On the Power of Expansion: More Efficient Constructions in the
Random Probing Model

Sonia Belaid!', Matthieu Rivain', and Abdul Rahman Taleb!-?

1 CryptoExperts, France
2 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

{sonia.belaid,matthieu.rivain,abdul.taleb}@cryptoexperts.com

Abstract. The random probing model is a leakage model in which each wire of a circuit leaks with a
given probability p. This model enjoys practical relevance thanks to a reduction to the noisy leakage
model, which is admitted as the right formalization for power and electromagnetic side-channel attacks.
In addition, the random probing model is much more convenient than the noisy leakage model to
prove the security of masking schemes. In a recent work, Ananth, Ishai, and Sahai (CRYPTO 2018)
introduce a nice expansion strategy to construct random probing secure circuits. Their construction
tolerates a leakage probability of 272 which is the first quantified achievable leakage probability in
the random probing model. In a follow-up work, Belaid, Coron, Prouff, Rivain, and Taleb (CRYPTO
2020) generalize their idea and put forward a complete and practical framework to generate random
probing secure circuits. The so-called expanding compiler can bootstrap simple base gadgets as long as
they satisfy a new security notion called random probing expandability (RPE). They further provide an
instantiation of the framework which tolerates a 2~° leakage probability in complexity O(x"®) where
k denotes the security parameter.

In this paper, we provide an in-depth analysis of the RPE security notion. We exhibit the first upper
bounds for the main parameter of a RPE gadget, which is known as the amplification order. We further
show that the RPE notion can be made tighter and we exhibit strong connections between RPE and
the strong non-interference (SNI) composition notion. We then introduce the first generic constructions
of gadgets achieving RPE for any number of shares and with nearly optimal amplification orders and
provide an asymptotic analysis of such constructions. Last but not least, we introduce new concrete
constructions of small gadgets achieving maximal amplification orders. This allows us to obtain much
more efficient instantiations of the expanding compiler: we obtain a complexity of O(x3?) for a slightly
better leakage probability, as well as 0(53'2) for a slightly lower leakage probability.

Keywords: Random probing model, masking, side-channel security

1 Introduction

Most commonly used cryptographic algorithms are assumed to be secure against black-bor at-
tacks, when the adversary is limited to the knowledge of some inputs and outputs. However, as
revealed in the late nineties [18], their implementation on physical devices can be vulnerable to the
more powerful side-channel attacks. The latter additionally exploit the physical emanations of the
underlying device such as the execution time or the device temperature, power consumption, or
electromagnetic radiations during the algorithm execution.

To counteract side-channel attacks which often only require cheap equipment and can be easily
mounted in a short time interval, the cryptographic community has searched for efficient coun-
termeasures. Among the different approaches, one of the most widely used is known as masking.
Simultaneously introduced by Chari, Jutla, Rao and Rohatgi [10], and by Goubin and Patarin [16]
in 1999, it happens to be strongly related to techniques usually applied in secure multi-party com-
putation. In a nutshell, the idea is to split each sensitive variable of the implementation into n

shares such that n—1 of them are generated uniformly at random whereas the last one is computed
as a combination of the original value and the random shares. Doing so, one aims to ensure that an
adversary cannot recover the secret without knowledge of all the shares. When the shares are com-
bined by bitwise addition, the masking is said to be Boolean, and it enjoys simple implementation
for linear operations which can be simply applied on each share separately. However, things are
trickier for non-linear operations for which it is impossible to compute the result without combining
shares.

In order to reason about the security of these countermeasures, the community has introduced
a variety of models. Among them, the probing model introduced by Ishai, Sahai, and Wagner in
2003 [17] is well suited to analyze the security of masked implementations. Basically, it assumes
that an adversary is able to get the exact values of a certain number ¢ of intermediate variables
in an implementation. This way, it captures the increasing difficulty of combining noisy leakage to
recover secrets. Despite its wide use by the community [20, 13,11, 8,12], the probing model raised
a number of concerns regarding its relevance in practice. Therefore, in 2013, Prouff and Rivain
introduced a general and practical model, known as the noisy leakage model [19]. This model well
captures the reality of embedded devices by assuming that all the manipulated data leak together
with some noise. Unfortunately, proving the security of a masking scheme in this model is rather
tedious, which is why Duc, Dziembowski, and Faust provided in 2014 a reduction showing that a
scheme secure in the probing model is also secure in the noisy leakage model [14].

This reduction is based on an intermediate leakage model, known as random probing model,
to which the security in the noisy leakage model tightly reduces. In this model, every wire of
a circuit is assumed to leak with some constant leakage probability. Then, a circuit is secure if
there is a negligible probability that these leaking wires actually reveal information on the secrets.
Compared to the probing model, the random probing model is closer to the noisy leakage model
and, in particular, captures horizontal attacks which exploit the repeated manipulations of variables
throughout the implementation. Classical probing secure schemes are also secure in the random
probing model but the tolerated leakage probability (a.k.a. leakage rate) might not be constant
which is not satisfactory from a practical viewpoint. Indeed, in practice, the leakage probability
translates to some side-channel noise amount which might not be customizable by the implementer.

So far, only a few constructions [1, 3, 2, 9] tolerate a constant leakage probability. The two former
ones [1, 3] are based on expander graphs and the tolerated probability is not made explicit. The
third construction [2] is based on multi-party computation protocols and an expansion strategy. It
reaches a tolerated leakage probability of around 2726 for a complexity of O(x82) for some security
parameter x, as computed by the authors of [9]. Finally, the more recent construction [9] relies on
masking gadgets and a similar expansion strategy and reaches a tolerated leakage probability of
278 for a complexity of O(x"?). While obtaining such quantified tolerated leakage probability is
of great practical interest, the obtained complexity is high which makes this construction hardly
practical.

Besides their explicit construction, the authors of [9] provide a complete and practical framework
to generate random probing secure implementations. Namely, they formalize the expanding compiler
which produces a random probing secure version of any circuit from three base gadgets (for addition,
copy, and multiplication) achieving a random probing expandability (RPE) property. The advantage
of this approach is that it enables to bootstrap small gadgets (defined for a small number of shares)
into a circuit achieving arbitrary security in the random probing model while tolerating a constant
and quantified leakage probability. Although the concrete results of [9] in terms of complexity and

tolerated leakage probability are promising, the authors left open the analysis of this RPE property
and the design of better gadgets in this paradigm.

Our contributions. In this paper, we provide an in-depth analysis of the random probing expand-
ability security notion. We first provide some upper bounds for the amplification order of an RPE
gadget, which is the crucial parameter in view of a low-complexity instantiation of the expanding
compiler. We further show that the RPE notion can be made tighter and we exhibit strong relations
between RPE and the strong non-interference (SNI) composition notion for probing-secure gadgets.

From these results, we introduce the first generic constructions of gadgets achieving RPE for
any number of shares and with nearly optimal amplification orders. These generic gadgets are
derived from the widely known Ishai-Sahai-Wagner (ISW) construction. We show that the obtained
expanding compiler can approach a quadratic complexity depending on the leakage probability that
must be tolerated: the smaller the leakage probability, the closer the complexity to O(x?). We further
introduce a new multiplication gadget achieving the optimal amplification order, which allows us
to improve the convergence to a quadratic complexity.

Finally, we provide new concrete constructions of copy, addition, and multiplication gadgets
achieving maximal amplification orders for small numbers of shares. These gadgets yield much
more efficient instantiations than all the previous schemes (including the analysed ISW-based con-
structions). While slightly improving the tolerated leakage probability to p = 277, our 3-share
instantiation achieves a complexity of O(k3?). For a slightly lower leakage probability, our 5-share
instantiation drops the complexity to O(k3?2).

We thus achieve a significant step forward in the quest for efficient random probing secure
schemes that tolerate a quantified leakage probability. Besides our concrete instantiations, our work
introduces several tools (new bounds, relations, and generic gadgets) that shall be instrumental for
future constructions.

2 Preliminaries

Along the paper, we shall use similar notations and formalism as [9]. In particular, K shall denote
a finite field. For any n € N, we shall denote [n] the integer set [n] = [1,n] N Z. For any tuple
x = (z1,...,7y) € K" and any set I C [n], we shall denote x|; = (z;)ier.

2.1 Linear Sharing, Circuits, and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the function K* — K
defined as
LinDec: (Z1,...,Zn) = T1 + -+ + Ty ,

for every n € N and (z1,...,z,) € K”. We shall further consider that, for every n,¢ € N, on input
(Z1,...,7) € (K" the n-linear decoding mapping acts as

LinDec: (Z1,...,Z¢) — (LinDec(y), ..., LinDec(Z/)) .

Definition 1 (Linear Sharing). Let n,¢ € N. For any x € K, an n-linear sharing of x is a random
vector * € K" such that LinDec(Z) = x. It is said to be uniform if for any set I C [n] with |I| <n
the tuple Z|; is uniformly distributed over KH!!. A n-linear encoding is a probabilistic algorithm
LinEnc which on input a tuple € = (z1,...,2¢) € K outputs a tuple & = (Z1,...,7¢) € (K™) such
that Z; is a uniform n-sharing of x; for every i € [{].

An arithmetic circuit on a field K is a labeled directed acyclic graph whose edges are wires and
vertices are arithmetic gates processing operations on K. We consider circuits composed of addition
gates, (z1,x2) — x1 + 2, multiplication gates, (z1,x2) — x - 2, and copy gates, x — (z,z). A
randomized arithmetic circuit is equipped with an additional random gate which outputs a fresh
uniform random value of K.

In the following, we shall call an (n-share, (-to-m) gadget, a randomized arithmetic circuit
that maps an input Z € (K") to an output ¥ € (K®)™ such that # = LinDec(z) € K and
y = LinDec(y) € K™ satisfy y = g(x) for some function g. In this paper, we shall consider gadgets
for three types of functions (corresponding to the three types of gates): the addition g : (x1,x2) —
x1 + xo, the multiplication g : (z1,22) — x1 - z2 and the copy ¢ : © — (z,x). We shall generally
denote such gadgets Gaqd, Gmuly and Geopy respectively.

2.2 Random Probing Security

Let p € [0,1] be some constant leakage probability parameter, a.k.a. the leakage rate. In the p-
random probing model, an evaluation of a circuit C' leaks the value carried by each wire with a
probability p (and leaks nothing otherwise), all the wire leakage events being mutually independent.

As in [9], we formally define the random-probing leakage of a circuit from the two following
probabilistic algorithms:

— The leaking-wires sampler takes as input a randomized arithmetic circuit C' and a probability
p € [0,1], and outputs a set W, denoted as

W « LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C' with probability p to
W (where all the probabilities are mutually independent).

— The assign-wires sampler takes as input a randomized arithmetic circuit C, a set of wire labels
W (subset of the wire labels of C'), and an input @, and it outputs a |W|-tuple w € (KU{L})"!,
denoted as

w < AssignWires(C, W, x) ,

where w corresponds to the assignments of the wires of C' with label in W for an evaluation on
input x.

Definition 2 (Random Probing Leakage). The p-random probing leakage of a randomized

arithmetic circuit C' on input x is the distribution L,(C, x) obtained by composing the leaking-wires
and assign-wires samplers as

L,(C,x) u AssignWires(C, LeakingWires(C, p), x) .
Definition 3 (Random Probing Security). A randomized arithmetic circuit C with £-n € N
input gates is (p,e)-random probing secure with respect to encoding Enc if there exists a simulator
Sim such that for every & € K¢:

Sim(C) =~. L,(C, Enc(x)) . (1)

4

2.3 Expanding Compiler

In [2], Ananth, Ishai and Sahai propose an ezpansion approach to build a random-probing-secure
circuit compiler from a secure multiparty protocol. This approach was later revisited by Belaid,
Coron, Prouff, Rivain, and Taleb who formalize the notion of expanding compiler [9].

The principle of the expanding compiler is to recursively apply a base compiler, denoted CC,
and which simply consists in replacing each gate in the input circuit by the corresponding gadget.
More specifically, assume we have three n-share gadgets Gaqd, Gmult; Geopy, for the addition, the
multiplication, and the copy on K. The base compiler CC simply consists in replacing each addition
gate in the original gadget by G,qq, each multiplication gate by Guit, and each copy gate by Geopy,
and by replacing each wire by n wires carrying a sharing of the original wire. One can derive three
new n’-share gadgets by simply applying CC to each gadget: Ggi)d = CC(Gaaq), Ggl)ﬂt = CC(Gnutt),
and G&?,)py = CC(Geopy)- Doing so, we obtain n?-share gadgets for the addition, multiplication, and
copy on K. This process can be iterated an arbitrary number of times, say k, to an input circuit C":
CcC CcC

Ccc‘al ak

The first output circuit 51 is the original circuit in which each gate is replaced by a base gadget
Gadd; Gmult, OF Geopy. The second output circuit Cs is the original circuit C' in which each gate

e

is replaced by an n?-share gadget ngd, ult> OF Gﬁﬂ)y as defined above. Equivalently, 6’2 is the

circuit 61 in which each gate is replaced by a base gadget. In the end, the output circuit C} is
hence the original circuit C' in which each gate has been replaced by a k-expanded gadget and each
wire has been replaced by n* wires carrying an (n*)-linear sharing of the original wire.

This expanding compiler achieves random probing security if the base gadgets verify a property
called random probing expandability [9].

2.4 Random Probing Expandability

We recall hereafter the original definition of the random probing expandability (RPE) property for
2-input l-output gadgets.

Definition 4 (Random Probing Expandability [9]). Let f : R — R. An n-share gadget

G : K" x K" - K" is (t, f)-random probing expandable (RPE) if there exists a deterministic

algorithm Simf and a probabilistic algorithm Simg such that for every input (z,y) € K" x K", for

every set J C [n] and for every p € [0, 1], the random experiment

W < LeakingWires(G, p)
(I, I, J') < Sim§ (W, J)

out < Sim§ (W, J', 2|1, 9l1,)
ensures that
1. the failure events J1 = (]I1| > t) and Fo = (]Ig| > t) verify
Pr(Fi) = Pr(Fp) =¢ and Pr(Fi AFy) =& (2)

with e = f(p) (in particular Fy and Fa are mutually independent),

2. J" is such that J' = J if |J| <t and J' C [n] with |J'| =n — 1 otherwise,
3. the output distribution satisfies

out £ (AssignWires(G, W, (7.9)) . Zl) (3)
where z = G(Z,7).

The RPE notion can be simply extended to gadgets with 2 outputs: the Sim? simulator takes
two sets J; C [n] and Jo C [n] as input and produces two sets J{ and J} satisfying the same property
as J' in the above definition (w.r.t. J; and J3). The SimQG simulator must then produce an output
including z1 | 7 and Zzp| 7 where z1 and z; are the output sharings. The RPE notion can also be

simply extended to gadgets with a single input: the Sim%’v simulator produces a single set I so that
the failure event (|I| > t) occurs with probability ¢ (and the Sim§ simulator is then simply given
Z|r where 7 is the single input sharing). We refer the reader to [9] for the formal definitions of these
variants. Eventually, the RPE notion can also be extended to gadgets with an arbitrary number ¢
of inputs. The Sim? simulator then produces ¢ sets I, ..., I; so that the corresponding failures
(L] > t), ..., (|Is] > t) occur with probability ¢ and are additionally mutually independent. The
Simg simulator then simply gets use of the shares of each input as designated respectively by the
corresponding sets Iy, ..., Iy.

Note that as explained in [9], the requirement of the RPE notion on the mutual independence
of the failure events might seem too strong. We can actually use the proposed relaxation referred
to as weak random probing expandability. Namely, the equalities (Equation (2)) are replaced by
inequalities as upper bounds are sufficient in our context. We refer the reader to [9] for the concrete
reduction, which does not impact the amplification orders.

2.5 Complexity of the Expanding Compiler

We start by recalling the definition of the amplification order of a function and of a gadget.

Definition 5 (Amplification Order).

— Let f: R — R which satisfies
f(p) = cap” + O(p™)

as p tends to 0, for some cqg > 0 and € > 0. Then d is called the amplification order of f.

— Lett > 0 and G a gadget. Let d be the mazximal integer such that G achieves (t, f)-RPE for
f:R = R of amplification order d. Then d is called the amplification order of G (with respect
tot).

We stress that the amplification order of a gadget G is defined with respect to the RPE threshold
t. Namely, different RPE thresholds t are likely to yield different amplification orders d for G (or
equivalently d can be thought of as a function of t).

As shown in [9], the complexity of the expanding compiler relates to the (minimum) amplifica-
tion order of the three gadgets used in the base compiler CC. If the latter achieves (¢, f)-RPE with
an amplification order d, the expanding compiler achieves (p,27")-random probing security with a
complexity blowup of O(k€) for an exponent e satisfying

log Nmax
— max 4
¢ logd)

6

with

N, . N,
Nmax = max | Ny , eigenvalues A e 5

where Ny, denotes the number of gates “x” in a gadget “y”, with “m” meaning multiplication,
“a” meaning addition, and “c” meaning copy. As an illustration, the instantiation proposed in [9]
satisfies Npaxy = 21 and d = % which yields an asymptotic complexity of O(k"?).

Finally, we recall the notion of maximum tolerated leakage probability which corresponds to
the maximum value p for which we have f(p) < p. This happens to be a necessary and sufficient
condition for the expansion strategy to apply with (¢, f)-RPE gadgets. The instantiation proposed

in [9] tolerates a leakage probability up to 2770,

3 Bounding the Amplification Order

As recalled above, the amplification order of a gadget is a crucial parameter of its random probing
expandability. The higher the amplification order, the lower the asymptotic complexity of the
expanding compiler, ceteris paribus. A natural question which was left open in [9] is to determine
the best amplification order that can be hoped for given the different parameters of a gadget. In
this section, we exhibit concrete upper bounds on the amplification order that can be achieved by
a gadget depending on its input-output dimensions (¢,m), its number of shares n, and its RPE
threshold ¢.

Before giving the bounds let us make a key observation on the amplification order of a gadget.
Let G be a 2-to-1 n-share gadget achieving (¢, f)-RPE. A subset W of the wires of G is said to be a
failure set with respect to the first input (resp. the second input) if there exists a set J C [n] such
that (I1, Iy, J') < Sim§(W, J) implies |I;| > ¢ (resp. |I| > t), namely if a leaking set W implies
the failure event Fi (resp. F2) in the definition of RPE. One can check that G has amplification
order d < d,,;, if one of the two following events occurs:

1. there exists a failure set WW w.r.t. the first input or the second input such that W| = d,,
2. there exists a failure set WV w.r.t. the first input and the second input such that |W| = 2d,,.

In the former case, the existence of the failure set implies that the function f(p) has a non-zero
coefficient in p%» and hence d < dyp. In the latter case, the existence of the double failure set
implies that the function f?(p) has a non-zero coefficient in p?¥» and hence d < dyp. The case of
a single-input gadget is simpler: it has amplification order d < d,,;, if there exists a failure set W
(w.r.t. its single input) such that [W| = dy,.

We start by exhibiting a generic upper bound for the amplification order and then look at the
particular case of what we shall call a standard multiplication gadget.

3.1 Generic Upper Bound

In the following we will say that a function g : K¢ — K™ is complete if at least one of its m
outputs is functionally dependent on the ¢ inputs. Similarly, we say that a gadget G is complete if
its underlying function g is complete.

The following lemma gives our generic upper bound on the amplification order.

Lemma 1. Let f: R =R, n € N and £,m € {1,2}. Let G : (K*)* — (K™)™ be an {-to-m n-share
complete gadget achieving (t, f)-RPE. Then its amplification order d is upper bounded by

min((t +1),(3—=4¢) - (n—1t)).

Proof. The first part of the bound on the amplification order d < (¢t + 1) is immediate since by
probing ¢ + 1 shares of any input, the considered set will be a failure set of cardinality ¢ + 1. We
then consider two cases depending on the number of inputs:

1. I-input gadgets (¢ = 1): We show that we can exhibit a failure set of size 2(n — t). Let us
denote the output shares z1,..., 2, (for two-output gadgets, i.e. m = 2, z1,..., 2z, can be any
of the output sharings). In the evaluation of the (¢, f)-RPE property, ¢ shares among the z;’s
(corresponding to the set J) must be simulated. Without loss of generality, let z1,..., 2 be
those shares (i.e. J = [t]). By including both input gates of each of the remaining output shares
Zt11,---,2n in the set W, the distribution to be simulated requires the knowledge of the full
input (by completeness of the gadget). The set W is thus a failure set with 2(n — t) elements.

2. 2-input gadgets (¢ = 2): Considering the same failure set as in the above case, the simulation
of out requires the full two input sharings. Hence W is a failure set of size 2(n — t) with respect
to the two inputs, and so the amplification order satisfies d < (n — t).

