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Abstract. We show that three popular universal zero-knowledge SNARKSs (Plonk, Sonic, and Marlin) are
updatable SRS simulation extractable NIZKs and signatures of knowledge (SoK) out-of-the-box avoiding any
compilation overhead.

Towards this we generalize results for the Fiat—Shamir (FS) transformation, which turns interactive protocols
into signature schemes, non-interactive proof systems, or SoK in the random oracle model (ROM). The security
of the transformation relies on rewinding to extract the secret key or the witness, even in the presence of signing
queries for signatures and simulation queries for proof systems and SoK, respectively. We build on this line
of work and analyze multi-round FS for arguments with a structured reference string (SRS). The combination
of ROM and SRS, while redundant in theory, is the model of choice for the most efficient practical systems to
date. We also consider the case where the SRS is updatable and define a strong simulation extractability notion
that allows for simulated proofs with respect to an SRS to which the adversary can contribute updates.

We define three properties (trapdoor-less zero-knowledge, rewinding-based knowledge soundness, and a unique
response property) that are sufficient for argument systems based on multi-round FS to be also simulation
extractable in this strong sense. We show that Plonk, Sonic, and Marlin satisfy these properties, and conjecture
that many other argument systems such as Lunar, Basilisk, and transparent variants of Plonk fall within the
reach of our main theorem.

1 Introduction

Zero-knowledge proof systems, which allow a prover to convince a verifier of an NP statement R(x, w) without
revealing anything else about the witness w have broad application in cryptography and theory of computation [9]
281[34]l. When restricted to computationally sound proof systems, also called argument systems®] proof size can
be shorter than the size of the witness [18]]. Zero-knowledge Succinct Non-interactive ARguments of Knowledge
(zkSNARKSs) are zero-knowledge argument systems that additionally have two succinctness properties: small proof
sizes and fast verification. Since their introduction in [47], zZk-SNARKSs have been a versatile design tool for secure
cryptographic protocols. They became particularly relevant for blockchain applications that demand short proofs
and fast verification for on-chain storage and processing. Starting with their deployment by Zcash [11], they have
seen broad adoption, e.g., for privacy-preserving cryptocurrencies and scalable and private smart contracts in
Ethereum.

While research on zkSNARKSs has seen rapid progress [12}/14}/15}/32}|37,|38,/43,/44,/49] with many works
proposing significant improvements in proof size, verifier and prover efficiency, and complexity of the public
setup, less attention has been paid to non-malleable zkSNARKS and succinct signatures of knowledge [20}22]
(sometimes abbreviated SoK or referred to as SNARKY signatures [6,/40]]).

Relevance of simulation extractability. Most zkSNARKSs are shown only to satisfy a standard knowledge sound-
ness property. Intuitively, this guarantees that a prover that creates a valid proof in isolation knows a valid
witness. However, deployments of zkSNARKSs in real-world applications, unless they are carefully designed to
have application-specific malleability protection, e.g. [11]], require a stronger property — simulation-extractability
(SE) — that corresponds much more closely to existential unforgeability of signatures.

This correspondence is made precise by SoK, which use an NP-language instance as the public verification
key. Instead of signing with the secret key, SoK signing requires knowledge of the NP-witness. Intuitively, an SoK
is thus a proof of knowledge (PoK) of a witness that is tied to a message. In fact, many signatures schemes, e.g.,

¢ We use both terms interchangeably.



Schnorr, can be read as SoK for a specific hard relation, e.g., DL [25]]. To model strong existential unforgeability of
SoK signatures, even when given an oracle for obtaining signatures on different instances, an attacker must not be
able to produce new signatures. Chase and Lysyanskaya [[22]] model this via the notion of simulation extractability
which guarantees extraction of a witness even in the presence of simulated signatures.

In practice, an adversary against a zZkSNARK system also has access to proofs computed by honest parties
that should be modeled as simulated proofs. The definition of knowledge soundness (KS) ignores the ability of
an adversary to see other valid proofs that may occur in real-world applications. For instance, in applications of
zkSNARKSs in privacy-preserving blockchains, proofs are posted on-chain for all blockchain participants to see. We
thus argue that SE is a much more suitable notion for robust protocol design. We also claim that SE has primarily
an intellectual cost, as it is harder to prove SE than KS—another analogy here is IND-CCA vs IND-CPA security
for encryption. However, we will show that the proof systems we consider are SE out-of-the-box.

Fiat-Shamir-based zkSNARKs. Most modern zkSNARK constructions follow a modular blueprint that involves
the design of an information-theoretic interactive protocol, e.g. an Interactive Oracle Proof (IOP) [13], that is then
compiled via cryptographic tools to obtain an interactive argument system. This is then turned into a zZkSNARK
using the Fiat-Shamir transform. By additionally hashing the message, the Fiat-Shamir transform is also a popular
technique for constructing signatures. While well-understood for 3-message sigma protocols and justifiable in
the ROM [§]], Fiat—-Shamir should be used with care because there are both counterexamples in theory [35] and
real-world attacks in practice when implemented incorrectly [48].

In particular, several schemes such as Sonic [46], Plonk [30]], Marlin [23] follow this approach where the
information-theoretic object is a multi-message algebraic variant of IOP, and the cryptographic primitive in the
compiler is a polynomial commitment scheme (PC) that requires a trusted setup. To date, this blueprint lacks an
analysis in the ROM in terms of simulation extractability.

Updatable SRS zkSNARKs. One of the downsides of many efficient zkSNARKSs [24,/32]|37,|381|431/44}/49] is that
they rely on a trusted setup, where there is a structured reference string (SRS) that is assumed to be generated by
a trusted party. In practice, however, this assumption is not well-founded; if the party that generates the SRS is
not honest, they can produce proofs for false statements. If the trusted setup assumption does not hold, knowledge
soundness breaks down. Groth et al. [[39]] propose a setting to tackle this challenge which allows parties — provers
and verifiers — to update the SRS[7| The update protocol takes an existing SRS and contributes to its randomness in
a verifiable way to obtain a new SRS. The guarantee in this updatable setting is that knowledge soundness holds
as long as one of the parties updating the SRS is honest. The SRS is also universal, in that it does not depend on
the relation to be proved but only on an upper bound on the size of the statement’s circuit. Although inefficient, as
the SRS size is quadratic in the size of the circuit, [[39]] set a new paradigm for designing zkSNARKSs.

The first universal zkSNARK with updatable and linear size SRS was Sonic proposed by Maller et al. in [46].
Subsequently, Gabizon, Williamson, and Ciobotaru designed Plonk [30] which currently is the most efficient
updatable universal zZkSNARK. Independently, Chiesa et al. [23]] proposed Marlin with comparable efficiency to
Plonk.

The challenge of SE in the updatable setting. The notion of simulation-extractability for ZkSNARKSs which is well
motivated in practice, has not been studied in the updatable setting. Consider the following scenario: We assume
a “rushing” adversary that starts off with a sequence of updates by malicious parties resulting in a subverted
reference string srs. By combining their trapdoor contributions and employing the simulation algorithm, these
parties can easily compute a proof to obtain a triple (srs, x, 7r) that convinces the verifier of a statement x without
knowing a witness. Now, assume that at a later stage, a party produces a triple (srs’, x, 7’) for the same statement
with respect to an updated srs’ that has an honest update contribution. We want the guarantee that this party must
know a witness corresponding to x. The ability to “maul" the proof 7 from the old SRS to a proof 7’ for the new
SRS without knowing a witness would clearly violate security. The natural idea is to require that honestly updated
reference strings are indistinguishable from honestly generated reference strings even for parties that previously
contributed updates. However, this is not sufficient as the adversary can also rush toward the end of the SRS
generation ceremony to perform the last update.

A definition of SE in the updatable setting should take these additional powers of the adversary, which are
not captured by existing definitions of SE, into consideration. While generic compilers [2,/42]] can be applied to
updatable SRS SNARKS to obtain SE, not only do they inevitably incur overheads and lead to efficiency loss, we
contend that the standard definition of SE does not suffice in the updatable setting.

7 This can be seen as an efficient player-replaceable [33|] multi-party computation.



1.1 Our Contributions

We investigate the non-malleability properties of zkSNARK protocols obtained by FS-compiling multi-message
protocols in the updatable SRS setting and give a modular approach to analyze their simulation-extractability. We
make the following contributions:

— Updatable simulation extractability (USE). We propose a definition of simulation extractability in the updatable
SRS setting called USE, that captures the additional power the adversary gets by being able to update the SRS.

— Theorem for USE of FS-compiled proof systems. We define three notions in the updatable SRS and ROM
model, trapdoor-less zero-knowledge, a unique response property, and rewinding-based knowledge soundness.
Our main theorem shows that multi-message FS-compiled proof systems that satisfy these notions are USE
out-of-the box.

— USE for concrete zkSNARKs. We prove that the most efficient updatable SRS SNARKS — Plonk/Sonic/Marlin —
satisfy the premises of our theorem. We thus show that these zkSNARKSs are updatable simulation extractable.

— SNARKY signatures in the updatable setting. Our results validate the folklore that the Fiat—Shamir transform
is a natural means for constructing signatures of knowledge. This gives rise to the first SoK in the updatable
setting and confirms that a much larger class of zkSNARKSs, besides [40], can be lifted to SoK.

— Broad applicability. The updatable SRS plus ROM model includes both the trusted SRS and the ROM model
as special cases. This implies the relevance of our theorem for transparent zkSNARKSs such as Halo2 and
Plonky?2 that replace the polynomial commitments of Kate et al. [41] with commitments from Bulletproof [19]
and STARKSs [10], respectively.

1.2 Technical Overview

At a high level, the proof of our main theorem for updatable simulation extractability is along the lines of the
simulation extractability proof for FS-compiled sigma protocol from [26]. However, our theorem introduces new
notions that are more general to allow us to consider proof systems that are richer than sigma protocols and support
an updatable setup. We discuss some of the technical challenges below.

Plonk, Sonic, and Marlin were originally presented as interactive proofs of knowledge that are made non-
interactive via the Fiat—Shamir transform. In the following, we denote the underlying interactive protocols by P
(for Plonk), S (for Sonic), and M (for Marlin) and the resulting non-interactive proof systems by Pgs, Sgs, Mgs
respectively.

Rewinding-Based Knowledge Soundness (RBKS). Following [26]], one would have to show that for the protocols
we consider, a witness can be extracted from sufficiently many valid transcripts with a common prefix. The standard
definition of special soundness for sigma protocols requires the extraction of a witness from any two transcripts
with the same first message. However, most zZkSNARK protocols do not satisfy this notion. We put forth a notion
analogous to special soundness that is more general and applicable to a wider class of protocols. Namely, protocols
compiled using multi-round FS that rely on an (updatable) SRS. P, S, and M have more than three messages, and
the number of transcripts required for extraction is more than two. Concretely, (3n+ 6) for Plonk, (n+ 1) for Sonic
,and (2n + 3) for Marlin, where n is the number of constraints in the proven circuit. Hence, we do not have a pair
of transcripts but a tree of transcripts.

Furthermore, the protocols we consider are arguments and rely on a SRS that comes with a trapdoor. An
adversary in possession of the trapdoor can produce multiple valid proof transcripts potentially for false statements
without knowing any witness. This is true even in the updatable setting, where a trapdoor still exists for any updated
SRS. Recall that the standard special soundness definition requires witness extraction from any suitably structured
tree of accepting transcripts. This means that there are no such trees for false statements.

Instead, we give a rewinding-based knowledge soundness definition with an extractor that proceeds in two
steps. It first uses a tree building algorithm 7 to obtain a tree of transcripts. In the second step, it uses a tree
extraction algorithm Extys to compute a witness from this tree. Tree-based knowledge soundness guarantees
that it is possible to extract a witness from all (but negligibly many) trees of accepting transcripts produced by
probabilistic polynomial time (PPT) adversaries. That is, if extraction from such a tree fails, then we break an
underlying computational assumption. Moreover, this should hold even against adversaries that contribute to the
SRS generation.

