
Algebraic Differential Fault Analysis on SIMON block
cipher

Duc-Phong Le1, Sze Ling Yeo2, and Khoongming Khoo3

1 Bank of Canada, 234 Wellington St. W, Ottawa, ON K1A 0G9, Canada
dle@bank-banque-canada.ca

2 Institute for Infocomm Research (I2R), 1 Fusionopolis Way, Singapore 138632
slyeo@i2r.a-star.edu.sg

3 DSO National Laboratories, 12 Science Park Dr, Singapore 118225
kkhoongm@dso.org.sg

Abstract. Algebraic differential fault attack (ADFA) is an attack in which an attacker
combines a differential fault attack and an algebraic technique to break a targeted ci-
pher. In this paper, we present three attacks using three different algebraic techniques
combined with a differential fault attack in the bit-flip fault model to break the SIMON
block cipher. First, we introduce a new analytic method which is based on a differential
trail between the correct and faulty ciphertexts. This method is able to recover the entire
master key of any member of the SIMON family by injecting faults into a single round of
the cipher. In our second attack, we present a simplified Gröbner basis algorithm to solve
the faulty system. We show that this method could totally break SIMON ciphers with
only 3 to 5 faults injected. Our third attack combines a fault attack with a modern SAT
solver. By guessing some key bits and with only a single fault injected at the round T −6,
where T is the number of rounds of a SIMON cipher, this combined attack could manage
to recover a master key of the cipher. For the last two attacks, we perform experiments
to demonstrate the effectiveness of our attacks. These experiments are implemented on
personal computers and run in very reasonable timing4.

Keywords: Lightweight Block Ciphers, Fault Attacks, Algebraic Differential Fault At-
tacks, Algebraic Techniques, Gröbner basis, SAT solver.

1 Introduction

Lightweight block ciphers are increasingly implemented in resource constrained devices such as
RFID or microchips. SIMON is a family of lightweight block ciphers, proposed by a team from
the NSA [1]. This family, consisting of a variety of members with different block sizes and key
sizes, is optimized for hardware performance.

Fault analysis is a very efficient attack on cryptographic implementations. Such an attack
tries to influence the behavior of a device and determine sensitive information by examining
the effects. There have been several mechanisms to inject faults into microprocessors. Examples
include changes of the power supply, the clock frequency [17] or an intensive lighting of the
circuit [22]. In most cases, this forces a change in the data in one of the registers.

The first fault attack against RSA-CRT implementation was reported in a Bellcore press
in 1996 and subsequently analyzed by Boneh, DeMillo and Lipton in [5]. They showed that
many implementations of RSA signatures and other public key algorithms are vulnerable to
a certain transient fault occurring during the processing phase. In particular, the RSA-CRT

4 A earlier version of this paper was published in [18]. This version corrected some typos.



implementation suffers from a high risk to be compromised using one erroneous result. Biham
and Shamir then introduced Differential Fault Analysis (DFA) against symmetric cryptosystems
such as the DES [3]. They assume that an attacker can disturb DES computations using the
same - but unknown - plaintext at the last (three) DES round(s). The wrong ciphers provide
a system of equations for the unknown last round key bits that finally reveal the correct key
value.

Algebraic attack is a method of cryptanalysis against ciphers. The main idea of such an
attack is to represent a cipher via algebraic equations, followed by an algebraic solving method
to find solutions. Unlike statistical approaches such as differential cryptanalysis [2] or linear
cryptanalysis [19], this attack is more feasible in the sense that it requires much fewer input data.
Although the efficiency of this attack depends on the structure of the cipher, the recent advances
in finding good representations of ciphers [8], and in algebraic solving methods [12–14,23] make
this attack more feasible.

This work combines various algebraic techniques and the differential fault analysis to attack
SIMON ciphers. It is assumed that our attacks are performed in the bit-flip fault model, i.e., a
single injected fault produces exactly one bit flip. In the first attack, we construct differential
trails for the SIMON ciphers. We demonstrate how these differential trails can be utilized to
improve differential fault attacks against the SIMON ciphers. Our analysis shows that by in-
jecting faults into only a single round, the full secret key of any SIMON ciphers can be found
without guessing any key bit. The knowledge of plaintext is not required in this attack. Our
second attack is a combination of a fault injection attack with Gröbner basis to retrieve the
secret key. This attack will be implemented using Magma [6]. Our third attack combines a fault
attack with a modern SAT solver. By guessing some key bits, this attack succeeds in recovering
the secret key by using a single fault. In this attack, we use Magma to generate systems of
equations and CryptoMiniSat 5.0.1 [23] as a SAT solver. Unlike the first attack, our last two
attacks may require the knowledge of the plaintexts involved.

Among the three above attacks, the first attack, which is based on an analytic approach,
is the most straightforward to implement. However, it requires at least n/2 fault injections.
On the other hand, exploiting algebraic methods such as Gröbner basis and SAT solver reduce
the number of fault injections needed at the cost of higher complexity. In our last attack, we
performed experiments to show that one fault injection is sufficient to deduce the master key
via SAT solvers, but this attack requires the attacker to guess a portion of the key bits.

To demonstrate our techniques, we performed tests on the SIMON block cipher. Nonetheless,
the attacks described in this work are generic and can be applied to other lightweight block
ciphers.

The paper is organized as follows. Section 2 briefly recalls differential fault attacks on block
ciphers and SIMON ciphers. Section 3 describes our algebraic differential fault attack using a
differential trail. Our attacks using a simplified Gröbner basis and SAT solvers are presented in
Section 4 and Section 5, respectively. We also present our experiments in these sections. Finally,
we conclude in Section 6.

2 Preliminaries

2.1 Notations.

In the rest of the paper, we make use of the following notations. In general, we use capital letters
for vectors or strings while small letters are used to represent individual bits.



T : denotes the total number of rounds of the cipher.
(Xi, Y i) : denotes input of round i, i = 0, 1, . . . , T − 1.
(XT , Y T ) : denotes ciphertext.
(X ′i, Y ′i) : denotes faulty input of round i, i = 0, 1, . . . , T − 1.
(X ′T , Y ′T ) : denotes faulty ciphertext.
Xi + Y i : denotes ’XOR’ operation of Xi and Y i.
XiY i : denotes ’AND’ operation of Xi and Y i.
(xij , y

i
j) : variables denoting bit j of the input of the round i, i = 0, 1, . . . , T ,

j = 0, 1, . . . , n− 1.
(x′ij , y

′i
j ) : variables denoting bit j of the faulty input of the round i, i =

0, 1, . . . , T , j = 0, 1, . . . , n− 1.
xij + yij : denotes bitwise ’XOR’ operation of xij and yij .
xijy

i
j : denotes bitwise ’AND’ operation of xij and yij .

Ki : denotes the round key in round i, i = 0, 1, . . . , T − 1.

kij : denotes jth, 0 ≤ j ≤ n− 1 bit round key of round i.
∆i : denotes the difference between correct and faulty inputs of round i.
δij : denotes the difference at bit j of δi, i = 0, 1, . . . , T , j = 0, 1, . . . , n−1.

2.2 Differential Fault Attacks on Block ciphers

Fault attacks aim at retrieving the secret information by disturbing the execution of a crypto-
graphic implementation. The first fault attack was introduced on RSA-CRT implementation, an
asymmetric cryptosystem. In this paper, we investigate fault attacks against symmetric cryp-
tosystems, so-called Differential Fault Analysis or DFA. This attack was first proposed by Biham
and Shamir in [3]. Subsequently, various DFAs on block ciphers were carried out, including at-
tacks against AES [15], Triple DES [16], IDEA [7], SIMON [24].

