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Abstract. Custodian service is a service safeguarding a firm’s or indi-
vidual’s financial assets or secret information. Such services often present
a user with a security versus ownership dilemma. The user does not wish
to pass the full control over their asset to the custodian to facilitate
safeguarding. A control sharing mechanism allowing the custodian to
hold enough information and keeping the user as the owner of the as-
set is required. For the assets being secret information, cryptographic
protocols addressing this dilemma are known as prepositioned secret
sharing (PSS) protocols. PSS schemes distinguish redundant “common”
shares and a specific “activating” shares controlling the very possibility
of the secret information reconstruction. Usually PSS schemes: 1) lack
robustness with respect to the amount of “common” shares, i.e., a high
redundancy degree in “common” enables them to reconstruct the secret
without “activation”, and 2) are inflexible in configuring the robustness
of the “activating” shares, i.e., how many “activating” shares can be lost
or stolen before the secret can be reconstructed. In this paper, we present
a PSS addressing these shortcomings.
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1 Introduction

In his seminal work, Shamir [21] introduced a secret-sharing scheme based on an
evaluation of polynomial of degree k in n points and consequent reconstruction
of the secret free coefficient by any subset |T | of the n points, k − 1 ≤ t ≤ n.
Such schemes are commonly referred to as (t, n) sharing schemes.

Consequent work of Simmons [22, p. 393-394] identified conceptual capabili-
ties that these sharing schemes must offer to be used in “real” (sic) applications.
Our work addresses two challenges from that list. For the sake of completeness
these two items are quoted entirely.

1. Prepositioned shared secret schemes in which the holders of the private pieces
of information are unable to recover the secret information, even if they all
collude to do so, until such time as the scheme is activated by communicating
additional information.

2. Prepositioned shared secret schemes in which the same collection of private
pieces of information can be used to reveal different secrets depending on
the choice of the activating information.
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There are several areas of applications for PSS schemes. Simmons [23] pro-
vides many examples of military applications. Another particularly need for such
schemes exists in custodian services. A custodian is an institution that holds
customers’ secrets for safekeeping to prevent these secrets from being stolen or
lost. A prominent example is a bank holding customers’ securities. In traditional
custodian model, a customer transfers full authority over their assets to the
custodian. To make this model viable, either a complete trust relation between
the custody service providers and their users must be assumed, or, when the
trust is lacking, a legal framework holding the custodian accountable must fill
the void. Prepositioned shared secret schemes have a potential to remove the
“must” restriction in the latter case. A constellation of custodian institution
holds shards of secret which can only make up a secret if additional customer
information is provided, but by itself the customer’s information is as useless as
the aforementioned shards.

Our work proposes a PSS based on polynomial evaluation and reconstruction
akin to the Shamir secret sharing. It allows for two classes of participants (the
custodians and the user) that need to engage into an information exchange to
reconstruct the secret. At the same time neither of the classes holds sufficient in-
formation to reconstruct the secret on their own. Our PSS allows the custodians
to increase own robustness by generating redundant information pieces on their
own. Such redundant pieces do not compromise the above guarantee. Similarly,
the user may also increase their robustness to a certain limit (which is covered
further on in the paper).

2 Prepositioned Secret Sharing

2.1 Activating Information

The original challenges (Enumeration 1) neither define “activating information”,
nor speak on its nature. This freedom allows different interpretations and leaves
a lot of room for a debate. It is tempting to define “activating information” in
terms of external factors, especially in the light that the choice of such infor-
mation can reveal different secrets. In consequent research such information is
often chosen to be of internal nature: Xu et al. [25] utilize n-of-n Shamir shar-
ing and define “activating information” as one special share, in Eskicioglu [10]
“activating information” is defined as a subset of Shamir shares. We also define
such information as some shares of an appropriate Shamir sharing. The sharing
scheme is presented below.

