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Abstract

We present the first homomorphic secret sharing (HSS) construction that simultaneously (1)
has negligible correctness error, (2) supports integers from an exponentially large range, and
(3) relies on an assumption not known to imply FHE — specifically, the Decisional Composite
Residuosity (DCR) assumption. This resolves an open question posed by Boyle, Gilboa, and
Ishai (Crypto 2016). Homomorphic secret sharing is analogous to fully-homomorphic encryption,
except the ciphertexts are shared across two non-colluding evaluators. Previous constructions
of HSS either had non-negligible correctness error and polynomial-size plaintext space or were
based on the stronger LWE assumption. We also present two applications of our technique: a
two server ORAM with constant bandwidth overhead, and a rate-1 trapdoor hash function with
negligible error rate.

1 Introduction

Homomorphic secret sharing is a relaxation of fully-homomorphic encryption (FHE) where the
ciphertexts are shared across two non-colluding evaluators, who may homomorphically evaluate
functions on their shares. In FHE, if c← Enc(x) then Hom(f, c) is an encryption of f(x). In HSS,
if s0, s1 ← Share(x) then Hom(f, s1) and Hom(f, s0) (computed independently) are a sharing of
f(x).

Boyle, Gilboa, and Ishai [BGI16] initiated the line of work on secure computation from HSS
with a construction based on the Decisional Diffie–Hellman (DDH) assumption. They used their
scheme to achieve the first secure two-party computation protocol with sublinear communication
from an assumption not known to imply FHE. Though their HSS only supports restricted multipli-
cation straight-line (RMS) programs, this is enough at least to evaluate polynomial-size branching
programs. All known HSS constructions (including ours) that aren’t based on FHE have this same
limitation.

The HSS of [BGI16] has two main limitations. First, it achieves correctness with probability
only 1− p (for p = 1/poly). Second, it can only support a message space of polynomial size M , as
it requires O(M/p) time for a step they call “share conversion”. [FGJS17] constructed a similar
HSS scheme based on Paillier encryption (from the DCR assumption), with the same limitations
and O(M/p)-time share conversion technique. The cost of share conversion was later improved
to O(

√
M/p) by [DKK18], which they proved is optimal for these schemes unless faster interval

discrete logarithm algorithms are found.
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These limitations were eventually removed by [BKS19], using lattice-based cryptography. Their
scheme is based the Learning With Errors (LWE) assumption, and achieves homomorphic secret
sharing with exponentially small correctness error and exponentially large plaintext space. The
LWE assumption is strong enough to construct FHE [BV11], although their HSS scheme uses
simpler techniques and can be more efficient than FHE.

Why is correctness error important? Besides the theoretical distinction, it increases the overhead
for secure computation: the 2PC protocol of [BGI16] needs to repeat homomorphic evaluation
polynomially many times and take a majority vote (using another MPC protocol) on the outcome.
Longer programs have higher chance for error, as if any operation errors then the whole computation
will fail. Consequently, when evaluating an n-step program on plaintexts bounded by M , they
require O(Mn2) time to get a constant error rate (or O(Mn2t) time after repeating for O(t) tries
to get a negligible error rate of 2−t). The reduced error rate from [DKK18] allows this to be
improved to O(M1/2n3/2). Ideally, we would want the computation cost of a 2PC protocol to be
linear in n.

Supporting exponentially large plaintext space can also improve the 2PC protocol’s computa-
tional complexity, because it is necessary to represent the HSS scheme’s key inside of its messages.
[BGI16] manage this by taking the bit-decomposition of the key, though this multiplies the compu-
tational cost by the key size. When M can be exponentially large, however, the key can directly fit
inside the plaintext space. Additionally, computations can be performed on large chunks of data
at a time, further improving efficiency. Finally, there may be some computations that can only be
performed with the larger message space bound. Specifically, RMS programs with a polynomial
bound on memory values are sufficient to evaluate branching programs [BGI16], while with a large
enough message space algebraic branching programs over Z can be evaluated.