We hence conclude that d < min((t+1),2(n—t)) for one-input gadgets, and d < min((t+1), (n—1))
for two-input gadgets. O

Corollary 1 (One-input gadget). The amplification order d of a one-input gadget achieving
(t, f)-RPE is upper bounded by
2(n+1)

d<
- 3

The above corollary directly holds from Lemma 1 for a RPE threshold ¢t = % (which balances
the two sides of the min).

Corollary 2 (Two-input gadget). The amplification order d of a two-input gadget achieving

(t, f)-RPE is upper bounded by
d< n+1 .
- 2

The above corollary directly holds from Lemma 1 for a RPE threshold t = ”Tfl (which balances
the two sides of the min).

We deduce from the two above corollaries that for a circuit composed of addition, multiplication
and copy gadgets, the amplification order is upper bounded

2 1 1 1
d<min< (n+1) n+ >:n—|—

37 2 2

n—1

which can only be achieved for an odd number of shares by taking ¢ = *5= as RPE threshold.

3.2 Upper Bound for Standard Multiplication Gadgets

The generic bound exhibited above is not tight in the special case of a standard multiplication
gadget which computes cross products between the input shares, such as the ISW multiplication
gadget [17]. We exhibit hereafter a tighter bound for such gadgets.

Formally, a m-share multiplication gadget G is a standard multiplication gadget, if on input
(z,y) € (K")2, G computes the cross products z; - y; for 1 < 4,5 < n. Our upper bound on the
amplification order for such gadgets is given in the following lemma.

Lemma 2. Let f: R — R andn € N. Let G be an n-share standard multiplication gadget achieving
(t, f)-RPE. Then its amplification order d is upper bounded by

t+1
d < min <_|2_7(n—t)>.

Proof. The second part of the bound (n—t) holds directly from Lemma 1. We now prove the bound
(t +1)/2 by exhibiting a failure set of size ¢ + 1 with ¢ output shares, which will be a failure on
both inputs. Let {mij}0§i7j§n denote the cross products such that m;; = x; - y;. Consider a set
W made of ¢t + 1 such variables {m;;} for which the indexes ¢ and j are all distinct. Specifically,
W = {xi - Yjis --+» Tippy * Yjoun t Such that {ig}1<s<;41 and {je}1<e<i+1 are both sets of (¢ + 1)
distinct indexes. Clearly, such a set is a failure set for both inputs « and y since it requires ¢ + 1
shares of each of them to be perfectly simulated (even without considering the output shares to be
also simulated). We hence have a double failure set of cardinality ¢ + 1 which implies the (¢t 4 1)/2
upper bound on the amplification order. O

The above lemma implies that the highest amplification order for standard multiplication gad-
gets might be achieved for a RPE threshold ¢t = % which yields the following maximal upper

bound: 41
n
d<
— 3 b

which is lower than the generic upper bound for 2-to-1 gadgets exhibited in Corollary 2. This
loss suggests that better amplification orders could be achieved for multiplication gadgets that do
not compute direct cross products of the input shares. We actually provide new constructions of
multiplication gadgets avoiding this loss in Section 5.

4 A Closer Look at Random Probing Expandability

In this section, we give a closer look at the RPE notion. We first show that it naturally splits
into two different notions, that we shall call RPE1 and RPE2, and further introduce a tighter
variant which will be useful for our purpose. We then study the relations between (tight) RPE and
the Strong Non-Interference (SNI) notion used for probing security. We exhibit strong connections
between (tight) RPE1 and SNI, which will be very useful for our constructive results depicted in
Section 5.

4.1 Splitting RPE

From Definition 4, we can define two sub-properties which are jointly equivalent to RPE. In the
first one, designated by RPE1, the set J is constrained to satisfy |J| <t and J' = J (the simulator
does not choose J'). In the second one, designated by RPE2, J’ is chosen by the simulator such
that J' C [n] with |J/| = n — 1 (and J does not matter anymore). For the sake of completeness,
these two notions are formally defined in Appendix A.

This split is somehow a partition of the RPE notion since we have:
G is (t, f)-RPE < G is (t, f)-RPEl and G is (¢, f)-RPE2

for any gadget G. As a result of the above equivalence, we can show that a gadget achieves RPE1
and RPE2 independently in order to obtain RPE for this gadget. Formally, we use the following
lemma.

Lemma 3. An n-share gadget G : K" x K" — K" which is (t, f1)-RPE1 and (t, f2)-RPEZ2 is also
(t, f)-RPE with f(p) = max(f1(p), f2(p)) for every p € [0,1].

We can refine the upper bounds introduced in Section 3 with respect to this split. In Lemma 1,
the bound d < ¢t + 1 applies to both RPE1 and RPE2, while the bound d < (3 —¢) - (n — t) only
applies to RPEL. Similarly, in Lemma 2, the bound d < (¢4 1)/2 applies to both RPE1 and RPE2,
while the bound d < (n — t) only applies to RPEL.

4.2 Tightening RPE

We introduce a tighter version of the RPE security property. The so-called tight random probing
expandability (TRPE) is such that a failure occurs when the simulation requires more than ¢ input
shares (as in the original RPE notion) but also whenever this number of shares is greater than the
size of the leaking set WV. Formally, the failure event F; is defined as

.7"]' = (|Ij| > min(t, |W’))

for every j € [(].

This tighter security property will be instrumental in the following to obtain generic RPE
constructions. Similarly to the original RPE property, the TRPE property can be split into two
intermediate properties, namely TRPE1 and TRPE2 and Lemma 3 also applies to the case of
TRPE. Moreover the upper bounds on the amplification order for RPE in Lemmas 1 and 2 further
apply to the amplification order for TRPE (which holds by definition). The formal TRPE, TRPE1,
and TRPE2 definitions are given in Appendix B for the sake of completeness.

We show hereafter that the TRPE notion is actually equivalent to the RPE notion if and only
if the function f is of maximal amplification order ¢ + 1.

Lemma 4. Lett € N, let f : R — R of amplification order d. Let G be a gadget.

1. If G achieves (t, f)-TRPE, then it achieves (t, f')-RPE for some ' : R — R of amplification
order d' > d.

2. If G is of amplification order d with respect to t (i.e. d is the max amplification order of a
function f for which G is (t, f)-RPE), then for all f' : R — R for which G achieves (t, f')-
TRPE, " is of amplification order d' < d.

3. If d =t +1, then G achieves (t, f)-TRPE if and only if G achieves (t, f)-RPE.

Proof. The proof for the first two points is easy. In particular, for the first point, if G achieves
TRPE with an amplification order of d, then G achieves RPE with amplification order at least d,
since a failure in the TRPE setting i.e. |I;| > min(¢, |[W|) does not necessarily imply a failure in
the RPE setting i.e. |I;| > t, meanwhile if there is no failure for TRPE for a leaking set of wires
W, then this implies that |;| < min(¢, [W|) <t so there is no failure in the RPE setting either.
As for the second point, the proof is similar: if G achieves an amplification of d in the RPE
setting, then it achieves an amplification order of at most d in the TRPE setting, since a failure in
the RPE setting i.e. |I;| > t immediately implies a failure in the TRPE setting |I;| > min(¢, [WV]).
But also, even if there is no failure for a leaking set of wires W in the RPE setting we might still
have a failure in the TRPE setting for the same set WW. This is mainly the case where W can be
simulated with sets of input shares I; such that [W| < |I;| < ¢, so we have |I;| <t (i.e. no failure

10

for RPE) and |I;| > min(¢,|W|) = |W]| (i.e. failure on TRPE). This concludes the proof for the
second point.

We will now prove the third point. Let d = t + 1. We will show that for every set J' C [n] of
output shares and every leaking set of wires W, a failure occurs in the TRPE setting if and only
if a failure also occurs in the RPE setting. If [W| > ¢, then the two settings are equivalent since
min(¢, |W|) = t. We will thus only focus on the case |WW| < t. Clearly, a failure in the RPE setting,
i.e. |I;| > t, implies a failure in the TRPE setting, i.e. |I;| > min(¢,|WV]). Let us now show that the
converse is also true.

We assume by contradiction that there exists J' and W implying a TRPE failure which is not an
RPE failure, that is a set I; satisfying |[W| < |I;| < t. We then show that there exists a leaking set
W' of size [W'| < t+1 for which an RPE failure always occurs, which implies an amplification order
strictly lower than ¢ + 1 and hence contradicts the lemma hypothesis. This set W’ is constructed
as W' = WU [for some set I; C [n]\ I; such that [I}| = ¢+ 1 — |I;|. The simulation of W’ and .J'
then requires the input shares from I; U I]’ However, we have

UL =L+ | =t+1
implying an RPE failure, and
W= WU < W+] = W[+t +1— L] < W[+t+1- W =t+1.

Thus, we have built a failure set W’ of size strictly less than the amplification order ¢ + 1, which
contradicts the hypothesis and hence concludes the proof. O

The above proof also applies to the case of the split notions, specifically for ((¢, f)-RPEL1, (t, f)-
TRPEL) and for ((t, f)-RPE2, (¢, f)-TRPE2).

4.3 Unifying (Tight) RPE and SNI

Strong non-interference (SNI) is a widely used notion to compose probing-secure gadgets [5]. In [9],
the authors exhibit a relation between the SNI and the random probing composability (RPC) prop-
erty in their Proposition 1. We go one step further and study the relation between SNI and (T)RPE.

We state hereafter some equivalence results between the (T)RPE1 and SNI notions, up to some
constraints on the parameters. Let us first recall the definition of the SNI notion.

Definition 6 (Strong Non-Interference (SNI)). Let n, ¢ and T be positive integers. An n-share
gadget G : (K™)¢ — K" is 7-SNI if there exists a deterministic algorithm Sim? and a probabilistic
algorithm Simg such that for every set J C [n] and subset W of wire labels from G satisfying
W| + |J| < 7, the following random experiment with any & € (K™)*

I < Sim{(W,.J)

out Sim§(§|1)
yields

[< Vs [< V) (6)

and .
out id (AssignWires(G,W,@) mJ) (7)

where I = (I1,...,1I;) and y = G(Z).

11

We first formally show that (T)RPE1 implies SNI.

Lemma 5. Lett € N and f : R — R of amplification order t+ 1. Let G be a gadget which achieves
(t, f)-TRPE1. Then G is also t-SNI.

Proof. By definition of TRPE1 and by hypothesis on the amplification order, there exist input sets
I,...,I; which can perfectly simulate any leaking wires set W such that |W| < ¢ and any set of
output shares J such that |J| < ¢, satisfying ||, ..., |I;] < |W]. Consequently, there exist input
sets I, ..., I; which can perfectly simulate any leaking wires set W such that [W| =t; < ¢ and any
set of output shares J such that W|+ |[J| <t with |I1],...,|Is| <t;. G is thus ¢-SNI. O

We now show that SNI implies TRPE1 up to some constraints on the parameters ¢ and 7.

Lemma 6. Let 7,0 € N. Let G be an (-to-1 gadget which achieves T-SNI. Then G satisfies (t, f)-
TRPE1 for some f: R — R with an amplification order of

1
dzzmin(t—l—lﬂ'—t—l—l).

Proof. Since G is 7-SNI, then for any set of leaking wires WW and output shares J such that
IW| 4+ |J| < 7, the wires indexed by W and the output shares indexed by J can be perfectly
simulated from input shares indexed by Iy, ..., Iy such that |[;| < |W)| for every 1 < j < /. In the
TRPEL1 property, the set J of output shares can be any set of size |J| <t so we can assume |J| =t
without loss of generality.

For a leaking set W of size |W| < min(t+ 1,7 — ¢+ 1) no failure event occurs. Indeed 7-SNI and
IW| < 7 —t+ 1 implies |W| + |J| < 7 and hence the existence of the sets I, ..., I, allowing the
simulation with |I;| < [W|. And [W| < t + 1 implies |/;| < min(¢, |[W)]) for every j which implies
the absence of failure. Then for a leaking set W of size |[WW| > min(¢ + 1,7 — t 4+ 1), no condition
remains to rule out simulation failures and one could actually get a failure for every input. In the
latter case, the amplification order would equal % min(t+ 1,n —t), but in all generality it could be
higher (i.e. this value is a lower bound). O

An illustrative summary of the relations between RPE1, TRPE1 and SNI is depicted in Figure 1
(d denotes the amplification order of the function f). We hence observe an equivalence between the
three notions up to some constraints on the parameters ¢, d, 7 and /.

d>1 mlnt—|—1 T—t+1)

e . pronn

Fig. 1: Summary of relations between the different notions.

12

Relation and separation between (T)RPE2 and SNI. For a given n-share gadget G, the
(T)RPE2 notion exclusively focuses on the simulation of a set of leaking intermediate variables
together with a chosen set of (n— 1) output shares. If G is 7-SNI for 7 < n—1, then nothing can be
claimed on the simulation of the latter sets. But if G is (n — 1)-SNI, then any set of (n — 1) output
shares can be perfectly simulated without the knowledge of any input share. Concretely, it implies
that G is (¢, f)-(T)RPE2 of amplification order at least 1 as a chosen output set of (n — 1) shares
alone can be perfectly simulated without any additional knowledge on the input shares. Namely,
we have

(n —1)-SNI = (¢, f)-(T)RPE2 of amplification order at least 1.

Nevertheless, there is no relation from 7-SNI to (¢, f)-(T)RPE2 for amplification orders strictly
greater than 1 as (T)RPE2 would then consider leaking sets of size larger than or equal to n (for
n-share gadgets, 7 < n). On the other side, there is no direct implication either from (¢, f)-(T)RPE2
to 7-SNI since the former property does not consider all possible output sets of size (n — 1), but
only a chosen one.

5 Generic Constructions

To the best of our knowledge, the only RPE gadgets in the literature are the ones designed in [9]
which are restricted to a small number of shares, specifically n € {2,3}. A natural open question is
the definition of RPE gadgets with good amplification orders, typically achieving or approaching the
upper bounds exhibited in Section 3, for any number of shares n. In this section, we exhibit copy,
addition, and multiplication gadgets derived from the widely known Ishai-Sahai-Wagner (ISW)
construction [17]. Based on the results demonstrated in Section 4, we are able to show that these
gadgets achieve RPE for any number of shares n with amplification orders close to the upper bounds
(up to a small constant factor). We further provide an asymptotic analysis of the expanding compiler
using these gadgets as well as a new multiplication gadget reaching the optimal amplification order
hence improving the convergence to a better asymptotic complexity.

5.1 Generic Copy and Addition Gadgets

As intuitively proposed in [9] for small gadgets, copy and addition gadgets can be naturally derived
from a refresh gadget. Such a gadget takes one sharing as input and outputs a new refreshed sharing
of the same value. We formally introduce these natural constructions hereafter and show that their
RPE security can be reduced to that of the underlying refresh gadget.

Generic Copy Gadget. Algorithm 1 displays the generic construction for the copy gadget from
a refresh gadget. It simply consists in refreshing the input sharing twice to obtain two fresh copies.

Algorithm 1: Copy gadget Geopy

Input : (ai,...,ay,) input sharing

Output: (e1,...,ey), (fi,..., fn) fresh copies of (a1,...,ay)
(e1,...,€n) < Grefresn(a1, ..., an);

(fla ceey fn) — Grefresh(ala . aan)§

13

We have the following lemma (see the proof in Appendix C).

Lemma 7. Let Grefresn, be an n-share (t, f)-TRPE refresh gadget of amplification order d. Then,
the copy gadget G copy displayed in Algorithm 1 is (t, f')-TRPE also of amplification order d.

As a consequence of this result, a TRPE refresh gadget directly yields a TRPE copy gadget
achieving the same amplification order. Both gadgets can then reach the(up})aer bound for 1-input
2(n+1

gadgets whenever ¢t + 1 = 2(n — t) implying an amplification order d = =5,

Generic Addition Gadget. Algorithm 2 displays the generic construction for the addition gadget
from a refresh gadget. It simply consists in refreshing both input sharings before adding them.

Algorithm 2: Addition Gadget Gaqq
Input : (ai,...,an),(b1,...,b,) input sharings
Output: (cy,...,c,) sharing of a + b
(61, ce ,en) — Grefresh((ll, A ,an);
(f17 sy fn) — Grefresh(bla ey bn)7
(c1y...ycn) < (e14+ fi,.ven+ fn);

We have the following lemma (see the proof in Appendix D).

Lemma 8. Let Girefresn, be an n-share refresh gadget and let Goqq be the corresponding addition
gadget displayed in Algorithm 2. Then if Grefresh s (t, f)-RPE (resp. (t, f)-TRPE) of amplification
order d, then Guqq is (t, f')-RPE (resp. (t, f')-TRPE) for some f' of amplification order d' > |4].

The above lemma shows that a (T)RPE refresh gadget of amplification order d directly yields
a (T)RPE addition gadget of amplification order at least |4]. If the refresh gadget achieves the
optimal d = %, then the generic addition gadget has an amplification order at least |5 | which

: : +1
is not far from the upper bound for two-input gadgets of *5-.

We stress that the results of Lemma 7 and Lemma 8 are general and apply for any refresh
gadget satisfying the (T)RPE property. In the rest of the section, we shall focus on a particular
refresh gadget, namely the ISW-based refresh gadget. We show that this gadget achieves (T)RPE
from which we obtain (T)RPE copy and addition gadgets for any number of shares n and with
amplification orders close to the upper bound (up to a small constant factor).

5.2 ISW-based Copy and Addition Gadgets

As a basis of further constructions, we focus our analysis on the most deployed refresh gadget,
which is based on the ISW construction [17].

ISW Refresh (Gadget. This refresh can be seen as an ISW multiplication between the input
sharing and the n-tuple (1,0,...,0). This is formally depicted in Algorithm 3.

14

Algorithm 3: ISW Refresh
Input : (ai,...,a,) input sharing, {r;;}1<i<j<n random values
Output: (c1,...,cy) such that ¢y + -+ ¢, =a1+ -+ an
for i + 1 ton do
‘ C; < Qqg;
end
for i < 1 ton do
for j« 1toi—1do
‘ c; — ¢ + Tjis
end
for j<i+1tondo
‘ Ci < ¢ + Ty
end

end
return (c,...,cp);

We demonstrate through Lemma 9 that the ISW refresh gadget satisfies TRPE with an ampli-
fication order close to the optimal one. The proof is given in Appendix E.

Lemma 9. Let n € N. For every t < n — 2, the n-share ISW refresh gadget is (t, f1)-TRPE1 and
(t, f2)-TRPE2 for some functions f1, fa : R = R of amplification orders dy, da which satisfy:

— dy =min(t + 1,n —t) for fi,
—dy=t+1 for fo.

Corollary 3 then directly follows from Lemma 3 applied to TRPE and Lemma 9.

Corollary 3. Let n € N. For every t < n — 2, the n-share ISW refresh gadget is (t, f)-TRPE of
amplification order
d=min(t+ 1,n —t).

According to Lemma 1, the upper bound on the amplification order of 1-input gadgets is d <
min(t + 1,2(n — t)) which gives d < % for t = 2”3—_1 In contrast, the ISW refresh gadget reaches
n—1

d= L”THJ by taking ¢t = ["5=]. While applying this result to the generic constructions of addition
and copy gadgets introduced above, we obtain:

— a copy gadget of amplification order d. = L"T‘HJ (Lemma 7),
— an addition gadget of amplification order at least d, = |2+ | (Lemma 8).

In the following, we demonstrate a tighter result than Lemma 8 for the ISW-based addition
gadget (namely which does not imply the loss of a factor 2).

ISW-based Copy Gadget. The copy gadget Geopy that uses the n-share ISW refresh gadget
as a building block in Algorithm 1 achieves the same amplification order as the ISW refresh for
the TRPE setting, i.e. d = min(¢ + 1,n — ¢). This is a direct implication from Lemma 7. Then,
from Lemma 4, we have that ISW-based Gopy also achieves (¢, f)-RPE with amplification order
d" > d. We can actually prove that ISW-based Gopy achieves (¢, f)-RPE with amplification order
d' exactly equal to the amplification order in the TRPE setting, i.e. d = d = min(¢t+1,n —t). This
is stated in the following lemma which proof is given in Appendix F.

15

Lemma 10. Let Gypy be the n-share copy gadget displayed in Algorithm 1 and instantiated with
the ISW refresh gadget. Then for every t < n — 2, Geopy achieves (t, f)-RPE with amplification
order d = min(t + 1,n —t).

