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Abstract. CRYSTALS-Dilithium as a lattice-based digital signature
scheme has been selected as a finalist in the Post-Quantum Cryptog-
raphy (PQC) standardization process of NIST. As part of this selec-
tion, a variety of software implementations have been evaluated re-
garding their performance and memory requirements for platforms like
x86 or ARM Cortex-M4. In this work, we present a first set of Field-
Programmable Gate Array (FPGA) implementations for the low-end
Xilinx Artix-7 platform, evaluating the peculiarities of the scheme in
hardware, reflecting all available round-3 parameter sets. As a key com-
ponent in our analysis, we present results for a specifically adapted
Number-Theoretic Transform (NTT) core for the Dilithium cryptosys-
tem, optimizing this component for an optimal Look-Up Table (LUT)
and Flip-Flop (FF) utilization by efficient use of special purpose Digital
Signal Processors (DSPs). Presenting our results, we aim to shed further
light on the performance of lattice-based cryptography in low-cost and
high-throughput configurations and their respective potential use-cases
in practice.

1 Introduction

In the light of continuous progress and advancement on the development of
quantum computers, security of existing public-key cryptographic schemes starts
to crumble [12]. While most existing and currently deployed schemes rely on the
hardness of integer factorization or computing discrete logarithms, broken by
Shor’s quantum algorithm [15], given that an attacker has access to a large-scale
quantum computer, a call for the design, proposal, and standardization of new
post-quantum secure schemes for Key Encapsulation Mechanism (KEM) and
digital signatures has been initiated by the United States National Institute for
Standards and Technology (NIST) in 2017 [10].

After two competitive rounds of thorough scrutiny and examination, NIST
announced the seven finalists from the initial field of 69 candidates in 2020 which
still have to undergo further evaluation in a third and final round. Moreover, the
seven finalists can be categorized into the four key establishment schemes, Classic
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McEliece, Kyber, NTRU, and Saber as well as the three digital signature schemes
Dilithium, Falcon, and Rainbow.

Interestingly, five out of the seven remaining finalists are using hard lattice
problems as fundamental security assumption. Along with Falcon [7], Dilithium [5]
is one of the two remaining lattice-based digital signature schemes, while Rainbow
is based on multivariate cryptography instead. Further, Dilithium and Kyber are
part of the Cryptographic Suite for Algebraic Lattices (CRYSTALS) using struc-
tured lattices to allow fast arithmetic and enable compact key, ciphertext and
signature sizes. More precisely, the underlying polynomial ring enables efficient
polynomial multiplication leveraging the Number-Theoretic Transform (NTT).

While literature is rich in efficient and optimized implementations on lattice-
based KEMs, to date, lattice-based digital signature schemes are mostly ne-
glected. In particular, efficient implementation of lattice-based signature schemes
in reconfigurable hardware urgently needs to be investigated in order to guide
and support the selection of the future post-quantum cryptography standards.
In this regard, we are only aware of a two existing hardware implementations of
Dilithium [13,16], while several optimized software implementations, e.g., target-
ing AVX2 [4] or Cortex-M4 [8] architectures, have been presented recently. Fur-
ther, even though the design in [13] has been implemented on a high-performance
Virtex-7 Field-Programmable Gate Array (FPGA), it does not exploit important
features of modern reconfigurable hardware architectures efficiently. For this, we
present a novel set of efficient and compact FPGA implementations specifically
targeting a low-end Xilinx Artix-7 series through evaluating the peculiarities
of the Dilithium digital signature scheme for efficient and clever mapping into
modern FPGA features and components1.

Contribution. For this, our contribution can be summarized as follows:

– An optimized NTT component making extensive use of Digital Signal Pro-
cessors (DSPs) is presented to exploit peculiarities and features of modern
low-end FPGAs. We were able to synthesize our NTT implementation for a
frequency of 311 MHz, resulting in a latency of 1.7 µs, which is, to the best of
our knowledge, the fastest NTT implementation for comparable parameters
in Artix-7 FPGAs.

– Our Dilithium core is compact and self-contained, providing functionalities for
key generation, signature generation, signature verification, precomputation,
arbitrary-length message digesting, and packing and unpacking keys and
signatures.

– For Dilithium-III, our core uses 30k Look-Up Tables (LUTs), 11k Flip-Flops
(FFs), 45 DSPs and 23 Block-RAMs (BRAMs) with fmax = 142 MHz. For
key generation, our core is capable of performing 4290 OP/s, for signature
generation 1351 OP/s and for signature verification 11751 OP/s.

1 Our implementation is publicly available at https://github.com/

Chair-for-Security-Engineering/dilithium-artix7.
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– Additionally, we report area and speed results for individual stand-alone
cores, supporting either only key generation, signature generation, or verifi-
cation. These smaller cores still support the necessary unpacking, packing,
digesting, and precomputation operations.

– For Dilithium-III, our keygen-only core is capable of performing 7250 OP/s.
The sign-only core performs 1560 OP/s and the verify-only core 16137 OP/s.

