
On the Importance of Pooling Layer Tuning for
Profiling Side-channel Analysis

Lichao Wu and Guilherme Perin

Delft University of Technology, The Netherlands

Abstract. In recent years, the advent of deep neural networks opened
new perspectives for security evaluations with side-channel analysis. Specif-
ically, profiling attacks now benefit from capabilities offered by convolu-
tional neural networks, such as dimensionality reduction, the absence of
manual feature selection, and the inherent ability to reduce trace desyn-
chronization effects. These neural networks contain at least three types of
layers: convolutional, pooling, and dense layers. Although the definition
of pooling layers causes a large impact on neural network performance, a
study on pooling hyperparameters effect on side-channel analysis is still
not provided in the academic community. This paper provides extensive
experimental results to demonstrate how pooling layer types and pooling
stride and size affect the profiling attack performance with convolutional
neural networks. Additionally, we demonstrate that pooling hyperpa-
rameters can be larger than usually used in related works and still keep
good performance for profiling attacks on specific datasets. Finally, with
a larger pooling stride and size, a neural network can be reduced in size,
favoring training performance.

Keywords: Side-channel analysis, Deep Learning, Convolutional Neural Net-
works, Pooling

1 Introduction

The processing of confidential and secret information in embedded or electronic
devices, in general, requires protection against different types of physical attacks.
Encryption methods implement various algorithms to provide data protection for
sensitive information, including cryptographic keys. An algorithm that proved to
be mathematically secure is not necessarily implementation-secure. Side-channel
analysis (SCA) is a class of non-invasive attacks where an adversary can record
the unintended leakages, such as electromagnetic (EM) radiation [20] or power
dissipation [9], and use those leakages to obtain secret information [14].

SCA can be divided into two categories based on the attack setting or se-
curity evaluation purpose (e.g., chip certification or security assessment. When
an attacker can only access physical leakages captured on the target device,
a non-profiled SCA, such as differential power analysis (DPA) [9], correlation
power analysis (CPA) [2] and mutual information analysis (MIA) [5], could be

2 Lichao Wu and Guilherme Perin

used to retrieve the secret information. On the other hand, profiling SCA as-
sumes an adversary with full control of a clone device (i.e., by changing the key
or installing malicious software) that is identical to the target device. On that
device, the attacker can profile the side-channel leakages. This allows the adver-
sary to learn statistics from leakages and build profiling models. The commonly
used methods include template attack [4] and supervised machine learning-based
attacks [13,19,3,8].

Supervised machine learning-based attacks have drawn great attention within
the SCA community in recent years due to their effectiveness in breaking tar-
gets and high applicability to different attack scenarios. Among different types
of neural networks, convolutional neural networks (CNNs) are the most adopted
method in coping with countermeasures due to their spatial invariance prop-
erty [8,3], making these models appropriate to bypass countermeasures such as
noise and side-channel trace desynchronization. While profiling models based
on deep neural networks actively threaten the security of cryptographic devices
in profiling settings, there are still severe limitations and unknowns.

Neural network hyperparameter selection is one of the biggest obstacles. Tak-
ing CNNs as an example, they usually consist of three types of layers (convolution
layer, pooling layer, and dense layer), where each layer has at least two config-
urable hyperparameters. When an attacker tries to enhance the network capa-
bility by applying more layers, the hyperparameters’ combination increase expo-
nentially. Although some researchers are trying to set general design rules [28,25]
or apply neural architecture search to find the best-performing network automat-
ically [26,21], the results are far from definitive. Indeed, the generality of such
hyperparameter tuning methods is usually dataset-specific, but they demon-
strate that deep neural networks are powerful methods that can be tailored to
different datasets.

This paper focuses on the pooling layer of CNNs, which is, to the best of our
knowledge, an analysis not done before. We experimentally investigate the influ-
ence of a pooling layer’s hyperparameters variation on the attack performance.
To achieve this, we use two models, one with a single pooling layer and the
other with multiple pooling layers. The former is used to target an unprotected
dataset; the latter is optimized for two datasets containing different AES im-
plementations protected with masking countermeasure. Our results clearly show
that the type of pooling layer should be selected based on its depth and the
number of input features. We also give guidelines on how to choose the hyperpa-
rameters in different cases. We confirm that the pooling layer’s addition can help
reduce the network size while keeping excellent attack performance. Finally, our
results show that pooling hyperparameter tuning is important and can result in
significantly different attack performance even when not considering other layers
or hyperparameters.

Pooling Layer in Profiling SCA 3

2 Preliminaries

2.1 Notation

We use calligraphic letters X to represent sets. The upper-case letters (X) rep-
resent random variables and random vectors X over X . The realizations of X
and X are represented by lower-case letters x and x, respectively.

A dataset T constitutes a collection of side-channel traces (measurements) ti
associated with an input value (plaintext or ciphertext) di and a key candidate
ki (k ∈ K where k∗ is the correct key). As common in deep learning-based SCA,
the dataset is divided into three parts: a profiling set of N traces, a validation
set of V traces, and an attack set of Q traces. In terms of a deep learning-based
profiling model, the vector of learnable parameters is denoted with θ, while the
set of hyperparameters defining the profiling model f is denoted with H.