The question of whether negligible correctness error could be achieved from an assumption not
known to imply FHE was left as an open problem by [BGI16].1

1.1 Our Results

We give an affirmative answer this open question. We construct an HSS scheme based on Damg̊ard–
Jurik encryption (under the DCR assumption) that achieves negligible correctness error and expo-
nentially large message space. When our HSS is used for 2PC, there is no need for repeated HSS
evaluation to amplify correctness. We can therefore securely evaluate n-step RMS programs in O(n)
time. Previous constructions required a polynomial bound on the size of the values in the RMS
computation, while our construction natively supports arithmetic operations over exponentially
large values.

The main insight in our construction is to define a new “distance function”, the key step used
for share conversion in HSS schemes. Ours is based on the algebraic properties of the ciphertext
group (Z/N s+1Z)×, while existing distance functions use the generic technique of searching for a
randomly chosen subset of ciphertexts. This allows us to extract an exponentially large result from
our distance function, and achieve share conversion with a negligible error rate.

We also present several other applications of our new result and techniques:

ORAM. We propose a novel 2-server malicious secure Oblivious RAM (ORAM) protocol that
achieves constant bandwidth. An ORAM protocol allows the client to hide its access pattern on
a database outsourced to untrusted server(s). Our protocol is closely based on the single server
Onion ORAM protocol [DvDF+16], which leverages server side computation to achieve constant

1A concurrent work [OSY21] has also independently solved this problem.
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bandwidth blowup. We replace this server side computation with a number of RMS programs,
which can be evaluated by the two servers using our HSS scheme.

While there already exist multi-server ORAM constructions with constant client-server band-
width overhead (e.g., [DvDF+16, FNR+15, HOY+17]), they all require either super-constant server-
server communication or a minimum block size of Ω(log6N), where N is the number of blocks in
the ORAM. Whereas, our HSS based 2-server ORAM achieves constant bandwidth for block of size
ω(log4N) and with no server-server communication.

Trapdoor hash functions. Beyond HSS, another construction based on the notion of a distance
function is trapdoor hash functions (TDH) [DGI+19]. Rate-1 TDHs are a kind of hash function
that have additional properties useful for two-party computation. Specifically, if Alice has some f
in a limited class of predicates and Bob has a message x, if Bob sends the hash of x and Alice sends
a key generated based on f , they can each compute a single-bit share of f(x). [DGI+19] use rate-1
TDHs to build rate-1 string oblivious transfer (OT), from which they construct efficient private
information retrieval and semi-compact homomorphic encryption. They also present several other
constructions based on TDHs.

Prior work [DGI+19] constructed rate-1 TDHs from a variety of assumptions (DDH, QR, DCR,
and LWE), but only their QR and LWE instantiations achieve negligible correctness error. For
DDH and DCR, they had to compensate by using error correcting codes in their construction of
rate-1 string OT. We can directly construct a rate-1 trapdoor hash function from DCR using our
distance function, achieving negligible correctness error. Our construction also generalizes beyond
TDHs, in that it can handle functions f outputting more than a single bit.

HSS definition. We extend the definition of HSS to allow (generalized, to represent RMS oper-
ations) circuits to be evaluated one gate at a time. One benefit of this approach is that it allows
secure evaluation of online algorithms, which may take input and produce output many times,
while maintaining some secret state. The function to evaluate may be chosen adaptively based
on previous outputs or shares. We also define malicious security of HSS, in the form of share
authentication. These definitions are directly useful for our application to ORAM.

1.2 Technical Overview

Introduction to HSS. HSS schemes work through the interaction of two different homomorphic
schemes: additively homomorphic encryption and additive secret sharing. Following the notation
of [BGI16], let [[x]] denote an encryption of x. Let 〈y〉 denote additive shares of y, meaning that
party 0 has 〈y〉0 and party 1 has 〈y〉1 such that 〈y〉1 − 〈y〉0 = y. Then 〈x〉 + 〈y〉 ≡ 〈x + y〉,
where ≡ means shares that decode to the same value, or ciphertexts that decrypt to the same
plaintext. We will write the group operation on the homomorphic encryption multiplicatively, so
[[x]][[y]] ≡ [[x + y]]. Any additively homomorphic encryption supports multiplication by constants,
so we have [[x]]c ≡ [[cx]].