ISW-based Addition Gadget. The addition gadget G,qq that uses the n-share ISW refresh
gadget as a building block in Algorithm 2 achieves the same amplification order as the ISW refresh
gadget, which is tighter than the bound from Lemma 8. This is stated in the following Lemma,
which follows from Lemma 9, and from the fact that ISW refresh is (n — 1)-SNI. The proof is given
in Appendix G.

Lemma 11. Let G444 be the n-share addition gadget displayed in Algorithm 2 and instantiated with
the ISW refresh gadget. Then for everyt < n — 2, G444 achieves (t, f1)-TRPE1 and (t, f2)-TRPE2
for some functions fi, fo : R — R of amplification orders dy, do which satisfy:

— dy =min(t + 1,n —t),
— d2:t+1.

Corollary 4 then directly follows from Lemma 11 by applying Lemma 3 (TRPE1 N TRPE2 =
TRPE) and Lemma 4 (TRPE = RPE).

Corollary 4. Letn € N. For everyt < n—2, the n-share gadget G ,qq displayed in Algorithm 2 and
instantiated with the ISW refresh gadget is (t, f)-RPE of amplification order d = min(t + 1,n — t).

5.3 ISW Multiplication Gadget

In contrast to the copy and addition gadgets that are built from generic schemes with a refresh
gadget as a building block, the multiplication gadget can be directly defined as the standard ISW
multiplication, which is recalled in Algorithm 4.

Algorithm 4: ISW Multiplication
Input : (ai,...,ay),(b1,...,b,) input sharings, {r;;}1<i<j<n random values
Output: (cy,...,c,) sharing of a - b
for i + 1 ton do

‘ C; < a; - bi;
end
for i +— 1 ton do
for j< ¢+ 1 tondo
C; < ¢ + Tij;
Tji < (ai . bj + Tij) +aj- bs;
Cj < Cj + i

end
end
return (ci,...,¢,);

We have the following lemma (see the proof in Appendix H).

16

Lemma 12. Let n € N. For every t < n — 2, the n-share ISW multiplication gadget displayed in
Algorithm 4 is (t, f1)-RPE1 and (t, f2)-RPE2 for some functions fi, fo : R — R of amplification
orders di, do which satisfy:

min(t +1,n —t)
- dl =)

t+1 2
— dy = —

Corollary 5 then directly follows from Lemma 12 by applying Lemma 3 (RPE1 N RPE2 =

RPE).

Corollary 5. Let n € N. For every t < n — 2, the n-share ISW multiplication gadget displayed in
Algorithm 4 is (t, f)-RPE of amplification order

min(t + 1,n —t)

d= 5

According to Lemma 2, the upper bound on the amplification order of a standard multiplication
gadget (i.e. which starts with the cross-products of the input shares) is d < min((t+1)/2, (n —1t))
which gives d < (n+1)/3 for t = (2n —1)/3. In contrast, the ISW multiplication gadget reaches
d=|"t| by taking t = [251].

5.4 Application to the Expanding Compiler

As recalled in Section 2.5, instantiating the expanding compiler with three RPE base gadgets
gives a (p,27")-random probing secure compiler (i.e. achieving k bits of security against a leakage
probability p) with a complexity blowup of O(k¢) for an exponent e satisfying

e = 10g Nimax
~ logd

where Npax satisfies (5) and where d is the minimum amplification order of the three base gadgets.

We can instantiate the expanding compiler using the above ISW-based gadgets. Specifically, we
use the ISW multiplication for the multiplication gadget Gy, and the generic constructions of
addition and copy gadgets based on the ISW refresh. From Lemmas 10, 11, and 12, the maximum
amplification order achievable by the compiler is the minimum of the three gadgets, which is the
order of the ISW multiplication gadget:

min(t 4+ 1,n —t)

d=
2

Hence, for a given number of shares n, the maximum amplification order achievable is

n+1
4

dmax = \‘

which is obtained for ¢t = [251]. On the other hand, the value of Nyax can be characterized in

terms of the number of shares n from the ISW algorithm. Recall from Section 2.5 that

Naa N,
Npax = max [Ny, eigenvalues e C’a>>> .
o < mom > S8 <<Na,c Nee

17

In the case of the ISW-based gadgets, we have Ny, = n? and

(i) = (i ™)

The eigenvalues of the above matrix are \; = n and Ay = 3n? — 2n, implying Npax = 3n% — 2n.
Thus, the expanding compiler instantiated by our ISW-based gadgets has a complexity blowup
O(k°) with exponent
log(3n2 — 2n)
e= .
log([(n +1)/4])

Figure 2 (blue curve) shows the evolution of the value of this exponent with respect to the number
of shares n (where we assume an odd n). The value of e clearly decreases as the number of shares
grows, and this decrease is faster for a small number of shares (5 < n < 10). The exponent value
reaches e ~ 4 for a number of shares around 25 and then slowly converges towards e = 2 as n
grows. This is to be compared with the O(x") complexity achieved by the instantiation from [2,
9.

15 %
—— Nmax =3n% —2n, d=(n+1)/4
Nmax = 3n% —2n, d=(n+1)/2
—— Nmax = n?, d=(n+1)/2
10 +
(8]
-
|
[}
<
o)
o)
=
m
5 1
0

0 5 10 15 20 25

Number of shares n
Fig.2: Evolution of the complexity exponent e = log(Nmax)/log(d) with respect to the number
of shares n. The blue curve matches the instantiation with the ISW-based gadgets; the orange
curve assumes the optimal amplification order (i.e. an improvement of the multiplication gadget);

the pink curve assumes a better complexity for addition and copy gadgets (so that Npax matches
Num = n?).

Towards a Better Complexity. Choosing gadgets which attain the upper bound min(t+1,n—t)
on the amplification order from Lemma 1 allows the compiler to have the maximum amplification
order d = (n+1)/2 and thus have the lowest complexity blowup. Our ISW-based copy and addition
gadgets achieve this bound while the ISW multiplication gadget is limited to (n+1)/4 (Lemma 12).
To reach the optimal amplification order, one would need a different multiplication gadget and in

18

particular a multiplication gadget which does not perform a direct product of shares (because of
the bound from Lemma 2). We introduce such a multiplication gadget hereafter (see Section 5.5).
Specifically, our new multiplication gadget achieves the upper bound on the amplification order
min(t + 1,n — t) by avoiding a direct product of shares using a prior refresh on the input sharings.
The orange curve in Figure 2 shows the evolution of the value of the exponent when instantiating
the expanding compiler with our previous addition and copy gadgets and this new multiplication
gadget. For such an instantiation, the complexity exponent still slowly converges towards e = 2 but,
as we can see from Figure 2, the exponent value is much better for small values of n. For example,
we obtain e =~ 3 for n = 20.

Another possible direction for improvement would be to lower the complexity of the addition
and copy gadgets, which is mainly dominated by the refreshing. Assume that we can design a
(T)RPE refresh gadget in sub-quadratic complexity, e.g. as the refresh gadgets proposed in [20,
7,15], then the eigenvalues of the matrix in (5) would also be sub-quadratic and the value of
Npax from equation (5) would drop to Ny, = n? (if the multiplication gadget still requires n?
multiplication gates). The pink curve in Figure 2 depicts the evolution of the exponent value under
this assumption. We still have a slow convergence towards e = 2 but the exponent value is yet better
for small values of n. For example, a complexity blowup of O(k2-) is obtained with 20 shares. We
leave the task of finding such a sub-quadratic (T)RPE refresh gadget as an open question for further
research.

The above analysis shows that the expanding compiler can theoretically approach a quadratic
complexity at the cost of increasing the number of shares in the base gadgets. The downside of
it is that the tolerated leakage probability is likely to decrease as the number of shares grow. For
instance, the ISW construction is known to only tolerate a leakage probability p = O(1/n) [14].
The number of shares hence offers multiple trade-offs between the tolerated probability and the
asymptotic complexity of the compiler. Starting from a target leakage probability p, one could
determine the highest number of shares admissible from a generic construction (such as the ISW-
based instantiation exhibited above) and thus deduce the best complexity exponent achievable. In
Section 6, we exhibit concrete trade-offs that can be reached for small values of n.

5.5 Multiplication Gadget with Maximal Amplification Order

Constructing a multiplication gadget which achieves the upper bound on the amplification order
from Lemma 1 is tricky. First, as a standard multiplication gadget (i.e. which computes the cross
products of the input shares), the ISW multiplication cannot achieve the maximal amplification
order (see Lemma 2). In order to reach the upper bound for two-input gadgets (see Corollary 2), we
need a non-standard multiplication gadget, 7.e. which does not perform a direct product between
the input shares. As an additional observation, the addition, copy, and random gates are virtually
free in a multiplication gadget since they do not impact the final complexity of the expanding
compiler (see Section 2.5). This suggests that we can be greedy in terms of randomness to reach
the maximal amplification order.

In the following, we will describe the construction of a new multiplication gadget which achieves
the maximum amplification order min(t+ 1,n —t). We first describe our standard n-share multipli-
cation gadget and then explain how we avoid the initial cross products of shares. First, the gadget

19

constructs the matrix of the cross product of input shares:

a;-by ay-by ai - by,
as-by ay- by as - by,
an b1 ay - by an * b,

Then, it picks n? random values which define the following matrix:

T, T2 ot Tin
ro1 T2 e Top
Tn,1 Tn,2 ce Tn,n

It then performs an element-wise addition between the matrices M and R:

P11 P12 T Pin

P21 p2,2 s b2,
P=M+R=|"" , ' .

Pn1 Pn2 e Pnn

At this point, the gadget randomizes each product of input shares from the matrix M with a single
random value from R. In order to generate the correct output, the gadget adds all the columns of
P into a single column V of n elements, and adds all the columns of the transpose matrix R' into
a single column X of n elements:

Prit- o+ Pin (5T B s S AN
V= p2,1+':'+}72,n , v 7“1,2+':'+?“n,2
Pn1 +"'+pn,n Tl,n+"'+Tn,n

The n-share output is finally defined as (c1,...,¢,) =V + X.

In order to further increase the maximum amplification order attainable by the gadget, we need
to avoid performing a direct product of shares (because of the bound proved in Lemma 2). For this,
we add a pre-processing phase to the gadget using a refresh gadget Gyefresn. Specifically, we refresh
the input (by,...,b,) each time it is used. In other terms, each row of the matrix M uses a fresh
copy of (b1,...,b,) produced using the considered refresh gadget. This amounts to performing n
independent refreshes of the input (by,...,b,). The matrix M is thus defined as

ail - bgl) ail - bgl) cee ai - bsll)
an bgn) an bén) o ap - b

where (bgj), A b,(lj)), Jj € [n], are the n independent refreshings of the input (by,...,by).

20

With this refreshing scheme, we avoid using the same share more than once for one of the two
input sharings. As a consequence, the double failure set of size ¢ + 1 which is the reason behind
the bound (¢ +1)/2 in Lemma 2, becomes a simple failure set (i.e. provoking a failure on a single
input sharing). In addition, the computational overhead of these additional n refreshes is negligible
compared to the joint contribution of the copy and addition gadgets to the complexity of the
expanding compiler.

For the sake of completeness, we present the full algorithm for this multiplication gadget in
Algorithm 5.

Algorithm 5: Our multiplication gadget

Input : (ai,...,a,),(b1,...,by) input sharings, {ri;}1<i<n,1<j<n random values, refresh
gadget G(reflresh
Output: (cy,...,cy,) sharing of a - b
for : < 1 ton do
‘ (bgl)a s 7b$§)) <~ Grefresh(bb ceey bn)a
end
for i + 1 to n do

for j + 1 ton do

‘ Dij — a; X bgl)

end

REENE

end
(v1,...,0,) < (0,...,0);
(x1,...,2pn) < (0,...,0);
for i < 1 ton do
for j <1 tondo
Vi <V + Pi g
Z; %xi—i-ri,j;
end
end
for i < 1 ton do
‘ C; < v; + x5
end
return (ci,...,¢,);

In the following lemma, we show that if the refresh gadget G efresn achieves the TRPE1 property
with the amplification order at least d = min(¢ + 1,n —t) for any ¢, then the multiplication gadget
depicted in Algorithm 5 achieves TRPE with the maximum amplification orders. The proof is given
in Appendix I.

Lemma 13. Let t < n — 1. Let Grefresn be a (t, f')-TRPE1 refresh gadget for some function f' :
R — R, and G the n-share multiplication gadget from Algorithm 5. If f' is of amplification
order d > d=min(t + 1,n —t), then G achieves (t, f)-TRPE for some function f:R — R of
amplification order d = min(t + 1,n — t).

Corollary 6 then directly follows from Lemma 13 by applying Lemma 4 (TRPE = RPE).

21

Corollary 6. Let t < n — 1. Let Grefresh be a (t, f')-TRPE1 refresh gadget for some function
iR = R, and G the n-share multiplication gadget from Algorithm 5. If f' is of amplification
order d > d = min(t + 1,n — t), then G achieves (t, f)-RPE for some function f : R — R of
the same amplification order d = min(t + 1,n — t).

6 Efficient Small Gadgets

This section displays our new constructions of small gadgets for copy, addition, and multiplication
operations with a low number of shares. As explained in [9], we cannot achieve RPE security with
relevant amplification orders for gadgets of less than 3 shares. Then, as explained in Section 3.1,
the highest amplification orders can only be achieved for gadgets with an odd number of shares.
We therefore omit 4-share gadgets and display our best trade-offs in terms of RPE security and
complexity for 3-share and 5-share gadgets. Each one of these gadgets is experimentally verified
using the VRAPS verification tool from [9].

Addition and Copy Gadgets. For the construction of small 3-share and 5-share addition and
copy gadgets, we use the generic constructions depicted in Algorithms 1 and 2 (in Section 5) which
naturally use a refresh gadget as a building block. We hence start by looking for refresh gadgets that
have a good complexity in terms of gates count, and achieve the upper bound on the amplification
order for the specific case of 3-share and 5-share constructions (but not necessarily for a higher
number of shares).

Multiplication gadget. For the construction of small 3-share and 5-share multiplication gadgets,
we use the generic construction depicted in Algorithm 5 from Section 5.5 which, to the best of
our knowledge, is the only multiplication gadget which achieves the maximum amplification order
for any number of shares, and specifically for 3-share and 5-share constructions. As for the refresh
gadget Grefresh Which is used to perform n refreshes on the second input, we use the same scheme
as for the construction of small addition and copy gadgets (and which shall satisfy the necessary
condition on Giefresh from Corollary 6).

While the multiplication gadget from Section 5.5 achieves the desired amplification order, we
add another pre-processing phase to the gadget in order to further improve the tolerated leakage
probability. In addition to the n refreshes performed on the second input b (see Algorithm 5), we
add another single refresh of the input (a1, ..., a,) before computing the cross-products, using the
same refresh gadget Gefresn. Refreshing the input (a1, ..., a,) before usage experimentally shows
a further increase in the maximum tolerated leakage probability, by adding more randomness to
the input shares before computing the cross-product matrix M in Algorithm 5. And since the
refresh gadget Grefresh achieves the maximum amplification order, the amplification order achieved
by Gmult is not affected by adding another refresh to the first input a.

The above construction achieves the maximum amplification order for 3-share (d = 2) and
5-share (d = 3) gadgets based on natural refresh gadgets detailed hereafter.

6.1 3-share Gadgets

We start with the construction of 3-share gadgets for our three base operations.

22

Copy and Addition Gadgets. We build our copy and addition gadgets from the instantiation of
the generic constructions of Section 5 (Algorithms 1 and 2) with 3 shares. However, we do not use
the ISW refresh gadget but the following more efficient construction with only two random values
(instead of three):

Grefresh © C1 < T1 + a1
Co2 <12+ as
cg — (7”1 + 7“2) + as.

This refresh is sufficient to reach the upper bounds on the amplification orders (from Lemma 1).
From this basis, we obtain the following 3-share addition gadget with four random values:

Gadd 11+ (r1+a1) + (r3+b1)
o (ro + ag) + (ra + b2)
c3 + ((r1 +72) +as) + ((rs +ra) + b3)

and the following 3-share copy gadget with also four random values:

Gcopy101<—7"1—|-a1; di < r3+a;
C2 < T2 + as; do < 14+ as
c3 < (r1+7re)+as; ds < (rs+ry) + as.

Multiplication Gadget. The following construction is a 3-share instantiation of the multiplication
gadget described in Section 5.5. For the input refreshing, we use the 3-share refresh gadget described
above with two uniformly random values. The construction achieves the bound on the amplification
order from Lemma 1 with 17 random values:

Gmult @ 91,1 ¢ 71+ b1; i1,2 < T2 + bo; Q13 < (r1+12) + b3
Q2,1 < 13+ b1; i2,2 < T4 + ba; Q23 (r3474) + b3
i3,1 < 15 + b1; i3,2 < 76 + ba; i3,3 < (5 +16) + b3

ay <7 +ag; ay < rg + as; ay < (r7 +18) + ag

c1 (a/1 41,1 + 7“1,1) + (all i1, + 7‘172) + (a’l 11,3 + 7“1,3) + (7’171 +ro1+ 7‘3,1)
Cy — (a’2 “i91 + 7“271) + (a’2 99 + T272) + (GIQ 193 + 7“2,3) + (TLQ + 1o+ 7“372)
c3 (aé . Z'371 + 7’371) + (ag . ig,g + 7"3,2) + (a/3 . Z'373 + 7’373) + (7”173 +7ro3+ 7’373).

Results. Table 1 displays the results for the above gadgets obtained through the VRAPS tool.
The second column gives the complexity, where Ny, N., Np,, N, stand for the number of addition
gates, copy gates, multiplication gates and random gates respectively. The third column provides
the amplification order of the gadget. And the last column gives the maximum tolerated leakage
probability. The last row gives the global complexity, amplification order, and maximum tolerated
leakage probability for the expanding compiler using these three gadgets from the results provided
in [9].

23

Table 1: Results for the 3-share gadgets for (¢t = 1, f)-RPE, achieving the bound on the amplification
order.

Gadeet Complexity Amplification | log, of maximum

g (Na, N¢y Nimy Nyp) order tolerated proba
Grcfrcsh ‘ (47 2, 07 2) ‘ 2 ‘ —5.14
Gaaa \ (11,4,0,4) \ 2 \ —4.75
Geopy \ (8,7,0,4) \ 2 \ —17.50
Grmult \ (40,29,9,17) \ 2 \ —7.41
Compiler | o(|C| - k*?) ‘ 2 ‘ —7.50

Remark 1. The copy gadget Geopy instantiated in [9] which uses a refresh scheme with 3 randoms
for each output, also reaches the amplification order 2. It tolerates a better leakage probability
(i.e. 2759) than the one provided here, but with a higher complexity of (12,9,0,6). If it is used to
replace the 3-share copy gadget, the maximum tolerated leakage probability by the compiler from
Table 1 would be of 2774 slightly better than the current value of 277 but with a higher complexity
of O(|C|-k*8) instead of O(|C|-x*?). Another copy gadget can be constructed by using the refresh
scheme with 3 random values from [9] for one of the outputs, and the refresh scheme presented in
this section with 2 random values for the second output. This gadget tolerates a maximum leakage
probability of around 277! with a complexity of (10,8,0,5). Using it would bring the complexity
of the compiler from Table 1 to O(|C|- k), while tolerating a leakage probability of 2774, the same
as that of the used multiplication gadget.

6.2 5-share Gadgets

We now present our 5-share gadgets for our three base operations, which reach the optimal ampli-
fication order from Lemma 1.

Copy and Addition Gadgets. As for the 3-share case, we use the generic constructions from
Section 5. Instead of using the ISW refresh gadget which would require 10 uniformly random values
for a 5-share construction, we use the circular refresh gadget described in [4, 6] (a.k.a. block refresh
gadget):

Ghrefresh : €1 = (11 +72) + a1
cg < (r2 +73) + a2

c3 < (r3+r4) + a3
ca < (ra+rs)+as
()

cs < (r5 +1r1) + as.

This gadget only uses n randoms for an n-share construction, and while it does not achieve enough
security in the generic case (unless the refresh block is iterated on the input a certain number of
times [4, 6]), it proves to be more than enough to achieve the necessary amplification order for our

24

5-share constructions. We use a variant of the original version (also suggested in [4]): we choose to
sum the random values first (thus obtaining a sharing of 0) before adding them to the input shares.
The idea is to avoid using the input shares in any of the intermediate variables, so that input shares
only appear in the input variables {a;}i1<i<, and the final output variables {c¢;}i1<i<n. Intuitively,
this trick allows to have less failure tuples in the gadget because there are less variables that could
leak information about the input. This is validated experimentally where we obtain better results
in terms of amplification order and tolerated leakage probability for small gadgets.