In principle, the attacker will inject a fault in some rounds when executing a cryptographic
implementation to obtain a faulty ciphertext. By analyzing the difference between the correct
and faulty ciphertexts, the last round key can be revealed. With knowledge of the last round
key, the attacker decrypts the correct ciphertext to obtain the input of the last round, which is
the output of the second last round. Then, the attacker repeats this procedure to obtain more
round keys until the secret key can be deduced by the key schedule. Readers are referred to [3]
for more details.

Fault Attack Model The most useful methods to generate faults were reported in [17,21,22].
These attacks allow a specific control of a single register, a bus or memory. As in [4], four
different fault models have been defined:

– Random fault model: the bits are changed to a uniformly distributed random value;
– Bit-flip fault model: in this case, affected bits are flipped to their complementary value;
– Stuck-at fault model: the fault sets the bits to 0 or to 1, depending on the underlying

hardware;
– Unknown constant fault model: the fault always sets the bits to the same unknown

value.

Algebraic Differential Fault Attacks The first combination of algebraic and fault attacks
to break block ciphers was presented by Courtois et al. [9]. In principle, an algebraic differential
fault attack works as follows:

– representing a cipher using Algebraic Normal Form (ANF) equations



– representing the fault using ANF equations
– solving the resulting ANF equations system by using Algebraic tools, e.g., SAT solvers [23]

or Gröbner basis [12,13].

Courtois et al. demonstrated such attacks against DES block cipher in [9]. The attacks first
represent each DES S-Box as a system of cubic equations. Then, they convert the system of
equations to a SAT problem, i.e., Conjunctive Normal Form (CNF) clauses. Finally, the attacks
solve the SAT problem by using MiniSAT 2.0, the winner of SAT-Race 2006 competition [11].

Courtois et al. reported two different attacks. First, by injecting faults at the 14th round
and guessing 20 key bits, their attack could recover the key with 2 faulty ciphertexts with 2
bits flipped. This attack works 200 times as fast as the brute force attack. In order to use only
1 fault injected at this round, their attack requires to produce a precise fault on 10 bits. Next,
by injecting faults at the 13th round and guessing 24 key bits, their attack could recover the
key with only 1 faulty ciphertext with 2 bits flipped. The attack is 10 times as fast as the brute
force attack. This is due to the fact that, when one bit is flipped at the round 13, the diffusion
of DES may affect all S-Boxes in the round 16.

2.3 SIMON block cipher

We will deploy our algebraic differential fault attacks on the SIMON cipher [1]. This section
briefly reviews this cipher, as well as DFAs on it.

The SIMON family of lightweight block ciphers was designed by the National Security Agency
and was optimized for hardware implementations. It is based on a typical Feistel design (see
Figure 1) and comprises 3 simple operations, namely, the bitwise ‘AND’, ‘rotation’ and ‘XOR’
operations. Let n denote the word size. Then, as in [1], SIMON-2n/mn denotes SIMON with
block size and key size 2n and mn, respectively, where m = 2, 3 or 4, the number of n bit
registers related to the key schedule process. The following table summarizes the variants of the
SIMON family.

Table 1. Members of the SIMON family

Cipher
Block size Key words Key size Rounds

2n m mn T

SIMON-32/64 32 4 64 32

SIMON-48/72 48 3 72 36

SIMON-48/96 48 4 96 36

SIMON-64/96 64 3 96 42

SIMON-64/128 64 4 128 44

SIMON-96/96 96 2 96 52

SIMON-96/144 96 3 144 54

SIMON-128/128 128 2 128 68

SIMON-128/196 128 3 196 69

SIMON-128/256 128 4 256 72

DFAs on SIMON cipher. We briefly review existing differential fault attacks against SIMON
cipher in the bit-flip fault model.
Attack at the second last round. Tupsamudre et al. [24] introduced the first differential
fault analysis against the SIMON and SPECK ciphers. For the SIMON block cipher, they



Fig. 1. One round of SIMON cipher

demonstrated two differential fault attacks in two different fault models. In the bit-flip fault
model, in which a fault injected will flip a bit of the input, 2 bits of the last round key can be
found with one successful fault. Eventually the n-bit key could be revealed by using n/2 faulty
ciphertexts. In the random byte-flip fault model, in which a fault injected will modify a byte to
a random value, Tupsamudre et al. showed that the last round key can be successfully recovered
using n/8 faulty ciphertexts on average.

Basically, their attacks exploit the information leaked by the ‘AND’ operation which is the
only non-linear function of SIMON. Specifically, the attacks injected a fault in the intermediate
left half ciphertext XT−2, where T is the number of rounds of SIMON. The value of the position
of the fault could be deduced due to the following equation.

e = XT +X ′t + f(Y T ) + f(Y ′t) (1)

From the following equation, observe that one can deduce the last round key KT−1 if the
value XT−2 is known.

KT−1 = XT−2 + f(Y T ) +XT (2)

where f(X) = (rotr(X, 1) rotr(X, 8)) + rotr(X, 2), and rotr(X, i) denotes a right rotation of X
by i bits.

Attack at the third last round. Vasquez et al. [10] extended the work in [24] by injecting
a fault into the third round instead of the second round from the last. By doing so, they could
deduce the secret key by injecting faults into either a single round if the number of registers
m = 2, or 2 rounds if m > 2. The number of faults required to retrieve the secret key is about
half of the attack in [24] (see [10, Table VIII] for more details).

3 Algebraic Differential Fault Attack using Differential Trails

Given a plaintext P , the SIMON encryption function outputs a corresponding ciphertext C. Let
(Xi, Y i) denote the intermediate inputs of P at round i, for 0 ≤ i ≤ T − 1, where T denotes the
total number of rounds of the cipher, e.g., T = 32 for SIMON-32/64 (see Table 1).

Assume that a fault is injected into the input Xr of an intermediate round r and causes a
bit-flip at the position l. Let X ′r be the fault value, so Xr and X ′r will be different at the lth

bit and identical everywhere else. In other words, xrj = x′rj + 1 for j = l and xrj = x′rj for j 6= l.



Let (xrn−1, . . . , x
r
0), and (yrn−1, . . . , y

r
0) denote the input of round r. The following relations hold

for any j = 0, . . . , n− 1:

xr+1
j = f(xrj) + yrj + krj ,

yr+1
j = xrj , (3)

where f(xrj) = (xr(j−1) mod n x
r
(j−8) mod n) + xr(j−2) mod n. As all indices are computed modulo n,

in what follows, xij will denote xij mod n. We first consider the following lemma.

Lemma 1. Let δij = xij + x′ij for r ≤ i ≤ T be the differential representation of two correct and

faulty bits xij and x′ij . We have, δrj = 0 for j 6= l and equal to 1 if j = l, and:

(4 )δi+1
j = δij−1x

i
j−8 + δij−8x

i
j−1 + δij−1δ

i
j−8 + δij−2 + δi−1j

Proof. From Equation (3), we have:

xi+1
j = xij−1x

i
j−8 + xij−2 + yij + kij , and

x
′(i+1)
j = x′ij−1x

′i
j−8 + x′ij−2 + y′ij + kij

Note that yij = xi−1j . Summing up the two above equations gives:

δi+1
j = xij−1x

i
j−8 + x′ij−1x

′i
j−8 + δij−2 + δi−1j

We have:

xij−1x
i
j−8 + x′ij−1x

′i
j−8

= (xij−1 + x′ij−1)(xij−8 + x′ij−8) + x′ij−1x
i
j−8 + xij−1x

′i
j−8

= δij−1δ
i
j−8 + (x′ij−1x

i
j−8 + xij−1x

i
j−8) + (xij−1x

′i
j−8 + xij−1x

i
j−8)

= δij−1δ
i
j−8 + δij−1x

i
j−8 + δij−8x

i
j−1

Thus,
δi+1
j = δij−1x

i
j−8 + δij−8x

i
j−1 + δij−1δ

i
j−8 + δij−2 + δi−1j .

