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Abstract. Several recent proposals of efficient public-key encryption
are based on variants of the polynomial learning with errors problem
(PLWEf ) in which the underlying polynomial ring Zq[x]/f is replaced
with the (related) modular integer ring Zf(q); the corresponding problem
is known as Integer Polynomial Learning with Errors (I-PLWEf ). Cryp-
tosystems based on I-PLWEf and its variants can exploit optimised big-
integer arithmetic to achieve good practical performance, as exhibited by
the ThreeBears cryptosystem. Unfortunately, the average-case hardness
of I-PLWEf and its relation to more established lattice problems have to
date remained unclear.
We describe the first polynomial-time average-case reductions for the
search variant of I-PLWEf , proving its computational equivalence with
the search variant of its counterpart problem PLWEf . Our reductions
apply to a large class of defining polynomials f . To obtain our results,
we employ a careful adaptation of Rényi divergence analysis techniques
to bound the impact of the integer ring arithmetic carries on the er-
ror distributions. As an application, we present a deterministic public-
key cryptosystem over integer rings. Our cryptosystem, which resembles
ThreeBears, enjoys one-way (OW-CPA) security provably based on the
search variant of I-PLWEf .

1 Introduction

The Learning with Errors (LWE) problem was first introduced by Regev
in [Reg09]. This problem, in its search form, consists in finding s ∈ Zmq for
some parameters q > 2 and m ≥ 1, given arbitrarily many samples of the form
(ai, 〈ai, s〉 + ei) over Zmq × Zq. Here, the so-called error ei is a random small-
magnitude integer and ai is uniform in Zmq . A variant of this problem can be
defined by replacing Z by a polynomial ring Z[x]/f , where f ∈ Z[x] is monic
and irreducible. In that case, the problem is called Polynomial-LWE (PLWE) if
m = 1 [SSTX09], and Module-LWE (MLWE) if m ≥ 1 [BGV12]. As illustrated
by their prominence in the NIST post-quantum cryptography project [NIS], in
practice, these problems over polynomial rings are typically preferred to LWE, as
they lead to more efficient cryptographic constructions. Their intractability has



been (quantumly) linked to some worst-case problems for some restricted classes
of Euclidean lattices (see, e.g., [SSTX09, LPR10, LS15, AD17, PRS17, RSW18]).

More recently, Gu [Gu17, Gu19] introduced another variant of LWE which we
will refer to as the Integer Polynomial Learning With Errors problem (I-PLWE),
by consistency with PLWE (in [Gu17, Gu19], it is called integer ring learning
with errors). It is related to PLWE, as follows. For an integer q, evaluation in q
is a homomorphism from Z[x]/f to Zf(q). Note that it does not naturally ex-
tend to a homomorphism from Zq[x]/f to Zf(q) (this will actually be the main
source of technical difficulty throughout this article). Nevertheless, for a poly-
nomial a(x) =

∑
i<deg f aix

i ∈ Zq[x]/f , we can assume that ai ∈ (−q/2, q/2]
for all i and consider the integer a(q) :=

∑
i<deg f aiq

i ∈ Zf(q). This allows to
relate an element of Zq[x]/f to an integer Zf(q). In this spirit, I-PLWE asks to
find s ∈ Zf(q) given arbitrarily many samples of the form (ai, ais + ei) over
Zf(q) × Zf(q), where the ai’s are uniform in Zf(q) and the ei’s have a centered
q-ary decomposition with small-magnitude coefficients (we refer the reader to
Section 2 for a formal definition). This problem was investigated for f = xm + 1
in [Gu17, Gu19], which also contain an asymptotically efficient public-key en-
cryption scheme with IND-CPA security inherited from I-PLWE’s presumed hard-
ness. This encryption scheme was generalized in [BCSV20]. A module extension
of I-PLWE was considered for f = xm − xm/2 − 1 in the ThreeBears candi-
date [Ham17] to the NIST PQC project [NIS]. Taking I-PLWE (or its module
extension) allows to replace a polynomial ring by large integers, and to take
advantage of efficient large-integer arithmetic algorithms and libraries. A some-
what similar intractability assumption was considered in [AJPS18, Sze17], with
error terms of small Hamming weight in their binary decomposition.

The presence of carries in the integer operations underlying those integer-
ring problems distinguishes them from their carry-free polynomial analogues,
and creates technical annoyances when analyzing their intractability and build-
ing cryptosystems. In particular, the only reduction from PLWE to I-PLWE known
so far, due to [Gu17], holds only for a worst-case variant of I-PLWE, in which
the error terms are arbitrary (among small-magnitude errors). The reduction
proceeds by converting PLWE samples (i.e., polynomials) to I-PLWE samples
(i.e., integers). The reduction analysis only shows that the error terms resulting
from the conversion have q-ary decompositions with small-magnitude coefficients
(see [Gu17, Lemma 3.7]). As noted in [Gu19], which mentions proving hardness
of I-PLWE as an open problem, this is insufficient to support the intractibility
of the average-case variant I-PLWE, with random error terms. The situation is
identical for the converse direction, from I-PLWE to PLWE. Unfortunately, it
seems very difficult to design a public-key encryption scheme with security in-
herited from the intractability of this worst-case variant of I-PLWE. For example,
Gu’s encryption scheme [Gu17, Gu19] is proved secure under the presumed in-
tractability of a decision and average-case variant of I-PLWE, in which the error
terms are randomly distributed, and one only asks to distinguish I-PLWE samples
from uniform samples rather than finding the secret s from I-PLWE samples.
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A concrete security analysis of I-PLWE is given in [BCF20] against certain
attacks, such as classical meet-in-the-middle and lattice-based attacks. When
f = xm+1 with m composite with an odd divisor, they give an improved attack
that can be viewed as the I-PLWE analogue of Gentry’s attack on NTRU with
a composite defining polynomial [Gen01]. This improved attack does not apply
when f is irreducible. In particular, classical meet-in-the-middle and lattice-
based techniques are combined in order to build an improved lattice-based attack
for f = xm + 1 with m composite with an odd divisor.
Contributions.We exhibit polynomial-time reductions between the search and
average-case variant of I-PLWE(f) and the search and average-case variant of
PLWE(f), for a large class of defining polynomials f : the reductions only require
that f is monic.4 Compared to [Gu17], the reduction analyses do consider the
error term distributions. Our results show the hardness equivalence of search
I-PLWE and search PLWE. The reduction loss in success probability depends on
the degree of f , its expansion factor (the definition of the expansion factor is
recalled in Section 2), the relative magnitude of the error terms and secret, and
the number of samples. In particular, we can set q polynomial in the degree of f
such that the loss is polynomial for a constant number of samples.

These reductions handle random error terms, but are limited to the search
variants, as opposed to the decision variants. This makes it complicated to devise
a public-key encryption scheme with security based on the presumed intractabil-
ity of PLWE. In particular, we do not know how to prove the security of Gu’s
encryption scheme under well-established assumptions: indeed, this scheme was
designed to provide IND-CPA security based on the presumed intractability of
the decision version of I-PLWE. As our second main contribution, we exhibit a de-
terministic public-key encryption scheme, which can be viewed as a mild variant
of Gu’s. It is designed to provide one-way security under chosen plaintext at-
tacks (OW-CPA), under the search I-PLWE and the decision PLWE intractability
assumptions. By adapting the techniques developed in [RSW18], one can devise
reductions between appropriately defined search and decision versions of PLWE
for large families of defining polynomials f and with limited parameter losses.
Thanks to our first contribution, this means that our scheme can be adapted
to enjoy security based on any single intractability assumption among search
I-PLWE, search PLWE and decision PLWE. Finally, we note that a deterministic
public-key encryption scheme enjoying OW-CPA security can be converted in
an IND-CCA key-exchange mechanism in the random oracle model [HHK17].

Our techniques and results readily extend to the module case: one can de-
fine I-MLWE analogously to I-PLWE, and reduce the search variants of I-MLWE
and MLWE to one another. Our deterministic encryption scheme can also be
adapted to the module case, and it then somewhat resembles the ThreeBears
candidate to the NIST PQC project [Ham17].
Techniques. In the reductions to/from I-PLWE from/to PLWE, the main idea
is to convert integers into polynomials and vice-versa via the ‘approximate’ (due
4 As commonly done, we also impose irreducibility of f in the problem definitions, to
avoid weaknesses such as those pointed out in [BCF20]).
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to the ‘small’ carries) relations between the integer and polynomial ring op-
erations studied in Section 3. We then use the Rényi divergence analysis ap-
proach [LSS14, BLRL+18] to show that, for suitably chosen parameters, the
small carry errors incurred by the format conversions do not shift the error dis-
tribution “too far” from the desired distribution. This allows to reduce these
average-case problems to one another. The restriction to search problems (as
opposed to decision problems) in our hardness results is inherited from the use
of the Rényi divergence.

Beyond the distributional analysis of the error terms, our reductions are
also more general than those of [Gu17] as they apply for any monic defining
polynomial f . The main difficulty here is to handle the homomorphism defect
of the map from Zq[x] to Zf(q) by taking a polynomial a with coefficients ai
viewed as integers in (−q/2, q/2] and computing a(q) :=

∑
i<deg f aiq

i ∈ Zf(q).
In particular, we distinguish two cases, depending whether f(q) > qdeg f , for
which this map is injective, or f(q) < qdeg f , for which it is surjective. When
the map is injective, we randomize it so that it reaches the whole range, and
when it is surjective, we consider a randomized inverse mapping. Overall, this
leads to four reductions, corresponding to converting integers to polynomials or
polynomials to integers, depending on whether f(q) > qdeg f or f(q) < qdeg f .
Importantly, for our reductions to go through, we need the I-PLWE secret s to
have a q-ary decomposition with small coefficients, which corresponds to taking
a small-coefficient secret in PLWE: in our analysis, this is needed to ensure that
carries due the multiplication ai · s remain small.

The design of the encryption scheme is relatively standard. We use an I-PLWE
sample pk := (a, b) = (a, as+ e) as a public key. We encrypt a triple (t, e′, e′′) of
integers with q-ary decompositions with small coefficients, by generating two I-
PLWE samples (c1, c2) := (at + Ke′, bt + Ke′′). Here K is a small integer that
enables decryption: given c2−c1s, one recovers t by reducing the q-ary decompo-
sition coefficients modulo K and dividing the resulting integer by e modulo f(q).
Once t is known, one may recover e′ and e′′. Overall, this provides a determin-
istic public-key encryption scheme. The proof of OW-CPA security exploits the
intractability of decision PLWE to argue that pk is somewhat close to uniform:
this is achieved by game hops with distributional updates on pk whose effects
on the OW-CPA winning probability are controlled by Rényi divergence argu-
ments. The compatibility of OW-CPA security with the Rényi divergence was
similarly exploited in the security proof of the Frodo candidate to the NIST PQC
project [ABD+17]. Finally, once pk is replaced by a uniform pair (a, b) ∈ Z2

f(q),
OW-CPA security follows from the presumed intractability of I-PLWE.

Open problems. Similarly to I-PLWE, the one-dimensional LWE problem also
involves samples of the form (ai, ais + ei) over Zp × Zp for some integer p.
Reductions between one-dimensional LWE and standard multi-dimensional LWE
have been given in [BLP+13], hence supporting the hardness of one-dimensional
LWE (for a large modulus p). Unfortunately, one-dimensional LWE is different
from I-PLWE in that the error term ei is small compared to p in one-dimensional
LWE, and has a q-ary decomposition with small coefficients in I-PLWE. Obtaining
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a reduction from one-dimensional LWE to I-PLWE would be an interesting avenue
to prove hardness of PLWE (with polynomially-bounded modulus) under LWE.

Interestingly, converting an error-free I-PLWE sample (a, as) into a PLWE
sample (A,AS + E) creates a non-zero error E, due to the carries in the mul-
tiplication of a by s modulo f(q). This PLWE variant is insecure as one can
recover s by dividing as by a modulo f(q). Error-free I-PLWE resembles the
polynomial-ring variant of Learning With Rounding [BPR12]: in the first, the
error term is a deterministic function of (A,S), whereas in the second it is a de-
terministic function of AS. This raises the question of studying which functions
of (A,S) lead to secure or insecure deterministic-error variants of PLWE.

One limitation of our techniques is due to the fact that the Rényi divergence
is convenient to study search problems but not so for decision problems, notably
because of the probability preservation property (see Definition 1) which is not
meaningful in the case where the probabilities are close to 1

2 instead of 0. For
this reason, it is unclear how to extend our analysis to obtain reductions between
decision I-PLWE and decision PLWE. Finding a reduction between decision I-
PLWE and decision PLWE would require different techniques from ours. To prove
hardness of decision I-PLWE, an alternative path would be to obtain a search to
decision reduction. Unfortunately, it is also unclear whether existing search to
decision reductions for PLWE (see [LPR10, PRS17, RSW18]) could be adapted
to I-PLWE, mainly because of the highly structured noise distribution.

2 Preliminaries

We let x←↩ D denote the action of sampling x from distribution D. We let U(S)
denote the uniform distribution over any finite set S and we write x←↩ S instead
of x←↩ U(S). For any P =

∑
i Pix

i ∈ Z[x], P mod q denotes
∑
i(Pi mod q)xi.

2.1 Integer Gaussian distributions
For σ > 0, we define the centered Gaussian function of standard deviation pa-
rameter σ as ρσ(x) = exp(−π‖x‖2/σ2), for any x ∈ Rm. We define the centered
integer Gaussian distribution DZm,σ of standard deviation parameter σ by

∀x ∈ Zm : DZm,σ(x) = ρσ(x)/ρσ(Zm).

For B > 0, we use DZm,σ,B to denote the distribution obtained from DZm,σ by
cutting its tail (by rejection sampling) to take values in (−B/2, B/2]m. Since
we are going to reduce polynomials sampled from this distribution to Zq[x], by
reducing each of their coefficients modulo q, and then look at the representa-
tives of said coefficients in (−q/2, q/2], we will use DZ<m[x],σ,q to sample such
polynomials. Doing so gives us polynomials whose coefficients are not affected
by reductions modulo q.

We will let DZ<m[x],σ,B denote the distribution over integer polynomials of
degree < m obtained by sampling the coefficient vector according toDZm,σ,B . We
also write DZ[x]/f,σ,B for f ∈ Z[x] monic of degree m to denote the distribution
DZ<m[x],σ,B while insisting that we view the sample as an element of Z[x]/f .
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2.2 The Rényi divergence

The Rényi divergence is a prominent tool that we use throughout this work.
Its relevance to security proofs in lattice-based cryptography was stressed
in [BLRL+18].

Definition 1 (Rényi Divergence). Let P and Q be two discrete probability
distributions, such that we have Supp(P ) ⊆ Supp(Q). The Rényi divergences of
orders 2 and ∞ are respectively defined as follows:

R(P ||Q) :=
∑

x∈Supp(P )

P (x)2

Q(x) and R∞(P ||Q) := max
x∈Supp(P )

P (x)
Q(x) .