2.2 Deep-learning Based Profiling Side-channel Analysis

The goal of supervised machine learning is to learn a function f mapping an
input to the output (f : X → Y)). To accomplish this, the model uses examples
of input-output pairs. When considering supervised learning for profiling SCA,
the input-output pairs are represented by leakage traces and the corresponding
intermediate data. The profiling stage is equivalent to the training phase in
supervised learning, while the attack phase is equivalent to testing in supervised
learning. Formally, the profiling SCA is executed in the following stages:
– Profiling stage: learn θ′ minimizing the empirical risk represented by a loss

function L on a profiling set of size N .
– Attack stage: predict the classes y(x1, k

∗), . . . , y(xQ, k
∗), where k∗ represents

the secret (unknown) key on the device under the attack.
By applying attack traces to the profiling models, probabilistic deep learning

algorithms output a matrix of probabilities P of size Q×c. Each probability value
denotes how likely a certain measurement should be classified into a specific class
(thus, pi,v represents the probability that a specific class v is predicted). The
class v is obtained from the key and input through a cryptographic function and
a leakage model l. Every row of the matrix P is a vector of all class probabilities
for a specific trace xi (

∑c
v pi,v = 1,∀i). The probability S(k) for any key byte

candidate k is the maximum log-likelihood distinguisher:

S(k) =

Q∑
i=1

log(pi,v). (1)

As common in SCA, an adversary aims to obtain the secret key k∗ with
the minimum attack effort. To evaluate this effort, it is common to use metrics
like guessing entropy (GE) [23], representing the average position of k∗ in a key
guessing vector g = [g1, g2, . . . , g|K|]. As common, g1 represents the most likely
key candidate, while g|K| represents the least likely key candidate. Note that this
represents a significant difference from the machine learning settings where one
would commonly consider validation accuracy as a metric of success.

4 Lichao Wu and Guilherme Perin

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are widely used neural networks in many
domains, including SCA. They commonly consist of three types of layers:

– Convolutional layer: this layer computes neurons’ output connected to local
regions in the input, each computing a dot product between their weights
and a small region they are connected to in the input volume.

– Pooling layer: this layer aims at decreasing the number of extracted fea-
tures by performing a down-sampling operation along the spatial dimen-
sions. It is common to consider convolution and pooling layers to form a
convolution block. Two main types of pooling layers are considered in this
paper: average-pooling and max-pooling. Average-pooling layers perform the
average of a pooling block concerning the pooling size (i.e., the number of
elements covered with a single pooling operation). Max-pooling layers re-
turn the maximum element from a block concerning pooling size. As we
treat uni-dimensional side-channels, all convolution and pooling operations
are 1D operations. Figure 1 illustrates the different types of pooling opera-
tions over a feature map (output of a convolution layer). As we see in the
example from this figure, the selection of the pooling type can be crucial
for the model performance, as each type of pooling returns different results.
Pooling stride refers to the pooling step over the feature map.

– Fully-connected layer: the dense layers are normally applied after convolution
layers and pooling layers. The goal of this layer is to compute either the
hidden activations or the class scores.

(a) Max-pooling operation. Example for
pooling size and pooling stride of 2.

(b) Average-pooling operation. Example
for pooling size and pooling stride of 2.

Fig. 1: Pooling types

Finally, it is worth noting the difference between the parameters and hyperpa-
rameters for machine learning algorithms. Hyperparameters are all configuration
variables corresponding to the model architecture, e.g., the convolution size or
the type of pooling layer. The parameters are the configuration variables whose
values can be estimated from data. The examples of parameters are the weights
and bias in a neural network. When discussing tuning a neural network (or its
pooling layer), we mean tuning its hyperparameters.

Pooling Layer in Profiling SCA 5

2.4 Datasets

ChipWhisperer Dataset. The Chipwhisperer dataset is designed to evaluate
various algorithms by providing a standard comparison base [15]. The dataset we
consider contains 10 000 side-channel power traces measured by the ChipWhis-
perer CW308 Target running an unprotected AES-128 implementation. Each
trace contains 5 000 sample points (features). In our experiment, we use 7 500
traces for profiling and 2 000 traces for the validation. We use key byte two as
the target secret data.

ASCAD Datasets. ASCAD datasets represent a common target for profil-
ing SCA as they contain measurements protected with masking and settings
with fixed or random keys [1]. More precisely, the ASCAD dataset contains
the measurements from an 8-bit AVR microcontroller running a masked AES-
128 implementation. Currently, there are two versions of this database: one
that uses a fixed key for both profiling and attack dataset, and the other one
with random keys in the profiling set. The datasets are available at https:

//github.com/ANSSI-FR/ASCAD.
The first dataset version has a fixed key, and it consists of 50 000 traces

for profiling and 10 000 for the attack. From 50 000 traces in the profiling set,
we use 45 000 traces for profiling and 5 000 for validation. Each trace has 700
features (preselected window corresponding to the processing of key byte 3, the
first masked key byte). We denote this dataset as ASCAD f.

The second version has random keys, with 200 000 traces for profiling and
100 000 for the attack. We use 45 000 traces for profiling and 5 000 traces from
the attack set for validation (note that the attack set has a fixed but a different
key from the profiling set). Each trace has 1 400 features (preselected window
corresponding to the processing of key byte 3, the first masked key byte). We
denote this dataset as ASCAD r.

3 Related Works

The profiling SCA can be considered as a classification task on one-dimensional
data where the attacker’s goal is:
– to classify the traces containing unknown but fixed information (i.e., encryp-

tion subkeys),
– by using the classification results and knowledge about the plaintexts/ci-

phertexts to retrieve the secret information.
From the information-theoretic point of view, template attack (TA) [4] represents
the most powerful profiling SCA. There, one uses the probability density function
(PDF) as templates to perform the attack. In an ideal case where the attacker has
an unlimited number of traces, and the noise follows the Gaussian distribution,
TA can reach its full attack capability [11].