Unique Response Protocols (UR). Another property required to show simulation extractability is the unique
response property which says that for 3-message sigma protocols, the response of the prover (3-rd message) is
determined by the first message and the challenge [27] (intuitively, the prover can only employ fresh randomness
in the first message of the protocol). We cannot use this definition since the protocols we consider have multiple



rounds of randomized prover messages. In Plonk, both the first and the third messages are randomized. Although
the Sonic prover is deterministic after it picks its first message, the protocol has more than 3 messages. The same
holds for Marlin. We propose a generalization of the unique response property called k-UR. It requires that the
behavior of the prover be determined by the first £ of its messages. For our proof, it is sufficient that Plonk is 3-UR,
and Sonic and Marlin are 2-UR.

Trapdoor-Less Zero-Knowledge (TLZK). The premises of our main theorem include two computational prop-
erties that do not mention a simulator, RBKS and UR, The theorem states that together with a suitable property for
the simulator of the zero-knowledge property, they imply USE. Our key technique is to simulate simulation queries
when reducing to RBKS and UR. For this it is convenient that the zero-knowledge simulator be trapdoor-less,
that is can produce proofs without relying on the knowledge of the trapdoor. Simulation is based purely on the
simulators early control over the challenge. In the ROM this corresponds to a simulator that programs the random
oracle and can be understood as a generalization of honest-verifier zero-knowledge for multi-message Fiat—Shamir
transformed proof systems with an SRS. We say that such a proof system is £-TLZK, if the simulator only programs
the k-th challenge and we construct such simulators for Pgs, Sgs, and Mgs.

Technically we will make use of the k-UR property together with the k-TLZK property to bound the probability
that the tree produced by the tree builder 7 of RBKS contains any programmed random oracle queries.

1.3 Related Work

There are many results on simulation extractability for non-interactive zero-knowledge proofs (NIZKs). First,
Groth [36] noticed that a (black-box) SE NIZK is universally-composable (UC) [21]. Then Dodis et al. [25]
introduced a notion of (black-box) true simulation extractability (i.e., SE with simulation of true statements only)
and showed that no NIZK can be UC-secure if it does not have this property.

In the context of zZkSNARKS, the first SE zkSNARK was proposed by Groth and Maller [40] and a SE
zkSNARK for QAP was designed by Lipmaa [45]]. Kosba et al. [42] give a general transformation from a NIZK to
a black-box SE NIZK. Although their transformation works for zkSNARKSs as well, the succinctness of the proof
system is not preserved by this transformation. Abdolmaleki et al. [2] showed another transformation that obtains
non-black-box simulation extractability but also preserves the succinctness of the argument. The zkSNARK
of [38]] has been shown to be SE by introducing minor modifications to the construction and making stronger
assumptions [3,|17]]. Recently, [6]] showed that the Groth’s original proof system from [38] is weakly SE and
randomizable. None of these results are for zkSNARKS in the updatable SRS setting or for zZkSNARKSs obtained
via the Fiat—Shamir transformation. The recent work of [31]] shows that Fiat—Shamir transformed Bulletproofs are
simulation extractable. While they show a general theorem for multi-round protocols, they do not consider a setting
with an SRS, and are therefore inapplicable to zkSNARKSs in the updatable SRS setting.

2 Definitions and Lemmas for Multi-message SRS-based Protocols

Simulation-extractability for multi-message protocols. Most recent SNARK schemes follow the same blueprint of
constructing an interactive information-theoretic proof system that is then compiled into a public coin computation-
ally sound scheme using cryptographic tools such as polynomial commitments, and finally made non-interactive
via the Fiat—Shamir transformation. Existing results on simulation extractability (for proof systems and signatures
of knowledge) for Fiat—Shamir transformed systems work for 3-message protocols without reference string that
require two transcripts for standard model extraction, e.g., [26,50,51].

In this section, we define properties that are necessary for our analysis of multi-message protocols with a
universal updatable SRS. In order to prove simulation-extractability for such protocols, we require more than just
two transcripts for extraction. Moreover, in the updatable setting we consider protocols that rely on an SRS where
the adversary gets to contribute to the SRS. We first recall the updatable SRS setting and the Fiat-Shamir transform
for (2u + 1) message protocols. Next, we define trapdoor-less zero-knowledge and simulation-extractability which
we base on [26] adapted to the updatable SRS setting. Then, to support multi-message SRS-based protocols
compiled using the Fiat—Shamir transform, we generalize the unique response property, and define a notion of
computational special soundness called rewinding-based knowledge soundness.

Let P and V be PPT algorithms, the former called the prover and the latter the verifier of a proof system. Both
algorithms take a pre-agreed structured reference string srs as input. The structured reference strings we consider
are (potentially) updatable, a notion we recall shortly. We focus on proof systems made non-interactive via the
multi-message Fiat—Shamir transform presented below where prover and verifier are provided with a random oracle
‘H. We denote by 7 a proof created by P on input (srs, x, w). We say that proof is accepting if V(srs, x, 7) accepts
1t.



UpdO(intent,srs,, {p;}j=1)

if srs # 1 : return |

if (intent = setup) :
(srs’, p’) < GenSRS(R)
Qsrs < Qsrs U {(Srslv p/)}

return (srs’, p')

if (intent = update) :
b < VerifySRS(srsn, {p;}i=1)
if (b=0): return L
(srs’, p') <= UpdSRS(srsn, {p;}j=1)
Qsrs + Qsis U {(srs’,p")}

return (srs’, p')

if (intent = final):
b < VerifySRS(srsn, {p; }i=1)
if (b=0)vQX N{p}:=0:
return |
srs <— srs,, return srs

else return L

Fig. 1: The oracle defines the notion of updatable SRS setup.

Let R(A) denote the set of random tapes of correct length for adversary A (assuming the given value of security
parameter \), and let r < R(.A) denote the random choice of tape r from R(A).

2.1 Updatable SRS Setup Ceremonies

The definition of updatable SRS ceremonies of [39] requires the following algorithms.

— (srs,p) + GenSRS(R) is a PPT algorithm that takes a relation R and outputs a reference string srs, and
correctness proof p.

- (srs’,p") < UpdSRS(srs, {p;}}_;) is a PPT algorithm that takes a srs, a list of update proofs and outputs an
updated srs’ together with a proof of correct update p’.

- b < VerifySRS(srs, {p; _) takes a reference string srs, a list of update proofs, and outputs a bit indicating
acceptance or not[¥|

In the next section, we define security notions in the updatable setting by giving the adversary access to an SRS

update oracle UpdO, defined in Fig.[I} The oracle allows the adversary to control the SRS generation. A trusted
setup can be expressed by the updatable setup definition simply by restricting the adversary to only call the oracle
on intent = setup and intent = final. Note that a soundness adversary now has access to both the random
oracle H and UpdO: (x, ) +— AYPIOH (1A 1),
Remark on universality of the SRS. The proof systems we consider in this work are universal. This means that both
the relation R and the reference string srs allows to prove arithmetic constraints defined over a particular field up
to some size bound. The public instance x must determine the constraints. If R comes with any auxiliary input, the
latter is benign. We elide public preprocessing of constraint specific proving and verification keys. While important
for performance, this modeling is not critical for security.

2.2 Multi-message Fiat-Shamir Compiled Provers and Verifiers

Given interactive prover and (public coin) verifier P/, V' that exchange messages resulting in transcript 7 =
(a1,¢1,...,au,Cp, aut1), Where a; comes from P’ and ¢; comes from V’, the (2p + 1)-message Fiat-Shamir
heuristic defines non-interactive provers and verifiers P,V as follows:

8 For instance Plonk and Marlin will use the GenSRS, UpdSRS and VerifySRS algorithms in Fig,



— P behaves as P’ except after sending message a;, i € [1 .. u], the prover does not wait for the message from the

verifier but computes it locally setting ¢; = H(7[0..i]), where 7[0..5] = (x, a1, ¢1,...,a;-1,¢j-1,a5)[]
P output the non-interactive proof 7 = (a1, ..., a,,a,+1), that omits challenges as they can be recomputed
using H.

— V takes x and 7 as input and behaves as V/ would but does not provide challenges to the prover. Instead it
computes the challenges locally as P would, starting from 7[0..1] = (x, a1) which can be obtained from x and
7. Then it verifies the resulting transcript 7 as the verifier V/ would.
We note that since the verifier can compute the challenges by querying the random oracle, they do not need to be
sent by the prover. Thus the 7 - 7 notational distinction. (24 + 1)-message FS-transformed NIZK proof system
with an updatable SRS setup

Notation  for (2u + 1)-message  Fiat-Shamir  transformed  proof  systems. Let SRS =
(GenSRS, UpdSRS, VerifySRS) be the algorithm of an updatable SRS ceremony. All our definitions and
theorems are about non-interactive proof systems W = (SRS, P, V, Sim) compiled via the (2u + 1)-message FS
transform. That is 7 = (a1,...,a,, ayt1) and @ = (a1, ¢1, . .., Gy, Cpy Quy1), With ¢; = H(7[0..4]). We use 7[0]
for instance x and 7[¢], 7[¢].ch to denote prover message a; and challenge c; respectively.

SimO.H(z) SimO.Prog(z, h) SimO.P(x,w) |SimO.P’(x)
if H[z] = Lthen if H[z] = L then [assert (x,w) € R]
Hz] <s Im(H) Hlz] « h T 4= SimSmO-HSimO-Prog (g ¢ )
return H|z] Qprog < Qprog U {7} Q+ QU{(x,m)}
return H|[z] return T

Fig. 2: Simulation oracles: srs is the finalized SRS, only SimO.P’ allows for simulation of false statements

2.3 Trapdoor-Less Zero-Knowledge (TLZK)

We call a protocol trapdoor-less zero-knowledge (TLZK) if there exists a simulator does not require the trapdoor,
and works by programming the random oracle. Moreover, the simulator may only be allowed to program the
random oracle on point 7[0, k], that is the simulator can only program the challenges that come after the k-th prover
message. We call protocols which allow for such a simulation k-programmable trapdoor-less zero-knowledge.

Our definition of zero-knowledge for non-interactive arguments is in programmable ROM. We model this
using the oracles from Fig. 2| that provide a stateful wrapper around Sim. SimO.7(z) simulates H using lazy
sampling, SimO.Prog(x, h) allows for programming the simulated H and is available only to Sim. SimO.P(z, w)
and SimO.P’(z) call the simulator. The former is used in the zero-knowledge definition and requires the statement
and witness to be in the relation, the latter is used in the simulation extraction definition and does not require a
witness input.

Definition 1 (Updatable k-Programmable Trapdoor-Less Zero-Knowledge). Ler Wes = (SRS, P,V, Sim) be
a (2p + 1)-message FS-transformed NIZK proof system with an updatable SRS setup. We call Wgs trapdoor-less
zero-knowledge with securiry €, § (A) —e1( V)] < ex(N), where

60(/\) — Pr [AUde,H,P(l)\)] , 51(/\) - Pr [AUde,SimO.H,SimO.P(1)\)] )

If e(N) is negligible, we say Wes is trapdoor-less zero-knowledge. Additionally, we say that Wes is k-
programmable, if Sim before returning a proof m only calls SimO.Prog on (7]0..k], h). That is, it only programs
the k-th message.

Remark 1 (TLZK vs HVZK). We note that TLZK notion is closely related to honest-verifier zero-knowledge in the
standard model. That is, if we consider an interactive proof system W that is HVZK in the standard model then Wgg
is TLZK. This comes as the simulator Sim in W produces a valid simulated proof by picking verifier’s challenges
according to a predefined distribution and Wgs’s simulator Simgs produces its proofs similarly by picking the

9 For Fiat—Shamir based SoK the message signed m is added to x before hashing.



challenges and additionally programming the random oracle to return the picked challenges. Importantly, in both
W and WEs success of the simulator does not depend on access to an SRS trapdoor.