2.2 Sharing Scheme

Let parties Ui, i = 1, . . . , t be providers of activating information and parties
Ci, i = 1, . . . l be custodians. We shall also refer to the holders of activating
information as users or activators. Sharing and reconstruction is facilitated by a
polynomial of degree m, f(x) =

∑m
k=1 akx

k + b. Let f be called an instrumental
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P : (0,m + 1)

S : (m, 1)(0, 1)

Points, p

Sharings, s

Fig. 1. Segment PS is defined as p = (m+ 1)− s. The grey area contains valid setups
for the scheme.

polynomial and set of its coefficients be denoted with A = {ak}mk=1. Polynomial
f can be defined both algebraically, as above, and geometrically, by specifying
points (xi, f(xi)), i ≥ m+1. Note that all the polynomial operations performed in
the following sections are performed on a finite field. The notation is disregarded
for brevity.

Sharing Now we are ready to define the sharing scheme:

1. fix the secret b, construct any f(x) =
∑m

k=1 akx
k + b, now the secret is f(0),

2. select a subset Â ⊆ A, let |Â| =: s, where | · | denotes set cardinality; consider

each ak ∈ Â to be secret by itself and share it under (tk, nk) Shamir secret
sharing, let us call this sharing instance Sk = (ak,j | j = 1 . . . nk), where ak,j
is the j-th share of the k-th coefficient. Distribute the shares in some way
to the custodian parties,

3. let p = (m+ 1)− s, generate a set of distinct points

V = {(xj , f(xj)) |xj 6= 0, j ≥ p},
xj 6= xi,∀xj , xi ∈ V

(1)

Distribute the shares in some way to the future holders of the activating
information.

The relation between the number of the sharing instances and the number
of points is illustrated in Fig. 1. The abscissa shows how many coefficients have
been distributed to the custodians and the ordinate – how many points must
be held by the activators. If one chooses to have 0 sharings, then the activating
information reduces to the classical Shamir secret sharing scheme (and will re-
quire m+ 1 points). Oppositely, if the number of sharings is equal to the degree
of the instrumental polynomial m, the scheme is a prepositioned sharing scheme
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ap,1 ap,2 · · · ap,i · · · ap,n

...
...

...
...

ak,1 ak,2 · · · ak,i · · · ak,n

...
...

...
...

am,1 am,2 · · · am,i · · · am,n

ak’s sharing

Ci’s shares

Fig. 2. Custodian sharing matrix.

in the sense of [22] with a single piece activating information. With these edge
cases, we deduce that the origin of the grid is (0, 1).

The section PS depicts the minimal amount of points required given the
number of the shared coefficients, e.g., given a quadratic instrumental polynomial
and fixing the number of the shared coefficients to 1 will require at least 2 points
to reconstruct the secret. Relation p = (m + 1) − s bounds from below the
number of necessary points; redundant points can be generated to increase the
activators’ robustness (we shall discuss this in Section 2.3), thus any integer-
valued coordinate from the grey area is a valid setup for the scheme.

Steps (2) and (3) of the scheme offer a great amount of flexibility allowing
to configure the scheme to a desired number of parties and levels of robustness.
To simplify the exposition, without loss of generality, some parameters and the
shares distribution principle can be adjusted as follows:

2a Let us share the first s greatest coefficients, then Â = {am−s+1, . . . , am}, 0 ≤
s ≤ m, for s = 0, let the set be empty. Equivalently, Â = {ap, . . . , am}, for
p = 1, . . . ,m+ 1, let the set be empty for p = m+ 1.
Let tk = t, nk = n for k = p . . . ,m and fix the number of custodians to
n. Distribute a collection of shares ak,i, i = 1, . . . n to party Ci. Now each
custodian has a shard from all coefficient sharings.
This composition of the coefficients’ sharings and distribution can be con-
veniently represented as a (custodian sharing) matrix, Fig. 2.

3a Activators Ui, i = 1, . . . , t can be viewed as one generalized activator/user
U holding the full set V .

In what follows, the sharing will be meant in the sense of (2a) and (3a).

Secret Reconstruction

1. Recover coefficients ak, k = p, . . . ,m from the respective sharing instances
Sk, denote the recovered versions as ãk.
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2. Activate the scheme by injecting additional information from V by providing
points (xj , f(xj)), j = 1, . . . , p points, solve a system of linear equations for
unknown coefficients ak, k = 1, . . . , p and b:

b+

p−1∑
k=1

akx
k
1 +

m∑
k=p

ãkx
k
1 = f(x1)

. . .

b+

p−1∑
k=1

akx
k
p +

m∑
k=p

ãkx
k
p = f(xp)

(2)

Solutions for the coefficients have an auxiliary role for reconstruction of b
and thus can be discarded directly.

