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Deep learning has played an important role in many fields. It shows significant
potential to cryptanalysis. Differential cryptanalysis is an important method in
the field of block cipher cryptanalysis. The key point of differential cryptanalysis
is to find a differential distinguisher with longer rounds or higher probability.
Firstly, we describe how to construct the ciphertext pairs required for differential
cryptanalysis based on deep learning. Based on this, we train 9-round and 8-round
differential distinguisher of SIMON32 based on deep residual neural networks.
Secondly, we explore the impact of the input difference patterns on the accuracy of
the distinguisher based on deep learning. For the input difference with Hamming
weight of 1, the accuracy of 9-round distinguisher is different between the first
16 bits and the last 16 bits for non-zero bit positions. This is mainly caused by
that its nonlinear operation is mainly concentrated in the first 16 bits. We also
find that the accuracy of the distinguisher is different even if the input differences
come from the differential characteristics with the same probability. Finally, we
construct a last subkey recovery attack on 11-Round SIMON32 with practical
data and time complexities. Our attack only uses about 2° chosen plaintexts and
only needs about 45s for an attack with a success rate of over 90% using our
workstation, which does not exceed 2'%° 11-round encryption. At the same time,
we extend the neural 9-round distinguisher to a 11-round distinguisher based on
SAT, and propose a last subkey recovery attack on 13-Round SIMON32 using
2125 chosen plaintexts with a success rate of over 90%. Compared with traditional
approach, the complexity of the method based on deep learning is lower, both in
time complexity and data complexity.
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INTRODUCTION

With long-term development, deep learning (DL) has
been applied to various fields such as autonomous
driving, machine translation and so on. In 1943,
McCulloch and Pitts [1] proposed the MP neuron
model, which was an abstract and simplified model
constructed according to the structure and working
principle of biological neurons. It opened the simulation
of the neural network, but adjusting the weights relied
heavily on manual work, very bad for study. In 1958,
on the basis of MP neural, Rosenblatt [2] proposed
the first-generation neural network named single-layer
perceptron, which can distinguish between triangle,
square and other basic shape. In 1986, the second
generation of neural network was put forward by
Rumelhart [3]. It changed the single fixed feature
layer in the first-generation neural network to multiple
hidden layers, using Sigmoid as the activation function.
At the same time, it used the idea of Back Propagation
(BP), which effectively solved the problem that the
first generation only can be used in linear classification.

Convolutional Neural Networks (CNN) [4], Recurrent
Neural Networks (RNN) [5] and other networks have
also developed to a certain extent. In 2006, Hinton [6]
et al. put forward the concept of deep learning for
the first time, and pointed out that deep learning can
inhibit the gradient disappearance by using the method
of layer by layer initialization. In 2011, Glorot [7] et
al. proposed Rectified Linear Unit (ReLU), which can
effectively inhibit the gradient disappearance. With
these theories and networks, deep learning has played
an important role in signal processing, image processing

and other fields.

As an optimized version of the CNN, the deep
residual neural networks (ResNet) [8] was applied to
the ImageNet competition as soon as it was proposed
in 2015, and achieved the first place. Due to the back
propagation during the training process, it is easy to
have the problem of gradients disappearance. This
makes the accuracy of the model continue to improve
as the number of layer continues to increase, but when
the number increases to a certain number, the accuracy




of validation data will decline rapidly. This is the
reason why deep networks will become more difficult
to train when the network becomes very deep. ResNet
introduces a residual tower, which allows the network
to increase without degradation as the depth increases.

Deep learning has brought significant improvement in
many fields, and it enlightened cryptanalysis. As early
as 1991, Ronald Rivest [9] discussed the similarities and
differences between machine learning and cryptography,
and analyzed the application of machine learning in the
field of cryptography. In recent years, deep learning
has also been applied to side channel analysis [10, 11,
12], and pointed out that the sensitive information
on embedded devices can be effectively extracted by
training neural networks.

In 2019, there was a giant leap in differential
cryptanalysis based on deep learning because of
Gohr’s work [13]. At the Crypto2019, Gohr
show that deep learning can produce very powerful
cryptographic distinguishers and indicated that the
neural distinguisher was better than the distinguisher
obtained by traditional approach. He trained a neural
distinguisher of SPECK32 [14] based on ResNet, which
can distinguish the ciphertext pairs from random data
roughly five times lower than a distinguisher using
the full difference distribution table. At the same
time, he developed a highly selective key search policy
based on a variant of Bayesian optimization by using
neural distinguishers. With this policy, Gohr described
a practical key recovery attack on 11-round SPECK,
and explained that the complexity of the attack based
on deep learning was much lower than the traditional
attack.

Enlightened by Gohr’s work, Anubhab Baksi [15]
et al. proposed to use multi-layer perceptron (MLP)
to construct a distinguisher for longer block size and
non-Markov ciphers. Compared with the traditional
differential characteristics, the number of plaintexts
selected is less. Similarly, Aayush Jain [16] et al.
constructed a distinguisher for PRESENT [17]based on
the MLP model, and explained that the MLP model
with a lesser number of hidden layers can still be used
in the construction of a block cipher distinguisher.

