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Abstract. Although isogeny-based cryptographic schemes enjoy the
smallest key sizes amongst current post-quantum cryptographic candi-
dates, they come at a high computational cost, making their deploy-
ment on the ever-growing number of resource-constrained devices diffi-
cult. Speeding up the expensive post-quantum cryptographic operations
by delegating these computations from a weaker client to untrusted pow-
erful external servers is a promising approach. Following this, we present
in this work mechanisms allowing computationally restricted devices to
securely and verifiably delegate isogeny computations to potentially un-
trusted third parties. In particular, we propose two algorithms that can
be integrated into existing isogeny-based protocols and which lead to a
much lower cost for the delegator than the full, local computation. For
example, compared to the local computation cost, we reduce the public-
key computation step of SIDH/SIKE by a factor 5 and zero-knowledge
proofs of identity by a factor 16 for the prover, while it becomes almost
free for the verifier, respectively, at the NIST security level 1.

Keywords: Isogeny-based cryptography · Post-quantum cryptography
· Secure computation outsourcing · Lightweight cryptography

1 Introduction

Delegation of Cryptographic Primitives. In recent years, the number of inter-
connected devices using new computational paradigms such as cloud, edge and
mobile computing, and their interactions with the industrial internet of things,
big data and artificial intelligence, are steadily increasing in numbers. As a re-
sult, delegating expensive computations from clients such as RFID-cards and
low power sensors with constrained resources or capabilities to powerful external
resources has become a highly active and an indispensable research and develop-
ment area for researchers and industry alike. Delegation of sensitive computation
to potentially malicious external devices and services, however, comes with some
additional challenges, such as requiring security of the clients’ inputs/outputs



as well as verifiability of the outputs coming from these external devices and
services. A particular case of interest is the delegation of cryptographic algo-
rithms and protocols. The security and verifiability properties of cryptographic
delegations were first formalized in a security model introduced by Hohenberger
and Lysyanskaya [27], introduced in the context of modular exponentiations. In
this model, a weak, trusted client T makes queries to a set of untrusted exter-
nal servers U in such a way that their interaction T U realizes a computational
task Alg in a joint manner. The goal is to reduce the computational cost of T
while guaranteeing the security of its inputs and outputs, and the possibility of
verifying the correctness of the outputs of U .

Isogenies and Cryptography. Many currently deployed public-key cryptographic
primitives are based on the infeasibility of either the factorization or discrete
logarithm problems. Possible efficient implementations of Shor’s algorithm [39]
on large scale quantum computers could render these schemes insecure against
such quantum adversaries. This threat resulted in the United States’ National
Institute of Standards and Technology (NIST) launching a post-quantum cryp-
tography standardization process at the end of 2017. Of the 69 initially proposed
key-establishment and signature protocols, a list of 15 main and alternate can-
didates (9 encryption and KEMs, 6 digital signature schemes) have progressed
to the third round of scrutiny, announced in July 2020 [35].

One of these alternate candidates is the key encapsulation scheme SIKE [40]
which is based on the Supersingular Isogeny Diffie-Hellman (SIDH) key exchange
protocol, originally proposed by Jao and De Feo [29]. SIDH is a quantum resistant
key agreement scheme, which uses isogenies between supersingular elliptic curves
over finite fields Fp2 . Besides the key agreement scheme in [29] and SIKE [40],
several other cryptographic schemes based on the supersingular elliptic curves
have been recently proposed in the literature ranging from group key agreement
schemes [3,24], zero-knowledge proofs of identity [29,19], identification and sig-
nature schemes [25] and hash functions [11,23] to verifiable delay functions [22].

Motivation. A significant advantage of isogeny-based cryptographic schemes are
the small key sizes when compared to their lattice- or code-based post-quantum
counterparts. However, the main drawback is performance: SIKE is about an or-
der of magnitude slower than its NIST competitors [1,8]. Furthermore, as pointed
out in [34], post-quantum cryptographic schemes are especially required to also
work efficiently on resource-constrained devices with highly limited processing
storage, power and battery life to be able to utilize them in lightweight environ-
ments, which is highly desired for various applications requiring certain interop-
erability properties. We address this problem and study the secure and verifiable
delegation of isogeny computations between supersingular elliptic curves over
Fp2 in order to reduce the computational cost of resource-constrained clients
requiring to utilize different isogeny-based cryptographic schemes.

Previous Work. Recently, Pedersen and Uzunkol [36] proposed two isogeny del-
egation algorithms in the honest-but-curious (HBC) and one-malicious version
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of a two-untrusted program (OMTUP) assumptions using the security model
of Hohenberger and Lysyanskaya [27]. The first, ScIso, allowed to delegate the
computation of any isogeny with revealed kernel, while allowing to push through
hidden elliptic curve points or multiply unprotected points with hidden scalars.
Random torsion point generation was done using lookup-tables of the form
{(i, ℓiP )}i∈{1,...,e−1}, {(i, ℓiQ)}i∈{1,...,e−1} for generators ⟨P,Q⟩ ∈ E[ℓe]. The sec-
ond algorithm, HIso, used ScIso as a subroutine and allowed to hide the kernel
and the codomain of the delegated isogeny. The work of [36] did not propose a
protocol to delegate public-key computations.

Our Contributions. The main contribution of this paper is to propose two new
delegation algorithms for isogeny computations using the security model of Ho-
henberger and Lysyanskaya [27] in the HBC and OMTUP models, and to show
how to apply these to different isogeny-based cryptographic protocols and com-
puting the respective gains for the delegator. In particular,

1. We show how to break the HIso subroutine of [36] using pairings, and discuss
some new approaches to hide the codomain curve in delegation algorithms.

2. We introduce the delegation algorithm Iso, which allows to delegate isogeny
computations with unprotected kernel and to push through public and hid-
den points. Iso does not require lookup-tables, eliminating the large local
memory requirement of the ScIso-algorithm from [36] on the delegator’s side,
while also speeding up the delegation algorithms.

3. The second algorithm, IsoDetour, uses Iso as a subroutine and allows to dele-
gate the computation of an isogeny without revealing the kernel. This allows
the computation of public keys, a question left open in [36]. The security of
IsoDetour is based on a difficulty assumption implicitly used in the identifi-
cation protocol of [29], which we introduce as the decisional point preimage
problem (DPP). We show that this problem reduces to the decisional super-
singular product problem (DSSP) introduced in [29].

4. We discuss applications of algorithms to the protocols introduced in
[3,11,19,22,23,24,25,29] and benchmark our delegation algorithms for various
standardized SIKE primes (p434, p503, p610, p751) corresponding to NIST’s
security levels 1, 2, 3 and 5. We also indicate the necessary communication
costs between the delegator and the servers. Iso allows to reduce the del-
egator’s cost in the identification protocols of [19,29] to about 6% of the
local computation cost in the OMTUP and 11% in the HBC assumption
for p503. On the other hand, IsoDetour allows to reduce the cost of SIDH-
type public-key generation to about 20% and 35% for OMTUP and HBC,
respectively.

Acknowledgments. The authors would like to thank Frederik Vercauteren
for discussions and valuable feedback during this work. We would also like Ja-
son LeGrow for valuable discussions concerning the isogeny cost function. This
work was supported in part by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (Grant
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agreement No. 101020788 - Adv-ERC-ISOCRYPT), the Research Council KU
Leuven grant C14/18/067, and by CyberSecurity Research Flanders with refer-
ence number VR20192203.

2 Background

2.1 Elliptic curves and isogenies

We work with supersingular elliptic curves over the field Fp2 with p prime and
with Frobenius trace tπ = ∓2p. The group of points on elliptic curves of this
type is given as E(Fp2) ≃ (Z/(p ± 1)Z)2 [41], so that the choice of p allows
full control of the subgroup structure. Like most isogeny-based schemes, e.g.
[29,40], we use tπ = −2p. The elliptic curves with tπ = 2p correspond to the
quadratic twists of these curves, i.e. curves having the same j-invariant which
become first isomorphic over Fp4 . We slightly abuse notation and write e.g.
P ∈ E for P ∈ E(Fp2). We indicate by E[τ ] the τ -torsion group on E(Fp2) for
τ ∈ Z non-zero. Torsion groups of specific points and the generators of these
groups are written with the specific point as index, e.g. we write A ∈ E[τA] and
⟨PA, QA⟩ = E[τA], where we assume A to have full order, i.e. |⟨A⟩| = τA. We
further use the shorthand Zτ = Z/τZ. We assume that different torsion groups
are always coprime.

Isogenies. Isogenies are homomorphisms between two elliptic curves, that are
also algebraic maps [18,41]. Separable isogenies are uniquely defined by their
kernel. In the cryptographic schemes treated in this work, these kernels are
subgroups of torsion groups, generated by a primitive point. For example, the
group generated by A ∈ E[τA], i.e. ⟨A⟩ = {λA|λ ∈ ZτA} ⊂ E[τA], defines the
isogeny α : E → E/⟨A⟩ with kerα = ⟨A⟩. Any other primitive point within
⟨A⟩ generates the same isogeny, so we can define the equivalence class [A] of
points generating ⟨A⟩. One can efficiently verify if two points in E[τA] belong
to the same equivalence class by checking if they define the same isogeny or by
using pairings. In order to allow efficient isogeny computations between elliptic
curves, torsion groups E[τ ] need τ to be smooth [29]. For most cryptographic
applications, we require several smooth torsion groups of approximately the same
size. This can be guaranteed by choosing p+ 1 =

∏n
i=1 τi, where τi ≈ τj for all

i, j and all smooth. By this choice, supersingular elliptic curves consist of the
smooth torsion groups E[τi] for i = 1, . . . , n. Each of these torsion groups is
generated by two elements, ⟨Pi, Qi⟩ = E[τi], so any point can be written as a
linear combination of these two generators.