Related Work. Many lattice-based schemes have been proposed in recent years
and there is a wide variety of implementations in hardware. The first implemen-
tation of a lattice-based signature scheme was proposed by Güneysu et al. [9]
in 2012. Pöppelmann et al.extend this work in [11]. Soni et al. present an im-
plementation of the second-round parameter set of Dilithium targeting Artix-7
FPGAs [16]. However, they use a High Level Synthesis (HLS) approach resulting
in a rather large design. Another implementation of the second-round parameter
set of Dilithium is provided by Ricci et al., which targets the high-end Virtex-7
platform [13]. Most notably, their design achieves a high throughput for signa-
ture generation. Other post-quantum secure signature schemes that have been
implemented in reconfigurable hardware include Rainbow [6], SPHINCS [1] and
XMSS [17]. Furthermore, efficient implementation of the NTT in hardware has
been researched very well. Roy et al. presented an efficient design that uses
two merged NTT layers [14]. Banerjee et al. presented an Application-Specific
Integrated Circuit (ASIC) design of the NTT that can be used to accelerate
multiple schemes [2]. Finally, Zhang et al. present a way to integrate the post-
processing of the inverse transformation into the main computation resulting in
a low-complexity implementation [19].

2 Preliminaries

2.1 Notation

Throughout this work, we will use and assume the following notation. Let n and
q be two integers, such that n = 256 and q = 223 − 213 + 1. Further, let Rq be a
polynomial ring with Rq = Zq[X]/(Xn + 1). In addition, let us denote vectors
in bold lower-case letters, e.g., v, while matrices are denoted in bold upper-case
letters, e.g., A. Polynomials in NTT domain are indicated by a hat.

Additionally, for an integer s, we denote s[a : b], where a > b, as the bit
slice of s bounded by the offsets a, b counting from LSB to MSB, for example
for s = 6 we have s[2 : 1] = 112 = 3.

2.2 Number-Theoretic Transform

The NTT, as used in Dilithium, can be seen as a discrete Fourier transform
over polynomials in Rq, where the complex arithmetic is replaced by the mod-
ular arithmetic of the polynomial coefficients. Since the ring structure enables
negative wrapped convolution, we can use an n-point NTT for fast polynomial
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multiplication by transforming both factor polynomials to the NTT domain, mul-
tiplying coefficient-wise in NTT domain, and then applying the inverse transform
to the result to obtain the final product polynomial.

2.3 CRYSTALS-Dilithium

In July 2020, NIST announced the 7 finalist and 8 alternate candidates for
the Post-Quantum Cryptography (PQC) standardization competition, with both
schemes of the CRYSTALS suite being selected as finalist for their respective
categories. In particular the digital signature scheme Dilithium has undergone a
thorough scrutiny during the competition process and since then reached version
3.1 [5], while most recently some major changes and updates for the various
security parameter sets have been presented.

In general, the Dilithium digital signature scheme has been designed to adopt
simple and secure design principles, in particular substituting discrete Gaussian
sampling in favor of uniform sampling. In addition, all remaining fundamental
operations have been carefully chosen such that they easily can be performed
in constant time. Aiming at long-term security, the different security levels and
parameters have been chosen conservatively while endeavoring to minimize the
combined size of public key and signatures. Eventually, the modular construc-
tion of Dilithium favors efficient and highly optimized implementations across all
security levels and parameter sets as the main operations rely on SHAKE-128 or
SHAKE-256 and the multiplication in the polynomial ring Rq, regardless of the
security level. Instead, higher or lower security is only achieved through addition
or reduction in the number of operations performed in Rq.

Further, as a digital signature scheme, Dilithium provides the following three
core methods for key generation, signature generation, and signature verification.

Key Generation. For key generation, the respective algorithm generates a
k × l matrix A such that each entry in the matrix is a polynomial of the ring
Rq. Using randomly sampled vectors s1 and s2, with polynomials in Rq where
each coefficient is in [−η, η], the second part of the public key is generated
as t = As1 + s2, performing all algebraic operations over Rq. To keep the
public key size small, the matrix A is replaced by a seed ρ which generates A
deterministically, which is a widespread technique in lattice-based cryptography.
Additionally, to further decrease the size of the public key, the lower d bits of
each coefficient in t are placed in the secret key rather than the public key.

Signature Generation. The fundamental operation of Dilithium is the gen-
eration of digital signatures. For this, the signing algorithm chooses a masking
vector y with coefficients from [−γ1, γ1) in order to compute w = Ay and rounds
the result such that w = w1 · 2γ2 + w0, where each coefficient in w0 is less than
or equal to γ2. The challenge c, a polynomial in Rq with coefficients from {−1, 1}
at τ random positions and all other coefficients being 0, is sampled by hashing
the message and w1 and is used to generate the potential signature z = y + cs1.
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Using rejection sampling, leakage of the secret key is prevented, at the penalty
of repeating the signature generation process if the signature fails the security
and correctness checks. Additionally, since for the verification t is needed but
only the upper 10 bits of t are contained in the public key, the signer needs to
compute the vector of carry bits (“hints”) h that result from the unknown part
in t during the verification computation. Finally, if a z is found that passes the
checks, the signature is returned as (c, z,h).

Signature Verification. For signature verification, Az− ct is rounded analo-
gously to the signing procedure and the resulting higher-order bits are set to be
w′1. Since the lower bits of each coefficient in t are not contained in the public
key, the verifier makes use of the hints h to perform this operation. Following
this, the challenge c is recomputed from the message and w′1 and compared to
the one provided in the signature. Also, z is checked to have a valid norm (i.e.,
whether each coefficient has the maximum value as checked during signature
generation).

Parameter Sets. With introduction of version 3.1 of the Dilithium algorithm
specification, the list of supported security parameter sets has been adjusted
for the three NIST security levels II, III, and V. Since the operations in Rq do
not change for the different parameter sets, the performance-critical dimensions
of A are adjusted, resulting in an increased or reduced number of operations,
depending on the targeted security level.