We note that Plonk is 3-programmable TLZK, and Sonic and Marlin are 2-programmable TLZK. This follows
directly from the proofs of their standard model zero-knowledge property in Lemmas [7] [TT]and [14]

2.4 Updatable Simulation Extractability (USE)

We note that the zero-knowledge property is only guaranteed for statements in the language. For simulation
extractability where the simulator should be able to provide simulated proofs for false statements as well, we thus
use the oracle SimO.P’

Definition 2 (Updatable Simulation Extractability). Ler Wy, = (SRS, P,V, Sim) be a NIZK proof system with
an updatable SRS setup. We say that Wy is updatable simulation-extractable with security loss ese(X, acc, q) if
for any PPT adversary A that is given oracle access to setup oracle UpdO and simulation oracle SimO and that
produces an accepting proof for Wy, with probability acc, where

V(srs,x,m) =1
Ax ) & Q

there exists an expected PPT extractor Extse such that

r <$ R(A)

acc = Pr{ (x, ) AUde,SimO.H,SimO.P’(l/\;r)

V(srs,x,m) =1 UpdO,SimO.H,SimO.P’ (1 A
y Ny ) R pav, ) 17
pr| (o) g0 r+s$R(A), (x,7) + A (1%7)

< Ese()‘v ace, Q)

R(x,w) =0 W <= Extse(srs, A, 7, Qsrs, Qn, Q)
Here, srs is the finalized SRS. List Qg contains all (srs, p) of update SRSs and their proofs, list Q3 contains all
A’s queries to SimO.H and the (simulated) random oracle’s answers, |Q3| < q, and list Q contains all (x,T)
pairs where x is an instance queried to SimO.P’ by the adversary and T is the simulator’s answer .

2.5 Unique Response (UR) Protocols

A technical hurdle identified by Faust et al. [26]] for proving simulation extraction via the Fiat—Shamir transformation
is that the transformed proof system satisfies a unique response property. The original formulation by Fischlin,
although suitable for applications presented in [26}27]], does not suffice in our case. First, the property assumes
that the protocol has three messages, with the second being the challenge from the verifier. That is not the case
we consider here. Second, it is not entirely clear how to generalize the property. Should one require that after the
first challenge from the verifier, the prover’s responses are fixed? That does not work since the prover needs to
answer differently on different verifier’s challenges, as otherwise the protocol could have fewer messages. Another
problem is that the protocol could have a message, beyond the first prover’s message, which is randomized. Unique
response cannot hold in this case. Finally, the protocols we consider here are not in the standard model, but use an
SRS.

We work around these obstacles by providing a generalized notion of the unique response property. More
precisely, we say that a (214 + 1)-message protocol has unique responses from k, and call it a k-UR-protocol, if it
follows the definition below:

Definition 3 (Updatable k-Unique Response Protocol). Ler Wes = (SRS, P,V,Sim) be a (2u + 1)-message
FS-transformed NIZK proof system with an updatable SRS setup. Let H be the random oracle. We say that Weg
has unique responses for k with security £, () if for any PPT adversary A,,:

7 # 7', 7[0..k] = 7'[0..k],

UpdO, (1A
V/(srs,x, m,c) = V'(srs,x, 7', ¢c) = 1 b m ' 0) & A (%) < cur()

where srs is the finalized SRS and V' (srs,x,m = (a1, ..., au, a,4+1)) behaves as V (srs, x, m) except for using c as
the k-th challenge instead of calling H(7[0..k]). Thus, A can program the k-th challenge. We say Wes is k-UR, if
eur(A) is negligible.

10 Note, that simulation extractability property where the simulator is required to give simulated proofs for true statements only
is called true simulation extractability.



Intuitively, a protocol is k-UR if it is infeasible for a PPT adversary to produce a pair of accepting proofs
m # 7' that are the same on the first k messages of the prover.

The definition can be easily generalized to allow for programing the oracle on more than just a single point.
We opted for this simplified presentation, since all the protocols analyzed in this paper require only single-point
programming,

2.6 Rewinding-Based Knowledge Soundness (RBKS)

Before giving the definition of rewinding-based knowledge soundness for NIZK proof systems compiled via the
24 + 1-message FS transformation, we first recall the notion of a tree of transcripts.

Definition 4 (Tree of accepting transcripts, cf. [16]). A (n1,. .., n,)-tree of accepting transcripts is a tree where
each node on depth i, for i € [1..u + 1), is an i-th prover’s message in an accepting transcript; edges between
the nodes are labeled with challenges, such that no two edges on the same depth have the same label; and each
node on depth 1 has n; — 1 siblings and n;4 children. The tree consists of N = Hle n; branches, where N is
the number of accepting transcripts. We require N = poly(\). We refertoa (1,...,n = n,1,...,1)-tree as a
(k,n)-tree.

The existence of simulation trapdoor for P, S and M means that they are not special sound in the standard
sense. We therefore put forth the notion of rewinding-based knowledge soundness that is a computational notion.
Note that in the definition below, it is implicit that each transcript in the tree is accepting with respect to a “local
programming” of the random oracle. However, the verification of the proof output by the adversary is with respect
to a non-programmed random oracle.

Definition 5 (Updatable Rewinding-Based Knowledge Soundness). Let ny,...,n, € N. Let Wgs =
(SRS, P,V,Sim) be a (2u + 1)-message FS-transformed NIZK proof system with an updatable SRS setup for
relation R.. Let H be the random oracle. We require existence of an expected PPT tree builder T that eventually
outputs a T which is either a (ni,...,n,)-tree of accepting transcript or 1. and a PPT extractor Extys. Let
adversary Ays be a PPT algorithm, that outputs a valid proof with probability at least acc, where

acc — Pr {V(srs, x,m) =1 7 s R(Ags) .
ANx,m) €Q | (x,m) AEspdo’H(l/\; r)
We say that Wes is (n1, . .., n,)-rewinding-based knowledge sound with security loss eis(), acc, q) if
r s R(Aks),
Pr Ve o sk e AROHA ) < e acc,q).

T« T(srs, Aus, 75 Qsrs, QH)7 W < Eths(T)

Here, sts is the finalized SRS. List Qs contains all (srs, p) of updated SRSs and their proofs, and list Q3 contains
all of the adversaries queries to H and the random oracle’s answers, Qx| < q.

3 Simulation Extractability—The General Result

Equipped with the definitional framework of Section [2] we now present the main result of this paper: a proof of
simulation extractability for multi-message Fiat—Shamir-transformed NIZK proof systems.

Without loss of generality, we assume that whenever the accepting proof contains a response to a challenge
from a random oracle, then the adversary queried the oracle to get it. It is straightforward to transform any adversary
that violates this condition into an adversary that makes these additional queries to the random oracle and wins
with the same probability.

The core conceptual insight of the proof is that the k-unique response and k-programmable trapdoor-less zero-
knowledge properties together ensures that the k-th move challenges in the trees of rewinding-based knowledge
soundness are fresh and do not come from the simulator. This allows us to eliminate the simulation oracle in our
rewinding argument and enables us to use the existing results of [4] in later sections.

Theorem 1 (Simulation-extractable multi-message protocols). Let Wrs = (SRS,P,V,Sim) be a (2 + 1)-
message FS-transformed NIZK proof system with an updatable SRS setup. If Wgs is an updatable k-unique
response protocol with security loss €., is updatable k-programmable trapdoor-less zero-knowledge, and updatable



rewinding-based knowledge sound with security loss eys; Then Wes is updatable simulation-extractable with security
loss
Ese(A;acc, q) < exs(A,ace — eyr(N), q)

against any PPT adversary A that makes up to q random oracle queries and returns an proof with probability at
least acc.

Proof. Let (x,m) « AYpd0.SimO.#.SimO-P" (). ) pe the USE adversary. We show how to build an extractor
Extse(sts, A, 74, Q, Q3, Qss) that outputs a witness w, such that R(x, w) holds with high probability. To that
end we define an algorithm Atjspdo’ﬂ (r) against rewinding-based knowledge soundness of Wgg that runs internally
AUPdO.SimO.H.SimO.-P" (1. \) Here 1 = (rsim, 74 ) With 7'sim the randomness that will be used to simulate SimO.P’.

The code of Atjspdo’%(r) hardcodes @ such that it does not use any randomness for proofs in () as long
as statements are queried in order. In this case it simple returns a proof 7s;, from () but nevertheless queries
SimO.Prog on (7sim[0..k], Tsim|k].ch], i.e. it programs the k-th challenge. While it is hard to construct such an
adversary without knowing @), it clearly exists and Exts. has the necessary inputs to construct Ays. This hardcoding
guarantees that A4y returns the same (x,7) as A in the experiment. Eventually, Ext. uses the tree builder 7
and extractor Extys for Ays to extract the witness for x. Both guaranteed to exist (and be successful with high
probability) by rewinding-based knowledge soundness. This high-level argument shows that Extg exists as well.

We now give the details of the simulation that guarantees that Ay is successful whenever A is—except with
a small security loss that we will bound late: Since Ays runs A internally, it needs to take care of A’s oracle
queries. Ags passes on queries of A to the update oracle UpdO to its own UpdO oracle and returns the result
to A. Ays internally simulates (non-hardcoded) queries to the simulator SimO.P’ by running the Sim algorithm
on randomness rs;, of its tape. Sim requires access to oracles SimO.H to compute a challenge honestly and
SimO.Prog to program a challenge. Again Ay simulates both of these oracles internally, cf. Fig.[3] this time using
the H oracle of Ays. Note that queries of A to SimO.H are not programmed, but passed on to H.

Importantly, all challenges in simulated proofs, up to round k are also computed honestly, i.e. 7[i].ch =
H(7]0..9)), for i < k.

SimO.H(x) SimO.Prog(x, h)
if Hz] = Lthen if H[z] = L then
Hz] + H(x) Hiz] < h
return H|z] Qprog  Qprog U {7}
return H[z]

Fig. 3: Simulating random oracle calls.

Eventually, A outputs an instance and proof (x, 7). Ays returns the same values as long as 7[0..9] ¢ Qprog.
¢ € [1, p]. This models that the proof output by Ay must not contain any programmed queries as such a proof
would not w.r.t 7 in the RBKS experiment. If .A outputs a proof that does contain programmed challenges, then
Ays aborts. We denote this event by E.

Lemma 1. Probability that E happens is upper-bounded by €., ().

Proof. We build an adversary AYP40-7 (\; 1) that has access to the random oracle H and update oracle UpdO. A,
uses Ays to break the k-UR property of Ws.

When Ay outputs a proof 7 for x such that E holds, A, looks through lists ) and )7, until it finds 7s;m [0..k]
such that 7[0..k] = 7sim[0..k] and a programmed random oracle query 7sim[k].ch on 7sjm[0..k]. Ay, returns two
proofs 7 and s;,, for x: and the challenge 7s;m [k].ch = 7[k].ch

Importantly, both proofs are w.r.t the unique response verifier. The first, since it is a correctly computed
simulated proof for which the unique response property definition allows any challenges at k. The latter, since
it is an proof produced by the adversary. We have that m # 7s;,, as otherwise A does not win the simulation
extractability game as m € ). On the other hand, if the proofs are different, then 4, breaks k-UR-ness of Wes.
This happens only with probability &, (). a



We denote by acc the probability that .4, outputs an proof. We note that by up-to-bad reasoning acc is at most
eur(A) far from the probability that A outputs an proof. Thus, the probability that Ays outputs an proof is at least
acc > acc — gy (N). Since Ws is gys(\, acc, q) rewinding-based knowledge sound, there is a tree builder 7 and
extractor Extys that rewinds Ay to obtain a tree of accepting transcripts T and fails to extract the witness with
probability at most eys(\, acc, q). The extractor Extg. outputs the witness with the same probability.

Thus es (A, acc, q) = exs(A, acc, q) < exs(\, acc — ey, Q). O

Remark 2. Observe that our theorem does not depend on £, (). There is no real prover algorithm P in the
experiment. Only the k-programmability of TLZK matters.

Remark 3. Observe that the theorem does not prescribe a tree shape for the tree builder 7. Interestingly, in our
concrete results 7 outputs a (k, *)-tree of accepting transcripts.

