,JKO13] for precise syntax and formalization
details):

(ev,Gb,En,Ev,De,Ve)

The first five algorithms define a garbling scheme [BHR12], while the sixth adds
verifiability [JKO13].

A garbling scheme specifies the functionality computed by V and P. V uses
Gb to construct material M , input encoding e, and output decoding d. Gb is
computed by walking through the agreed proof circuit C gate-by-gate. In our
construction, we simplify Gb by ensuring that all random values are chosen
according to a single pseudorandom seed. Next, V uses OT to encode P’s witness
according to e. En specifies what these OTs should accomplish: it maps P’s input
space to a concrete choice of encoding, specifying the particular values in e that
P should receive for each of her inputs. Upon receiving material M and an
encoded witness, P uses Ev to authentically compute the circuit gate-by-gate.
At the end of a ZK proof, P constructs a particular output value which is first
committed and later sent to V. V then calls De, which checks that the received
value is exactly equal to the output decoding d; if not, V aborts.

The steps described so far do not protect P from a cheating V, who might
maliciously construct e and M in order to leak P’s input. Therefore, before
opening her commitment, P rebuilds M , e, and d according to V’s seed (which
is sent after the commitment). P uses these reconstructed values to check that
the messages received from V were honestly constructed. If so, she opens her
commitment; if not, she aborts. Ve describes how P should reconstruct M , e,
and d and how she should check that V did not cheat.

Finally, ev provides a specification against which the correctness of the gar-
bling scheme can be checked: ev describes the cleartext semantics of the circuits
manipulated by the GS.

A verifiable garbling scheme must be correct, sound, and verifiable (defi-
nitions are in Section 7).

7.3 Our Garbling Scheme, Its Security, and Our Main Theorem

Our garbling scheme is the arithmetic garbling scheme of [HK20a] augmented
with PrORAM. The arithmetic circuit may arbitrarily issue calls to PrORAM’s
initialize and access functionalities (Figures 5 and 6).
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Construction 1 (Our Garbling Scheme). Our garbling scheme is the six tuple
of algorithms:

(ev,Gb,En,Ev,De,Ve)

described below. Circuits handled by the garbling scheme allow (1) publicly agreed
constant wire values, (2) addition gates, (3) subtraction gates, (4) scalar gates
(which multiply a value by a public constant), (5) vector-scalar multiplication
gates (where the scalar is chosen by P), (6) opening gates (which force P to
prove a share represents a specific constant), (7) array initialization gates, and
(8) array access gates. Circuits thus include two types of wires: (1) algebraic
wires that hold values in Zp and (2) array wires that hold arrays of values in Zp.

Our circuits do not include standard multiplication gates, but recall (from
Section 4.2) that standard multiplication gates are easily implemented on top of
vector-scalar multiplication gates and opening gates.

We describe each of our garbling scheme procedures:
ev evaluates the ZK relation in cleartext and implicitly specifies the cleartext

semantics of each gate type. Our gate types have natural semantics, for example
addition gates indeed add their inputs.

Gb processes the circuit gate-by-gate. As it goes, it generates random values,
obtained from expansion of a pseudorandom seed S. The procedure generates
the mask differences that are V’s OT inputs (i.e. the encoding e). Additionally,
Gb generates the material M : when V constructs additive sharings and on swor-
dRAM writes, Gb appends the ‘sent’ component of the sharing to accumulated
string of material. To handle opening gates, the algorithm also accumulates, as
it goes, the hash of the expected opened shares (that V expects from P). The
final value of this hash is decoding secret d.

Gb processes arithmetic gates according to the [HK20a] protocol (see Sec-
tion 4.1). Array access gates are processed with our ORAM construction (Fig-
ures 5 and 6). Each of these gates is handled by running V’s procedure.

As an additional detail, Gb includes in e two XOR secret shares of the pseu-
dorandom seed S. We discuss this in Section 7.1 under achieving verifiability.