Notation. We write isogeny codomains in index notation, e.g. EA = E/⟨A⟩,
EAB = E/⟨A,B⟩, where the index represents (the equivalence class of) the
isogeny kernel generator. We represent points on elliptic curves with a superscript
corresponding to the index of the elliptic curve they are defined on, e.g. if P ∈ E,
then PA ∈ EA and PAB ∈ EAB , where we assume the used map to be clear
from context. The same holds for point sets, e.g. {P,Q}A = {PA, QA} ⊂ EA.
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2.2 Elliptic curve arithmetic

Computational costs. We denote by A and D the theoretical cost estimates of
point addition and point doubling on E, respectively, by S(τ) the cost estimate
of a (large) scalar multiplication of a point by a scalar in Zτ and by I(τ, µ) the
cost estimate of computing a (large) τ -isogeny, and pushing µ points through
this isogeny. Each of these operations can be expressed in terms of the cost of
multiplications m of elements over Fp2 . To this end, we assume that squaring on
Fp2 costs 0.8m, while addition on Fp2 and comparisons are negligible. Expensive
inversions are circumvented by using projective coordinates. Large scalar mul-
tiplications are typically done using a double-and-add approach, so that we can
express the cost of scalar multiplication by an element τ as [36]

S(τ) = M⌈log2 τ⌉ − A , where M = A+ D . (1)

Scalar multiplications by a small prime ℓi are written as Sℓi . We further define Cℓi

and Pℓi as the cost of a computing the codomain of an ℓi-isogeny and evaluating
an ℓi-isogeny respectively. In Appendix A, we establish the following cost of a
τ -isogeny with τ =

∏n
i=1 ℓ

ei
i :

I(τ, µ) =
n∑

i=1

[
(Pℓi + Sℓi)

ei
2
log2 ei + (Ci + µPi)ei

]
+

n−1∑
i=1

Pℓiei(n− i) . (2)

We will work with elliptic curves in Montgomery and in twisted Edwards form
with extended coordinates. Due to their more efficient arithmetic, we assume
that isogeny computations are always performed using the former.

Montgomery curves. Montgomery curves are elliptic curves of the form

Ea,b : bY
2Z = X3 + aX2Z +XZ2 ,

with b ̸= 0 and a2 ̸= 4. Montgomery curves are used in most deployed isogeny-
based protocol, as arithmetic operations and isogeny computations on them are
particularly efficient if they are reduced to the Kummer line E/⟨±1⟩ by mapping
out the Y -coordinate and reducing points to the X and Z coordinates [17,33].
Points on the Kummer line form no longer a group, and addition operations
have to be substituted by differential additions, which require 3 inputs (P , Q
and P − Q) to compute P + Q. Note that arithmetic operations and isogeny
computations are independent of the parameter b [16]. In fact, changing b only
allows to move between a curve and its isomorphisms or its quadratic twist,
the latter being unified on the Kummer line. Thus, working on Montgomery
curves does not only have the advantage of efficient arithmetic, but it also allows
to easily switch between isomorphic curves and quadratic twists without the
requirement of working in extension fields [14].

Using the results from [6,17], the cost of point addition and doubling on
E(Fp2) can be estimated by

A = 5.6m and D = 3.6m,
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respectively. Scalar multiplications on Montgomery curves are performed using
the Montgomery ladder algorithm [33]. Finally, using the optimized results from
[15] for the parameters in the isogeny computation (2), we find

C3 = 4.4m, S3 = 9.2m, P3 = 5.6m,
C4 = 3.2m, S4 = 7.2m, P4 = 7.6m.

Twisted Edwards curves. Twisted Edwards curves are elliptic curves of the form

Ec,d : cX2Z2 + Y 2Z2 = Z4 + dX2Y 2 ,

with d ̸= 0, 1 and c ̸= 0. While there are many coordinate representations in
[5], the extended coordinates introduced in [26] are of particular interest for this
work. In [26], point coordinates are extended by a fourth element T = XY/Z,
which allows for efficient arithmetic with

A = 9m and D = 7.2m.

If −c is a square in Fp2 , unsing the isomorphism X → X/
√
−c results in an even

more efficient addition of A = 8m. While the arithmetic is noticeably slower
than the one on Montgomery curves, points on twisted Edwards curves form a
group and allow more versatile constructions. For an overview of isogeny-related
costs on twisted Edwards curves we refer to [4].

Mapping between Montgomery and Twisted Edwards curves. There is a one-to-
one correspondence between Montgomery and twisted Edwards curves [5], and
switching between equivalent curves can be done using the following maps

c =
a+ 2

b
, d =

a− 2

b
and a =

c+ d

c− d
, b =

4

c− d
.

By writing the curve parameters in projective coordinates, we avoid inversions
and reduce these maps to simple additions on Fp2 . To map points between these
curves, we can use the maps [5,9,32]

(XM : ZM ) = (ZE + YE : ZE − YE)

(XE : YE : ZE) = (XM (XM + ZM ) : YM (XM − ZM ) : YM (XM + ZM )) ,

while TE = XEYE/ZE = XM (XM −ZM ) can be easily computed from the other
coordinates. While the point map from Montgomery to twisted Edwards curves
is given by two finite field additions (assumed to have negligible cost), the inverse
way can be computed in 3m, or in 3.8m if TE is computed as well.

2.3 Security model

The security model for delegating cryptographic computations used throughout
this paper was originally proposed by Hohenberger and Lysyanskaya [27]. In this
model, delegation algorithms are split into a trusted component T and a set of
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untrusted servers U . The delegator makes oracle queries to the servers such that
their interaction T U results in the correct execution of an algorithm Alg with
the goal of reducing the computational cost of T when compared to the local
execution of Alg. Since U might potentially be malicious, the delegator needs to
both ensure that U is not able to extract any sensitive data from the interaction,
and be able to verify that the results returned by U are computed correctly.
The full adversary in this model A = (E ,U) further includes the environment
E , representing any third party, that should also not be able to extract sensitive
data, while having a different view of the inputs and output of Alg as U does.

The outsource input/output specification (or outsource-IO) distinguishes se-
cret (only T has access), protected (T and E have access) and unprotected (ev-
eryone has access) inputs and outputs, while non-secret inputs are further sub-
divided into honest and adversarial, depending on whether they originate from
a trusted source or not. An important assumption of this model is that, while
the servers in U and the environment E might initially devise a joint strategy,
there is no direct communication channel between the different servers within U
or between U and the environment E after T starts using them (U can be seen to
be installed behind T ’s firewall). However, they could try to establish an indirect
communication channel via the unprotected inputs and un/protected outputs of
Alg. To mitigate this threat, T should ensure that the adversarial, unprotected
input stays empty (see also Remark 2.4 in [27]), while the non-secret outputs do
not contain any sensitive data. The security of delegation schemes is formalized
in the following definition, which also formalizes T ’s efficiency gain due to the
delegation, as well as its ability to verify correctness of U ’s outputs.

Definition 1 ((α, β)-outsource-security [27]). Let Alg be an algorithm with
outsource-IO. The pair (T,U) constitutes an outsource-secure implementation
of Alg if:

– Correctness: T U is a correct implementation of Alg.
– Security: For all PPT adversaries A = (E ,U), there exist PPT simulators

(S1,S2) that can simulate the views of E and U indistinguishable from the
real process. We write EV IEWreal ∼ EV IEWideal (E learns nothing) and
UV IEWreal ∼ UV IEWideal (U learns nothing). The details of these experi-
ments can be found in Definition 2.2 of [27]. If U consists of multiple servers,
then there is a PPT-simulator S2,i for each of their views.

– Cost reduction: for all inputs x, the running time of T is at most an
α-multiplicative factor of the running time of Alg(x),

– Verifiability: for all inputs x, if U deviates from its advertised functionality
during the execution T U (x), then T will detect the error with probability ≥ β.

Adversarial models differ along the number and intent of servers. The models
we will analyze in this work are the following.

Definition 2 (Honest-but-curious [12]). The one honest-but-curious pro-
gram model defines the adversary as A = (E ,U), where U consists of a single
server that always returns correct results, but may try to extract sensitive data.
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Definition 3 (OMTUP [27]). The one-malicious version of a two untrusted
program model defines the adversary as A = (E , (U1,U2)) and assumes that at
most one of the two servers U1 or U2 deviates from its advertised functionality
(for a non-negligible fraction of the inputs), while T does not know which one.

We refer to the paper of Hohenberger and Lysyanskaya [27] for other secu-
rity models without any honest party, namely the two untrusted program model
(TUP) and the one untrusted program model (OUP). We discuss models without
honest entity in Appendix B.1.

2.4 Cryptographic protocols and difficulty assumptions

Let E/Fp2 be a publicly known supersingular elliptic curve with at least two
coprime torsion groups ⟨PA, QA⟩ = E[τA] and ⟨PB , QB⟩ = E[τB ], whose gener-
ators are also publicly known. Cryptographic protocols in the SIDH setting are
generally based on the following commutative diagram:

E EA

EB EAB

α

β β′

α′

Let ⟨A⟩ = kerα and ⟨B⟩ = kerβ, then the commutativity of the upper diagram
is given by choosing kerα′ = ⟨AB⟩ and kerβ′ = ⟨BA⟩.

We revisit some of the security assumptions upon which isogeny-based cryp-
tographic protocols are based. Note that we only show the ones that are explicitly
used in this work. For other hard problems, we refer for example to [29].

Problem 1 (Computational Supersingular Isogeny Problem (CSSI) [29]). Given
the triplet (EB , P

B
A , QB

A), find an element in [B] ⊂ E[τB ].

Problem 2 (Decisional Supersingular Product Problem (DSSP) [29]). Let α :
E → EA. Given a tuple (E,EA, E1, E2, α, α

′), determine from which of the
following distributions it is sampled

– E1 is random with |E1| = |E| and α′ : E1 → E2 is a random τA-isogeny,

– E1 × E2 is chosen at random among those isogenous to E × EA and where
α′ : E1 → E2 is a τA-isogeny.

We further define the following difficulty assumption and show that it is at least
as hard as DSSP.

Problem 3 (Decisional Point Preimage Problem (DPP)). Given (E,EB , A,A′B),
where A ∈ E[τA], and A′B ∈ EB [τA], decide whether [A] = [A′].
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Let ADPP be an adversary to the DPP problem which, upon receiving the tuple
(E,EB , A,A′B), returns b = 1 if [AB ] = [A′B ], otherwise b = 0. Then, we can
construct an adversary BADPP

DSSP against DSSP, which returns b = 0 in the first and
b = 1 in the second case of Problem 2. Upon receiving (E,EA, EB , EC , α, α

′),
BADPP

DSSP extracts kernel generators ⟨S⟩ = kerα and ⟨S′B⟩ = kerα′, then sends the

query (E,EB , S, S
′B) to ADPP. BADPP

DSSP returns what ADPP returns: if [S] = [S′],
then EB × EC is isogenous to E × EA and we have b = 1, otherwise b = 0.

3 Delegating isogenies

Throughout this section, we assume that the delegator T is able to generate
elements in Z uniformly at random in an efficient manner. We further assume
that T knows a representation of any of its secret and protected points in terms
of the public torsion group generators.