4 Polynomial Commitment Schemes

A polynomial commitment scheme PC = (GenSRS, Com, Op, Verify) consists of four algorithms and allows to
commit to a polynomial f and later open the evaluation in a point z to some value s = f(z). More formally:

GenSRS(1*, max): The key generation algorithm takes in a security parameter A and a parameter max which
determines the maximal degree of the committed polynomial. It outputs a structured reference string srs (the
commitment key). Note that srs implicitly determines A and max.

Com(srs, f): The commitment algorithm Com(srs, f) takes in srs and a polynomial f with maximum degree max,
and outputs a commitment c.

Op(srs, 2, s,f): The opening algorithm takes as input srs, an evaluation point z, a value s and the polynomial f. It
outputs an opening o.

Verify(srs, ¢, z, s,0): The verification algorithm takes in srs, a commitment ¢, an evaluation point z, a value s and
an opening o. It outputs 1 if o is a valid opening for (¢, z, s) and 0 otherwise.

A secure polynomial commitment PC should satisfy correctness, evaluation binding, opening uniqueness,
hiding and knowledge-binding. Note that since we are in the updatable setting, srs in these security definitions is
the SRS that A finalizes using the update oracle UpdO (See Fig. [I)).

Evaluation binding: A PPT adversary .A which outputs a commitment ¢ and evaluation points z has at most
negligible chances to open the commitment to two different evaluations s, s’. That is, let k£ € N be the number
of committed polynomials, I € N number of evaluation points, ¢ € G* be the commitments, z € Fﬁj be the
arguments the polynomials are evaluated at, s, s’ € IF’; the evaluations, and o, 0’ € IF;7 be the commitment
openings. Then for every PPT adversary A

Verify(srs, ¢, z,8,0) = 1,
Pr | Verify(srs, ¢, z,8',0') = 1, | (¢, 2,8,8',0,0") + AYP99(max) | < negl()\).
s# s
Hiding: We also formalize notion of k-hiding property of a polynomial commitment scheme. Let H be a set of
size max+ 1 and Zy its vanishing polynomial. We say that a polynomial scheme is hiding with security epig(\)
if for every PPT adversary A, k € N, probability

1
Pr[t =b [ (fo, fi,c, b, ) = ATPOO(max, c), fo, fr € F™™[X]] < 5 +&(N).
Where ¢ = f{(x), for a random bit b and the polynomial f{(X) = f, + Zn(X)(ao + a1 X +...ar_1 X*71),
and the oracle O¢ on adversary’s evaluation query z it adds « to initially empty set @, and if |Q,| < k, it
provides f(z).

Commitment of knowledge: Intuitively, when a commitment scheme is “of knowledge” then if an adversary
produces a (valid) commitment ¢, which it can open correctly in an evaluation point, then it must know the
underlying polynomial f which commits to that value. For every PPT adversary .4 who produces commitment
¢, evaluation s and opening o there exists a PPT extractor Ext such that

¢ + AV (max),z +s F,
(s,0) + A(c, 2), >1—ek(A).
f = Exta(srs, c)

degf < max,c = Com(srs, f),
Verify(srs, ¢, z,8,0) = 1

In that case we say that PC is g, ()-knowledge.
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GenSRS(1*, max) UpdSRS(srs, {p;}7=1)

X s F, Parse srsas ([{A:}7=0], , [Bl,)
srs = iy max . sy
([{Xl}l_o] 1’ [X]Q) ’ X ,<_$ ‘ /i /
p= (06X [Xs) = ([{X Ai}m}l’ [x B]z) ;

return (srs, p) P =(XA,x],,[X],)
return (srs’, p')

VerifySRS(srs, {p;}j=1)
Parse srsas ([{A:}720], , [Bl,)

and {p;}j_1 as { (Pj, by, Pj) }j:1
Verify Update proofs:
ﬁl = P1
Pie[l],=Pi_1eP; Vj>2
P,e[l],=[1], P,
Verify SRS structure:
[Ai], @ [1], = [Ai_1], ® [B], forall 0 < ¢ < max

Fig. 4: Updatable SRS scheme SRS for PCp

4.1 Unique Opening Property of PCp

Now, we show that the batched variant of the KZG polynomial commitment scheme that is used in Plonk and
Marlin, has the unique opening property.

Lemma 2. Ler PCp = (GenSRS, Com, Op, VerifyBatched) be a batched version of a KZG polynomial com-
mitment, cf. Fig. |5 that commits to m polynomials of degree up to max. Let z = (zo,...,21-1) € IF; be the
points the polynomials are evaluated at, k; € N be the number of the committed polynomials to be evaluated at
zi, and K; be the set of indices of these polynomials. Let sk, € F’;i the evaluations of polynomials at z;, and
o= (0g,...,01-1) € ]F; be the commitment openings. We show that the probability an algebraic adversary A,
who can made up to q random oracle queries, opens the same vector of commitments in two different ways is at
most €op(A), for op(A) < 1 €udiog(A) + 1/p, where eydiog (A) is security of the (max, 1)-udlog assumption and p
is the field used in PCp.

Proof. The proof goes by game hops. In the first game the adversary wins if it presents two accepting openings
of a vector of polynomials. Then, we restrict the winning condition and require that the adversary also makes the
idealized batched verifier to accept the proof. In the next game, we abort if the idealized verifier rejects a proof for
one of the evaluation point.

Game 0: In this game the adversary wins if it provides two different openings for a vector of polynomial
commitments and their evaluations that are accepting by VerifyBatched.

Game 1: This game is identical to Game 0 except it is additionally aborted if the commitment opening are not
accepting by VerifyBatched'.

Game 0 to Game 1: Any discrepancy between the idealized verifier rejection and real verifier acceptance allows
one to break the (updatable) discrete logarithm problem. The reduction Rqiog proceeds as follows. It answers A’s
queries for SRS updates according to the answers it receives from its udlog update oracle. When A finalizes an
SRS, Rudiog finalizes the corresponding udlog challenge ([1,. .., x" "] 1 » [1]5)- We consider verification equation
(#+) as a polynomial in X and the verification equation (x) as it’s evaluation at x’. Consider an opening such that
verification equation (**), cf. Fig. E], does not hold, i.e. (**) is not a zero polynomial, but (*) does, i.e. (**) zeroes
at x’. Since A is algebraic, all proof elements are extended by their representation as a combination of the input
Gq-elements. Therefore, all coefficients of the verification equation polynomial related to (**) are known. Now,
Rudiog computes the roots of (**), finds x" among them, and returns x’. Hence the probability that the adversary
wins in Game 1, but does not win in Game 0 is upper-bounded by €diog ().
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SRS(1*, max) Com(srs, f(X)) Op(srs, z, s, f(X), auxqg)

cf. Fig.[] return [c], = [f(x)], ¥ + H(go(z, s, [c], ,auxo))
return f(X) fori € [1 . |z|] do
i— fz X —fi 2
0)(X) e 3 4 M) ZhGe)
i€K; J
return o = [o(x)],
return o(X)
VerifyBatched(srs, [c], , 2, s, [0(X)], ; (auxo, aux1)) Verify(srs, [c], , 2, 8, [0(X)], ,auxo)
¥ < H(go(z; s, [c], ;auxo)) ¥ < H(go(z, s, [c], ;auxo))
7’<—H(g1([c]1,z,s,[o(x)]l,aum)) fOI‘] € [ ‘Z| do
|z
*)if er . Z 'y;*lci - Z 'y;*lsij o [1],+ if Z ’yl Yoy — Z '\/Z Csig| e[, +
j=1 i€K; i€k . i€K; e .

d p zj0;5 ® [1], # [0;], ® [x], then
ZTJZjOj ZT o;j| e[x], then return 0
j=1
if ZZEK '71 'f; (X) - ZzEK 7] SmJF
2505 (X) % oj( )X then return 0
%) if lez:‘1 ro (ZiGKj 'Y;'_lfi(X) - return 1.
ZzEK fy; 1813)—’—

le,‘lr]z]oj X) # Z lro( ) - X then
returnO

return 0

return 1.

Fig.5: PCp polynomial commitment scheme. Here |z| = [ is the number of evaluation points, the number of
committed polynomials is m, K; is the set of polynomials that was evaluated at point z;. Functions gg and g, are
injective and specific to the context in which the polynomial commitment is used. (In our case, functions gy and
g1 are produce partial transcripts of the proof that utilizes the commitment scheme, aux contains all additional
information that is needed by the functions.) In the boxes we describe values returned or equality computed in the
ideal protocol where the verifier checks equalities on the polynomials instead of their evaluations. For algorithm
Alg we denote its ideal variant by Alg’.
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Game 2: This game is identical to Game 1 except it is additionally aborted if one of the opening is not accepting
by an idealized verifier Verify’.

l

Game 1 to Game 2: The ideal verifier checks whether the following equality, for {v,} =1

holds:

r picked at random,

-1 l

U] DIRERTETED SRR

-1
j=0 icK; e §=0

rloj(X)(X - z;). (1)

Since r has been picked as a random oracle output, probability that Eq. (1) holds while for some j € [0..1 — 1]

P YT AT RX) = D sy | 2o (X)(X - 2)

e ieK;

is ¢/p cf. [30). When r/ (ZieKj (X)) - D ick, vt Sij) = 1rJ0;(X)(X — z;) holds, polynomial o;(X)
is uniquely determined from the uniqueness of polynomial composition.

Conclusion: We note that the idealized verifier ve( X ) does not accept two different openings of a correct evaluation.
Hence the probability that the adversary wins Game 2 is 0 and the probability that the adversary wins in Game 0
is upper-bounded by €ygiog () + %. O

5 Concrete SNARKS Preliminaries

Bilinear groups. A bilinear group generator Pgen(1*) returns public parameters p = (p, G1, Ga, G, é, [1], ,[1],),
where G1, G, and G are additive cyclic groups of prime order p = 29, (1], , [1], are generators of G, Ga,
resp., and € : G; X Go — G is a non-degenerate PPT-computable bilinear pairing. We assume the bilinear
pairing to be Type-3, i.e., that there is no efficient isomorphism from G; to Gy or from G4 to G1. We use the
by now standard bracket notation, i.e., we write [a], to denote a [1],. We denote é([a], , [b],) as [a], e [b],. Thus,
[a], e [b], = [ab];. Since every algorithm A takes as input the public parameters we skip them when describing
A’s input. Similarly, we do not explicitly state that each protocol starts by running Pgen.

5.1 Algebraic Group Model

The algebraic group model (AGM) of Fuchsbauer, Kiltz, and Loss [29] lies somewhat between the standard and
generic bilinear group model. In the AGM it is assumed that an adversary .4 can output a group element [y] € G if
[y] has been computed by applying group operations to group elements given to .4 as input. It is further assumed,
that A knows how to “build” [y] from those elements. More precisely, the AGM requires that whenever A([z])
outputs a group element [y] then it also outputs ¢ such that [y] = ¢' - [z]. Plonk, Sonic and Marlin have been

shown secure using the AGM. An adversary that works in the AGM is called algebraic.

Ideal Verifier and Verification Equations. Let (SRS, P,V,Sim) be a proof system. Observe that the SRS
algorithms provide an SRS which can be interpreted as a set of group representation of polynomials evaluated
at trapdoor elements. That is, for a trapdoor x the SRS contains [pi(x),...,pk(X)];, for some polynomials
p1(X),...,pk(X) € F,[X]. The verifier V accepts a proof 7 for instance x if (a set of) verification equation ve, .
(which can also be interpreted as a polynomial in F,,[ X] whose coefficients depend on messages sent by the prover)
zeroes at x. Following [30] we call verifiers who check that ve, () = 0 real verifiers as opposed to ideal verifiers
who accept only when ve, »(X) = 0. That is, while a real verifier accepts when a polynomial evaluates to zero,
an ideal verifier accepts only when the polynomial is zero.

Although ideal verifiers are impractical, they are very useful in our proofs. More precisely, we show that
the idealized verifier accepts an incorrect proof (what “incorrect” means depends on the situation) with at most
negligible probability (and in many cases—never); when the real verifier accepts, but not the idealized one, then a
malicious prover can be used to break the underlying security assumption (in our case—a variant of dlog.)