Remark 1. From Equation (4), it can be seen that δi+1
j depends on 2 bits of the intermediate

input Xi and 4 bits of the input difference ∆i. Furthermore:

– if δij−1 = δij−8 = 0 and δij−2 = δi−1j , then δi+1
j = 0, which is independent of the intermediate

input Xi.
– if δij−1 = 0, δij−8 = 0, δi−1j = 0, and δij−2 = 1, then δi+1

j = 1. This will give us a pattern of 1
in difference trails. For example, the position of 1 in the next round will be the position of
1 in the current round shifted to the left by two in Table 4 for SIMON-32/64. This pattern
happens up to the fifth round from the round injected faults. Based on this pattern we may
deduce the position of faults.

Lemma 1 says that each bit δij can be represented in terms of intermediate plaintext bits and
difference bits in the previous rounds. The preceding remark indicates that these expressions
can be simplified or deduced the difference bits in the earlier rounds are known. This motivates



us to construct a differential trail table to record and trace the δij ’s using Lemma 1. In fact, this
differential trail table is the main tool used in the subsequent attacks.

In the rest of this section, we will look at differential fault attack using Algorithm 1, where
the key can be deduced directly by studying the differential trail. Then in Sections 4 and 5,
we will look at algebraic fault attacks where fewer faults are injected at earlier rounds but the
equations are more complex. Thus algebraic techniques like Gröbner basis and SAT solvers need
to be employed to solve for the keys.

ALGORITHM 1: Differential Fault Attacks using Differential Trails

– Step 1: choose a random plaintext P , inputs to a SIMON encryption function, and get a
ciphertext C.

– Step 2: re-run the input P , choose an intermediate round r and inject a fault. Assume that one
bit at the position l of the input Xr will be flipped. In other words, the correct and faulty
intermediate ciphertexts Xr and X ′r will be different at the lth bit and identical everywhere else,
that is, xrl = x′rl + 1 and xrj = x′rj for j 6= l.

– Step 3: find output differences ∆i = Xi +X ′i, for r ≤ i ≤ T . For each round, these output
differences could be represented by n values of 0, 1 or algebraic equations of input variables, where
n is the size of the left input part Xr. Construct the differential trail table to record these
differences.

– Step 4: from these output differences, deduce input bits of the round T − 2, and earlier rounds,
then retrieve corresponding bits of the last round key KT−1 due to Equation (2).

– Step 5: repeat steps 2–4 to recover the full round key KT−1.
– Step 6: use KT−1, decrypt the last round, and continue this process until sufficient round keys

are obtained to recover the entire unknown master key. The required number of round keys
needed depends on the key schedules of different variants of SIMON family. For example, we need
to retrieve 4 round keys for SIMON-32/64, and 2 round keys for SIMON-128/128.

3.1 Attacking at the second last round

We first demonstrate our idea by injecting faults into the second last round T − 2 of SIMON-
32/64, and show that our attack is equivalent to the attack in [24]. Without loss of generality,
suppose that we flip bit 15 at round T − 2. Table 2 gives differential trails between the correct
intermediate ciphertext and the faulty intermediate ciphertexts for the last 3 rounds (including
the right half of round T − 2 or equivalently, the left half of round T − 3).

Since the difference in the ciphertexts (i.e., C + C ′) is known, it follows that the differences
∆T−1 and ∆T are known. Consequently, one can deduce the values of xT−26 and xT−28 . From
Equation (2), we could retrieve two bits of the last round key, namely, kT−16 and kT−18 . This
is equivalent to Tupsamudre et al.’s attack [24]. If the attacker can control the position of the
flipped bit, he needs 8 faults to obtain the last round key of SIMON-32/64.

Remark 2. The position of the fault could be easily deduced by using either Equation (1) or
number pattern in ∆T−1 and observations in Remark 1.

3.2 Attacking at the third last round

This section extends our attack idea by injecting faults into the left input part of the third last
round (that is, XT−3) of SIMON-32/64. We first present the table of differential trails from



Table 2. Differential trail for the left half of the last 3 rounds of SIMON-32/64 when flipping bit 15. A
value 1 (or 0) means that at the considered bit, the value of this bit in the correct output is different
(or the same, respectively) from the faulty output. The notation ∗ denotes a non-linear expression that
would not be used in our attack. As the attacker flipped the bit 15, δT−2

j = 1, for j = 15, and δT−2
j = 0,

for j 6= 15.

Bit 15 14 13 12 11 10 9 8

∆T−3 0 0 0 0 0 0 0 0

∆T−2 1 0 0 0 0 0 0 0

∆T−1 0 0 0 0 0 0 0 0

∆T ∗ 0 0 0 0 0 xT−2
6 + xT−1

8 ∗

Bit 7 6 5 4 3 2 1 0

∆T−3 0 0 0 0 0 0 0 0

∆T−2 0 0 0 0 0 0 0 0

∆T−1 xT−2
6 0 0 0 0 0 1 xT−2

8

∆T 0 0 0 0 1 xT−2
8 + xT−1

10 ∗ 0

round T − 3 onwards. Likewise, without loss of generality, we flip bit 15 at round T − 3. Note
that the position of a fault is easily deduced from patterns in ∆T−2 (that can be computed as
shown below), and observations in Remark 1. Differential trails are shown in Table 3.

Table 3. Differential trail for the left half of last 4 rounds when flipping bit 15. The notation ∗ in the
last row denotes a non-linear expression that would not be used in our analysis attack.

Bit 15 14 13 12 11 10 9 8

∆T−4 0 0 0 0 0 0 0 0

∆T−3 1 0 0 0 0 0 0 0

∆T−2 0 0 0 0 0 0 0 0

∆T−1 xT−3
6 xT−2

14 + 1 0 0 0 0 0 xT−3
6 + xT−2

8 xT−3
6 xT−2

0 + xT−3
8 xT−2

7 + xT−3
6 xT−3

8

∆T 0 0 0 0 xT−3
6 + xT−2

8 + xT−1
10 ∗ ∗ 0

Bit 7 6 5 4 3 2 1 0

∆T−4 0 0 0 0 0 0 0 0

∆T−3 0 0 0 0 0 0 0 0

∆T−2 xT−3
6 0 0 0 0 0 1 xT−3

8

∆T−1 0 0 0 0 1 xT−3
8 + xT−2

10 xT−3
8 xT−2

9 0

∆T ∗ 0 1 xT−3
8 + xT−2

10 + xT−1
12 ∗ ∗ ∗ ∗

Consider the known ciphertext difference C +C ′ at round T and trace backwards. Since the
left half of round T − 1 is the right half of round T , it follows that the left half difference at
round T − 1 is known. On the other hand, by Equation (4), we have:

δT−2j = xT−1j−1 δ
T−1
j−8 + xT−1j−8 δ

T−1
j−1 + δT−1j−1 δ

T−1
j−8 + δT−1j−2 + δTj .

Since the attacker knows ∆T , ∆T−1 and XT−1, she is able to compute ∆T−2. Once ∆T−2 and
∆T−1 are known, the attacker will deduce the values of xT−36 , xT−38 , and then xT−28 , xT−210 from
Table 3. Depending on the values of xT−36 and xT−38 (if they are not all zero), the attacker would
be able to recover bits xT−20 , xT−27 , xT−29 , and xT−214 by analyzing the quadratic equations in the
vector ∆T−1. If bits of XT−2 are uniform and independent and identically distributed, that is



the probability that each bit equals to 0 or 1 is the same so that Pr(xij = 0) = Pr(xij = 1) = 1/2,

then the expected number of bits in XT−2 recovered by a single bit-flip in XT−3 is:

2 +
1

4
× 0 +

1

2
× 2 +

1

4
× 2 = 3.5 bits.