Theorem 1. Linear system (2) has a unique solution.

Proof. Define

X =

1 x1 · · · xp−11
...

...
. . .

...
1 xp · · · xp−1p

 , a =


b
a1
...
ap

 , c =

f(x1)−
∑m

k=p ãkx
k
1

...
f(xp)−

∑m
k=p ãkx

k
p

 , (3)

then linear system (2) can conveniently be written in a matrix form

X a = c (4)

We need to prove that the X is invertible. The inverse exists if the matrix
determinant is not equal to zero. Observe that X is a square Vandermonde
matrix with

det(X) =
∏

1≤j<i≤p

(xi − xj), (5)

which is never zero by construction of the set V .

Observe that activation may occur both on the custodian and the user sides.
Both approaches have their benefits and concerns, which we shall discuss later
in Section 4.

2.3 Scheme Properties

Our concise scheme addresses the challenges outlined for prepositioned shared
secret schemes.

– by construction, no subset of shares from
⋃

i:ai∈Â Si is sufficient to recon-
struct the secret b,

– activation is triggered by choosing and providing the necessary amount of
points from V ,
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– same instances Si, i = 1, . . . , p of the Shamir secret sharings can be used to
share different secret b’s. In such scenario, to re-use the custodian information
for a new secret, the user needs to

1. reconstruct the secret as described in Enumeration 2.2, which has a side-
effect of reconstructing of the original instrumental polynomial f(x),

2. replace the secret b in f(x),
3. generate an appropriate V corresponding to the new secret.

Additionally, the scheme design provides robustness guarantees w.r.t. the
amount of shred information and the participants behavior.
Infinite custodian robustness. By construction, the scheme allows the custo-
dian constellation to increase own robustness infinitely by increasing the number
of held shares without creating a risk of an unsolicited secret reconstruction. This
correspond to adding more columns to the custodian sharing matrix, Fig. 2. The
information held by the constellation will always require at least an additional
piece of information held the user.
Controllable user robustness. User’s resistance against loss and theft of
shares directly depends on the degree of the instrumental polynomial m. Pro-
vided that the number of the shared coefficients s 6= 0, number of the user-held
shares may reach m. With this respect, it is sensible to choose m ≥ 2 and for
the user to hold any number of shares p, 2 ≤ p ≤ m. In such a case, p specifies
the extent to which the scheme can withstand loss or theft from the user’s side.
At worst, all shares p = m are compromised, the attacker cannot reconstruct
the secret without engaging with the custodian.
Non-Collusion. Maintaining the right amount of redundant information is a
balancing act between collusion facilitation and robustness improvements. One
way to achieve both goals is to require a guaranteed honest majority of parties
holding the redundant shares [2,5,20]. This requirement is difficult to enforce in
the technological domain. In our proposal, large amounts of redundant informa-
tion only increase the overall robustness and have no influence on the collusion
risks. Under no circumstances can either a single custodian or the constellation
of custodians obtain the secret without interacting with the activators.

3 Example

Consider a user who wants to share a secret value b1 = 2 without losing the
ownership of it.

For the sake of exposition we consider the instrumental polynomial over Z11

f(x) = 4x3 + 3x2 + 2x+ bi mod 11. (6)

Let Â = {a3 = 4, a2 = 3} (consequently, s = 2 and p = 2), then

Vi ={(1, 9 + bi mod 11), (−1, −3 + bi mod 11)},
V1 ={(1, 0), (−1, 10)}.

(7)
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Let there be 4 custodians, thus every coefficient in Â must be shared under the
same (·, 4)-Shamir secret sharing, where the minimal amount of parties is a free
parameter.

Next, the user chooses to reconstruct the secret, then, after the custodians
have recovered a3 and a2, using the set V1 the following system of linear equations
is solvable:{

f(1) := 4 + 3 + a1 + b1 = 0 mod 11

f(−1) := −4 + 3− a1 + b1 = 10 mod 11
=

{
a1 + b1 = 4 mod 11

a1 − b1 = 0 mod 11

solving to a1 = 2 and b1 = 2.
Next, the user wants confidence that the loss of either share of V1 will not

result in a complete secret loss. They create for b1 = 2 a redundant share
(2, f(2)) = (2, 6) and store this share in a cold storage. Now neither the loss
of any of shares in V1 is critical, nor the unlawful extraction of the share from
the cold storage allows the attacker to successfully collude with the custodians
to recover the secret.