3.1 Advertised server functionality

Let E/Fp2 be an elliptic curve, K ⊂ Zτ × E[τ ], M ⊂ Z × E two distinct sets
of scalar-point pairs and b ∈ {0, 1} a bit. We assume that the delegator gives
inputs of the form (E,K;M; b) to the server, who proceeds as follows.

– K encodes the kernel of the isogeny to compute, thus the server computes
K =

∑
(a,P )∈K aP , which it uses to compute the isogeny ϕ : E → EK .

Throughout this work, we are only interested in sets of the form K =
{(1, P ), (k,Q)} for generators ⟨P,Q⟩ = E[τ ].

– M contains points to push through and multiply with the associated scalar,
i.e. the server computesMK := {aXK | (a,X) ∈M}, where XK = ϕ(X).

– If b = 1, the server generates a deterministic return basis BK = {RK , SK} ⊂
EK [τ ], such that RK + kSK = PK .3 If b = 0, then BK = ∅.

The server then returns (EK ;MK ;BK). We write the delegation step as follows

(EK ;MK ;BK)← U(E,K;M; b).

The points in M are always submitted in a random order in order to avoid
distinguishability. Further, to reduce the communication cost we assume that
servers return all points scaled with Z = 1.

Notation. For a scalar-point pair (a, P ) in K orM, we simply write P if a = 1.
If a set contains multiple pairs of the same point, e.g. {(a1, P ), (a2, P ), (a3, P )},
we condense them as {({a1, a2, a3}, P )}.
3 This can simply be achieved by first generating SK ∈ EK [τ ] deterministically (e.g.
by hashing into the elliptic curve using a procedure such as the one described in [28],
and map out the unwanted torsion), then computing RK = PK − kSK .
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3.2 The Iso-Algorithm

Definition 4 (The Iso-algorithm). The isogeny delegation algorithm Iso takes
as inputs a supersingular elliptic curve E/Fp2 , a kernel set K ⊂ Z×E(Fp2), two
scalar-point pair sets H0,H ⊂ Z × E(Fp2) and a bit b ∈ {0, 1}, then computes
the isogeny ϕ : E → EK and produces the output (EK ;HK

0 ,HK ;BK), where
K =

∑
(a,P )∈K aP , HK

(0) = {aP
K | (a, P ) ∈ H(0)} and BK is a return basis as

described in Section 3.1, if b = 1 and ∅ otherwise. The inputs E,K,H0, b are all
honest, unprotected parameters, while H contains secret or (honest/adversarial)
protected scalars and honest, unprotected points. The outputs EK , HK

0 and BK
are unprotected while HK is secret or protected. We write

(EK ;HK
0 ,HK ;BK)← Iso(E,K;H0,H; b).

If b = 0 and thus BK = ∅, we shorten this as (EK ;HK
0 ,HK)← Iso(E,K;H0,H).

In Figures 1 and 2, we show how a delegator T can use the advertised server
functionality from Section 3.1 in order to implement Iso in an outsource-secure
way under the HBC and OMTUP assumptions. The delegation subroutines are
organized according to 5 main steps: First, auxiliary elements are generated
(Gen), which are used to shroud protected elements (Shr), before being delegated
to the server (Del). After the delegation, the server outputs are verified (Ver) and
finally the results are recovered and output (Out). In Appendix B.1, we discuss
the differences of delegations of isogenies and modular exponentiations.

Note that the HBC case does not need a verification step by assumption.
The idea behind Figure 1 is relatively trivial but effective: the delegator hides
the secret/protected scalars simply by not disclosing them to the server and
computing the scalar multiplication on the codomain point itself. The OMTUP
case of Figure 2 is a bit more complex, but will result in a lower cost for the
delegator when compared to the HBC case. The underlying idea (for N = 1) is
that the delegator shrouds the secret/protected scalars as a linear combination
of small and large random scalars. The large scalars are distributed between the
two servers in order to prevent reconstruction of the secrets, while the small
scalars are kept secret by the delegator and used to ultimately verify correctness
of the returned points. The size of the small scalars influences the cost for the
delegator and the verifiability of the protocol. To further increase verifiability,
the delegator can add more random scalars to the mix by increasing N , which
leads to multiple, interconnected verification conditions, and results in an even
higher verifiability, albeit at a higher cost for the delegator. There is an optimal
trade-off between these two parameters, depending on the desired verifiability.
We will discuss this trade-off further in Section 3.2. In Appendix C, we establish
the protocol execution costs for the delegator

THBC(µ, τA) = µS(τA) , (3)

TOMTUP(µ, t) = µ
[
(4N + 3)m+ 2Mt+ (2N+1 −N − 3)A

]
, (4)

of Figures 1 and 2 and further prove the following theorems.
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Theorem 1. Under the honest-but-curious assumption, the outsourcing algo-

rithm (T ,U) given in Figure 1 is a
(
O
(

1
log log τ

)
, 1
)
-outsource secure imple-

mentation of Iso, where τ is the smooth degree of the delegated isogeny.

Theorem 2. Under the OMTUP assumption, the outsourcing algorithm (T , (U1,U2))
given in Figure 2 is an

(
O
(

t
log τ log log τ

)
, 1− 1

(N+1)2Nt

)
-outsource secure imple-

mentation of Iso, where τ is the smooth degree of the delegated isogeny. If H = ∅,
then it is fully verifiable.

Hiding a point. If the delegator wants to push through a secret or (honest/adversarial)
protected elliptic curve point A = P+aQ ∈ E[τA], then T simply has to delegate

(EK ;HK
0 ∪ {P},HK ∪ {aQK};BK)← Iso(E,K;H0 ∪ {P},H ∪ {(a,Q)}; b) ,

and compute AK = PK + aQK . We assume that a representation of A in the
normal form is always known, as will always be the case in the cryptographic
protocols that we discuss in this paper.

Honest-but-curious approach.

Gen: No auxiliary elements are needed.
Shr: Set H′ = {Q | (a,Q) ∈ H}.
Del: Delegate (EK ;HK

0 ∪H′K ;BK)← U(E,K;H0 ∪H′; b).
Out: Compute HK = {aQK | (a,Q) ∈ H, QK ∈ H′K}, then return (EK ;HK

0 ,HK ;BK).

Fig. 1. Implementation of Iso in the HBC assumption

OMTUP approach.

Gen: For each (a,Q) ∈ H, choose N ∈ N, then (assuming Q ∈ E[τ ]) generate
• small non-zero scalars c1, . . . , cN , d1, . . . , dN ∈ {−2t−1, . . . , 2t−1}, and
• random scalars r0, s0, s1, . . . , sN−1 ∈ Zτ .

Shr: For each (a,Q) ∈ H, compute ri = −si + cis0 + dir0 for i = 1, . . . , N − 1. Define
σ =

∑N−1
i=1 (si + ri) and let γ be the smallest integer > 1 coprime to τ , then compute

sN = γ−1(dNr0 + cNs0 + σ − a) and rN = −sN + cNs0 + dNr0. Set

H′
1 = {({s0, . . . , sN}, Q) | (a,Q) ∈ H} , H′

2 = {({r0, . . . , rN}, Q) | (a,Q) ∈ H} .

Del: Delegate (EK ;HK
0 ∪H′K

1 ;BK)← U1(E,K;H0 ∪H′
1; b) and

(E′
K ;H′K

0 ∪H′K
2 ;B′K)← U2(E,K;H0 ∪H′

2; b).

Ver: Verify, if EK
?
= E′

K ,HK
0

?
= H′K

0 , BK ?
= B′K , and if (siQ)K+(riQ)K

?
= ci(s0Q)K+di(r0Q)K ,

for i = 1, . . . , N .
Out: If any of the verifications fail, return ⊥, otherwise return (EK ;HK

0 ,HK ;BK), where

HK =

{
rNQK − (γ − 1)sNQK +

N−1∑
i=1

(siQ
K + riQ

K)
∣∣∣(a,Q) ∈ H

}
.

Fig. 2. Implementation of Iso in the OMTUP assumption

The parameter t. In some cases, the parameter t does not only influence the
verifiability and cost of the underlying system, but also its security. Related
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attacks become unfeasible, if the size of t reflects the security of the underlying
cryptosystem against both classical and quantum attackers, i.e. in general we
need to ensure that guessing all c1, . . . , cN correctly is at least as hard as some
targeted security level 2λ, i.e. (N + 1)2Nt ≈ 2λ or t ≈ λ

N . In this case, using
equation (4), the protocol cost per hidden point becomes

µ−1TOMTUP(µ, λ/N) = (4N + 3)m+
2λ

N
(D+ A) +

(
2N+1 −N − 3

)
A .

In Section 5, we minimize this cost with respect to N for specific choices of λ.
Note that choosing tN = λ further implies a verifiability of 1 − O(2−λ), which
is very close to 1 for a cryptographically sized λ.

4 Shrouding isogenies

We aim to hide the kernel generator A ∈ E[τA] via the isogenies generated by a
coprime torsion group E[τI ] with τI ≈ τA. The idea is to go from E to EA via

the path E
κ−→ EK

α−→ EAK
κ̂′

−→ EA, where κ̂′ is the dual of κ pushed through
α. The path is depicted in Figure 3. The point A (or the isogeny α) is hidden
via the isogeny AK = κ(A), since the knowledge of [AK ] does not give any infor-
mation about [A] by the DPP-assumption (Problem 3). Note that our approach
necessarily has to take at least three steps, since any linear combination of A
with elements from E[τI ] (i.e. any “shortcut”) would always reveal information
about A by mapping out the τI -torsion elements. Similarly, any shorter isogeny,
smaller than the length of τA ≈ τI , would reduce the security of the system.

E EK

EA EAK

κ

α α′

κ̂

κ′

κ̂′

kerα = ⟨A⟩ kerα′ = ⟨AK⟩

kerκ = ⟨K⟩ kerκ′ = ⟨KA⟩

ker κ̂ = ⟨K̂K⟩ ker κ̂′ = ⟨K̂AK⟩

Fig. 3. Detour from E → EA via EK and EAK and the associated kernel generators.
The point K̂ is any point of full order in E[τI ]\⟨K⟩.