Analogously, idealized verifier can be defined for polynomial commitment schemes.

5.2 Dlog Assumptions in Standard and Updatable Setting

Definition 6 ((q1, ¢2)-dlog assumption). Let A be a PPT adversary that gets as input
X, X5 (1, X - o s X2y, for some randomly picked x € T, the assumption requires that A can-
not compute x. That is

Prix = A([L,x, - x5 X - - x %)) [ x s F,] < negl(X).
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Since all our protocols and security notions are in the updatable setting, it is natural to define the dlog
assumptions also in the updatable setting. That is, instead of being given a dlog challenge the adversary A is given
access to an update oracle as defined in Fig. [I] The honestly generated SRS is set to be a dlog challenge and
the update algorithm UpdSRS re-randomizing the challenge. We define this assumptions and show a reduction
between the assumptions in the updatable and standard setting.

Note that for clarity we here refer to the SRS by Ch. Further, to avoid cluttering notation, we do not make the
update proofs explicit. They are generated in the same manner as the proofs in Fig. 4]

Definition 7 ((q1, g2)-udlog assumption). Ler A be a PPT adversary that gets oracle access to UpdO with
internal algorithms (GenSRS, UpdSRS, VerifySRS), where GenSRS and UpdSRS are defined as follows:

- GenSRS(X) samples x < Fp, and defines Ch := ([1,x,...,x"];, [1,x, .-, X%],).
- UpdSRS(Ch, {p;}7—,) parses Ch as ([{Ai}{2];, {Bi}{Zol,), samples X «s F,, and defines Ch :=
([{5(/1141};1;0] 1 [{%132}310] 2)'

Then Pr[y + AYP4O(N)] < negl(X), where ([{x'}2,] o [{XH2,),) is the final Ch.

Remark 4 (Single adversarial updates after an honest setup.). As an alternative to the updatable setting defined
in Fig. [T} one can consider a slightly different model of setup, where the adversary is given an initial honestly-
generated SRS and is then allowed to perform a malicious update in one-shot fashion. Groth et al. show in [39]
that the two definitions are equivalent for polynomial commitment based SNARKSs. We use this simpler definition
in our reductions.

We show a reduction from (¢, g2 )-dlog assumption to its variant in the updatable setting (with single adversarial
update).

Lemma 3. (¢, ¢2)-dlog = (q1, ¢2)-udlog.

Proof. We show a reduction R that uses an adversary A that breaks (q1, g2)-udlog to break (g1, g2)-dlog. Specif-
ically, R proceeds as follows: given a dlog instance Ch as input, it sets Ch to be the initial (honestly generated)
challenge and runs A. After A performs its update and finalizes the dlog challenge it returns the answer x’. Let
x4 be the trapdoor contribution of adversary A in its update. Reduction R can extract this value from the update
proof of A. R now returns x = x’ X;‘l as the discrete logarithm of the original challenge Ch. a

Generalized Forking Lemma Although dubbed “general”, the forking lemma of [7] is not general enough for our
purpose as it is useful only for protocols where a witness can be extracted from just two transcripts. To be able to
extract a witness from, say, an execution of P we need at least (3n + 6) valid proofs (where n is the number of
constrains), (n 4+ 1) for S, and 2n + 3 for M. Here we use a result by Attema et al. [4 which lower-bounds the
probability of generating a tree of accepting transcripts T. We restate their Proposition 2 in our notation:

Lemma 4 (Run Time and Success Probability). Let N = ny - ----n, and p = 29N, Let e, (\) = 1 —

le 1-— ”Tfl) Assume adversary A that makes up to q random oracle queries and outputs an accepting proof

with probability at least acc. There exists a tree building algorithm T for (n1,...,n,)-trees that succeeds in
building a tree of accepting transcripts in expected running time N + q(N — 1) with probability at least

acc — (g + Deen(N)
1- Eerr()\) .

Opening Uniqueness of Batched Polynomial Commitment Openings To show the unique response property
required by our main theorem we show that the polynomial commitment schemes employed by concrete proof
systems have unique openings, which, intuitively, assures that there is only one valid opening for a given committed
polynomial and evaluation point:

Definition 8 (Unique opening property). Let m € N be the number of committed polynomials, | € N number of
evaluation points, ¢ € G™ be the commitments, z € Fi) be the arguments the polynomials are evaluated at, K

11 An earlier versions had its own forking lemma generalization. Attema et al. has a better bound.
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o . . . K;
set of indices of polynomials which are evaluated at z;, s; vector of evaluations of f;, and o;, o;. € Fp’ be the
commitment openings. Then for every PPT adversary A

Verify(srs, ¢, z,8,0) = 1,
Pr | Verify(srs, ¢, z,8,0') = 1, | (¢, 2,8,0,0") + AYP99(max) | < negl()\).
o+#0
We show that the polynomial commitment schemes of Plonk, Sonic, and Marlin satisfy this requirement in
Section 4.l

Remark 5. Fig.[5] cf. Section presents efficient variants of KZG [41] polynomial commitment schemes used
in Plonk, Sonic and Marlin that support batched verification. Algorithms Com, Op, Verify take vectors as input
and receive an additional arbitrary auxiliary string. This adversarially chosen string only provides additional
context for the computation of challenges and allows reconstruction of proof transcripts 7[0..7] for batch challenge
computations. We treat auxiliary input implicitly in the definition above.

6 Non-malleability of Plonk

In this section, we show that Pgs is simulation-extractable. To this end, we first use the unique opening property to
show that Pgs has the 3-UR property, cf. Lemma 5] Next, we show that Pgs is rewinding-based knowledge sound.
That is, given a number of accepting transcripts whose first 3 messages match, we can either extract a witness for
the proven statement or use one of the transcripts to break the udlog assumption. This result is shown in the AGM,
cf. Lemma[6] We then show that Pgs is 3-programmable trapdoor-less ZK in the AGM, cf. Lemmal(7}

Given rewinding-based knowledge soundness, 3-UR and trapdoor-less zero-knowledge of Pgs, we invoke
Theorem [T]and conclude that Pgg is simulation-extractable.

6.1 Plonk Protocol Description

The constraint system. Assume C is a fan-in two arithmetic circuit, whose fan-out is unlimited and has n gates
and m wires (n < m < 2n). The constraint system of Plonk is defined as follows:

- Let V = (a,b, ¢), where a, b, ¢ € [1..m]". Entries a;, b;, ¢; represent indices of left, right and output wires
of the circuit’s ¢-th gate.

- Vectors Q = (qr.,9R, 90, qnm, qc) € (FM)5 are called selector vectors: (a) If the i-th gate is a multiplication
gatethenqr,; = qr; = 0,qnr; = 1,and go; = —1. (b) If the ¢-th gate is an addition gate then q1,; = qr; = 1,
qni = 0,and go; = —1. (¢) g¢; = 0 for multiplication and addition gatesE]

We say that vector & € F™ satisfies constraint system if for all ¢ € [1 .. n]

qri- Ta, + qRi* Tb, + 4O * Te, + qni * (Ta, Tv,) + goi = 0.

Public inputs (xj)ﬁzl are enforced by adding the constrains

a; =j,qLi = 1,9mi = qri = qoi = 0,9¢ci = —X;,

for some ¢ € [1..n].
Algorithms rolled out Plonk argument system is universal. That is, it allows to verify computation of any
arithmetic circuit which has up to n gates using a single SRS. However, to make computation efficient, for each
circuit there is allowed a preprocessing phase which extends the SRS with circuit-related polynomial evaluations.

For the sake of simplicity of the security reductions presented in this paper, we include in the SRS only these
elements that cannot be computed without knowing the secret trapdoor . The rest of the preprocessed input can
be computed using these SRS elements. We thus let them to be computed by the prover, verifier, and simulator
separately.
Plonk SRS generating algorithm GenSRS(R): The SRS generating algorithm picks at random x < F,,, computes
and outputs srs = ([{x"}7=7], , [x],) -
Preprocessing: Let H = {w'}"_; be a (multiplicative) n-element subgroup of a field F compound of n-th roots
of unity in F. Let L;(X) be the i-th element of an n-elements Lagrange basis. During the preprocessing phase
polynomials Sigj, Soj, for j € [1.. 3], are computed:

Sian (X) = X, Se1(X) = 20, o(i)Li(X),
Sidz(X):kl-X, SUQ(X)Zzyzld(n+i)Li(X),
Sid3(X) = k2 . X, 5,73(X) = Z?:l a(2n +Z)L,(X)

12 The g¢; selector vector is meant to encode (input independent) constants.
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Coeflicients k1, ko are such that H, ky - H, ko - H are different cosets of F*, thus they define 3 - n different elements.
Gabizon et al. [30] notes that it is enough to set k7 to a quadratic residue and k- to a quadratic non-residue.
Furthermore, we define polynomials q , qr, 9o, qm, dc such that

qu(X) =2 aniki(X),  qo(X) =7, qoili(X),
ar(X) = 327 griLi(X), qc(X) = 327 goili(X).
am(X) =377 amribi(X),
Proving statements in Pgs We show how prover’s algorithm P(srs,x = (Wg)f:1 ,W = (Wz)fznl) operates for the

Fiat—Shamir transformed version of Plonk. Note that for notational convenience w also contains the public input
wires w} = w;, 7 € [1..7].

Message 1 Sample b1, ..., by <= F,; compute a(X),b(X),c(X) as
a(X) = (b1 X 4+ b2)Zn(X) + >0 wiLi(X)
( ) (b3X+b4)ZH(X) Z —1 Wn4i z(X)
S(X) = (b5 X + b6)Z(X) + X0y WarnsiLi(X)
)

,b(x); c(x ]1-

b
F, by querying random oracle on partial proof, that is, 8 =

)
2(X) = (br X2 + b X + bg)Zn(X) + L1 (X)+

Output polynomial commitments [a(
Message 2 Compute challenges /3,y
H(7[0.1],0), v =H(F[0.. }%

X

S

) -
Compute permutation polynomial z( X

+ Z li[ (Wj + BwI ™!+ 4) (Wapj + Bkrw? ™t + ) (Wantj + Bhaw’ ™1 + )
b (Wi + ()8 +7)(Wnij +a(n+35)8 +7)(Wantj + (20 + )8 +7)

Output polynomial commitment [z(x)],

Message 3 Compute the challenge o = H(7[0..2]), compute the quotient polynomial
t(X) =
(a(X)b(X)am(X) + a(X)qL(X) + b(X)qr(X) + c(X)qo(X) + PI(X) + qc(X))/Zn(X)+
+ ((@(X) + BX +7)(b(X) + Bk1 X + ) (c(X) + B2 X + 7)z(X))a/Zn(X)
— (a(X) + 8So1(X) +7)(b(X) + S02(X) +7)(c(X) + BSo3(X) +7)2(Xw))a/Zu(X)
+ (2(X) = DLi(X)a?/Zu(X)

Split t(X) into degree less then n polynomials tio(X), tmid(X), thi(X), such that t(X) = tio(X) +

)+

Xtmig (X) + X2ty (X) . Output [tio (), tmia (X), thi (X)] ;-
Message 4 Get the challenge 3 € [F,, 3 = 7H(7[0..3]). Compute opening evaluations

a(3),b(3),¢(3),S51(3), So2(3), t(3), z(3w), Compute the linearization polynomial

() (3)am(X) +a(3)qL(X) + b(3)ar(X) + c(3)q0(X) + qc(X)
() = a-((a(3) + B3+ 7)(b(3) + Bk1z + 7)(c(3) + Bkasz + ) - 2(X))
a-((a(3) + BSo1(3) +7)(b(3) + £Ss2(3) +7)Bz(3w) - Se3(X))

+a2-L1(3)~Z(X)

Output a(3), b(3), <(3), S1(3), So2(3), t(3), 2(5w), r(3)-
Message 5 Compute the opening challenge v € F,,, v = H(7[0..4]). Compute the openings for the polynomial

commitment scheme

. tio (X) + 3"tmia (X)) +5°"thi (X) — t(5) + v(r(X) = r(3)) + v*(a(X) — a(3))
W;(X) = 57— | +v*(B(X) = b)) + v (e(X) = c3)) + 0" (So1(X) = So(5))
+1°(So2(X) — So2(5))

Output [W‘; (X)7 Wgw (X)] 1
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Plonk verifier V(srs, x, 7):
The Plonk verifier works as follows

NN AL

10.