The following lemma, listing classical properties of the Rényi divergence, is
borrowed from [BLRL+18].

Lemma 1. Let P and Q be two discrete probability distributions such that we
have Supp(P ) ⊆ Supp(Q). The following properties hold.

• Log. Positivity: R(P ||Q) ≥ R(P ||P ) = 1.
• Data Processing Inequality: R(P f ||Qf ) ≤ R(P ||Q) for any function f ,
where Xf denotes the distribution of f(x) when sampling x←↩ X.

• Multiplicativity: Let P and Q be two distributions of a pair of ran-
dom variables X1 and X2 and Pi and Qi denote the marginal distribu-
tion of Xi under P and Q, respectively. If X1 and X2 are independent,
then R(P ||Q) = R(P1||Q1)R(P2||Q2). Otherwise, we have R(P ||Q) ≤
R∞(P1||Q1) ·maxx1∈Supp(P1)R((P2|x1)||(Q2|x1)).

• Probability Preservation: Let E ⊆ Supp(Q) be an arbitrary event. Then,
we have Q(E) ≥ P (E)2/R(P ||Q).

2.3 The Polynomial Learning With Errors problem

We recall here the PLWE problem studied, e.g., in [SSTX09, LPR10, RSW18].
Here we choose to tail-cut the Gaussian distribution such that each coefficient
of the error already belongs to (−q/2, q/2].

Definition 2 (P distribution). Let q ≥ 2, f ∈ Z[x] monic and σ > 0. Given
s ∈ Zq[x]/f , we define the distribution P(f)

q,σ(s) over Zq[x]/f × Z[x]/f obtained
by sampling a ←↩ Zq[x]/f , e ←↩ DZ[x]/f,σ,q and returning (a, b = a · s + e) ∈
Zq[x]/f × Zq[x]/f .

The distribution above is sometimes generalized to arbitrary covariance ma-
trices. Our results carry over to this setting, as their proofs do not involve ar-
guments specific to spherical Gaussians. For the sake of simplicity, we describe
them using spherical Gaussian distributions.
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Definition 3 (Search PLWE). Let q ≥ 2, f ∈ Z[x] irreducible and monic,
and σ > σ′ > 0. The problem sPLWE(f)

q,σ,σ′ consists in finding s ←↩ DZ[x]/f,σ′,q,
given arbitrarily many samples from P(f)

q,σ(s). For an algorithm A, we define
AdvsPLWE

f,q,σ,σ′(A) as the probability that A returns s (over the randomness of s, the
samples and A’s internal randomness). For t ≥ 1, we write sPLWE(f)

q,σ,σ′,t to
restrict the number of samples to at most t.

For technical convenience, we use an average-case variant of search PLWE.
It is computationally equivalent (by random self-reducibility) to the more stan-
dard worst-case variant in which s is arbitrary. We also assume that s is sampled
from a Gaussian distribution, rather than the more common choice of uniform
distribution. By adapting the technique from [ACPS09], sPLWE with uniform
secret and error distribution DZ[x]/f,σ′,q reduces to sPLWE(f)

q,σ′,σ′,t with identical
secret and error distribution equal to DZ[x]/f,σ′,q. By adding independent Gaus-
sian samples to the second components of the sPLWE samples, one can reduce
sPLWE(f)

q,σ′,σ′,t to sPLWE(f)
q,σ′,σ,t. The Gaussian sum may be analyzed using [BF11,

Lemma 4.12]. Letting m = deg f , one may set σ′ = Ω(
√
m) (to obtain a Gaus-

sian error term) and q = Ω(σ
√
m) (to handle the Gaussian tail-cutting), to limit

the advantage loss to an additive 2−Ω(m) term.

Definition 4 (Decision PLWE). Let q ≥ 2, f ∈ Z[x] irreducible and monic,
and σ > σ′ > 0. The problem dPLWE(f)

q,σ,σ′ consists in distinguishing between
oracle accesses to D0 = U(Zq[x]/f × Z[x]/f) and D1 = P(f)

q,σ(s) where s ←↩
DZ[x]/f,σ′,q is sampled once and for all. For an algorithm A, we define

AdvdPLWE
f,q,σ,σ′(A) =

∣∣Pr[AD0 → 1]− Pr[AD1 → 1]
∣∣ .

For t ≥ 1, we write dPLWE(f)
q,σ,σ′,t to restrict the number of samples to at most t.

The techniques from [RSW18] can be adapted to reduce sPLWE to dPLWE for
exponentially many defining polynomials f as a function of the degree m. Note
that for this reduction to go through, one needs to use non-spherical Gaussian
distributions and to sample the covariance matrix from a specific distribution.
The reduction incurs an increase of the maximum singular value of that covari-
ance matrix, which is polynomial in m and the expansion factor of f .

Definition 5 (Expansion Factor). Let q ≥ 2. Let f ∈ Z[x] of degree m. The
expansion factor of f , denoted EF(f) is defined as:

EF(f) := max
g∈Z<2m−1[x]\{0}

(‖g mod f‖∞/‖g‖∞).

As an example of polynomial f with EF(f) ≤ poly(m), we can mention gap
polynomials f = xm + g with deg(g) ≤ m/2 and ‖g‖∞ ≤ poly(m) (see [LM06]).
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2.4 The Integer Polynomial Learning With Errors problem

The integer variant I-PLWE of PLWE is parameterized by a monic polynomial f
and an integer q > 2 (and a noise parameters, as we will see below). It is defined
using the set Zf(q) of integers modulo f(q). This set can be viewed as polynomials
in Zq[x]/f , via the map consisting in taking the representative in (−q/2, q/2]
of every coefficient and evaluating the resulting polynomial in q. This format
conversion is at the core of the reductions between I-PLWE and PLWE that we
will describe. Unfortunately, this conversion is imperfect, most visibly because
the two sets do not have the same sizes (unless f = xm for some integer m, but
this case is excluded as PLWE is defined for f irreducible).

Before introducing I-PLWE, we define the integer range If,q from where we
choose the representatives of Zf(q). It is not always (−f(q)/2, f(q)/2]. This odd-
ity stems from the fact that when q is even, the set of evaluations in q of poly-
nomials in Zq[x]/f with their coefficients seen as integers in (−q/2, q/2], is not
zero-centered. The specific definition of If,q is justified by Lemma 4.

Definition 6 (Representatives range for Zf(q)). Let q > 2 and f ∈ Z[x]
monic of degree m > 0. We define:

If,q =


( q2

qm−1
q−1 − f(q), q2

qm−1
q−1 ] if q even and q q

m−1
q−1 ≥ f(q) ≥ qm,

(− q−2
2

qm−1
q−1 , f(q)− q−2

2
qm−1
q−1 ] if q even and qm > f(q) > (q− 2) q

m−1
q−1 ,

(−f(q)/2, f(q)/2] otherwise.

Whenever we consider an element ā of Zf(q) and want to choose a representa-
tive a in Z for it, we will choose it such that a ∈ If,q.

We now recall (and generalize) the I-PLWE problem introduced by Gu [Gu19].

Definition 7 (IP distribution). Let q > 2, f ∈ Z[x] monic of degree m > 0,
and σ > 0. We first define the distribution DZf(q),σ,q as the distribution obtained
by sampling E ←↩ DZ<m+1[x],σ,q, setting e = E(q) and rejecting if it does not
belong to If,q. Given s ∈ Zf(q), we define the distribution IP(f)

q,σ(s) over Zf(q) ×
Zf(q) obtained by sampling a ←↩ Zf(q), e ←↩ DZf(q),σ,q and returning (a, b =
a · s+ e) ∈ Zf(q) × Zf(q).

Note that this definition slightly diverges from Gu’s, as we choose a different
noise distribution. Previously, the noise was sampled from DZ<m[x],σ, evaluated
on q and reduced modulo f(q). To sample from the distribution DZf(q),σ,q from
Definition 7, one can do the following:

• If f(q) < qm, sample E ←↩ DZ<m[x],σ,q and reject it if E(q) 6∈ If,q. This
greatly reduces the rejection probability while still defining a probability
distribution over the whole set If,q.
• If f(q) ≥ qm, sample E ←↩ DZ<m[x],σ,q. Compute e′ := E(q). Next
let C := 1 + 2 exp(−π/σ2) and p := exp(−π/σ2)/C. Then set e′′ = qm

with probability p, e′′ = −qm with probability p and e′′ := 0 else. Finally
set e := e′ + e′′ and reject it if it does not belong to If,q. In that case, the
rejection probability is at most 2p = 2 exp(−π/σ2)/C.
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The different claims made here can be proven using the results from Lemma 4.
Our reductions will only concern the search version of I-PLWE, so we only

define this one. The definition can be adapted to a decision version.

Definition 8 (Search I-PLWE). Let q > 2, f ∈ Z[x] irreducible and monic,
and σ > σ′ > 0. The problem sI-PLWE(f)

q,σ,σ′ consists in finding s ←↩ DZf(q),σ′,q,
given arbitrarily many samples from IP(f)

q,σ(s). For an algorithm A, we define
AdvsI-PLWE

f,q,σ,σ′ (A) as the probability that A returns s (over the randomness of s,
the samples and A’s internal randomness). For t ≥ 1, we write sI-PLWE(f)

q,σ,t to
restrict the number of samples to at most t.

2.5 Public-key encryption

We recall the definition of deterministic encryption with perfect correctness.

Definition 9 (Deterministic public-key encryption). A determinis-
tic public-key encryption scheme is a triple of polynomial-time algo-
rithms (KeyGen,Enc,Dec) with the following specifications.

KeyGen(1λ). Algorithm KeyGen is probabilistic. It takes as input the security
parameter λ (in unary) and outputs a public key pk and a secret key sk.
We assume that the keys contain descriptions of a plaintext set Mλ and a
ciphertext set Cλ that depend only on λ.

Enc(pk,M). Algorithm Enc is deterministic. It takes as input a public key pk
and a plaintext M ∈M, and outputs a ciphertext C ∈ Cλ.

Dec(sk, C). Algorithm Dec is deterministic. It takes as input a secret key sk and
a ciphertext C ∈ C, and outputs a plaintext M ∈Mλ.

The correctness requirement states that for all (pk, sk) output by KeyGen and
all M ∈M, we have Dec(sk,Enc(pk,M)) = M .

For such a deterministic encryption scheme, we consider the security notion
of One-Wayness under Chosen Plaintext Attacks (OW-CPA). Note that the
security game is of a search type (the adversary should recover a plaintext), which
will be convenient for two reasons. First, OW-CPA security of our encryption
scheme will be proven under the presumed hardness of the search version of
I-PLWE rather than its decision counterpart (recall that we obtain reductions
between I-PLWE and PLWE only for the search variant of I-PLWE). Second, in
the security proof of our scheme, we will rely on arguments based on the Rényi
divergence, which is more amenable to search problems than decision problems.

Note that OW-CPA security is typically defined with respect to the uniform
distribution on plaintexts. We consider a variant that handles more general plain-
text distributions.

Definition 10 (OW-CPA security). OW-CPA security of a deterministic
public-key encryption scheme PKE = (KeyGen,Enc,Dec) with respect to a family
of distributions {DMλ

}λ over the plaintext spaces {Mλ}λ is defined using the
following game between a challenger and a adversary A.
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• The challenger runs KeyGen(1λ) to obtain a public key pk and a secret key sk.
It sends pk to A.

• The challenger samples M from DMλ
and sends C = Enc(pk,M) to A.

• Given pk and C, the adversary A replies with a plaintext M ′. It wins the
game if M ′ = M .

The advantage AdvOW-CPA
PKE,DMλ

(A) of the adversary A is defined as the probability
that A wins the game.

As seen in [HHK17] (see also [BP18]), a OW-CPA-secure deterministic en-
cryption scheme can be tightly converted into a Key Encapsulation Mechanism
that is secure under Chosen Ciphertext Attacks (CCA-secure KEM), in the Ran-
dom Oracle Model (ROM). The advantage loss in this conversion is an additive
term qD ·2−H∞(DMλ

), where qD is the number of decryption queries made to the
KEM, and H∞(DMλ

) = − log maxM DMλ
[M ] is the min-entropy of DMλ

. Note
that [HHK17, Theorem 3.6] involves a term qD/|Mλ|, as it considers the uniform
distribution on plaintexts, but the proof can be readily adapted to non-uniform
plaintext distributions, leading to the adapted advantage loss.

In the Quantum Random Oracle Model (QROM), in which the adversary has
a quantum access to the random oracle, a deterministic OW-CPA secure encryp-
tion scheme can also be converted into a CCA-secure KEM, but the currently
known proofs are not tight (see, e.g., [HHK17, BHH+19, KSS+20]), unless one
requires additional properties on the deterministic encryption scheme [SXY18].
For our scheme, we do not know how to ensure the disjoint simulatability prop-
erty required of [SXY18] under standard assumptions.

3 Relations Between Computations over the Polynomial
and Integer Rings

In order to relate the PLWE and I-PLWE problems, we first compare the rings over
which they are defined: PLWE takes place over some polynomial ring Zq[x]/(f)
whereas I-PLWE takes place over some integer ring Zf(q). We first show how
operations over Z can be converted to operations in Zq[x], and then how to
adapt this conversion to the rings Zq[x]/f and Zf(q).

3.1 Computations over Zq[x]

A natural way to convert an integer to an element of Zq[x] would be to write
the q-ary decomposition of an element of Z to get a polynomial. We rather use
a centered q-ary decomposition, which is better suited to capture the smallness
of the I-PLWE error terms. In this centered q-ary decomposition, the coefficients
are taken in (−q/2, q/2] rather than [0, q). In the following, we exclude the case
of q = 2, as we cannot represent a negative integer as a combination of powers
of 2 with coefficients in (−q/2, q/2] = {0, 1}.

10



Definition 11 (Centered q-ary decomposition of an integer). Let q > 2
and a ∈ Z. For all 0 ≤ i ≤ dlogq ae we recursively define the i-th coefficient of a
in the q-ary decomposition as:

ai :=
a−

∑
j<i ajq

j

qi
mod q,

where the mod operation outputs the representative that belongs to (−q/2, q/2].

We now define the map Φq that converts an integer a into the polynomial
whose coefficients are the coefficients of the centered q-ary decomposition of a.

Definition 12 (Conversion from Z to Zq[x]). Let q > 2. The map Φq : Z −→
Zq[x] is defined as follows

Φq : a 7−→
dlogq ae∑
i=0

aix
i.

The map Φ−1
q : Zq[x] −→ Z is defined as follows

Φ−1
q : P =

∑
i

Pix
i 7−→

∑
i

P iq
i,

where P i ∈ Z is the representative of Pi ∈ Zq belonging to (−q/2, q/2].