From this circular refresh, we obtain an addition gadget with ten random values which reaches
the upper bound on the amplification order:

Gagd : C1 <~ ?“6—|-7'7 +bl)
co2 < ((r2+1r3) +as 7+ T8) +bz)

(())+ ((
(¢) +az2) + ((
3 ((r3+ra) +as) + ((rs +r9) + bs)
(()+ aa) + ((
(() +as5) + ((

ri+re)+aq

cq T9 +710) + b4)
10+ 76) + bs)

T4+ 75)+aq

cs < ((rs+711) +as

and a copy gadget with also ten random values and which also reaches the upper bound on the
amplification order:

Geopy : €1 ¢ (11 +12) + ai; dy < (r¢ +r7) + a1
ey (ro 4 r3) + ag; dy < (r7+rg) + a
c3 < (r3+rq) + as; ds < (rs +1r9) + as
ey < (rg +7s5) + ag; dy < (rg +r10) + a4
cs5 < (15 +7r1) + as; ds < (ri0 + re) + as.

Multiplication Gadget. The following construction is a 5-share instantiation of the multiplication
gadget described in Section 5.5. For the input refreshing, we use the 5-share circular refresh gadget
described above. The gadget advantageously achieves the optimal amplification order (given by

25

Lemma 1) with 55 random values:

Gmult :

c1 < (a} i1 +711) +(a) ~d12+r2) + (a) ~i13+r13) + (af
co < (ah-io1 +71a1) + (ah iz +122) + (ah - i23 + 723) + (ab -
cg 4 (ay-i31 +131) + (ay iz +732) + (af - i3+ 1r33) + (af -
ey < (ay-ig1 +raq)+ (ay - iao+71a2) + (@ -ia3+7a3) + (af -

Cr — (ag . ’L'5,1 + 7"5,1) + (a’5 . i572 + 7”572) + (aé . ’L'5,3 + 7”5,3) + (a’5 .

Results. Table 2 gives the results for the above gadgets obtained through the VRAPS tool.

i1,0 <= (r1+r2) + b1y i1 < (ro+73) + by i13 < (134 1s) + ba;
2'174 — (7"4 + T5) + by; Z'175 — (7“5 + 7"1) + b5

i1 < (16 +77) + b1; dgo < (r7+178) + s iz < (rg 4+ 19) + bs;
Qo4 < (rg +110) + ba; 25 < (r10 +76) + b5

i31 < (r11 4+ ri2) + bi;
i34 < (r14 + 7r15) + ba;

G40 (116 +7r17) + by;
ig,4 (119 + 7r20) + ba;

i51 < (r21 + 1ro2) + bi;
i54 < (r24 + 1r25) + ba;

ay < (rog + r27) + a1;
aﬁl — (7“29 + 7’30) + ay;

i32 < (r12 +713) + bo;
i3,5 — (7“15 -+ 7”11) + bs

Q42 < (r17 +718) + bo;
ia5 < (20 + 716) + b5

i5,2 < (ro2 + 723) + bo;
i5,5 < (ro5 +121) + b5

i33 < (r13 + r14) + b3;

i43 < (r18 + r19) + b3;

i5,3 < (123 + 724) + b3;

ab < (ro7 4+ 728) + ag; af (rag + rag) + as;

ag < (r30 + 726) + as

14+ 7T14)

+(a'1 “i1,5 + 7“175) + (7‘1,1 +ro1+r31+re1+ 1"5’1)

Qo4+ 1724)

+(ah - ias +1o5) + (r1,2 + 722 + 732+ Ta2 4+ 752)

i34+ 734)

+(a§, . Z'375 + 7’375) -+ (7’173 +ro3+r3s+ras+ 7’573)

Qg4+ Ta4)

+(aﬁl 4.5+ 7’475) + (7’1,4 + 194+ 134+ 144+ 7’5’4)

i54+75.4)

+(af - is5+155) + (ris + 725+ 135+ 145 +755).

26

Table 2: Results for the 5-share gadgets for (¢t = 2, f)-RPE, achieving the bound on the amplification
order.

Amplification | log, of maximum

Gadget Complexity order tolerated proba
Girefresh \ (10,5,0,5) | 3 | _4.83
Gaaa \ (25,10,0,10) \ 3 | [-6.43,-3.79]
Gleopy \ (20,15, 0, 10) \ 3 | [-6.43,—5.78]
Gt | (130,95,25,55) | 3 | [~12.00,—6.03]
Compiler | o(|C| - k*23) \ 3 | [-12.00,-6.03]

From Tables 1 and 2, we observe that the asymptotic complexity is better for the instantiation
based on 5-share gadgets as they provide a better amplification order with limited overhead. While
this result can seem to be counterintuitive, it actually comes from the fact that each gadget will be
expended less in the second scenario. We stress that we could only obtain an interval [2712,27] for
the tolerated leakage probability because it was computationally too expensive to obtain a tighter
interval from the VRAPS tool, but this could probably be improved in the future. Meanwhile, we
can consider that our best complexity O(|C| - k32) comes at the price of a lower tolerated leakage
probability of 27!2 (5-share gadget) compared to the O(|C| - £*?) complexity and 2775 tolerated
leakage probability obtained for our 3-share instantiation.

In comparison, the previous instantiation of the expanding compiler [9] could only achieve a
complexity of O(|C| - k"®) for maximum tolerated probabilities of 278, and the instantiation of the
expanding approach with a multi-party computation protocol [2], could only achieve a complexity
of O(|C] - k2) for maximum tolerated probabilities of 2726,

Acknowledgments. This work is partly supported by the French FUI-AAP25 VeriSiCC project.

References

1. Miklés Ajtai. Secure computation with information leaking to an adversary. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd Annual ACM Symposium on Theory of Computing, pages 715-724, San Jose, CA, USA,
June 6-8, 2011. ACM Press.

2. Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular approach. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology — CRYPTO 2018, Part III, volume 10993 of Lecture
Notes in Computer Science, pages 427-455, Santa Barbara, CA, USA, August 19-23, 2018. Springer, Heidelberg,
Germany.

3. Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with O(1/log(n)) leakage
rate. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology — EUROCRYPT 2016, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 586—615, Vienna, Austria, May 8-12, 2016. Springer,
Heidelberg, Germany.

4. Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Frangois-Xavier Stan-
daert, and Pierre-Yves Strub. Improved parallel mask refreshing algorithms: generic solutions with parametrized
non-interference and automated optimizations. Journal of Cryptographic Engineering, 10(1):17-26, April 2020.

5. Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub,
and Rébecca Zucchini. Strong non-interference and type-directed higher-order masking. In Edgar R. Weippl,

27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd
Conference on Computer and Communications Security, pages 116—129, Vienna, Austria, October 24—28, 2016.
ACM Press.

Gilles Barthe, Frangois Dupressoir, Sebastian Faust, Benjamin Grégoire, Frangois-Xavier Standaert, and Pierre-
Yves Strub. Parallel implementations of masking schemes and the bounded moment leakage model. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology — EUROCRYPT 2017, Part I, volume
10210 of Lecture Notes in Computer Science, pages 535-566, Paris, France, April 30 — May 4, 2017. Springer,
Heidelberg, Germany.

Alberto Battistello, Jean-Sebastien Coron, Emmanuel Prouff, and Rina Zeitoun. Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. Cryptology ePrint Archive, Report 2016/540, 2016. https:
//eprint.iacr.org/2016/540.

Sonia Belaid, Fabrice Benhamouda, Alain Passelegue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud.
Randomness complexity of private circuits for multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology — EUROCRYPT 2016, Part 11, volume 9666 of Lecture Notes in Computer Science, pages
616-648, Vienna, Austria, May 812, 2016. Springer, Heidelberg, Germany.

Sonia Belaid, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Abdul Rahman Taleb. Random
probing security: Verification, composition, expansion and new constructions. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology — CRYPTO 2020, Part I, volume 12170 of Lecture Notes in Computer
Science, pages 339-368, Santa Barbara, CA, USA, August 17-21, 2020. Springer, Heidelberg, Germany.

Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to counteract
power-analysis attacks. In Michael J. Wiener, editor, Advances in Cryptology — CRYPTO’99, volume 1666 of
Lecture Notes in Computer Science, pages 398—412, Santa Barbara, CA, USA, August 15-19, 1999. Springer,
Heidelberg, Germany.

Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q. Nguyen and Elisabeth Oswald,
editors, Advances in Cryptology — EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science,
pages 441-458, Copenhagen, Denmark, May 11-15, 2014. Springer, Heidelberg, Germany.

Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel masking with pseudo-random generator.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology — EUROCRYPT 2020, Part III, volume 12107
of Lecture Notes in Computer Science, pages 342-375, Zagreb, Croatia, May 10-14, 2020. Springer, Heidelberg,
Germany.

Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Higher-order side channel security
and mask refreshing. In Shiho Moriai, editor, Fast Software Encryption — FSE 2013, volume 8424 of Lecture
Notes in Computer Science, pages 410-424, Singapore, March 11-13, 2014. Springer, Heidelberg, Germany.
Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From probing attacks to
noisy leakage. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 201/,
volume 8441 of Lecture Notes in Computer Science, pages 423-440, Copenhagen, Denmark, May 11-15, 2014.
Springer, Heidelberg, Germany.

Stefan Dziembowski, Sebastian Faust, and Karol Zebrowski. Simple refreshing in the noisy leakage model. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology — ASIACRYPT 2019, Part III, volume
11923 of Lecture Notes in Computer Science, pages 315-344, Kobe, Japan, December 8-12, 2019. Springer,
Heidelberg, Germany.

Louis Goubin and Jacques Patarin. DES and differential power analysis (the “duplication” method). In Cetin
Kaya Kog¢ and Christof Paar, editors, Cryptographic Hardware and Embedded Systems — CHES’99, volume 1717
of Lecture Notes in Computer Science, pages 158-172, Worcester, Massachusetts, USA, August 12-13, 1999.
Springer, Heidelberg, Germany.

Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing attacks. In Dan
Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 463-481, Santa Barbara, CA, USA, August 17-21, 2003. Springer, Heidelberg, Germany.

Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Neal
Koblitz, editor, Advances in Cryptology — CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages
104-113, Santa Barbara, CA, USA, August 18-22, 1996. Springer, Heidelberg, Germany.

Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal security proof. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology — EUROCRYPT 2013, volume 7881
of Lecture Notes in Computer Science, pages 142-159, Athens, Greece, May 26-30, 2013. Springer, Heidelberg,
Germany.

Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In Stefan Mangard and
Frangois-Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems — CHES 2010, volume 6225

28

of Lecture Notes in Computer Science, pages 413-427, Santa Barbara, CA, USA, August 17-20, 2010. Springer,
Heidelberg, Germany.

29

A Random Probing Expandability 1 & 2

Definition 7 (Random Probing Expandability 1). Let f : R — R. An n-share gadget G :
K" x K" — K" is (t, f)-RPE1 if there exists a deterministic algorithm Simf and a probabilistic
algorithm Sim§ such that for every input (Z,5) € K* x K*, for every set J C [n], such that |J| < t,
and for every p € [0,1], the random experiment

W < LeakingWires(G, p)
(I1, I5) « SimF (W, J)
out < Slmg(W, J7 53\|I15g7’12)

ensures that
1. the failure events Fy = (|11] > t) and Fy = (|I2| > t) verify
Pr(F1) = Pr(Fp) =¢ and Pr(Fy A JFp) = & ®

with e = f(p) (in particular Fi and Fy are mutually independent),
2. the output distribution satisfies

out 2 (AssignWires(G, W, (Z,7)) , 2]) 9)
where z = G(Z,7).
Definition 8 (Random Probing Expandability 2). Let f : R — R. An n-share gadget G :
K™ x K" — K" is (t, f)-RPE2 if there exists a deterministic algorithm SimlG and a probabilistic

algorithm Sim§ such that for every input (Z,7) € K® x K, for every p € [0,1], the random
experiment

W < LeakingWires(G, p)
(Il, IQ, J) < SIm?(W)

out < Sim§ (W, J, %1, 7l1,)
ensures that
1. the failure events Fi = (]Il| > t) and Fy = (]IQ| > t) verify
Pr(Fi) = Pr(Fo) =¢ and Pr(Fi AFa) =& (10)

with € = f(p) (in particular Fi and Fa are mutually independent),
2. J is such that J C [n] with |J| =n —1
3. the output distribution satisfies

out 7«:d (AssignWireS(G’ W7 (ZE’ 3//\))) E‘J) (11)

A

where Z = G(Z,Y)

30

B Tight Random Probing Expandability

Definition 9 (Tight Random Probing Expandability). Let f : R — R. An n-share gadget
G : K"xK" — K" is (t, f)-tight random probing expandable (TRPE) if there exists a deterministic
algorithm Sim§ and a probabilistic algorithm Sim§ such that for every input (Z,7) € K" x K", for
every set J C [n] and for every p € [0, 1], the random experiment

W <« LeakingWires(G, p)

(I, Iz, J') + Sim§ (W, J)

out « Sim§ W, J', 2|1, 7l1,)

ensures that
1. the failure events Fy = (|I1|> min(t, [W)|)) and F = (|I2|> min(t, W) verify
Pr(Fi) = Pr(Fp) =¢ and Pr(Fi AFa) =& (12)

with e = f(p) (in particular Fy and Fa are mutually independent),
2. J"is such that J' = J if |J| <t and J' C [n] with |J'| =n — 1 otherwise,
3. the output distribution satisfies

out Z:d (AssignWireS(Ga Wa (37 :/y\)) ’ /Z\|J,) (13)

A~
7

where Z = G(T,7)

Definition 10 (Tight Random Probing Expandability 1). Let f : R — R. An n-share gadget

G : K"xK" — K" is (t, f)-tight random probing expandable (TRPE) if there exists a deterministic
algorithm Sim?v and a probabilistic algorithm Simg such that for every input (z,y) € K* x K", for

every set J C [n], such that |J| <t, and for every p € [0, 1], the random experiment

W < LeakingWires(G, p)
(I, Iy) < Simf (W, J)
out Slmg(W, e]7 /x\|f1ag//\’12)

ensures that
1. the failure events Fy = (|I1| > min(t, [W|)) and Fp = (|I2| > min(t, [W|)) verify
Pr(F)) =Pr(Fp) =¢ and Pr(FiAF) =¢? (14)

with e = f(p) (in particular Fi and Fy are mutually independent),
2. the output distribution satisfies

out lzd (AssignWireS(Ga W7 (%\7 /y\))) /Z\’J) (15)

where z = G(T,7)

31

Definition 11 (Tight Random Probing Expandability 2). Let f : R — R. An n-share gadget
G : K" xK" — K" is (t, f)-tight random probing expandable (TRPE) if there exists a deterministic
algorithm Sim§ and a probabilistic algorithm Sim§ such that for every input (Z,7) € K" x K", for
every p € [0, 1], the random experiment

W < LeakingWires(G, p)
(11,15, J) = Sim{ (W)

out < Sim§' (W, J, Z|1,,|1,)
ensures that
1. the failure events Fy = (|I1| > min(t,[W|)) and Fo = (|I2| > min(¢, |W|)) verify
Pr(Fi) = Pr(Fo) =¢ and Pr(Fy AFa) =& (16)

with € = f(p) (in particular Fi and Fy are mutually independent),
2. J is such that J C [n] with |J|=n—1
3. the output distribution satisfies

out 2 (AssignWires(G, W, (Z,7)) , Z]) (17)

A
)

where z = G(Z,7)

C Proof of Lemma 7

Proof. To prove that Geopy is TRPE achieving the same amplification order d as the underlying
refresh gadget Giefresh, We need to prove that any set of leaking wires W such that [W| < d — 1
can be perfectly simulated together with any sets of outputs wires Ji,Jo C [n] (such that J;
refers to the first output e and Jo to the second output f) from a set of input wires I such
that |I| < min(¢,|W]). In addition, we know from Lemma 1 that the maximal amplification order
achievable in the TRPE setting is dpax < min(t + 1,2(n —t)). Since we consider sets W of size at
most [W| < d—1<min(t+1,2(n—t)) —1 <t then we need to prove that |I| < min(¢, [W|) = [W|.

The leaking set VW can be split into two distinct subsets W; and W, such that W = W; U W,
where W (resp. Wh) is the set of leaking wires of Giefresh for the output e (resp. f). Let Ji, Jo C [n].
We consider four cases:

— |h] < t, |2 < t:since W| < d — 1, then Wy, [Wa| < d — 1. Since Greresn achieves an
amplification order d, then by definition of TRPE, the sets W; and J; can be simulated with
a set of input shares I; such that |I;| < min(|W;|,t). Similarly, the sets W, and Jy can be
simulated with a set of input shares Iy such that |I3| < min(|[Whs|,t). As a consequence, set [
defined as I = I; U I, is enough to simulate W = W; U W, and both output shares J; and Js.
Furthermore, we have

1] < |0] + [I2] < min(IWal, £) + min(Wal,£) < W] = min(W], 1

32

— |J1| > t,|J2| > t: in this case, we need to prove the existence of a set of input shares I such
that [I| < min(t, [W|) = [W)] (since |W| < d — 1 < t) for which we can perfectly simulate VW
together with two chosen output sets J; and Jj such that |J]| = |J5| = n — 1. Since we have
W = Wi UWs such that [Wi| < d—1,|Ws| < d — 1, then by definition of TRPE, there exists
Ji,|Ji| = n — 1 such that W; and Ji can be perfectly simulated from a set of inputs shares I
such that |I;| < min(|Wh|, t). Similarly, there exists J3, |J5| = n— 1 such that Wy and J} can be
perfectly simulated from a set of inputs shares I such that |I3| < min(|Whs|, t). By choosing such
sets J7, J5, the overall simulation of Geopy can be done with the set of input shares I = I; U I,
and we have

(] < [L] + 2] < min(W1], £) + min([Wel,t) < W] = min(|W], 1)

— |Ji] < t,|J2] > t: Since |J1| < t, by definition of TRPE, W; and J; can be perfectly simulated
from a set of input shares I; such that |I;| < min(|Wi],t). In addition, for |J2| > ¢, we also
know that we can choose a set Jj such that |J5| = n — 1 that can be perfectly simulated with
Wy from a set of input shares Iy with |I3| < min(|Whs|, t). By choosing such a set J}, the overall
simulation of Gopy can be achieved with the set of input wires I = I; U I3, and we have

(| <] =+ 2] < min(PWaf,8) + min([Wal,) < W] = min(|WV],)
— |J1| > t,|J2| < t: the proof is exactly the reflect of the previous one.

Since in the four cases, there is no failure tuple W of size |WW| < d, then the gadget Gcopy achieves
an amplification order d. Lemma 1 finally completes the proof. ([l

D Proof of Lemma 8

Proof. We need to prove that when Giegesh is (¢, f)-RPE (resp. (¢, f/)-TRPE) of amplification order
d, then Gaqq is (¢, f')-RPE (resp. (¢, f')-TRPE) of amplification order at least L%j We will prove
the property for the RPE setting, and the proof for the TRPE setting will be exactly the same
except for the notion of failure event which changes. This amounts to proving that:

1. Any set of leaking wires W such that [W| < |4] can be simulated together with any set of
outputs wires J C [n] from sets of input wires I; on a and I5 on b such that |I;| <t and |I5| <t
(for TRPE we would have |I;| < min(¢, [W|) and |Iz| < min(¢, [W)])).

2. Any set of leaking wires such that |4] < [W)| < d can be simulated together with any set of
outputs wires J C [n] from sets of input wires I1, I5 such that |I;] < ¢ or |I2] <t (because of
the double failure, i.e failure on both inputs) (for TRPE we would have |I;| < min(t, W) or
11| < min(t, [W))).

We proceed by building the necessary simulators for G,qq from the simulators that already exist for
Grefresh- Concretely, we split each set W of leaking wires, into four subsets W = W] UW{UW5 UWJ
where WY (resp. WY) is the set of leaking wires during the computation of Grefresh (a1, - - - , @n) (resp.
Grefresh (b1, - .., by)), and WY (resp. W) is the set of leaking wires of (ey, ..., ep) (resp. (fi1,..., fn))-

From these notations, we build a leaking set W which contains W{ and W} and also each input
or pair of inputs of gates whose output is a wire in W{ or W4. We have that

W < IWT| + V5| + 2DV + 23] < 2.

33

The new set W’ can be split into two subsets W; and W) such that | (resp. W5) contains only
leaking wires during the computation of Grefresn(ai,---,an) (resp. Grefresn(b1,--.,byn)). We now
demonstrate how we can simulate YW when the output set J is of size less that ¢ ((T)RPE1) and
when it is of size strictly more than ¢ ((T)RPE2).