11.

12.

Validate all obtained group elements.

Validate all obtained field elements.

Parse the instance as {w; }{_; + x.

Compute challenges (3,7, «, 3, v, u from the transcript.

Compute zero polynomial evaluation Zy(3) = 3" — 1.

Compute Lagrange polynomial evaluation L;(3) = n?;j)'

Compute public input polynomial evaluation PI(3) = >, et qWilki (3)-
Compute quotient polynomials evaluations

t) = (r(z) +PI(3) = (a(5) +9551(3) +7)(b(3) + 5S42(5) +7)(c(3) +7)z(w)ex — Ll(z)az) /Zn(3) -

Compute batched polynomial commitment [D], = v [r]; + u[2]; that is

a(3)b(3) - [aml, +2a(3) [al, +blar]l, +claol;, +
[Dl; =v | +((a3) + 85 +7)(b(3) + Bk1z +7)(c+ Bkaz + V) + Li(3)0”)+ | +
—(a(3) + 8So1(3) +7)(b(3) + 8S02(3) +7)aBz(3w) [So3(X)];)
+ulz(x)], -

Computes full batched polynomial commitment [F7],:

[F, = ([to (0], + 3" [tmia 0], + 37" twi(0)]y) +u [200)], +
a(3)b(3) - [am]; +2a(3) [ac]y + b(3) [ar]y +<(3) [ao]; +
+u | + (@) + Bs +7)(b(3) + Bk1z +7)(c(3) + Bhas + 7)a + L1(3)a”)+
—(a(3) + BSo1(3) +7)(b(3) + 8S02(3) + 7)aBz(3w) [Se3(x)],)

v a0y +0* ()] + 0" [00)y + 07 [Ser()]; + 0% [So2 ()], -

Compute group-encoded batch evaluation [E],

1 [r(3) +PIG) + ®Li(3)+
Zu(3) | — @ ((a3) + BSs1(3) +7)(b(3) + BSs2(3) +7)(c(3) + 7)z(w)) |,
+[ur() + v?a(3) + v’b(3) + v'c(3) +v°Sa1(5) + v°S02(5) + uz(sw)],

[Eh =

Check whether the verification equation holds

([Ws(X)]l +u- [Waw(X)h) o [X]Q -
(3 - W (0], +usw - Wi (X)), + [F], — [E],) o [1], = 0.

The verification equation is a batched version of the verification equation from [41]] which allows the verifier to
check openings of multiple polynomials in two points (instead of checking an opening of a single polynomial

at one point).

Plonk simulator Sim, (srs, td = x, x): We describe the simulator in Lemma

6.2 Simulation extractability of Plonk

Unique Response Property

Lemma 5. Let PCp be a polynomial commitment that is euind(\)-binding and has unique opening property with
loss €op(A). Then Prs is 3-UR against algebraic adversaries, who makes up to q random oracle queries, with

security 1oss pind () + €op(N).
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Intuition. We show that an adversary who can break the 3-unique response property of Prg can be either used
to break the commitment scheme’s evaluation binding or unique opening property. The former happens with the
probability upper-bounded by eping(A), the latter with the probability upper bounded by &4, ().

Proof. Let A be an algebraic adversary tasked to break the 3-UR-ness of Prs. We show that the first three prover’s
messages determine, along with the verifiers challenges, the rest of it. We denote by 7" and 7! the two proofs that
the adversary outputs. To distinguish polynomials and commitments which an honest prover would send in the
proof from the polynomials and commitments computed by the adversary we write the latter using indices 0 and
1 (two indices as we have two transcripts), e.g. to describe the quotient polynomial provided by the adversary we
write t° and t! instead of t as in the description of the protocol.

We note that since the unique response property requires from 7% and 7! that the first place they possibly differ
is the 4-th prover’s message, then the challenge 3, that is picked by the adversary after the 3-rd message is the same
in both transcripts. This challenge determines the evaluation point of polynomials a(X ), b(X), c(X), t(X),z(X)
which commitments are already sent.

In its fourth message, the prover provides evaluations of the aforementioned polynomials, along with evaluations
of publicly known polynomials S,1(3), So2(3), and evaluation of a linearization polynomial r(3).

Note that the adversary can output two accepting proofs that differ on their fourth message only if it either
manages to break evaluation binding of one of the opening, or provides an incorrect opening which is accepted due
to a batching error. Since the commitment scheme is evaluation binding with security loss epind(\), the adversary
can make 7° and 7! differ on the fourth message with the same probability.

Next, assume that the transcripts are the same up to the fourth message, but differ at the fifth. In that message,
the adversary provides openings of the evaluations. Since the unique opening property, the adversary can open the
valid evaluation of a polynomial to two different values with probability at most o, (). (We note that for the KZG
polynomial commitment scheme, as used in [30], €op(A) < €udiog(A) + ¢/p, cf. Lemma )

By the union bound, the adversary is able to break the unique response property with probability upper bounded
by €bind (A) + €op(A). |

Rewinding-Based Knowledge Soundness

Lemma 6. Pgs is (3, 3n + 6)-rewinding-based knowledge sound against algebraic adversaries who make up to q
random oracle queries with security loss

acc— (g +1) (—3";5)
1— 3n+5 + (3[1 + 6) : Eudlog()\) )
P

eks(Aacc,g) < [ 1-—

Here acc is a probability that the adversary outputs an accepting proof, and € diog () is security of (n+5, 1)-udlog
assumption.

Intuition. We use Attema et al. [5| Proposition 2] to bound the probability that an algorithm 7 does not obtain a
tree of accepting transcripts in an expected number of runs. This happens with probability at most

o 3n+45
acc—(g+1) ( 3 )
- 1 _ 3nt5

P

Then we analyze the case that one of the proofs in the tree T outputted by T is not accepting by the ideal verifier.
This discrepancy can be used to break an instance of an updatable dlog assumption which happens with probability
at most (3n + 6) - eudiog (A).

Proof. Let A7:UP40 (12, 1) be the adversary who outputs (x, 7) such that Pgs.V accepts the proof. Let 7 be a tree-
building algorithm of Lemma 4] that outputs a tree T, and let Exty be an extractor that given the tree output by 7°
reveals the witness for x. The main idea of the proof is to show that an adversary who breaks rewinding-based knowl-
edge soundness can be used to break a udlog-problem instance. The proof goes by game hops. Note that since the
tree branches after A’s 3-rd message, the instance x, commitments [a(x), b(x), c(x), z(X), tio(X) s tmid (), thi (X)]1
and challenges «, 3, 7y are the same in all the transcripts. Also, the tree branches after the third adversary’s message
where the challenge j is presented, thus tree T is built using different values of 3. We consider the following games.

Game 0: In this game the adversary wins if it outputs a valid instance—proof pair (x, 7), and the extractor Extys
does not manage to output a witness w such that R(x, w) holds.
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Game 1: In this game the environment aborts the game if the tree building algorithm 7 fails in building a tree of
accepting transcripts T.

Game 0 to Game 1: By Lemma [ probability that Game 1 is aborted, while Game 0 is not, is at most

- acc—(¢+1) (3%’5)

1— 3n+5
p

Game 2: In this game the environment additionally aborts if at least one of its proofs in T is not accepting by an
ideal verifier.

Game 1 to Game 2: As usual, we show a reduction that breaks an instance of a udlog assumption when Game 2
is aborted, while Game 1 is not.
Let Rudiog be a reduction that gets as input an (n + 5, 1)-udlog instance [1,...,x""?] 1+ [X]o- Then it can

update the instance to another one {1, X n%} ,[x]5. Eventually, the reduction outputs x’. The reduction

Rudiog Proceeds as follows. First, it builds .A’s SRS srs using the input udlog instance. Then it processes the
adversary’s update query by adding it to the list Qs and passing it to its own update oracle getting instance

[1, . ,X’”Hﬂ o [X']5- The updated SRS srs’ is then computed and given to A. Rudiog also takes care of the

random oracle queries made by .A. It picks their answers honestly and write them in ()4;. The reduction then starts
T(SFS, Aa Ty Q’Hv ers)-

Let (1, T) be the output returned by 7. Let x be a relation proven in T. Consider a transcript 7 € T such
that ve, »(X) # 0, but ve, »(x’) = 0. Since A is algebraic, all group elements included in T are extended by
their representation as a combination of the input G1-elements. Hence, all coefficients of the verification equation
polynomial ve, - (X) are known. Eventually, the reduction finds ve, - (X') zero points and returns x’ which is one
of them.

Hence, the probability that the adversary wins in Game 2 but does not win in Game 1 is upper-bounded by
(3n+6) - Eudlog()\)-

Conclusion:

Note that the adversary can win in Game 2 only if 7 manages to produce a tree of accepting transcripts
T, such that each of the transcripts in T is accepting by an ideal verifier. Note that since 7 produces (3n + 6)
accepting transcripts for different challenges j, it obtains the same number of different evaluations of polynomials
a(X),b(X),c(X),z(X),t(X). Since all the transcripts are accepting by an idealised verifier, the equality between
polynomial t(X) and combination of polynomials a(X),b(X),c(X),z(X) defined in prover’s 3-rd message
description holds. Hence, a(X ), b(X), c(X) encodes the valid witness for the proven statement. Extys can recreate
polynomials’ coefficients by interpolation and reveal the witness given (3n + 6) evaluations.

Hence, the probability that the adversary wins in Game 0 is upper-bounded by

acc— (¢ +1) (%)
eks(A,acc,q) < [ 1— RS + (3n +6) - cudiog(N) -
p

Trapdoor-Less Zero-Knowledge of Plonk
Lemma 7. Pgg is 3-programmable trapdoor-less zero-knowledge.

Intuition. The simulator, that does not know the SRS trapdoor can make a simulated proof by programming the
random oracle. It proceeds as follows. It picks a random witness and behaves as an honest prover up to the point
when a commitment to the polynomial t(X) is sent. Since the simulator picked a random witness and t(X) is a
polynomial only (modulo some negligible function) when the witness is correct, it cannot compute commitment
to t(X) as it is a rational function. However, the simulator can pick a random challenge 3 and a polynomial £(X)
such that t(3) = t(3). Then the simulator continues behaving as an honest prover. We argue that such a simulated
proof is indistinguishable from a real one.
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Proof. As noted in Section [2.1] subvertible zero-knowledge implies updatable zero-knowledge. Hence, here we
show that Plonk is TLZK even against adversaries who picks the SRS on its own.

The adversary A(1*) picks an SRS srs and instance—witness pair (x,w) and gets a proof 7 simulated by the
simulator Sim which proceeds as follows.

For its 1-st message the simulator picks randomly both the randomizers b, ...,bs and sets w; = 0 for
i € [1..3n]. Then Sim outputs [a(x), b(X), c(x)], . For the first challenge, the simulator picks permutation argument
challenges (3, v randomly.

For its 2-nd message, the simulator computes z(X ) from the newly picked randomizers b7, bg, bg and coeflicients
of polynomials a(X), b(X), c(X). Then it evaluates z(X) honestly and outputs [z(x)],. Challenge « that should
be sent by the verifier after the simulator’s 2 message is picked by the simulator at random.

In its 3-rd message the simulator starts by picking at random a challenge 3, which in the real proof comes
as a challenge from the verifier sent after the prover sends its 3-rd message. Then Sim computes evalua-
tions a(3),b(3),<(3),S01(3), So2(3), P1(3), L1(3), Zn(3), z(3w) and computes t(X) honestly. Since for a random
a(X),b(X),c(X),z(X) the constraint system is (with overwhelming probability) not satisfied and the constraints-
related polynomials are not divisible by Zy (X ), hence t(X) is a rational function rather than a polynomial. Then,
the simulator evaluates t(X) at 3 and picks randomly a degree-(3n + 15) polynomial £(X) such that t(3) = t(3)
and publishes a commitment [tio (), tmid (X), thi(X)],. After that the simulator outputs 3 as a challenge.