Compared to round 2, the following adjustments have been proposed:

– d is decreased from 14 to 13.
– τ is now different for each parameter set rather than 60 for all, resulting in

a slight speed-up for the lower parameter sets.
– γ1 is now a power of two, which simplifies sampling y significantly.
– η = 2 for security levels II and V and η = 4 for security level III, rather than

different ηs for each parameter set.
– γ2 = (q − 1)/88 for security level II. Both other security levels keep γ2 =

(q − 1)/32.

3 Design Considerations

Modern FPGA generations are equipped with a multitude of general purpose
logic. However, for certain applications, highly optimized special purpose com-
ponents such as very compact and optimized DSP cores are provided, offering
efficient and fast integer arithmetic operations, or BRAMs, offering compact
true dual-port memory banks for easy storage of larger amounts of data. Given
this, our primary design goal was to reduce the footprint of our architecture in
terms of general purpose components such as LUTs and FFs, as these compo-
nents usually are the limiting factor in larger systems. Additionally, we design
all operations such that there is no timing dependency on secret values.
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3.1 Arithmetic

As a first step, we opted to implement the basic arithmetic using DSP modules
for fast and efficient coefficient-level computations. DSP blocks are abundantly
available on latest FPGA devices but in general applications rarely used. More
precisely, we exploit several special features of modern Xilinx DSP blocks, in-
cluding:

Runtime reconfiguration. During design and synthesis time, the DSP can
be configured to provide different functionalities during runtime. Based on
this, we configured some of our instantiated DSP modules to provide multiple
different arithmetic operations, allowing to re-use the same DSP for different
operations, hence resulting in a highly integrated and optimized design with
respect to area and utilization.

Pre-addition. Besides fast integer multiplication, each DSP unit is equipped
with a pre-adder stage, allowing to merge multiple arithmetic operations
within a single DSP.

Single Instruction Multiple Data. Although each DSP unit can perform up
to 48-bit wide additions, we opted to use DSP cores in a Single Instruction
Multiple Data (SIMD) fashion, allowing to perform two 24-bit additions or
subtractions instead, perfectly fitting the constrains of underlying arithmetic
operations in the polynomial ring.

Number-Theoretic Transform. On a high level, we follow the design ideas
from [19], especially including the inverse NTT without post-processing. How-
ever, by applying the aforementioned DSP features to our NTT design, our
implementation achieves a low latency despite processing relatively big coeffi-
cients. In contrast to known NTT architectures, which usually utilize DSPs only
for a low-latency multiplication and perform any other arithmetic with general-
purpose logic, our novel approach of leveraging the full capabilities of DSPs
results in a low latency for any involved arithmetic. This approach fits the re-
quirements for implementing Butterfly Units (BFUs) particularly well, as during
the forward NTT, e.g., a+ bω is computed, which can be mapped to DSP func-
tionality without additional arithmetic logic. Also, even though this operation
is not useful for our inverse NTT, we still can re-use the exact same DSPs by
reconfiguring them at runtime at the cost of additional control logic.

3.2 Memory

Besides efficient arithmetic, a specific memory architecture and layout is required
to store and load coefficients and polynomials efficiently during arithmetic op-
erations. Given the design considerations for our arithmetic modules including
the NTT unit, we identified the following two design constraints for our memory
architecture:
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1. Given the NTT architecture, the design would benefit from reading and
writing up to four coefficients simultaneously. For this, we decided to use
four simple dual port BRAMs to store polynomials. More precisely, we use
four parallel 18K BRAM instances for this, each of them holding up to
512 coefficients. This means, since for a single polynomial only 64 coefficients
are stored per BRAM, we can fill the four 18K BRAM units with up to eight
full polynomials.

2. The memory layout has to be adjusted such that the number of read and
write conflicts are minimized. In particular, the layout has to ensure that
the coefficients of the polynomials are distributed among the BRAMs such
that we always can read or write data during the arithmetic operations
without stalling due to memory access conflicts. This can be achieved as fol-
lows: For a polynomial’s coefficient aXi, the coefficient is placed in memory
bankaddr (Eq. 1) at address addr (Eq. 2) [19, Sec. 3.1].

bankaddr = i[7 : 6] + i[5 : 4] + i[3 : 2] + i[1 : 0] mod 4 (1)

addr = i[7 : 2] (2)

Our design needs to hold k · l+ 2l+ 6k+ 1 polynomials in total. It is possible
to reduce this memory footprint significantly by sampling single polynomials of
Â just in time. However, we opt to expand Â once and store it for further com-
putations. This has the advantage that introducing a pre-processing operation
enables signing multiple messages (or verifying multiple signatures) under the

same key without the necessity of re-sampling Â.
Since z and y are never accessed simultaneously, we only plan with l poly-

nomials for both together. Additionally, s1 takes storage for l polynomials. c
occupies storage for one polynomial. Four of the six polynomial vectors of size k
are s2, t0, t1,w. The remaining 2k polynomials are used as temporary storage,
for example during MakeHint.