Although there are multiple researchs about the
differential distinguishers based on deep learning,
the influencing factors of the accuracy of neural
distinguishers are unexplored, as far as we know. At the
same time, it is meaningful to explore how to construct
the neural distinguisher of the SIMON. What’s more, it
is significative to research about a practical key recovery
attack of SIMON32 based on deep learning.

Our contribution: Inspired by Gohr’s work,
this paper tries to teach neural networks to exploit
differential properties of round-reduced SIMON32. In
order to achieve this goal, we train neural networks
to distinguish the output of SIMON32 with a given
input difference from random data. More importantly,
we explore the influence of input difference pattern on

the accuracy of the distinguisher and explain why the
input differences affects the differential distinguisher.
To show that our distinguisher is more effective than
the traditional one, we construct a practical last subkey
recovery attack with lower complexity in time and data.
Our contributions can be summarised as follows:

e We describe a universal method of collecting data
sets used for deep learning training, which can
be applied to block ciphers with the block size of
32bits or other block size. At the same time, we
adopt the ResNet to train neural distinguishers.
Based on this, we train the 8-round and 9-round
neural distinguisher of SIMON32 based on ResNet,
whose accuracy are more than 70% and 60%,
respectively.

e We investigate the influence of input difference
pattern on the accuracy of neural distinguisher.
Firstly, we study the influence of input difference
with Hamming weight of 1 on accuracy of 9-round
distinguisher. The accuracy is about 50% if the
non-zero bit is in the first 16 bits of SIMON32,
while the accuracy is around 60% if the non-
zero bit is in the last 16 bits. This is mainly
caused by that its nonlinear operation is mainly
concentrated in the first 16 bits. In addition,
we investigate the influence of input difference of
differential characteristics with same probability on
the accuracy. We find that the difference between
the highest accuracy and the lowest accuracy
exceeds 40%. This is due to that the neural
distinguisher considers more the output differences
under the same input difference.

e Thanks to the research about the influence of
input difference pattern on the accuracy of neural
distinguisher, we choose (020, 02200) as the input
difference and train 8-round and 9-round neural
distinguisher of SIMON32. Inspired by Gohr’s key
search policy, we complete a practical 11-round
key recovery attack based on the 8-round and 9-
round distinguisher on a workstation configured
with Intel i9-10900K and Nwidia TITAN RTX.
We use preconstructing-plaintext technique to help
us obtain appropriate plaintext pairs. At the
same time, the neutral bits [18] are used to
enhance the distinguishing ability. In order to
filtrate the better neutral bits for key recovery,
we randomly generate 10000 sets of neutral bits
and save the neutral bits which makes the success
rate more than 90%. Our attack takes about 45s
to recover the final subkey, with a success rate of
more than 90%. Its time complexity is no more
than 28 11-round encryption of SIMON32, and
the data complexity is about 27, which is much
lower than the complexity of traditional differential
cryptanalysis.

e With the automatic searches based on SAT, we
extend our neural 9-round distinguisher to a 11-
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round distinguisher by prepending the 2-round
differential characteristic (02800, 022200) LI
(020,02200).  Similar to 1l-round attack, we
construct a last subkey recovery attack on 13-
round SIMON32 with practical data and time
complexities. Our attack only uses about 2!2-
chosen plaintexts and only needs about 45s for
an attack, which does not exceed 285 13-round
encryption.

Owutline: The remaining of this paper is organised
as follows. Section 2 gives a brief description of
SIMON32 and illustrates the model of differential
distinguisher based on deep learning. In Section 3, we
construct a 8-round and 9-round distinguisher based on
deep learning, and the relationship between the input
difference pattern and the accuracy of distinguisher is
discussed. Combining with the content of Section 3, we
perform a key recovery attack on 11l-round SIMON32
and 13-round SIMON32 in Section 4. Conclusions are
drawn in Section 5 where we also suggest further work.

2. PRELIMINARIES
2.1. Brief Description of SIMON32

SIMON [14] is a lightweight block cipher proposed
by the NSA. The aim of SIMON is to fill the need
for secure, flexible, and analyzable lightweight block
ciphers. It is a family of lightweight block ciphers
with block sizes of 32, 48, 64, 96, and 128 bits. The
constructions are Feistel ciphers using a word size n of
16, 24, 32, 48 or 64 bits, respectively. Since this paper
is studying the version with the block size of 32bits and
the key size of 64bits, we only introduce SIMON32 here.

The round function of SIMON is composed of AND,
rotation, and XOR operations on the n-bits word as
follows:

@ : bitwise XOR ,
& : bitwise AND ,
S7 : left circular shift by j bits.

For ki € GF(2)', the key-dependent SIMON32
round function is the map Ry,:GF (2)'° x GF (2)'° —
GF (2)'° x GF (2)'° defined by

R, (ig1,25) = (2 @ f(@ig1) D ki, zi1)

where f (2;41) = (SlacHl&SsxiH) ® S%x;,1, k; is the
round key. This round function is pictured in Figure 1.

As it is out of scope for our purpose, we refer to [14]
for the description of the key-scheduling.