Note that indeed Φ−1
q is the inverse of Φq, and hence both of them are bi-

jections. Moreover, the equality f(q) = Φ−1
q (f mod q) holds for any f ∈ Z[x]

whose coefficients belong to (−q/2, q/2). This drives us to always require
that q > 2‖f‖∞ in the following. If Φq(a) has every coefficient with repre-
sentative in (−q/2, q/2) then Φq(−a) = −Φq(a). Importantly, note that even
though Φq maps a ring to another ring, it is not a ring homomorphism: it is not
compatible with addition and multiplication. For instance, for q = 3, we have
Φq(1 + 1) = x − 1 6= −1 = Φq(1) + Φq(1) and Φq(2 · 2) = x + 1 6= (x − 1)2 =
Φq(2) · Φq(2).

Below, our goal is to evaluate how far Φq is from being a ring homo-
morphism, by bounding the quantities Φq(a + b) − (Φq(a) + Φq(b)) and/or
Φq(a ·b)−Φq(a) ·Φq(b) for a, b ∈ Z. When adding (resp. multiplying) two integers
in Z via schoolbook addition (resp. multiplication) in base q, the computation
of a given digit may interfere with the computation of the next digit, because of
carries. Oppositely, when adding (resp. multiplying) two polynomials in Zq[x],
there are no carries: computations can be done in parallel. Moreover, if we choose
an even basis q, computing −a may not be as simple as taking the opposite of
each one of its coefficients.

For the next lemma it will be useful to recall how to compute the Euclidean
division with 0-centered remainder: let a ∈ Z and q ≥ 2. The “standard” Eu-
clidean division of a+ b(q − 1)/2c by q can be written as:

a+
⌊
q − 1

2

⌋
= r +

⌊
a+ b(q − 1)/2c

q

⌋
· q,

11



with r ∈ [0, q). We thus have:

a = r −
⌊
q − 1

2

⌋
+
⌊
a+ b(q − 1)/2c

q

⌋
· q,

and since r − b(q − 1)/2c ∈ (−q/2, q/2] we have a mod q = r − b(q − 1)/2c.
Definition 13 (Carries). Let q > 2. Define q′ = b(q − 1)/2c. For all a, b ∈ Z

and ai =
a−
∑i−1

j=0
ajq

j

qi mod q ∈ (−q/2, q/2] defined for i ≤ dlogq ae and bi =
b−
∑i−1

j=0
bjq

j

qi mod q ∈ (−q/2, q/2] defined for i ≤ dlogq be, we recursively define
the additive, multiplicative and opposite carries as follows.
• Addition carries c(a)(a, b) ∈ Zdmax(logq|a|,logq|b|)e+1:

c(a)(a, b) :=
(

0,
⌊
a0+b0+q′

q

⌋
, . . . ,

⌊
c(a)(a,b)i−1+ai−1+bi−1+q′

q

⌋
, . . .

)>
.

• Multiplication carries c(m)(a, b) ∈ Zdlogq|a|e+dlogq|b|e+1:

c(m)(a, b) :=
(

0,
⌊
a0·b0+q′

q

⌋
, . . . ,

⌊
c(m)(a,b)i−1+

∑
j+k=i−1

aj ·bk+q′

q

⌋
, . . .

)>
.

• Opposite carries: If q is odd, then c(o)(a) := 0. Else, define h : a 7→ {1 if a =
q/2, 0 else} and

c(o)(a) :=
(
0, −h(a0), . . . , −h(c(o)(a)i−1 + ai−1), . . .

)> ∈ Zdlogq|a|e.

Finally, define the associated carry polynomials c(o)(a) :=
∑
j=0 c

(o)(a)jxj

and c(i)(a, b) :=
∑
j=0(c(i)(a, b)j mod q)xj for i ∈ {a,m}.

After having defined these carries, we move on to prove that the difference
between operations in Z and Zq[x] is the carry polynomial that stems from
computations in Z.
Lemma 2. Let q > 2 and a, b ∈ Z. Then the decomposition of their sum
is Φq(a + b) = Φq(a) + Φq(b) + c(a)(a, b). The decomposition of their product
is Φq(a · b) = Φq(a) ·Φq(b) + c(m)(a, b). Finally the decomposition of the opposite
of a is Φq(−a) = −Φq(a) + c(o)(a).

The proof proceeds by induction. It is postponed to the appendix, where
we only prove it for the addition, as the other two cases are similar. We now
bound the magnitudes of the carries. Note that multiplication carries can be
much larger than addition carries.
Lemma 3 (Bounds on carries). Let q > 2 and a, b ∈ Z. Define q′ = b(q −
1)/2c. We have:

‖c(a)(a, b)‖∞ ≤ 1 and ‖c(o)(a)‖∞ ≤ 1,

‖c(m)(a, b)‖∞ ≤
q + q′ + min(‖a‖∞ · ‖b‖1, ‖b‖∞ · ‖a‖1)

q − 1 .

The proof of this lemma is also postponed to the appendix, and also proceeds
by induction.
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3.2 Carries of Zf(q) operations in Zq[x]/f

Remember that the problems defined in Section 2 take place in a ring, either
polynomial Zq[x]/f or integer Zf(q). Our understanding of the carries from Z
in Zq[x] from the previous subsection needs to be refined to understand what
happens when we convert elements of Zf(q) into elements of Zq[x]/f . We move
on to study carries of Zf(q) operations in Zq[x]/f .

So far, we introduced a conversion Φq from Z to Zq[x] (for an arbitrary q > 2),
and studied its homomorphism defect (concretely, carries of the basic operations
over Z). We progressively refine it so that it maps Zf(q) to Zq[x]/f .

Definition 14. Let q > 2 and f ∈ Z[x] a monic polynomial. The map Φ(f)
q :

Z→ Zq[x]/f is defined as follows:

Φ(f)
q : a 7→ Φq(a) mod f.

If ā is an element of Zf(q), then Φ
(f)
q (ā) is defined as Φ(f)

q (a) where a is the
representative of ā in If,q, as defined in Definition 6.

Since its input and output sets are not the same size, the map Φ(f)
q : Zf(q) →

Zq[x]/f cannot be a bijection. The following lemma shows that depending on
the value of f(q) compared to qm, the map Φ(f)

q or the evaluation map in q is
surjective. Note that the choice of If,q, which may look somewhat arbitrary for q
even and f(q) ≈ qm, is justified to guarantee this lemma.

Lemma 4. Let q > 2 and f ∈ Z[x] be a monic polynomial whose coefficients
belong to (−q/2, q/2). Then:

• If f(q) ≥ qm, for all P ∈ Zq[x]/f , we have Φ
(f)
q (P (q) mod f(q)) = P ,

i.e., the map Φ
(f)
q is surjective from Zf(q) to Zq[x]/f and the map P 7→

P (q) mod f(q) is injective from Zq[x]/f to Zf(q).
• If f(q) < qm, for all a ∈ If,q, we have (Φ(f)

q (a))(q) = a mod f(q), i.e., the
map Φ(f)

q is injective from Zf(q) to Zq[x]/f and the map P 7→ P (q) mod f(q)
is surjective from Zq[x]/f to Zf(q).

We exclude q/2 from the set of possible values of the coefficients of f , as it
creates technical complications (with potential carries) and in our reductions we
will impose that q is significantly larger than 2‖f‖∞.

Proof. The first property is satisfied if P (q) mod f(q) = P (q) for any poly-
nomial P ∈ Zq[x]/f . This is equivalent to Φ−1

q (Zq[x]/f) ⊆ If,q. The second
property is satisfied if Φ(f)

q (a) = Φq(a) for any a ∈ Zf(q). This one is equivalent
to If,q ⊆ Φ−1

q (Zq[x]/f).
In the case where q is odd, we have Φ−1

q (Zq[x]/f) = [− q
m−1
2 , q

m−1
2 ] and If,q =

(− f(q)
2 , f(q)

2 ]. The claimed inclusions can be checked by direct computations.
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Assume now that q is even. Then:

Φ−1
q (Zq[x]/f) = Z ∩ q

m − 1
q − 1 ·

(
− q

2 ,
q

2
]

=
[
−q − 2

2 · q
m − 1
q − 1 ,

q

2 ·
qm − 1
q − 1

]
is not zero-centered.

In the case f(q) ≥ qm, it is possible that q
2 ·

qm−1
q−1 > f(q)

2 : if that is true, we
choose q

2 ·
qm−1
q−1 as the right side of the representative interval If,q. In that case,

the left side of If,q is (using f(q) ≥ qm − 1):

q

2 ·
qm − 1
q − 1 − f(q) ≤ q

2 ·
qm − 1
q − 1 − (qm − 1) = −q − 2

2
qm − 1
q − 1 .

We see here that our choice of If,q leads to Φ−1
q (Zq[x]/f) ⊆ If,q.

In the case f(q) < qm, it is possible that − q−2
2 ·

qm−1
q−1 > − f(q)

2 : if that is
true, we choose − q−2

2 ·
qm−1
q−1 as the left side of the representative interval If,q.

In that case, the right side of If,q is (using f(q) ≤ qm − 1):

f(q)− q − 2
2 · q

m − 1
q − 1 ≤ (qm − 1)− q − 2

2 · q
m − 1
q − 1 = q

2
qm − 1
q − 1 .

We see here that our choice of If,q leads to If,q ⊆ Φ−1
q (Zq[x]/f). ut

Our understanding of the effect of Φ(f)
q can be even more refined. In the case

where f(q) < qm, the next lemma states that each element of Zf(q) has at most
two predecessors by the map P 7→ P (q) mod f(q) from Zq[x]/f .

Lemma 5 (Surjectivity of the evaluation, when f(q) < qm). Let q > 2
and f ∈ Z[x] be a monic polynomial of degree m such that f(q) < qm and whose
coefficients belong to (−q/2, q/2). Then for any a ∈ Zf(q), there exist at most
2 polynomials P,Q ∈ Zq[x]/f such that P (q) mod f(q) = Q(q) mod f(q) = a.
When evaluating P in q, the coefficients of P are taken in (−q/2, q/2].

Proof. We first note the following about f :

f(q) ≥ qm −
⌊
q − 1

2

⌋
qm − 1
q − 1 ≥ q

m − q − 1
2 · q

m − 1
q − 1 >

qm

2 .

The equality P (q) mod f(q) = Q(q) mod f(q) holds if and only if there exists
some k ∈ Z such that P (q) = Q(q)+kf(q). Since |P (q)−Q(q)| ≤ qm, we obtain:

|k| ≤ qm

f(q) .

Using the previous lower bound on f(q), this is < 2. We must hence have k ∈
{−1, 0, 1}. Assume that an element a ∈ Zf(q) has three predecessors P,Q,R ∈
Zq[x]/f such that P (q) = Q(q) + δ0f(q) and P (q) = R(q) + δ1f(q) with δ0, δ1
both nonzero. This implies that Q(q)−R(q) = (δ1 − δ0)f(q). By the above, we
must have |δ0− δ1| ≤ 1, which implies that Q(q) = R(q). Therefore, the element
a has at most 2 predecessors. ut
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In the next lemma, we explore the case f(q) ≥ qm and show that each
polynomial has at most three predecessors in Zf(q) by the map Φ(f)

q .

Lemma 6 (Surjectivity of the map Φ
(f)
q , when f(q) ≥ qm). Let q > 2 and

f ∈ Z[x] be a monic polynomial of degree m such that f(q) ≥ qm and whose
coefficients belong to (−q/2, q/2). For any P ∈ Zq[x]/f , there exist at most 3
integers a, b, c ∈ Zf(q) such that P = Φ

(f)
q (a) = Φ

(f)
q (b) = Φ

(f)
q (c). Remember

that when applying Φ(f)
q on a, the representative of a is taken in If,q.

Proof. We note that Φ(f)
q (a) = Φ

(f)
q (b) holds if and only if there exists some δ ∈ Z

such that Φq(a) = Φq(b)+ δf . We have δ = am− bm, where a =
∑
i≤m aiq

i, b =∑
i≤m biq

i with ai, bi ∈ (−q/2, q/2] for all i < m and am, bm ∈ {−1, 0, 1}, by
our choice of f and If,q. This implies that any P ∈ Zq[x]/f has at most 3
predecessors. ut

To study the carries from operations over Z in the ring of polynomials mod-
ulo f , it suffices to see that these carries are the same as in the previous section,
but reduced modulo f . This observation helps bounding them, by using the
expansion factor and Lemma 3. We now study the carries of operations done
modulo f(q) as seen in the ring of polynomials modulo f . To interpret opera-
tions from Zf(q) in Zq[x]/f , one can first compute in Z, reduce modulo f(q),
apply Φq and finally reduce modulo f . We define, for a, b ∈ If,q:

c
(a)
f (a, b) := Φ(f)

q (a+ b mod f(q))− Φ(f)
q (a)− Φ(f)

q (b),

c
(m)
f (a, b) :=

(
Φ(f)
q (a · b mod f(q))− Φ(f)

q (a) · Φ(f)
q (b)

)
mod f,

where assume that the output of the “mod f(q)” operation is an integer in If,q.

Lemma 7 (Carries of Zf(q) in Zq[x]/f). Let q > 2 and f ∈ Z[x] be a monic
polynomial of degree m whose coefficients belong to (−q/2, q/2). Let a, b ∈ If,q.
We assume that the output of the “mod f(q)” operation is an integer in If,q.

• Addition carries. We have, for some δ0, δ1 ∈ {−1, 0, 1}:

Φ(f)
q (a+b mod f(q)) = Φq(a)+Φq(b)+c(a)(a, b)+c(a)(a+b, δ0f(q))+(δ0+δ1)f.

In particular:

c
(a)
f (a, b) = c(a)(a, b) + c(a)(a+ b, δ0f(q)) + (δ0 + δ1 + am + bm) · f,

where a =
∑
i≤m aiq

i, b =
∑
i≤m biq

i with ai, bi ∈ (−q/2, q/2] for all i < m
and am, bm ∈ {−1, 0, 1}.
• Multiplication carries. We have:

c
(m)
f (a, b) =

(
c(m)(a, b) + c(m) (−δ, f(q)) + c(a) (a · b,−δf(q))

)
mod f,

where δ = b(a · b− (a · b mod f(q)))/f(q)c.
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Note that the lemma statement on addition carries is more detailed than for
multiplication carries. We use this extra information on addition carries to prove
Lemma 8 below. Apart from this, it will be sufficient to note that c(a)

f (a, b) =
(c(a)(a, b) + c(a)(a+ b, δ0f(q))) mod f .

Proof. We study addition carries first. As a, b ∈ If,q and the “mod f(q)” map
takes values in If,q, there exists δ0 ∈ {−1, 0, 1} such that a + b mod f(q) =
a+ b+ δ0f(q). Using Lemma 2, we obtain:

Φq(a+ b mod f(q)) = Φq(a) + Φq(b) + c(a)(a, b) + δ0f + c(a)(a+ b, δ0f(q)).