In terms of machine learning-based profiling SCA, various approaches, such as
random forest [10] and support vector machines [7] have been adopted first. More

https://github.com/ANSSI-FR/ASCAD
https://github.com/ANSSI-FR/ASCAD

6 Lichao Wu and Guilherme Perin

recently, multilayer perceptron (MLP) [6,18] and convolutional neural networks
(CNN) [13,3,8] emerged as the most powerful approaches.

Specifically, CNNs demonstrated to be capable of coping with various coun-
termeasures due to their spatial invariance property [3,8]. Thus, they became
one of the most powerful approaches for deep learning-based SCAs. However, a
CNN optimized for one dataset is not necessarily applicable to other datasets,
thus raising difficulties in implementing such attacks. To allow customization
and optimization of CNN designs, Zaid et al. proposed a methodology to select
hyperparameters related to the size of layers in CNNs [28]. This work is further
improved by Wouters et al. [25] with the help of data standardization. In terms of
neural architecture search, Bayesian optimization is adopted by Wu et al. to find
optimal hyperparameters for MLP and CNNs [26]. Rijsdijk et al. used reinforce-
ment learning to design CNNs that show strong attack performance with a small
number of trainable parameters [22]. Several works consider tuning of specific
CNN hyperparameters: Li et al. investigated the influence of weight initialization
techniques [12] while Perin and Picek considered different optimizers [16].

4 Experimental Setup

In this section, we present our strategy to evaluate the performance of two types
of commonly-used pooling layers: average-pooling and max-pooling. The anal-
ysis is conducted on three publicly available datasets described in Section 2.4.
The default CNN models used to test the pooling layer are described in Ta-
ble 1. Specifically, CNNchipwhisperer is used to attack the Chipwhisperer dataset;
ASCAD fixed key dataset (ASCAD f) and ASCAD random keys dataset (AS-
CAD r) are profiled with CNNascad [1]. We consider only the HW leakage model
as the conclusions drawn from the pooling layer with one leakage model can be
easily extended to other leakage models. Also, considering the related work, the
HW leakage model performs well for the considered datasets [26,22]. In terms
of hyperparameters, we show the number of filters in the table for convolution
layers. The convolution stride is set to 11 for both models following the network
design from the ASCAD paper [1]. Pooling layers follow each convolution layer,
and the pooling size and stride are set to two by default. For both models, ReLU
is used as the activation function. The optimizer is RMSProb with a learning
rate of 1e-5.

Test models Convolution layer Pooling layer Dense layer

CNNchipwhisper Conv(8) avg(2,2) 128*2

CNNascad Conv(64, 128, 256, 512, 512) avg(2,2)*5 4 096*2

Table 1: CNN architectures used in the experiments.

Pooling Layer in Profiling SCA 7

To evaluate the profiling attack performance, we consider four SCA-based
metrics:
– Guessing Entropy (GE): the averaged correct key rank after applying the

maximum number of attack traces.
– TGE0: the number of traces required to reach GE equal to zero.
– Lm: the correlation between the ideal key rank vector and the key rank (or

guessing entropy) vector calculated from the attack [27].
– ACC: the classification accuracy on the validation traces.
GE and Lm metrics are derived from guessing entropy, aiming at evaluating

the key recovery capacity of trained neural networks by setting a limited num-
ber of attack traces.. Specifically, the second metric (TGE0) is designed for cases
that the models require few traces to retrieve the secret key. In this case, even
if GE equals zero for different circumstance, we can better estimate the attack
performance by evaluating the number of attack traces to reach it Implemen-
tation details and benefits of Lm metric in profiling SCA are provided in [27].
This metric can indicate attack performance even if the number of attack traces
is limited and other metrics, such as GE or TGE0, cannot precisely describe the
key recovery capacity from the profiling model. Although related works indicate
a low correlation between validation accuracy and success of an attack [17], the
ACC metric shows that a higher validation accuracy could still mean a lower
GE [26,21]. Therefore, the validation accuracy is also taken into consideration.

In the experimental results, we first try to understand the influence of data
standardization on the attack performance for the ChipWhisperer dataset. After
understanding this, we perform extensive analysis towards the impact of two
main configurable hyperparameters: pooling size and pooling stride, within a
pooling layer with different evaluation metrics. Additionally, we vary the pooling
settings in different layers to understand the correlation between the pooling
hyperparameter variation and layer depth. Finally, we explore the contribution
of the pooling layer by training a profiling model with and without the last
pooling layer.

5 Experimental Results

The experiments start with ChipWhisperer as this dataset is easily breakable
even with a small CNN architecture. The required amount of time to train a CNN
model for this dataset is relatively low, and, therefore, we can tune the model’s
hyperparameter with smaller steps and a larger range. In terms of the evaluation
aspects, with the CNNchipwhisperer specified in Table 1, we focus on tuning the
pooling size and stride of the only available pooling layer. With such an analysis,
we aim to understand the pooling hyperparameters’ influence on the general
performance of the model. Here, we experiment with both average-pooling and
max-pooling methods by setting the range for pooling size and stride from 1 to
100 with a step of 1 and test all combinations (10 000 combinations in total).
Besides, we investigate the link between the data standardization and the pooling
layer’s hyperparameters selection. As such, the experiments are performed with

8 Lichao Wu and Guilherme Perin

two versions of a dataset: original (no preprocessing) and standardized (forcing
the amplitude ranges from -1 to 1).