Another important aspect is that any server that has computed the delegation
in Step 2 should not see any information of the delegation performed in Steps
1 or 3 (and vice versa), since the knowledge of K (or K̂AK) and AK can be
used to recover A. We therefore in general need to work with at multiple sets of
servers, each being composed of one or more servers according to the underlying
server assumptions (e.g. HBC, OMTUP). We denote these sets as U1,U2,U3,
for delegation steps 1, 2 and 3. Under certain conditions, we can chooseU1 = U3,
which we will discuss further below, as well as in Appendix C.3. We also note,
that in the OMTUP case, the malicious servers within these sets might try
to exchange their knowledge about the kernel generators indirectly, which also
needs to be addressed in our algorithm.
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Definition 5 (The IsoDetour-algorithm). The isogeny detour delegation al-
gorithm IsoDetour takes as inputs a supersingular elliptic curve E/Fp2 , a kernel
generator A = PA + aQA where ⟨PA, QA⟩ = E[τA], two scalar-point pair sets
H0,H ⊂ Z × E\(E[τA] ∪ E[τI ]), and a torsion-group indicator I. It then com-
putes the isogeny ϕ : E → EA as ϕ = κ′ ◦ α′ ◦ κ via the kernels kerκ = ⟨K⟩,
kerα′ = ⟨AK⟩ and kerκ′ = ⟨K̂AK⟩, where K, K̂ ∈ E[τI ], both of full order
and such that ⟨K̂⟩ ̸= ⟨K⟩. IsoDetour then produces the output (EA;HA

0 ,HA).
The inputs E,H0 are honest, unprotected parameters. A is secret, or (hon-
est/adversarial) protected and H contains honest, unprotected points and secret
or (honest/adversarial) protected scalars. The outputs EA and HA

0 are unpro-
tected while HA is secret or protected. We write

(EA;HA
0 ,HA)← IsoDetour(E,A, I;H0,H).

In Figure 4, we present the IsoDetour-Algorithm, that uses the commutative
diagram from Figure 3 in order to delegate α via a detour over the curves EK

and EAK . We assume that the generators ⟨PI , QI⟩ = E[τI ] are known.
IsoDetour proceeds as follows: First, the isogeny κ is delegated to U1 and

the point A is pushed through, hidden from the servers. The servers are also
prompted to return a basis RK , SK ∈ EK , such that RK + kSK = PK ∈ ker κ̂.
These points will later be used to compute the “return” isogeny κ̂′. The point AK

is then used as the kernel generator for α′, computed by U2, with RK , SK are
pushed through. Finally, the delegator constructs the kernel generator RAK +
kSAK of κ̂′ for the third delegation by U3. For any other scalar-point pair, that
we want to push through, the general idea is to extract the (unprotected) points
in H0 and H and simply push them through the first two rounds of delegation;
the desired multiplication with hidden scalars needs to be done in the third
round only. Note that since these points are pushed through κ and later through
κ̂′, the result will be multiplied by a factor deg κ = deg κ̂′ = τI . Thus, we need
to multiply the related scalars with τ−1

I , in order to compensate for this.

Mapping points. Note that since κ̂′ is represents the dual isogeny of κ pushed
through α′, any points mapped via the detour path will necessarily by multiplied
by τI . This is corrected in step 4 by multiplying these points with the inverse
of τI . Note that this multiplication is only defined for points in torsion groups
of order coprime to τI ,

4 thus not for points in E[τI ]. An important aspect of
SIDH and related protocols (such as SIKE [2,40] and the PKE from [29]) is that
there are two large torsion groups E[τA], E[τB ] with generators PA, QA and
PB , QB , respectively. Each party chooses a torsion group, in which it computes
its isogeny. Then it transports the generators of the other torsion group via its
isogeny to the codomain curve in order to create their public key, e.g. the public
key of Alice is (EA, P

A
B , QA

B). These point maps turn out to be a problem for the
IsoDetour-algorithm, since any point in E[τB ] will map to O on EA, and we are
not able to map PB , QB along this path. We present two ways to circumvent this

4 We assume τ−1
I to be known with respect any other torsion group.
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IsoDetour(E,A, I;H0,H)

1. Generate random k ∈ Z∗
τI and let H′

0 = {Q | (a,Q) ∈ H0 ∪H}.
2. Delegate to server (group) U1 (in the OMTUP case, choose tN ≥ λ)

(EK ;H′K
0 ∪ {PK

A }, {aQK
A }; {RK , SK})← Iso(E, {PI , (k,QI)};H′

0 ∪ {PA}, {(a,QA)}; 1).

and compute AK = PK
A + aQK

A .
3. Delegate to server (group) U2 (in the OMTUP case, choose tN ≥ λ)

(EAK ; {RAK} ∪ H′AK
0 , {kSAK}; ∅)← Iso(EK , {AK}; {RK} ∪ H′K

0 , {(k, SK)}; 0).

4. From H′AK
0 , build H′′AK

(0) = {(aτ−1
I , QAK) | (a,Q) ∈ H(0)}. Then, compute the kernel

K̂AK = RAK + kSAK .
5. Delegate (EA;HA

0 ,HA; ∅)← Iso(EAK , {K̂AK};H′′AK
0 ,H′′AK ; 0) to server (group) U1.

6. Return (EA;HA
0 ,HA).

Fig. 4. Implementation of the IsoDetour algorithm given in Definition 5 using the Iso
algorithm from Definition 4 as a subroutine.

problem below. We also note that due to the security constraints of IsoDetour,
we also cannot map points in E[τA] to EA. Fortunately, this is not necessary for
the cryptographic protocols analyzed in this work.

More torsion groups. Assuming the protocol has more torsion groups than two,
we can easily transport Bob’s kernel generators PB , QB ∈ E[τB ] by doing a
detour via isogenies defined over a third torsion group I ̸= A,B. More generally,
let p =

∏n
i=1 τi ∓ 1 with n > 2, then Alice can delegate the computation of her

public key (EA, P
A
B , QA

B) as

(EA; {PB , QB}A, ∅)← IsoDetour(E,A, I; {PB , QB}, ∅) .

Working with twists. If we are working with a prime of the form p± 1 = fτAτB ,
i.e. we only have two torsion groups at our disposal on E, we can use twists to
generate “new” torsion groups [14] on Et. Assuming the prime decomposition
p∓ 1 = DτS , with τS ≈ τA smooth and D a co-factor, we have another torsion
group on the “backside” of our elliptic curve, Et[τS ]. We can simply delegate
the public key computation via

(EA; {PB , QB}A, ∅)← IsoDetour(E,A, S; {PB , QB}, ∅),

by running over the twists E ≃ Et → Et
K → Et

AK → Et
A ≃ EA. For efficiency

reasons, τS has to be smooth. There are not many primes p such that p± 1 and
τS | p∓1 are smooth. We call primes of this type delegation-friendly primes and
generalize them in the following definition. We present an approach to generate
such primes in Appendix B.4.

Definition 6 (Delegation-friendly primes). An n-delegation-friendly prime
(DFP) is a prime p with n smooth factors

∏n
i=1 τi | p±1 and at least one smooth

factor τS | p∓ 1, such that τi ≈ τS for all i.
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We discuss under which conditions we can choose U1 = U3. An important con-
sequence of using multiple torsion groups or delegation-friendly primes are the
susceptibility to torsion-attacks as described in [37,38]. The security of such a
delegation depends strongly on the points revealed on EK and EAK , which in
turn reveal the action of α′ on these subgroups. As an example, consider stan-
dard SIDH with a DFP, i.e. where we have p ± 1 = fτAτB and p ∓ 1 = τSD.
Using IsoDetour in order to compute a public key reveals the action of α′ on
E[τB ] and E[τS ], which would allow a quadratic speedup of the isogeny recovery
attack by [38, Prop. 25 and Prop.27]. In this case, we would need three sets of
servers in order to not allow this attack. Taking the non-DFP p± 1 = fτAτBτI
instead, results in a slightly less than quadratic speedup, but in more expensive
arithmetic. While small speedups might in some situations not pose a problem,
we will discuss in Section 5 and Appendix C.3 under which conditions these
occur. Note that this does not make our schemes insecure, as we simply point
out, under which conditions two server groups can be used instead of three. In
the case of three different server sets, these attacks do not apply.

Choosing t. We point out the issues outlined in Remark 2.4 of [27], which in
short states that “the adversarial, unprotected input must be empty”. In Fig-
ure 4, the kernel generators AK and K̂AK actually do constitute adversarial
unprotected inputs, and might allow the malicious server in U1 to communi-
cate information about K to U2, revealing information about A. To mitigate
this threat, T can increase the parameter t so far to make this attack at least
as hard as breaking the underlying cryptosystem. As discussed in Section 3.2,
choosing tN ≥ λ guarantees that the unprotected inputs are actually honest
up to a negligible probability. Note that if such points do not constitute adver-
sarial unprotected inputs, t and N will only influence the cost and verifiability
of the protocol. There is no advantage in choosing N different from 1 in this case.

Outsource-security of IsoDetour. In Appendix C, we derive the costs

THBC
IsoDet(µ, τA) = (µ+ 2)S(τA) + 2A ,

TOMTUP
IsoDet (µ, t) = (8N + 6 + 5µ)m+

(
4λ

N
+ 2tµ

)
M+

(
2N+2 − 2N − 3 + µ

)
A .

for the delegator and prove the following theorems.

Theorem 3. Under the honest-but-curious assumption, the outsourcing algo-

rithm (T ,U) given in Figure 4 is an
(
O
(

1
log log τ

)
, 1
)
-outsource secure imple-

mentation of IsoDetour, where τ is the smooth degree of the delegated isogeny.

Theorem 4. Under the OMTUP assumption, the outsourcing algorithm

(T , (U1,U2)) given in Figure 4 is an
(
O
(

λ
log τ log log τ

)
, 1− 1

2t+1

)
-outsource se-

cure implementation of IsoDetour, where τ is the smooth degree of the delegated
isogeny and λ a security parameter. If H = ∅, then IsoDetour is fully verifiable.
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Hiding the kernel generator. A first attempt of hiding the kernel generator of
a delegated isogeny was presented with the HIso algorithm of [36]. In Appendix
B.2, we show that this scheme is not secure and that the secret can be recovered
using pairings. In Appendix B.3, we discuss how this is possible using the ap-
proach presented in this section. Unfortunately, it turns out to be too expensive
for realistic scenarios. In protocols that need a hidden codomain, we therefore
assume that the delegator computes them locally.