En describes which mask differences (for vector-scalar multiplication gates) P
should receive according to her input. Looking at the procedure for vector-scalar
multiplication (Section 4.1), En is the trivial mapping that indicates P should
receive the left OT secret if her input is zero and the right OT secret otherwise
(cf. Equation (1) in Section 4.1).

Ev is complementary to Gb. Like Gb, it processes the circuit gate-by-gate.
On vector-scalar multiplication gates, Ev consumes encoded input delivered by
En. On the construction of additive sharings/swordRAM writes Ev consumes
material in M . On opening gates, Ev accumulates a hash of opened shares.

Ev handles each gate by running P’s procedures as described in Section 4.1
and Figures 5 and 6.

De is a simple comparison: if the expected output d is equal to the provided
hash, then the procedure accepts; otherwise it rejects (and V aborts).

Ve is implemented in the same manner as Gb: it uses the pseudorandom seed
(included in e, see Section 7.1) to replay the actions of Gb. As it goes, it checks
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that the generated encoding e, material M , and decoding d are equal to the given
values. If all values are equal, Ve accepts; otherwise it rejects (and P aborts).

We next formalize that Construction 1 is correct, sound, and verifiable.
Due to lack of space, we defer full proofs of these properties to Supplementary
Material. These theorems, combined with Theorem 2 from [JKO13] and theorems
in Section 6 imply the following:

Theorem 4 (Main Theorem). In the OT-hybrid model, assuming collision-
resistant hash, and statistical security parameter σ, the framework of [JKO13] in-
stantiated with Construction 1 is a (malicious-verifier) ZKP system with sound-
ness O(2−σ). Circuits in the resulting system may construct and access random-
access arrays, and each access to an array of size n consumes amortized 2 log n
OTs of length 2σ secrets.

Definition 2 (Correctness). A garbling scheme is correct if for all circuits
C and all inputs i such that C(i) = 1:

(e,M, d) = Gb(1σ, C) =⇒ Ev(C,M,En(e, i), i) = d

Correctness enforces that GS correctly implements the specification ev.

Theorem 5. Construction 1 is correct.

In short, correctness follows from the correctness of [HK20a]’s arithmetic
protocol and from the correctness of PrORAM (Theorems 1 and 2).

Definition 3 (Soundness). A garbling scheme is sound if for all circuits C,
all inputs i such that C(i) = 0, and all probabilistic polynomial time adversaries
A the following probability is negligible in σ:

Pr(A(C,M,En(e, i)) = d : (e,M, d)← Gb(1σ, C))

Soundness ensures that a cheating P cannot forge a convincing proof.

Theorem 6 (Soundness). Assuming the existence of collision-resistant hash
functions, Construction 1 is sound.

In short, soundness follows from the authenticity of secret shares. P cannot
forge RAM values because each is masked by a distinct value chosen by V.

Definition 4 (Verifiability). A garbling scheme is verifiable if for all cir-
cuits C, all inputs i such that C(i) = 1, and all probabilistic polynomial time
adversaries A there exists an expected polynomial time algorithm Ext such that
the following probability is negligible in σ:

Pr (Ext(C,M, e) 6= Ev(C,M,En(e, i)) : (e,M)← A(1σ, C),Ve(C,M, e) = 1)
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At a high level, in the [JKO13] protocol, P receives and evaluates GC and
commits to her proof message. Then she is given V’s private randomness used
to construct the GC. P uses this randomness to check messages sent by V.
Verifiability ensures that this check is reliable in the following sense: V will
learn nothing from the opened proof message because P’s proof message can be
reconstructed in polytime by Ext without P’s witness. Altogether, verifiability
ensures that the ZK protocol is secure against a malicious verifier.

Our construction takes a natural approach and derives all of V’s randomness
from a seed S, and then reveal S as part of the verification procedure Ve. To
syntactically fit the conveyance of S into the [JKO13] framework, we include
S in e. See discussion accompanying the protocol specification Construction 1.
Note, opening all of V’s private randomness is a natural protocol design decision,
but is not required by the definition of verifiability (Definition 4).

Theorem 7 (Verifiability). Construction 1 is verifiable.