We have two different additively homomorphic schemes; what happens if we let them interact?
If the parties compute [[x]]〈y〉, they get ⟪[[xy]]⟫, where ⟪z⟫ denotes multiplicative shares of z. More
precisely, party i has ⟪[[x]]y⟫i = [[x]]〈y〉i , and ⟪[[x]]y⟫1/⟪[[x]]y⟫0 = [[x]]〈y〉1−〈y〉0 ≡ [[xy]]. What’s
interesting here is that by combining the two encryption schemes we get a representation of the
product. That is, we have a bilinear map. However, we would really like to be able to perform
multiple operations in sequence. Is there any way we could make the result instead be 〈xy〉?

Luckily, many additively homomorphic encryption schemes perform decryption through expo-
nentiation, the same operation as was used for homomorphically multiplying by a constant. For
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Paillier, decryption is φ−1([[z]]ϕ) = z, where φ(z) = 1+Nϕz is a homomorphism from the plaintext
space to the ciphertext space, and N and ϕ are the public and private keys. Therefore, if we have
shares 〈ϕy〉 then we can compute [[x]]〈ϕy〉 ≡ ⟪φ(x)y⟫ ≡ ⟪φ(xy)⟫. For ElGamal, the decryption of
a ciphertext [[z]] = (A,B) is φ−1(A−kB), where φ(z) = gz for a public generator g. Again, φ is a
homomorphism from the plaintext space. This is slightly more complicated in that it’s taking a
dot product “in the exponent” with the private key vector ~k = [−k 1], but if we take the secret
shares to be vectors 〈~ky〉 then still we have [[x]]〈

~ky〉 ≡ ⟪φ(x)y⟫ ≡ ⟪φ(xy)⟫.
The last step of decryption for both schemes is to compute φ−1. For HSS we need to do

the same, but on the multiplicative shares ⟪φ(z)⟫ split across the two parties performing HSS.
This is done with a distance function, with the property that Dist(aφ(z)) − Dist(a) = z, ideally
for any ciphertext a and plaintext z. Then Dist(⟪φ(xy)⟫i) ≡ 〈xy〉i gives additive shares of the
multiplication result. The idea from [BGI16] for constructing Dist is that both parties agree on a
common set of “special points”, which they choose randomly. They iteratively compute aφ(−1)j ,
starting at j = 0 and continuing until c = aφ(−1)j is special, then set Dist(a) to be the distance j.
If they find the same special point c,

Dist(aφ(z))−Dist(a) = Dist(cφ(j + z))−Dist(cφ(j)) = j + z − j = z,

so their distances are additive shares of z. When the special points are chosen randomly and z is
small, Dist(aφ(z)) and Dist(a) will usually pick the same c.

Putting this all together, HSS consists of a way of homomorphically multiplying a ciphertext
[[x]] by a share 〈y〉, or rather 〈ky〉 for some private key k, to get ⟪φ(xy)⟫, then finally using a
distance function to find 〈xy〉. A circularly secure encryption scheme allows ky to be encrypted, so
then Dist

(
[[ky]]kx

)
≡ 〈kxy〉, which can feed the input of another multiplication operation, and so

on.

Paillier distance function. We now present a simplified version of our main HSS construction.
It uses a variant of Paillier encryption, where instead of encrypting messages as rN (1+Nz) mod N2

for public keyN and uniformly random r, it encrypts them as rN
3
(1+N2z) mod N4. This is to allow

the plaintext size to be bigger than the private key. We have
(
rN

3
(1 +N2z)

)ϕ
= 1+N2ϕz = φ(z).

To find φ−1(a), compute (a−1)/N2, as a−1 must be a multiple ofN2, then multiply by ϕ−1 mod N2.
It turns out that we can design a distance function that is based on this φ−1. A prior construction

of HSS from Paillier encryption, [FGJS17], had a minor optimization based on ⟪φ(z)⟫1 = ⟪φ(z)⟫0

mod N2, since ⟪φ(z)⟫1/⟪φ(z)⟫0 = φ(z) = 1 + N2ϕz. Therefore both parties will have something
in common, and they can use it as their common point c = ⟪φ(z)⟫0 mod N2 = ⟪φ(z)⟫1 mod N2.
On input a, let the distance function pick a canonical representative c = a mod N2 ∈ [−N−1

2 , N−1
2 ].