Indeed, both bits xT−36 = xT−38 = 0 with probability 1/4, and in this case, we cannot
recover any extra bit. If one or both of them equal to 1, we could recover 2 bits. On average,
we could recover 3.5 bits for a single fault. This expected number is the same as the one given
in [10, Section III.E].

Similar to the above analysis, for each bit of XT−2 found, the attacker can retrieve one key
bit of the last round key. After recovering all bits of KT−1, she decrypts the last round to get
(XT−1, Y T−1) and (X

′T−1, Y
′T−1). Then with her knowledge of XT−3, she is able to recover

the round key KT−2. Thus, if she can control the position of the faults, she is able to uncover
the last two round keys of SIMON-32/64 by using only 8 faults.

3.3 Extending the attack to recover the full secret key

In the above sections, we demonstrated how to recover one and two round keys by injecting
faults into a single round. Note that for members of SIMON family, where the key words m
equals to 2 such as SIMON-96/96 or SIMON-128/128, two round keys are sufficient to uncover
the entire master key. For other variants where m = 3 (and m = 4), the attacker needs to
retrieve 3 (and 4 respectively) round keys to be able to fully extract the secret key.

In fact, the attacks in [24] require faults injected in 2, 3, or 4 consecutive rounds to retrieve
the corresponding number of round keys. The attack in [10] requires faults injected into 1 round
(and 2 rounds) to retrieve 2 round keys (and 3 or 4 round keys, respectively). In this section,
we describe how to extract the master key of variants of SIMON family where m > 2 by also
injecting faults into a single round. In this attack, we inject a fault in round T − 5. As before,
we first present the table of differential trails for the last six rounds of SIMON-32/64.

As can be seen from Tables 2-3, for each difference δij = 1, we could obtain 2 linear expressions

in the next difference vector ∆i+1. This could be easily verified from Lemma 1. When the number
of rounds needed to find the differences increases, non-linear expressions become more complex
(related to more variables at different rounds and at higher degrees). The variables in these
expressions could not be deduced in a trivial way. Thus, we don’t show them in Table 4. In the
following sections, we will present other algebraic techniques, including Gröbner basis and SAT
Solvers to solve these equations.

Deducing the position of a fault in this case is more challenging even when we know the values
of ∆T , ∆T−1 and ∆T−2. However, Table 4 shows some patterns, for example, 4 consecutive 0s,
0, 1 (bits 6, 5) in ∆T−2. Using this fact and observations in Remark 1 could reduce the searching
space of the fault position.

Similar to the preceding attacks, an attacker is able to get the value of ∆T−2 because
she knows ∆T , ∆T−1 and XT−1. Once ∆T−2 and ∆T−1 are known, the attacker will deduce
the values of xT−212 and xT−214 by summing up δT−211 + δT−113 , and δT−24 + δT−16 , respectively.
She can continue to inject faults at different possible positions to recover all bits of XT−2,
and hence KT−1. Then, she decrypts the last round with KT−1 to obtain (XT−1, Y T−1) and
(X

′T−1, Y
′T−1) and continue this process to get more round keys. As such, analyzing up to the

round T − 5 will allow us to recover 4 round keys, which would be sufficient to obtain the secret
master key of any member of the SIMON family.

Remark 3. Although we described in this section an attack against SIMON-32/64, it is straight-
forward to apply the same attack procedure to other members of SIMON family. The differential



Table 4. Differential trail for the left half of the last 6 rounds of SIMON-32/64 when flipping bit 15.
The notation ∗ denotes a non-linear expression that would not be used in our attack. ∆T could be
represented by non-linear expressions, which are known and will not be used in our analysis attack.

Bit 15 14 13 12 11 10 9 8

∆T−6 0 0 0 0 0 0 0 0

∆T−5 1 0 0 0 0 0 0 0

∆T−4 0 0 0 0 0 0 0 0

∆T−3 ∗ 0 0 0 0 0 xT−5
6 + xT−4

8 ∗
∆T−2 0 0 0 0 xT−5

6 + xT−4
8 + xT−3

10 ∗ ∗ 0

∆T−1 ∗ 0 xT−5
6 + xT−4

8 + xT−3
10 + xT−2

12 ∗ ∗ ∗ ∗ ∗
∆T Known values

Bit 7 6 5 4 3 2 1 0

∆T−6 0 0 0 0 0 0 0 0

∆T−5 0 0 0 0 0 0 0 0

∆T−4 xT−5
6 0 0 0 0 0 1 xT−5

8

∆T−3 0 0 0 0 1 xT−5
8 + xT−4

10 ∗ 0

∆T−2 ∗ 0 1 xT−5
8 + xT−4

10 + xT−3
12 ∗ ∗ ∗ ∗

∆T−1 1 xT−5
8 + xT−4

10 + xT−3
12 + xT−2

14 ∗ ∗ ∗ ∗ ∗ 0

∆T Known values

trails are easy to construct by using Equation (4). Appendix A lists differential trails of all mem-
bers of SIMON family. In general, if one could control the position of faults, our attack needs
at least n/2 faults to uncover the master key. For members with m = 2, analyzing quadratic
equations could allow us to recover more than two bits (as described in Section 3.2). It is worth
to note that, this attack requires no knowledge of the plaintext.

4 Algebraic Differential Fault Attacks using Gröbner basis

By examining the above attack using differential trails, observe that the following steps were
carried out:

– Using the fact that ∆T−2 can be deduced from ∆T−1 and ∆T , find some bits j from the
differential trail table which are simple expressions of bits in XT−2 to determine some bits
in XT−2.

– Deduce the corresponding bits in KT−1 from the known bits in XT−2;
– Continue to deduce more plaintext bits from the relations in ∆T−2;
– Continue the above procedure with more fault injections.

Essentially, one picks out simple relations from the differential trail tables corresponding to
different fault injections to recover the key bits progressively. A natural way to extend the above
approach is to consider all the possible known relations given the fault injections to construct
an algebraic system and to solve this algebraic system via algebraic solving tools. In this section
and the next, we will demonstrate this approach using both Gröbner basis and SAT solvers as
our algebraic solving tools.

4.1 Constructing the algebraic system for the fault injections

Let r ≤ T be some positive integer. We consider a bit flip at the input of round r, say at bit
n−1. As before, we obtain two pairs of plaintext/ciphertexts, namely, (P,C) and (P ′, C ′), where



C ′ is the faulty ciphertext. Let (Xi, Y i) and (X
′i, Y ′i) denote the intermediate input values for

the encryptions of P and P ′, respectively. By our construction, the following hold:

(Xi, Y i) = (X ′i, Y ′i), for 0 ≤ i < r

xrn−1 = x′rn−1 + 1

xrj = x′rj , for j 6= n− 1

In this case, after round r, one will obtain a differential trail as in Table 6. One sees from the
differential trail that up to round r+ 4, there remain some positions with known bit differences
and up to round r+ 5, there exist positions where the bit differences are linear sums of some of
the intermediate plaintext bits. In addition, each of the bits δij , where i ≥ r, can be expressed
in terms of difference bits as well as intermediate input bits given by Equation 4. We thus have
the following basic algorithm (Algorithm 2) to carry out an algebraic differential fault attack.