Here we used the fact that Φq(δ0f(q)) = δ0f , which holds because δ0 ∈ {−1, 0, 1}
and the coefficients of f belong to (−q/2, q/2), so there are no opposition carries.
We now reduce the latter polynomial modulo f :

Φ(f)
q (a+ b mod f(q)) = Φq(a) + Φq(b) + c(a)(a, b) + c(a)(a+ b, δ0f(q))

+ δ0f −
⌊
Φq(a+ b mod f(q))

f

⌋
f

= Φq(a) + Φq(b) + c(a)(a, b) + c(a)(a+ b,+δ0f(q))
+ (δ0 + δ1)f.

Note that for any a ∈ If,q, we have |a| < 3qm/2, which implies that δ1 ∈
{−1, 0, 1}. The second statement on addition carries follows from the same fact
that for any a ∈ If,q, we have |a| < 3qm/2. This implies that am, bm ∈ {−1, 0, 1}.

We now consider multiplication carries. By definition of δ, we have a · b mod
f(q) = a · b− δf(q). Using Lemma 2, we obtain:

Φq(a · b mod f(q)) = Φq(a · b) + Φq (−δ · f(q)) + c(a)(a · b,−δf(q))
= Φq(a) · Φq(b) + c(m)(a, b) + Φq (−δ) · f
+ c(m) (−δ, f(q)) + c(a) (a · b,−δf(q)) .

Finally, by reducing both sides modulo f , we obtain the lemma statement. ut

In the following section, we will be confronted to expressions of the form b+
E(q) mod f(q), where b ∈ Zf(q) and E ∈ Zq[x]/f , and we will turn them into
polynomials by applying Φ(f)

q . From what precedes, we already know that:

Φ(f)
q (b+ E(q) mod f(q))

= Φ(f)
q (b) + Φ(f)

q (E(q) mod f(q)) + c
(a)
f (b, E(q) mod f(q))

= Φ(f)
q (b) + E + c

(a)
f (b, E(q) mod f(q)) + c(a)(E(q), δf(q)),

where δ = b[E(q)−E(q)]/f(q)c and E(q) = E(q) mod f(q). During the compu-
tations, we will remove the constant term Φ

(f)
q (b), and do separate computations

on the carries and on E. We will end up with expressions:

E + ` · c(a)
f (b, E(q) mod f(q)) + ` · c(a)(E(q), δf(q)),
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where ` = −1 or ` = 2 depending on which reduction between PLWE
and I− PLWE we are currently working on. To analyze the reductions, we use
the fact that this expression, when seen as a map with input E, is injective.

Lemma 8 (Injectivity of the carries). Let q > 2 and f ∈ Z[x] be a monic
polynomial of degree m whose coefficients belong to (−q/2, q/2). Let b ∈ If,q. We
assume that the output of the “mod f(q)” operation is an integer in If,q. We
define, for δ1, δ2, δ3 ∈ {−1, 0, 1}:

I
(b)
δ1,δ2,δ3

:=
{
P ∈ Zq[x]/f :

⌊
P (q)− P (q)

f(q)

⌋
= δ1

∧

⌊
(b+ P (q))− (b+ P (q) mod f(q))

f(q)

⌋
= δ2

∧
⌊
Φq(b+ P (q) mod f(q))

f

⌋
= δ3

}
,

where P (q) = (P (q) mod f(q)) ∈ If,q. Then the following two statements hold.

1. We have that:
Zq[x]/f =

⊔
δ1,δ2,δ3∈{−1,0,1}

I
(b)
δ1,δ2,δ3

.

2. For any non-zero ` ∈ Z, define g` : P 7→ P + ` · c(a)(P (q), δ1(P ) · f(q)) + ` ·
c
(a)
f (b, P (q)), where the map δ1 from Zq[x]/f to itself is defined as δ1 : P 7→
b(P (q)− P (q))/f(q)c. For any δ1, δ2, δ3 ∈ {−1, 0, 1}, the restriction of g` to
I

(b)
δ1,δ2,δ3

is injective over Zq[x]/f .

Proof. We have the following partition of Zq[x]/f :

Zq[x]/f =
⊔

δ1,δ2,δ3∈Z
I

(b)
δ1,δ2,δ3

,

and hence it suffices to prove that I(b)
δ1,δ2,δ3

= ∅ for (δ1, δ2, δ3) 6∈ {−1, 0, 1}3. We
distinguish two cases. In the case where f(q) < qm, since qm/2 < f(q) < qm, the
integer P (q) is reduced at most once modulo f(q), thus δ1 ∈ {−1, 0, 1} captures
all possibilities for δ1. In the case where f(q) ≥ qm, the integer P (q) cannot be
non-trivially reduced modulo f(q), thanks to our choice of If,q. In this case, the
set {0} captures all possibilities for δ1. For δ2 and δ3, note that they correspond
to the δ’s defined in the addition carries of Lemma 7.

To prove the second item, let δ1, δ2, δ3 ∈ {−1, 0, 1} and P,Q ∈ I(b)
δ1,δ2,δ3

such
that g`(P ) = g`(Q). Since they are in the same I(b)

δ1,δ2,δ3
, it means that the δ’s

corresponding to the addition carries between b and P (q), and to those between b
and Q(q), are identical (these are δ2 and δ3). Moreover, it holds by definition
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that δ1(P ) = δ1(Q) = δ1. As g`(P ) = g`(Q), we have, using Lemma 7:
P −Q
`

=(c(a)
f (b,Q(q))− c(a)

f (b, P (q)))+ (c(a)(Q(q), δ1f(q))− c(a)(P (q), δ1f(q)))

= (c(a)(b,Q(q))− c(a)(b, P (q)) + c(a)(b+Q(q), δ2f(q))
− c(a)(b+ P (q), δ2f(q))) + (c(a)(Q(q), δ1f(q))− c(a)(P (q), δ1f(q))).

We will show by induction that the above implies that P = Q. Define (Hk) as
“Pn = Qn for all n ≤ k”. Note that (H0) follows from the definition of c(a).
Assume now that (Hk) holds for some 0 ≤ k < m. Recall the definitions
of P (q) = P (q) − δ1(P )f(q) and Q(q) = Q(q) − δ1(Q)f(q), so P (q)n = Q(q)n
holds for all n ≤ k.
1. As the addition carry at rank k + 1 only depends on P (q)n = Q(q)n and bn

for n ≤ k, we have c(a)(b, P (q))k+1 = c(a)(b,Q(q))k+1. Similarly, we have
c(a)(P (q), δ1f(q))k+1 = c(a)(Q(q), δ1f(q))k+1.

2. Similarly, we also have (b+ P (q))n = (b+Q(q))n for all n ≤ k + 1.
3. For the same reason, we obtain c(a)(b + P (q), δ2f(q))k+1 = c(a)(b +
Q(q), δ2f(q))k+1.

By the above equality on P−Q
` , we obtain that Pk+1 = Qk+1. This completes the

induction, and the proof that P = Q. Therefore, the restriction of g` to I(b)
δ1,δ2,δ3

is indeed injective. ut

4 Reductions between sPLWE and sI-PLWE

We exhibit reductions between the search variants of the PLWE and I-PLWE
problems, as defined in Section 2, for a large class of defining polynomials f . As
discussed in Section 1, our reductions fill some missing gaps in the prior work of
Gu [Gu19] for f = xm + 1, and generalize the results to many different defining
polynomials f . For each reduction, the study depends on whether the integer set
has more elements than the polynomial set or not. The four reductions and their
analyses are very similar, yet each of them has its own subtleties. Nonetheless,
the following lemma will be used in every case.

Lemma 9 (Carries of an IP sample). Let q > 2 and f ∈ Z[x] monic and irre-
ducible of degree m, whose coefficients belong to (−q/2, q/2). Define C(P,Q) :=
Φ

(f)
q (Q(q)−P (q)s mod f(q))− (Q−PS mod q) and b := −P (q)s mod f(q), for

any P,Q, S ∈ Zq[x]/f and s := S(q) mod f(q). Then:
• ‖C(P,Q)‖∞ ≤ EF(f) · (6 + ‖f‖1 + 2m‖S‖∞)
• For fixed P ∈ Zf(q) and any δ1, δ2, δ3 ∈ {−1, 0, 1} and ` ∈ Zq \ 0, the
map Q 7→ Q + `C(P,Q) − PS is injective from I

(b)
δ1,δ2,δ3

to Zq[x]/f , where
I

(b)
δ1,δ2,δ3

is as defined in Lemma 8.

Note that we will use this lemma only for ` = −1 and ` = 2. Due to space
constraints, the proof of this lemma and several results from this section are
postponed to the appendix.
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4.1 Reducing sPLWE to sI-PLWE when f(q) < qm

In this subsection, we are given samples from the P distribution and we try to
obtain samples from the IP distribution. Since the polynomial set is bigger than
the integer one, we can evaluate it for q and get a distribution whose support
is (Zf(q))2. Moreover the next lemma will prove that it is indeed close enough
to IP to use an adversary against sI-PLWE to solve sPLWE.

Lemma 10. Let q ≥ 3, m > 0, f ∈ Zq[x] be a monic polynomial of degree m
such that f(q) < qm and whose coefficients belong to (−q/2, q/2). Let σ > 0.
Let S ∈ Zq[x]/f and s ∈ Zf(q) such that S(q) = s mod f(q). Given a sam-
ple (A,B)←↩ P(f)

q,σ(S), set (a, b) := (A(q) mod f(q), B(q) mod f(q)). Then:

RIP to P := R(IP(f)
q,σ(s)||(a, b))≤ 216 exp

(
38m3 EF(f)2(‖f‖∞ + ‖S‖∞)2

σ2

)
.

Proof. We start by proving that the divergence is well defined. Recall that the
support of IP(f)

q,σ(s) is Zf(q)×Zf(q). Since Φ−1
q (If,q) ⊆ Zq[x]/f , the divergence is

well-defined as the support of (a, b) is exactly (Zf(q))2.
We move on to bounding the divergence:

RIP to P =
∑

(i,j)∈(Zf(q))2

Pra′←↩Zf(q),e′←↩DZf(q),σ,q
(a′ = i ∧ a′s+ e′ mod f(q) = j)2

Pra,b(a = i ∧ b = j)

≤
∑

(i,j)∈(Zf(q))2

qm

f(q)2 ·
DZf(q),σ,q(Φq(j − is mod f(q)))2∑

A∈Zq [x]/f
A(q)=i mod f(q)

Pr
e←↩DZ[x]/f,σ,q

((AS + e mod f)(q) = j mod f(q)) ,

where we condition on the values of a′ and A. Since Φ(f)
q (i)(q) = i mod f(q), we

bound from below the sum at the denominator by keeping only the term A =
Φ

(f)
q (i). Moreover, we notice that j = Φ

(f)
q (j)(q) = [Φ(f)

q (i)S + Φ
(f)
q (j) −

Φ
(f)
q (i)S](q), which implies that the denominator is at least DZ[x]/f,σ,q(Φ

(f)
q (j)−

Φ
(f)
q (i)S). We therefore obtain the bound:

RIP to P ≤
∑

(i,j)∈(Zf(q))2

qm

f(q)2
DZf(q),σ,q(j − is mod f(q))2

DZ[x]/f,σ,q(Φ
(f)
q (j)− Φ(f)

q (j)S)
.

To bound the Gaussian ratio, we can split the work into bounding two ratios:

• The first one is a ratio of Gaussian functions and can be thus expressed as a
difference exp(−π(2‖Φ(f)

q (j− is mod f(q))‖2−‖(Φ(f)
q (j)−Φ(f)

q (i)S)‖2)/σ2).
• The second one is the ratio of normalization constants of the Gaussian dis-
tributions ρσ(Zq[x]/f)/ρσ(Zf(q)).

First, let C(i, j) := Φ
(f)
q (j − is mod f(q))−Φ(f)

q (j)−Φ(f)
q (i)S ∈ Zq[x]/f . Recall

the identity 2‖x+y‖2−‖x‖2 = ‖x+2y‖2−2‖y‖2. In our case, we instantiate this
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with x = Φ
(f)
q (j)− Φ(f)

q (i)S and y = C(i, j). We now have to study ‖C(i, j)‖∞
and the map j 7→ Φ

(f)
q (j)− Φ(f)

q (i)S + 2C(i, j).
If we let P = Φ

(f)
q (i) and Q = Φ

(f)
q (j), we notice that C(i, j) corresponds

to the C(P,Q) defined in the Lemma 9. Recalling here the results from its
analysis, we know that ‖C(i, j)‖∞ ≤ EF(f)(6 + ‖f‖1 + 2m‖S‖∞) and that the
map j 7→ Φ

(f)
q (j)− Φ(f)

q (i)S + 2C(i, j) is injective from each of the 27 intervals
defined in Lemma 8 to Zq[x]/f , where we moreover recall that Φ(f)

q is injective
from Zf(q) to Zq[x]/f in the case f(q) < qm. It is then possible to reindex each
of the 27 summation terms, to get:∑
(i,j)∈(Zf(q))2

exp(−π‖Φ(f)
q (j)− Φ(f)

q (i)S + 2C(i, j)‖2/σ2) ≤ 27 ·
∑

i∈Zf(q)

ρσ(Zq[x]/f)

≤ 27 · f(q) · ρσ(Zq[x]/f).

Recalling that qm < 2f(q), we then get the bound:

RIP to P ≤ 54 · ρσ(Zq[x]/f)2

ρσ(Zf(q))2 · exp
(

2πmEF(f)2(6 + ‖f‖1 + 2m‖S‖∞)2

σ2

)
.

We now move on to bounding the ratio ρσ(Zq[x]/f)/ρσ(Zf(q)). We write:

ρσ(Zq[x]/f)
ρσ(Zf(q))

=
∑
Q∈Zq [x]/f exp(−π‖Q‖2/σ2)∑

P∈Φ(f)
q (Zf(q)) exp(−π‖P‖2/σ2)

= 1 +

∑
Q∈Zq [x]/f\Φ(f)

q (Zf(q)) exp(−π‖Q‖2/σ2)∑
P∈Φ(f)

q (Zf(q)) exp(−π‖P‖2/σ2) .

First, notice that the Φq map preserves ordering, if the ordering considered for
polynomials is the lexicographical ordering: m < n if and only if Φq(m) < Φq(n).