Then a/c = 1 + N2w, and we let Dist(a) = w. This means that our “special points” are
[−N−1

2 , N−1
2 ], instead of a random set like [BGI16]. We then have Dist(aφ(z)) − Dist(a) = ϕz,

because aφ(z)/c = (1 + N2ϕz)(1 + N2w) = 1 + N2(ϕz + w). This is a slightly different property
than what we specified for distance functions, but it is actually even better as we don’t need to
use circularly secure encryption to get 〈ϕxy〉 as the result of multiplication — ϕ will already be
multiplied in the output.

However, there’s one last step before we have an HSS. The result from Dist will be in the form
of additive shares modulo N2, and we need them to be additive shares in Z so that we can use
them as an exponent in the next operation. Exponentiating to a power that is modulo N2 would
not make sense, as the multiplicative order of almost any ciphertext does not divide N2. We use
a trick from the LWE HSS construction: additive shares modulo N2 of a value z much smaller
than N2 (so |z|/N2 is negligible) have overwhelming probability of being additive shares over Z,
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without any modulus. Therefore we can make a distance function that has only negligible failure
probability and supports an exponentially large bound on the plaintext.

1.3 Other Related Work

We compare our proposed ORAM construction to Onion ORAM [DvDF+16], which is also based
on the Damg̊ard–Jurik public-key encryption. To ensure malicious security and achieve constant
bandwidth overhead, the scheme allows for blocks of size ω̃(log6N), with Õ(B log4N) client com-
putation and ω̃(B log4N) server computation. For comparison, our proposed ORAM construction
allows for blocks of size ω̃(log4N), with Õ(B log4N) client computation and Õ(B log5N) server
computation. To ensure the integrity of server side storage, Onion ORAM uses a verification al-
gorithm that relies on probabilistic checking and error correcting codes. This integrity check adds
an overhead to the communication and computation. In our protocol we get this verification check
“for free”, as the HSS shares held by the two servers satisfy the authenticated property — which
ensures that a single corrupt server cannot modify its share without it being detected by the client
during the decoding process. This gives major savings in our protocol’s communication and client
side computation compared to Onion ORAM.

Bucket ORAM proposed by Fletcher et al. [FNR+15] proposes a single server ORAM with
constant bandwidth overhead for blocks of size Ω̃(log6N). It’s a constant round protocol, but
asymptotically its client and server computation match that of Onion ORAM. S3ORAM [HOY+17]
proposes a multi-server ORAM construction with constant client-server bandwidth overhead. It
avoid the evaluation of homomorphic operations on the server side and is based on Shamir Secret
Sharing. However, this protocol incurs O(logN) overhead in server-server communication, which
makes the overall communication overhead logarithmic. Another interesting work on designing
2-server ORAMs optimized for secure computation is due to Doerner and Shelat [DS17]. Their
construction is based on the notion of function secret sharing, which is closely related to HSS.
However, it also incurs an O(logN) server-server communication overhead.

1.4 Concurrent Result

A concurrent and independent work [OSY21] also constructs an HSS from the DCR assumption
and achieves negligible correctness error for an exponentially large plaintext space. Qualitatively,
our distance function, which is the main construction we base our results on, matches theirs. There
are two main aspects in which our work improves on theirs.

We use Damg̊ard–Jurik encryption, which allows the plaintext space to be significantly larger
than the whole private key. OSY instead uses Paillier encryption. They consequently have to
split their private key into chunks, requiring either a circular security assumption or a provably
circular secure encryption scheme. OSY needs to use around 6 chunks, assuming circular security,
or Θ(log(N)) without. While our ciphertexts are somewhat bigger, we only need a single ciphertext
for an input to our HSS scheme. We therefore have either a constant or Θ(`(κ)) speedup in both
computation and communication relative to OSY’s HSS scheme, depending on the assumption.
While their scheme more naturally supports additive decoding, a variant of our scheme also has
this property.