— if |J| <t ((T)RPEL): we prove both properties 1 and 2:
1. we assume that [W| < |4]. Then we consider the set W = W] UW} (as previously defined)
such that

d
W' <2W| < 2L§J <d

and hence,
(Wil <d and |[Wj|<d.

From the (t, f)-RPE property of Grefresn and its amplification order, there exists an input
set of shares of a I such that |I;] <t (for TRPE we would have |I;| < min(¢,|W])) and I
perfectly simulates W} and any set .J; of up to ¢ variables e;. Similarly, there exists an input
set of shares of b Iy such that |Iz| < ¢ (for TRPE we would have |I2| < min(¢, WW|)) and I
perfectly simulates W) and any set Jy of up to ¢ variables f;. J1 and Jy are chosen as the
inputs e; and f; respectively of wires e; + f; in set J. Namely |J1| = |J2] = |J|.

From these definitions, I1 and I together perfectly simulate W’ and J and are both of size
less than ¢ (less than min(¢, |W|) for TRPE), which proves the first property in this scenario.

2. we now assume that |4| < |W| < d. Then we consider the set W' = W] U W} such that

IW| < 2W| < 2d

and hence,
Wil <d or Wil <d.

Without loss of generality, let us consider that |Wj| < d (the proof is similar in the opposite
scenario). From the (¢, f)-RPE property of Giefresh and its amplification order, there exists
an input set of shares of a I such that |I;| < ¢ (for TRPE we would have |I;| < min(¢, W)
and I perfectly simulates | and any set .J; of up to ¢ variables e;. There also exists an
input set of shares of b Iy which perfectly simulates W) and any set Js of up to ¢ variables
fi but not necessarily of size less than ¢ (less than min(¢, WV|) for TRPE). If J; and J; are
chosen as the inputs e; and f; respectively of wires e; + f; in set J, then sets I and I
together perfectly simulate W and J. In this case, we only have a failure on at most one of
the inputs (b in this case), which concludes the proof for the second property.

At this point, we proved that G,qq achieves an amplification order greater than or equal to L%J

for RPE1 (for TRPEL in the TRPE setting).

— if |J| > ¢t ((T)RPE2): we prove both properties 1 and 2:

1. we assume that [W| < [2]. Then we consider the set W = Wj UW)} (as previously defined)
such that
W' <2iW| < d.

W; and W) both point to leaking wires in instances of Giefresh- We denote by WY the set of
leaking wires on the first instance of Grefresnh (01 input a) such that Wy’ contains W} and all
the wires that are leaking within the second instance of Giefresh (designated by W) in this

34

second instance). Hence, we have that |WY| < [Wj U WJ| < d. From the (¢, f)-RPE ((¢, f)-
TRPE in the TRPE setting) property of Giefresh and its amplification order, there exists an
input set of shares of a I; such that |I;| < ¢ (for TRPE we would have |I;| < min(¢, [W])) and
a set of output shares e; Jj of size n — 1 such that the input shares of I; perfectly simulate
the wires designated by WY and Jj. Similarly, as both instances of Gyefresh are identical, the
same set Iy but of input shares b perfectly simulates WY (defined as the equivalent of WY
on the second instance) and Jj which points to the same output shares than J; but on f;
instead of e;. We thus have two input sets I; and I» of size less than ¢ (less than min(¢, [WV|)
for TRPE2) whose shares perfectly simulate the wires YW and the elements e; + f; of a set
J' of size n — 1 with i € J; = J,. That concludes the proof for the first property.
2. we now assume that |4| < |W| < d. Then we consider the set W' = W] U W} such that

W' <2/W] < 2d.

Without loss of generality, let us consider that |Wj| < d (the proof is similar in the opposite
scenario). From the (¢, f)-RPE ((¢, f)-TRPE in the TRPE setting) property of Giefresn and
its amplification order, there exists a set J; such that |J{| = n — 1 and a set of input
shares I; such that I; perfectly simulates Wi and J| and |I;] < t (for TRPE we would have
|I;] < min(¢, |W|)). Thus, we can select a set J' of outputs of G,qq such that J’ corresponds
to the outputs of J; (for each element e; designated by Ji, e; + f; is pointed by J). Then,
by choosing Is = [n], we have two input sets Iy and I which perfectly simulate YW and an
output set J’ of size n — 1 such that |I;| <t (for TRPE we would have |I1| < min(¢, [W])).
That concludes the proof for the second property.

We thus proved that G,qq achieves an amplification order greater than or equal to ng for RPE2
(for TRPE2 in the TRPE setting).

Since G,gqq has an amplification order greater than or equal to L%J for RPE1 and RPE2 (resp.
TRPE1 and TRPE2), then G,qq is a (¢, f)-RPE (resp. (¢, f/)-TRPE) addition gadget for some

function f’ of amplification order d’ > LgJ, which concludes the proof. O

E Proof of Lemma 9

Proof. We start by proving the first property of the lemma, i.e the amplification order d; for
TRPEL. The n-share ISW refresh gadget was proven to be (n — 1)-SNI [5], hence it follows from
Lemma 6 that d; > min(¢ + 1,n — t). In addition, we know from the proof of Lemma 1 and as
explained in section 4.1 that d; < t+ 1. It remains to show that d; < n —t. We thus have to exhibit
a simulation failure by carefully choosing n — t leaking variables (the leaking set W) together with
t leaking output variables (indexed by the set J). Consider the set of output shares indexed by
J ={1,...,t}, which corresponds to the first ¢ shares cy,...,¢; of the output. Next, we construct
the set of leaking wires W of size n — t. First, observe that the partial sums of the output shares
are of the form

o ai+7al7i+"'+rj,i lfj<7z
] ai+7ri;+--+ric1; +riig1 + -+ 1 otherwise.

Then, let W = {ci114,...,¢nt}. We can prove that the constructed set W along with the set of
indexes of output shares J = {1,...,t} cannot be perfectly simulated with at most min(¢, |W|)

35

input shares. For this, we consider a variable s = ¢q +--- 4+ ¢; + ¢ci41¢ + ... + ¢ ¢, the sum of the ¢
output shares indexed in J, and the leaking variables from W. Each of the output shares {c¢;}1<i<¢
is the sum of exactly one input share a; and n — 1 random values. Each of the leaking variables
{¢it}t+1<i<n is the sum of exactly one input share a; and ¢ random values. In addition, it can be
observed that each random value appears exactly twice in the set of expressions of the variables
{cit1<i<tU{citr1<i<n, so all of the random values are eliminated in the expression of the variable
s, which is the sum of all of these variables. Since each of the variables has one input share a;
appearing in its expression, then we have s = a1 + ... + a,, = a. Thus, simulating the variable
s requires the knowledge of the full input, and hence the leaking variables indexed by W and J
cannot be perfectly simulated without the knowledge of the full input. Hence, the set W of size n—t
represents a failure set with respect to TRPE1, and so the function f; cannot be of amplification
order higher than n — ¢, that is d; < n — t. From the three inequalities d; > min(¢t + 1,n — t),
dy <t+1and d; <n—t, we obtain dy = min(t + 1,n — t).

Next, we demonstrate the second part of the lemma, i.e. the amplification order ds for TRPE2.
Let W be a set of leaking wires such that |W| < ¢t + 1. We aim to prove that there exists a set
J indexing n — 1 output shares such that the leaking variables indexed by both W and J can be
perfectly simulated with the input shares indexed by a set I such that |I| < min(¢, |[W]|) = [W)].
First, we observe that the leaking wires in WV are of the following forms:

1. input share a;
2. random variable 7;; (i < j)
a; +rii+- if j <i

3. partial s i = .
pattial ST Gy {ai +ri+ o+ ris1 +riie1 + oo+ 1 otherwise.

We then build I from an empty set as follows. For every wire in W of the first or third form, we
add index 7 to I. For every wire in W of the second form (r;), if ¢ € I, we add j to I, otherwise we
add i to I. By construction we have |I| < [W| < t. Moreover, the wires in the set ¥ only depends
of the input shares a; with ¢ € I which implies that we can perfectly simulate the variables indexed
by W from the input shares indexed by I. We then build the set J as the union of two subsets
J1 and Jy such that J; = I and J, is any set satisfying |Jo| = n — 1 — |I| and J; N J2 = (). Now,
we aim to show that the output shares determined by the indexes in J = J; U Jo can be further
perfectly simulated from the input shares indexed by I (namely given the previous simulation of
the variables from W). The simulation works as follows:

— each output share ¢; such that i € J; can be perfectly simulated with a; (since i € I) and n —1
uniformly random variables (the same generated r;; can be reused for several ¢;);

— for each output share ¢; such that i € Jo, we have i ¢ I and hence a; is not available. Since
by construction of Ji, all the variables observed through the set W are included in the set of
variables observed through Ji, and since |J;1| < |W| <t <n —2 and |J2] =n — 1 — |Ji|, then
each output wire ¢; indexed in Jy has at least one random value that does not appear in any
other observation from W or Ji, so ¢; can be assigned to a fresh random value. This produces
a perfect simulation of all output wires indexed in Js.

We thus obtain a perfect simulation of the output shares indexed by J = Jj U Ja, such that
|J| = n — 1, together with the variables indexed by W, from the input shares indexed by a set I
of size |I| < |W| < t, so |I| < min(¢, |W)|). Hence the ISW refresh gadget is (¢, f)-TRPE2 with an
amplification order dy > t 4 1. In addition, we know from the proof of Lemma 1 and as explained
in Section 4.1 that do <t + 1, hence do = t + 1 which concludes the proof. O

36

F Proof of Lemma 10

Proof. In order to prove that the amplification order d of G¢opy instantiated with the ISW refresh
gadget is equal to min(t + 1,n — t), we first demonstrate that d > min(¢ + 1,n — ¢) and then we
show the existence of failure tuples to argue that d < min(t + 1,n — t).

In fact, we already know that the ISW refresh gadget is (¢, f1)-TRPE of amplification order
di = min(t + 1,7 — t). Then from Lemma 7, we know that Geopy instantiated with ISW refresh is
also (¢, f2)-TRPE of amplification order do = d; = min(¢ + 1,n —t). Then, from Lemma 4 we have
that Geopy is (t, f)-RPE of amplification order d > dy = min(t 4+ 1,n — t). Next, we need to prove
that d < min(t + 1,n — ¢). In addition, we know from Lemma 1 that d <t + 1. Hence, it remains
to show that it is also upper bounded by n — t.

We know from the proof of Lemma 9 that, for the ISW refresh gadget, we can construct a set
of leaking wires W of size n — ¢ along with a set of ¢ indexes of output shares J such that a perfect
simulation of both sets W and J requires the knowledge of the full input sharing i.e. I = [n]. Then,
in the case of the copy gadget Geopy, let W be the set of leaking wires and Ji, Jo C [n] be the sets of
output shares on the outputs e and f respectively. Then, we can split W into two distinct subsets
Wi and Wy such that W = Wi UWs, where Wi (resp. Wh) is the set of leaking wires of ISW Giefresh
for the output e (resp. f). Then, in the case where |J;| < ¢, we can construct the set W = W, of
size n—t (W, =) in the exact same way as in the proof of Lemma 9, such that we have simulation
failure of Wj along with the output shares indexed in J; on the input of the gadget. Otherwise, in
the case where |.Jo| < ¢, we can construct the set W = Wy of size n —t (W; =) in the exact same
way, such that we have simulation failure of W, along with the output shares indexed in J5 on the
input of the gadget. Hence, the amplification order d of Gopy is upper bounded by n — .

From the three inequalities d > min(t+ 1,n—t), d < t+ 1 and d < n — t, we conclude that the
copy gadget instantiated with ISW refresh is (¢, f)-RPE of amplification order d = min(t+1,n —1).
U

G Proof of Lemma 11

Proof. We proceed similarly to the proof of Lemma 8 to show that the function f; (resp. fo2) is
of amplification order at least min(¢ + 1,n — ¢) (resp. (¢t + 1)). We split each set W of leaking
wires, into four subsets W = WJ UW{ UWj U W where WY (resp. W) is the set of leaking wires
during the computation of Gyefresh (@1, - - -, an) (resp. Grefresh (b1, - - -, bn)), and WY (resp. W9) is the
set of leaking wires of (e1,...,e,) (resp. (fi,..., fn)). Then, we prove using previous lemmas that
the amplification order for TRPEL (resp. for TRPE2) at most min(t + 1,n — t) (resp. (t + 1)) by
exhibiting failure tuples. Hence the final equalities.

— if |J| <t (TRPE1): we prove two properties like in Lemma 8:

1. we assume that |W| < min(t+1,n—t), in particular W] |+|W{| < min(t+1,n—t) < n—t and
W5 |+ WS < min(t+1,n—t) < n—t. Since we have |J| < ¢, then W] |+ |[W§|+|J] <n—1
and |W5| + [W¢| + |J| < n — 1. Then from the (n — 1)-SNI property of the ISW refresh
gadget, and by choosing J; and Jy as the inputs e; and f; respectively of the wires e; + f;
in set J (|J1| = |J2| = |J|), we know that there exists an input set of shares of a I; such
that [I;| < [WJ| < [W| <t and I perfectly simulates W], W§ and J;. And there exists an

37

input set of shares of b Iy such that |I>] < [Wj| < |W| <t and I, perfectly simulates Wy,
W3 and J. Thus I; and I» together perfectly simulate W and J and are both of size less
than |W| < t so less than min(t, WV|). Hence, there is no failure on the inputs for any set of
leaking wires W of size strictly less than min(¢ 4+ 1,n — t) along with a set J of at most ¢
output shares.

2. we now assume that min(¢t+1,n—t) < |W| < 2-min(t+1,n—t). Without loss of generality,
let us consider that]|+ |W{| < min(¢ + 1,n — t). We consider the set of input shares
of b Iy = [n], which trivially simulates all of the wires in W5, W4 and the inputs f; of the
wires e; + f; in set J. Next, since |W]| + [W{| < min(t + 1,n —t) < n — ¢, by choosing
Ji as the inputs e; of the wires e; + f; in set J, we know that |WJ| + [W§| + [Ji] <n —1
and by the (n — 1)-SNI property of ISW refresh gadget, there exists a set of input shares
of a I such that |I;| < [W]| < t so |[1] < min(¢, |[W]|) < min(¢,|[W)|) and I; perfectly
simulates Wi, W{ and J;. Then I; and I» together perfectly simulate W and J, and we
only have a failure on input b with |I3| = n > t. Thus, for any set of leaking wires W such
that min(t + 1,n —¢) < |W| < 2-min(t + 1,n — t), we have a failure on at most one of the
inputs.

From the above properties, we have that G.qq is of amplification order d; > min(t 4+ 1,n — t)

for TRPEL. Then, from the proof of Lemma 1, we know that there exists an immediate failure

tuple of size t + 1 (on the input shares), hence d; < t+ 1. From the same proof of Lemma 1, we
also know that there exists a failure tuple of size 2(n —t) (with a set of ¢ output shares). Since

(,44 has two inputs, then it results in the following lower bound: d; > n — t. From these three

inequalities on dp, we obtain dy = min(t + 1,n — t).

— if |J| > ¢t (TRPE2): we also prove both properties 1 and 2:

1. we assume that |W| <t+1 with W = W] UW{ UW; UWS . We need to prove that there
exists a set J of n — 1 output wires such that W and J can be perfectly simulated with sets
of input shares I; and I such that |I;| < min(¢, |W|) = W] and |I2| < min(t, |[W|) = |W|.
Recall that all of the wires in W] (resp. Wj) are of the following forms:

(a) input share a; (resp. b;).

(b) random variable r;; (resp. 77;) with i < j.
ai+rii+ -+ if j <i
a; +rig+ -+ 1o+ riie1 + - + 1 otherwise.

bi+r,+- 41, ifj<i

resp- fij = {b-+r’7»+---+r¥<7 47l 4+ 7l otherwise
1 1,0 i—1,2 2,041 %, .
In addition, the wires in W{ (resp. W5) are output wires of Gyefresh Of the form e; (resp. f;).
We build I; and I from empty sets as follows. For every wire in W{ U WY, we add index
¢ to I1 and Iy. Next, for every wire in W| U WJ of the first or third form, we add index
i both to I and I5. For every wire in W] U W} of the second form, if i € I1(= I2), we
add j to I1 and Is. Otherwise, we add 7 to I1 and Is. It is clear that Iy = Is, and that
|I1] = |I2| < [W| < t. Following the ¢-SNI proof of the ISW refresh gadget, we can show
that W{ and W] are perfectly simulated using shares of indexes in I;. Respectively, W9
and W) are perfectly simulated using shares of indexes in /5. So all wires in W are perfectly
simulated using shares of indexes in I; and I». We then build the set J of n — 1 indexes of
output shares from two subsets J; and Jo. We define J; = I[;(= I2), and Jy as any set such
that Jo =n—1—|Ji| and J; N J2 = 0. We now show that the output shares determined by
the indexes in J = J; U Jy can be perfectly simulated from I; and Is:

(c) partial sum e;; = {

38

e each output share e; + f; such that ¢ € J; C J can be perfectly simulated from e; and
fi. Precisely, e; can be perfectly simulated with a; (since i € I;) and n — 1 uniformly
random variables. And each f; can be perfectly simulated with b; (since ¢ € Is) and n—1
uniformly random variables.

e for each output share e; + f; such that ¢ € Jy so i ¢ I, i ¢ I, we show that we can
still perfectly simulate e; and f;. By construction of the set Ji, all the variables observed
through the set W are included in the set of variables observed through e; and f; for
j € Ji, and since |Ji| = |I}| < [W| <t <n—2and |Jo| =n —1— |Ji|, then each of
the wires e; and f; for which e; + f; is indexed in Jo has at least one random value that
does not appear in any other observation from W or wires e; and f; for which e; + f; is
indexed in Jy. So e; can be assigned to a fresh random value, and f; can be assigned to
a fresh random value. Thus e; + f; is also assigned to a random value. This produces a
perfect simulation of all output wires indexed in Js.

Having a perfect simulation of J; and J2, we conclude that we can perfectly simulate J along
with W from the sets I1 and Iy with |I1| = |I3| < |W]|. So for every set of leaking wires W
of size at most ¢, there exists a set of n — 1 output wires J which can be perfectly simulated
along with W from sets of input shares I; and I of sizes at most |[W| = min(|W]|,t).

2. we now assume that ¢t + 1 < |W| < 2(t + 1). Without loss of generality, let us consider that
W] UW| < t+1 (the proof is similar in the opposite scenario). We consider the set of input
shares of b I = [n] which trivially simulates all of the wires in W5 UWS$ and all of the inputs
fi of the output wires e; + f;. We construct the set I; for input shares of a similarly to the
earlier construction (when |[W| < t + 1), while only considering the sets W| and W{. The
corresponding set I1 will produce a perfect simulation of W[U W{. So I; and Iy perfectly
simulate the set WW. Now we choose the set J from two subsets J; and Jy such that J; = I3
and Jy as any set such that Jo =n—1—|J;| and J; N J2 = 0. We now show that the output
shares determined by the indexes in J = J; U Jo can be perfectly simulated from I7 and Io:

e each output share e; + f; such that i € J; C J can be perfectly simulated from e; and
fi. Precisely, e; can be perfectly simulated with a; (since i € I;) and n — 1 uniformly
random variables. And each f; can be perfectly simulated with b; (since Iy = [n]) and
n — 1 uniformly random variables.

e for each output share e; + f; such that i € Jy so i ¢ I, the input wire f; can be
perfectly simulated with b; (since I = [n]) and n — 1 uniformly random variables.
In addition, by construction of the set Ji, all the variables observed through the set
W UWY are included in the set of variables observed through e; for j € Ji, and since
|Ji| = |I1] < [W| <t <n-—2and |Js] =n—1—|Ji|, then each of the wires e; for which
e; + fi is indexed in Jo has at least one random value that does not appear in any other
observation from W] U W} or wires e; for which e; 4 f; is indexed in Jj. So e; can be
assigned to a fresh random value. Thus e; + f; is perfectly simulated from e; and f;. This
produces a perfect simulation of all output wires indexed in Js.

Having a perfect simulation of J; and Js, we conclude that we can perfectly simulate J
along with W from the sets I and Iy with |I;| < ¢t so |I;| < min(¢, |[W]|) = ¢ (recall that
[W| >t+1) and |I3] = n, which is only a failure on one of the inputs b.

From the proof of both properties 1 and 2 for TRPE2, we thus have that G,qq instantiated with
ISW refresh achieves the amplification order de > t 4+ 1 for TRPE2. In addition, we know from
the proof of Lemma 1 and as explained in section 4.1 that do <t¢+ 1. Hence dy =t + 1.