In short, verifiability follows relatively trivially from the fact that V chooses
all randomness starting from a pseudorandom seed.

7.4 Defining ZK ORAM

As discussed before, we do not aim to define ZK ORAM in utmost generality. So
far, we proved (Theorem 4) that PrORAM, integrated with the (quite general)
GC-based ZKP CPU [HK20a], which can generate an arbitrary sequence of RAM
accesses, results in secure and correct ZKP system. Here we explain why this
is a reasonable framework to also define ZK ORAM with respect to specific
execution environments.

Recall, MPC ORAM is often defined as a compiler that translates logical
RAM/array accesses to physical memory accesses; its obliviousness property is
defined by the indistinguishability of physical RAM accesses of any two programs
of equal length (or, alternatively, via simulation), executed in some well-defined
RAM Execution Environment (REE). The programs in a REE, e.g., can simply
be defined as arbitrary sequences of logical RAM accesses. Again, MPC ORAM
is said to be correct and secure, if the REE execution of the RAM program
satisfies formally defined security and correctness properties.

We can follow the same definitional approach in defining ZK ORAM: We
specify a REE (the GC-based ZKP CPU [HK20a]) which interfaces with the
ORAM protocol using initialize and access commands and which can generate
arbitrary access sequences. We then require that the REE execution of any RAM
program results in a secure ZKP system.

Hence, PrORAM is proven secure with respect to the GC-based ZKP CPU
of [HK20a] according to the following definition.

Definition 5 (ZK ORAM for a REE). Let RAM Execution Environment
EnvRAM be a pair of interactive Turing machines P, V, which operate with arrays
by making calls to initialize and access as described above. We say that a protocol
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Z supporting calls to initialize and access from EnvRAM, is a secure ZK ORAM,
if the protocol obtained by composition of EnvRAM and Z is a secure ZKP system
(in particular, secure against malicious verifier V).

8 Instantiation

We implemented PrORAM in 1300 lines of C++. Our implementation uses the
recent and efficient correlated Ferret OT technique [YWL+20]. Note, Ferret
requires additional cryptographic assumptions: (1) learning parity with noise
(LPN), (2) a tweakable correlation-robust hash function, and (3) a random oracle
(RO). We use statistical security parameter σ = 40 and accordingly instantiate
our prime field with modulus p = 240 − 87, the largest 40 bit prime.

In the following section, we discuss an experimental evaluation of our imple-
mentation. All experiments were performed on a MacBook Pro laptop with an
Intel Dual-Core i5 3.1 GHz processor and 8GB of RAM. We ran our experiments
on a simulated LAN network featuring 1Gbps of bandwidth and 2ms latency.

9 Evaluation

Fig. 8. Performance comparison of PrORAM against [HK20a]’s BubbleRAM. We plot
performance as a function of the size of RAM n. Each experiment accessed the RAM
220 times. We plot (1) the amortized communication cost of each access (left), (2) the
amortized wall-clock time per access (center), and (3) the number of accesses performed
per second (right). Center and right are different views of the same information.

In this section, we illustrate the performance of PrORAM by experimental
evaluation. For comparison, we also ran BubbleRAM, a circuit-based ZK ORAM
that was implemented as part of [HK20a]’s ZK construction. Since their construc-
tion is built on the same underlying arithmetic protocol, the comparison is direct.
We emphasize that we implement both constructions in the same protocol and
use the same underlying OT protocol (Ferret [YWL+20]); thus our experiments
directly compare the ORAM techniques, not the environments they run in. Our
comparison highlights the low asymptotic and concrete costs of PrORAM.
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We implemented both PrORAM and BubbleRAM and used them to evaluate
a circuit which accesses an array 220 times on random indexes. Of course, a more
realistic use case would use the RAM in the context of a more complex circuit,
but our goal is only to measure performance. We varied the size of the RAM
n between 23 slots and 220 slots. Each RAM slot holds a single Zp element;
recall that, internally, the PrORAM also reserves an extra slot to store the index
identifier. Hence, internally the PrORAM slots have width two; BubbleRAM uses
the same trick and hence also has slots of width two. We measured both the total
communication transmitted between P and V and the wall-clock time needed to
complete the entire proof. Figure 8 plots the results of these experiments.