Finally, the user want to store another secret b2 = 10; having the knowledge
on all coefficients, the activation set is easily constructable and is

V2 = {(1, 8), (−1, 7)} (8)

4 Variants of the Scheme

As has been noted before, the scheme is agnostic w.r.t. the activation side. In
the following, we discuss different activation variants of the prepositioned secret
sharing.

4.1 PSS with Activation on the User Side

If the purpose of the PSS scheme is to reveal the secret value, then as the owner
of secret value, the user should be in charge of activation. In such a scenario,
the custodians combine their secret shares which reveal the coefficients of the
instrumental polynomial and share the result with the user. The user can then
reveal the secret value by inputting their private shares on the instrumental
polynomial, whose coefficients’ subset is already constructed.

In this setting, the proposed scheme serves the purpose of removing the single
point of failure by splitting the secret into secret shards. After using the secret,
the user can destroy it and request its reconstruction from the custodians the
next time it is needed1. It is also possible for the user to keep the secret in its
local storage and request the reconstruction only if they lose the access to the
secret.

1 Interestingly, in Shamir’s seminal work [21], the secret has been constructed and
destroyed after use in a lock.
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This approach allows to perform the reconstruction in a plain-text domain as
no extra privacy requirements are in place. There may exist additional benefits
depending on the nature of the secret. For instance, if the secret is a private key,
the user may directly use it for signing and decryption. However, there are two
prominent downsides to this approach: 1) the user must be sufficiently knowl-
edgeable and technologically-enabled to carry out the aforementioned mathe-
matical/cryptographic operations, 2) the attack focus shifts on the user, which
is a supposedly less protected party, and thus the chance of a successful attack
increases.

The latter downside may be aided by employing a homomorphic cryptosys-
tem (or a combination thereof). Unfortunately, absence of efficient fully homo-
morphic cryptosystems significantly reduces the range of possible computations
involving the secret. Although the existing cryptosystems [18,11,6] may support
a selection of the computations, they increase the scale of the former concern.

4.2 PSS with Activation on the Custodian Side

Opposite to the activation on the user side scenario, the user’s share is sent to
the custodians so that they can reconstruct the secret and use it on the user’s
behalf for some operation. This model puts very little technological demands on
the user and provides them with “X-as-a-service”, e.g., if the secret is a private
key, then the “X” service can be data signing.

Unfortunately, in such a scenario, the user loses the control of their private
information: a malicious custodian can use this information later to misuse the
secret without the user’s consent. Clearly, this approach stands a need of an
appropriate protocol which would conceal the activating information prevent-
ing its re-use by dishonest custodians. Such protocols are commonly referred to
as “multi-party computations” and allow mistrusting parties to execute a joint
computation without revealing own inputs [7,13,16,17]. Such protocols, to guar-
antee own security, use cryptographic techniques to conceal a computation and
to only reveal the public result of a computation, instead of re-constructing the
secret and using it in the computation.

An example use case for this type of computation is threshold signatures,
where a digital signature on a message is computed without revealing the private
key to the participants. The use of threshold signatures has gained significant
attention in blockchain community in the last couple of years and several proto-
cols that transforms existing digital signature algorithms, e.g. ECDSA, EdDSA,
to threshold variants are proposed [1,4,8,13,14,16]. The proposed PSS scheme is
also suitable to be used as a primitive in threshold signature protocols.

In threshold signatures, the key generation and the signing steps are per-
formed in a multiparty setting whereas the verification step can be performed
by anybody who has access to the public key. Consider, for instance, the thresh-
old ECDSA protocol proposed in [13]. The key generation operation of ECDSA
generates a private key x ∈R Zq and a public key y = gx ∈ G. A signature σ on
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a message M can be computed as

m = H(M) and k ∈R Zq (9)

R = gk
−1

∈ G and r = H ′(R) ∈ Zq

s = k(m+ xr) mod q

σ = (r, s).