Given that we can store up to 8 polynomials using four BRAM units, the
total number of BRAM instances is governed by the security level. In particular,
we need storage for 49 polynomials for level II, 77 polynomials for level III, and
119 polynomials for level V. We were able to identify efficient memory map-
pings for each parameter set, such that it only requires d4(kl + 2l + 6k + 1)/8e
18K BRAM primitives. We did so by iteratively searching through possible mem-
ory mappings in a randomized way and checking whether the requirements are
met. The memory mapping enables the following operations in a pipelined or
parallel fashion:

– During matrix-vector multiplication, the vector elements are transformed
sequentially to NTT domain. Upon completion of the transformation, the
multiply-accumulate module updates the resulting vector elements through
coefficient-wise multiplication with the Â polynomials.

– In pre-computations for signature generation and verification, the matrix Â
is expanded and in parallel, NTTs of s1, s2, t0 and t1 can be performed.
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– During verification, the norm check of z can be performed in parallel to
sampling c.

– Since, at the end of key generation, s1 is part of the secret key, during
matrix-vector multiplication, s1 is transformed to NTT domain for fast mul-
tiplication. To avoid the necessity of performing an inverse NTT, s1 is stored
in two locations simultaneously during sampling, after which one can be
transformed and the other location is used as result.

3.3 Functionality

In order to provide an integrated and self-contained core for generation and
verification of digital signatures based on the Dilithium scheme, our architecture
needs to support the full set of the following operations:

KeyGen Generation of a key from a given seed.

Signpre Expansion of Â and pre-computation of ŝ1, ŝ2, and t̂0.

Sign Signature computation.

Verifypre Expansion of Â and pre-computation of t̂1.

Verify Signature verification.

Digestmsg Hashing of arbitrary-length messages along with tr (of the public key).

Store Storing and unpacking public keys, secret keys, signatures, or seeds.

Load Packing and sending public keys, secret keys, or signatures.

Additionally, we provide individual cores which only support either key gen-
eration, signature generation, or verification. Besides featuring only a subset of
the operations, these smaller cores also come with a lower BRAM usage since
some polynomials are only required for a subset of operations. An overview which
operation is supported by each single-task core can be found in Table 1.

Table 1: Operation Support Matrix for Single-Task Cores
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Fig. 1: Dilithium High-Level Architecture

4 Implementation on Reconfigurable Hardware

In this section, we outline the basic architecture of our comprehensive Dilithium
architecture. In particular, our construction exploits special purpose units and
features of an Artix-7 FPGA (XC7A100T).

4.1 Architectural Details

The high-level architecture of our implementation is shown in Fig. 1. All basic
arithmetic operations are performed by the NTT, Multiply-Accumulate (MACC),
and Matrix-Vector Multiplication units. However, even though the matrix-vector
multiplication serves as master and control unit for the NTT and MACC cores,
both sub-cores must be accessible from the global operation control unit as well
to provide auxiliary support for additional arithmetic operations. Besides, the
check units directly access polynomials in the memory for norm checking and
provide the check result to the operation control module. The Sampler module
controls and accesses the Keccak hash core in order to buffer the hash output
before writing the uniformly generated random samples to memory. However,
the Keccak-based hash core is also accessible from the operation control unit,
mostly required for random seed expansion. Finally, the hint modules control
read and write access to the hint registers in the memory unit. Further, as
already highlighted in Section 3, the memory unit consists of several BRAMs
for the intermediate polynomials, two 512-bit registers to store ρ′ and µ as well
as some additional 256-bit registers for ρ, c̃, tr, K, and the seed for the key
generation.

Number-Theoretic Transform. As already mentioned in Section 3, our NTT
implementation follows the design principles of [19]. However, we pre-multiply
the stored twiddle factors for the inverse transform by a factor of 2−1 in order
to avoid the additional logic for mutliplying one coefficient by 2−1 in the BFU.
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From an implementation perspective, we modify several details: First, as
already mentioned we utilize DSPs for all arithmetic operations in order to
achieve a low area footprint and a high frequency. Second, we make use of the
true dual-port capabilities of the BRAM modules, enabling our design to read
two twiddle factors simultaneously in the lowest NTT layer and thus still allowing
processing four coefficients at the same time.

At the core of the NTT, we instantiate two independent BFUs, as depicted
in Fig. 2. More precisely, each BFU receives two unsigned 23-bit coefficients, an
unsigned 23-bit twiddle factor, and the signed 24-bit value a− b. Note, however,
that this value can be computed for both BFUs simultaneously using a single
DSP in SIMD mode.

Forward Number-Theoretic Transform. In general, the butterfly configuration
for the forward NTT computes two values A and B such that (A,B) := (a+ b ·
ω, a− b · ω), given that ω denotes the pre-computed twiddle factor. For this, we
use the DSPs 1 and 2 to compute a+bω. More precisely, we need to combine two
DSPs for this operation since each DSP itself can only perform signed 25×18-
bit multiplications. However, when combining DSPs for larger multiplications,
we can leverage a dedicated low-latency cascade path. After multiplication, the
resulting product is reduced to a representative in [0, q) and already provides the
first part of the forward NTT computation. Further, subtracting the first part
from 2a and adding or subtracting q (depending on the sign of the subtraction
result), we obtain the second part of the forward NTT output.
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In addition, for increased throughput, the BFUs have been pipelined, using
shift register instances to delay the input a of the third DSP. More specifically,
the first part of the result is also delayed through a shift register in order to
return both parts of the forward NTT computation simultaneously.

Inverse Number-Theoretic Transform. Similar to the forward NTT, the inverse
NTT computes two values A and B, such that (A,B) := (2−1(a+ b), (a− b)ω).
However, as already mentioned before, this time the operand ω for the inverse
NTT is already pre-processed to incorporate the factor 2−1.