Communication improvement. Our communication improvement follows
naturally from our improved asymptotics: BubbleRAM incurs 1/2 log2 n OTs per
access while we incur only 2 log n. In addition to the OTs, our V also sends an
additional eight Zp elements per RAM access: four to convey shares of K to P
before permuting and four for the two swordRAM writes.

PrORAM outperforms BubbleRAM for n > 25. At n = 220, communication
is improved by 4.36×.

Wall-clock time improvement. Our wall-clock time improvement is far
more dramatic than our communication improvement.

Both BubbleRAM and PrORAM primarily involve applying Waksman per-
mutation networks to an array of shared values. However, PrORAM applies only
a single permutation to prepare for n accesses. In contrast, BubbleRAM applies
a permutation on each access (though the permutations vary in size). Waksman
networks are not cache friendly. The network involves swapping (via algebra)
data between disparate locations in the array of shares. Thus, computing the
network causes many cache misses and is expensive. Because we significantly
reduce the number of permutations, we see a corresponding performance boost.
At n = 220, we improve over BubbleRAM by 10.6×.

Comparison with BubbleCache. Above, we compared PrORAM to Bub-
bleRAM. [HYDK21] gave a practical improvement to BubbleRAM called Bub-
bleCache. Here, we analytically compare PrORAM and BubbleCache.

BubbleCache improves BubbleRAM by exploiting data locality and by intro-
ducing the possibility of cache misses. BubbleCache incurs only O(log n) commu-
nication overhead per access, matching the asymptotic complexity of PrORAM.
Indeed, if we ignore the cost of cache misses, BubbleCache is slightly cheaper
than PrORAM. E.g., for a RAM with 217 words of memory, BubbleCache con-
sumes ≈ 20 OTs per access while PrORAM consumes 34.

However, if there is insufficient data locality in the program execution, Bub-
bleCache will be unable to fetch a needed data item, and the RAM will be forced
to issue a cache miss. These cache misses must be handled by the surrounding
ZK circuitry. PrORAM does not issue cache misses and implements a simple
array interface.

This difference between the two RAMs is both quantitative and qualitative:

– Suppose we plug both RAMs into a CPU-based architecture. When using
BubbleCache, we must pay overhead on the CPU cycle circuit corresponding
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to the cache miss rate. For example, in the [HYDK21] processor, each CPU
cycle costs ≈ 270 OTs and reads/writes memory once. [HYDK21] found that
a cache miss rate of ≈ 10% was relatively normal. Thus, we can allocate the
extra 0.1 × 270 = 27 OTs to each BubbleCache read. Already, PrORAM is
thus superior. Moreover, the CPU cycle circuit could be simplified since it
no longer needs to account for cache misses.

– Consider implementing a proof via a specialized circuit with array accesses.
I.e., suppose we do not implement a ZK CPU. Notice that it is not clear
how cache misses should be handled. Indeed, a cache-missing RAM seems
to force the designer to adopt a circuit structure that repeatedly performs
the same computation over and over (i.e., a CPU). PrORAM, which cannot
miss, can be used easily alongside simple circuits.
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Supplementary Material

10 Related Work

Our contribution is an efficient ORAM for an interactive Zero Knowledge pro-
tocol. In our review of related work, we discuss both ZK protocols and ORAMs.

Zero Knowledge. ZK proofs [GMR85,GMW91] are fundamental crypto-
graphic primitives. ZK proofs of knowledge (ZKPoKs) [GMR85] allow a prover
P to convince a verifier V that she holds an input i to a circuit or program C
such that C(i) = 1. Early ZK protocols focused on specific relations, but more
recently research attention has shifted to proofs of arbitrary statements encoded
as circuits. Our work seeks to augment this more recent line with efficient RAM
access so that proof statements can be expressed as programs for RAM machines.