Let P ∈ Zq[x]/f \Φ(f)
q (Zf(q)). Assume that its leading coefficient is positive,

up to replacing P with −P . Then, since it holds that f(q) >
∑m−1
i=0 bq/2cqi

and P (q) ≥ f(q)/2, the leading coefficient of P is at least q′ := dbq/2c/2e. This
proves that P − q′xm−1 ∈ Φ(f)

q (Zf(q)) as either its degree is now strictly smaller
than m − 1 or its leading coefficient is strictly smaller than q′, since 2q′ > q/2.
Moreover, P − q′xm−1 > 0. The same kind of reasoning can be held for P with
negative leading coefficient, to map it to an element of Φ(f)

q (Zf(q)) with negative
leading coefficient. Both maps are injective as they are translations. Their image
sets do not overlap and the image of any element has smaller norm than said
element. By combining these two maps, this proves that there exists an injective
map g : Zq[x]/f \ Φ(f)

q (Zf(q)) → Φ
(f)
q (Zf(q)) such that ‖g(P )‖ ≤ ‖P‖ holds for

any P ∈ Zq[x]/f \ Φ(f)
q (Zf(q)). This proves that∑

Q∈Zq [x]/f\Φ(f)
q (Zf(q))

exp
(
− π ‖Q‖

2

σ2

)
≤

∑
P∈Φ(f)

q (Zf(q))

exp
(
− π ‖P‖

2

σ2

)
,

and hence that the ratio is ≤ 2. The total multiplicative constant is then 216. ut
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The result below follows from the Rényi divergence probability preservation.

Theorem 1. Let q > 2 and f ∈ Z[x] irreducible and monic of degree m > 0
such that f(q) < qm and whose coefficients belong to (−q/2, q/2). Let σ > σ′ > 0
such that q >

√
mσ. Let t be a number of samples, such that:

exp
(

6t+ 38tm3 EF(f)2(‖f‖∞ +m1/2σ′)2

σ2

)
= poly(m).

Then sPLWE(f)
q,σ,σ′,t reduces to sI-PLWE(f)

q,σ,σ′,t.

We refer to the discussion just after Theorem 2 for how to set parameters so
that the theorem conditions are fulfilled.

Proof. Assume that there exists an adversary A with success probability ε0
against the sI-PLWE(f)

q,σ,σ′,t game. We introduce a sequence of games to prove the
theorem:
Game 0: This is the genuine sI-PLWE(f)

q,σ,σ′,t game.
Game 1: In this game, we change the distribution of the secret. We now

sample s ←↩ DZf(q),σ′,σ′
√
m. Recall that the statistical distance be-

tween DZf(q),σ′,q and DZf(q),σ′,σ′
√
m is 2−Ω(m), since q >

√
mσ′.

Game 2: In this game we change the distribution of samples. They are now sam-
pled according to the process introduced in Lemma 10, where the polynomial
secret S is sampled according to DZ[x]/f,σ′,

√
mσ′ and s := S(q) mod f(q).

Game 3: In this game, we change the distribution of the secret S: it is now sam-
pled according to DZ[x]/f,σ′,q. The statistical distance between the distribu-
tion of the polynomial secret in this game and the previous one is 2−Ω(m).

Call εi the success probability of A in Game i. From the remarks on statistical
distance, it already holds that |ε0 − ε1| < 2−Ω(m) and |ε2 − ε3| < 2−Ω(m). In
the context of Game 1 versus Game 2, by using the probability preservation and
multiplicativity of the Rényi divergence, it holds that

ε2 ≥
ε2

1
R∞(D1||D2) · max

S:‖S‖∞≤
√
mσ′

RtP to IP
,

where D1 and D2 denote the distributions of the secret s in Games 1 and 2,
respectively. Note that in D2, for a given integer secret s, there are at most
two polynomial secrets Si such that s = Si(q) mod f(q). We can bound from
below the probability by keeping only S := Φ

(f)
q (s) ∈ Zq[x]/f . We compute the

divergence.

R∞(D1||D2) ≤ max
s∈Supp(D1)

DZf(q),σ′,σ′
√
m(s)

DZ[x]/f,σ′,σ′
√
m(Φ(f)

q (s))

≤
ρσ′(Z<mσ′√m[x])

ρσ′(Φq(Supp(D1))) max
s∈Supp(D1)

exp(−π‖Φq(s)‖2)/σ′2

exp(−π‖Φ(f)
q (s)‖2)/σ′2

.
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Since s is in If,q, we have Φ(f)
q (s) = Φq(s) and the rightmost ratio is always 1.

Recall the existence of the g injective map from Lemma 10. This maps every
element of Z<m

σ′
√
m

[x] that is not in Φq(Supp(D1)) to an element in Φq(Supp(D1)),
which has smaller norm. This implies that R∞(D1||D2) ≤ 2, by partitioning.
This shows with our choice of parameters that the success probability loss is at
most polynomial in m when switching from Game 1 to Game 2.

Finally we build an adversary B against the sPLWE(f)
q,σ,σ′,t game. It suffices

to notice that B can exactly simulate A’s view in Game 3. Moreover, if A wins,
then its output s is such that s = S(q) mod f(q), where S is the secret that B
has to guess. Then B outputs S uniformly among the predecessors of s by the
evaluation map P 7→ P (q) mod f(q). Since this set is comprised of at most two
integers, the probability that B wins is ≥ ε3/2. ut

4.2 Reducing sPLWE to sI-PLWE when f(q) ≥ qm

In this subsection we are given polynomial samples from a ring that is smaller
than the target integer ring. To compensate, we will not simply evaluate our
samples for q but instead choose uniformly an integer pair among the prede-
cessors of the sample by the map Φq(f). The following lemma proves that the
resulting distribution is close to IP.

Lemma 11. Let q > 2, f ∈ Z[x] monic and irreducible of degree m such that
f(q) ≥ qm and whose coefficients belong to (−q/2, q/2). Let σ > 0, S ∈ Zq[x]/f
and s ∈ Zf(q) such that S = Φ

(f)
q (s). Let (A,B) ←↩ P(f)

q,σ(S). Choose (a, b)
uniformly randomly in {(i, j) ∈ Zf(q)|Φ

(f)
q (i, j) = (A,B)}. Then:

RIP to P := R(IP(f(q))
q,σ (s)||(a, b)) ≤ 243 exp

(
114m

3EF(f)2(‖f‖∞ + ‖S‖∞)2

σ2

)
.

Proof. We start by proving that the divergence is well-defined. We already know
that Φ(f)

q is surjective from Zf(q) to Zq[x]/f in the case where f(q) ≥ qm.
Since the support of (A,B) is (Zq[x]/f)2, this implies that the support of (a, b)
is (Zf(q))2. We can now start bounding it:

RIP to P =
∑

(i,j)∈(Zf(q))2

Pra′←↩Zf(q),e←↩DZf(q),σ,q
(a′ = i ∧ a′s+ e = j)2

Pr(a,b)(a = i ∧ b = j)

≤
∑

(i,j)∈(Zf(q))2

(
1

f(q)DZf(q),σ,q(j − is mod f(q))
)2

1
qm · Pr

(A,B)
(Φ(f)
q (j) = B|Φ(f)

q (i) = A) · Prb(b = j|B = Φ
(f)
q (j))

,

using the chain rule. We moreover know the following facts for the denominator:

• we already used that PrA←↩Zq [x]/f (Φ(f)
q (i) = A) = 1/qm.
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• For E = Φ
(f)
q (j) − Φ(f)

q (i)S mod f , it holds that Φ(f)
q (j) = AS + E, under

the hypothesis that Φ(f)
q (i) = A. Thus it holds that:

Pr
(A,B)

(Φ(f)
q (j) = B|Φ(f)

q (i) = A) ≥ Pr
E←↩DZ[x]/f,σ,q

(Φ(f)
q (i)S + E = Φ(f)

q (j)).

• Since any polynomial in Zq[x]/f has at most 3 predecessors in Zf(q) by Φ
(f)
q ,

it holds that the probability Pr(a,b)(b = j|Φ(f)
q (b) = Φ

(f)
q (j)) is at least 1/3.

The above three statements give:

RIP to P ≤
∑

(i,j)∈(Zf(q))2

3qm

f(q)2 ·
DZf(q),σ,q(j − is mod f(q))2

DZ[x]/f,σ,q(Φ
(f)
q (j)− Φ(f)

q (i)S)
.

Recall that in the case f(q) ≥ qm, Zq[x]/f ⊆ Φq(If,q). This immediately
shows ρσ(Zq[x]/f) ≤ ρσ(Φq(If,q)). We then have:

RIP to P ≤
3qm

ρσ(Φq(Zf(q)))f(q)2 ·
∑

(i,j)∈(Zf(q))2

exp(−2π‖Φq(j − is mod f(q))‖2/σ2)
exp(−π‖Φ(f)

q (j)− Φ(f)
q (i)S‖2/σ2)

.

Define C(i, j) := Φ
(f)
q (j − is mod f(q)) − Φ(f)

q (j) − Φ(f)
q (i)S mod f , as we pre-

viously did. The modf may not be trivial and we know that there exists
some δ ∈ {−1, 0, 1} such that Φq(j− is mod f(q)) = Φ

(f)
q (j− is mod f(q)) + δf .

Instead of guessing for each pair (i, j) which δ is the right one, we simply bound
the divergence by a sum over each of the three possible values for δ:

RIP to P≤
3qm

f(q)2 ·
∑

δ∈{−1,0,1}
(i,j)∈(Zf(q))2

exp(−2π‖(Φ(f)
q (j)− Φ(f)

q (i)S mod f)+C(i, j)+δf‖2/σ2)
ρσ(Φq(Zf(q))) exp(−π‖Φ(f)

q (j)− Φ(f)
q (i)S mod f‖2/σ2)

.

We know that P (i, j) := Φ
(f)
q (j)−Φ(f)

q (i)S mod f and C(i, j) have degree ≤ m.
Recall the identity 2‖x + y‖2 − ‖x‖2 = ‖x + 2y‖2 − 2‖y‖2. In our case, we
instantiate this with x = Φ

(f)
q (j)− Φ(f)

q (i)S and y = C(i, j). To bound the last
norm, we recall that the analysis of C(P,Q) done in Lemma 9, applies here by
setting P = Φ

(f)
q (i) and Q = Φ

(f)
q (j). Then we have:

‖C(i, j) + δf‖2 ≤ 1 +mEF(f)2(6 + ‖f‖1 + 2m‖S‖∞)2 +m‖f‖2∞.

Let us fix i ∈ Zf(q). We study j 7→ P (i, j) + 2C(i, j). As proved in Lemma 9,
this is injective over each of (Φ(f)

q )−1(I(−is)
δ1,δ2,δ3

) where I(−is)
δ1,δ2,δ3

are the intervals
introduced in Lemma 8. Since f(q) ≥ qm, I(−is)

δ1,δ2,δ3
is empty if i 6= 0. We have:

‖P (i, j) + 2C(i, j) + δf‖2 = δ2 + ‖P (i, j) + 2C(i, j) + 2δ(f − xm)‖2,
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and note how exp(−πδ2/σ2) ≤ 1 and f(q) ≥ qm. Our global bound becomes:

RIP to P ≤ 27 exp
(

2π 3mEF(f)2(6 +m‖f‖∞ + 2m‖S‖∞)2

σ2

)
·

∑
δ∈{−1,0,1}
j∈Zf(q)

exp(−π‖Φ(f)
q (j) + δ(f − xm)‖2/σ2)
ρσ(Zf(q))

.

Moreover, we know that every P ∈ Zq[x]/f has at most 3 predecessors by Φ(f)
q

from Zf(q). We can thus replace the sum over j ∈ Zf(q) by 3 times a sum
over P ∈ Zq[x]/f . Since P 7→ P + δ(f − xm) is a bijection of Zq[x]/f , we get:

RIP to P ≤ 243 exp
(

6πmEF(f)2(6 +m‖f‖∞ + 2m‖S‖∞)2

σ2

)
ρσ(Zq [x]/f)

ρσ(Zf(q))
.

To conclude, we recall ρσ(Zq[x]/f) ≤ ρσ(Zf(q)) since Zq[x]/f ⊆ Φq(Zf(q)). ut

The below result follows from the Rényi divergence probability preservation.

Theorem 2. Let q > 2 and f ∈ Z[x] irreducible and monic of degree m > 0
such that f(q) ≥ qm and whose coefficients belong to (−q/2, q/2). Let σ > σ′ > 0
such that q >

√
mσ. Let t be a number of samples, such that:

exp
(7m‖f‖2∞

σ′2
+ 114t

(
1 + m3EF(f)2(‖f‖∞ +m1/2σ′)2

σ2

))
= poly(m).

Then sPLWE(f)
q,σ,σ′,t reduces to sI-PLWE(f)

q,σ,σ′,t.

Along with Theorem 1, this provides a concrete way to find a range of pa-
rameters for which sPLWE reduces to sI-PLWE. One should start by choosing
an irreducible monic polynomial f of degree m > 0. Note that f already deter-
mines which theorem will be used: if the second highest nonzero coefficient of f
is negative (resp. positive), it holds that f(q) < qm (resp. f(q) ≥ qm) for any
integer q ≥ 2‖f‖∞. The value of t = O(logm) can then be fixed depending on
the needs. In Section 5, we will have t = 2.

The next step is to choose the noise parameter σ′ > 0. When f(q) ≤ qm, it
can be chosen freely, whereas in the case where f(q) ≥ qm, it must satisfy σ′ =
Ω(‖f‖∞

√
m/ log(m)). Then the other noise parameter σ > 0 should be chosen

such that σ2 ≥ Ω(tm3EF(f)2(‖f‖∞ + m1/2σ′)2/ log(m)). Last is to choose an
integer q > max(2‖f‖∞,

√
mσ). In section 5, further conditions are discussed as

they are needed for the encryption application.

4.3 Reducing sI-PLWE to sPLWE when f(q) < qm

When reducing sI-PLWE to sPLWE, we are given samples from the IP distribution,
and we want to obtain samples from the P distribution. Here, the integer set is
smaller than the polynomial one, so the mapping cannot be deterministic if we
want to cover the whole range. For this purpose, we uniformly choose polynomials
that are predecessors of our samples by the evaluation P 7→ P (q) mod f(q).
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Lemma 12 (Divergence between P and IP, when f(q) < qm). Let q > 2
and f ∈ Z[x] monic and irreducible of degree m > 0 such that f(q) < qm

and whose coefficients belong to (−q/2, q/2). Let σ > 0. Let S ∈ Z[x]/f and
s = S(q) mod f(q) ∈ If,q. Sample (a, b) ←↩ IP(f)

q,σ(s) and choose A (resp. B)
uniformly in the set of predecessors of a {P ∈ Zq[x]/f : P (q) mod f(q) = a}
(resp. the set of predecessors of b {P ∈ Zq[x]/f : P (q) mod f(q) = b}) via the
evaluation map. Then:

RP to IP := R(P(f)
q,σ(S)||(A,B)) ≤ 108 exp

(
38 ·m3EF(f)2 (‖f‖∞ + ‖S‖∞)2

σ2

)
.

The below result follows from the Rényi divergence probability preservation.