We also give novel HSS definitions and proofs that support running online algorithms, and adap-
tively choosing functions to evaluate based on previous ciphertexts. We define authenticated HSS,
and prove that our construction is authenticated, allowing its use in maliciously secure protocols
such as our ORAM.
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We also explore completely different applications: we construct 2-server oblivious RAM (ORAM)
with constant overhead and rate-1 trapdoor hash functions (TDH), while OSY instead build pseu-
dorandom correlation generators/functions (PCG/PCF). A key feature of their PCGs and PCFs is
“public-key setup”, which allows two parties who know each other’s public keys to non-interactively
compute the setup for HSS. They build this using Paillier–ElGamal encryption; we use a similar
technique to construct our TDH, though we avoid the need for picking N to be the product of safe
primes, making key generation faster.

2 Preliminaries

2.1 Notation

Modular arithmetic. Let Z/NZ be the ring of integers modulo N and (Z/NZ)+ be its additive
group. Let (Z/NZ)× be the multiplicative group of all units x of Z/NZ, i.e. all x coprime to
N . Normally multiplication of x̄ = x + NZ ∈ Z/NZ by some integer K ∈ Z will just be Kx̄ =
Kx + NZ ∈ Z/NZ; however, we overload this to mean Kx + KNZ ∈ Z/KNZ as well. We
will notate the quotient map from Z/KNZ to Z/NZ as · + NZ, or omit it when it is clear from
context. To say that two values a and b are the same modulo N , i.e., that a + NZ = b + NZ, we
write a ≡N b. For modulus we assume round to nearest, so · mod N : Z/NZ → [−N

2 ,
N
2 ) ∩ Z and

x = (x mod N) +NZ for all x.

Algorithm notation. We write our constructions in pseudocode. While the notation should
be mostly self-explanatory, there are a few things to take note of. The boolean AND and OR
operations are ∧ and ∨, and the compliment of a bit b is b = 1− b. We give equality testing its own

symbol,
?
=, so x

?
= y is 1 if x = y, and 0 otherwise. Assignment statements are written as x := 1,

while sampling is written as x ← {0, 1}, to indicate that x is uniformly random in the set {0, 1}.
We use ρ ← $ to represent sampling a uniformly random bit stream ρ. This notation also applies
to subroutine calls, so if f is deterministic then the notation is y := f(x), but if f is randomized
then it is y ← f(x).

We will also write our definitions in pseudocode, expressing our security properties as indistin-
guishability of two randomized algorithms. Often the adversary A gets to choose some x partway
through a randomized algorithm. To preserve the adversary’s state and give it to the distinguisher
we use (view, x) ← A and return view from the distribution along with everything else. This way
A can put its state in view and the distinguisher will see it.

2.2 Damg̊ard–Jurik Encryption

Our construction is based on the Damg̊ard–Jurik public-key encryption scheme [DJ01], a general-
ization of Paillier encryption [Pai99]. At a high level, the plaintexts of Damg̊ard–Jurik are members
of an additive group (Z/N sZ)+. Encryption applies an isomorphism exp from (Z/N sZ)+ to a sub-
group of (Z/N s+1Z)×, then hides the plaintext by multiplying by a random perfect power of N s

in (Z/N s+1Z)×. Decryption uses the private key to cancel out this random value, then applies
log, the inverse of exp. This requires that the discrete logarithm be efficiently computable for the
subgroup.

This is possible by taking advantage of N being nilpotent in Z/N s+1Z. Power series in N can
have at most s+ 1 nonzero terms because N s+1 ≡Ns+1 0, allowing us to use the usual Taylor series
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for eNx and 1
N ln(x) to define exp(x) and log(x).

exp(x) =
s∑

k=0

(Nx)k

k!
log(1 +Nx) =

s∑
k=1

(−N)k−1xk

k
.

exp is an isomorphism from (Z/N sZ)+ to 1 + N(Z/N s+1Z), the subgroup consisting of all u ∈
(Z/N s+1Z)× such that u ≡N 1. Specifically, exp and log are inverse functions and exp(x + y) =
exp(x) exp(y) (see Appendix A.1). These functions are sufficient to define Damg̊ard–Jurik encryp-
tion.