Interactive ZK. The most closely related works allow an interacting
P to quickly convince V that she holds a satisfying assignment to a cir-
cuit [JKO13,FNO15,HK20c,HK20a,WYKW20]. This line of work is attractive
because it features costs that scale linearly in the circuit size with low constants.
Thus, if P and V wish to finish a proof as fast as possible, these constructions
are excellent choices.

[JKO13] was the first work to construct concretely efficient proofs of arbi-
trary circuits by reducing ZKPs to garbled circuits (GCs). Recently, new works
further improved this style of interactive ZK. [HK20c] improved GC-based ZK
by reducing the communication consumption of conditional branching. [HK20a]
and [WYKW20] both introduced GC-like constructions that allow proofs over
arithmetic circuits. This improvement from Boolean to arithmetic dramatically
improves performance.

We embed our ZK ORAM in [HK20a]’s arithmetic protocol. Their protocol,
which is based entirely on oblivious transfer (OT), is made extremely efficient
by recent innovations in OT extension [BCG+19,YWL+20]. By embedding into
their protocol, we provide arbitrary arithmetic circuits that can access an efficient
RAM. We review their protocol detail in Section 4.1.

Succinct and non-interactive ZK (NIZK). While our focus is on the in-
teractive setting, we review NIZK as well to put our work in perspective. Ishai et
al. [IKOS07], introduced the ‘MPC-in-the-head’ paradigm: here, P emulates in
her head a multiparty computation protocol that evaluates the proof statement
amongst virtual players. V challenges P to open random portions of the evalua-
tion transcript; if these portions are consistent with the MPC protocol, V gains
confidence that the prover has a witness. By allowing V to inspect transcripts of
only some virtual players, the protocol protects P’s input. MPC-in-the-head is
the backbone of numerous ZK techniques [CDG+17,KKW18,AHIV17,BFH+20].

Succinct non-interactive arguments of knowledge (SNARK) techniques con-
struct small proofs with fast verification time, e.g. [BCG+13,CFH+15]. Early
SNARKs required a semi-trusted party; more recent works introduced STARKs
(succinct transparent arguments of knowledge) [BBHR18]. STARKs do not re-
quire trusted setup and rely on more efficient primitives.
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While these works have excellent ZK performance in many settings (e.g.,
small proof size, fast verification time, non-interactivity), they do not (yet)
achieve low-constant linear scaling of interactive proofs. For example, the vir-
tual machine implemented in [BCG+13] runs at 1Hz vs the 2.1KHz clockrate
achieved in [HK20a]. This motivates our focus on concretely fast ORAM for the
faster interactive setting.

Oblivious RAM. While our focus is on ZK ORAM, we include in our review
the broader area of general ORAM as well. Oblivious RAM (ORAM) [GO96] is a
significant area of cryptographic research, e.g. [AKL+20,SvS+13]. ORAM allows
array access while hiding access patterns. ZK ORAM permits the prover to know
the access pattern, and, of course, can be instantiated with a general-purpose
ORAM. However, ZK ORAM is a simpler object, and could be constructed more
efficiently. Such higher-efficiency ZK ORAMs are relatively unexplored.

Some prior ZK works that interface with RAM use standard oblivious RAM
(ORAM) as a black box, e.g. [MRS17,HMR15]. Two general purpose ORAMs
stand out in terms of concrete performance. ‘Floram’ scales well to large memory
sizes [Ds17]. [RS19] is a square-root ORAM preferable for smaller memory sizes.

A small number of works have explored ZK ORAM. BubbleRAM [HK20a],
our main point of comparison, is a ZK-specific ORAM with excellent concrete
performance. BubbleRAM is integrated in [HK20a]’s arithmetic ZK protocol,
which we also use as a wrapper for our ZK ORAM. BubbleRAM consumes
only 1/2 log2 n oblivious transfers of length-2σ secrets (σ is a statistical security
parameter) per access to a size-n RAM. We note that, although not discussed
in [HK20a], the BubbleRAM construction is just a circuit; it can be instantiated
as a public-coin ZKP protocol, and thus can be used in non-interactive ZK,
e.g., via Fiat-Shamir. Like our approach, their technique relies on the oblivious
permutation of values.