CNNascad is used as the profiling model for standardized ASCAD f and AS-
CAD r. Compared with CNNchipwhisperer, this model’s complexity is increased
to overcome the masking countermeasure. Note there are five pooling layers in
the CNNascad model. When perturbing all pooling layers simultaneously, the
variation range of the pooling layer is limited. Therefore, we only focus on vary-
ing the hyperparameters of the first and the last pooling layers. Due to the traces
length differences, for ASCAD f, we tune the pooling hyperparameters ranging
from 1 to 20, while for ASCAD r, we double this range (1 to 40). The step equals
one for both datasets. Finally, we also investigate the role of the pooling layer
from the aspects of the network size and attack performance. This experiment is
launched by training and comparing the model with and without the last pooling
layer.

5.1 Case Study: the ChipWhisperer Dataset

The results for GE are shown in Figure 2. Since GE remain zero for all hy-
perparameter combinations when attacking the standardized dataset, we only
present the GE value for the original dataset. As mentioned, 2 000 traces are
used for the attack. First, we can conclude that the data standardization in-
creases the model’s resilience towards the pooling layers’ hyperparameter varia-
tion. As shown in Figure 2, for both average- and max-pooling, the attack model
is more sensitive to the pooling stride variation. Indeed, a larger pooling stride
misses some critical features outputted by the previous convolution layer, finally
causing degradation of the attack performance. However, there are cases when
a large pooling stride can achieve outstanding attack performance (i.e., pooling
stride equal to 45, 50, 75, 85). Meanwhile, a large pooling stride can effectively
reduce the outputted features, leading to a smaller model. This observation indi-
cates the possibility of reducing the network size by using a large pooling stride
and having a good understanding of the leakage measurements.

Interestingly, when attacking the original dataset, the model equipped with
the max-pooling layer performs better than the one with the average-pooling
layer in general. Specifically, 97% of the average-pooling setting combinations
lead to GE value larger than 50, while this value decreases to 85% when ap-
plying max-pooling. Additionally, when applying larger pooling size and pooling
stride, max-pooling seems a better choice for a successful attack (GE converges
or even decreases to zero). Simultaneously, we observe V-shaped patterns (i.e., at
max-pooling stride: 57, 80) that occur periodically. The corresponding patterns
are also marked by a red dashed line in Figure 3b. A possible explanation could
be that these (large) pooling hyperparameters accidentally cover the leakages
appearing in specific locations. However, these critical features are most likely
to be skipped, considering many unsuccessful setting combinations. This obser-
vation points out the importance of the leakage characterization: if an evaluator
understands leakage positions (points of interest), he can confidently decrease

Pooling Layer in Profiling SCA 9

(a) GE: original dataset with
average-pooling

(min: 0; max: 150)

(b) GE: original dataset with
max-pooling

(min: 0; max: 151)

Fig. 2: GE for the original/standardized dataset with average-/max-pooling layer
for the HW leakage model on ChipWhisperer.

the complexity of the attack model by increasing the stride of the pooling layer
to a proper value. Similar conclusion is also drawn in [24].

Figure 3 provides results when evaluating the number of traces required to
reach GE equal to zero (TGE0). Since GE converges to zero with only a single
trace with the standardized dataset, we only show the results attacking the
original dataset in Figure 3. Similar to the observation with the GE metric,
the max-pooling layer seems more robust to the pooling size variation when the
pooling stride is small.

(a) TGE0: original dataset with
average-pooling

(min: 31; max: >2 000)

(b) TGE0: original dataset with
max-pooling

(min: 15; max: >2 000)

Fig. 3: TGE0 for the original/standardized dataset with average-/max-pooling
layer for the HW leakage model on ChipWhisperer.

10 Lichao Wu and Guilherme Perin

Next, we apply the Lm metric and depict results in Figure 4. In line with the
observations for the GE metric, the standardized dataset is easier to attack than
the original one without preprocessing. Although Lm reaches a higher value with
smaller pooling strides (less than ten) for the original dataset, Lm reaches above
0.5 for all hyperparameter combinations when applying the standardization to
the dataset. Additionally, for the original dataset, we again observe that the
max-pooling layer is more resilient to the pooling size variation, ensuring a large
number of setting combinations for a successful attack.

Recall that the secret can be obtained with only one trace with the stan-
dardized dataset, so limited information can be acquired by evaluating GE and
TGE0. With the help of Lm, we observe the influence of the hyperparameter
variation: max-pooling performs slightly better than the average-pooling. In-
deed, only 52 average-polling setting combinations lead to the Lm value greater
than 0.5. When using the max-pooling layer, this value increases to 174.

(a) Lm: original dataset with
average-pooling

(min: 0.075; max: 0.806)

(b) Lm: original dataset with
max-pooling

(min: 0.074; max: 0.806)

(c) Lm: standardized dataset with
average -pooling

(min: 0.748; max: 0.929)

(d) Lm: standardized dataset with
max-pooling

(min: 0.748; max: 0.929)

Fig. 4: Lm for the original/standardized dataset with average-/max-pooling layer
for the HW leakage model on ChipWhisperer.

Pooling Layer in Profiling SCA 11

Finally, we analyze the attack performance with each hyperparameter combi-
nation with ACC. As shown in Figure 5, aligned with the previous observation,
attacks on the original dataset lead to low ACC, while for the standardized
dataset, the accuracy is higher. When comparing the max-pooling and average-
pooling layers, the former performs better, as it could lead to high ACC with
more pooling setting combinations.