5 Delegation of isogeny-based protocols

We apply our proposed delegation subroutines to some of the cryptographic
protocols based on supersingular isogenies over Fp2 . In order to assess the com-
putational and communication costs, we will use the 2e2-torsion groups of the
standardized SIKE primes from [30].5 To maximize efficiency, we implement the
HBC case on Montgomery curves on the Kummer line, while we need a group
structure to implement point hiding under the OMTUP-assumption, hence we
will use twisted Edwards curves in this case (see Remark 5). The efficient trans-
formations between these curves allow seamless integration of our delegation
schemes into typically Montgomery-curve based protocols. We assume local com-
putations to always be performed in optimized Montgomery arithmetic.

In the following subsections, we compare the delegated runtimes to the local
(non-delegated) cost of some cryptographic protocols. We express our results
in terms of the cost reduction function α introduced in Definition 1. To avoid
adversarial inputs in the OMTUP-assumption, we use λ = e2/2, which reflects
the classical security of the underlying protocols. The optimal value of N for all
SIKE primes is N = 4 (also considering communication costs).

We present our results using the theoretical runtimes established through-
out this work and compare them to benchmarks illustrating the runtimes of the
delegator under both the HBC- and OMTUP-assumptions.6 The benchmarks
were implemented using Magma v2.25-6 on an Intel(R) Xeon(R) CPU E5-2630
v2 @ 2.60GHz with 128 GB memory. Our implementation uses parts of the Mi-
crosoft(R) vOW4SIKE implementation from [13].7 The necessary communication
costs can be found in Appendix D.

For the sake of conciseness, we assume that the protocols in this section are
known. While we briefly review the protocol steps in order to assess the local
computation cost, we refer the reader to the original sources for more details.

Remark 1 (Free Delegation). Note that we can freely delegate any protocol that
does not need hiding, i.e. where the kernel is unprotected and µ = 0. Verification
of the server outputs then reduce to simple comparison operations under the

5 p434 = 22163137 − 1, p503 = 22503159 − 1, p610 = 23053192 − 1, p751 = 23723239 − 1.
6 Our implementation can be found at https://github.com/KULeuven-COSIC/

SIDHdelegation and includes benchmarks for the delegator’s operations as well as
a proof-of-concept implementation for the correctness of our algorithms.

7 https://github.com/microsoft/vOW4SIKE
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OMTUP-assumption. Some examples of such schemes are isogeny-based hash
functions [11,23] with unprotected messages or verifiable delay functions [22].

5.1 Key-agreement protocols

We consider the key agreement protocols from [3,24], which are n-party exten-
sions to SIDH [20]. In this scenario, we have p + 1 =

∏n
i=1 ℓ

ei
i for n parties.

Each party Pi is assigned a subgroup ⟨Pi, Qi⟩ = E[ℓeii ] and has a secret key
ai ∈ Zℓ

ei
i
, defining Ai = Pi + aiQi as the kernel of ϕi : E → Ei = E/⟨Ai⟩, while

the corresponding public key is (Ei, P
i
1, Q

i
1, . . . , P

i
n, Q

i
n) for party i. While we

consider the n-party case in order to stay general, we point out that n-party key
agreement protocols have to be used with caution, as torsion point attacks can
be quite effective in these settings. In particular, [38] presents improved attacks
for n > 2 and a polynomial-time break for n ≥ 6.

Public key generation step. Let Alice be P1. If n > 2, Alice can delegate her
public key computation using IsoDetour twice, along two paths I1 ̸= I2:

(EA1 ;N
A1
1 , ∅)← IsoDetour(E,A1, I1;N1, ∅),

(EA1 ;N
A1
2 , ∅)← IsoDetour(E,A1, I2;N2, ∅),

whereN1∪N2 = {(Pi, Qi)}i∈{2,...,n}, the set of all other torsion group generators
on E, such that N1 ∩N2 = ∅ and (PI1 , QI1) ∈ N2 and (PI2 , QI2) ∈ N1. By using
alternating server groups U1 and U2 as indicated in Figure 5, and by carefully
choosing N1 and N2, we can assure that the servers get as little information as
possible about the action of the isogenies α′

1 and α′
2 on the torsion groups, so

that we only need two server groups for delegation.8

EL E EK

EAL EA EAK

U2 α′
1

U2U1

U1α′
2

U1 U2

Fig. 5. Alice’s concept of delegating the computation of her public key via two detours
using two server groups U1 and U2. L and K are from different torsion groups.

With an n-DFP, this step can be delegated with a single instance of IsoDetour
using the smooth torsion group on the twist side. This case needs three server
groups. Let d ∈ {0, 1} distinguish, if we have an n-DFP (d = 1) or not (d = 0) at
our disposal. The cost reduction for public-key delegation can then be expressed

8 For example, we could simply split up generators Pi, Qi into both sets for all i.
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as

αPubKey,n(d, τA) =
(2− d)TIsoDet(0, τA)

I(τA, 3(n− 1)) + S(τA) + A
.

Figure 6 compares our theoretical estimates with the benchmarked results for
n = 2, used in most cryptographic protocols. In this case, a delegation-friendly
prime is necessary. The communication costs are summarized in Table 1.
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Fig. 6. Theoretical and benchmarked cost reduction function for delegating public-key
computations of 2-party protocols in the HBC and OMTUP assumptions. The discrep-
ancy between theoretical and benchmarked cost reduction is mainly due to the compu-
tational overhead of local isogeny computations. The overhead becomes less important
for higher degree isogenies, since the cost of isogeny computation itself increases. We
also see that the gain for the delegator increases with the security level.

Intermediate steps. If n > 2, Alice performs n − 2 intermediate steps k ∈
{2, . . . , n−1}, in which she has to compute (Ek′ ,N k′

) from (Ek,N k∪{(P k
A, Q

k
A)}),

where Ek′ = Ek/⟨P k
A+a1Q

k
A⟩ and N k(′)

= {(P k(′)

i , Qk(′)

i )}i∈{k+1,...,n}. Note that

in this scenario, it is cheaper to compute Ak
1 locally and delegate

(Ek′ ;N k′
, ∅)← Iso(Ek, {Ak

1};N k, ∅) ,

than using IsoDetour. Note again that Ak
1 does not reveal any information about

A1 because of the difficulty of solving the Decisional Point Preimage Problem 3.

Final step. Alice’s final step is the computation of the shared secret. As dis-
cussed in Sections 4 and B.3, this step needs to be computed locally. It involves
the computation of the kernel generator and then of the final isogeny.

Cost. We establish the total cost of an n-party key agreement protocol. Let
d ∈ {0, 1} again distinguish if we have a delegation-friendly prime (d = 1) or not
(d = 0) at our disposal. The public-key is computed using 2 − d invocations of
IsoDetour with µ = 0. The n − 2 intermediate computations can then each be
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delegated using Iso with µ = 0. The final step is then computed locally at the
cost of S(τA) + A + I(τA, 0). Since after the public-key computation, Alice does
not need to hide any points in either of the steps, she can simply perform all
of these computations on Montgomery curves, reducing her computational and
communication cost. We find the total cost of

TnPDH(d, τA) = (2− d)TIsoDet(0) + (n− 1)(S(τA) + A) + I(τA, 0) ,

under both the HBC and OMTUP assumptions.9 In the local version of the
protocol, Alice has to transport 2(n − k) points in round k, and compute the
map of A given her generators on each curve except the first. We find

αnPDH(d, τA) =
(2− d)TIsoDetour(0) + (n− 1)(S(τA) + A) + I(τA, 0)

n(I(τA, n− 1) + S(τA) + A)
.

Figure 7 shows the evolution of the cost reduction for p434 in terms of n for the
cases with and without delegation-friendly primes and compares our theoretical
estimates and benchmarks for the 2-party case (d = 1). Table 1 summarizes the
communication costs for different n.
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n-party SIDH

Fig. 7. Theoretical cost reduction for delegating n-party key agreement protocols for
p434 for different n with and without a delegation-friendly prime. The case n = 2
further includes benchmarks.

Remark 2. Note that the computational and communication cost established
throughout this section also apply to the delegation of isogeny-based public-key
encryption [20] and key encapsulation [40] as the steps of these protocols are the
same (up to some negligible computations) as (2-party) SIDH.

5.2 Identification protocols and signatures

In this section, we establish the costs of identification protocols and signature
schemes. We assume the public key (EA, P

A
B , QA

B) to be precomputed as it is

9 TIsoDet(0) denotes a placeholder for either THBC
IsoDet(µ = 0, τA) or TOMTUP

IsoDet (µ = 0, t) of
Section 4 depending on the underlying assumption.
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directly related to the identity of the prover.

Zero-knowledge proof of identity.We show how the ZKPI-protocol from [20]
can be delegated. In every round of the protocol, the prover needs to compute
the isogenies β : E → EB , β

′ : EA → EAB and the map AB of the prover’s
secret. This can be done by delegating

(EB ;P
B
A , aQB

A)← Iso(E, {PB , (b,QB)}; {PA}, {(a,QA)}) ,

(EAB ; ∅, ∅)← Iso(EA, {PA
B , (b,QA

B)}; ∅, ∅).

Depending on the challenge, the response is either b or AB = PB
A + aQB

A for
c = 0, 1, respectively. If c = 0, the verifier delegates

(EB ; ∅, ∅)← Iso(E; {PB , (b,QB)}; ∅, ∅) , (EAB ; ∅, ∅)← Iso(EA; {PA
B , (b,QA

B)}, ∅, ∅),

otherwise (EAB ; ∅, ∅)← Iso(EB , {AB}; ∅, ∅).

Signature schemes. The delegation procedure of the signature schemes in [25]
based on this identification scheme is completely analogous, i.e. for each of the
commitments, the prover and/or verifier proceed exactly as in the identification
protocol. The delegator further needs to compute hash-functions, but we assume
that these have negligible cost (or are delegated with other schemes).

Remark 3. We note that an alternative ID protocol to [20] has recently been
proposed in [19]. This scheme is quite similar, except that an EB [τA] basis needs
to be deterministically generated using an algorithm called CanonicalBasis. We
can delegate this newer scheme in exactly the same fashion as the one presented
here, except that we have to add the execution of CanonicalBasis to the adver-
tised server functionality. Since the algorithm is deterministic, we only have to
compare the output of both servers in the OMTUP assumption, in order to ver-
ify that the output is correct. Note that the download communication cost is
increased by these extra points.