For the next message, the simulator computes polynomial r(X') as an honest prover would, cf. Section and
evaluates r(X) at 3.

The rest of the evaluations are already computed, thus Sim  simply  outputs
a(3),b(3),¢(3),501(3),S02(3), t(3), z(3w) . After that it picks randomly the challenge v, and prepares the
the last message as an honest prover would. Eventually, Sim and outputs the final challenge, u, by picking it at
random as well.

We argue about zero-knowledge as usual. The property holds since the polynomials that has witness elements
at their coefficients are randomized by at least two randomizers and are evaluated at at most two points; and the
simulator computes all polynomials as an honest prover would. a

Simulation Extractability of Pgs
Since Lemmas [3to[7 hold, P is 3-UR, rewinding-based knowledge sound and trapdoor-less zero-knowledge. We

now make use of Theorem [T and show that Pgs is simulation-extractable as defined in Definition 2]

Corollary 1 (Simulation extractability of Prs). Pgs is updatable simulation-extractable against any PPT
adversary A who makes up to q random oracle queries and returns an accepting proof with probability at least
acc with extraction failure probability

acc —eur(A) — (¢ + Deen(N)
]- - 6err(>\)

€se(A, acc, q) < (1 — ) + (3n 4 6) - cudiog(N),

where ger(N) = 252, 2, (A) < epind(A) + €op(N), P is the size of the field, and n is the number of constrains in

. . p
the circuit.

7 Non-malleability of Sonic
7.1 Preliminaries

Definition 9 ((¢1, g2)-Idlog assumption). Let A be a PPT adversary that gets as input
", L x Ty, I, L, x®2],, for some randomly picked x € Fy, the assumption requires
that A cannot compute x. That is

Pr[x:A([x*ql,...,l,...,quh,[X*qg,...,l,...,x‘“]?) |Xe$]Fp} < negl(\).

Definition 10 ((q1, g2)-uldlog assumption). Let A be a PPT adversary that gets oracle access to UpdO with
internal algorithms (GenSRSdiog, UpdSRS, o4, VerifySRS), where GenSRSyqiog and UpdSRSyy,, are defined as
follows:

— GenSRSigiog (A) samples x < F, and defines Ch := ([x ", ..., 1, x, ..., X)X T2, . Lx - xBy)
— UpdSRS g1 (Ch, {p;}—,) parses Ch as ([{Ai}ql 1, [{Bi}E }2) samples X <+ F,, and defines

Chi= (W ANL_,], [(XBIE_,,],)- : :
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Then
Pr[y « AY99(\)] < negl()),

where ([{)Zi}?lzfql] O 2) is the finalized challenge.

7.2 Sonic Protocol Rolled-out

In this section we present Sonic’s constraint system and algorithms. Reader familiar with them may jump directly
to the next section.

GenSRS(1*, max) Com(srs, max, f(X))

a,x s c(X)  a- XTTT(X)
return [{Xi}iQ;mi'tQmult7 {O‘Xi}?;ukamun,#O] - return [c], = [c(x)],

i i1 Qmu
[{X aX }i:thmult] 2’ [

Op(srs, 2, s, f(X)) Verify(srs, max, [c], , 2, s, [0(X)];)
o(X) % if [o(0)],  [axdy + [s — 20(x)], * [a], =
return [o(x)], (], ® [X_d+max] , then return 1

else return 0.

Fig. 6: PCg polynomial commitment scheme.

The Constraint System Fig. [6] presents a variant of KZG [41]] polynomial commitment schemes used in Sonic.
Sonic’s system of constraints composes of three Quyit-long vectors a, b, ¢ which corresponds to left and right
inputs to multiplication gates and their outputs. It hence holds @ - b = c.

There is also Qj;, linear constraints of the form

aug + bvg + cwg = kg,

where ugq, vq, wq are vectors for the g-th linear constraint with instance value k, € IF),. Furthermore define
polynomials

Qiin Qiin
ui(Y) = Z Yq+Qmu|tuq7i ’ wi(Y) = _yi_y—i4 Z Yq+Qmu|twq7i ,
g=1 g=1
Qiin Qiin 3)
vi(Y) = Z Yq‘i’Qmult/Uq,i , k(Y) = Z Yq“l’Qmultkq.
qg=1 q=1
Sonic constraint system requires that
Qmutte ) )
a - u(Y)+b" v(Y)+elw¥)+ Y aibi(Y+Y ) —k(Y) =0, (4)
i=1

In Sonic we will use commitments to the following polynomials.

Qmult

F(X, Y) = Z (aleyz + biX_iY_i + ciX_i_QmultY—i—Qmuk)
1=1
Qmult ' . '

S(XLY) =3 (wi(Y)X T+ 0 (V)X 4wy (V) Xt

=1
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H(X,Y) = r(X, 1)(r(X,Y) + s(X,Y)) — k().

Polynomials r(X,Y),s(X,Y),t(X,Y) are designed such that t(0,Y) = a -u(Y)+b" -v(Y)+c' -w(Y)+
ZQ"”;“ a;b; (Y +Y ™) — k(Y). That is, the prover is asked to show that t(0,Y) = 0, cf. Eq. .

Furthermore, the commitment system in Sonic is designed such that it is infeasible for a PPT algorithm to
commit to a polynomial with non-zero constant term.

Algorithms Rolled out Sonic SRS generation GenSRS(R)). The SRS generating algorithm picks randomly «, x <
IF,, and outputs

sts = ([ Fo g {ax Fe gz, [ ax' M ], ol

Sonic prover P(srs,x,w = a, b, ).

Message 1 The prover picks randomly randomizers cq,,,+1, CQuu-+2s CQuur+31 CQuunt+4 <5 Fp. Sets r(X,Y)
N(X,Y) + 30 cquueriX ~2Qmu=i Commits to r(X, 1) and outputs [r], < Com(srs, Qmui, (X, 1)). Then
it computes challenge y = H(7[0..1]).

Message 2 P commits to t(X, y) and outputs [t]; <— Com(srs,d, t(X,y)). Thenit gets achallenge z = H(7[0..2]).

Message 3 The prover computes commitment openings. That is, it outputs

[0‘1}1 = Op(SI’S, 2, I’(Z, 1)7 F(X, 1))
[Obh = Op(SI’S, yZ, r(yz, 1)? I’(X7 1))
[Oth = Op(SI’S, Z, t(za y), t(Xa y))
along with evaluations ' = r(z,1),0' = r(y, z),t' = t(z,y). Then it engages in the signature of correct com-

putation playing the role of the helper, i.e. it commits to s(X, y) and sends the commitment [s],, commitment
opening

[05]1 = Op(srs, Z, S(Z, y)’ S(X’ y))v

and s’ = s(z,y). Then it obtains a challenge v = H(7[0..3]).
Message 4 For the next message the prover computes [c]; <— Com(srs,d,s(u,Y")) and computes commitments’
openings

[w]l = Op(srs, u, S(’LL7 y)v S(X7 y)),
[qy]l = Op(srs, Y, S(“v y)a S(uv Y))v

and returns [w], , [q,], , s = s(u, y). Eventually the prover gets the last challenge 2’ = H(7[0..4]).
Message 5 For the final message, P computes opening [g./], = Op(srs, 2, s(u, z’),s(u, X)) and outputs [g./]; .

Sonic verifier V(srs, x, w). The verifier in Sonic runs as subroutines the verifier for the polynomial commitment.
That is it sets ' = a’ (b’ 4+ s’) — k(y) and checks the following:

PCs.V(srs, Qmuit, [1]; , 2, [0al; ), PCs.V(srs,d, [s]; ,u, s, [w],)
PCs.V(srs, Qmuit, [1]; , y2, V', [0s],), PCg V(Srs, d’ lcy,y,s ’[q ]1 )’
PCs.V(srs,d, [t]; , 2,1, [o];), PCs V(srs’d’ [C]l ’z’ s:(uy 1/)’ lq-/1,)
PCS'V(SrS’d’[SL,Z,S,, [Os]l), . s My 1> ) ) s (427 )1 )

and accepts the proof iff all the checks holds. Note that the value s(u, z’) that is recomputed by the verifier uses
separate challenges u and z’. This enables the batching of many proof and outsourcing of this part of the proof to
an untrusted helper.

7.3 Unique Opening Property of PCg
Lemma 8. PCs has the unique opening property in the AGM.
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Proof. Let z € T, be the attribute the polynomial is evaluated at, [c}1 € G be the commitment, s € F, the
evaluation value, and 0o € G be the commitment opening. We need to show that for every PPT adversary A
probability

Verify(srs, [c]; , 2, s, [0];) = 1, ~ N
Verify(srs, [c], , 2,5,[0];) = 1 (Iely 2,8, [ely, o) A d0(1>\, max)

is at most negligible.

As noted in [30, Lemma 2.2] it is enough to upper bound the probability of the adversary succeeding against
the ideal verifier, who verifies equality between polynomials.

For a polynomial f, its degree upper bound max, evaluation point z, evaluation result s, and opening [o(X )],
the ideal verifier checks that

a<Xd—ma><f(X) . X —dtmax _ s)=a-oX)(X —2), (5)

what is equivalent to
f(X)—s=0(X)(X —2). ©)

Since o(X)(X — z) € F,[X] then from the uniqueness of polynomial composition, there is only one o(X) that
fulfills the equation above. O

7.4 Unique Response Property

The unique response property of Sgg follows from the unique opening property of the polynomial commitment
scheme PCs.

Lemma 9. If a polynomial commitment scheme PCg is evaluation binding with security loss epind(\) and has
unique openings property with security loss eop(X), then Sgs is 2-UR against algebraic adversaries with security
loss

2- €bind()\) + Eop()\).

Proof. Let A be an algebraic adversary tasked to break the 2-UR-ness of Sgs. We note that to show 2-UR-ness is
is enough to show that the first prover’s message determines, along with the verifiers challenges, the rest of it. We
denote by ¥ and 7! the two proofs for the same statement the adversary outputs. To distinguish polynomials and
commitments which an honest prover sends in the proof from the polynomials and commitments computed by the
adversary we write the latter using indices 0 and 1 (two indices as we have two transcripts), e.g. to describe the
quotient polynomial provided by the adversary we write t” and t* instead of t as in the description of the protocol.

We note that since the unique response property requires from 7% and 7! that the first place they possibly
differ is the 3-th prover’s message, then the challenge z, that is picked by the adversary after the 2-rd message is
the same in both transcripts. This challenge determines the evaluation point of polynomials r(X, 1), t(X, y) which
commitments are already sent.

In its third message, the prover provides evaluations of these polynomials along with their openings at z or yz.
Note that the adversary can output two accepting proofs that differ on their third message only if it manages to
break evaluation binding of one of the opening. Since the commitment scheme is evaluation binding with security
10sS pind(A), the adversary can make ¥ and 7! differ on the third message with probability at most epjnd ().

Similarly, in its fourth message, the prover provides an evaluation at u of polynomial s(X, y), an evaluation at y
of s(u,Y’), and the corresponding openings. Note that the adversary can output two accepting proofs that differ on
their fourth message only if it manages to break evaluation binding of one of the opening. Since the commitment
scheme is evaluation binding with security 10ss eping(\), the adversary can make 70 and 7! differ on the fourth
message with probability at most epindg ().

Next, assume that the transcripts are the same up to the fourth message, but differ at the fifth. In that message,
the adversary provides openings of the evaluations. Since the unique opening property, the adversary can open the
valid evaluation of a polynomial to two different values with probability at most o, ().