To sign the message, each participant should perform computations on their
shares such that

(r, s) = (H ′(gk
−1
a ), ka(m+ bar)), (10)

where subscript “a” refers to the individual share of each participant for the
corresponding value. The challenge in the computation is performing multiplica-
tion and exponentiation operations by ka, which is solved with a share conversion
protocol in [13]. Using our scheme, the signature can be reconstructed in a sim-
ilar way given that both the secret x and k are shared and reconstructed using
our proposed secret sharing scheme.

The aforementioned threshold signature scheme requires the user’s involve-
ment in the computations to prevent leakage of the secret to custodians. To move
the full workload on the custodian side, a concealing cryptographic mechanism,
such as homomorphic encryption, for the user’s shares can be considered. De-
signing such a protocol goes beyond the scope of this paper and is a subject for
future work.

4.3 What is a Successful Attack?

Definition of a successful attack very much depends on the form of the acti-
vation. Unfortunately, without full knowledge of actual protocols enabling the
activation, we cannot fully describe the attack surface.

Nevertheless, considering the scheme statically, i.e., no activation is happen-
ing, and assuming the attacker is different from the custodian, a successful attack
must amount to two successful attacks on both the custodian and the user. While
the exact strategy to minimize this risk depends significantly on the application
domain and the technological capabilities of the involved participants, general
guidelines can be drawn:

1. Limit the information on the user’s side to an acceptable minimum.

2. Involve several custodians with disjoint infrastructures2. Different custodi-
ans can either maintain jointly a secret coefficient or separately different
coefficients. Combinations thereof are also possible.

2 Requirement of having disjoint infrastructures influences only the robustness of the
scheme against share losses.
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5 Related Work: Comparison of Safe-Guarding
Approaches

Ultimately, there are three modes for control distribution over the secret: cus-
todian is in full control, user in full control, and shared control. The custodian
is in full control if they enjoy the full trust from the user side and are entirely
liable for the user’s assets. We disregard this option as it is the very problem
we are addressing. The user is in full control if they are solely responsible for
safeguarding the secret. The usual way to competently exercise full control over
the secret is to personally hold it together with backups. Our scheme also allows
the user to stay in full control as an edge case: set j = m + 1 for V , now the
user has sufficient shares to reconstruct the secret by themselves. We shall not
consider these approaches because they clearly identify the user as a primary
attack target. Instead we focus on techniques enabling shared control over the
secret, i.e. the custodian and the user hold shares of the secret such that neither
of them has sufficient information to reconstruct the secret, it can only be done
in a collaborative fashion. We review relevant methods and compare them to
our proposition.
PSS based on Shamir Secret Sharing (SSS). One approach to realize the
safeguarding scenario is to distribute regular Shamir shares in amounts insuffi-
cient for the reconstruction to participants, e.g., for a polynomial of degree one,
generate two points and distribute one share to the custodian and one to the
user. Now the user can activate the secret reconstruction by communicating own
share [25]. Not only does this method not constitute prepositioned sharing (only
a single secret can be recovered), but is also extremely brittle, loss of a single
share compromises the whole arrangement. Another (simplified) approach is to
give the custodian one point from a line, then let the user generate another point;
the user, by communicating different points, will reveal different secrets [10,9].
Clearly, additional efforts are required to make this concept robust. There are
two possible avenues allowing to increase robustness: 1) give more shares to the
user, 2) give more shares to the custodian. While the former certainly increases
the scheme robustness, it undesirably puts the user in full control. The latter
option allows the custodian to accumulate enough shares to gain the full con-
trol over the secret reconstruction, which would be inadmissible. These problems
stem from the fact that SSS treats all users equally which might not be ideal for a
scenario that needs approval of a certain party. Any subset of threshold amount
of parties can reveal the secret without seeking for the approval of the corre-
sponding party. Our scheme clearly distinguishes two classes of participants and
enables robustness configuration within each class without creating a possibility
of unsolicited reconstruction of the user secret.
Geometric PSS’s Simmons [23,22] describes general construction of PSS schemes
based on defining two algebraic varieties: the domain variety Vd – a collection
of points any of which can be the secret, and the indicator variety Vi – a set of
points “pointing” (sic) to the secret in Vd. “Pointing” means that these varieties
have a single point in common, viz., the secret point. Clearly, knowledge of Vd is
insufficient to reconstruct the secret and requires activating information, namely
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Vi. The scheme proposed in this paper is based on Simmons’s preposition secret
sharing.