39

We finally proved both amplification orders d; and ds for TRPE1 and TRPE2 respectively for G,qq
displayed in Algorithm 2 and instantiated with the n-share ISW refresh gadget, which concludes
the proof.]

H Proof of Lemma 12

Proof. We start by proving the first property of the lemma. Since the n-share ISW multiplication
gadget is (n — 1)-SNI [5], then we know from Lemma 6 that

min(t + 1,n —t)

dy > 5

In addition, we know from the proof of Lemma 2 that

t+1

dy < 5

It remains to show that d; < (n — ¢)/2. In this purpose, we exhibit a simulation failure on both
inputs by carefully choosing n — ¢ leaking variables, with ¢ output variables. Consider the set of
indexes of output shares J = {1,...,t}, which corresponds to the first ¢ output shares cy,...,c;.
Next, we construct the set of leaking wires W of size n — t. First, observe that the partial sums of
the output shares are of the form

S a; by +ri1 A if j <1
b a; - b; + (9 e R ol SRS R ol S B R ol otherwise.

Then, let W = {¢t414,...,¢nt}. We can prove that the constructed set W along with the set of
output shares J = {1,...,t} cannot be perfectly simulated with at most ¢ input shares. For this,
we consider a variable s = ¢ 4 - 4+ ¢t + i1, + . . . + ¢ t, the sum of the ¢ output shares indexed
in J, and the leaking variables from W. Each of the output shares {¢;}1<;<; is the sum of

— one product of input shares a; - b;
— n — 1 random values,
— at most n — 1 pairs of input shares products: (a; - bj, a; - b;) with i # j.

Each of the leaking variables {c;}++1<i<n is the sum of

— one product of input shares a; - b;,
— t random values,
— at most t pairs of input shares products: (a; - bj, a; - b;) with i # j.

In addition, each random value appears exactly twice in the set of expressions of the variables
{citi<i<tU{cit}t+1<i<n, so all the random values are eliminated from the expression of the variable
s, which is the sum of all of these variables. Hence, s = a1 -b1+...+ay, b, +C where C' is a variable
containing other products of input shares of the form a; - b; and a; - b; with ¢ # j. Thus, simulating
the variable s requires the knowledge of the full inputs a and b. Since s is constructed from the set
of leaking wires WW and the output shares indexed in J, then W and J cannot be perfectly simulated
without the knowledge of the full inputs @ and b. Hence, the set W of size n — t represents a failure
tuple on both inputs, and so the function f; for RPE1 cannot be of amplification order higher than
(n—t)/2. Thus, d; < (n—1t)/2.

40

From the three inequalities d; >

min(t + 1,n —t)

,dp < (t+1)/2 and dy < (n —t)/2, we conclude

that

min(t + 1,n —t)
dy = 5 .

Next, we demonstrate the second part of the lemma. Let W be a set of leaking wires such that

[W| < t. We aim to prove that there exists a set J of n — 1 output wires such that W and J can be
perfectly simulated with sets of input shares I; on a and I3 on b such that |I1]| < ¢, |I2| < t. First,
observe that the leaking wires in W are of the following forms :

1.

2
3.
4. product of shares a; - bj, or variable a; - b; + 7;; with i # j.

. partial sum ¢; ; = {

input shares a;, b;, product of shares a; - b;.

a; by +rig+- i if j <1
a; by +rii+ i F i+ r;j otherwise.
random variable r;; for ¢ < j, variable rj; = a; - bj +r;; + a; - b; for j > i.

We build sets I; and I» from empty sets as follows. For every wire in W of the first or second form,
we add index i to I; and I5. For every wire in W of the third or fourth form, if i € I;, we add j to
11, otherwise we add i to I1, and if 7 € Iy, we add j to Is, otherwise we add i to Is. Since W is of
size at most ¢, then |I;]| <t and |I3| < t. Following the ¢-SNI property proof from [5], we can show
that W is perfectly simulated using shares of indexes in I; and I3. We now build the set J of n —1
indexes of output shares from two subsets J; and Jo. We define J; = {i | ¢; j is observed in W}.
Next, we define Jy as any set such that |Jo| =n —1— |J1] and J; N Jo = 0. Now, we show that the
output shares determined by the indexes in J = J; U J2 can be perfectly simulated from I; and Io:

— First consider the output wires indexed in J;, which have a partial sum observed. For each such

variable ¢;, the biggest partial sum which is observed is already simulated. For the remaining
rij in ¢;, if ¢ < j, then r;; is assigned to a fresh random value. Otherwise, if rj; enters in the
computation of any other internal observation, then 7,j € I and i,j € I, and so rj can be
perfectly simulated from the input shares. If not, then rj; is replaced by the random value 7;;.
So all output wires indexed in J; are perfectly simulated from I; and Is.

Now consider the output wires indexed in Jy. None of the ¢; indexed in Jy has a partial sum
observed. Meanwhile, each ¢; indexed in Jo is composed of n — 1 random values, and at most
one of them can enter in the expression of each other output wire ¢;. Since by construction of
J1, all the variables observed through the set VW are included in the set of variables observed
through Ji, and since |J1| < [W| <t <n —2 and |Jo| =n — 1 — |Ji|, then each output wire ¢;
indexed in Jo has at least one random value that does not appear in any other observation from
W or Ji, so ¢; can be assigned to a fresh random value. This produces a perfect simulation of
all output wires indexed in Js.

We conclude that the set J of n — 1 wires is perfectly simulated along with W from the con-

structed sets I; and I of sizes |I1| < [W| < t and |I3] < |[W| < t. So there is no failure set of

observations of size at most ¢ for RPE2 on any of the inputs. Hence dy

> (t +1)/2. In addition,

we know from the proof of Lemma 2 and as explained in section 4.1 that do < (¢ + 1)/2. Hence,
dy = (t +1)/2, which concludes the proof for RPE2. O

41

I Proof of Lemma 13

Recall the procedure of the gadget. We consider that we have an n-share (¢, f')-TRPE refresh
gadget Grefresh achieving the amplification order d > min(t + 1,n — t). First, the gadget Guuit
performs n executions of the gadget Giefresh On the input sharing (by, ..., by,) to produce:

(b§1)7 ceey bg)) — Grefresh(blv e 7bn)

(bgn)a) b%n)) <~ Grefresh(bla v 7bn)

then, the gadget constructs the matrix of the cross product of input shares using the refreshed
input shares of b:

aj - bgl) ay - bg) o ay -V
M — a9 ng) as - bg) cee ay - bg)
ap, - b(ln) ap, - b(Qn) o ap b

Then, it picks n? random values which define the following matrix:

T, T2 ot Tig

re1 T22 . Tag
R=1 .)

Tn,1 Tn,2 te Tn,n

It then performs an element-wise addition between the matrices M and R:

b1 P12 T Pin

P21 P2,2 T D2,
P=M+R=|"" , , .

Pn,1 Pn,2 T Pn,n

At this point, the gadget randomized each product of input shares from the matrix M with a single
random value from R. In order to generate the correct output, the gadget adds all the columns of
P into a single column V of n elements, and adds all the columns of the transpose matrix R' into
a single column X of n elements:

P11+t Pin 8T8 B AT |

P21+t P2 T2+t T2
= . 5 X: .

pn,1+"'+pn,n Tl,n+"'+rn,n

The n-share output is finally defined as (c1,...,c,)T =V + X such that

ca =Vi+Xy

cn = Vo + X,

42

(a1y...,an) (b, ...

J}E n)

®, .6

Gsubmult ‘ w’

‘J
(c1y...,¢n)

Fig. 3: G gadget from Section 5.5.

Figure 3 represents the Gt gadget from a high-level, composed of several blocks. First, a
refresh gadget Grefresn 18 €xecuted n independent times on the input sharing of b to produce n fresh
copies bV, ..., (™. Then, the gadget Ggubmuls takes as input (ay,...,a,) and the outputs of the
refreshing gadgets (1), ..., b(™ to produce the output of Guuyi.

In the following proofs, we will denote W to be any set of probes on the global gadget G,
then W can be split as W =W/ UW® U...UW™ where W is the set of probes on the internal
wires of the execution of Grefresh for the fresh sharing b of b, and W’ is the set of probes on the
internal wires of Ggypmut- We will also denote J to be any set of output wires of Gyt (which are
the output wires of Gsupmult), and JISZ) (resp. IISZ)) any set of output wires (resp. input wires) of the
execution of Giefresn for the fresh sharing b(® of b. Observe that any probe on the output wires of
Ghefresh for any sharing b can be obtained through internal probes in W’ on Gyubmult, SO in the
beginning we always consider that Jbl) = () for all i € [n].

Observe that any probe in the set W’ on the internal wires of Ggupmurt is of one of the following
forms:

(a) ai, bﬁi), a - bf), Tijs Dij = - by) +7i g,
(b) V;; partial sum of the first j terms of V;. Observe that V;,, = V;,
(c) Xi,; partial sum of the first j terms of X;. Observe that X;, = X.

Also observe that each random value 7; ; only appears in the expression of the wires r; ;, p; j, Vi j,
or X;; (soalso ¢; = V; + X; and ¢; = V; + Xj), and does not appear anywhere else in the wires.
We will first start by proving some simple claim.

Claim 1 Let J be a set of output shares of Gy and W = W' U WO U UW®™ be g set of
leaking wires as described above such that |J| + |W'| <n—1 (we only consider the set W' of probes
on the internal wires to G gypmu). Then, for any i € J such that V;; ¢ W for any j € [n], the
output wire ¢; can be perfectly simulated by generating a uniform random value without knowing
any of the input shares.

Proof. Let ¢ € J such that V;; ¢ W' for any j € [n]. Then we know that the expression of Vj in

¢; = V; + X; contains n — 1 random values since V; = p; 1 + ...+ p;, and each p; ; = a; - bgi) + 71

43

(without counting the random 7;; because it is cancelled out in ¢; as it appears in V; and X; and
¢i = Vi+ X;). Observe that each random value r; k in V; appears in exactly one other output share
¢k = Vi + X}, that comes from the expression of Xy, = ry p+...+7; x+...+7, . In other terms, each
output share ¢ has exactly one random value in common with V; in ¢;. Then, by probing |.J| output
shares in J including ¢;, there are at least n — |.J| remaining random values in V; that do not appear
in any other expression of the output shares. In addition, observe that any probed variable in W’
can have in its expression at most one random value in common with V; (because each random
value r; ; appears exactly once in each of the wires p; j, r; j or X;). Then, since |W’/| <n —|J| —1
(because |J| 4+ |[W'| < n —1), there is at least n — |J| — (n — |J| — 1) = 1 remaining random value
ri¢ where £ € [n] in V;, that does not appear in any other expression of the probed values in W’ or
J. So ¢; = V; + X; can be perfectly simulated by generating the uniform random value r; ;, which
concludes the proof.

In the following, we will separately prove the TRPE1 then the TRPE2 property on Gt via
Lemmas 14 and 17 to demonstrate Lemma 13.

I.1 Proof for TRPEI1 property

Lemma 14. The multiplication gadget G is (t, f1)-TRPE1 of amplification order d = min(t +
1,n—1t)

Proof. We proceed in two steps through the following two lemmas 15 and 16, considering the leaking
wires in two distinct ranges.

Lemma 15. Let J be a set of at most t output shares of G . Let W be a set of leaking wires as
described above such that |W| < d—1<t. Then W and J can be perfectly simulated from at most
min(¢, |W|) = |W/| shares of each of the inputs a and b.

Proof. Let J be the set of t output shares of G (i.€ of Geupmult), and let W = W/uw®u. . .uw ™)
with [W| < d—1 <t be the set of probes on the global gadget Gt and decomposed as explained
earlier. We organize the proof in two steps:

1. We first identify the set of input shares I, and the sets Jéi) for i € [n] which are necessary to
perfectly simulate J and W' in Ggupmult-

2. Then, we show that we can perfectly simulate the sets Jb(i) and WO for i € [n] using the
simulator of the gadget Gyefresn- This will determine the sets IISZ) necessary for each of the n

simulations of Grefresh, and thus determine the set I, of input shares on b as I, = I b(l) U...ul IE").

Using I, we will be able to perfectly simulate Jéi) and W for i € [n]. Then using I, and Jéi) for

i € [n], we will be able to perfectly simulate W’ and J. This will lead to a perfect simulation of all
probes W and output shares in J on the global gadget G-

We first start by constructing the set of input shares indices I, and the sets Jék) for k € [n]
depending on the probes in the set W' as follows>:

(a) For probes of form (a), we add index i to I,, and index j to Jék) for k € [n].

3 We consider that all J,Ek) are empty at first since all the output shares of Grefresn can be probed directly in W’.

44

(b) For probes of form (b), we add index i to I, and to Jék) for k € [n].
(c) For probes of form (c), we add index ¢ to Jék) for k € [n].

Observe that since [W| < d — 1, then in particular [W’/| < d —1 < ¢, then |[,| < |[W/| < |[W]| <
min(¢, |W]) so we have no failure on the input a. We also have \Jb(k)\ < W' < t.

Simulation of W’: probes of the form (a) can be perfectly simulated from the corresponding
input shares in I, and Jék), and by generating uniformly random values 7; ; when necessary. Probes

of the form (c¢) are also perfectly simulated by simply generating uniformly random values, since

Xij =r1i+ ...+ ;. As for probes of the form (b), we know that i € I, and i € J(i), then we

look at each of the terms p; j for j* € [j] in Vi; = pi1 + ...p; ;. In particular, if j > ¢, the term
)

pi,i is in the partial sum V;; and is perfectly simulated using the input shares a; and bgi and by

generating the random value r;;. Next, for each p; j such that j' # 1, if j' € J,SZ), then p; ;» can be
perfectly simulated from the corresponding input shares and by generating uniformly at random
ri j. Otherwise, if j' ¢ Jéz), then that means that the wires p; j/,r; and X are not probed in W’
because otherwise j° would have been added to all Jlfk) for k£ € [n]. Since the random value r; j
only appears in the expression of the wires p; j/,r; 7 and X (besides V; ; which is already probed),
and of the output wire c¢;; = Vj» + X<, we need to consider two cases:

— j' ¢ J: in this case, the random value 7; j» can be used to mask the expression of p; ; in the
partial sum V; ;, perfectly simulating it without the need to the share bé.f).

—j € J:icjy =Vy+ Xy, and ;s is the one of the summed terms in the expression of X;. We
know that Vj/ ,, ¢ W’ for any k € [n] since otherwise j/ would have been added to JIEZ). Since in
addition we have |J|+ |W| <t+d—-1<t+n—t—1<n-—1, by claim 1, the output share
c} can be masked by some random value 7 ;. Thus, X is masked and r; ;» does not appear
anymore in c;. So 1; j» can be used to mask the expression of p; ;» in the partial sum V; ;. This

brings us to a perfect simulation of p; j; simply by generating at random r; ;.

By perfectly simulating each of the terms p; j for j° € [j] in the probed wire V;; independently,
we can perfectly simulate their sum and thus perfectly simulate V; ;. This brings us to a perfect
simulation of the set W',

Simulation of J: Let 7 € J.

if V;; ¢ W’ for any j € [n], then by claim 1, ¢; is perfectly simulated by simply generating a

uniform random value r; ; for some £ € [n].

— if V; ; € W’ for at least one j € [n], then let V; ;» be the largest of the probed partial sums. All of
the partial sums including V; ;- are perfectly simulated as described earlier. Then, let us consider
ci+Vij =pij41+...+pin+X;. The wire X; can be perfectly simulated by generating uniform
random values. As for each of the terms p; jry1,...,pin, they can each be perfectly simulated
in the exact same way each of the terms in V; ;» are simulated independently.

In the particular case where j° < i then the term p;; = a; - bgl) + r;; appears in the expression
of ¢; +V; j7, and in this case, the random value r; ; is cancelled out in the expression of ¢; +V;
since it appears in both p;; and X, and ¢; +V; jy = pj 41 + ... +pii + ...+ pin + X;. So to
simulate the term p;; in ¢; +V; j we need both input shares a; and bgl)
by construction because we assume that V; j € W',

Thus, by perfectly simulating V; j and ¢; +V; 5, the output share ¢; is also perfectly simulated.

. This is already the case

45

Also, since \Jlgk)| < W' < tand [W®| < d— 1, and since Grepesh 18 (¢, f/)-TRPE achieving
the amplification order d, then we can perfectly simulate sets Jlfk) and W& from the set of input
shares Il(,k) such that]Ilgk)] < [W®| < ¢t for k € [n]. Thus, we can let I, = Iél) U...u Ién) and
we have [I,| < [WO| 4 ...+ |[W®| < |W| < min(|]W],t), so we have no failure on the input b
either. Until now, we have shown that we can simulate all sets W% and Jék) from I of size at
most min(|W|,t). It remains to show that we can also perfectly simulate the sets W’ and J from
I, and Jék) for k € [n].

We have shown that we can perfectly simulate any set of ¢ output shares J and any set of
probes W of size at most d — 1, with at most min(|W|, ¢) shares of each of the inputs a and b. This
concludes the proof of Lemma 15. O

Remark 2. We can observe that for this lemma to apply on Gy, we do not need the pre-processing
phase of the refresh on input b. In fact, we can see that during the construction of the sets Jék), we
add each index to all of the sets for all k£ € [n]. However, executing n refreshings on the input b is
necessary to prove the next result, specifically when we consider W such that d < |W| < 2d — 1.

To get back to the proof of Lemma 14, we also need the following result.

Lemma 16. Let J be a set of at most t output shares of G Let W be a set of leaking wires
as described above such that d < |W| < 2d—1. Then W and J can be perfectly simulated from the
sets of input shares I, and Iy such that |I,| < min(|W|,t) or |Ip| < min(|W|,t). In other terms, we
have a simulation failure on at most one of the inputs a or b.

Proof. Recall that the set W can be split into subsets W = W/ UW® U...U W™ as described
above. We can consider two cases.

Case 1: |W'| <d — 1. This case is similar to the case of Lemma 15, so we can construct the set I,
in the same way as in the proof of Lemma 15, and we can eventually consider I, = [n]. We know
that |I,| < |W'| < d—1 <, so there is no failure on the input a. And all probes in W’ can be
simulated like in the proof of Lemma 15 with I, and trivially with I, = [n]. Also, all probes in
WO U...UW® can be trivially simulated since we have access to the full input b. As for output
shares in J, whenever i € J N I,, then ¢; = V; + X is easily simulated using I, = [n]. If i € J but
i ¢ I, then V;; ¢ W' for any j € [n] and since |J| + |[W'| <t+d—-1<t+n—-t—1<n-—1,
¢; is perfectly simulated by a single random value thanks to claim 1. Thus, W and J are perfectly
simulated with at most |W’| < min(|W|,t) shares of a and eventually n shares of b.

Case 2: |[W'| > d (and thus (WM U...UW®™| < d—1). In this case, we will construct the sets

I, and Jlgk) from empty sets, in a way that we will have a simulation failure on at most one of the
inputs a or b, and we will be able to perfectly simulate W’ and output shares in J using I, and
Jék). We will also show how to perfectly simulate all Jék) and W) using a set of input shares Ip.
)

First, we construct the sets I, and Jék depending on the probes in W’ as follows:

(a) For probes of form (a), we add index i to I,, and index j only to Jéi).
(b) For probes of form (b), we add index i to I, and only to JIEZ).
(c) For probes of form (c), we add index i to Jék) for all k € [n].

46

In the rest of the proof, we will show that if we have a failure on one of the inputs, we can still
perfectly simulate W and J without a failure on the other input. In this purpose, we will consider
two cases: in the first case (2.1), we will have a failure on input a (i.e., more than min(¢, |IW|) shares
of a are added to I,;) and in the second case (2.2), we won’t have a failure on input a, and so we
will eventually have a failure on input b.

Case 2.1: Simulation failure on input a. Notice that by construction we always have |I,| < |[W'| <
|W|. Thus, a simulation failure on input a for TRPE1 means that the set I, is of size |I,| > t+1 > d.
We will first start by showing that the sets W*) and Jék) can be perfectly simulated using the
simulator of Grefresh Without a failure on the input b. Next, we will show that W’ and output shares
in J can be perfectly simulated using I, and J,, (k).

Since we only add shares indices to I, When we have probes of the form (a) or (b), this means
that we have at least ¢ + 1 probes of these two forms with ¢ + 1 different values for the index 4. In
addition, since we have at least t 4+ 1 probes (a) or (b) with distinct values for the index i, then this
also means that each of the sets JZSZ) built from these probes has at most one share of b® added
to it by construction. In other terms, when we only consider probes of the form (a) and (b) with
distinct 4, we have |Jl§k)] <1 for each k € [n].