Cost. Following the discussion from Section 3.2, since AB might be used as an
unprotected input by the verifier, we have to choose tN ≥ λ, so the cost for the
prover becomes TOMTUP(1, N/λ) in the OMTUP and THBC(1, τA) in the HBC
assumption. For both cases, we get the cost reduction functions

αZKPI.P(τB) =
T (1)

2(S(τB) + A) + I(τB , 1) + I(τB , 0)
, αZKPI.V = O(1) .

Figure 8 shows theoretical estimates and benchmarked results for ZKPI-delegation
by the prover. We summarize the communication costs in Table 2.

6 Conclusion and future work

In this work, we presented two outsource-secure delegation schemes, Iso and
IsoDetour, under the one honest-but-curious (HBC) and one-malicious version
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Fig. 8. Theoretical and benchmarked cost reduction function of the prover delegating
zero-knowledge proofs of identity in the HBC and OMTUP assumptions. The theo-
retical predictions again underestimate the cost reduction via delegation, due to the
overhead in isogeny computations. The discrepancy is higher this time higher than in
Figure 6 due to the much lower cost for the delegator. Again, the gain increases with
higher security.

of a two untrusted program (OMTUP) models of [27]. Our delegation algorithms
can be used as a toolbox to delegate common isogeny-based cryptographic proto-
cols in a secure and verifiable manner. Our approach reduces the cost of the zero-
knowledge proof of identity from [29] as well as the related signature schemes
from [25] to about 11% of the original cost in the HBC case and 6% in the
OMTUP case. While the cost of n-party key-exchange delegation strongly de-
creases with increasing n, the case n = 2 only reaches a reduction to about 65%
of the original cost. It is of substantial interest to further reduce this number
in order to make e.g. the standardization candidate SIKE efficiently delegat-
able. While we were able to reduce the public-key generation step in the SIDH
setting to about 35% and 20% of the original cost in the HBC and OMTUP
cases, respectively, the main open question in these protocols remains how to
efficiently delegate the computation of an isogeny where both the kernel and
codomain curve are hidden from the servers. We leave it open to apply the pro-
posed delegation algorithms to other interesting isogeny-based schemes over Fp2 .
We further note that any protocol that does not need hiding of data is virtually
free to delegate. Examples include hashing functions with unprotected messages
[11,23] and the verifiable delay function proposed in [22].

We generally find, that while HBC has a much cheaper communication cost
and is fully verifiable, our OMTUP implementations result in lower computa-
tional cost for the delegator. Further, in all the schemes of Section 5, OMTUP
has a very high verifiability, close to 1. It would be interesting to see, if other
server assumptions are possible in the isogeny framework, especially using only
malicious servers, such as the two-untrusted program (TUP) or one-untrusted
program (OUP) models introduced in [27].

For future work, it is also of interest to construct delegation algorithms for
other isogeny-based schemes, such as CSIDH [10] and CSI-FiSh [7] over Fp, or
the endomorphism ring based signature protocol of [25] as well as SQI-Sign [21].
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A Isogeny computation cost

We establish equation (2). Since τ =
∏n

i=1 ℓ
ei
i is smooth, we can approximate

the cost of a τ -isogeny as the sum of the costs of individual ℓeii -isogenies. These
in turn are computed using the computation strategy described in [20]. For a
given kernel generator R ∈ E[ℓe], the goal is to compute ϕ : E → ER using the
set of intermediate kernel generators ℓe−i−1Ri ∈ Ei[ℓ] for i = 0, . . . , e− 1, where
Ri+1 = ϕi(Ri) and ϕi : Ei → Ei/⟨ℓe−i−1Ri⟩. In the end, ϕ = ϕe−1 ◦ · · · ◦ ϕ0 :
E → ER. A simple and close to optimal strategy is to perform the same amount
of scalar multiplications by ℓ and ℓ-isogeny maps of Ri, while trying to minimize
both. In [20], this is referred to as the balanced scenario, and either operation
has to be performed e

2 log2 e times. We refer to the cost of the former as Sℓ and
the latter as Pℓ, both depending on ℓ. Furthermore, we have to construct exactly
e codomain curves E1, . . . , Ee for the cost Cℓ. If we also push through additional
points, we need to do this once for each curve, thus e times, also at the cost of
Pℓ. We find the cost of an ℓe-isogeny to be

I(ℓe, µ) = (Pℓ + Sℓ)
e

2
log2 e+ (Cℓ + µPl)e . (5)

Note that we omit the cost of kernel generation as we will consider that sep-
arately. Computing a τ -isogeny, where τ =

∏n
i=1 ℓ

ei
i amounts to n consecutive

ℓi-isogenies for i = 1, . . . , n. We also push through the generators of each of these
torsion groups, which amounts to evaluating each ℓeii -isogeny n − i more times
for i = 1, . . . , n− 1. Finally, we find the cost of a τ -isogeny from equation (2):

I(τ, µ) =
n∑

i=1

[
(Pℓi + Sℓi)

ei
2
log2 ei + (Ci + µPi)ei

]
+

n−1∑
i=1

Pℓiei(n− i) .
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B Further discussions

B.1 Difference to delegation of modular exponentiations

We want to point out a few key differences of isogeny delegation schemes to
those of modular exponentiation as in [12,27,31]. First of all, in contrast to
modular exponentiations, the domain and codomain of isogenies are different
(except in the trivial case where K = ∅), and more importantly, these are a
priori unknown to the delegator. This means that the delegator not only has
to verify if the codomain is correct, but also can not generate points on the
codomain before the delegation step is completed. This also means that lookup-
tables with points in the domain and codomain curves are not possible, hence the
delegator can compute the final result only from linear combinations of elements
the server(s) returned. Another circumstance of isogenies is that elliptic curves
can not be combined in an easy way without computing isogenies, which means
that combinations, such as (A,EA) ◦ (B,EB) = ((A,B), EAB) are not available
to the delegator.

Now we turn our attention to what the delegator actually can do. One of
the most important properties of isogenies in this context is that they are group
homomorphisms. This means that linear combinations of points on the domain
curve still hold on the codomain curve and can therefore be used to shroud and
verify points, as Iso does. In order to verify the codomain curve, there seems to
be no efficient way except for including at least one honest server, which will
consistently return the correct curve and verify the malicious servers’ results
against it. The honest server is also necessary to verify if mapped points are
correct. If none of the servers were honest, all points could be scaled by some
previously determined factors, returning wrong results, which would still satisfy
the verification conditions.

B.2 Breaking HIso from [36]

The concept of the HIso-algorithm from [36] was to delegate part of the way
from e.g. E to E/⟨A⟩ for a secret A ∈ E[ℓe], by letting the server compute
a smaller isogeny in the same torsion group, E → E/⟨ℓkA⟩ for k = 1

3 logl p,
then computing the rest of the way locally. From Ak = ℓkA = ℓka1P + ℓka2Q,
however, the server can then extract an element from [A] as follows: Decompose
x = λτ ′, such that τ ′|τ and gcd(λ, τ) = 1. The attacker can easily compute the
order τ/τ ′ of xA and extract τ ′. It then defines P ′ = τ ′P and Q′ = τ ′Q and
computes e(P ′, Q′) and

e(xA,Q′) = e(P ′, Q′)λa1 and e(P ′, xA) = e(P ′, Q′)λa2 .

From these equations, the attacker can extract λa1 and λa2 using the polynomial-
time Pohlig-Hellman algorithm for smooth order groups. Using this, the attacker
can construct λa1P + λa2Q ∈ [A], hence the scheme in [36] does not satisfy the
desired security.
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B.3 Hiding the codomain with IsoDetour

Note that in some cryptographic protocols, the codomain (e.g. EA) needs to be
hidden as well. As noted in [36], the delegator needs to compute the final part
of the isogeny to EA itself, otherwise there seems to be no efficient way to hide
its result from the servers. Furthermore, the size of this final isogeny would need
to be at least τ ′ ≈ τ2/3 in order to yield security against a database search for
EA [36]. In this way, we can at most have a cost reduction of I(τ2/3, n)/I(τ, n),
which is at least 0.6 for cryptographically sized τ .

Since the approach to HIso of [36] was broken in Section B.2, an alternative
approach using the tools developed throughout this work would need a diagram
as depicted in Figure 9, i.e. a detour via four elliptic curves using two server sets
to get EA, where T computes the last isogeny.

E EK ERK

EA EAK EARK

κ

α

ρ

α′

κ̂′ ρ̂′

Fig. 9. An approach to hiding the codomain curve EA via the path E → EK → ERK →
EARK → EAK → EA. The final isogeny, κ̂′ needs to be computed by the delegator
itself.

Unfortunately, with the cost of the delegation schemes themselves we get
α > 85%. With four rounds of delegation, this approach seems unsuitable for
realistic scenarios. In protocols that need a hidden codomain, we therefore as-
sume that the delegator will need to compute them locally, for lack of a better
alternative.

B.4 Delegation-friendly primes

Let τA = 2e2 and τB = 3e3 as in the SIDH setting. In order to find a 2-delegation-
friendly prime (Definition 6) in this setting, we use the approach presented in
[14], which uses the extended Euclidean algorithm. We first choose a ← 2e23e3

and b ←
∏n

i ℓ
ei
i ≈

√
a coprime to a, where the ℓi are small primes bound by a

fixed n. We then search for s, t ∈ Z, such that sa + tb = 1 with |s| small, and
where |sa− tb| = p is prime (for more details, cf. [14]). If this is the case, then

p+ 1 = 2|s|a = 2e2+13e3 |s| , and

p− 1 = 2|t|b = 2|t|
∏
i

ℓeii ,

and we can set τA = 2e2+1, τB = 3e3 and τS =
∏

i ℓ
ei
i
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An example prime we found using this method, and representing the NIST-1
security level is the following:

p = 0x48126f2641dabaf550b925fcc833262eb7c974c962aad6bf6565db634622

56b3468e522f111e85e2c416a82c0c5739c81af4c650000000000000000000

000000000000000000000000000000000001

which has τA = 2220, τB = 3147 and s ≈ 2177, and

τS = 17 · 29 · 41 · 47 · 53 · 59 · 61 · 67 · 79 · 1033 · 109 · 113 · 139 · 1572 · 163 · 1992

· 2292 · 2572 · 311 · 331 · 359 · 401 · 457 · 467 .

Remark 4. We would like to point out the differences to the special primes intro-
duced in [14] and also used in [21]. While conceptually related, these primes are
defined as having two smooth torsion groups, one on each “side” of the twists,
i.e. there exist smooth τA, τS , such that τA | p ± 1 and τS | p ∓ 1. 2-delegation-
friendly primes on the other hand require two smooth torsion groups τA, τB on
the “frontside” and at least one smooth torsion group τS on the “backside”.