ALGORITHM 2: Main algebraic differential fault attack using differential trails

1. Randomly pick a plaintext P and feed into a SIMON encryption function to obtain its
corresponding ciphertext C.

2. Let t be a small positive integer and fix r to be some specific value.
3. For i = 1 to i = t do

(a) Randomly inject a bit flip at bit ji and obtain the faulty ciphertext Ci.
(b) Construct the differential trail table Di.

4. Construct the set of SIMON cipher equations (refer to Equation 3) with Xr as the plaintext and
C as the cipher text. Denote this set by S.

5. Let Di comprise all the equations of the form δjl (i) = Di(j, l) where Di(j, l) denotes the (j, l)-entry
in the differential trail table Di, i = 1, 2, . . . , t, with the unknown δjl (i)’s as the variables.

6. Let L be the set of linear equations for the key schedule.
7. Let A = S ∪

⋃t
i=1Di ∪ L.

8. Solve A using an algebraic solving tool.
9. If the key bits are uniquely found, then return the solved key bits.

10. Otherwise, for all the possible solutions for the key bits, test with the plaintext/ciphertext pair
(P,C) to determine the correct key.

Remark 4. – We have described the algorithm in which the faults can be controlled. In the
case where the faults are random, the algorithm can be easily modified.

– As seen below, r is typically taken to be in {T − 5, T − 6, T − 7}.
– When the number of faults t is small, there may be more than one key satisfying all the poly-

nomials in A. As such, one can test each possible key with the original plaintext/ciphertext
pair as in the last step of the algorithm.

After running Algorithm 2, the algebraic system A has around (t+1)(r−2)n+nk variables.
Specifically, the variables include the intermediate input variables xjl , the difference variables

δjl (i), and the nk key variables for i = 1, . . . , t, j = r, . . . , T − 2, l = 0, 1, . . . , n− 1. To solve an
algebraic system comprising quadratic equations in so many variables is typically a challenging
task. However, we note from the differential trail table that a number of the δjl (i)’s are either
known or are linear expressions of some of the intermediate input variables. Moreover, the
following lemma shows that one can obtain a number of equations involving only the key bits.



Lemma 2. For j = 0, 1, . . . , n− 1, we have

– δT−3j = lj(K
T−1), where lj is a function of the bits in KT−1 with degree smaller or equal to

1 (i.e., deg(lj) ≤ 1).
– δT−4j = qj(K

T−1,KT−2), where qj is a function of the bits in KT−1 and KT−2 with
deg(qj) ≤ 2.

Proof. In the following proof, we shall use the fact that xT , xT−1,∆T ,∆T−1,∆T−2 are known
values that can be deduced from the ciphertexts and thus treated as constants.

– For all j = 0, 1, . . . , n − 1, it follows from Equation (3) that xT−2j = xT−1j−1 x
T−1
j−8 + xT−1j−2 +

xTj + kT−1j = kT−1j + cj where cj is a constant. Substituting into Equation (4) then yields:

δT−3j =δT−2j−1 (kT−1j−8 + cj−8) + δT−2j−8 (kT−1j−1 + cj−1)

+ δT−2j−1 δ
T−2
j−8 + δT−2j−2 + δT−1j

=δT−2j−1 k
T−1
j−8 + δT−2j−8 k

T−1
j−1 + bj ,

where bj is a known constant.
– Similarly, one can show that xT−3j = kT−1j−1 k

T−1
j−8 +Lj(k

T−1
j−1 , k

T−1
j−2 , k

T−1
j−8 , k

T−2
j ), where deg(Lj) ≤

1.
Hence,

δT−4
j = (kT−1

j−2 k
T−1
j−9 + Lj−1)(δT−2

j kT−1
j−9 + δT−2

j−9 k
T−1
j + bj−8)

+ (kT−1
j−9 k

T−1
j + Lj−8)(δT−2

j−2 k
T−1
j−9 + δT−2

j−9 k
T−1
j−2 + bj−1)

+ qj

= q′j ,

where both qj and q′j have degrees at most 2.

The following table summarizes the structure of ∆T−i for i = 0, 1, . . . , 4.

Table 5. Differences of the left half of the last five rounds of SIMON-32/64 deduced from the bottom

Difference Values

∆T Known

∆T−1 Known

∆T−2 Known

∆T−3 Linear relations of the last round key bits

∆T−4 Quadratic relations of the key bits in the last two rounds

Assume that we flip bit 15 at round T − 6. We have the following differential trail table for
the last seven rounds.

By combining the two trails in Table 6 and Table 5, we obtain algebraic equations involving
only key bits as shown in Table 7. In this table, the δij is a variable, li is a linear function of
the last round key bits and qi is a quadratic combination of the key bits in the last two rounds.
For example, at bit 14 of the round T − 4, from Table 6, we have δT−414 = 0. Suppose that from
Table 5, δT−414 could be represented by a quadratic expression of the last two round key bits,



Table 6. Differential trail for the left half of the cipher when a fault injected into round r = T − 6.

Bit 15 14 13 12 11 10 9 8

∆T−7 0 0 0 0 0 0 0 0

∆T−6 1 0 0 0 0 0 0 0

∆T−5 0 0 0 0 0 0 0 0

∆T−4 ∗ 0 0 0 0 0 xT−6
6 + xT−5

8 ∗
∆T−3 0 0 0 0 xT−6

6 + xT−5
8 + xT−4

10 ∗ ∗ 0

∆T−2 ∗ 0 xT−6
6 + xT−5

8 + xT−4
10 + xT−3

12 ∗ ∗ ∗ ∗ ∗
∆T−1 xT−6

6 +xT−5
8 +

xT−4
10 +xT−3

12 +
xT−2
14

∗ ∗ ∗ ∗ ∗ ∗ xT−6
8 +xT−5

10 +
xT−4
12 +xT−3

14 +
xT−2
0

∆T ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Bit 7 6 5 4 3 2 1 0

∆T−7 0 0 0 0 0 0 0 0

∆T−6 0 0 0 0 0 0 0 0

∆T−5 xT−6
6 0 0 0 0 0 1 xT−6

8

∆T−4 0 0 0 0 1 xT−6
8 + xT−5

10 ∗ 0

∆T−3 ∗ 0 1 xT−6
8 + xT−5

10 + xT−4
12 ∗ ∗ ∗ ∗

∆T−2 1 xT−6
8 + xT−5

10 + xT−4
12 + xT−3

14 ∗ ∗ ∗ ∗ ∗ 0

∆T−1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∆T ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

q14(k). This results in a quadratic equation q14(k) = 0 that involve only key bits in the last two
rounds.

In Table 7, some of the li may be constant and some of the qi may have degree less than 2.
Furthermore, this table also shows that one can find linear and quadratic equations involving
the intermediate input variables xij ’s and key variables. Consequently, all these equations help
to simplify the set A.

4.2 Simplified Gröbner basis algorithm to solve for the master key

A common tool to solve algebraic systems is via Gröbner basis algorithms [12,13]. In fact, efficient
variants of the algorithms have been implemented in many computational software including
Magma [6]. Typically, Gröbner basis algorithms progressively constructs matrices for multiples
of the input polynomials and simplifying the system until the system is solved. One problem
encountered by Gröbner basis algorithms is that the size of the matrices involved increase very
rapidly, thereby blowing up the memory consumption. This is particularly true for dense systems
with many variables. The set A constructed in Algorithm 2 is somewhat sparse in the sense that
one can find many equations involving just the key variables.