Since the SIMON algorithm was proposed, cryptog-
raphers have analyzed its various versions. The earliest
differential attack on SIMON32 was presented by Abed
et al. in [19], which attacked 18-round SIMON32. With
Abed’s work, Wang Q et al. [20] studied the security
of SIMON32 by using integral, zero-correlation linear

£

xi+2

FIGURE 1. Round function of SIMON32

and impossible differential cryptanalysis. In addition,
Sun S et al. [21] got a better differential distinguisher
by mixed integer linear programming (MILP). What’s
more, Reihaneh Rabbaninejad et al. [22] presented cube
and dynamic cube attacks on reduced-round SIMON32.

2.2. Model for differential distinguisher based
on Deep Learning

As an effective method, differential cryptanalysis [23]
is widely used in block cipher, where the differential
distinguisher is indispensable, and often used to
distinguish the ciphertext from random data. In
traditional differential cryptanalysis, the first thing is
to find a high-probability differential characteristic,
and use the characteristic to construct a differential
distinguisher. A distinguisher is considered to be
useful if it can distinguish longer rounds or have higher
probability. In traditional differential cryptanalysis,
the construction of a differential distinguisher depends
more on the possible defects of the algorithm itself. In
recent years, automatic search [21, 24, 25] has gradually
become the mainstream method to find differential
distinguishers, which greatly accelerate the process of
cryptanalysis.

The traditional differential distinguishers are used
to distinguish the output of the block ciphers with
a given input difference from random data. Deep
learning is widely used in classification in the fields of
image and signal processing, which is the similar to the
traditional distinguishers. Therefore, deep learning can
also be used to assist the construction of differential
distinguishers.

In this section, we focus on how to obtain the
ciphertext pair sets used to train neural distinguishers.
In addition, we describe the construction of the neural
distinguisher.

2.2.1.  Collection of data set

In deep learning, the selection of data set affects the
accuracy of the neural network model for distinguishing
unknown data. Therefore, when we construct the




differential distinguisher based on deep learning, the
selected data set should be as random as possible
and cover all possible situations. When we use the
traditional differential cryptanalysis to construct a key
recovery attack, it is the first step to find a differential
distinguisher with the longer rounds and the higher
probability, which is inseparable from finding a good
input difference. Same as the traditional cryptanalysis,
the neural distinguisher also needs a given input
difference. We choose a fixed difference as the input
difference of the neural differential distinguisher. The
method of collecting data set is shown in Figure 2.

FIGURE 2. Collection of data set

Algorithm 1 gives a description about Figure 2. We
choose a fixed difference defined by A with size of nbits.
The method of collecting the data set is explained in
Algorithm 1, and it can be applied to block ciphers
with the block size of n bits.

Algorithm 1 Process for collecting data set

Input: Input difference A with size of nbits, Size of
data set N, Rounds R
Output: Data set that meets the conditions

1: Randomly generate 4 sets containing N elements,
namely X1, X2, Y and KEY. The elements in X1
and X2 are integers with size of nbits, the elements
in Y are 0 or 1. The elements in 4 sets are
correspond to each other in order;

2: If an element in Y is 1, replace the value of the
element at the corresponding position in X2 with
the value by XOR the corresponding element in X1
and A, and record the transformed X2 as X3;

3: The elements in X1 and X3 are regarded as
plaintext, and the elements in the KEY at the
corresponding position are used as the master key
for R rounds of encryption for the plaintexts. The
ciphertext sets are denoted as X4 and X5;

4: The element at the corresponding position in X4
and X5 is spliced into a new element with size
of 2nbits, and obtain a new set namely X6. The
element at the corresponding position in Y is used
as the label of the data;

5: return X6 and Y;

If n = 32, the algorithm can be applied to SIMON32
and other block ciphers with block size of 32bits. And
it can also be applied to block ciphers with block size of
64bits such as PRESENT and SPECKG64, if n = 64.
Supervised learning is currently a common type of
machine learning. Given a set of labeled samples, it
can learn how to map input datas to known labels.
As shown in Figure 2, we take the 2n-bit elements
spliced by X4 and X5 as a new data set, which are
used as a set of labeled samples for training. With
deep learning, we can extract features from the known
ciphertext pairs, and the unknown ciphertext pairs can
be calculated by using these extracted features to obtain
the classification result.

2.2.2.  Construction of the differential distinguisher
model

There are multiple neural networks available to train
neural distinguishers, such as MIP, ResNet and so
on. We choose the ResNet to help train a neural
distinguisher, since ResNet introduces a residual
tower which allows the network to increase without
degradation as the depth increases.

In order to facilitate understanding of the network
we constructed, the residual tower of ResNet is shown
in Figure 3. In Figure 3, we choose “ReLU” as the
activation and “Conv1D” as the basic convolution layer.
What’s more, The hidden layer of the ResNet we

/ Input{None, 16,4) \

ConviD QOutput(None,16,32)

BatchNormalizatio ' Input(None, 16,32)
n Output(None,16,32)

" " Input(None,16,32)
\ Activation Output(Non 9,15,32)
/ \nput(None,lE,BZ)
ConviD Output(None,16,32)
BatchNormalizatio = Input(None,16,32)
Output(None,16,32)

Input(None,16,32)
Output(None, 16,32

Add

Activation

Input((None,16,32);(None,16,32))
Output(None,16,32)

FIGURE 3. Residual tower

constructed contains a total of 5 residual towers as
shown in Figure 3. Firstly the formatted original data is
calculated by the “Conv1D” layer, and then transferred
to the residual tower. Finally the final result is output
by the output layer. When we finish the model training,
we have a distinguisher model.