Definition 1. Given a security parameter κ and a message size s, define the Damg̊ard–Jurik
encryption scheme as follows.2

(N,ϕ)← DJ.KeyGen(1κ): Generate an RSA modulus N = pq where 2`(κ)−1 < p, q < 2`(κ), and ` is
a polynomial chosen to make the scheme achieve κ-bit security. Let the public key be N and
the private key be ϕ = ϕ(N), where ϕ(N) = (p− 1)(q − 1) is Euler’s totient function.

c← DJ.EncN,s(x): Given x ∈ Z/N sZ, choose a uniformly random r ∈ (Z/N s+1Z)× and output
c = rN

s
exp(x).

x := DJ.DecN,s,ϕ(c): Given c ∈ (Z/N s+1Z)×, output x = 1
ϕ log(cϕ) ∈ Z/N sZ.

Encryption is clearly additively homomorphic, since rN
s

1 rN
s

2 exp(x) exp(y) = (r1r2)N
s

exp(x+y).
Decryption is well defined because cϕ ≡N 1 by Euler’s theorem, and because p − 1 and q − 1
are each coprime to N since p and q have the same bit length. The order of (Z/N s+1Z)× is
ϕ(N s+1) = ps(p− 1)qs(q − 1) = ϕN s, so log(cϕ) = log(rϕN

s
exp(x)ϕ) = log(exp(ϕx)) = ϕx, which

implies the correctness of decryption.
The security of this encryption scheme is based on the decisional composite residuosity assump-

tion (DCR).

Definition 2. The decisional composite residuosity (DCR) assumption is that the uniform distri-
bution on (Z/N2Z)× is indistinguishable from the uniform distribution on the subgroup of perfect
powers of N in (Z/N2Z)×.

We will not use the assumption directly, as it will be more convenient use the CPA security of
Damg̊ard–Jurik encryption as the basis for our security proofs.

Theorem 3 (Damg̊ard and Jurik [DJ01, Thm. 1]). Damg̊ard–Jurik encryption is CPA secure if
and only if the DCR assumption holds. That is, the oracles Oi,N,s(x0, x1) = DJ.EncN,s(N, xi) for
i ∈ {0, 1} must be indistinguishable, meaning that for any PPT A the following probability must be
negligibly different between the two values of i.

Pr[(N,ϕ)← DJ.KeyGen(1κ); AOi,N,s(N) = 1]

2.3 Universal Hashing

In our ORAM construction we will assume a family of hash function H = {h : U → [m]}, which
satisfied the uniform difference property, which states: for any two unequal x, y ∈ U , the number
(h(x)− h(y)) mod m is uniformly random over all hash functions h ∈ H.

2Damg̊ard–Jurik was originally defined using exp(x) = (1 + N)x, which required log to use Hensel lifting. We
instead chose to use Taylor series because it simplifies the description of log, and only require O(s) additions and
multiplications to evaluate with Horner’s rule, while the Hensel lifting algorithm took O(s2) arithmetic operations.
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select(b, x0, x1):

v := b(x1 − x0)
w := v + x0

return w

(a) As an RMS program

+ × +×−1

x1
xb

x0

b

(b) As an RM circuit

Figure 1: The selection function xb represented as an RMS program (left, Definition 4) and a RM
circuit (right, Definition 8). In the RM circuit, dashed wires (wire type IN) correspond to inputs
in an RMS program, while solid wires (wire type REG) correspond to registers.

3 Circuit Homomorphic Secret Sharing

In this section we present a definition of homomorphic secret sharing (HSS) based on evaluating
(generalized) circuits. We first present a notion of circuit that is general enough to capture the
operations that our HSS scheme can perform, Restricted Multiplication Straight-line programs.
Then we define a notion of HSS based on replacing each gate in a circuit with an operation that
works on shares. We will only need to specify properties of a single gate at a time; these properties
compose to become secure evaluation of a whole circuit.

The benefits of this approach are threefold. The piecewise definition allows the evaluation of
online algorithms, where some output may need to be produced before the rest of the inputs can be
taken, with state maintained throughout. It also allows the circuit to be chosen adaptively, based
on previous outputs or even shares. Finally, it simplifies the proof of our HSS construction to be
able to prove properties of individual gates and have them compose.

3.1 Restricted Multiplication Circuits

First, we give a definition for restricted multiplication straight-line programs, which were first
defined in [Cle90]. We give a slight generalization however, allowing inputs to be added together
before multiplication with a register. Polynomially sized RMS programs under the new definition
could still be written in polynomial size in the traditional definition by applying the distributive
property, but this may multiply the number of steps by n.