Indeed, from Table 7, we see that one can obtain up to 7 linear equations in the last round
key bits with one fault injection. From Lemma 2, it follows that one may expect to obtain
7 × 3/4 ≈ 5 linear equations in the last round key bits. As such, with t ≥ 4, there are likely
to be sufficient linear equations to solve for the last round key. The last round key can then be
substituted into the polynomials in A to solve for other round key bits. For t < 4, one can still
utilize these equations in the round key bits to determine some of the key bits and to simplify
the system with these key bits as well as other linear equations in A. This motivates us to
introduce a “simplified Gröbner basis” approach to recover the full key.

Our algorithm is described in Algorithm 3.



Table 7. Algebraic equations obtained when bit 15 at round T−6 is flipped. Values 0 and 1 are constant
differences.

Bit 15 14 13 12 11 10 9 8

T − 4 ∗ q14(k) q13(k) q12(k) q11(k) q10(k) xT−6
6 + xT−5

8 + q9(k) ∗
T − 3 l15(k) l14(k) l13(k) l12(k) xT−6

6 +xT−5
8 +

xT−4
10 + l11(k)

∗ ∗ l8(k)

T − 2 ∗ 0 xT−6
6 +xT−5

8 +
xT−4
10 +xT−3

12 +
δT−2
13

∗ ∗ ∗ ∗ ∗

T − 1 xT−6
6 +xT−5

8 +
xT−4
10 +xT−3

12 +
xT−2
14 + δT−1

15

∗ ∗ ∗ ∗ ∗ ∗ xT−6
8 +xT−5

10 +
xT−4
12 +xT−3

14 +
xT−2
0 + δT−1

8

T ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Bit 7 6 5 4 3 2 1 0

T − 4 q7(k) q6(k) q5(k) q4(k) q3(k) + 1 xT−6
8 + xT−5

10 + q2(k) ∗ q0(k)

T − 3 ∗ l6(k) l5(k) + 1 xT−6
8 + xT−5

10 + xT−4
12 + l4(k) ∗ ∗ ∗ ∗

T − 2 1 xT−6
8 + xT−5

10 +
xT−4
12 +xT−3

14 +δT−2
6

∗ ∗ ∗ ∗ ∗ 0

T − 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

4.3 Experimental Results

We implemented our attacks with Magma [6] on three members of SIMON family, namely,
SIMON-32/64, SIMON-48/96 and SIMON-64/128, and with different number of bits flipped.
For each attack, we generated 50 random instances and tried to solve them using Algorithm 3.

The executed timings were obtained by running Magma Version 22-3 on a personal laptop.
For each instance, we recorded the number of key bits that were solved by the algorithm. The
average timings and average number of key bits solved over 50 instances are shown in Table 8.

As shown in Table 8, we perform fault injections at the rounds T − 5, T − 6, or T − 7. The
number of key bits flipped (i.e., the number of faults injected) is only from 3 to 5 for different
members of SIMON family. As shown by the experimental results, all the experiments have fast
solving times (less than one minute), and we are able to recover (almost) all the key variables.

Remark 5. In case the position of the bit flip is random, one will need to guess the possible
bit flip positions. This involves at most

(
n
t

)
different choices. Note that one can eliminate some

choices by comparing the differences in round T − 2. In particular, if bit i is flipped, then in
round T − 2, one has bit (i− 1) mod 16 = 0, bit (i− 8) mod 16 = 1 and bit (i− 15) mod 16 = 0.

5 Algebraic Differential Fault Attacks using SAT solvers

Section 4 showed that given known plaintext/ciphertexts, SIMON ciphers could be broken with
only 3 to 5 faults by using a simplified Gröbner basis. In this section, we consider the case where
attackers have a very limited ability to inject faults during the encryption computation, that
is, we assume that the attacker can only inject one fault (t = 1 in Algorithm 2). This section
presents an algebraic fault attack with a single fault by exploiting SAT solvers.

The satisfiability problem (or SAT for short) is one of the classical NP complete problems that
seeks to determine if a Boolean formula has a satisfiability assignment. With its wide and varied



ALGORITHM 3: Algebraic Differential Fault Attacks Using a Simplified Gröbner Basis

1. Randomly select a plaintext P and obtain its ciphertext C under a fixed key K.
2. Construct the set A using Algorithm 2 for some suitable t and r.
3. Construct the matrix for the coefficients of the polynomials in A with respect to a

degree-respecting monomial ordering and perform Gaussian elimination on the system. Let L be
the set of all the linear equations in the corresponding set of polynomials.

4. While new linear polynomials can be found, perform the following:
5. For each L = x+ L0 ∈ L for some variable x, substitute x for L0 in the remaining polynomials in
A. Perform Gaussian elimination to find new linear polynomials.

6. Let A′ be the set of remaining polynomials. Construct the matrix for the coefficients of the
polynomials in A′ with respect to a monomial ordering where all monomials involving only the
key variables are placed to the right. Perform Gaussian elimination to obtain a set K of equations
that involve only the key variables.

7. Compute the Gröbner basis G of K using any Gröbner basis algorithm.
8. If all the key variables are found, return the solved key.
9. Otherwise, compute the Gröbner basis G′ of A′ ∪G.

10. Return G′.

Table 8. Number of key bits found and the corresponding timings. Each round key bit is represented
by a variable. The total number of key variables equals to T ×n, where T is the total number of rounds
and n is half of block size.

Cipher Round
Total no of No of Average No of

Timing (s)
key variables faults key variables found

SIMON-32/64 T − 5 512 4 508.38 2.6

SIMON-32/64 T − 5 512 5 511.46 0.7

SIMON-32/64 T − 6 512 3 511.8 35.3

SIMON-32/64 T − 6 512 4 511.9 2

SIMON-48/72 T − 6 864 4 864 26

SIMON-48/72 T − 6 864 5 864 8.5

SIMON-48/96 T − 6 864 4 864 5.3

SIMON-48/96 T − 6 864 5 864 4.1

SIMON-64/128 T − 6 1048 5 1046 34.3

SIMON-64/128 T − 7 1048 5 1048 28.8

range of applications, such as in automated testing and artificial intelligence, many efficient SAT
solvers have been implemented to solve SAT problems involving large numbers of variables and
constraints. Some well-known modern SAT solvers include Minisat [11], CryptoMiniSat [23] and
MapleSAT [14].5

5.1 SAT solver algorithm to solve for the master key

Observe that when t = 1, the set A constructed in Algorithm 2 reduces the problem of finding
two possible plaintexts P and P ′ with input difference (1, 0, . . . , 0) and corresponding ciphertexts
C and C ′ for T − r rounds of the SIMON cipher. Since the key size is twice the block size, such
a system is likely to admit 22n solutions on average. In order to obtain a unique solution, one
can add in all the cipher equations (Equation 3) for the first r rounds, that is, starting from the

5 For more updates on SAT solvers and their performance, the reader may check out the websites SAT
Live http: //www.satlive.org and SATLIB http: //www.satlib.org.



plaintext P . We call this set A∗. Thus, A∗ will involve another (r−1)n extra quadratic equations
variables compared to A. Typically, the number of variables will be too large for Gröbner basis
algorithms to handle.

As such, we propose using SAT solvers to solve the system A∗ as SAT solvers can better
handle large numbers of variables. From our experiments, solving A∗ directly does not yield
any result within reasonable time. We thus propose to fix some key bits in order to solve the
resulting system more quickly. This leads to the following algorithm.

ALGORITHM 4: Algebraic Differential Fault Attacks Using SAT Solvers

1. Randomly select a plaintext P and obtain its ciphertext C under a fixed key K.
2. Construct the set A using Algorithm 2 for t = 1 and for some suitable r.
3. Construct the set A∗ as the union of A and all the cipher equations for the first r rounds.
4. Construct the matrix for the coefficients of the polynomials in A with respect to a

degree-respecting monomial ordering and perform Gaussian elimination on the system. Let L be
the set of all the linear equations in the corresponding set of polynomials.