It is left open, if there is a more efficient way to find DFPs than the methods
introduced in [14], or, more generally, if there is a way around using DFPs in
the 2-party case.

C Proof of outsource-security theorems

C.1 Proof of Theorem 1

Correctness. Correctness is given by the homomorphism property of isogenies.

Cost. We define µ0 = #H0 and µ = #H. For every point in H, we have to
compute one scalar multiplication at the cost of S(τA), for Q ∈ E[τA]. Assuming
the different torsion groups have approximately the same size (which will always
be the case in our delegation schemes), we find THBC(µ, τA) = µS(τA). The local
computation, assuming K ∈ E[τK ] and τK =

∑
i ℓ

ei
i on the other hand would

amount to I(τK , µ0 + µ), so that we find

αHBC(µ0, µ, τA, τK) =
µS(τA)

I(τK , µ0 + µ)
=

µ(M⌈log2 τA⌉ − A)∑
i(Iℓi + Sℓi + (µ0 + µ)Pℓi)

ei
2 log2 ei

Assuming µ small and τA ≈ τK ,10 we find

αHBC(µ0, µ, τA, τK) = O

(
log τA

log τK log log τK

)
= O

(
1

log log τK

)
10 Note that we can easily assume S(τA) ≈ S(τK) for τA ≈ τK . On the other hand,

this approximation does not in general hold for I(τA, n) and I(τK , n), so that we
substitute τA → τK in our formula and not the other way around.
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Security. Neither U nor E can gain any information about the hidden parameters
a, due to the fact that they are never disclosed in any form. In every round, the
simulators S1 and S2 simply proceed as in the real execution of the protocol.
Therefore EVIEWreal ∼ EVIEW ideal and UVIEWreal ∼ UVIEW ideal.

C.2 Proof of Theorem 2

Correctness. The elements EK ,HK
0 and BK are correct due to the direct com-

parison between the servers (one of which is honest). Concerning HK , since for
i = 1, . . . , N , we have ri = −si+ cis0+dir0, the verification conditions hold due
to the homomorphism property of isogenies. At the end, the delegator returns
for each (a,Q) ∈ H

rNQK−(γ − 1)sNQK +

N−1∑
i=1

(siQ
K + riQ

K)

= ((rN + sN )− γsn + σ)QK

= ((cNs0 + dNr0)− γγ−1(cNs0 + dNr0 + σ − a) + σ)QK

= aQK .

Verifiability. The malicious server can not successfully return wrong EK ,HK
0

and BK , since the delegator compares it to the honest server’s result. Yet, the
malicious server could try to cheat on the point maps in H. The only options
are points that still satisfy all the verification conditions. Assume without loss
of generality that U1 is the malicious server and wants to return a wrong s1Q

K

by shifting it with another point X1, i.e. it returns s1Q
K +X1 instead. In order

for the according verification condition to still hold, the server will also have to
shift S = s0Q

K by some point Y . Thus, in order for the verification condition
to still hold, the malicious server has to guarantee that

s1Q
K +X1 − c1(s0Q

K + Y ) = s1Q
K − c1s0Q

K , implying X1 − c1Y = 0.

Since the server does not know c1 it has to guess it, which it only can do with
a probability of at most 2−t. Furthermore, by shifting S by Y , all the other
verification conditions have to be rectified as well, i.e. Xi − ciY = 0 for all
i = 1, . . . , N . In order to be successful, the malicious server is thus required to
solve the linear system 1 −c1

. . .
...

1 −cN

 ,

which can only be done by guessing all c1, . . . , cN correctly. As a final challenge,
the server also has to identify which of the (at least) N + 1 scalars given to it
corresponds to s0. Hence, the probability of a malicious server succeeding with
this attack for Q ∈ E[τA] is thus bounded by (N + 1)−12−Nt.
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Cost. We again define µ0 = #H0 and µ = #H. Since the points in H are
shrouded independently, we derive the delegator’s cost per point in H. In the
shrouding step, the delegator has to compute 2m per ri and another 3m for sN ,
thus 2Nm+3m, assuming γ−1 is known on the underlying field. In the verification
step, the delegator has to compute 2NA as well as 2N scalar multiplications. In
order to compare the points on both sides of the verification equation, we need
to scale them to the same Z-value. This can be achieved by multiplying each
side with the opposing Z coordinate for a total cost of 2Nm.

Finally in the output step the delegator, already knowing the terms siQ
K +

riQ
K for i = 1, . . . , N − 1 from the verification step, is left to compute NA +

S(γ − 1). In the cryptosystems used throughout this work, γ ∈ {2, 3}, so that
the cost of the verification step is bound by (N + 1)A.

Naively, the scalar multiplications in the verification step would cost 2NS(2t),
but we can easily decrease this by realizing that all of the scalar multiplications,
which the delegator has to perform, are multiples of the same two points, i.e.
s0Q

K and r0Q
K . Thus we need to perform the doubling part of the double-and-

add algorithm only once per point. We can even go further and reduce the total
addition part for the different N by grouping the repeating patterns.

To this end, assume we want to compute the multiplications c1Q, . . . , cNQ
for the scalars ci = (ci,0 . . . ci,t−1)2 and for any point Q. We first ignore the
sign of the ci and define the sets Ci = {j | ci,j = 1} and the index power set
S = P({1, . . . , N}), excluding the empty set. For each k ∈ S, let

Ak =

(⋂
i∈k

Ci

)∖( ⋃
j /∈k

Cj

)

enumerate all possible distinct areas in the Venn diagram of those sets. Then,
after having computed all the doubling operations 2Q, . . . , 2t−1Q, the delegator
computes the sums

Qk =
∑
j∈Ak

2jQ (6)

for each k ∈ S, then adds the appropriate sets for each ci, i.e.

ciQ =
∑
k∈Si

Qk , (7)

where Si = {k ∈ S | i ∈ k}. Finally, the delegator applies the correct sign to the
result of (7).

With this in mind, we can express the maximal number of point additions in
these two steps. Let ω = #S = 2N − 1 and ωi = #Si = 2N−1 and let ω0 denote
the number of empty sets Ak. We assume t > ω, which will later be guaranteed
by our choices of N and t. Since |

⋃
k Ak| ≤ t and Ak ∩ Ak′ = ∅ ∀k ̸= k′,

the number of additions the delegator has to perform in order to compute the
different Qk in (6) is at most t, reduced by the number of non-empty sets (the
“missing” additions will later be done between those sets) thus t− (ω − ω0).
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In (7), the delegator can use a tree structure to add the different sets. It
is easy to verify, that |

⋂m
i=1 Si| = 2−m|Si| = 2N−1−m. If the delegator chooses

the order of the sum in (7), for e.g. c1Q, in such a way as to start with all the
elements in S1∩S2, then it has already computed half of c2Q too, so that in the
first step it needs 2N−1 − 1 additions while in the second, only 1 + (2N−2 − 1)
are left. If we start the computation of c1Q with S1∩S2∩S3, then S1∩S2, then
S2 ∩ S3 and the computation of c2Q with S2 ∩ S3, we can compute c3Q with
only 3+2N−3−1 additions. Proceeding similarly with further computations, we
find that for the computation of ciQ, T needs to perform

(2i−1 − 1) + (2N−i − 1)

additions. Summing over i = 1, . . . , N , we find that T has to add at most
2(2N −N − 1)− ω0 sets, after subtracting the number of empty sets. Including
the initial doubling operations, we find the total maximal cost of

SN (t) = Mt+ (2N − 2N − 2)A

for N parallel scalar multiplications ciQ, where M = D+ A.

Remark 5. At this point, we would like to note that this approach is only possible
for points in a group and is in particular not realizable on the Kummer line. On
the Kummer line, the delegator could not even compute e.g. siQ + riQ, using
differential addition, since it would be lacking the knowledge of (si−ri)Q, which
it can’t get from one of the servers without revealing information.

We can finally express11

TOMTUP(µ, t) = µ
[
(4N + 3)m+ 3NA+ A+ 2SN (2t)

]
= µ

[
(4N + 3)m+ 2Mt+ (2N+1 −N − 3)A

]
.

The cost reduction can then be expressed as follows

αOMTUP(µ0, µ, t, τ) =
TOMTUP(µ, t)

I(τ, µ0 + µ)
=

µ
[
(4N + 3)m+ 2Mt+ (2N+1 −N − 3)A

]∑
i(Iℓi + Sℓi + (µ0 + µ)Pℓi)

ei
2 log2 ei

Assuming N is fixed and since t > 2N−1, the dominating term in the numerator
is 2µMt. Dropping scalar factors and assuming µ, µ0 to be small, we find

αOMTUP(t, τ) = O

(
t

log τ log log τ

)
.

Security. Let A = (E ,U1,U2) be a PPT adversary that interacts with a PPT
algorithm T in the OMTUP model. We reduce our analysis to a single pair
(a,Q) ∈ H as it extends naturally to multiple hidden scalars. We assume a ∈ Zτ

and Q ∈ E[τ ].

11 We omit N from the function’s input parameters as it depends on the choice of t,
as shown in Section 3.2.
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– Pair One: EVIEWreal ∼ EVIEW ideal

If the input a is not secret, S1 simply behaves as in the real execution of
the protocol. If a is secret, then in round i, S1 generates 2(N + 1) random
scalars u0, . . . , uN , v0, . . . , vN and makes the queries:

(EK ,HK
0 ∪HK

1 ;BK)← U1(E,K,H0 ∪ {({u0, . . . , uN}, Q)}; b),
(E′

K ,H′K
0 ∪HK

2 ;B′K)← U2(E,K,H0 ∪ {({v0, . . . , vN}, Q)}; b).

to the servers, then verifies if all the outputs are correct. If either EK , E′
K ,

H0,H′
0 or BK ,B′K are incorrect, S1 returns (Y i

p , Y
i
u, replace

i) = (⊥, ∅, 1).
If either of the results in HK

1 or HK
2 is incorrect, then with probability

(N+1)−12−Nt, S1 generates a random Y ← E and returns (Y i
p , Y

i
u, replace

i) =

(Y, ∅, 1). In any other case, S1 returns (Y i
p , Y

i
u, replace

i) = (∅, ∅, 0). S1 saves
its own state and the state of the servers.