Theorem 3. Let q > 2 and f ∈ Z[x] irreducible and monic of degree m > 0
such that f(q) < qm and whose coefficients belong to (−q/2, q/2). Let σ > σ′ > 0
such that q >

√
mσ. Let t be a number of samples, such that:

exp
(7m‖f‖2∞

σ′2
+ 76t

(
1 +m3EF(f)2 (‖f‖∞ +m1/2σ′)2

σ2

))
≤ poly(m).

Then sI-PLWE(f)
q,σ,σ′,t reduces to PLWE(f)

q,σ,σ′,t.

4.4 Reducing sI-PLWE to sPLWE reduction when f(q) ≥ qm

In this subsection, the integer set is bigger than the polynomial set. Simply
applying Φ(f)

q on the samples that we get is thus enough to get a distribution
that covers the entirety of (Zq[x]/f)2. Moreover, the next lemma proves that
this distribution is close to P.

Lemma 13. Let q > 2, f ∈ Z[x] monic and irreducible of degree m such that
f(q) ≥ qm and whose coefficients belong to (−q/2, q/2). Let σ > 0, S ∈ Zq[x]/f
and s ∈ Zf(q) such that Φ(f)

q (s) = S. Then we have:

RP to IP := R(P(f)
q,σ(S)||Φ(f)

q (IP(f)
q,σ(s)))

≤ 162 exp
(

114m
3EF(f)2(‖f‖∞ + ‖S‖∞)2

σ2

)
.

The below result follows from the Rényi divergence probability preservation.

Theorem 4. Let q > 2 and f ∈ Z[x] irreducible and monic of degree m > 0
such that f(q) < qm and whose coefficients belong to (−q/2, q/2). Let σ > σ′ > 0
such that q >

√
mσ. Let t be a number of samples, such that:

exp
(

114t
(

1 + 114m3EF(f)2 (‖f‖∞ +m1/2σ′)2

σ2

))
= poly(m).

Then sI-PLWE(f)
q,σ,σ′,t reduces to sPLWE(f)

q,σ,σ′,t.
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5 A Public-Key Encryption Scheme Based on sI-PLWE

We now describe a deterministic public-key encryption scheme, whose OW-CPA
security will be proved based on the presumed hardness of sI-PLWE and dPLWE.

KeyGen(1λ). On input the security parameter, the key generation algorithm
first chooses parameters pp := (f, q, σ, σ′,K) as explained below. First,
let m := deg f . Define C = Zf(q) × Zf(q) and

M =
{(∑

i

tiq
i,
∑
i

e′iq
i,
∑
i

e′′i q
i
)
∈ Z3

f(q) |

∀i : |ti| ≤ σ′
√
m ∧ |e′i|, |e′′i | ≤ σ

√
m
}
.

Sample a←↩ U(Zf(q)), s←↩ DZf(q),σ′,σ′
√
m and e←↩ DZf(q),σ,σ

√
m.

If e = 0, then restart. Compute b = as+ e ∈ Zf(q) and output:

pk := (pp, a, b) and sk := (pp, s, e).

Enc(pk,M). On input the public key pk = (pp, a, b) and any valid plaintext
message M = (t, e′, e′′) ∈M, compute and output:

(c1, c2) := (a · t+K · e′, b · t+K · e′′) ∈ Zf(q) × Zf(q).

Dec(sk, (c1, c2)). On input the secret key sk = (pp, s, e) comprised of the public
parameters and two short vectors, and a ciphertext (c1, c2), the decryption
algorithm first computes:

d := c2 − c1 · s.

Writing d =
∑
i diq

i, it computes d′ =
∑
i(di mod K) · qi mod f(q). It then

recovers the message t = d′/e mod f(q), e′ = (c1−at)/K mod f(q) and e′′ =
(c2 − bt)/K mod f(q). Finally, it outputs (t, e′, e′′).

We make a few comments on the scheme. By a standard tail bound, the
distributions DZf(q),σ,σ

√
m and DZf(q),σ′,σ′

√
m can be efficiently sampled by re-

jection sampling from DZf(q),σ and DZf(q),σ′ , respectively. Also, the probability
that e = 0 is 2−Ω(m). We explicitly exclude this possibility to prove perfect
correctness. We will prove OW-CPA security with respect to the distribution

DM = DZf(q),σ′,σ′
√
m ×DZf(q),σ,σ

√
m ×DZf(q),σ,σ

√
m

over the plaintext spaceM. For the same reasons as above, it can be sampled effi-
ciently, and its min-entropy is H∞(DM) = Ω(m log σ). Finally, in the decryption
algorithm, we make several divisions modulo f(q). To guarantee its possibility,
we impose that f(q) is prime and make sure that e and K are non-zero.

We choose f ∈ Z[x] monic and irreducible of degree m > 0. We choose q > 2
such that f(q) is prime. Note that f(q) has bit-length ≈ m log q, so if q
is Ω(m1+ε) for any ε > 0, we heuristically expect that f(q) is prime after a
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polynomial number of trials for q will make f(q) prime. Note that in full gener-
ality, it may not be possible to find any q that makes f(q) prime (for example,
consider f = x2 + x+ 4).

The other parameters are set as follows. For correctness (Theorem 5), we
impose that K > 14σσ′m2‖f‖∞EF(f) and q > 84Km2‖f‖∞EF(f)σσ′. For
OW-CPA security (Theorem 6), we impose that σ >

√
mEF(f)(‖f‖1 +m3/2σ′)

and σ′ ≥
√
m. These inequalities can be handled by first setting σ′, then σ, K

and q. For security against known PLWE attacks, one may choose m = Ω(λ)
and q, σ, σ′ ∈ poly(m).

Theorem 5 (Correctness). Assume that K > 14σσ′m2‖f‖∞EF(f) and
also q > 84Kσσ′m2‖f‖∞EF(f). Then the above encryption scheme is correct.

Proof. Let (c1, c2) be an encryption of M = (t, e′, e′′) ∈ M under pk. We want
to show that given sk and (c1, c2), the decryption algorithm indeed recovers M .
Note first that d = c2−c1 ·s = K · (e′′−e′ ·s)+e · t mod f(q). By carries analysis
from Lemma 14 found in appendix, we have

∀i < m : di = d′i +K · d′′i with |d′i| < K/2 and d′ =
∑
i

d′iq
i = e · t mod f(q).

This exploits the parameter conditions on K and q. Once the decryption algo-
rithm has recovered d′ = e · t mod f(q), it can recover t, e′ and e′′ using division
in the field Zf(q). ut

Lemma 14. Let K > 14σσ′m2‖f‖∞EF(f) and q > 84Kσσ′m2‖f‖∞EF(f).
Let (c1, c2) be an encryption of M = (t, e′, e′′) ∈ M under pk = (a, as + e).
Then let d =

∑
i diq

i := c2 − c1 · s and write di = d′i + K · d′′i with |d′i| < K/2,
for any i < m. Then d′ :=

∑
i d
′
iq
i = e · t mod f(q).

We now study the OW-CPA security of the above deterministic cryptosystem.

Theorem 6 (Security). Assuming that σ ≥
√
mEF(f) · (‖f‖1 + m3/2σ′)

and σ′ ≥
√
m, the above PKE scheme is OW-CPA secure for distribution DM,

under the sI-PLWE(f)
q,σ,σ′,2 and dPLWE(f)

q,σ,σ′,1 assumptions. More concretely, if
there exists a OW-CPA adversary A, then there exist algorithms B and C for
dPLWE and sI-PLWE, respectively, with run-times similar to the run-time of A
and such that:

AdvOW-CPA
PKE,DM(A) ≤ O

(
AdvsI-PLWE

f,q,σ,σ′ (C)1/4 + AdvdPLWE
f,q,σ,σ′(B)1/2

)
+ 2−Ω(m).

Our security proof relies on two security assumptions: the search problem
sI-PLWE and the decision problem dPLWE. As recalled in Section 2, dPLWE
and sPLWE can be set so that they reduce to one another (up to some limited
parameter losses). From Section 4, we know that sPLWE and sI-PLWE reduce to
one another. Therefore, Theorem 6 could be adapted to make security rely on a
single hardness assumption, e.g., sI-PLWE.
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Proof. Assume that there exists an adversaryA against the OW-CPA game of the
PKE with non-negligible success probability ε0. We define the following games:

Game 0: This is the OW-CPA game.
Game 1: In this game, we sample s ←↩ DZf(q),σ′ and e ←↩ DZf(q),σ instead

of s ←↩ DZf(q),σ′,σ′
√
m and e ←↩ DZf(q),σ,σ

√
m, respectively. Also, we do not

reject when e = 0.
Game 2: In this game, we change the distribution of the public key pk. First we

start by sampling A ←↩ U(Zq[x]/f), S ←↩ DZ[x]/f,σ′,q and E ←↩ DZ[x]/f,σ,q
and then set B = AS + E mod f . Then
• If f(q) ≥ qm, choose a and b uniformly among the predecessors of A
and B by the map Φ(f)

q , respectively.
• If f(q) < qm, compute (a, b) = (A(q) mod f(q), B(q) mod f(q)).

Game 3: In this game, we change the generation of B. Instead of sam-
pling (A,B) as above, we sample (A,B)←↩ U((Zq[x]/f)2).

Game 4: In this game, we change the generation of (a, b) once more. Instead
of sampling (A,B) ←↩ U((Zq[x]/f)2) and computing predecessors (a, b), we
directly sample a, b←↩ U(Zf(q)).

Let εi denote the success probability of A in Game i. By definition, we
have ε0 = AdvOW-CPA

PKE,DM(A). For any random variables (a, b, t, e, e′, a′, b′), the fol-
lowing inequality holds by using the data processing inequality and the multi-
plicativity of the Rényi divergence:

R((a, b, at+Ke, bt+Ke′)||(a′, b′, a′t+Ke, b′t+Ke′)) ≤ R((a, b)||(a′, b′)). (1)

In the context of Game 0 versus Game 1, note that the statistical distance
between DZf(q),σ and DZf(q),σ,σ

√
m is 2−Ω(m). The same holds for DZf(q),σ′ and

DZf(q),σ′,σ′
√
m. Further, the probability that e = 0 is also 2−Ω(m). Therefore, we

have |ε0 − ε1| ≤ 2−Ω(m).
In the context of Game 1 versus Game 2, we can instantiate (1) with (a, b)

as in Game 1 and (a′, b′) as in Game 2. By Lemmas 10 and 11 and thanks to
our choice of parameters, this divergence is ≤ O(1). Then, by the probability
preservation property, we have: ε2 ≥ Ω(ε2

1).
For Game 2 versus Game 3, we use the hardness of dPLWE. Indeed, one can

build an algorithm B against dPLWE that would exploit a behavioural difference
of A between Game 2 and Game 3. We have:

AdvdPLWE
f,q,σ,σ′(B) ≥ |ε3 − ε2| − 2−Ω(m).

In the context of Game 3 versus Game 4, we instantiate (1) with (a, b) as in
Game 3 and (a′, b′) as in Game 4. In Game 3, the probability of a = k for a
given k ∈ Zf(q) is ≤ 3/qm, and the same holds for b. Therefore:

R((a, b)||(a′, b′)) ≤ f(q)2 · (3/qm)4

1/f(q)2 = 81 · f(q)4

q4m .
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Since f(q) < 2qm, the divergence is≤ 1296. By using the probability preservation
probability, we have that ε4 ≥ Ω(ε2

3). Finally, we handle Game 4 using hardness
of sI-PLWE. We build an sI-PLWE algorithm C as follows. Upon receiving two
sI-PLWE samples (a, a · t+ e′) and (b, b · t+ e′′), it sets

pk := (K · a,K · b),
c1 := K · (a · t+ e′) = (K · a) · t+K · e′,
c2 := K · (b · t+ e′) = (K · b) · t+K · e′′.

It then calls the OW-CPA adversary A on the challenge pk, (c1, c2) and waits for
its answer (t, e, e′). Then C outputs t. As K is coprime to f(q), multiplication
by K modulo f(q) is a bijection, and the view of A is as in Game 4. As a result,
we have that AdvsI-PLWE

f,q,σ,σ′ (C) ≥ ε3. The result follows by collecting terms. ut
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A Missing proofs

Proof of Lemma 2. We only prove the lemma for the addition, the other two
cases being similar. In the proof, the operation modq outputs an integer in the
interval (−q/2, q/2]. The claimed equality is equivalent to:∑

i=0
(ai + bi) · qi =

∑
i=0

(
(ai + bi + c(a)(a, b)i) mod q

)
· qi.

We prove it with an induction on a parameter 0 ≤ n ≤ dmax(logq|a|, logq|b|)e+1.
Let:

(Hn) :
∑
i=0

(ai + bi) · qi =
n−1∑
i=0

(
(ai + bi + c(a)(a, b)i) mod q

)
· qi

+ (an + bn + c(a)(a, b)n) · qn +
∑
i>n

(ai + bi) · qi.

Note that (H0) is vacuously true. Now, let us assume that (Hn−1) is true for
some n ≥ 1. We then have:

∑
i=0

(ai + bi) · qi =
n−2∑
i=0

(
(ai + bi + c(a)(a, b)i) mod q

)
· qi

+ (an−1 + bn−1 + c(a)(a, b)n−1) · qn−1 +
∑
i>n−1

(ai + bi) · qi.

We write the centered Euclidean division of an−1 + bn−1 + c(a)(a, b)n−1 by q:

an−1 + bn−1 + c(a)(a, b)n−1 =
(
an−1 + bn−1 + c(a)(a, b)n−1

)
mod q

+
⌊
an−1 + bn−1 + c(a)(a, b)n−1 + q′

q

⌋
· q

=
(
an−1 + bn−1 + c(a)(a, b)n−1

)
mod q

+ c(a)(a, b)n · q.

This leads to:∑
i=0

(ai + bi) · qi =
n−1∑
i=0

(
(ai + bi + c(a)(a, b)i) mod q

)
· qi

+ (an + bn + c(a)(a, b)n) · qn +
∑
i=n+1

(ai + bi) · qi.

This proves (Hn) and thus completes the induction and hence the proof. ut

Proof of Lemma 3. For opposition, it is a direct consequence of the
carry definition. We now consider addition. Remember that c(a)(a, b)i+1 =
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b c
(a)(a,b)i+ai+bi+q′

q c for all i ≥ 0. We prove by induction on i ≥ 0 that
|c(a)(a, b)i| ≤ 1. It holds for i = 0, as c(a)(a, b)0 = 0. Assuming that it holds
for i, note that

|c(a)(a, b)i+1| ≤
|c(a)(a, b)i + ai + bi + q′|

q
≤ 2 + q + q + q − 1

2q < 2.