[BCG+13] integrate a ZK ORAM construction [BCGT13] in their ZK proof
system. Their technique has O(log2 T ) cost per access, where T is the number
of steps in the program. They only implement their ORAM as a zkSNARK,
and achieve poor concrete costs, compared to our work. We do not compare our
performance to [BCG+13] in detail.

Prior general ORAM constructions (e.g., [AKL+20]) achieve the op-
timal O(log n) complexity. However, the hidden constants are high, and
concretely-best constructions have much higher asymptotic complexity, as high
as O(

√
n) [Ds17,RS19]. In addition to better complexity, our constants are also

lower. This is not surprising, as we solve a simpler problem.

In sum, we do not further compare our work to general-purpose ORAM, and
focus on fast ZK ORAM. Here the recent BubbleRAM [HK20a] is state-of-the-art
both asymptotically and concretely. We focus our comparison on BubbleRAM
(see Section 9).
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11 Proofs

Due to lack of space, we deferred our proofs from the main part of our paper.
Here, we restate and prove each of our theorems.

Theorem 1 (Initialize Correctness). Let JAK be an authenticated share of
an array of n elements and let O be an arbitrary access order over n elements.

initialize(JAK,O) = A, O

where A, O is a valid PrORAM.

Proof. By the correctness of swordRAM operations.
initialize (Figure 5) simply sequentially writes the n elements in JAK to a fresh

swordRAM. The initial timetable T = [0, 1, ..., n − 1] thus correctly indicates
the location of each index i in the swordRAM. Moreover, the schedule π =
schedule(O[0..n], T , n) satisfies validity by construction.

initialize is correct.

Theorem 2 (Access Correctness). Let A, O be a valid n-element PrORAM.

Let j , O[0]. Let JiK be a shared RAM index, and let f be a publicly agreed
function. If i = j (i.e., if the shared RAM index matches the access order), then
the following holds:

access(A, O , JiK, f) = (JA[i]K, A[i := f(A[i])], O[1..]),

where A[i := f(A[i])], O[1..] is a valid PrORAM.

Proof. By validity of the input A, O and correctness of swordRAM operations.
At a high level, we show that accessing a valid PrORAM will return (1) a

correct sharing of the accessed slot and (2) a valid, updated PrORAM.
Access is correct if |H| < 2n. Suppose that the PrORAM’s internal log H

has size less than 2n; we address the case |H| = 2n at the end of the proof.
The definition of validity (Definition 1) combined with the definition of

schedule (Figure 4) ensures that the next item to be read from the swordRAM
corresponds to array index i. More concretely, validity ensures that:

– T [i] denotes the index of the log H where A[i] is stored: H[T [i]] = A[i].
– The first item in schedule− suffix(O, T , t) is T [i].
– The underlying swordRAM’s schedule π matches the access order O.

Put together, these facts ensure that the next element to read from H is the
accessed element: π(H)[r] = A[i]. Since swordRAM reads are correct, the PrO-
RAM access will output a correct sharing JA[i]K.

The updated PrORAM is a valid encoding of A[i := f(A[i])] with access
order O[1..]. First, condition (2) of validity (Definition 1) follows from iterative
structure of schedule− suffix: the schedule for the updated PrORAM automati-
cally matches the schedule for its underlying swordRAM. Second, condition (1)
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of validity follows from the fact that we write f(A[i]) back to the swordRAM.
In particular, after the swordRAM read but before the swordRAM write, T cor-
rectly indicates the location of every array index except for the accessed index
i. schedule− suffix sets the new location for index i as the end of the log, which
matches the fact that we sequentially write back the element f(A[i]) to the end
of the log. Thus, the updated PrORAM is valid.