(a) ACC: original dataset with
average-pooling

(min: 0.263; max: 0.373)

(b) ACC: original dataset with
max-pooling

(min: 0.228; max: 0.358)

(c) ACC: standardized dataset with
average-pooling

(min: 0.339; max: 0.945)

(d) ACC: standardized dataset with
max-pooling

(min: 0.322; max: 0.942)

Fig. 5: Accuracy for the original/standardized dataset with average-/max-
pooling layer for the HW leakage model on ChipWhisperer.

5.2 ASCAD with a Fixed Key (ASCAD f)

Utilizing the observations for the Chipwhisperer dataset, we postulate that the
dataset standardization increases the attack efficiency. Simultaneously, it dra-
matically increases the model’s resilience towards the variation of the pooling

12 Lichao Wu and Guilherme Perin

layer’s hyperparameters. Therefore, for the ASCAD dataset, we only attack the
standardized dataset.

Tuning the first/last pooling layer. First, we evaluate the attack perfor-
mance of each setting in combination with the GE metric. The results are shown
in Figure 6. Here, we omit the tuning results for the first pooling layer because
of the constant GE value (zero) for all setting combinations. On the other hand,
when tuning the last pooling layer, the average-pooling method provides in-
ferior performance with a large pooling size. When going to a larger pooling
stride, although not so obvious, the models applying both the average- and
max-pooling layers method on the last layer have reduced attack performance.
For the average-pooling method, a larger pooling size could lead to these criti-
cal features being ’averaged’ by other less relevant features, thus degrading the
classification efficiency. For the max-pooling method, the unique features can be
picked up even with a larger pooling size. Interestingly, we see a ’slash line’ on
the right part of the figure for both pooling methods. One possible reason could
be that with these pooling settings, the critical features are completely missed.

(a) GE: tuning the last average-pooling
layer

(min: 0; max: 248)

(b) GE: tuning the last max-pooling
layer

(min: 0; max: 248)

Fig. 6: GE for the standardized dataset with average-/max -pooling layer for the
HW leakage model on ASCAD f.

When analyzing the results with TGE0 (Figure 7), some unique patterns can
be observed even when tuning the first pooling layer. From Figures 7a and 7b, we
confirm that changing the pooling stride causes greater variation of TGE0 than
the pooling size for both average-pooling and max-pooling methods. A possible
reason could be that the features are still location-dependent after sampling
by the first convolution layer. A smaller pooling stride could support capturing
these important features. Meanwhile, comparing the results for average- and
max-pooling, the latter method seems to enable more pooling settings with low-
value TGE0, which is aligned with the conclusion made in Figure 6. Indeed,

Pooling Layer in Profiling SCA 13

when counting the number of setting combinations that lead to TGE0 greater
than 5 000, the values are 118 and 70 for the averaging-pooling and max-pooling
method, respectively. Besides, when comparing Figures 7a and 7c or Figures 7b
and 7d, the corresponding patterns seems to be rotated for 90 degrees. One
explanation could be that the leakages in the deeper layers tend to distribute
uniformly across the features. Thus the selection of the pooling stride becomes
less important than the pooling size.

(a) TGE0: tuning the first
average-pooling layer

(min: 321; max: 2 569)

(b) TGE0: tuning the first max-pooling
layer

(min: 527; max: 4 616)

(c) TGE0: tuning the last average-pooling
layer

(min:500; max: >5 000)

(d) TGE0: tuning the last max-pooling
layer

(min: 638; max: >5 000)

Fig. 7: TGE0 for the standardized dataset with average-/max-pooling layer for
the HW leakage model on ASCAD f.

Next, we evaluate the attack performance with Lm metric (Figure 8). From
the results, we confirm the observations made with GE and TGE0. First, tun-
ing the first pooling layer has less impact on overall attack performance than
varying the last pooling layer. Meanwhile, when the pooling stride is fixed for
the first pooling layer, the pooling size variation causes less impact on Lm. For
the last pooling layer, in contrast, the pooling stride becomes a less sensitive hy-

14 Lichao Wu and Guilherme Perin

perparameter. When comparing the overall performance between average- and
max-pooling, max-pooling performs slightly better than average-pooling when
attacking the standardized ASCAD dataset: 255 average-pooling settings lead
to Lm value greater than 0.5, while this value raises to 271 for the max-pooling.
This observation is aligned with the conclusion drawn from the ChipWhisperer
dataset.

(a) Lm: tuning the first average-pooling
layer

(min: 0.463; max: 0.688)

(b) Lm: tuning the first max-pooling
layer

(min: 0; max: 0.691)

(c) Lm: tuning the last average-pooling
layer

(min: 0.409; max: 0.676)

(d) Lm: tuning the last max-pooling
layer

(min: 0; max: 0.706)

Fig. 8: Lm for the standardized dataset with average-/max-pooling layer for the
HW leakage model on ASCAD f.

Finally, we consider the ACC metric (Figure 9). Interestingly, the ACC
metric presents similar patterns as the other three metrics but reversely. More
specifically, the settings that reach better GE/TGE0/Lm values are worse with
ACC and vice versa. With this observation, we can conclude that overfitting is
the cause of the degraded performance. Indeed, the HW leakage model forces
the dataset to follow a binomial distribution. Thus, the overfitted model tends
to output high probabilities for the middle classes (i.e., the HW class 4, and then

Pooling Layer in Profiling SCA 15

HW classes 3 and 5) regardless of the input. Following this, although the model
may have higher validation accuracy and lower loss, the model’s classification
capability is degraded. Moreover, as can be seen from Figures 9a, 9b, and 9c,
overfitting is more easily triggered with larger pooling settings, which is equiva-
lent to smaller network sizes. For the max-pooling in the last layer (Figure 9d), a
more uniform distribution of the ACC value can be seen, indicating its potential
of reducing the network size while keeping good attack performance.