5. While new linear polynomials can be found, perform the following:
6. For each L = x+ L0 ∈ L for some variable x, substitute x for L0 in the remaining polynomials in
A. Perform Gaussian elimination to find new linear polynomials. Add the new polynomials to L.

7. Choose k key bits that occur with the highest frequency in the set A∗.
8. For each guess of the k key bits, simplify the system A∗ with the values and let the resulting set

be Â∗.
9. Convert the equations in Â∗ ∪ L into CNF and feed the CNF clauses into a modern SAT solver.

10. Return the key variables found.

Remark 6. – In our algorithm, we include a step to find linear polynomials in order to find
more relations for the SAT solver. Such a preprocessing step has been shown to be helpful.

– Here, we choose the key bits with the highest frequencies to try to simplify the system as
much as possible.

5.2 Experimental Results

Based on the above algorithm, we performed experiments on SIMON-32/64, SIMON-48/72 and
SIMON-48/96. After generating the ANF equations, we use SAGE to convert them into CNF
clauses [20]. The timings were obtained by running CryptoMiniSat 5.0.1 [23] on a 3.6GHz Intel
Core i7 CPU with 8GB RAM. Note that the timings take account into the conversion of ANF
equations into CNF clauses.

Table 9 presents the average timings in seconds obtained for different members of SIMON
family and with different number of key bits fixed. For each experiment, we generated 50 random
instances by injecting a fault into the round T −6 and recorded the time to solve the system. We
fix the maximum time to solve an instance to be 10 minutes. The final column in the following
table records the average timing for all the instances that can be solved within given maximum
time.

6 Conclusion

In this paper, we provided an improved differential trail for fault injection attack on the SIMON
cipher. By analyzing this differential trail, we obtain three differential fault attacks on the



Table 9. Number of instances solved out of 50 and corresponding executed timings.

Cipher No of No of key Instances Timing
faults bits fixed solved (s)

SIMON-32/64 1 18 34 99.1

SIMON-32/64 1 20 42 69.4

SIMON-32/64 1 22 46 47.4

SIMON-48/72 1 22 36 41.2

SIMON-48/72 1 24 42 31.9

SIMON-48/72 1 26 45 37

SIMON-48/96 1 40 22 77.1

SIMON-48/96 1 42 30 103.7

SIMON-48/96 1 44 34 72.4

SIMON cipher. The first one is analytic while the last two are algebraic, and they show a
trade-off between the time complexity and the number of fault injections needed to launch the
attack. In the first attack, we study the differential trail analytically and achieved an improved
attack over the previous differential fault attacks [10,24]. Specifically, our attack could manage
to retrieve the entire master key of all members of SIMON family by injecting faults into a single
round of the cipher. In the second attack, we apply Gröbner basis to the differential path to solve
for SIMON-32/64, SIMON-48/72, SIMON-48/96, and SIMON-64/128. This attack reduces the
number of fault injections needed to between 3 and 5 and also require negligible computation.
The final attack applies SAT solver to the differential path to solve for the key of SIMON-
32/64, SIMON-48/72, and SIMON-48/96 with just one single fault injection and some key bits
guesses. In the last two algebraic attacks, we performed experiments to demonstrate our attack
strategies.

References

1. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis
Wingers. The SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology
ePrint Archive, 2013.

2. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In Proceedings
of the 10th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’90,
pages 2–21, 1991.

3. Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In Proceedings
of the 17th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’97,
pages 513–525, 1997.

4. Johannes Blömer, Martin Otto, and Jean-Pierre Seifert. A New CRT-RSA Algorithm Secure Against
Bellcore Attacks. In Proceedings of the 10th ACM Conference on Computer and Communications
Security, CCS ’03, pages 311–320, 2003.

5. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance of Checking Crypto-
graphic Protocols for Faults. In Proceedings of the 16th Annual International Conference on Theory
and Application of Cryptographic Techniques, EUROCRYPT’97, pages 37–51, 1997.

6. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory
(London, 1993).

7. Christophe Clavier, Benedikt Gierlichs, and Ingrid Verbauwhede. Fault Analysis Study of IDEA.
In Tal Malkin, editor, Topics in Cryptology – CT-RSA 2008, pages 274–287, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.



8. Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In Advances in Cryptology–
EUROCRYPT 2000, pages 392–407. Springer, 2000.

9. N.T. Courtois, K. Jackson, and D. Ware. Fault-Algebraic Attacks on Inner Rounds of DES. In The
eSmart 2010 European Smart Card Security Conference, Sept 2010.

10. Juan del Carmen Grados Vasquez, Fabio Borges, Renato Portugal, and Pedro Lara. An Efficient
One-Bit Model for Differential Fault Analysis on SIMON Family. In 2015 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pages 61–70, Sept 2015.

11. Niklas Een and Niklas Sorensson. An extensible sat-solver. In Enrico Giunchiglia and Armando Tac-
chella, editors, SAT, volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer,
2003.

12. Jean-Charles Faugere. A new efficient algorithm for computing Gröbner bases (F 4). Journal of
pure and applied algebra, 139(1):61–88, 1999.

13. Jean-Charles Faugere. A new efficient algorithm for computing Gröbner bases without reduction
to zero (F 5). In Proceedings of ISSAC, pages 75–83. ACM, 2002.

14. Vijay Ganesh and Jia Hui Liang. MapleSAT. https://sites.google.com/a/gsd.uwaterloo.ca/

maplesat/. Accessed: 2017-11-28.
15. Christophe Giraud. DFA on AES. In Proceedings of the 4th International Conference on Advanced

Encryption Standard, AES’04, pages 27–41, 2005.
16. Ludger Hemme. A Differential Fault Attack Against Early Rounds of (Triple-)DES. In Marc Joye

and Jean-Jacques Quisquater, editors, Cryptographic Hardware and Embedded Systems - CHES
2004, pages 254–267, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

17. Oliver Kömmerling and Markus G. Kuhn. Design Principles for Tamper-resistant Smartcard Pro-
cessors. In Proceedings of the USENIX Workshop on Smartcard Technology on USENIX Workshop
on Smartcard Technology, WOST’99, pages 2–2, 1999.

18. Duc-Phong Le, Sze Ling Yeo, and Khoongming Khoo. Algebraic differential fault analysis on SIMON
block cipher. IEEE Trans. Computers, 68(11):1561–1572, 2019.

19. Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Workshop on the Theory and
Application of Cryptographic Techniques on Advances in Cryptology, EUROCRYPT ’93, pages 386–
397, 1994.

20. Sage. An ANF to CNF Converter using a Dense/Sparse Strategy. http://doc.sagemath.org/

html/en/reference/sat/sage/sat/converters/polybori.html. Accessed: 2017-11-28.
21. D. Samyde, R. Anderson, S. Skorobogatov, and J. Quisquater. On a new way to read data from

memory. In Proceedings First International IEEE Security in Storage Workshop(SISW), volume 00,
page 65, 2002.

22. Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks. In Revised Papers
from the 4th International Workshop on Cryptographic Hardware and Embedded Systems, CHES
’02, pages 2–12, 2003.

23. Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT Solvers to Cryptographic
Problems. In Oliver Kullmann, editor, SAT, volume 5584 of Lecture Notes in Computer Science,
pages 244–257. Springer, 2009.

24. H. Tupsamudre, S. Bisht, and D. Mukhopadhyay. Differential Fault Analysis on the Families of
SIMON and SPECK Ciphers. In 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography,
pages 40–48, Sept 2014.