Now let us consider the remaining probes in W which are either in W’ of the form (c), in W’ of
the form (a)/(b) for which i € I, or in W U...UW®, Since |I,| >t + 1 > d, then there are at
most d — 1 of these remaining probes. Without loss of generality, we consider that there are exactly
d — 1 instead of at most d — 1 probes. Let m be the number of probes in WM U...U W™ and
d — 1 — m the remaining in W’ of the form (c) or of the form (a)/(b) for which i € I,,.

Since each wire in W’ of the form (c) or of the form (a)/(b) for Which i € I, results in adding at
most one more share index to each Jék) for k € [n], then we have \J \ <l4+(d—-1-m)=d—m.
And (WO U ... UW®™| < m, in particular [W*)| < m for any k € [n].

n —|— 1

— if m = 0, then W®*) = ¢ for any k € [n], and |J |<d<m1n(t+1 n—t)<| | <n-1,

so by the TRPE property of Gyefresnh for any ¢ < n — 1, all of the J, *) sets can be perfectly

simulated with no knowledge of the input shares of b since W*) = 0, so I = (). Hence,
Iy = Iél) u...u IIE = () and we have no simulation failure on the input b.
— if m > 0, then \Jb(k)\ <d-1<tand (WD U...UW®| <d—1,in particular [W®| < d -1

for each k € [n]. Thus, by the (¢, f)-TRPE property of the refresh gadget Grefresh achieving the
amplification order d for any ¢t < n — 1, we can perfectly simulate both sets for each k € [n]

with Iék) such that]I(k)] < [W®)|. Thus, we can let I, = Iél) U...uU Ién) so we can have
1] < (WO uU...uWm| <d-1<t, and we can perfectly simulate W U ... U W™ along
with J, Dy...u Jy ™) from the set I, without a simulation failure on input b.
So far we proved that if we have |I,| > t+1, then we must have |I,| < [WMuU...uw®| <d—1<t,
and W U...UW® can be perfectly simulated along with Jb(Ju...U Jb(" from the set I,. Next

we need to prove that we can perfectly simulate W’ and J from these sets I, and Jél) u...u Jén).

Case 2.1.1: I, = [n]. This only occurs by construction in the case where |[W| = 2d —1 = n so when
1 1
d = dpax = Ln—i_ | for t = (71 In this case, since [W| < 2d -1 < (n+1) —1 < n, then

all probes in W are all in W’ of the form (a) or (b) with n distinct values for the index i and so

47

|Jb(l)| < 1 for all i € [n]. In other words, for each i € [n] there is exactly one probe in W' of the
form (a) or (b) and no probe of the form (c) i.e X; j nor probes in WD U...u W™, We will prove
that all the probes in W and in J can be perfectly simulated from these constructed sets I, and
Jél) for i € [n]. For this, for each ¢ € [n] we consider three cases:

— Vi ¢ W’ for any j € [n], then we know that there exists a probe of the form (a) in W’ with
index i, in other terms, a; € W', or 3! j € [n] such that b;i) or ai-bg-i) or 7 j O p; j = ai-bg-i) +7ij
is probed in W’. The corresponding probe is perfectly simulated by construction of the sets I,
and Jéi).
If we also have i € J, then we know that we only have one probe of the form (a) for the

considered index i in W’ and no probe of the form (b) or any probe of the form (c¢). And since
n—1
there are t output shares probed in J, then there are at least n —t — 1 > 1 (since t = [——1])

remaining random values which only appear in the expression of ¢;, and any of them can be
used to perfectly simulate ¢; without the knowledge of the input shares (i.e., to mask ¢;).

— Vin € W/ then V;,, contains in its expression n random values 7; 1, ...,7; . Since there are no
probes of the form (a) for the index 4, and no probes of the form (c), then each of these random
values appears at most once in each of the expressions of the probed outputs ¢; in J. With ¢

n J—
probed output shares, there are n —t > 1 (since t = [——) remaining random values which

only appear in the expression of V;,, and any of them can be used to perfectly simulate V; ,,
i.e., mask V; .

If in addition we have ¢ € J, then the output share ¢; is perfectly simulated by simulating V; ,

and simulating ¢; +V; , = X; which is perfectly simulated by generating uniform random values.

— Vi; € W for some j € [n] such that 1 < j < n (j > 1 because otherwise it would be the wire
pi,1 which is probed). Thus, V; ; is the sum of at least two wires p; j, and p; j,.

e If i ¢ J, then ¢; is not probed and V;; is the sum of at most n — 1 terms of the form

Pil = Q5 - bgi) + i1, Dij = G ~b§i) +1; ;. We have that ¢ € I, by construction and j € Jéi).

In fact we can reconstruct Jlfi) into Jlfi) = {1,...,j} such that |Jb(i)| < n — 1 and since
W@ = (, then by the (¢, f)-TRPEL property of Grefresh for any t < n — 1, we still have no

failure on the input b and we still have \Iéi)| < [W®| = 0. In addition, we can perfectly
simulate this way all of the summed terms in V; ; by using the corresponding input shares
and thus we can perfectly simulate V; ;. Since we have no probes of the form (a) for this

same index ¢, then reconstructing Jél) does not affect the simulation of the probes.

e If i € J, then we consider V;; and ¢; + V; ;. Since we have no probes of the form (a) for
the index 7, then as proven before, with ¢ probed output shares, there are at least n —¢ > 1
remaining random values which only appear in the expression of V;; or ¢; + V; ;. Any of
these random values can be used to mask the expression of V;; or ¢; + V; ;. In the case

where the expression of V; ; is masked, then we can reconstruct as before the set JZSZ) with
at most n — 1 output shares of b in order to perfectly simulate all the terms p; ; in ¢; +V; ;
including the shares of b®) and thus perfectly simulate ¢; + Vi ; (the rest of the terms are just
random values to be generated uniformly at random). In the other case where the expression
of ¢; + V; j is masked, we can also reconstruct the set Jb(l) with at most n — 1 output shares
of b in order to perfectly simulate all the summed terms in Vi ;- In either case, by perfectly

simulating one term (V; ; or ¢; +V; ;) masked by a random value, and perfectly simulating

48

the remaining one with ¢ € I, and the reconstructed set Jéi), we can perfectly simulate both
Vi; and ¢; + V; ; and hence also perfectly simulate the output share c;.

So we proved that we can perfectly simulate the sets W’ and J from the constructed set I, and
from sets JIEZ) such that \JIEZ)| < n —1 for all ¢ € [n]. Furthermore, from the TRPE property of
Ghrefresh for any t < n — 1 and the fact that W@ =0 for all i € [n], we have no simulation failure on
the input b. This concludes the simulation of W and output shares in J for the case where I, = [n].

Case 2.1.2: 1, C [n] with |I,] < n—1. In this case, we have at least one index k € [n]\ I, for which
there are no probes in W’ of the form (a) or (b). In other terms, no partial sum of Vj, is probed, no
product of shares ay, - bgk) or py ; is probed, and no random value 7y, ; is probed since otherwise we
would have k € I, by construction.

On another hand, since |I,| > t + 1, there are at most d — 1 < n — ¢ — 1 remaining probes of
the form (c¢) in W', and since we have ¢ output shares in the set J, there exists at least one wire
Xy such that ¢ ¢ J and for which there is no partial sum X, ; probed in W’.

These two wires X, and Vj, for ¢,k € [n] will be very important for the simulation of the sets
W’ and J. In particular, we need the two following claims.

Claim 2 Leti € J. Suppose that i ¢ I,. Then the expression of ¢; = V; + X; can be masked by the
random value 1; ¢, in other terms ¢; <= r; .

Proof. This claim can be proved easily, since we suppose that i ¢ I, so the random value 7; » and
pi¢ are not probed in W’. In addition, since ¢ ¢ J and X, ; ¢ W’ for all j € [n], then the random
value 7; ¢ does not appear in any other probed wire expression except in ¢;, then ¢; can be masked
by the random value 7; ;.]

Claim 3 Let i € J. Suppose that X;; ¢ W' for any j € [n]. Suppose that i € I,. Then the
expression of ¢; = V; + X; can be masked by the random value ry,;, in other terms c; <— ;.

Proof. Since we suppose that k ¢ I,, then the random value 7 ; or py; or Vj, ; for all j € [n] are
not probed in W’. Then, if k ¢ J, then the random value rj; does not appear in the expression
of any other probed wire in W’ or J and ¢; can be masked by the random value 7 ;. Otherwise, if
k € J, then by Claim 2, ¢, = V;, + X} can be masked by 7, and so ¢; can also be masked by 7y, ;
since i # ¢ (because i € J and ¢ ¢ .J). O

From these two claims, we are now ready to show that W’ and J can be perfectly simulated
with the sets I, and Jél) U...u Jén) as constructed earlier with respect to the probes in the set

W’. Recall that all probes in W) U ..U W™ and Jél) U...UJp(n) are perfectly simulated using
I, and the simulator of Grefresh-

Simulation of W'. Probes of the form (a) and (c) are trivially simulated by construction of the sets
of input shares and by generating uniformly at random the necessary random values. Let us now
check the probes of the form (b). Let V;; = pi1 + ...+ pi;j be such a probe. Let us consider each

of the terms p; j for j' € [j]. if 7/ = i, then by construction p;; is perfectly simulated using a; and
b
(2

simulation of p; j is straightforward. Otherwise if j' ¢ J, (i), then we know that none of the wires

and by generating the random value r;; if needed. Otherwise, let j' # . If j' € Jéi) then the

49

1i g7 or p; j» or Xy ¢ for all s € [n] are probed in W’. Thus, r; can be eventually used to mask the

expression of p; ;; without the need of the share bg,l,') for the simulation. Meanwhile, we still need to
check if j' € J, since X appears in the expression of ¢;; = Vs + X . Then we consider two cases:

— If j ¢ I,, then by claim 2, ¢j can be masked by the random value rj , and so r; ;; does not
appear in the expression of X/ in ¢;; anymore, and 7; ; can be used to mask p; ;.

— Otherwise, if j’ € I, then by claim 3, ¢;; can be masked by the random value 7y ;» and so r; ;v
does not appear in the expression of X in ¢js anymore, and r; j» can be used to mask p; j (since

i ¢ k).

Thus, each term p; j in V;; can be perfectly simulated and thus V;; = p;1 + ... + p;j can be
perfectly simulated. This concludes the simulation of the set W’.

Simulation of J. Let i € J. If i ¢ I,, then by claim 2, ¢; is perfectly simulated by generating
the random value r;,. Otherwise, let i € I,. If X;; ¢ W for any j € [n], then by claim 3, ¢
is perfectly simulated by generating the random value ry ;. Otherwise, we can show that we can
perfectly simulate each term in ¢; = V; + X;. In particular, each term in X; can be simulated
by generating the underlying random value uniformly. For each term in the sum V;, we know in

particular that a; - b

. is perfectly simulated since X; ; € W for at least one j € [n] so i € Jéi) by
construction. For the other terms in V;, they can be perfectly simulated in the exact same way as
we simulated the probes V; ; of the form (b) in the set W’. So ¢; is perfectly simulated by summing

all the perfectly simulated terms. This concludes the simulation proof for the set J.

Up until now, we have concluded that if we have a constructed set I, of size at least ¢t + 1,
then we can perfectly simulate the sets W and J without having a simulation failure on the input
b. In the rest of the proof, we will consider that |I,| < t (along with |I,| < |W| by construction
meaning that we have no failure on input a), and we will prove that we can perfectly simulate W
and J with at most a simulation failure on b. Recall that we are also considering that |[W’/| > d and
Wy, uw®|<d-1.

Case 2.2: |I,| < t. This means that the number of probes of the form (a) or (b) in W’ with distinct
values for the index 7 is at most ¢.

First, let us consider that |I,| > d (this is the case where d = n —t <t + 1). Then, as proved
earlier, and with ¢ additional output shares in J of the form ¢; = V; + X;, there are at least one X,
remaining such that ¢ ¢ J and X, ; ¢ W for all j € [n]. In this case, we can set I, = [n| and I, as
constructed with respect to the probes in W’. It is clear that all probes in WM U ... U W™ and
Jél) U.. .UJlfn) are trivially simulated using I, = [n]. In addition, all probes in W’ are also perfectly
simulated by construction of the set I, and using I, = [n| and generating the necessary random
values. This means that we can perfectly simulate all of the set of probes W = W/UW MU, . .uw ™),
As for the set of output shares indexed in J. Let ¢ € J. If i € I, then ¢; is perfectly simulated using
the share a; and I, = [n], and by generating the necessary random values. Otherwise, if i ¢ I,
then in the same way as in claim 2, ¢; can be masked by the random value r;, (because ¢ ¢ J
and Xy ; ¢ W for all j € [n]), so a; is not needed for the simulation of ¢;. This proves that we can
perfectly simulate the output shares in J with I, and I, = [n].

In the rest, we suppose that |I,| < d—1<mn—t—1, i.e., the number of probes of the form (a)
or (b) in W’ with distinct values for the index i is at most d —1 < n—t— 1. In this case, and with ¢

50

additional output shares, we have at least one index k such that k& ¢ J and for which there are no
probes in W’ of the form (a) or (b). In other terms, no partial sum of V} is probed, no product of
(k)

shares ay, - bj or py j is probed, and no random value ry, ; is probed. Now we reason on the number
of probes of the form (¢) in W

— We first consider the special case where the number of X;; probed (of form (¢) in W') for
distinct values of i is equal to n. In other terms, we have probes X ;,,..., X, j, for certain
values ji, ..., jn. Since the set of probes W satisfies |W| < n (because 2d — 1 < n), then this
means that there are no remaining probes in the set W except for the n probes of the form
(c) in W’. This is an easy case since we can let I, = [n] and I, = J (always without a failure
on a since in the case where |W| = n, we have d =t + 1 =n —t so |I,| = |J| < min(¢, |[W])
where ¢ < |[W]). This allows us to trivially simulate all output wires indexed in J, and since the
remaining wires in W are just sums of random values, we can simulate them by generating the
corresponding random values.

— Next, we consider that there is at least one index £ such that X, ; ¢ W for all j € [n] (in other
terms, the number of probes of the form X ; for distinct values of ¢ is at most n — 1). Notice
that this case is slightly different than the case of claims 2 and 3, since £ can be in the set J.
In this case, we can let I, = [n] so that we can perfectly simulate all wires in WM u...uw®
and J,fl) U...u Jlgn) using I, = [n], and we can perfectly simulate all wires in W’ using I, by
construction and I, = [n] and generating the necessary random values. Next, we need to prove
that we can perfectly simulate all output shares in J. Let ¢ € J. If i € I, then ¢; is perfectly
simulated using a; and I, = [n] and generating the necessary random values. Next, if i ¢ I,
then if ¢ ¢ J, we can use claim 2 to prove that we can replace the expression of ¢; = V; + X,
by the random value r;; and so the share a; is not needed for the simulation of ¢; (even if X ;
for a certain j is probed, the expression of V; is still masked by r;; and a; is not needed to
simulate X; which is a sum of random values). Meanwhile, if ¢ € J, then we cannot directly
use the random value r; o to mask the expression of ¢;. But since X, ; ¢ W for all j € [n], and
since 71,0 ¢ W because k ¢ I, by assumption, then ¢, can be masked by the random value 74 g,
iecg =V, + Xy < rpyp Since i € J and k ¢ J, then i # k and the random value r;, does
not appear anymore in X, in the expression of ¢,. Since i ¢ I, then ;¢ can be used to mask
the expression of the output share ¢; indexed in J and so the share a; is not needed for the
simulation of ¢;. This proves that we can perfectly simulate all shares in J with the constructed
sets I, and I, = [n].

We managed to show that whenever the construction of the set I, gives |I,| < ¢, then we can
perfectly simulate the sets W and J with at most a failure on input b and while still having |I,]| < ¢
and |I,| < |W].

By considering both cases |I,| > ¢ + 1 and |I,| < ¢, we covered all the cases for the simulation,
and we proved that we can always perfectly simulate the set of probes W along with the set of
output shares J while having a failure on at most one of the inputs. This concludes the proof of
Lemma 16. U

1.2 Proof for TRPE2 property

Lemma 17. The above multiplication gadget is (t, f2)-TRPE2 of amplification order d > min(t +
1I,m—t)

o1

Proof. To prove the lemma, we proceed in two steps through the following two lemmas 18 and 19.

Lemma 18. Let W be a set of leaking wires as described above such that |W| < min(t+ 1,n —t).
Then there exists a set J of n—1 output shares, such that W and J can be perfectly simulated from
at most min(|W|,t) = |W| shares of each of the inputs a and b.

Proof. We will construct the set of input shares indices I, and the sets of output shares Jlgk) for
k € [n] depending on the probes in the set W’ (recall that W = W/ UW® U...uW ™) as follows

(we consider that all Jék) are empty at first since all the output shares of Giefresn can be probed
directly in W'):

a) For probes of form (a), we add index i to I, and index j to I8 for k € [n).
b

b) For probes of form (b), we add index i to I, and to I8 for k € [n).
b

(¢) For probes of form (c), we add index i to Jlfk) for k € [n].

Observe that since |W| < min(t + 1,n — t), then in particular |W'| < min(t + 1,n —¢) — 1 < ¢,
then |I,| < |W'| < |W]| <t so we have no failure on the input a. Also, since |J,§k)| < |W'| <t and
\W(k)| < min(t+1,n—t), then by the (¢, f’)-TRPE1 property of Giefresh, we will be able to simulate
sets Jlfk) and W®) from the set of input shares I,Ek) such that]Iék)] < |[W®)| <t for k € [n]. Thus,
we can let I, = Ilgl) U...u Ién) and we have |I,| < (WM U.. . U|W®| < |W| < t, so we have no

failure on the input b either. Until now, we have shown that we can simulate all sets W*) and Jlgk)

from I, of size at most min(|W|,t) = |W]|. It remains to show that we can also perfectly simulate
the set W’ and a well chosen set J of n — 1 output shares, from I, and Jék) for k € [n]. We will

choose the set J from two subsets J = J; U Ja, where J; = {i | i € Jb(k) for any k € [n]}, and
Ja C [n] is any set such that J1 N Jo =0 and |J; U J2| =n — 1. Let £ € [n] be the index such that

¢ ¢ J.Since [W| <min(t+1,n—t) —1 < n—1, then by construction of the sets Jék), we have that
|Jb(1) U...u Jén)| < n —1, then for the index ¢, we have that ¢ ¢ Jék) for all k € [n], then X, ; ¢ W

for any j € [n] by construction of the sets Jék). The value of X, will be useful to use the following
claim.

Claim 4 Let i € J. Suppose that V; ; ¢ W for all j € [n]. Then the expression of ¢; = Vi + X; can
be masked by the random value 1; ¢, in other terms c; < ;.

Proof. The proof of this claim is quite straightforward since we suppose that V;; ¢ W for all
J € [n], so none of the partial sums V;; has been probed. Then V; in ¢; contains n — 1 random
values. In particular, we know that r; ; and p; , only appear in the expression of the probed output
¢;, because if they were probed in W then we would have ¢ € Jlgi)
that ¢ ¢ Jlfk) for all k € [n]. In addition, since X, ; ¢ W for all j € [n] (because otherwise then by
construction £ € Jék) which does not hold), then 7; » does not appear in any other expression of the
probed wires in W, so we can simply use it to perfectly simulate c;.]

by construction, but we suppose

We can now show that the sets W’ and .J can be perfectly simulated from the constructed sets I,
k)
and JF).
b

52

Simulation of W'. Probes of the form (a) can be perfectly simulated from the corresponding input

shares in I, and Jék), and by generating uniformly random values r; ; when necessary. Probes
of the form (c) are also perfectly simulated by simply generating uniformly random values, since
Xij =rii+...+rj; As for probes of the form (b), we know that ¢ € I,, then we look at each
of the terms p; j» for j' € [j] in Vi; = piqx + ...p; . For each p; jr, if j' € Jél), then p; s can be
perfectly simulated from the corresponding input shares and by generating uniformly at random
r;,jr. Otherwise, if j’ ¢ J(l), then that means that the wires p; j7,r; ; and X are not probed in W',
That means that we can potentially replace p; ;; by a random value 7; ;» since r; ;7 does not appear
in any other expression of the variables probed in W’. Meanwhile, we also need to check the case
where j' € J, since ¢y = Vjr + Xjv, and r; j is the one of the summed terms in the expression of

Xj/:

— If j/ ¢ J, then we can replace p; j» by a random value r; j» since r; j does not appear in any
other expression of the variables probed in W’ and is not probed either through c;r.