Here, ω and the pre-computed, signed value a − b are used as input for the
multiplication DSPs 1 and 2. Further, depending on the sign bit of the value a−b,
we choose between adding q or 0 using the pre-adder stage of the multiplication
DSPs to obtain a positive multiplication result. Finally, the multiplication result
is then reduced and serves as output. Besides, the second part of the output is
designed to be 2−1(a+ b). For this, we use DSP 3 as 3-input adder with inputs
ba/2c, bb/2c and either 1 (if both least signification bits (LSBs) of a and b are 1),
or (q + 1)/2 (if the LSB of either a or b is 1), or 0 otherwise. Since the result of
this operation might be greater or equal to q, we use the fourth DSP to subtract
q from the result. The second part of the BFU output is then chosen between
the output of DSPs 3 and 4.

Multiply-Accumulate. The second arithmetic core is used to perform multiply-
accumulate operations. More specifically, this core is designed to perform four
computations per clock cycle in parallel in order to make full use of the available
memory bandwidth. It consists of eight DSPs and four reduction modules. Each
two DSPs perform one of the following operation, while the result then is fed
into the reduction module.

a · b + c: The first DSP performs the multiplication of a with the lower 17 bits of b
and the addition. The second DSP multiplies a with the remaining upper
bits of b and updates the first result to the final 46 bit value that is then
fed into the reduction module.

a + b: The first DSP computes the sum, while the second one subtracts q. Even-
tually, the result of the second DSP is selected if it is non-negative, else the
result of the first DSP is selected.

b− a: The first DSP computes the subtraction, while the second one adds q. Even-
tually, the result of the first DSP is selected as output if it is positive, else
the output of the second DSP is selected.

Note that for operations without multiplication, the reduction module can
be bypassed, resulting in a lower latency. Again, this module is fully pipelined,
allowing to process an entire polynomial within 64 cycles (in addition to the
initial pipeline length).
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Matrix-Vector Multiplication. This module controls both the NTT module
and the MACC module to (1) transform the polynomials in the input vector
into NTT domain and (2) perform a matrix-vector multiplication with Â. The
resulting polynomial vector is then in NTT representation as well.

First, the first input polynomial is transformed by the NTT module. Then,
while the second input polynomial is transformed, the point-wise multiplication
between each polynomial from the first column in Â and the first, already trans-
formed input polynomial is carried out consecutively using the MACC module.
The resulting polynomials are stored in the result vector polynomial storage.
Note that the point-wise multiplications take k · 64 + 14 cycles1, while one NTT
takes 533 cycles. When both operations are finished, the NTT module transforms
the third input polynomial and in parallel, the second, already transformed in-
put polynomial is multiplied point-wise with each polynomial from the second
column in Â and added to the intermediate result from the first k MACC op-
erations. The resulting polynomials again are stored back to the result vector
polynomial storage.

This procedure is repeated until all l input polynomials are transformed.
Afterwards, the resulting k polynomials are updated to the final result using the
MACC module. With this, a whole matrix-vector multiplication is carried out
in k · 512 + 23 + k · 64 + 14 cycles2.

Modular Reduction. In our implementation, we need a total of six reduc-
tion module instantiations: While each BFU module contains a single reduction
module, the MACC module contains four reduction modules. For the modular re-
duction of a 46-bit value s, we recursively exploit the relation 223 ≡ 213−1 mod q
in a similar way as in [19].

s[45 : 0] ≡ 223s[45 : 23] + s[22 : 0] ≡ 213s[45 : 23]− s[45 : 23] + s[22 : 0]

≡ 223s[45 : 33] + 213s[32 : 23]− s[45 : 23] + z

≡ 213 (s[45 : 33] + s[32 : 23])− (s[45 : 33] + s[45 : 23]) + z

≡ 223s[45 : 43] + 213 (s[42 : 33] + s[32 : 23])− (s[45 : 33] + s[45 : 23]) + z

≡ 213 (s[45 : 43] + s[42 : 33] + s[32 : 23])− (s[45 : 43] + s[45 : 33] + s[45 : 23]) + z

≡ 213x− y + z ≡ 223x[11 : 10] + 213x[9 : 0]− y + z

≡ 213 (x[11 : 10] + x[9 : 0])− (y + x[11 : 10]) + z mod q

The result of our reduction can still be greater than 223 so that we could
repeat the substitution once again at the expense of additional depth and delay in
the arithmetic computation. However, we observe that the result of the reduction

1 14 is the initial pipeline length.
2 The NTTs can be pipelined as well and thus, 23 is the initial pipeline length.
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isters that compensate for the DSPs as given in their respective index. At the output
multiplexer, the sign bit is discarded, which decreases the bit width to 23.

at this point is already within the interval (−q, 2q)1. For this, we can simply
add q to a negative result or subtract q if the result is positive. Eventually,
delaying the reduced result, as well as given the sum or subtraction with q, the
final result is determined by selecting the non-negative value out of both.

In practice, we use four DSPs and one small addition implemented in general-
purpose logic to perform the modular reduction. The first DSP computes x and
y by using a Kronecker substitution-like approach: The lower bits compute x and
the higher bits compute y. However, as the computation does not fit entirely into
the pre-adder stage, we need to add the least-significant bit of x using general-
purpose logic outside the DSP and delay the resulting bit, while the carry is fed
into the DSP as well. Thus, DSP 1 is used as a fully pipelined 4-input adder with
a latency of four clock cycles. Note, however, that for recent Ultrascale FPGAs,
the witdh of pre-adder stage within the DSPs increased, which would allow to
improve this reduction and give up the general-purpose addition.