A Differential Trails of SIMON ciphers

Let ∆i = Xi +X ′i = {δij}0≤i≤T,0≤j≤n−1 denote the difference of intermediate correct and faulty
inputs at the round i. Without loss of generality, we suppose that a fault will be injected into the
bit n− 1. Since the differential trails depend only on block size n, but not on the key word m,
members of SIMON family having the same block size (e.g., SIMON-48/72 and SIMON-48/96),
have the same differential trail. We list below differential trails for different members of SIMON
family. Likewise, the notation ∗ denotes for a complex non-linear expression of variables that is
non-trivial to deduce their values.



SIMON-48/XX

∆T−5 : (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

∆T−4 : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, xT−5
6 , 0, 0, 0, 0, 0, 1, xT−5

16 )

∆T−3 : (1, 0, 0, 0, 0, 0, 0, 0, xT−5
6 ∗ xT−4

14 , 0, 0, 0, 0, 0, xT−4
8 + xT−5

6 , xT−5
6 ∗ xT−4

0 + xT−5
16 ∗ xT−4

7 +
xT−5
6 ∗ xT−5

16 , 0, 0, 0, 0, 1, xT−4
18 + xT−5

16 , xT−5
16 ∗ xT−4

17 , 0)

∆T−2 : (*, 0, 0, 0, 0, 0, *, *, 0, 0, 0, 0, xT−3
10 + xT−4

8 + xT−5
6 , *, *, 0, xT−3

6 + xT−5
6 , 0, 1, xT−3

20 +
xT−4
18 + xT−5

16 , *, *, 0, xT−3
16 + xT−5

16 )

∆T−1 : (1, 0, 0, 0, *, *, *, 0, *, 0, xT−2
12 + xT−3

10 + xT−4
8 + xT−5

6 , *, *, *, xT−3
6 + xT−4

8 , *, *, xT−2
22 +

xT−3
20 + xT−4

18 + xT−5
16 , *, *, *, xT−3

16 + xT−4
18 , *, *)

∆T : (*, 0, *, *, *, *, *, *, *, *, *, *, *, *, *, *, *, *, *, *, *, *, *, xT−1
16 + xT−3

16 + xT−5
16 )

SIMON-64/XX

∆T−5 : (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

∆T−4 : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, xT−5
6 , 0, 0, 0, 0, 0, 1, xT−5

24 )

∆T−3 : (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, xT−5
6 ∗ xT−4

14 , 0, 0, 0, 0, 0, xT−4
8 + xT−5

6 , xT−5
6 ∗

xT−4
0 + xT−5

24 ∗ xT−4
7 + xT−5

6 ∗ xT−5
24 , 0, 0, 0, 0, 1, xT−4

26 + xT−5
24 , xT−5

24 ∗ xT−4
25 , 0, )

∆T−2 : (0, 0, 0, 0, 0, 0, 0, 0, *, 0, 0, 0, 0, 0, *, *, 0, 0, 0, 0, xT−3
10 +xT−4

8 +xT−5
6 , *, *, 0, xT−3

6 +xT−5
6 ,

0, 1, xT−3
28 + xT−4

26 + xT−5
24 , *, *, 0, xT−3

24 + xT−5
24 )

∆T−1 : (*, 0, 0, 0, 0, 0, *, *, 0, 0, 0, 0, *, *, *, 0, *, 0, xT−2
12 +xT−3

10 +xT−4
8 +xT−5

6 , *, *, *, xT−3
6 +xT−4

8 ,
*, 1, xT−2

30 + xT−3
28 + xT−4

26 + xT−5
24 , *, *, *, xT−3

24 + xT−4
26 , *, 0)

∆T : (0, 0, 0, 0, *, *, *, 0, *, 0, *, *, *, *, *, *, xT−1
14 + xT−2

12 + xT−3
10 + xT−4

8 + xT−5
6 , *, *, *, *, *,

*, xT−1
0 + xT−2

30 + xT−3
28 + xT−4

26 + xT−5
24 , *, *, *, *, *, *, *, *)

SIMON-96/XX

∆T−5 : (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

∆T−4 : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, xT−5

6 , 0, 0, 0, 0, 0, 1, xT−5
40 )

∆T−3 : (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, xT−5
6 ∗xT−4

14 ,
0, 0, 0, 0, 0, xT−4

8 +xT−5
6 , xT−5

6 ∗xT−4
0 +xT−5

40 ∗xT−4
7 +xT−5

6 ∗xT−5
40 , 0, 0, 0, 0, 1, xT−4

42 +xT−5
40 ,

xT−5
40 ∗ xT−4

41 , 0)
∆T−2 : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, *, 0, 0, 0, 0, 0, *, *, 0, 0, 0, 0,

xT−3
10 + xT−4

8 + xT−5
6 , *, *, 0, xT−3

6 + xT−5
6 , 0, 1, xT−3

44 + xT−4
42 + xT−5

40 , *, *, 0, xT−3
40 + xT−5

40 )
∆T−1 : (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, *, 0, 0, 0, 0, 0, *, *, 0, 0, 0, 0, *, *, *, 0, 0,

xT−2
12 + xT−3

10 + xT−4
8 + xT−5

6 , *, *, *, xT−3
6 + xT−4

8 , *, 1, xT−2
46 + xT−3

44 + xT−4
42 + xT−5

40 , *, *,
*, xT−3

40 + xT−4
42 , *, 0)

∆T : (0, 0, 0, 0, 0, 0, 0, 0, *, 0, 0, 0, 0, 0, *, *, 0, 0, 0, 0, *, *, *, 0, *, 0, *, *, *, *, *, *,
xT−1
14 + xT−2

12 + xT−3
10 + xT−4

8 + xT−5
6 , *, *, *, *, *, *, xT−1

0 + xT−2
46 + xT−3

44 + xT−4
42 + xT−5

40 , *,
*, *, *, *, *, 1, xT−1

40 + xT−3
40 + xT−5

40 )



SIMON-128/XXX

∆T−5 : (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

∆T−4 : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, xT−5

6 , 0, 0, 0, 0, 0, 1, xT−5
56 )

∆T−3 : (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, xT−5

6 ∗ xT−4
14 , 0, 0, 0, 0, 0, xT−4

8 + xT−5
6 , xT−5

6 ∗ xT−4
0 + xT−5

56 ∗
xT−4
7 + xT−5

6 ∗ xT−5
56 , 0, 0, 0, 0, 1, xT−4

58 + xT−5
56 , xT−5

56 ∗ xT−4
57 , 0)

∆T−2 : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, *, 0, 0, 0, 0, 0, *, *, 0, 0, 0, 0, xT−3

10 + xT−4
8 + xT−5

6 , *, *, 0, xT−3
6 + xT−5

6 , 0, 1,
xT−3
60 + xT−4

58 + xT−5
56 , *, *, 0, xT−3

56 + xT−5
56 )

∆T−1 : (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, *, 0, 0, 0,
0, 0, *, *, 0, 0, 0, 0, *, *, *, 0, *, 0, xT−2

12 + xT−3
10 + xT−4

8 + xT−5
6 , *, *, *, xT−3

6 + xT−4
8 , *, 1,

xT−2
62 + xT−3

60 + xT−4
58 + xT−5

56 , *, *, *, xT−3
56 + xT−4

58 , ∗, 0)
∆T : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, *, 0, 0, 0, 0, 0, *, *, 0, 0,

0, 0, *, *, *, 0, *, 0, *, *, *, *, *, *, xT−1
14 + xT−2

12 + xT−3
10 + xT−4

8 + xT−5
6 , *, *, *, *, *, *,

xT−1
0 + xT−2

62 + xT−3
60 + xT−4

58 + xT−5
56 , *, *, *, *, *, *, 1, xT−1

56 + xT−3
56 + xT−5

56 )