Using the model, we can distinguish whether the
ciphertext pair is derived from the plaintext pair
encrypted R rounds with a given input difference A.
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3. NEURAL DISTINGUISHERS FOR RE-
DUCED SIMON32

The differential distinguisher based on deep learning
is used for key recovery attacks of SPECK32 in [13].
The SIMON family and SPECK family are proposed
together, and the distinguisher of SIMON32 can also
be constructed by emulating the method in [13]. At
the same time, the influence of input difference on
the accuracy of distinguisher is not mentioned in [13].
In this section, we construct an 8-round and 9-round
differential distinguisher of SIMON32, and discuss the
influence of input difference pattern on the accuracy of
the distinguisher.

3.1. Training of differential distinguisher of
SIMON32

We choose the input difference (0z0,02200), from the
differential characteristics shown in the appendix of
[19], as the input difference of distinguisher based on
deep learning. The size of training sets in the training
process is 107, and the size of the validation set is 10°.
When training 8-round distinguisher, the data set is the
ciphertext pairs set encrypted 8 rounds, and for 9-round
distinguisher, it is ciphertext pairs encrypted 9 rounds.
At the same time, we set the network to carry out 100
epochs. We use the Keras [26] for deep learning, and
the training process of the model is mainly completed
on the workstation configured with Intel i9-10900K
and Nvidia TITAN RTX. In order to investigate the
changes of the model in the training process, the change
of accuracy and loss of the validation set during the
training is shown in Figure 4.

0.7 Resnet for SIMON32

0.70 val_acc of Round8
0.65
0.60
0.55 val_acc of Round9
0.50
0.45
0.40
0.35

0.30

val_loss of Round9
0.25
0.20

0155 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
epoch

FIGURE 4. ResNet for SIMON32

In Figure 4, the x-coordinate represents the epochs
in the training process, and the y-coordinate represents
the accuracy and loss of validation set. The 4 broken
lines in Figure 4 represent the changes in the accuracy
and loss of the verification set when training the
8-round distinguisher and the 9-round distinguisher,
respectively. From Figure 4, we can see that the
accuracy of 8-round distinguisher on verification set
is about 73%, and the accuracy of the 9-round
distinguisher is about 60%.

For the model trained with 8-round encrypted data,
we call this network model ResNet-based 8-round
differential distinguisher. Using this distinguisher, we
can distinguish the ciphertext pairs encrypted 8 rounds
with a given input difference from random data. If
the unknown data is the ciphertext pair encrypted 8
rounds with a given input difference, the distinguisher
will return 1; and the distinguisher will return 0, if
not. Similarly, for the model obtained from 9-round
encrypted data, we can also use it to distinguish the
ciphertext pair after 9-round encryption. In order to
evaluate the accuracy of the model, we use the equation

N
= — 1
acc (1)

to evaluate the model, where N is the size of data
judged by the model, Nj is the size of data whose
judgment result is the same as the real result, and acc
is the accuracy of the model.

We generate a new data set containing 10° ciphertext
pairs and evaluated the model using Equation (1). We
find that the accuracy of the model is comparable to
that of the validation set. This satisfies the basic
requirement for distinguisher in cryptanalysis, which is
accuracy over 50%. At the same time, by observing the
changes of accuracy and loss, we find that the broken
line is fluctuating during the training process, which is
caused by the setting of the optimizer, but this does
not affect our use of the model. Finally, from the
change in the accuracy, it can be seen that 100 epochs of
training may not be required, and a distinguisher can
be obtained in the first 20 epochs of training, which
helps reduce the running time.

3.2. The effect of input difference pattern on
accuracy of distinguisher

In traditional differential cryptanalysis, the most
important thing is to find a high-probability differential
characteristic. The input difference of the differential
characteristic will directly affect the probability of the
characteristic. So it is meaningful to investigate into the
influence of the input difference pattern on the accuracy
of the neural distinguisher. In this section, we explore
the effect of two kinds of input difference pattern on
accuracy of neural distinguishers.

3.2.1. The effect of input difference with hamming
weight of 1

We use all differences with a Hamming weight of 1 as the
input difference of the 9-round differential distinguisher
for training. Similarly, the size of training sets is 107,
and the size of the validation set is 10°. At the same
time, we set the network to carry out 100 epochs. We
choose (020, 0z1), (020,0x2), (0x1,020) and (022, 0z0)
as representatives, and draw the change of accuracy and
loss.