Refresh is correct. Now, suppose that the input PrORAM has log H with
size 2n. In this case, we refresh the PrORAM before the access (Figure 7).
Thus, we must show that refresh correctly outputs a new valid PrORAM A, O ,
but whose log has size n instead of 2n. Recall that the current schedule π was
computed according to schedule (see Figure 5). schedule computes a swordRAM
schedule of n accesses, and then schedules accesses to each index i in canon-
ical order. Thus, by validity, the last n scheduled swordRAM reads look up
the current PrORAM content. Our refresh operation uses this fact to copy the
PrORAM content to a temporary array. Note, this intermediate array does not
support random access, and is just a shared array of authenticated values JAK.
The parties simply call initialize with content JAK (Figure 5), and then perform
the access on the resulting PrORAM.

PrORAM is correct.

Theorem 3. The procedure access (Figure 6) invoked on a size-n PrORAM
consumes amortized 2 log n oblivious transfers of length 2σ secrets. Additionally,
each access transmits amortized 8σ bits.

Proof. By amortizing OTs and transmissions across n accesses.
First consider initialize (Figure 5). initialize is called once to build a fresh PrO-

RAM and then is called after every n accesses when the underlying swordRAM
is filled. initialize of a size n PrORAM invokes a permutation on a size-2n array
via swordRAM initialization (Figure 1). This array’s slots each contain two ad-
ditive shares: one share holds the array content while the other holds the explicit
index identifier used to ensure P cannot substitute one array value for another.
The permutation over these slots is achieved by a Waksman permutation net-
work [Wak68]. A network on 2n elements consumes 2n log 2n − 2n + 1 swap
gates, each of which can be instantiated by a single vector-scalar multiplication
(Section 4.5). Thus, we consume 2n log 2n− 2n+ 1 vector scalar multiplications
where each vector is of length two. Each multiplication is instantiated by a corre-
sponding OT. By amortizing these OTs across n accesses, each access consumes
2 log n+ 1/n OTs of length 2σ secrets.

On initialization, V sends to P her initial shares of LKM. This array share is
of size 4σn: K is an array of 2n slots where each slot hold two shares. Amortized,
each access therefore incurs an extra 4σ bits for initialization.

On each swordRAM write, V sends to P a mask difference (Figure 3). This
difference is proportional to the size of swordRAM slots, and hence has size 2σ.
Every n PrORAM accesses corresponds to 2n swordRAM writes, so each access
costs amortized 4σ extra bits for writing.

swordRAM initializations and writes feature the only communication in our
construction, so we have accounted for all communication cost.
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Theorem 4 (Main Theorem). In the OT-hybrid model, assuming a collision-
resistant hash function and statistical security parameter σ, Construction 1 is a
(malicious-verifier) ZKP system with soundness O(2−σ). Circuits in the resulting
system may construct and access random-access arrays, and each access to an
array of size n consumes amortized 2 log n OTs of length 2σ secrets.

Proof. Follows immediately from the other theorems proved in this Supplemen-
tary Material.

Theorem 5. Construction 1 is correct.

Proof. By the correctness of [HK20a]’s algebraic protocol and the correctness of
PrORAM (Theorem 2).

Correctness follows trivially from the correctness of these subcomponents.
The only noteworthy detail is that PrORAM accesses take as input/give as
output authenticated secret sharings in the same format as used by algebraic
operations (see Figure 6). Hence, PrORAM values may be interpreted as circuit
wire values.

Construction 1 is correct.

Theorem 6 (Soundness). Assuming the existence of collision-resistant hash
functions, Construction 1 is sound.

Proof. By the security of [HK20a]’s arithmetic representation and an argument
that the random authentication masks K ∈$ (Zsp)n prevent the forgery of values.
We first prove the non-RAM portions of the arithmetic protocol sound. Then
we focus on PrORAM.