(a) ACC: tuning the first
average-pooling layer

(min: 0.192; max: 0.280)

(b) ACC: tuning the first max-pooling
layer

(min: 0.176; max: 0.274)

(c) ACC: tuning the last average-pooling
layer

(min: 0.177; max: 0.277)

(d) ACC: tuning the last max-pooling
layer

(min: 0.149; max: 0.270)

Fig. 9: ACC for the standardized dataset with average-/max-pooling layer for
the HW leakage model on ASCAD f.

Tuning the dense layer with/without the last pooling layer. We inves-
tigate the role of the last pooling layer and the following dense layers, trying to
find a direction to reduce the network size (complexity). Again, four evaluation
metrics, GE, TGE0, Lm, and ACC, are applied to interpret the attack results.

16 Lichao Wu and Guilherme Perin

Results are shown in Figure 10. Note that each unit of the dense layer size rep-
resents 64 neurons. For example, for a dense layer with 64 units: 4 096 neurons
are available in the dense layer.

By fixing the hyperparameters of the pooling layer to default (two) and only
tuning the size of the dense layer, a quick drop of GE and TGE0 and rise of
Lm can be observed when increasing the dense layer size from one to three (64
neurons to 192 neurons). Moreover, in Figures 10b and 10c, a network without
the last pooling layer (before the first dense layer) requires less dense neurons
to reach the top performance, which can be attributed to the contribution of
more features being used for classification. On the other hand, the pooling layer
reduces the complexity of the network by averaging/selecting max value over
multiple features. As a trade-off, more neurons are required in the dense layer
to reach similar attack performance.

When further increasing the dense layer size, the values decrease for both
Lm and ACC. Indeed, although the network’s classification capability could be
increased by increasing the complexity of the dense layer, the training effort
to learn from the dataset is also increased. Therefore, to balance the attack
performance and model complexity, the small size of the dense layer with a
pooling layer could be optimal.

5.3 ASCAD with Random Keys (ASCAD r)

Compared with the ASCAD f dataset, the length of a trace in the ASCAD r
dataset is doubled (1 400 features). Since the same CNN model (CNNASCAD)
is used as the profiling model, the number of features available at the output
of the last convolution layer (input of the last pooling layer) is also doubled,
providing additional range to tune the hyperparameter of the pooling layer.
Aligned with the experiments for the ASCAD f dataset, we tune both average-
and max-pooling layer and analyze the results with different metrics. Note, the
dense layer’s size is varied to reduce the network size while keeping a good attack
performance.

Tuning the first/last pooling layer. First, we apply the GE metric to
interpret the results shown in Figure 11. Interestingly, we again confirm the
conclusion drawn for the ASCAD f dataset: for the pooling layer in the shal-
lower layers, pooling stride is essential in extracting and down-sampling the
features, while the pooling size should be more carefully tuned in the deeper
layers. Meanwhile, average-pooling performs better than max-pooling for most
setting combinations. This tendency becomes more significant when investigat-
ing the first layer: for the max-pooling layer, 21% of the pooling setting com-
binations lead to GE value below 50 with 5 000 attack traces. When using the
average-pooling layer, this value increases to 68%. Recall the observations for
the ChipWhisperer dataset: an average-pooling layer is more suitable for the
standardized dataset, while the max-pooling layer works better for the origi-
nal (non-standardized dataset). Here, we reach the same conclusion from the

Pooling Layer in Profiling SCA 17

(a) GE (b) TGE0

(c) Lm (d) ACC

Fig. 10: Tuning the dense layer with/without the average/max last pooling layer
attacking ASCAD f.

results when attacking the ASCAD r dataset. Compared with the conclusions
for ASCAD f, it seems that more input features lead to a better performance of
the average-pooling layer than max-pooling. However, considering the different
characteristics of the data, no definitive conclusions can be drawn.

The performance deviations of average- and max-pooling become more pro-
nounced when considering TGE0 as depicted in Figure 12. Specifically, from Fig-
ure 12b, only 22 setting combinations (out of 400) required less than 2 000 attack
traces to retrieve the correct key. When using the average-pooling as the first
pooling layer, this value increases to 271. For the last pooling layer, the dif-
ferences between the two pooling methods are reduced. Still, average-pooling
has more tolerance (276 good settings) to the hyperparameter variation than
max-pooling (179 good settings).

The results for the Lm metric are shown in Figure 13. They consolidate the
observations from the previous two metrics but also provide new information. For
instance, when looking at Figures 13b and 13d, we find more setting combina-
tions with potential to reach a high Lm value, eventually leading to a successful
attack. Recall that overfitting represents the main reason for the degradation of
the attack performance for the ASCAD f. From Figure 13d, the sub-optimal Lm

18 Lichao Wu and Guilherme Perin

(a) GE: tuning the first average-pooling
layer

(min: 0; max: 255)

(b) GE: tuning the first max-pooling
layer

(min: 0; max: 245)

(c) GE: tuning the last average-pooling
layer

(min: 0; max: 96)

(d) GE: tuning the last max-pooling
layer

(min: 0; max: 249)

Fig. 11: GE for original/standardized dataset with average-/max-pooling layer
for the HW leakage model on ASCAD r.

values (0.2) are more concentrated in the middle of the graph, indicating a huge
reduction of the model size. Therefore, training longer could be a solution to
enhance the attack performance. Again, in general, average-pooling outperforms
max-pooling in both shallower and deeper layers.