This proves that it also holds for i+ 1, and completes the proof by induction.
Concerning multiplication, observe that for i ≥ 0, we have:

|c(m)(a, b)i+1| =
∣∣∣⌊c(m)(a, b)i +

∑
j+k=i aj · bk + q′

q

⌋∣∣∣
≤ 1 + c(m)(a, b)i

q
+ min(‖a‖∞ · ‖b‖1, ‖b‖∞ · ‖a‖1) + q′

q
,

where we used the inequalities |
∑
j+k=i ajbk| ≤ ‖a‖∞ ·

∑
k|bk| ≤ ‖a‖∞ ·‖b‖1 (and

the reverse), and |bxc| ≤ 1 + |x| for any x ∈ R (which hold even when x < 0).
Define u0 = 0 and ui+1 := ui

q + q+q′+C
q for i ≥ 0, with C := min(‖a‖∞ ·

‖b‖1, ‖b‖∞ · ‖a‖1). By back-substitution of ui into ui+1 and so on, we have:

ui+1 = q + q′ + C

qi+1

i∑
j=0

qj = q + q′ + C

qi+1 · q
i+1 − 1
q − 1 <

q + q′ + C

q − 1 . ut

Proof of Lemma 9. We can express C(P,Q) in two ways. Define Q(q) :=
Q(q) mod f(q). First, by reducing modulo f(q) as the computation progresses
and using Lemma 7 and the δ1 function from Lemma 8, we can write:

C(P,Q) = c
(a)
f (Q(q),−P (q)s mod f(q)) + c

(m)
f (−P (q) mod f(q), s)

+ c(o)(P )Φ(f)
q (s) + c

(a)
f (Q(q), δ1(Q) · f(q))

+ c
(a)
f (P (q), δ1(P ) · f(q))Φ(f)

q (s)− P · c(a)
f (S(q), δ1(P ) · f(q)).

Here, it is important to notice that only two terms depend on Q. Second, by
reducing modulo f(q) only once at the end of the computation, we can also
write:

C(P,Q) =
(
c(a)(Q(q)− P (q)S(q),−δf(q)) + Φ(f)

q (−δ) · f + c(m)(−δ, f(q))

+ c(a)(Q(q),−P (q)S(q)) + c(m)(−P (q), S(q)) + c(o)(P ) · S
)

mod f,

where δ :=
⌊

(Q(q)−P (q)S(q))−(Q(q)−P (q)S(q) mod f(q))
f(q)

⌋
. This last expression lets us

bound C(P,Q):

‖C(P,Q)‖∞ ≤ EF(f) · (1 + ‖f‖1 + 2 + 1 + ‖S‖1 + 2 +m‖S‖∞) ,
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using the definition of the expansion factor, the bounds from Lemma 3 and the
fact that Φ(f)

q (−δ)f mod f = 0. This gives us the first result.
We move on to prove the second statement of the lemma. We use Lemma 8

with ` ∈ Z and b = (−P (q)s mod f(q)). Using the first expression of C(P,Q),
we notice that, modulo q:

Q− PS− C(P,Q) = g`(Q)− PS − c(m)
f (−P (q) mod f(q), s)− c(o)f (P )Φ(f)

q (S)

− c(a)
f (P (q), δ1(P ) · f(q))Φ(f)

q (S) + P · c(a)
f (S(s), δ1(S) · f(q)).

This is of the form g`(Q)+C ′(P ) where C ′(P ) does not depend on Q. By simply
recalling the results from Lemma 8, we see that this is indeed injective as adding
C ′(P ) is just a translation and is thus bijective. ut

Proof of Theorem 2. Assume that there exists an adversary A with success
probability ε0 against the sI-PLWE(f(q))

m,q,σ,σ′,t game. We introduce a sequence of
games to prove the theorem:

Game 0: This is the genuine sI-PLWE(f(q))
m,q,σ,σ′,t game.

Game 1: In this game, we change the distribution of the secret. We sample
s ←↩ DZf(q),σ′,σ′

√
m. Recall that the statistical distance between DZf(q),σ′,q

and DZf(q),σ′,σ′
√
m is 2−Ω(m).

Game 2: In this game we change the distribution of samples. They are now sam-
pled according to the process introduced in Lemma 11, where the polynomial
secret S is sampled according to DZ[x]/f,σ′,

√
mσ′ and s is chosen uniformly

among the predecessors of S by the map Φ(f)
q .

Game 3: In this game, we change the distribution of the secret S. The secret is
now sampled according to DZ[x]/f,σ′,q. Here also, the statistical distance be-
tween the distribution of the polynomial secret in this game and the previous
one is 2−Ω(m).

Call εi the success probability of A in Game i. From the remarks on statistical
distance, it holds that |ε0−ε1| < 2−Ω(m) and |ε2−ε3| < 2−Ω(m). In the context of
Game 1 versus Game 2, by using the probability preservation and multiplicativity
of the Rényi divergence, it holds that

ε2 ≥
ε2

1
R∞(D1||D2) max

S:‖S‖∞≤
√
mσ′

RtP to IP
,

where D1 and D2 denotes the distribution of the secret s in Game 1 and 2
respectively. Note that in D2, for a given polynomial secret S, there are at most
three integer secrets si such that Φ(f)

q (si) = S. Among the predecessors, s has
probability at least 1/3 of being chosen. We compute the divergence.
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R∞(D1||D2) ≤ 3 max
s∈Supp(D1)

DZf(q),σ′,σ′
√
m(s)

DZ[x]/f,σ′,σ′
√
m(Φ(f)

q (s))

≤ 3
ρσ′(Z<mσ′√m[x])

ρσ′(Φq(Supp(D1))) max
s∈Supp(D1)

exp(−π‖Φq(s)‖2)/σ′2

exp(−π‖Φ(f)
q (s)‖2/σ′2

≤ 3 exp(2πm‖f‖2∞/σ′2),

since Zqσ′
√
m
<m[x] ⊆ Φq(Supp(D1)).

This shows with our choice of parameters that the success probability loss is
at most polynomial in m when switching from Game 1 to Game 2.

Finally we build B an adversary against the sPLWE(f)
q,σ,σ′,t game. It suffices

to notice that B can exactly simulate A’s view in Game 3. Moreover, if A wins,
then its output s is such that Φ(f)

q (s) = S, where S is the secret that B has to
guess. Then B outputs Φ(f)

q (s). The probability of winning of B is at least the
advantage of A. Thus if A has non-negligible advantage, so does B. ut

Proof of Lemma 12. We start by proving that the divergence is well-defined.
The support of P(f)

q,σ(S) is Zq[x]/f × Zq[x]/f . Moreover, the support of (a, b) is
Zf(q) × Zf(q). Indeed, by sampling A and B uniformly among the predecessors
of a and b for the map P 7→ P (q) mod f(q), which is surjective from Zq[x]/f
to Zf(q), according to Lemma 4, we ensure that every pair of polynomials has a
nonzero probability of being the value of (A,B).

We move on to bounding the divergence:

RP to IP =
∑

(P,Q)∈(Zq [x]/f)2

PrA′←↩Zq [x]/f,E′←↩DZ[x]/f,σ,q (A′ = P ∧A′S + E′ = Q mod q)2

PrA,B(A = P ∧B = Q)

≤
∑

(P,Q)∈(Zq [x]/f)2

2f(q)
q2m ·

PrE′←↩DZ[x]/f,σ,q (E′ = Q− PS mod q)2

Pr(B = Q|A = P ) ,

where we conditioned on the values of A′ and A, and bounded from below the
probability of A = P by 1

2f(q) , as it is either
1

f(q) or 1
2f(q) , as shown in Lemma 5.

We can also see by the chain rule that the event “B = Q|A = P” has probability

Pr
e←↩DZf(q),σ,q

(P (q)s+ e = Q(q) mod f(q))

· Pr(B = Q|P (q)s+ e = Q(q) mod f(q) ∧A = P )

≥ Pr
e←↩DZf(q),σ,q

(e = Q(q)− P (q)s mod f(q)) · 1
2 .

Indeed, as Q(q) has at least 1 and at most 2 predecessors, the right-most prob-
ability can be bounded from below by 1/2. We therefore obtain that:

RP to IP ≤
4
qm

∑
(P,Q)∈(Zq [x]/f)2

DZ[x]/f,σ,q(Q− PS mod q)2

DZf(q),σ,q(Q(q)− P (q)S(q) mod f(q)) .
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Since f(q) < qm, it holds that If,q ⊆ Φ−1
q (Zq[x]/f) and we know that for

any a ∈ Zf(q), the polynomial Φq(a) has degree < m. By switching the normal-
ization constant, we have:

DZf(q),σ,q((Q(q)− P (q)s) mod f(q))

= ρσ(Zq[x]/f)
ρσ(Φq(Zf(q)))

·DZ[x]/f,σ,q(Φ(f)
q ((Q(q)− P (q)s) mod f(q)))

≥ DZ[x]/f,σ,q(Φ(f)
q ((Q(q)− P (q)s) mod f(q))).

Recall the definition C(P,Q) := Φ
(f)
q (Q(q)−P (q)s mod f(q))−(Q−PS mod q),

from Lemma 9. Then we have

RP to IP ≤
4
qm

∑
(P,Q)∈(Zq [x]/f)2

DZ[x]/f,σ,q(Q− PS mod q)2

DZ[x]/f,σ,q((Q− PS mod q) + C(P,Q)) .

Intuitively, the polynomial C(P,Q) has coefficients of small magnitudes, so that
the denominator and square-root of the numerator of the summand have sim-
ilar values. At a higher level, the sum can be interpreted as the Rényi diver-
gence between a Gaussian and a shifted Gaussian, where the shift is defined
by C(P,Q). As the shift depends on the vector, we cannot directly use known
bounds on the divergence between a Gaussian and a shifted Gaussian such
as [LSS14, Lemma 4.2]. Nevertheless, our analysis below is inspired from the
proof of [LSS14, Lemma 4.2].

We go back to RP to IP. We have:

RP to IP ≤
4
qm
·
∑

P,Q∈Zq [x]/f

1
ρσ(Zq[x]/f) ·

exp(−2π‖(Q− PS mod q)‖2/σ2)
exp(−π‖(Q− PS mod q) + C(P,Q)‖2/σ2) .

Using the identity 2‖x‖2−‖x+y‖2 = ‖x−y‖2−2‖y‖2 with x = Q−PS mod q
and y = C(P,Q), we obtain:

RP to IP ≤
4
qm

max
P,Q∈Zq [x]/f

(
exp

(2π‖C(P,Q)‖2

σ2

))
·

∑
P,Q∈Zq [x]/f

exp(−π‖(Q− PS mod q)− C(P,Q)‖2/σ2)
ρσ(Zq[x]/f) .

The first exponential term can be bounded from above by using the bound on
‖C(P,Q)‖ found in Lemma 9. The sum is itself bounded from above by:

qm max
P∈Zq [x]/f

∑
Q∈Zq [x]/f

exp(−π‖(Q− PS mod q)− C(P,Q)‖2/σ2)
ρσ(Zq[x]/f)

≤qm max
P∈Zq [x]/f

∑
Q∈Zq [x]/f

exp(−π‖Q− PS − C(P,Q) mod q‖2/σ2)
ρσ(Zq[x]/f) .
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We recall this time the second result from Lemma 8. We split the sum with
the partition of Zq[x]/f found in Lemma 8. Since the map Q 7→ Q−PS−C(P,Q)
is injective over each I

(b)
δ1,δ2,δ3

, according to the second result of Lemma 9, we
have: ∑

δ1,δ2,δ3∈{−1,0,1}

∑
Q∈I(b)

δ1,δ2,δ3

exp
(
−π ‖Q− PS − C(P,Q) mod q‖2

σ2

)

≤ 33
∑

Q∈Zq [x]/f

exp
(
−π ‖Q mod q‖2

σ2

)
= 27ρσ(Zq[x]/f).

This completes the proof. ut

Proof of Theorem 3. Assume that there exists an adversary A with success
probability ε0 against the sPLWE(f)

q,σ,σ′,t game. We introduce a sequence of games
to prove the theorem:

Game 0: This is the genuine sPLWE(f)
q,σ,σ′,t game.

Game 1: In this game, we change the distribution of the secret. We sample
S ←↩ DZ[x]/f,σ′,σ′

√
m. Recall that the statistical distance between DZ[x]/f,σ′,q

and DZ[x]/f,σ′,σ′
√
m is 2−Ω(m).

Game 2: In this game we change the distribution of samples. They are now
sampled according to the process introduced in Lemma 12, where the se-
cret s = S(q) mod f(q) is sampled according to DZf(q),σ′,

√
mσ′ and S is set

uniformly among the predecessors of s by the evaluation map.
Game 3: In this game, we change the distribution of the secret s. The secret

is now sampled according to DZf(q),σ′,q. Here also, the statistical distance
between the distribution of the secret in this game and the previous one is
2−Ω(m).

Call εi the success probability of A in Game i. It already holds that |ε0 − ε1| <
2−Ω(m) and |ε2−ε3| < 2−Ω(m). In the context of Game 1 versus Game 2, it holds
that ε2 ≥ ε2

1
R∞(D1||D2) max

S:‖S‖∞≤
√
mσ′

RtP to IP
, where D1 and D2 denotes the distribu-

tion of the secret S in Game 1 and 2 respectively. We compute the divergence.

R∞(D1||D2) ≤ 2 max
S∈Supp(D1)

DZ[x]/f,σ′,σ′
√
m(S)

DZf(q),σ′,σ′
√
m(S(q) mod f(q))

≤ 2ρσ
′(Φq(If,q) ∩ (Supp(D1)))

ρσ′(Supp(D1)) max
S∈Supp(D1)

exp(−π‖S‖2)/σ′2

exp(−π‖Φq(S(q))‖2/σ′2

≤ 2 exp(π(‖f‖2 +m)/σ′2)

This shows with our choice of parameters that the success probability loss is
at most polynomial in m when switching from Game 1 to Game 2.
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Finally we build B an adversary against the sI-PLWE(f(q))
m,q,σ,σ′,t game. It suffices

to notice that B can exactly simulate A’s view in Game 3. Moreover, if A wins,
then its output S is such that S(q) = s mod f(q), where s is the secret that B
has to guess. Then B outputs S(q) mod f(q) and wins too. Thus if A has non-
negligible advantage, so does B. ut

Proof of Lemma 13. We start by proving that the divergence is well-defined.
The support of IP(f)

q,σ(s) is Zf(q) × Zf(q). Since f(q) ≥ qm, it holds that
Φ

(f)
q (Zf(q)) = Zq[x]/f . Then the divergence is well-defined. We move on to

bounding it:

RP to IP =
∑

(P,Q)∈(Zq [x]/f)2

Pr
A←↩Zq [x]/f

E←↩DZ[x]/f,σ,q

(A = P ∧AS + E = Q mod q)2

Pr
a←↩Zf(q)

e←↩DZf(q),σ,q

(Φ(f)
q (a) = P ∧ Φ(f)

q (as+ e mod f(q)) = Q)

≤
∑

(P,Q)∈(Zq [x]/f)2

1
q2m ·

DZ[x]/f,σ,q(Q− PS mod q)2∑
p∈Zf(q)

Φ(f)
q (p)=P

1
f(q) · Pre←↩DZf(q),σ,q

(Φ(f)
q (ps+ e mod f(q)) = Q)

.