PSS based on Hierarchical Secret Sharing (HSS). In hierarchical secret
sharing schemes [24,3,15] the secret is distributed to a group of participants that
are partitioned into different hierarchy levels. The reconstruction of the scheme
requires to have a certain number of participants from each hierarchy level. An
HSS may be configured to address the safeguarding problem by setting a hier-
archy featuring the custodians on one level and the user on another. However, a
prominent feature required from an HSS in this scenario is prohibit levels from se-
cret reconstruction without communication with another level. Notably, Tassa’s
scheme allows such configuration by cleverly using polynomial derivatives. To
simulate the example in Section 3, let, in the notation of [24], the hierarchical
secret sharing be defines with ({2, 2}) with U0 = {user share1, user share2} and
U1 = {custodian1, custodian2}. The degree of the enabling polynomial in Tassa’s
HSS is |U0| + |U1| − 1 =: 3, which aligns with our example. In Tassa’s HSS, to
recover the secret, one must perform the Birkhoff interpolation which admits
a unique solution under conditions studied in [24]. Our scheme is conceptually
simpler and relies on solving of well-defined systems of linear equations and thus
places no such constraints.

6 Discussion

The PSS scheme proposed in this paper is generic by nature and has to be
tailored to a specific application. We explain its intrinsic levels of flexibility in
Section 2.2 (see, in particular, Fig. 1) and exhaustively describe potential usage
modes in Section 4. In this section, we discuss possible implementation concerns.

The setup of the scheme presents a common problem of secure generation
and distribution of initializing information to the parties which requires a trusted
dealer [12,19]. In a centralized setup, there are two possible candidates for trusted
dealer:

– a trusted third party creates secret shares and distributes them to the cor-
responding parties through a secure communication channel. Existence of a
party enjoying the trust of all participants is a very heavy assumption. Thus,
a verifiable secret sharing scheme as in [12] should be used to assure validity
of secret shares.

– the user, as the ultimate owner of the secret, bears all the responsibility
of parameters’ generation (and, possibly, validation) and distribution. This
option places heavy requirements on the user’s technological capabilities.

Alternatively, similar to [19], in a decentralized setup, each participant creates
their shares, distributes them to other participants, and proves the validity of
secret shares. Every participant computes their secret shares by combining the
shares that they received from other participants. Although this approach incurs
more computation and communication costs from each participant, it eliminates
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the risk of a malicious third party and creates no unnecessary demands for the
user.

We have identified the variant with activation on the custodian side as more
viable, but left assignment of activators out of scope. As explained in Section 2,
a set of activators is provided with points on the instrumental polynomial to
reconstruct the secret. To prevent the loss or theft of the secret, redundant acti-
vating shares (insufficient by themselves for the activation) must be distributed.
To ensure a timely secret reconstruction, such shares must be stored separately
from the active shares. A feasible solution is to keep the redundant shares with
another custody service, such as a bank. In this option, even if the holder of
the redundant shares colludes with the other custodians, they will not be able
to reveal the secret since the user’s activating share is still required for a full
recovery.

7 Conclusion

In this work, being motivated to develop a simple, robust approach to the cus-
todian problem, we proposed a new prepositioned secret sharing scheme that
gives a user control over their secret while offering them a distributed custodian
service for the protection of the secret. The scheme is conceptually uncompli-
cated and is based on selective sharing of polynomial coefficients and generation
of points on that polynomial which serve as activating information. The pro-
posed PSS scheme provides flexibility regarding the number of parties holding
the shares that allows infinite custodian robustness. Furthermore, it prevents the
reconstruction of the secret by any subset of parties without the user’s activation
information.

Our method can be used in custodian applications such as safeguarding a
master password to a password vault, a private key for cryptocurrencies’ wallets,
payment authorization, etc. Additionally, as HSS’s can be tailored for use in the
custody scenario, our method is germane to simpler HSS scenarios with two level
hierarchies with an additional benefit of being extremely concise.
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