The inputs in the ideal scenario are chosen uniformly at random. In the real
scenario, all inputs r0, s0, . . . , sN−1 are chosen at random, while r1, . . . , rN , sN
are indistinguishable from random. Now, in the ith round, if the servers be-
have honestly, then both T and S1 correctly execute Iso, the latter choosing
not to replace the output. If either server returns a wrong EK , HK

0 or BK ,
then this will result in both T and S1 returning ⊥. If either server returns a
wrong H′K

1 or H′K
2 , then both T and S1 return ⊥ with probability at most

1 − (N + 1)−12−Nt. In the converse case, where the servers succeed in re-
turning an undetected wrong output to T , S1 simulates this by returning a
random point on the elliptic curve. Thus, even if one of the servers behaves
dishonestly in the ith round, we have EVIEWi

real ∼ EVIEW
i
ideal. It follows

that EVIEWreal ∼ EVIEW ideal.

– Pair Two: UVIEWreal ∼ UVIEW ideal

The same PPT simulator S2 works for a secret or (honest/adversarial) pro-
tected. In round i, S2 generates 2(N+1) random scalars u0, . . . , uN , v0, . . . , vN
and makes the queries

(EK ,HK
0 ∪HK

1 ;BK)← U1(E,K,H0 ∪ {({u0, . . . , uN}, Q)}; b),
(E′

K ,H′K
0 ∪HK

2 ;B′K)← U2(E,K,H0 ∪ {({v0, . . . , vN}, Q)}; b).

to the servers. Then S2 saves its own state and the states of the servers. The
inputs in the ideal scenario are chosen uniformly at random. In the real sce-
nario, all inputs r0, s0, . . . , sN−1 are chosen at random, while r1, . . . , rN , sN
are indistinguishable from random to the servers. In the ith round of the real
scenario, T always re-randomizes its inputs to the servers, while in the ideal
experiment, S2 always creates new, random queries. Thus, for each round, we
have UVIEWi

real ∼ UVIEW
i
ideal and it follows that UVIEWreal ∼ UVIEW ideal.
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C.3 Proof of Theorems 3 and 4

Correctness. Correctness follows from the correctness of Iso and the commu-
tativity of Figure 3. Correctness of the point maps follows from the discussion
“Mapping points” below Figure 4.

Verifiability. Verifiability in the OMTUP setting also derives itself from Iso.
Following the discussion about choosing t from Section 4, we take t = λ/N , so
that the verifiability of the first two delegation steps is at least 1−(N+1)−12−λ,
while in the third step, the delegator can choose it individually for each point
in HAK , assuming they are not later used as unprotected inputs. In order to
decrease the (communication) cost, the delegator should choose N = 1 in the
third round, yielding a verifiability of 1 − 2−(t+1). This then also bounds the
total verifiability of IsoDetour. If H is empty, IsoDetour has a verifiability of at
least 1− (N + 1)−12−λ.

Cost. In total, the delegator has to delegate three times via Iso, hiding a single
point in the first and in the second case, and µ = #H points in the third. Com-
puting AK and K̂AK costs another two point additions. In the OMTUP case,
the first two cases require t ≥ λ/N , while the third one doesn’t (see discussion
above), and we can choose N = 1. Note that we assume the order of all torsion
groups to be approximately τA. We then find the totals

THBC
IsoDet(µ, τA) = 2Thbc(1, τA) + Thbc(µ, τA) + 2A = (µ+ 2)S(τA) + 2A ,

TOMTUP
IsoDet (µ, t) = 2TOMTUP(1, λ/N) + TOMTUP(µ, t) + 2A

= (8N + 6 + 5µ)m+

(
4λ

N
+ 2tµ

)
M+

(
2N+2 − 2N − 3 + µ

)
A ,

and the associated cost reductions

αHBC
IsoDet(µ, τA) =

THBC
IsoDet(µ, τA)

I(τA, µ0 + µ)
, αOMTUP

IsoDet (µ, t) =
TOMTUP
IsoDet (µ, t)

I(τA, µ0 + µ)
.

Assuming small µ0, µ and limiting t ≤ λ, we find the following behaviors.

αHBC
IsoDet(τ) = O

(
1

log log τ

)
, αOMTUP

IsoDet (τ) = O

(
λ

log τ log log τ

)
.

Security. Security of the individual steps is given by the security of the Iso
algorithm. The only thing T has to pay close attention to, is whatever it transfers
from one delegation to the next. We have shown in Section 4, that for the
kernel generators, security is guaranteed for the appropriate choices of t and
N , i.e. if tN ≥ λ, where λ is the security parameter reflecting the security of the
underlying cryptosystem, then we can regard the adversarial unprotected inputs
(the kernel generators of rounds 2 and 3) as honest unprotected inputs, up to
negligible probability. The extra data that the server sets learn (i.e. excluding
the standard data in Iso) are the following:

32



– U1: k,E0, EK and R,S,RK , SK and PA, QA, P
K
A , QK

A ,
– U2: A

K , EK , EAK and the generators RK , SK , RAK , SAK .
– U3: k,EAK , EA and the generators RAK , SAK

In the first round, A is hidden by the security of Iso, i.e. ifU1 were able to extract
A, then it could be used as a subroutine to break Iso. Similarly, if after the third
round, U3 were able to extract A from (EK , EAK), then we could trivially use
it as a subroutine to break CSSI (Problem 1). Concerning U2, if it were able to
extract [A] from AK , then we could use it as a subroutine to break DPP (Prob-
lem 3). Note that we have to pay attention not to give PK

A , QK
A to U2 in the

second round, otherwise it could recover a from AK using the attack described
in Section B.2. If U2 knew PA, QA and were able to compute [PK

A ], [QK
A ], then

U2 could also be used as a subroutine to break DPP. Concerning the mapped
points in H, the secret and protected parameters are only given to the servers
in the third round. Since the torsion group generators on EAK are fully verified
in the HBC and OMTUP assumptions, the security of this round reduces to the
security of Iso with respect to H.

We also consider the case with two server groups. In this case, the extra data
that the server sets learn are:

– U1: k,E0, EK , EAK , EA and the generators R,S,RK , SK , RAK , SAK and
PA, QA, P

K
A , QK

A ,
– U2: A

K , EK , EAK and the generators RK , SK , RAK , SAK .

The same arguments as before apply, except that now, U1 knows the two hori-
zontal isogenies from Figure 3. Using the knowledge of RK , SK , RAK , SAK , the
servers U1 further know the action of α′ on E[τI ]. Under specific circumstances,
this might be a threat, as U1 could apply the attacks described in [38]. This
attack also strongly depends on the points transported within H0 and H.

In order to stay general, assume that p =
∏n

i=1 τi±1 and that τA ≈ τi ≈ p1/n

for all i. Using the points within E[τI ] and H(0), we assume that the attacker
knows the action of α′ on m torsion groups. We collectively denote these as
τB ≈ pm/n. Finally, let τB′ ≈ p1−(m+1)/n be the torsion groups, on which the
action of α′ is unknown to the attacker. In the case where p is a DFP, we have
τB′ ≈ p1−m/n. We analyze the conditions in which the algorithms presented
in [38] run faster than standard meet-in-the-middle attacks.

For n ≥ 2, this is the case, if τB >
√
pτA classically or τB >

√
p quantumly

by [38, Corollary 26 and 28], which implies, m > n+2
2 classically and m > n

2
quantumly, for both DFPs and non-DFPs. If these conditions are fulfilled, the
delegator therefore needs three server sets instead of two.

D Communication costs

In order to express the amount of data exchanged between the delegator and
the server, we express their communication costs in bits. Let b(p) = ⌈log2 p⌉
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denote the amount of information in a log2 p-bit number. Elements in Fp2 then
contain 2b(p) bits of information. Montgomery curves are fully defined by a
single parameter a ∈ Fp2 and points on the Kummer line can be expressed by
two coordinates X,Z ∈ Fp2 . If Z = 1, which can always be achieved by a single
inversion, a point can completely be expressed by itsX-coordinate. Thus, in most
cases (unless stated otherwise), both points and elliptic curves contain 2b(p) bits
of information. For twisted Edwards curves, we need both curve parameters and
points are expressed using four elements in Fp2 . By setting Z = 1, we can reduce
this to two elements, X and Y , and recover T by a simple multiplication. Then,
both points and elliptic curves each contain 4b(p) bits of information. In the
case p ≈

∏n
i=1 τi with ∀i, j : τi ≈ τj , elements in Zτi can be expressed using

approximately b(p)/n bits.

We summarize the communication cost of n-party protocols and of the ZKPI
in Tables 1 and 2, respectively.

Table 1. Upload and Download costs (in kB per server) of delegating the n-party key
agreement protocols in the HBC and OMTUP assumptions. We distinguish the cases
with and without a delegation-friendly prime. The cost is given by the inputs and
outputs within the three rounds of IsoDetour, assuming the initial E and its torsion
group generators are known by the servers. We note that the kernel generator K̂AK

in Figure 4 is computed locally and we thus have Z ̸= 1, which increases the upload
cost. In the intermediate steps, Alice has to transport 2(n − k) unprotected points.
Since the final step is computed locally, no communication costs apply. Therefore, the
communication for n = 2 is the same as the communication needed to delegate the
public key computation.

no DFP DFP
p434 p751 p434 p751

HBC OMT HBC OMT HBC OMT HBC OMT

n = 2
Upload − − − − 1.30 2.83 2.25 4.90

Download − − − − 1.80 4.86 3.12 8.43

n = 3
Upload 3.95 7.68 6.84 13.32 2.24 4.11 3.88 7.12

Download 5.18 12.58 8.98 21.81 2.75 6.45 4.77 11.18

n = 4
Upload 5.53 10.02 9.58 17.37 3.40 5.64 5.89 9.78

Download 6.98 15.65 12.1 27.13 3.91 8.25 6.78 14.3
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Table 2. Upload and Download costs (in B per server) of delegating the zero-knowledge
proof of identity in the HBC and OMTUP assumptions, as well as for the verifier. The
cost for the verifier is averaged over both challenge scenarios. We assume that the
starting curve E and the associated generators are known by the servers. In the case
of the prover, we further assume that its public key EA and associated generators
are also known to the servers. We also assume that the ephemeral parameter b has
to be transmitted only once. Since the OMTUP case reduces to simple comparison
operations for the verifier, these can also be done on Montgomery curves, saving some
of the communication.

p434 p751
HBC OMTUP Ver. HBC OMTUP Ver.

Upload 54 189 298 94 328 516
Download 433 1516 162 751 2628 282
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