Looking at the denominator, since Φ(f)
q (P (q) mod f(q)) = P , we can bound the

sum from below by keeping only the term p = P (q) mod f(q). Also, for the
specific noise e := Q(q)− ps mod f(q), we have

Φ(f)
q (as+ e mod f(q)) = Φ(f)

q (Q(q) mod f(q)) = Q.

Then the denominator can be globally bounded from below by the probability
of getting this noise, which is DZf(q),σ,q(Q(q)− P (q)s mod f(q))/f(q). We get:

RP to IP ≤
∑

(P,Q)∈Zq [x]/f2

f(q)
q2m ·

DZ[x]/f,σ,q(Q− PS mod q)2

DZf(q),σ,q(Q(q)− P (q)s mod f(q)) .

We can distinguish three kinds of polynomial couples (P,Q), depending on the
value of (Q(q)−P (q)s mod f(q))m: either Φq(Q(q)−P (q)s mod f(q)) is trivially
reduced mod f , or it is reduced by adding +f or it is reduced by adding −f . We
thus get a partition of (Zq[x]/f)2. An easy way to take care of this distinction is
to bound our sum by splitting it over each partition and bounding each of them
by a sum over the whole space:

RP to IP ≤
∑

δ∈{−1,0,1}
(P,Q)∈(Zq [x]/f)2

f(q)
q2m ·

DZ[x]/f,σ,q(Q− PS)2

DZf(q),σ,q

(
(Φ(f)
q (Q(q)− P (q)s mod f(q)) + δ · f)(q)

) .
We look at the impact of this on the denominator. As in Lemma 9, we use the
notation C(P,Q) := Φ

(f)
q (Q(q)− P (q)s mod f(q))− (Q− PS). Recall that:

DZf(q),σ,q ((Q− PS + C(P,Q) + δ · f)(q)) =
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exp(−π‖Φ(f)
q (Q(q)− P (q)s mod f(q)) + δ · f‖2/σ2)

ρσ(Zf(q))
.

We have two different ratios to study.

• The first one is ρσ(Zf(q))/ρσ(Zq[x]/f).
• The second one is exp(−π(2‖Q− PS)‖2 − ‖Φ(f)

q (Q(q)− P (q)s) + δ · f‖2).

We start with the first one. By definition,

ρσ(Zf(q)) =
∑

P∈Φq(Zf(q))

exp
(
−π ‖P‖

2

σ2

)
=
∑

P∈Φq(Zf(q))
degP<m

exp
(
−π ‖P‖

2

σ2

)
+
∑

P∈Φq(Zf(q))
degP=m

exp
(
−π ‖P‖

2

σ2

)
.

We notice that the first sum, since Zq[x]/f ⊆ Φq(Zf(q)), is exactly ρσ(Zq[x]/f).
Moreover, since f is monic, if P ∈ Φq(Zf(q)) has degree m then |Pm| = 1. We
write ‖P‖2 = ‖(P − Pmxm)‖2 + 1. Since the degree of P − Pmxm is now < m,
it holds that {P − Pmx

m|P ∈ Φq(Zf(q)),deg(P ) = m ∧ Pm = i} ⊆ Zq[x]/f
for i ∈ {−1, 1}. Then the second sum is at most 2 exp(−π/σ2)ρσ(Zq[x]/f). We
then have:

ρσ(Zf(q)) ≤ (1 + 2 exp(−π/σ2))ρσ(Zq[x]/f)
≤ 3ρσ(Zq[x]/f).

Plugged into what we already have, we get:

RP to IP ≤ 3
∑

δ∈{−1,0,1}
(P,Q)∈(Zq [x]/f)2

f(q)
q2m ·

exp(−2π‖Q− PS mod q‖2/σ2)
ρσ(Zq[x]/f) exp(−π‖Q− PS + C(P,Q) + δ · f‖2/σ2) .

The analysis of C(P,Q) is exactly the one done in Lemma 9. We also recall the
identity:

2‖x‖2 − ‖x + y‖2 = ‖x− y‖2 − 2‖y‖2,

and we instantiate it with x = Q− PS mod q and y = C(P,Q) + δ · f .
Using Lemma 8, for fixed P and variable Q we see that we can split Zq[x]/f

into 9 intervals (as was remarked in the proof, in the case f(q) ≥ qm, i = 0
always holds). Over each of these intervals, the second result of Lemma 9 is
that Q 7→ Q−PS−C(P,Q) is an injective map in Zq[x]/f . By bounding each of
the 9 summations by a sum over Zq[x]/f , we can re-index the sum over Q ∈ Zf(q)
with R = Q− PS − C(P,Q) ∈ Zq[x]/f . Let

M := max
(P,Q,δ)∈(Zq [x]/f)2×{−1,0,1}

exp
(
−π ‖C(P,Q) + δf‖2

σ2

)
.

This gives us:

RP to IP ≤ 27M ·
∑

δ∈{−1,0,1}

∑
P,R∈(Zq [x]/f)2

f(q)
q2m

exp(−π‖R+ δf‖2/σ2)
ρσ(Zq[x]/f) .
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The sum does not depend on P anymore and instead of summing over P we can
multiply by qm. Also, notice that ‖R+δf‖2 = δ2+‖R+δ(f−xm)‖2. This gives the
bound RP to IP ≤ 27M ·

∑
δ∈{−1,0,1}

∑
T∈Zq [x]/f

f(q)
qm

exp(−δ2π/σ2) exp(−π‖T‖2/σ2)
ρσ(Zq [x]/f) ,

where the sum over T is actually exactly f(q)
qm exp(−δ2π/σ2) ≤ 2. We can now

get rid of the sum over δ. Finally, the bound is RP to IP ≤ 162 ·M . We only have
to bound M to conclude. Since ‖C(P,Q)‖∞ ≤ EF(f)(6 + ‖f‖1 + 2m‖S‖∞), we
have

‖C(P,Q) + δf‖2 = δ2 + ‖C(P,Q) + δ(f − xm)‖2

≤ δ2 + ‖C(P,Q) + δ(f − xm)‖2

≤ 1 +m‖C(P,Q)‖2∞ +m‖f‖2∞
≤ 3m‖C(P,Q)‖∞,

and this gives us the desired bound. ut

Proof of Theorem 4. Assume that there exists an adversary A with success
probability ε0 against the sPLWE(f)

q,σ,σ′,t game. We introduce a sequence of games
to prove the theorem:

Game 0: This is the genuine sPLWE(f)
q,σ,σ′,t game.

Game 1: In this game, we change the distribution of the secret. We sample
S ←↩ DZ[x]/f,σ′,σ′

√
m. Recall that the statistical distance between DZ[x]/f,σ′,q

and DZ[x]/f,σ′,σ′
√
m is 2−Ω(m).

Game 2: In this game we change the distribution of samples. They are now
sampled according to the process introduced in Lemma 13, where the integer
secret s is sampled according to DZf(q),σ′,

√
mσ′ and S := Φ

(f)
q (s).

Game 3: In this game, we change the distribution of the secret s. The secret
is now sampled according to DZf(q),σ′,q. Here also, the statistical distance
between the distribution of the secret in this game and the previous one is
2−Ω(m).

Call εi the success probability of A in Game i. From the remarks on sta-
tistical distance, it already holds that |ε0 − ε1| < 2−Ω(m) and |ε2 − ε3| <
2−Ω(m). In the context of Game 1 versus Game 2, by using the probability
preservation and multiplicativity of the Rényi divergence, it holds that ε2 ≥

ε2
1

R∞(D1||D2) max
S:‖S‖∞≤

√
mσ′

RtP to IP
, where D1 and D2 denotes the distribution of the

secret S in Game 1 and 2 respectively. Note that in D2, for a given polynomial
secret, there are at most three integers secrets si such that S = Φ

(f)
q (s). We can

bound the probability from below by keeping only s = S(q) ∈ If,q. We compute
the divergence.
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R∞(D1||D2) ≤ max
S∈Supp(D1)

DZ[x]/f,σ′,σ′
√
m(S)

DZf(q),σ′,σ′
√
m(S(q) mod f(q))

≤
ρσ′(Φq(If,q) ∩ Zσ′√m[x])

ρσ′(Supp(D1)) max
S∈Supp(D1)

exp(−π‖S‖2)/σ′2

exp(−π‖Φq(S(q))‖2/σ′2

≤
ρσ′(Φq(If,q) ∩ Zσ′√m[x])

ρσ′(Supp(D1)) .

Moreover, P ∈ Φq(If,q) ∩ Zσ′√m[x] has either degree < m and
then P ∈ Supp(D1) or degree = m and leading coefficient |Pm| = 1.
Then exp(−π‖P‖2/σ′2) = exp(−π/σ′2) exp(−π‖P − Pmx

m‖2/σ′2), where
now P −Pmxm ∈ Supp(D1). Since exp(−π/σ′2) ≤ 1, the divergence is at most 3.

This shows with our choice of parameters that the success probability loss is
at most polynomial in m when switching from Game 1 to Game 2.

Finally we build B an adversary against the sI-PLWE(f(q))
m,q,σ,σ′,t game. It suffices

to notice that B can exactly simulate A’s view in Game 3. Moreover, if A wins,
then its output S is such that S = Φ

(f)
q (s), where s is the secret that B has to

guess. Then B outputs uniformly s among the predecessors of S by the map Φ(f)
q .

Since this set is comprised of three or less integers, the probability of winning
of B is ≥ 1/3 times the advantage of A. Thus if A has non-negligible advantage,
so does B. ut

Proof of Lemma 14. Recall the different bounds ‖e′′‖∞ ≤ σ
√
m, ‖e′‖∞ ≤

σ
√
m and ‖s‖∞ ≤ σ′

√
m. Then we have the bound ‖e′′−e′·s‖∞ ≤ σ′

√
m+m2σ′2,

before the reduction modulo f(q).
Similarly to the expansion factor for polynomials, we introduce the quantity

IEF(f) := max
n∈Z,dlogq ne≤2m

‖Φq(n mod f(q))‖∞
‖Φq(n)‖∞

.

By the claim below, we have that IEF(f) ≤ 5mEF(f)‖f‖∞.
Define f ′ := (e′′ − e′ · s) mod f(q). We can write:

d = (K · f ′ mod f(q)) + (e · t mod f(q))− δf(q),

for some δ ∈ {−1, 0, 1} and ‖f ′‖∞ ≤ IEF(f)(
√
mσ′ +mσ′2). With our choice of

parameters and the previous claim, it holds that K · ‖f ′‖∞ < q/2: the multipli-
cation by K does not produce any carry.

We now study f ′′ := (K · f ′) mod f(q). We write:

Φq(f ′′) = KΦq(f ′) + Φq(−δf(q)) + c(a)(Kf ′, δf(q)),

where δ = Kf ′−f ′′
f(q) . We notice that since f ′ ∈ If,q, we have δ ≤ K, where K is

such that K‖f‖∞ < q/2. Then c(m)(δ,−f(q)) = 0. Moreover, since it also holds
that K(‖f ′‖∞ + ‖f‖∞) < q/2, the addition carries are 0. This gives us:

Φq(δ) = K · Φq(f ′)− Φq(f ′′)
f

.
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Only the terms with degree ≥ m matter in the numerator. Thus we have: δ =
Kf ′m − f ′′m. Then, we can write:

Φq(d) = Φq(e · t mod f(q)) + Φq(K · f ′ mod f(q))+

c(a)(et mod f(q), f ′′) + c(a)(f ′′ + (et mod f(q)),−δ′f(q))− δ′f.

With our choice of parameters, the carries c(a)(et mod f(q), f ′′) are 0 as it holds
that K‖f ′‖∞ + ‖e · t mod f(q)‖∞ ≤ IEF(f)(K(

√
mσ + mσ2) + mσσ′) < q/2.

Then adding K ·f ′ mod f(q) to e · t mod f(q) does not produce any carry. Recall
that δ′ ∈ {−1, 01}. Moreover, our choice of parameters is such that:

‖f ′′‖∞ + ‖e · t mod f(q)‖∞ + ‖f‖∞ ≤ q/2.

Then the second type of carries is 0 as well. Finally, we get:

Φq(d) = K (Φq(f ′)− f ′m · f) + (f ′′m − δ′)f + Φq(e · t mod f(q)).

We have that 2‖f‖∞+ ‖Φq(e · t mod f(q))‖∞ ≤ K/2. This gives us not only the
value of d′i = (f ′′m − δ′)fi + Φq(e · t mod f(q))i but also

d′ = (f ′′m − δ′)f(q) + (e · t mod f(q)).

ut

Claim. For any monic f ∈ Z[x], we have:

IEF(f) ≤ 5 deg(f) · EF(f) · ‖f‖∞.

Proof. Let m = deg(f). Let a ∈ Z with dlogq ae ≤ 2m, and ā ∈ If,q such that
ā = a mod f(q). We already know the following, where δ := a−ā

f(q) :

Φq(ā) = Φq(a)− Φq(δ)f + c(m)(δ,−f(q)) + c(a)(a,−δ · f(q)).

From this, we deduce a new expression for Φq(δ):

Φq(δ) = Φq(a)− Φq(ā) + c(m)(δ,−f(q)) + c(a)(a,−δf(q))
f

.

The next step consists in comparing Φq(ā) with Φ
(f)
q (a) = Φq(a) − δ′f ,

where δ′ = Φq(a)−Φ(f)
q (a)

f . We have:

Φq(ā) = Φ(f)
q (a) + (δ′ − Φq(δ))f + c(m)(δ,−f(q)) + c(a)(a,−δ · f(q)).

Every rational fraction can be expressed as the sum of a polynomial and
a proper rational fraction, where the numerator has smaller degree than the
denominator. We hence have:

δ′ =
⌊
Φq(a)
f

⌋
,
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as degΦ(f)
q (a) < deg f . Here the map b·c is over polynomials. Similarly, we have:

Φq(δ) = δ′ +
⌊
c(m)(δ,−f(q))

f

⌋
− ām − c(a)(a,−δf(q))m.

Moreover the last two terms belong to {−1, 0, 1}. We have:

c(m)(δ,−f(q))−
⌊
c(m)(δ,−f(q))

f

⌋
· f = c(m)(δ,−f(q)) mod f.

Then its infinite norm is at most EF(f) · ‖c(m)(δ,−f(q))‖∞. Combining every-
thing we have:

‖Φq(ā)‖∞ ≤ ‖Φ(f)
q (a)‖∞ + EF(f) · ‖f‖1 + 2‖f‖∞ + 1.

Finally by dividing by ‖a‖∞ ≥ 1 on both sides, we obtain the result:

IEF(f) ≤ 5mEF(f)‖f‖∞.

ut
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