As shown in Figure 5, if the input difference
is (020,021) or (020,022), the accuracy of the
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FIGURE 5. Training process with four input differences

TABLE 1. Accuracy with different input difference

Accuracy | Input difference
(020, 0x1), (020, 0210), (0«0, 02100), (020, 021000),

60% 629 | (020,022), (020,0220), (00, 0200), (020, 022000),
(020, 0z4), (020, 0240), (020, 02400), (020, 024000),
(020, 028), (020, 0280), (020, 02800), (020, 028000)
(021, 020), (0210, 020), (02100, 0z0), (021000, 0z0),

50%—51% (022, 020), (0220, 020), (02200, 0x0), (0222000, 0z:0),
(0z4, 020), (0240, 020), (02400, 0z0), (024000, 0z0),
(028, 0x0), (0280, 0z0), (02800, 0x0), (028000, 0z:0)

distinguisher exceeds 60%, and if the input difference
is (021, 020) or (022, 0z0), the accuracy is within about
50%. It can be seen that the difference in the accuracy
of the distinguisher with different input differences is
huge, with a difference of more than 10%. We count
the accuracy of the distinguisher with different input
difference as shown in Table 1.

As shown in Table 1, we can see that the difference
in accuracy from different input difference is huge. Our
distinguisher is used to distinguish the ciphertext pair
with a given input difference from random data, which
is the binary classification in deep learning. Therefore,
for the distinguisher model, if its accuracy is about
50%, we can think that the distinguishing effect of the
distinguisher is not obvious.

The accuracy of the distinguisher is basically divided
into the first 16 bits and the last 16 bits in Table 1.
In the input difference with Hamming weight of 1, the
accuracy is about 50% if the non-zero bit is in the
first 16 bits. If the non-zero bit is in the last 16 bits,
the accuracy is around 60%. This situation is mainly
related to the round function of SIMON32. In the round
function of SIMON32, its nonlinear operation is mainly
concentrated in the first 16 bits. Assuming that the

input plaintext pair is (Lg, Rp) and (L;,,Ré)) and the

subkey is k, with LOGBLE) = Ay, and ROEBR:) = AR, the
plaintext pair can be obtained after 1-round encryption
as follows:

(L1, R1) = (Ro & (S"Lo&S®Lo) & S*Lo @ k, Lo) ;

(L0 B = (Ry e (S'Lo&s Ly) @ S*Lo @ k, Ly )

TABLE 2. Differential characteristics of SIMON32

Round | AL AR log, (p)
0 0z0 02200 0

1 02200 0z0 0

2 080 02200 -2
3 02220 080 -2
4 0x8 02220 —4
5 0222 08 -2
6 028080 02222 —6
7 022202 028080 —4
8 02800 022202 —6
9 022002 02800 -2
10 028000 022002 —4
11 0x2 028000 -2
12 0z0 0x2 -2
13 0z2 0z0 0

If there are Ay, = 0 and Ag # 0, there are Ll@Lll = Apg
and Ry @R/l = 0. And if there are A;, # 0 and Ag =0,
there are Ly & L; = (S'Lo&S*Lo) @ (S'Lo&eS*Ly) &
S2Ap and Ry @ R} = Ay #0.

That is, if the first 16 bits of the input difference
are 0, the non-zero bits will spread less in the next
round; and if there are non-zero bits in the first
16 bits of the input difference, due to the non-
linear operations, the non-zero bits will diffuse into
the next round of input. This is consistent with
the analysis of the differential characteristic in the
traditional differential cryptanalysis. This shows that
the traditional differential cryptanalysis is helpful for
the neural distinguisher.

3.2.2. The effect of input differences with the same
probability

In order to explore the impact of the input difference of
the differential characteristics with the same probability
on the accuracy, we need to find some differential
characteristics that meet the requirements, and use its
input difference to compare the impact of the input
difference. Abed F et al. searched for 13-round
differential characteristics of SIMON32 in [19], and gave
the probability between each round, as shown in Table
2. We use the differential characteristics shown in
Table 2 to find the input difference that meets the
requirements.

In the difference characteristics shown in Table 2, we
find two groups of appropriate input differences, and
the corresponding rounds is 6 and 7 respectively. Their
probability are 2724 and 2726 respectively, as shown in
Table 3.

As shown in Table 3, we select the input
difference (0280,02200), (0x220,0x80), (0x8,0x220)
and (02222, 028) as the input difference to train the 6-
round distinguisher based on deep learning. Similarly,
we select the difference (02200,020), (0x80,02200),
(028,02220), and (02222,028) as input difference
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TABLE 3. Differential characteristics with same
probability
Round | Ainput Aoutput log, (p)
(0280, 02200) (02800, 022202) | —24
6 (02220, 02:80) (022002, 02:800) | —24
(028, 02220) (028000, 02:2002) | —24
(02222, 0z8) (02, 028000) —24
(02200, 020) (02800, 02:2202) | —26
7 (0280, 02200) (022002, 02800) | —26
(08, 0£220) (022, 02:8000) —26
(02222, 028) (020, 022) —26

1.00 Round 6

0.95
(0x80,0x200)

08 (0x§,0k220)
0.80

10.75
0.70 (0x220,0x80)

val_acc

(0x222,0x8)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
epoch

FIGURE 6. 6-round distinguisher with different input
difference

to construct the 7-round distinguisher.We plot the
accuracy changes of the distinguisher with different
input difference on the verification set during the
training process as Figure 6 and Figure 7. As shown
in Figure 6 and Figure 7, it can be seen that although
the probability of the differential characteristics is same,
the accuracy of the distinguisher obtained is different
given different input differences. The difference between
the highest accuracy and the lowest accuracy of the
distinguisher exceeds 40%.