Further, the second DSP computes z + x[11 : 10] − y. The result is fed into
DSP 3 via a low-latency path, where (x[11 : 10] + x[9 : 0]) · 213 are added to
the previous result. Note that x[11 : 10] corresponds to the output bits 10 and
9, and x[9 : 1] correspond to the output bits 8 to 0 from DSP 1. x[0] has been
computed separately before DSP 1 and is delayed accordingly. The fourth and
final DSP is connected to the third one via a low-latency path and adds q if the
result of the third DSP is negative or subtracts q otherwise. Eventually, only
the positive result is selected as output.

Keccak. A fundamental part of Dilithium is the application of SHAKE-128 and
SHAKE-256, both as hash function or as Extendable-Output Function (XOF).
More precisely, both functions use the same Keccak permutation with the same
state size of 1500 bits but a different rate r, which either is 1344 bits for SHAKE-
128 or 1088 bits for SHAKE-256. Thus, our implementation features a single

1 Since in our implementation all coefficients are stored in the standard representation
[0, q), this reduction also works for results of computations ab + c, since (q− 1)2 +
(q− 1) < 246.
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Keccak core that performs the permutation in 24 cycles (i.e., using a single cycle
per round).

For data input and output we decided to implement 32-bit buses. During I/O
operations, the Keccak module rotates the internal state for r = 1344 on a 32-
bit basis, while simultaneously the input is added (exclusive-or) to the rotation
feedback. Note that this behavior can also be used to compute SHAKE-256, i.e.,
by just using an unaltered feedback for the last 8 = (1344− 1088)/32 words.

Sampling. Dilithium requires several sampling algorithms that use the output
of SHAKE. Unfortunately, none of the sampling algorithms is aligned to work
on 32-bit words. We solved this problem using buffers with a length of the least
common multiple of 32 and the desired output bit width. This enables converting
a stream of 32-bit words to a stream of words with the desired output bit width.

Sampling the challenge c involves the Fisher-Yates shuffle. We implement
this using a shift register with runtime-variable depth that contains all offsets
of the non-zero coefficients and their sign bit. Once a random offset is found in
rejection sampling, we rotate through the shift register and compare the stored
offsets with the newly sampled one. If they are equal, we replace the old one with
the current rejection threshold (keeping the sign bit), which essentially performs
the swap. Then we increase the register depth and shift in the newly sampled
offset with the corresponding sign bit. Finally, the polynomial is written to the
BRAM.

Rounding. Implementing the Power2Round operation in hardware is very effi-
cient, since during the computation of t, we simply split the result into the upper
10 bits and the lower 13 bits, stored into different polynomial memories. How-
ever, since the t0 coefficients are interpreted as signed integers and our main
paradigm is to store coefficients always as standard representatives, we need
to add q if the most signification bit (MSB) is 1. Due to the structure of the
operation, this is efficient with a LUT-based adder, which allows to avoid the
additional usage of a DSP.

We implement the HighBits operation as a simple behavioral description of
a range look-up depending on the input coefficient, which is efficient since for
γ2 = (q−1)/32, since there are only 16 different possible output values and only
the 15 MSB of a coefficient contribute to the result. For γ2 = (q − 1)/88, there
are only 44 different outputs and only the 13 MSB of a coefficient contribute to
the result.

Checking the low bits of w − cs2, however, involves the MACC module in
subtraction mode. Again, we implement a simple look-up that returns HighBits
times 2γ2 – which is efficient for the same reasons as explained above – and we
subtract the result from the coefficient to obtain the low bits and check their
norm without storing them.

Hint. We store the hint in two registers, i.e., one storing the 1’s offsets and the
other one storing the k polynomial boundaries in the same format as specified
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for the packed signatures. For the MakeHint operation, we have w − cs2 and
w − cs2 + ct0 stored separately such that both can be read simultaneously.
Eventually, we look up both HighBits and if differing, a new offset is shifted in.
Further, for the UseHint operation, the hint module looks up the HighBits for
each coefficient, i.e., both for h=0 and h=1. Then, selecting the correct one,
the value is shifted into a buffer register for sampling (as described before) and
absorbed to compute the value c̃, which ultimately is compared to the value of
the signature during verification.

Memory Access. In-place NTTs as deployed in our implementation usu-
ally require polynomials to be re-orderd according to a bit-reversal permuta-
tion. Our NTT with two BFUs requires reading and writing four coefficients
simultaneously, which is ensured by distributing the coefficients according to
Eqs. 1 and 2. However, this also ensures that four coefficients with position
br(i), br(i + 1), br(i + 2), br(i + 3) (with 4|i) are placed in different memories.
As a consequence, we can access polynomials either in bit-reversed order or in
normal order, which eliminates the necessity of an explicit re-ordering opera-
tion. Our implementation makes use of this either by sampling polynomials in
bit-reversed order or by accessing polynomials in bit-reversed order during NTT.