Each circuit wire value x is represented by an authenticated secret share
JxK = 〈X,x∆ − X〉 for fixed uniform ∆ ∈$ Z×p and for X ∈ Zp. Crucially, X
and ∆ are unknown to A. Given a share x∆−X, it is infeasible for A to forge
a valid share y∆ − X for x 6= y: A does not know ∆, does not know X, and
the multiples of ∆ are distributed evenly over Z×p . Therefore, forging a specific
sharing y∆−X requires A to simply guess ∆, which succeeds with probability
1
p−1 . We choose p > 2σ−1, and so inauthentic values can only be forged with

probability negligible in σ. Vector space operations (addition, subtraction, mul-
tiplication by public constant) are computed locally by homomorphism, and so
these operations are trivially sound (that is, the resulting output share is un-
forgeable in the above sense). Vector scalar multiplication requires the parties to
communicate via OT, and the received messages are in En(e, i). The received OT
messages are randomized and cannot be used to forge authentic values. The out-
put of a vector-scalar multiplication is a newly randomized authenticated secret
share, and so multiplication is also sound. Finally, the protocol accumulates a
hash digest of all opened shares; forging this hash requires breaking the collision
resistance of a hash function and is infeasible. Thus, Construction 1’s arithmetic
operations are sound.

We now focus on PrORAM. In terms of soundness, PrORAM is mostly a
straightforward reduction to swordRAM: each PrORAM access primarily dele-
gates to a swordRAM read and a swordRAM write (and possibly a swordRAM
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initialization via refresh). One extra detail is that each PrORAM access checks
that the looked up index matches the queried index. This check ensures that A
cannot substitute one RAM index for another: both indexes are authentic values
that cannot be be forged by A except with negligible probability. We emphasize
that A also cannot “break apart” a RAM value from its index: all swap gates
operate over RAM slots as a unit. That is, when P chooses whether or not to
swap two RAM slots, that single choice will optionally swap both the value and
its index. Next, we consider each swordRAM operation.

– swordRAM initialization and additive sharings. Consider the swor-
dRAM initialization procedure, which permutes an array of additive secret
sharings. Recall, additive secret sharings are used to encode an array of
random values K ∈$ (Zsp)n. These sharings support soundness because the
shares seen by A are indistinguishable from uniform field elements; in order
to cheat, A must successfully replace one index of K by another chosen in-
dex. But since each value in K is simply random, this substitution succeeds
only with probability 1

p . Operations over additive secret shares are sound by
the same argument as for operations over authenticated secret shares.

– swordRAM reads. In fact, swordRAM reads are entirely local operations:
P simply looks up her appropriate share in Lπ(K)M and adds it to her share
of JAKK[0..|A|]. Thus, reads are trivially sound (i.e., invalid output values
cannot be authenticated).

– swordRAM writes. On a swordRAM write of share a∆ − M , V sends
to P the value M − K[w] where K[w] is an index of the array of random
values used to mask the PrORAM content. M and K[w] are both uniform
field elements unknown to A. While K[w] appears elsewhere in P’s view,
it is only as part of additive shares where it is masked by a uniform mask.
Thus, the value M − K[w] appears indistinguishable from a random value
to A, so swordRAM writes are sound (i.e., invalid output values cannot be
authenticated).

We further emphasize that each uniform mask K[i] is used exactly once. This
prevents re-using stale values or substituting one RAM value for another.

Construction 1 is sound.

Theorem 7 (Verifiability). Construction 1 is verifiable.

Proof. By construction of a polytime algorithm Ext.
First, we argue that Ve ensures that (e,M) is properly constructed. The

procedure Ve recovers V’s seed from e and then replays the actions of V during
the proof. As the verification algorithm proceeds, it compares the constructed
messages with those in e and M . Thus, the verification procedure ensures that
e,M were indeed correctly generated by the pseudorandom seed, and so when
Ve(C, e,M) = 1, the check is reliable.

Note, V is an interactive Turing machine, while Ve is a procedure; neverthe-
less, Ve (and Ext) can replay V’s actions. While in our protocol presentation
V sends messages to P (which ultimately constitutes (M,En(e, i)), he receives
none, other than the final message h′.
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Next, we construct Ext. Ext recovers V’s seed from e and replays V’s actions,
including computing the message d that V requires to accept the proof (d is the
hash of P’s opened shares, cf. Section 4.1). Thus, Ext has enough information
to replay V and calculate accepting d.

Construction 1 is verifiable.