The traditional distinguisher uses only one or some
differential characteristics. For the neural distinguisher,
since it only needs a fixed input difference, the
differential distinguisher can learn more features from
a given input difference. This is why although the
probability of the differential characteristics is the
same, the accuracy is obviously different. Due to that
the neural distinguisher is essentially learning multiple
characteristics at the same time, so the distinguisher is
better at distinguishing than traditional one. This also
inspires us to use the differential distinguisher based on
deep learning to perform differential attacks, and its
effect may exceed the traditional differential attack.

Round 7

(0x80,0x200)

0.55 (0x222,0x8)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
epoch

FIGURE 7. 7-round distinguisher with different input
difference

4. KEY RECOVERY ATTACK OF ROUND-
REDUCED SIMON32

In order to show that the neural distinguisher is
effective for key recovery, we complete practical 11-
round key recovery attack on a workstation configured
with Intel i9-10900K and Nvidia TITAN RTX. It takes
about 45s to recover the final subkey, with a success
rate of more than 90%. Our attack only needs no
more than 2'85 1l-round encryption and the data
complexity does not exceed 2°. With the traditional
differential attack in [19], it requires 22% plaintext pairs
and more than 22° 1l-round encryption. Therefore
the data complexity and time complexity based on
deep learning is far lower than that of the traditional
differential cryptanalysis. In addition, we improved the
rounds of key recovery based on SAT, we extend our
neural 9-round distinguisher to a 11-round distinguisher
by prepending the 2-round differential characteristic

(02800, 02:2200) £> (020, 02200). Then, we propose
a attack on 13-round SIMON32/64. Our attack uses
about 2'2% chosen plaintexts and only needs about 45s
for an attack, which does not exceed 2'¥° 13-round
encryption.

4.1. Basic Attack Idea

4.1.1.  Owverview
Thanks to the research about the influence of
input difference pattern on the accuracy of neural
distinguisher, we choose (0z0,02200) as the input
difference and train 8-round and 9-round neural
distinguisher of SIMON32. Due to the round function
of the SIMON32, the key-addition occurs after the
non-linear operation, we can construct 11-round key-
recovery attack by adding 1 round before and after 9-
round distinguisher. At the same time, we choose these
plaintext pairs whose difference is (020, 02200) after 1-
round encryption. These plaintext pairs which meet
the requirements are encrypted for 11 rounds, and the
ciphertext pairs is obtained.

It is based on a hypothesis: if the final subkey is
correctly guessed, the probability that the intermediate
state obtained by the correct last subkey and the




correct second-to-last subkey passs through the 8-round
distinguisher is the highest. That is to say, the response
of the 8-round distinguisher is the highest if 2-round
subkey are guessed correctly. This is due to the fact
that the intermediate state decrypted by the error key
is a random sequence for distinguisher given by the fixed
difference, that is, the distinguisher will returns a value
of approximately 0.5 if the guessed key is wrong. Based
on the above assumptions, the approach which recover
the last subkey is explained. We guess possible keys in
the last round, we use the guessed subkey to perform
1-round decryption, and use 9-round distinguisher to
score and sort the guessed subkeys. If the score of a
key exceeds the threshold t1, we use the key to decrypt
one round. At the same time, guess the second-to-last
subkey, and similarly, score and sort them. If the score
exceeds the threshold t2, the last guessed subkey will
be returned as the result.

4.1.2.  Preconstructing-plaintext technique

The early abort technique has been widely used in
various key-recovery attacks [27], which aims to reduce
the number of chosen plaintext pairs by using plaintext
features and reduce the complexity of the attack.
Inspired by the technique, we use preconstructing-
plaintext technique to get appropriate plaintext pairs.
Different from the traditional method of constructing
and then screening plaintext pairs, we directly construct
plaintext pairs that meet the conditions.

As shown in 4.1.1, we need these plaintext
pairs whose difference is (0x0,02200) after 1-round
encryption. We choose a random pair, where the
difference is (020, 02200). At the same time, we choose
a random subkey to decrypt it and get a plaintext
pair whose difference is (020,02200) after 1-round
encryption. This can been proven rigorously.