By the union bound, the adversary is able to break the unique response property with probability upper bounded
by 2ebind(A) + €op(N). O
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7.5 Rewinding-Based Knowledge Soundness

Lemma 10. Sgs is (2, n + 1)-rewinding-based knowledge sound against algebraic adversaries who make up to q
random oracle queries with security loss

acc—(g+1) (%)

1—

eks(A,acc,q) < [ 1— +(n+1) - cuidiog(A)

n
p

Here acc is a probability that the adversary outputs an accepting proof, and € yidiog (\) is the security of (max, max)-
uldlog assumption.

Let A™:UPdO(12: 1) be the adversary who outputs (x,7) such that Sgs.V accepts the proof. Let 7 be the
tree-building algorithm of Lemmafd]that outputs a tree T, and let Extys be an extractor that given the tree output by
T reveals the witness for x. The main idea of the proof is to show that an adversary who breaks rewinding-based
knowledge soundness can be used to break a uldlog-problem instance. The proof goes by game hops. Note that
since the tree branches after .A’s 2-nd message, the instance x, commitments [r(x, 1), t(x, y)],, and challenge y are
the same in all the transcripts. Also, the tree branches after the second adversary’s message where the challenge z
is presented, thus tree T is built using different values of z. We consider the following games.

Game 0: In this game, the adversary wins if it outputs a valid instance—proof pair (x, 7), and the extractor Exty
does not manage to output a witness w such that R(x, w) holds.

Game 1: In this game, the environment aborts the game if the tree building algorithm 7 fails in building a tree of
accepting transcripts T.

Game 0 to Game 1: By Lemma probability that Game 1 is aborted, while Game 0 is not, is, at most

acc— (g+1) (%)
= :

1—

n
P

Game 2: In this game the environment additionally aborts if at least one of its proofs in T is not accepting by an
ideal verifier.

Game 1 to Game 2: As usual, we show a reduction that breaks an instance of a uldlog assumption when Game 2
is aborted, while Game 1 is not.

Let TRudiog be a reduction that gets as input an  (max,max)-uldlog instance
D™ ™ ™™, L, x™ ], Then it can update the instance to another one
DML XM ™1, ™, Eventually, the reduction outputs x’. The reduc-
tion Ryidiog proceeds as follows. First, it builds A’s SRS srs using the input uldlog instance. Then it processes
the adversary’s update query by adding it to the list Q)s,s and passing it to its own update oracle getting instance
DML X ™ ™ L L, X'™®],. The updated SRS srs” is then computed and given to A.
Ruldiog also takes care of the random oracle queries made by .A. It picks their answers honestly and writes them in
Q- The reduction then starts 7 (srs, A, 7, Q#, Qsrs)-

Let (1, T) be the output returned by 7. Let x be a relation proven in T. Consider a transcript 7 € T such
that ve, (X)) # 0, but ve, »(x’) = 0. Since A is algebraic, all group elements included in T are extended by
their representation as a combination of the input G;-elements. Hence, all coefficients of the verification equation
polynomial ve, . (X) are known. Eventually, the reduction finds ve, . (X) zero points and returns x’ which is one
of them.

Hence, the probability that the adversary wins in Game 2 but does not win in Game 1 is upper-bounded by

(n + 1) . 5u|d|og(>\)-

Conclusion: Note that the adversary can win in Game 2 only if 7" manages to produce a tree of accepting transcript
T, such that each of the transcripts in T is accepting by an ideal verifier. Note that since 7 produces (n + 1)
accepting transcripts for different challenges z, it obtains the same number of different evaluations of polynomial
t(z,y) what allows to extract the witness, cf. [46].

Hence, the probability that the adversary wins in Game 0 is upper-bounded by

acc—(¢+1) (3

eks(A,acc,q) < [ 1— n+1) - cudiog(A) -

n
p
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7.6 Trapdoor-Less Zero-Knowledge of Sonic

Lemma 11. Sgs is 2-programmable trapdoor-less zero-knowledge.
Proof. The simulator proceeds as follows.

1. Pick randomly vectors a, b and set
c=a-b. @)

2. Pick randomizers ¢q, ,+1; - - - » CQuue+4, hONestly compute polynomials r(X,Y),r'(X,Y),s(X,Y’) and pick
randomly challenges v, z.
3. Output commitment [r]|; <= Com(srs, Qmui, r(X, 1)) and challenge y.

4. Compute
a =r(z,1),
b =r(zy),
s’ =s(z,y

5. Pick polynomial t(X,Y") such that

t(X,y) = (X, 1)(r(X,y) +s(X,y)) — k(Y)
t(0,y) =0

6. Output commitment [t]; = Com(srs, d, t(X, y)) and challenge z.
7. Continue following the protocol.

We note that the simulation is perfect. This comes since, except polynomial t(X,Y) all polynomials are
computed following the protocol. For polynomial t(X,Y") we observe that in a case of both real and simulated
proof the verifier only learns commitment [t]; = t(),y) and evaluation t' = t(z,y). Since the simulator picks
t(X,Y) such that

t(X,y) = r(X, D(r(X,y) +s(X,y)) —k(Y)

Values of [t]; are equal in both proofs. Furthermore, the simulator picks its polynomial such that t(0,y) = 0,
hence it does not need the trapdoor to commiit to it. (Note that the proof system’s SRS does not allow to commit to
polynomials which have non-zero constant term). O

Remark 6. As noted in [46]], Sonic is statistically subversion zero-knowledge (Sub-ZK). As noted in [[1]], one way
to achieve subversion zero-knowledge is to utilize an extractor that extracts a SRS trapdoor from a SRS-generator.
Unfortunately, a NIZK made subversion zero-knowledge by this approach cannot achieve perfect Sub-ZK as one
has to count in the probability of extraction failure. However, with the simulation presented in Lemma [I1] the
trapdoor is not required for the simulator as it is able to simulate the execution of the protocol just by picking
appropriate (honest) verifier’s challenges. This result transfers to Sgs, where the simulator can program the random
oracle to provide challenges that fits it.

7.7 Simulation Extractability of Sgg
Since Lemmas [9] to [TT] hold, Sfs is 2-UR, rewinding-based knowledge sound and trapdoor-less zero-knowledge.

We now make use of Theorem[I]and show that Sgs is simulation-extractable as defined in Definition 2}

Corollary 2 (Simulation extractability of Sgs). Sgs is updatable simulation-extractable against any PPT ad-
versary A who makes up to q random oracle queries and returns an accepting proof with probability at least acc
with extraction failure probability

acc — eyr(A) — (g + Deen(N)
1—cenr(A)

Ese()‘aaccv Q) < (1 - ) + (n + 1) 'Euldlog()\);

where e (N) = ;‘;, p is the size of the field, and n is the number of constrains in the circuit.
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8 Non-malleability of Marlin

We show that Marlin is simulation-extractable. To that end, we show that Marlin has all the required properties: has
unique response property, is rewinding-based knowledge sound, and its simulator can provide indistinguishable
proofs without a trapdoor, just by programming the random oracle.

8.1 Marlin Protocol Rolled-out

Marlin uses R1CS as its arithmetization method. Given instance x, witness w and |H| x |H| matrices A, B, C, the
prover shows that A(x",w')T o B(x",w")T = C(x",w)T, where o denotes entry-wise product.

We assume that the matrices have at most |K| non-zero entries. Obviously, |K| < [H|2. Let b = 3, the upper-
bound of polynomial evaluations the prover has to provide for each of the sent polynomials. Denote by d an
upper-bound for {|H| +2b — 1,2|H| + b — 1,6|K| — 6}.

The idea of showing that the constraint system is fulfilled is as follows. Denote by z = (x, w). The prover com-
putes polynomials za (X), zg(X), zc(X) which encode vectors Az, Bz, C'z and have degree < |H|. Importantly,
when constraints are fulfilled, za (X )zg(X) — zc(X) = ho(X)Zuy(X), for some ho(X) and vanishing polynomial
Z,1(X). The prover sends commitments to these polynomials and shows that they have been computed correctly.
More precisely, it shows that

VM € {A,B,C},Vk € H,zm(k) = ZM[K,L]Z(L). 3)
teH

The ideal verifier checks the following equalities

h3(B3)Zk(Bs) = a(Bs) — b(B3)(B3g3(B3) + 03/[K])
r(o, B2)os = ha(B2)Zn(B2) + B282(52) + o2/|H|

s(B1) + e, A1) marzm(Br)) — 022(B1) = hi(B1)Zu(Br) + Prga(Br) + o1 /|H| ®)
M

za(B1)z8(B1) — zc(B1) = ho(B1)Zn(B1)

where g;i(X),hi(X), 7 € [1..3], a(X),b(X), 01, 02, 03 are polynomials and variables required by the sumcheck
protocol which allows the verifier to efficiently verify that Eq. (8] holds.

8.2 Unique Response Property

Lemma 12. Let PC be a commitment of knowledge that is evaluation binding with security loss €pind(\) and has
unique opening property with security loss €op(X). Then Megs is 2-UR against algebraic adversaries with security
1055 2 - €pind(A) + €op(N).

Proof. The proof is similar to the proof of Lemma [5] and Lemma [9] An adversary who can break the 2-unique
response property of Mgs can be either used to break the commitment scheme’s evaluation binding or unique
opening property. The former happens with the probability upper-bounded by 2 £pind (M), the latter with probability
at most €4 (). By the union bound, the adversary is able to break the unique response property with probability
upper bounded by 2 - eping(A) + €op(A). O

8.3 Rewinding-Based Knowledge Soundness

Lemma 13. Mgs is (2, 2n + 3)-rewinding-based knowledge sound against algebraic adversaries who make up to
q random oracle queries with security loss

acc—(g+1) (%

5ks(>‘a acg, Q) S 1- ) + (2n + 3) : 5ud|og(/\) )

1— 2n+42
p

Here acc is a probability that the adversary outputs an acceptable proof, and £ diog(\) is the security of (2n+2, 1)-
udlog assumption.

Proof. The proof is similar to the proof of Lemma [6] and Lemma [T0] We use Attema et al. 5, Proposition 2]
to bound the probability that the tree-building algorithm 7 does not obtain a tree of acceptable transcript in an
expected number of runs. This happens with probability at most

| acc— (g+1) (%)

1 _ 2n+2
p
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Let T be the tree output by 7. If one of the proofs in T is not accepting by the ideal verifier, one can break an
instance of an updatable dlog assumption which happens with probability at most (2n + 3) - €ydiog(A). In the case
that all the transcripts are accepting by the ideal verifier, but Extys fails to extract a valid witness from T, one can
break the soundness of the ideal verifier in one of the transcripts. Taking a union bound completes the proof. O

8.4 Trapdoor-Less Zero-Knowledge of Marlin

Lemma 14. Mgs is 2-programmable trapdoor-less zero-knowledge.

Proof. The simulator follows the protocol except that it picks the challenges a, n4,n5,nc, B1, B2, B3 before it
picks the polynomials it sends.

First, it picks Z4(X), Zp(X) at random and Zo(X) such that Z4(51)Zp(51) = Zc(B1). Given
the challenges and polynomials Z4(X), Zp(X), Zc(X) the simulator computes o1 <« >, .y s(k) +
r(a, X)(ZM@{A,BL‘} nvzm (X)) — ZMe{A,B,C} nara (e, X)Z(X).

Then the simulator starts the protocol and follows it, except it programs the random oracle such that on partial
transcripts, it returns the challenges already picked by Sim.

8.5 Simulation Extractability of Mgg
Since Lemmas|[12]to[T4]hold, Mgs is 2-UR, rewinding-based knowledge sound and trapdoor-less zero-knowledge.

By making use of Theorem [I] we conclude that Ms is simulation-extractable as defined in Definition [2]

Corollary 3 (Simulation extractability of Mgs). Mgs is updatable simulation-extractable against any PPT
adversary A who makes up to q random oracle queries and returns an acceptable proof with probability at least
acc with extraction failure probability

(A) = (g + 1)eern(N)
1- 6err(>\)

cn(hace.q) < (1 e ) L@ +3) ooV,

where eere(N) = 222 1 is the size of the field, and n is the number of constrains in the circuit.

_7p’
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