— If j € J, then we also know that Vs ¢ W' (because otherwise we would have by construction
Jj e Jlfk) for k € [n] which does not hold), then we know from claim 4 that c¢j can be masked
by the random value 7 ¢, which masks Vj» + Xj,. Since ¢ # j' (because ¢ ¢ J while j' € J),
then r; j» does not appear anymore in any other wire expression of the probed variables in W
or J except in the term p; j» of V; ;, so r; j» can be used to mask the expression of p; ;.

By perfectly simulating each term p; j» in V; ;, we can perfectly simulate V; ;. Thus, we can perfectly
simulate all wires in W',

Simulation of J. Let i € J. Let us first consider the case where V; ; ¢ W' for any j € [n], then by
claim 4, the output share ¢; can be masked by the random variable r; o, so ¢; is perfectly simulated
by generating a fresh random value. Otherwise, if V;; € W’ for a certain j € [n], then we know
that the value of V; ; is perfectly simulated as proven above. Now, let us check each term p; ;» for
J' € [j + 1,n]. Actually, we can also perfectly simulate each of these terms like the terms p; j for

j' € [j]- Plus, the term p;; is perfectly simulated by construction of the sets I, and JIEZ) (because
Vi; € W’). In addition, all terms in X; in ¢; = V; + X; can be perfectly simulated by generating a
fresh random value. Thus, ¢; can be perfectly simulated by summing all of the perfectly simulated
terms in it. This brings us to a perfect simulation of all output shares in J. We have shown that
we can perfectly simulate any set of probes W of size at most min(¢ + 1,n — t) — 1 with a chosen
set J of n — 1 output shares, with at most min(|W|,t) = |W| shares of each of the inputs a and b.
This concludes the proof of Lemma 18. O

Remark 3. We can observe that for this lemma to apply on Gyuit, we don’t need the pre-processing
phase of the refresh on input b. In fact, you can see that during the construction of the sets Jlgk),
we add each index to all of the sets for all & € [n]. However, executing n refreshings on the input
b will be necessary for the proof of the next result, specifically when we consider W such that
min(t +1,n —¢) <|W| <2 -min(t + 1,n — t).

To get back to the proof of Lemma 17, we also need the following result.

Lemma 19. Let W be a set of leaking wires as described above such that min(t+1,n—t) < |W| <
2-min(t+1,n—t). Then there exists a set J of n—1 output shares such that W and J can be perfectly
simulated from sets of input shares I, and Iy such that |I,| < min(|W|,t) or |Ip| < min(|W|,t). In
other terms, we have a simulation failure on at most one of the inputs a or b.

53

Proof. Recall that the set W can be split into subsets W = W/ U WM U...U W™ as described
above. We consider two cases.

Case 1: [W'| < min(t+ 1,n —t). This case is similar to the case of Lemma 18, so we can construct
the set I, in the same way as in the proof of Lemma 18, and we can eventually consider I, = [n].
We know that |I,| < |W'| <min(t+ 1,n —t) — 1 <, so there is no failure on the input a. And all
probes in W’ can be simulated like in the proof of Lemma 18 with I, and trivially with I, = [n].
Also, all probes in W U...UW®™ can be trivially simulated since we have access to the full input
b. In addition, we choose the set J of size n — 1 in the same way as in Lemma 18. Whenever i € J
and V; ; € W’ for some j € [n], then ¢; = V; + X; is easily simulated using I, = [n] and the share
a;. If i € J but V;; ¢ W' for all j € [n], then as in the proof of Lemma 18, ¢; in this case can be
masked by the random value r;; (because |W’| < min(¢t 4+ 1,n — ¢)) and so simulating ¢; amounts
to generating uniformly at random the corresponding random value. Thus, W and J are perfectly
simulated with at most min(|W|,) shares of a and eventually the full input b.

Case 2: |W'| > min(t + 1,n —t) (and thus [WM U...UW®™| < min(t+1,n —t)). In this case, we
will construct the sets I, and Jék) from empty sets, in a way that we will have a simulation failure

on at most one of the inputs a or b. We construct the mentioned sets depending on the probes in
W' as follows:

. . . . (i)
(a) For probes of form (a), we add index 7 to I,, and index j only to J, .

. . (i)
(b) For probes of form (b), we add index i to I, and only to J,".

(c) For probes of form (c), we add index i to Jlfk) for all k € [n].

In the rest of the lemma, we will prove that if we have a failure on one of the inputs, we can still
perfectly simulate W and a chosen set J of n— 1 output shares without a failure on the other input.
For this, we will consider two cases, the first where we have a failure on input a, the second where
we don’t have a failure on input a, and so we can eventually have a failure on input b.

Case 2.1: simulation failure on input a, i.e. I, > t. This means that the set I, is of size |I,| >
t+1>min(t+ 1,n —t) (this is because by construction |I,| < |W]|, so to have |I,| > min(|W|,t),
we must have |I,| > t). We will first start by showing that the sets W*) and Jék) can be perfectly
simulated using the simulator of Giefresn Without a failure on the input b. Next, we will show that
W’ and a well chosen set of n — 1 output shares in J can be perfectly simulated using I, and Jlgk).

Since we only add shares indices to I,, when we have probes of the form (a) or (b), this means
that we have at least ¢ + 1 probes of these two forms with ¢ + 1 different values for the index . In
addition, since we have at least ¢t + 1 probes (a) or (b) with distinct values for the index i, then
this also means that each of the sets JISZ) has at most one share of b® added to it. In other terms,

‘Jék) | <1 for each k € [n] (from the probes (a) and (b) with distinct indices 7).

Now let us consider the remaining probes in W which are either in W’ of the form (¢) or in
WO U...uW® or of the forms (a) or (b) with ¢ € I,. Since |I,| > t+ 1 > min(t + 1,n — t),
then there are at most min(t + 1,n — t) — 1 of these remaining probes. Without loss of generality,
we consider that there are exactly min(¢t + 1,n — t) — 1 instead of at most min(t + 1,n —t) — 1
probes. Let m be the number of probes in W U...UW® and d — 1 — m the remaining probes
in W’ of the form (¢) or (a)/(b) with ¢ € I,. Since each wire in W’ of the form (c) or (a)/(b)

with ¢ € I, results in adding at most one more share index to each Jék) for k € [n], then we have

54

|Jb(k)| <1+ (min(t+1,n—t)—1—m)=d—min(t+1,n —t). And [WH U...uW®| < m, in
particular [W®)| < m for any k € [n].

1
— if m = 0, then W) = @) for any k € [n], and |Jb(k)| <min(t+1,n—-1t) < Ln+

JSn_]w

so by the TRPE property of Giefresh for any ¢ < n — 1, all of the Jék) sets can be perfectly
simulated with no knowledge of the input shares of b since W*) = 0, so Ilgk) = (). Hence,
I, = Il(,l) U...Ul, én) = () and we have no simulation failure on the input b.

— if m >0, then [J¥| < min(t+ 1,n—) —1 <t and (WO U...UW™| < min(t + 1,n — t), in
particular |[W®)| < min(t 4+ 1,n —t) — 1 for each k € [n]. Thus, by the (¢, f)-TRPE property of
the refresh gadget Grefresh achieving the amplification order d, we can perfectly simulate both
sets for each k € [n] with Iék) such that |I£k)| < [W®)|. Thus, we can let I, = Iél) U.. .UIIE”) S0
we can have [I,| < |[WMU...UW®™| <min(t+1,n—t) — 1 < t, and we can perfectly simulate
WO U, UW® along with Jél) u...u Jb(n) from the set I, without a simulation failure on
input b.

So far we proved that if we have |I,| > t, then we must have |I;| < t, and W U... U W can
be perfectly simulated along with Jél) U...u Jlfn) from the set I. Next we need to prove that
we can perfectly simulate W' and a chosen set J of n — 1 output shares, from these sets I, and
Jlgl) U...u Jén). We consider two sub-cases.

Case 2.1.1: 1, = [n]. In this case, since |W| > n (from I,) and |W| < 2min(t 4+ 1,n —t) <n+1,
then |[W| = n and all probes in W are all in W’ of the form (a) or (b) with n distinct values for
the index 7. We neither have probes in W U...U W nor in W’ of the form (c). Thus, we can
reconstruct each |J,§k)| of size at most n — 1 without having a failure on the input b (since Grefresh
s (¢, f')-TRPE for any t' < n — 1 achieving d’ = min(t' + 1,n — t') and all W®) are empty). We
consider two cases:

— Suppose that for each ¢ € [n], we have at least one probe in W’ of the form 7 ; or py; for some
k € [n], note this probe qx; € {rkq,pk,i}. Since also I, = [n], this means that we have probes
Qki,1s- - -Gk, m, sSuch that ky # ... # k,. Because |WW/| = n, then all probes in W' are of the
form (a) (specifically gy ;), and we have no probes of the form V; ; for any i, j € [n]. In this case,

the simulation of the probes in W' is straightforward by construction of the sets I, and Jék).
As for the set J, we let J C [n] such that |J| =n — 1 (any set of n — 1 shares works), and let
¢ € [n] such that ¢ ¢ J. Observe that out of all the random values 7; ¢ in X/, in the expression
of ¢ = V; + Xy, only the random value ry, , appears in the expression of the probe gy, ¢ in the
set W', and all other random values 7; ¢ for i # k¢ do not appear in any other probed variable
in W’ (since W' = {qr, 15+ Qky b5 -+ Qhn.m }» Such that ky # ... # ky). Then, for each i € J
such that ¢ # kg, the expression of ¢; = V; + X; can be masked by the random value 7; ¢, so
simulating ¢; amounts to generating a fresh random value 7; ;. Now let’s check ¢ = k; € J. Since
qk, ¢ is probed, then we cannot mask the expression of ¢, using 7, ». However, for each i € J
with ¢ # k¢, we have that ¢; is masked by 7; ¢. Since ¢; = V; 4+ X;, and the random value 7y, ; is
one of the terms in X;, then 7, ; does not appear anymore in the expression of ¢;. And since
W' ={qry 15 sQhyts- -+ Qhnn}, such that ky # ... # k, and g, € W, then qx,; ¢ W' and
Tk, only appears in the expression of ¢y, so ¢, can be masked by the random value 7y, ;. Thus,

we proved that we can perfectly simulate the sets W and J using the sets I, and Jlgk).

95

— Next, we suppose that there exists ¢ € [n] such that we have no probes in W’ of the form
Gk € {7k, Pk} In this case, we choose J = [n] \ {¢}. Next, we show that we can perfectly
simulate all probes in W’ and output shares in J for each i € I, = [n]. For this, first let
i € [n]\ {¢} (notice that we automatically have i € J): ' '

e if for the considered i, the probe in W is of the form (a) i.e a;, bg-l), a;- bg-l)
then the simulation of this probe is trivial by construction of the sets I, and Jél). In addition,
we know that 7, and p; ; are not probed in W’ by assumption, and since Xy ; ¢ W' for all
J € [n], then the random value r; ¢ only appears in the expression of ¢; = V;+X; (specifically
in V;), and so can be used to mask ¢;. So simulating ¢; amounts to generating a fresh random

' Pij = ai‘b§z)+ri,j,

value.
o if for the considered i, the probe in W’ is of the form (b), i.e V;; € W’ for a certain j € [n]
(there is a unique probe of this form), then:
* either j < ¢, and so the random value r; o can be used as before to mask the expression
of ¢;+V; j, and since in this case V; ; contains less than n—1 terms p; j/, then we can add

all the necessary shares of b to Jél)without having a failure on b (recall that W = 0).
So we can perfectly simulate V; ; and ¢; +V; ;, and hence also simulate c;.
* or j > £, and so the random value 7; o can be used in this case to mask the expression of
Vi,j so simulating V; ; amounts to generating a fresh random value, and since V; ; is the
sum of at least two terms of the form p; ;-, then ¢; +V; ; can be simulated with at most
n — 1 shares of b(", so there is no simulation failure on input b®. So we can perfectly
simulate V; ; and ¢; + V; j, and hence also simulate c;.
Next we consider the case of the probe V} ;:
e cither j < /, and so in this case V}; contains less than n — 1 terms py j/, then we can add
all the necessary shares of b(¥) to Jb(g)without having a failure on b (recall that W) = §).
So we can perfectly simulate V; ; using the input share ay, the input shares of b® and by
generating necessary random values.
e or j > /, and so the random value 1y, can be used in this case to mask the expression of
Vi,j so simulating V; ; amounts to generating a fresh random value.
Thus, also in this case, we can perfectly simulate W’ and a chosen set of n — 1 output shares
without a failure on input b, using I, = [n].

This concludes the simulation for the special case where I, = [n].

Case 2.1.2: I, C [n] such that |I,] < n —1. Let k such that k ¢ I,. Recall that |I,| > t+1 >
min(t+1,n—t) and |W| < 2-min(t+1,n—t), then there are at most min(t+1,n—t)—1 <t <n-—1
probes remaining either in W) U ... U W of the form (¢) in W’, or of the form (a)/(b) with
i € I,. Thus, there exists at least one index ¢ € [n] such that X, ; ¢ W' for all j € [n]. In this case,
we choose J = [n] \ {¢}. Next, we will prove that we can perfectly simulate the sets W’ and J from

the constructed sets I, and Jék) , using the following claims.

Claim 5 Leti € J. Suppose that i ¢ I,. Then the expression of ¢; = V; + X; can be masked by the
random value r; ¢, in other terms ¢; <= r; 4.

Proof. This claim can be proved easily, since we suppose that i ¢ I, so the random value 7; , and
pie are not probed in W’. In addition, since ¢ ¢ J and X, ; ¢ W for all j € [n], then the random
value r; , does not appear in any other probed wire expression except in ¢;, then ¢; can be masked
by the random value 7; .]

56

Claim 6 Leti € J. Suppose that X; ; ¢ W for any j € [n]. Suppose thati € I,. Then the expression
of ¢; = Vi + X; can be masked by the random value 1y ;, in other terms c¢; < 1y ;.

Proof. Since we suppose that k ¢ I,, then the random value 7 ; or py; or Vi, ; for all j € [n| are
not probed in W. Then, if k ¢ J, then the random value r; does not appear in the expression
of any other probed wire in W or J and ¢; can be masked by the random value 7 ; (Recall that
¢ =Vi+X; and X; = ry; + ...+ ;). Otherwise, if k € J, then by Claim 5, ¢ = Vi + X}, can
be masked by 7y ¢ and so ¢; can also be masked by 7y ; since ¢ # £ (because ¢ € J and £ ¢ J) and
i # k (because i € I, and k ¢ I,,). O

Probes of the forms (a) or (¢) in W’ are trivially simulated using the constructed sets of input
shares, and generating the necessary random values. Let us now check the probes of the form (b).

Let Vi; = pi1 + ...+ pij be such a probe. Let us consider each of the terms p; ; for j' € [j]. if
)

j' =i, then by construction p; ; is perfectly simulated using a; and bgi and by generating the random

value r;; if needed. Otherwise, let j/ #i. If j' € Jéi) then the simulation of p; ; is straightforward.

Otherwise if j/ ¢ Jlfi), then we know that none of the wires r; j» or p; y or X ¢ for all s € [n] are
probed in W’. Thus, r; ; can be eventually used to mask the expression of p; ; without the need

of the share bgf) for the simulation. Meanwhile, we still need to check if j' € J, since r; j appears
in X in the expression of ¢;; = Vjr + Xy,

— If j/ € J and j' ¢ I,, then by claim 5, ¢j» can be masked by the random value 7, and so r; ;v
does not appear in the expression of X in ¢;; anymore, and r; ;7 can be used to mask p; ;.

— Otherwise, if j' € J N I,, then by claim 6 ¢js can be masked by the random value ry j and so
r; j+ does not appear in the expression of X in ¢;; anymore, and r; j; can be used to mask p;
(since i ¢ k).

Thus, each term p; j in V;; can be perfectly simulated and thus V;; = p;1 + ... + p;j can be
perfectly simulated. This concludes the simulation of the set W’.

We now focus on the simulation of J. Let i € J. If i ¢ I, then by claim 5, ¢; is perfectly
simulated by generating the random value 7; 0. Otherwise, let ¢ € I,. If X; ; ¢ W for any j € [n],
then by claim 6, ¢; is perfectly simulated by generating the random value 7 ;. Otherwise, we can
show that we can perfectly simulate each term in ¢; = V; + X;. In particular, each term in X; can be
simulated by generating the underlying random value uniformly. For V;, we know in particular that
a; - bgl) is perfectly simulated since X; ; € W’ for at least one j € [n]so i € JIEI) by construction. For
the other terms in V;, they can be perfectly simulated in the exact same way as we simulated the
probes V; ; of the form (b) in the set W’. So ¢; is perfectly simulated by summing all the perfectly
simulated terms. This concludes the simulation proof for the set J.

Up until now, we have concluded that if we have a constructed set I, of size at least ¢t + 1, then
we can perfectly simulate the sets W and a chosen set J of n — 1 output shares, without having
a simulation failure on the input b. In the rest of the proof, we will consider that |I,| < ¢, and we
will prove that we can perfectly simulate W and J with at most a simulation failure on b. Recall
that we are also considering that |[W’/| > d and (WM U...UW®™| <d —1.

Case 2.2: |I,| < t. This means that the number of probes of the form (a) or (b) in W’ with distinct
values for the index ¢ is at most .

57

First, let us check the special case where the number of probes of the form (¢) in W’ with different
values for the index i is equal to n (notice that this cannot occur when we have |I,| > ¢+ 1). Since
[W| <2-min(t+1,n—t) —1 < n, then we have W = {X ;,,..., X, j,} for certain ji,...,j, € [n].
So we can let Jék) = [n] for all k& € [n] and I, = [n], and by construction I, =). In this case, we
choose J = [n — 1]. The simulation of the set W is straightforward since all wires of the form (c)

are just sums of random values. Then, let us consider the output shares in J.

— If for at least one £ € J, we have X,, € W, we can mask the expression of Xy, by the random
value 7, ¢ (because there are no probes of the form (a) or (b) in W and n ¢ J, so r,, only
appears in the expression of Xy). Recall that X;, =71+ ...+ 7y, so r,, masks all random
values r; ¢ for j € [n—1]. Each of the random values 7, for j € [n—1]\ {¢} can be used to mask
the corresponding output share ¢; for j € J because there are no probes of the form (a) or (b)
in W and Xy, is already masked by 7, ¢, so r;, only appears in the expression of ¢; = V; + Xj,
so ¢j < 1j . As for the output ¢¢, we can let I, = {¢} and we can perfectly simulate ¢, using ay
and I, = [n]. Since |W| = n, so min(t + 1,n —t) > g > 1, so we have no failure on the input a,
and we can perfectly simulate the chosen set J and the set of probes W.

— Now we consider that for all W = {X; j,,..., X, .}, we have j; < n,...,j, < n. In this case,
the set W is also trivially simulated by generating random values, and we let J = [n — 1].
Since, n ¢ J and there are no probes of the form (a) or (b) in W, then the random values
i for i € [n — 1] only appear in the expression of the output share ¢; = V; + X; each. And
since all probes of the form X;; are such that j < n, then we can let r,; be used to mask the
expression of ¢; + X; ; because r,; does not appear in X;; for j < n, i.e ¢; + X;; < ry;. By
perfectly simulating the masked expression of ¢; + X; ; and the sum of random values X ;, we
can perfectly simulate ¢;. Thus, simulating all output shares in J amounts to generating random
values uniformly. So we can perfectly simulate sets W and J from I, = 0 and I, = [n].

Next, we suppose that the number of probes of the form (¢) in W’ with different values for the
index i is strictly smaller than n. So, there is at least one index £ such that X, ; ¢ W' for all j € [n].
We let J = [n] \ {¢}. We also let I, = [n] and we keep the set I, as constructed according to the
probes in the set W’. Observe that all probes in W’ are perfectly simulated by easily using the set
I, and I, = [n]. As for the output shares in J, observe that for each i € J such that i ¢ I, we can
use claim 5 to mask the expression of ¢; by r; s, and so the share a; is not needed for the simulation
of ¢;. Otherwise, if i € J N I,, then ¢; is perfectly simulated using a; and I, = [n].

This proves that whenever i ¢ I,,, the output share ¢; can be simulated without the need of the
share a;. Since we suppose that |I,| < ¢, then we conclude that we can perfectly simulate W and a
chosen set of n — 1 output shares J with at most a simulation failure on input b.

By considering both cases |I,| > ¢ + 1 and |I,| < t, we covered all the cases for the simulation,
and we proved that we can always perfectly simulate the set of probes W along with a chosen set
of n — 1 output shares J while having a failure on at most one of the inputs. This concludes the
proof of Lemma 19. 0

From Lemmas 18 and 19, we conclude that Gt is (¢, f2)-TRPE2 of amplification order d >
min(t 4+ 1,n —t). This concludes the proof of Lemma 17. O

58