Assuming that the random pair are (L,R) and
(L', R/) and the random subkey is rk, with L @& L' =

020 and R ® R = 02200, the plaintext pair can be
obtained after 1-round decryption as follows:

(Lo, Ro) = (R, (S'R&S®R) @ S’R@® rk & L)
(L6, Ry) = (R, (S'"R&S*R ) @ °R @ rka L)
(2)

We use the subkey sk to encrypt it for 1 round and get:

(L1, R1) = (Ro & (S'Lo&S®Lo) & S*Lo @ sk, Lo)
(L1 1) = (Ro® (S'Lo&s®Ly) @ Ly @ sk, L)
3)

According to Equation 2 and Equation 3, we can get:
Li ® L) = Ry ® (S'Lo&S®Lo) ® S%Lo®
Ry & (S Lo&eS* Lo ) @ S2Lg

= (S'R&S®R) ® S’Ro 1k ® L
(S'Lo&S®Lo) & S* Lo

(S'R&SR) 0 $°F arko L'

(8" LokeS®Ly) @ 5L

= (S'R&S®R) ® SPR@rk @ L&
(S'R&S*R) @ S*Re

(SlR'&SSR/) ® SR @rke L'
(SlR'&SSR') @ S2R

= 0z0

Ri&R, =Ly®Lo=R®R = 02200.

Therefore, our above method of constructing plaintext
pair is effective. We give a detailed description of our
method as shown in Algorithm 2.

Algorithm 2 Process for generating plaintext pair

Input: Input difference A = (020, 02:200)
Output: Ciphertext pair

1: Randomly generate plaintext P = (L, R) and key
rk;

2: Calculate L' = L & 020 and R = R® 02200, and
get P' = (L', R);

3: Use rk to decrypt P and P’ for 1 round and get M
and M ';

4: Return M and M';

4.2. Key recovery for SIMON32

4.2.1.  Precomputation

Let Cy and C’(l) are a pair of ciphertext and k is the
subkey of the last round. For § € GF (2)'°, there
is k' = k®d. Use k' as a subkey to decrypt the
ciphertext pair, and then distinguish the intermediate
state with the neural distinguisher, and get the response
as Rs (C’o, C(,)). Then Rjs (C’o, C(;) can be regarded as
a random variable related to §. We can assume that
Rs C’O,C'(; follows a normal distribution with mean
s and standard deviation os.

In order to compare the influence of wrong keys on
the response of the neural distinguisher, we conduct
the following experiments. For § € GF (2)167 R=11
and a random master key K, we use Algorithm 2 to

generate 1 ciphertext pair (CO,Cé) and save its last
key rk. Calculate k' =rk®d and use k' to decrypt
(C’o7 Cé) for one round, we get the response value of the

9-round distinguisher to the intermediate state that has
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been decrypted for 1 round. We repeat the above steps
216 times and calculate the mean value and standard
deviation of the response values. Taking the mean value
as an example, we plot the changes of the mean value
corresponding to different ¢ as shown in Figure 8.

Bayesian search algorithm is proposed to search the
key in [13], which is effective to recover subkey. So we
use the same method to search for keys, and the method
is shown in Algorithm 4.

Algorithm 4 Gohr’s KeySearch [13]
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FIGURE 8. Mean response of difference to real key

As shown in Figure 8, we find that as ¢ changes,
the distribution of the mean of the response value pugs
is not uniform, but its change curve is regular. This
is a similar distribution for standard deviation os. If
R = 10, there are similar results. This regular change
helps recover the last key.

4.2.2.  Specific attack process

According to 4.2.1 and regular curve, we use pus and
o5 to help recover the last key. Different from the
traditional key recovery attack, what we study is the
distance between the guess key and the real key. If the
distance between the real key and the guess key is 0,
we get the correct subkey. In 4.2.1, we assume that §
is the distance between the guess key k; and the real
(mn, —pren, )’

Tk@dk;

and k, where my, is the response and n is the number

of ciphertext pair. This is the same as [13].
At the same time, to filter out the best guess subkey,
we need to rate all guesses as shown in Algorithm 3.

-1
key k. So we can use Y., to measure k;

Algorithm 3 KeyRate
Input: Ciphertext pair set: C = {Cy, C1, ...
Distinguisher based on deep learning: D,
Guessed key: k
Output: Score of k: Scorey,
1: P; + Decrypty (Ci, k), for i € 0,1,...,n — 1;
2: v; < D(R,), fori €0,1,....,n—1;
3: w; + logy (ﬁ), fori € 0,1,...,n—1;

7071—1}5

-1
4: Scorey, < Yy Wi
5: return Scoreg;

Input: Ciphertext pair set C = {Cy,Ch,...,Cr_1},
Distinguisher based on deep learning D, number of
candidates to be generated t, number of iterations [
Output: Key set L
1: S« {k‘o, k1, ...,k‘t_1}, k; 75 k‘j if ¢ £ j;
2: L+ {},
3: for j €{0,1,....,1—1} do
4: P, < Decrypt; (Ci,k) for all i €
{0,1,...,n—1} and k€ S
5: vig < D(P) for all ¢ € {0,1,...,n—1} and
keSS
6: w; k< log, (131:;@) for all i € {0,1,....n— 1}
and k € S
L« L||[(k, X0 wi) for k € S]
my < Z;:ol w;g/n for k € S
2
o A« D (M) for ke
{0,1,...,216 — 1}
10: S < argsorty, (A\)[0:t —1]

11: end for;
12: return L;

In [13], Gohr proposed to use neutral bits [18] to
enhance the ability of the distinguisher. We learn
from Gohr’s idea of using neutral bits to improve
our key recovery accuracy. We choose a certain
plaintext pair and construct a plaintext structure to
enhance the distinguishing ability by choosing a suitable
plaintext structure. In this way, we can get better
plaintext pair set by using neutral bits which can
enhance the distinguishing ability. The method of
constructing plaintext pair set with neutral bits is
shown in Algorithm 5.