Single-Task Cores. In order to instantiate single-task cores that only support
a subset of operations which are sufficient to perform either key generation,
signing, or verification (see Table 1), we adjust the opcode decoder in our top
level module and delete all unnecessary module instantiations. Furthermore, we
adjust the load module such that only values that are generated by the respective
single-task core can be packed and loaded. Similarly, we adjust the store module
such that only values can be unpacked and stored that are necessary for the
respoective single-task core. Thus, by applying slight changes to three files, a set
of single-task cores is generated. Note that in order to adjust the security level,
a single-line change is sufficient. Additionally, we generate memory mappings
for each single-task core that exclude all polynomials which are not used in the
respective core, resulting in a lower BRAM usage.

4.2 Utilization and Performance Results

This section provides area utilization and performance results obtained after
Place-and-Route (PnR) on a Xilinx XC7A100T Artix-7 FPGA using the Vi-
vado 2020.1 tool suite.

Utilization. Table 2 lists the results for resource utilization as well as the maxi-
mum frequency fmax obtained after synthesis and implementation. As expected,
the LUT, FF, and BRAM utilization increases with the parameter sets, while
the DSP utilization, governed by the NTT and MACC modules, is independent
of the parameter sets.

15



Table 2: Resource Utilization and Performance on a XC7A100T FPGA

Param. Core Utilization fmax KeyGen Signpre Sign Verifypre Verify

Set LUT FF DSP BRAM MHz OP/s OP/s OP/s OP/s OP/s

II

full 27433 10681 45 15 163 8692 16905 2435 14938 18595

keygen 11064 7209 45 11 221 11772 - - - -

sign 18028 9166 45 15 179 - 18557 2673 - -

verify 12118 7551 45 11 200 - - - 18331 22819

cycles: 18 761 9 647 66 966 10 917 8 770

III

full 30 900 11 372 45 21 145 4 368 7 993 1 375 7 242 11 966

keygen 14 285 8 588 45 17 205 6 203 - - - -

sign 21 832 10 245 45 21 174 - 9 603 1 659 - -

verify 14 911 8 209 45 15 200 - - - 10 017 16 551

cycles: 33 102 18 089 105 129 19 966 12 084

V

full 44 653 13 814 45 31 140 2 750 4 152 1 250 3 868 8 517

keygen 19 319 10 138 45 25 202 3 954 - - - -

sign 29 331 12 867 45 31 158 - 4 691 1 412 - -

verify 17 527 9 984 45 23 197 - - - 5 424 11 944

cycles: 50 982 33 767 112 145 36 250 16 462

Performance. Table 2 shows performance results for our implementations as
the average over 1000 executions on random inputs. For signature verification,
we report cycle counts for valid signatures only. More precisely, since the norm
check of z, taking less than 100 cycles, is performed at the beginning, an invalid
signature is processed subtantially faster. Besides, for signature generation, the
cycle count spreads widely due to the nature of Dilithium. For the best-case sce-
nario, in which a signature candidate is accepted after the first iteration, signing
takes 19423, 26979, and 36609 cycles for Dilithium-II, III, and V, respectively.

Components. Table 3 shows the area consumption obtained after PnR for
selected components. Additionally, cycle counts for the single operations are
given.

4.3 Comparison to Existing Work

In out-of-context synthesis, we achieved a frequency of 311 MHz with a utilization
of 524 LUTs, 759 FFs, 17 DSPs and 1 BRAM for our NTT. For NTT/iNTT,
our implementation takes 533/536 cycles. In Table 4, we compare our NTT
design to others. To the best of our knowledge, we are the first to report detailed
performance numbers including latency for the Dilithium NTT as Ricci et al. [13]
do not report cycle counts. Thus, we also include NTT implementations for
different moduli and polynomial degrees. For a fair comparison, it is worth noting
that the polynomial degree n mainly impacts the latency since an NTT has
complexity O(n log n), while the modulus size dlog2 qe defines the area of the
arithmetic circuit which dominates the overall size.

The implementation from [13] achieves a very high frequency since it operates
on the high-end Virtex-7 platform. Other implementations that target the same
polynomial ring size n = 256 and target Artix-7 FPGAs are presented in [3,18].
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Table 3: Area Consumption and Performance of Selected Components

Param. Component Operation Utilization Clock
Set LUT FF DSP BRAM Cycles

all NTT
forward

444 421 17 1
533P

inverse 536P

all MACC
MACC

641 751 24 -
85P

add/sub 75P

all Keccak
permute

3708 1623 - -
24

absorb ≥42M

squeeze 1 per 4B

II
Matrix-Vector
Multiplication

2129 59 - - 2370
III 2774 49 - - 3019
V 4591 46 - - 4434

II
Expansion expand Â

198 142 - - 9647
III 1021 144 - - 18089
V 1316 144 - - 33767

II
Sampler sample c

312 458 - - 946
III 411 547 - - 1417
V 384 662 - - 2050

II
Sampler sample s1, s2

143 44 - - 3176
III 114 48 - - 6750
V 163 45 - - 5953

II
Sampler sample y

244 43 - - 1654
III 112 42 - - 2147
V 469 48 - - 3006

Pmultiple consecutive operations are pipelineable Mdepending on the master module

The first one offers a similar latency like our implementation, but due to the
modulus supporting only 7 layers of NTT instead of 8, the gap is larger in
practice. Note that regarding LUTs and FFs, our implementation has a similar
area usage despite the 10 bit larger modulus. The reason for this is our heavy
usage of DSPs. Finally, we compare to three NTT implementations with a smaller
gap for the modulus size, but a higher polynomial degree. As expected, these
implementations have a higher latency due to the bigger n. However, we expect
that our implementation would have a latency of about 3.8 µs for n = 512 and
about 8.4 µs for n = 1024 at the cost of a minor increase in area usage1. Overall,
our NTT implementation features a low LUT and FF usage and at the same
time, the fmax is, to the best of our knowledge, significantly higher than for any
other known design on Artix-7.