We analyze the attack results with the ACC metric in Figure 14, which are
similar to ASCAD f (see, e.g., Figure 14c). The model starts overfitting with
a larger pooling stride and pooling size. Interestingly, this observation is more
distinguishable for the average-pooling method. For the max-pooling layer (Fig-
ures 14b and 14d), the ACC values distribute more uniformly, indicating the
possibility of the trained model to be underfitting. Combined with the obser-
vations for ASCAD r: a model equipped with max-pooling layers may require
more training effort, and additional training epochs may help enhance the attack
performance.

Pooling Layer in Profiling SCA 19

(a) TGE0: tuning the first
average-pooling layer

(min: 789; max: >5 000)

(b) TGE0: tuning the first max-pooling
layer

(min: 1 440; max: >5 000)

(c) TGE0: tuning the last average-pooling
layer

(min:668; max: >5 000)

(d) TGE0: tuning the last max-pooling
layer

(min: 746; max: >5 000)

Fig. 12: TGE0 for original/standardized dataset with average-/max-pooling layer
for the HW leakage model on ASCAD r.

Tuning the dense layer with/without the last pooling layer. Next, we
set the pooling layer’s hyperparameter to default (two) and tune the size of the
dense layer. The results are shown in Figure 15. Different from the observations
in Figure 10 (ASCAD f), by increasing the dense layer size, we see an improved
attack performance for TGE0, Lm, and ACC, indicating the potential to further
increase the attack performance by using larger dense layer size and more dense
layers. Besides, compared with the model with the pooling layers, removal of the
last pooling layer tends to have less variation when increasing the dense layer
size, but more trainable parameters are used as a trade-off (the output of the last
convolution layer is directly flattened and fully connected with the first dense
layer). In general, the model with or without pooling performs equally well, but
pooling layers are still needed to construct a CNN model that reduces the model
size while keeping a good attack performance.

Based on those observations, we list the conclusions for all three datasets:

20 Lichao Wu and Guilherme Perin

(a) Lm: tuning the first average-pooling
layer

(min: 0; max: 0.441)

(b) Lm: tuning the first max-pooling
layer

(min: 0; max: 0.418)

(c) Lm: tuning the last average-pooling
layer

(min: 0; max: 0.510)

(d) Lm: tuning the last max-pooling
layer

(min: 0; max: 0.443)

Fig. 13: Lm for original/standardized dataset with average-/max-pooling layer
for the HW leakage model on ASCAD r

– Data standardization can significantly improve the attack performance.
– When the input data has limited features, varying a pooling layer in the

shallow layer causes less influence on the attack performance than in the
deeper layer.

– For the deeper pooling layers, if the input features are limited, the max-
pooling layer is preferable. Otherwise, an average-pooling layer could lead to
better performance.

– Smaller pooling strides are required for the shallower pooling layers. At the
same time, the smaller pooling sizes are preferable for deeper pooling layers.

– For the network size reduction, larger pooling sizes could be applied for the
shallower pooling layers. The deeper pooling layers could be used with larger
pooling strides.

– The removal of some pooling layers may increase the robustness of the model
towards the dense layer variation. Nevertheless, we recommend using the last

Pooling Layer in Profiling SCA 21

(a) ACC: tuning the first
average-pooling layer

(min: 0.137; max: 0.289)

(b) ACC: tuning the first max-pooling
layer

(min: 0.161; max: 0.270)

(c) ACC: tuning the last average-pooling
layer

(min: 0.155; max: 0.288)

(d) ACC: tuning the last max-pooling
layer

(min: 0.162; max: 0.262)

Fig. 14: ACC for original/standardized dataset with average-/max-pooling layer
for the HW leakage model on ASCAD r.

pooling layer as part of the model to efficiently reduce the network size while
keeping a good attack performance.

6 Conclusions and Future Work

In this paper, we considered the effect of a pooling layer towards profiling
side-channel analysis. We investigated one unprotected dataset (ChipWhisperer)
and two datasets protected with masking countermeasures (ASCAD f and AS-
CAD r). Two commonly used pooling methods, average-pooling, and max-pooling
are tested with different hyperparameter settings. The results are evaluated
through four metrics. Our results clearly show that the pooling method and
the corresponding hyperparameters should be determined based on both the
depth of the (pooling) layer and the size of input features. Besides, we evalu-
ated the importance of the last pooling layer in terms of attack performance

22 Lichao Wu and Guilherme Perin

(a) GE (b) TGE0

(c) Lm (d) ACC

Fig. 15: Tuning the dense layer with/without the average/max last pooling layer
attacking ASCAD r.

and network complexity. As a trade-off of model size reduction, the implementa-
tion of the pooling layer leads to omitting of some features. However, the attack
performance is still comparable to the one without the last pooling layers.

We plan to explore the influence of the pooling layer’s hyperparameter choice
in various input sizes and profiling models for future work. Next, we aim to
explore the role of the countermeasures when selecting and tuning the pooling
layers. Finally, in this work, we concentrated on the HW leakage model only. It
would be interesting to expand this to other leakage models in future work.