Algorithm 5 Constructing plaintext pair set with
neutral bits

1Input: Input difference A = (020, 02200), Number of
ciphertext pair n , Neutral bits [go, ¢1..., ¢m—1]
Output: Ciphertext pair set

1: Randomly generate n plaintexts;
2: Extended plaintext set using neutral bits and get
S = {50,0050,1; -1 50,2m 1, e, Sn—1,2m_1}}

3: S/ = {80’0 @ 5, 30_’1 @ 5, ceny 80727n71 EB 5, ceny Sn71727n71 @ 5},

4 M <« Decrypti(s,0) for s € S; M <+
Decrypt; (s',0) for s’ € S7;

5: return (M, M');

Using Algorithm 5, we obtain 2™ plaintext structures
based on neutral bits. When performing key recovery,
we don’t select all ciphertext structures for key recovery
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attacks, but choose the one that can make the guess key
score higher. In order to filtrate the better neutral bits
for key recovery, we randomly generate 10000 sets of
neutral bits and calculate its accuracy in 25 key recovery
attacks. If the success rate of 25 key recovery attacks
exceeds 93%, we use the neutral bits to perform 100
key recovery attacks, and save the neutral bits with a
success rate of more than 90%.

We have obtained some neutral bit, and their success
rate in 100 experiments exceeded 90%, of which the
highest success rate is 92%.  These neutral bits
are as follows: [27,19,3,23,18,22], [ 27,28,7,3,20,2],
[25,27,23,11,6,3], [3,18,4,19,21, 13], [7,19,2,8, 3.4] and
[27,25,15,8,0,10].

4.2.3.  Improved 13-round attack based on SAT

In [28], Stefan et al. proposed an algorithm to search
for the differential characteristics of SIMON based on
SAT. We use the algorithm to increase the round of
attacks. First, we automatically search for for 2-
round differential characteristic (02800, 022200) LN
(020,02200) based on SAT. Then we extend our
neural 9-round distinguisher to a 11-round distinguisher
by prepending the 2-round differential.  Utilizing
the differential characteristic, we can attack 13-round
SIMON32/64 and recovery the last subkey similar to
11-round attack. We have conducted 100 experiments
with the accuracy exceeded 90%. Our attack only uses
about 22 chosen plaintexts and only needs about 45s
for an attack, which does not exceed 2'3° 13-round
encryption.

4.3. Complexity analysis and comparison

In the experiment, the complexity of our attack
is calculated based on the average value of each
experiment. For the 11-round key recovery attack, our
attack only needs no more than 45s each time, which
does not exceed 2'8-5 11-round encryption, and the data
complexity does not exceed 2°.

To show that the neural differential distinguisher
has advantages in key recovery attacks, we use
the traditional cryptanalysis to perform the recovery
attacks for last key on 11-round SIMON32. Due to
the round function of the SIMON32, the key-addition
occurs after the non-linear operation, we can construct
11-round attack by adding one round before and
after 9-round differential characteristics. We perform
attacks with the 9-round characteristic (020, 02200) —
(022002, 02800) and attack approach mentioned in [18].
With the traditional method, the time complexity is
more than 22° 1l-round encryption, and the data
complexity is 22%. At the same time, by reason of
the differential characteristic added before the neural
differential discriminator, the key recovery attack on 13-
round SIMON32 needs more plaintexts and time. For
the 13-round key recovery attack, our attack only needs
no more than 45s each time, which does not exceed

218:5 13-round encryption. At the same time, the data
complexity does not exceed 2125,

By comparing traditional differential cryptanalysis
with differential cryptanalysis based on deep learning,
we find that differential cryptanalysis based on deep
learning have advantages in key recovery attacks. In
traditional differential cryptanalysis, the traditional
distinguisher wuses a differential characteristic or
multiple characteristics with given input difference and
output difference. In contrast, the neural distinguisher
only uses given input difference, which considers more
the output differences effect under the same input
difference. This makes the neural distinguisher to be
more powerful in differential cryptanalysis.

5. CONCLUSION

This paper investigates how to construct a differential
distinguisher of SIMON32 based on deep learning and
constructs key recovery attack on 11-round SIMON32.
We find that the input difference pattern has an
impact on the accuracy of the neural distinguisher
when we construct distinguishers. It is helpful to find
appropriate input differences which is used to train
neural distinguisher with higher accuracy. In addition,
we complete practical 11-round key recovery attack
with lower complexity than traditional differential
cryptanalysis. At the same time, we improved the
round of attack based on SAT, and the highest attack
reached 13 rounds. To our excitement, the success rate
is more than 90%.

This paper investigates the impact of two kinds of
input difference patterns on the accuracy of the neural
distinguisher. It is significative to study other input
difference patterns, which is a direction of follow-up
research. At the same time, a new key search policy
for searching key is also worth studying.
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