It is worth noting, however, that the comparison has several limitations: Our
implementation results have been achieved with out-of-context synthesis and
subsequent PnR, without connection to the memory that contains the poly-
nomials. For other implementations, like [19], the authors do not report what
exactly is contained in the NTT-only implementations and how the utilization
and performance numbers are found, although the numbers indicate that some-
how a polynomial memory is connected. The advantage of our approach, to use

1 Doubling the polynomial degree can be achieved by increasing the size of an internal
counter by 1 bit.
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Table 4: Comparison of Hardware Designs for NTT Implementations

(n, q) Platform
Utilization f t

Ref.
LUT FF DSP BRAM MHz µs

256, 8380417 XC7A100T 524 759 17 1 311 1.7 this
256, 8380417 XCVU7P 1798 2532 48 3.5 637 - [13]

256, 3329 XC7A35T 609 640 2 4 257 1.9 [18]
256, 7681 XC7A200T 533 514 1 3 - 17.1 [3]
256, 7681 XC7A200T 479 472 1 2 - 16.7 [3]

1024, 12289 XC7Z020 847 375 2 6 244 10.5 [19]
512, 12289 XC7Z020 741 330 2 5 245 5.3 [19]

512, 12289 V6LX75T 994 944 1 3 278 14.8 [14]E

EExcluding area usage for sampler and random number generator.

an out-of-context synthesis without memory connection, is that a good approx-
imation of the real fmax of the arithmetic is given. The operational frequency
for a design that features our NTT then oviously depends additionally on the
exact memory layout of the overall design, which however is not depending on
the NTT itself.

In Table 5, we compare our implementation of Dilithium-III with other rel-
evant implementations of post-quantum signature schemes on reconfigurable
hardware. In contrast to existing implementations of Dilithium for Artix-7 [16]
and Virtex-7 [13] which report area utilization, frequency, and latency individu-
ally per operation, we would like to emphasize that in addition to our single-task
cores, our full core combines and embeds all operations in a single architecture.
Additionally, since our cores feature precomputation operations for signing and
verification, performing these for multiple messages under the same key can be
speeded up significantly. In particular, for signing, 104 µs are spent on precom-
putations for the single-task core at security level III. For verification, precom-
putations take 100 µs at security level III, so the actual verification latency is
about 60 µs in that case.

Notably, our architecture outperforms existing solutions either in terms of
resource utilization or throughput thus provides a compact, self-contained, and
efficient solution for post-quantum secure digital signatures. In general, our de-
sign focuses on a reasonable trade-off between area consumption and perfor-
mance degradation, in order to provide a modestly large and fast architecture.

5 Conclusion

In this work, we present the first set of FPGA implementations for all three
round-3 parameter sets of Dilithium for the low-end Artix-7 platform. Our design
follows a universal design goal, featuring low latency compared to implementa-
tions of other post-quantum secure signature algorithms on the one hand, but
still having a low area footprint on the other hand, making the usage of Dilithium
feasible for many low-cost and constrained scenarios. As a highlight, our imple-
mentations can be used as full-service processors for Dilithium, being capable
of performing key generation, precomputations, signature generation, verifica-
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Table 5: Comparison of Hardware Design for PQC Signature Schemes

Oper. Scheme Platform
Utilization f t

Ref.
LUT FF DSP BRAM MHz µs

KeyGen

Dilithium-IIIF XC7A100T 30900 11372 45 21 145 229 this
Dilithium-III XC7A100T 14285 8588 45 17 205 161 this

Dilithium-IIIR XCVU7P 54183 25236 182 15 350 52 [13]

Dilithium-IIIR,H Artix-7 86646 17674 – – 119 1955 [16]

qTesla-3H Artix-7 111122 23398 – – 79 45650 [16]

Sign

Dilithium-IIIF XC7A100T 30900 11372 45 21 145 852 this
Dilithium-III XC7A100T 21832 10245 45 21 174 709 this

Dilithium-IIIR XCVU7P 81530 83926 965 145 333 63 [13]

Dilithium-IIIR,H Artix-7 90567 21160 – – 114 14140 [16]

qTesla-3H Artix-7 126008 25984 – – 79 7441 [16]
GLP Spartan-6 7465 8993 28 29.5 – 1074 [11]

Rainbow-IaC Kintex-7 27712 27679 0 59 111 18 [6]

Rainbow-IcC Kintex-7 52895 32476 0 67 90 11 [6]
SPHINCS-256 Kintex-7 19067 38132 3 36 525 1530 [1]

Verify

Dilithium-IIIF XC7A100T 30900 11372 45 21 145 222 this
Dilithium-III XC7A100T 14911 8209 45 15 200 160 this

Dilithium-IIIR XCVU7P 61738 34963 316 18 158 95 [13]

Dilithium-IIIR,H Artix-7 65274 15169 – – 114 2491 [16]

qTesla-3H Artix-7 84834 17604 – – 79 1926 [16]
GLP Spartan-6 6225 6663 8 15 – 1002 [11]

Ffull core Rround-2 parameters HHigh Level Synthesis Ccore enabling signing and verification

tion, arbitrary-length message digesting as well as key and signature packing
and unpacking.
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