References

1. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. J. Cryptographic
Engineering 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8,
https://doi.org/10.1007/s13389-019-00220-8

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: International Workshop on Cryptographic Hardware and Embedded Systems.
pp. 16–29. Springer (2004)

https://doi.org/10.1007/s13389-019-00220-8

Pooling Layer in Profiling SCA 23

3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: International Conference on
Cryptographic Hardware and Embedded Systems. pp. 45–68. Springer (2017)

4. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: CHES. LNCS, vol. 2523,
pp. 13–28. Springer (August 2002), San Francisco Bay (Redwood City), USA

5. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
International Workshop on Cryptographic Hardware and Embedded Systems. pp.
426–442. Springer (2008)

6. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of aes. In: 2015 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST). pp. 106–111. IEEE (2015)

7. Heuser, A., Zohner, M.: Intelligent Machine Homicide - Breaking Cryptographic
Devices Using Support Vector Machines. In: Schindler, W., Huss, S.A. (eds.)
COSADE. LNCS, vol. 7275, pp. 249–264. Springer (2012)

8. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems pp. 148–179
(2019)

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology.
pp. 388–397. CRYPTO ’99, Springer-Verlag, London, UK, UK (1999), http://dl.
acm.org/citation.cfm?id=646764.703989

10. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A Machine Learning
Approach Against a Masked AES. In: CARDIS. Lecture Notes in Computer Sci-
ence, Springer (November 2013), berlin, Germany

11. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In: International Workshop on Constructive Side-Channel
Analysis and Secure Design. pp. 20–33. Springer (2015)

12. Li, H., Krček, M., Perin, G.: A comparison of weight initializers in deep learning-
based side-channel analysis. In: Zhou, J., Conti, M., Ahmed, C.M., Au, M.H.,
Batina, L., Li, Z., Lin, J., Losiouk, E., Luo, B., Majumdar, S., Meng, W., Ochoa,
M., Picek, S., Portokalidis, G., Wang, C., Zhang, K. (eds.) Applied Cryptography
and Network Security Workshops. pp. 126–143. Springer International Publishing,
Cham (2020)

13. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: International Conference on Security, Privacy,
and Applied Cryptography Engineering. pp. 3–26. Springer (2016)

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Se-
crets of Smart Cards. Springer (December 2006), ISBN 0-387-30857-1, http:

//www.dpabook.org/

15. O’Flynn, C., Chen, Z.D.: Chipwhisperer: An open-source platform for hardware
embedded security research. In: International Workshop on Constructive Side-
Channel Analysis and Secure Design. pp. 243–260. Springer (2014)

16. Perin, G., Picek, S.: On the influence of optimizers in deep learning-based side-
channel analysis. IACR Cryptol. ePrint Arch. 2020, 977 (2020), https://eprint.
iacr.org/2020/977

17. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class
imbalance and conflicting metrics with machine learning for side-channel evalu-
ations. IACR Transactions on Cryptographic Hardware and Embedded Systems

http://dl.acm.org/citation.cfm?id=646764.703989
http://dl.acm.org/citation.cfm?id=646764.703989
http://www.dpabook.org/
http://www.dpabook.org/
https://eprint.iacr.org/2020/977
https://eprint.iacr.org/2020/977

24 Lichao Wu and Guilherme Perin

2019(1), 209–237 (Nov 2018). https://doi.org/10.13154/tches.v2019.i1.209-237,
https://tches.iacr.org/index.php/TCHES/article/view/7339

18. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class im-
balance and conflicting metrics with machine learning for side-channel evaluations.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(1),
1–29 (2019)

19. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: International
Conference on Security, Privacy, and Applied Cryptography Engineering. pp. 157–
176. Springer (2018)

20. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) Smart Card
Programming and Security. pp. 200–210. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2001)

21. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparam-
eter tuning in deep learning-based side-channel analysis. Tech. rep., Cryptology
ePrint Archive, Report 2021/071, 2021. https://eprint. iacr. org . . . (2021)

22. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparame-
ter tuning in deep learning-based side-channel analysis. Cryptology ePrint Archive,
Report 2021/071 (2021), https://eprint.iacr.org/2021/071

23. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis
of side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 443–461. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

24. Tran, N.Q., Nguyen, H.Q.: Efficient cnn-based profiled side channel attacks. Jour-
nal of Computer Science and Cybernetics 37(1), 1–22 (2021)

25. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a method-
ology for efficient cnn architectures in profiling attacks. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2020(3), 147–
168 (Jun 2020). https://doi.org/10.13154/tches.v2020.i3.147-168, https://tches.
iacr.org/index.php/TCHES/article/view/8586

26. Wu, L., Perin, G., Picek, S.: I choose you: Automated hyperparameter tuning
for deep learning-based side-channel analysis. Cryptology ePrint Archive, Report
2020/1293 (2020), https://eprint.iacr.org/2020/1293

27. Wu, L., Weissbart, L., Krček, M., Li, H., Perin, G., Batina, L., Picek, S.: On the
attack evaluation and the generalization ability in profiling side-channel analysis.
Cryptology ePrint Archive, Report 2020/899 (2020), https://eprint.iacr.org/
2020/899

28. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for effi-
cient cnn architectures in profiling attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2020(1), 1–36 (Nov 2019).
https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.iacr.org/index.

php/TCHES/article/view/8391

https://tches.iacr.org/index.php/TCHES/article/view/7339
https://eprint.iacr.org/2021/071
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/899
https://eprint.iacr.org/2020/899
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391

	On the Importance of Pooling Layer Tuning for Profiling Side-channel Analysis