Definition 4. A Restricted Multiplication Straight-line (RMS) program over a ring K is a sequen-
tial program taking with inputs x1, . . . , xn ∈ K and registers z1, . . ., where the outputs are a subset
of the registers. Each instruction must take the form

zk := (A0 +
∑
i≤n

Aixi)(B0 +
∑
i<k

Bizi),

for some constants A0, . . . , AN , B0, · · ·Bk−1.

For convenience we take the first n registers to be the inputs, to avoid explicitly writing out a
conversion like z1 := 1; zi+1 := xiz1. An example of an RMS program is shown in Figure 1a. We
want to define a kind of circuit that captures the allowed operations in RMS programs. In an RMS
program there are two types of values: inputs and registers. This suggests defining circuits with
two types of wire, called IN and REG. The circuit for the example is shown in Figure 1b, where IN
wires are drawn with a dashed line, and REG wires are drawn with a solid line. Gates representing
linear operations (addition and multiplication-by-constant) are allowed for either type of wire, and
both wire types allow sources for the value 1. However, multiplication is only allowed between the
IN wire type and the REG wire type, and must always produce a REG wire.
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Run(f, s, x):

(nodes,wires, inputs, outputs, type, gate) := f
(values, eval) := s
for v ∈ nodes \ inputs in topological order:
u := empty list
for e ∈ wires in sorted order:

if (w, v) = e: append w to u
xv := eval(gate(g))(xu[1], xu[2], . . . , xu[|u|])

return {xv}v∈outputs

Figure 2: Algorithm for evaluating a circuit f with a semantics s. The circuit and the semantics
must share the same circuit prototype.

Typed circuits. To make this formal, we need to define circuits with multiple types of wire.
First we define circuit prototypes, which specify what types of wires and gates are allowed, then
we define circuits for a given prototype.

Definition 5. A circuit prototype (types, gates, in, out) consists of a set types ⊆ {0, 1}∗ of wire types
and a set gates ⊆ {0, 1}∗ of gate types, together with maps in : gates→ types∗ and out : gates→ types
assigning to each gate type the wire types of its inputs and output.

Definition 6. A typed circuit (nodes,wires, inputs, outputs, type, gate) for a circuit prototype (types,
gates, in, out) consists of a) a directed acyclic graph (nodes,wires), b) a total order on wires, c) sub-
sets inputs, outputs ⊆ nodes, d) a node labeling type : nodes → types, and e) a non-input node
labeling gate : nodes \ inputs → gates. A non-input node is called a gate. We require the circuit
to be well-formed: for any gate v, type(v) = out

(
gate(v)

)
, and if (v1, v), (v2, v), . . . , (vn, v) are v’s

incoming wires in sorted order, type(v1) type(v2) · · · type(vn) = in
(
gate(v)

)
.

Note that in the above definition we followed the more common practice of only using single
output gates and letting fan-out be an implicit operation represented by a gate having multiple
outgoing edges. A more general definition would allow gates with multiple outputs and disallow
implicit fanout, so that fanout can be controlled by what gates are allowed. The simplified definition
is enough for our application, but e.g. quantum circuits would be better represented by a more
general definition.

We would like to evaluate typed circuits, just like any other kind of circuit. To do this, we to
need a semantics to define what each gate does.

Definition 7. A semantics (values, eval) for a circuit prototype (types, gates, in, out) assigns each
wire type w ∈ types a set of values values(w), and assigns each gate type g ∈ gates a function
eval(g) : values(w1)× values(w2)× · · ·× values(wn)→ values

(
out(g)

)
, where w1w2 · · ·wn = in(g) are

the input wire types of the gate.

We can evaluate a typed circuit using a semantics. Given values xv ∈ values(type(v)) for all
circuit inputs v ∈ inputs, the evaluation proceeds in topological order. The inputs of each gate
are its incoming wires, and the input order is given by the total order on the edges. Every gate
g ∈ nodes \ inputs gets evaluated as xg = eval(gate(g))(xv1 , xv2 , . . . , xvn) where (v1, g), (v2, g), . . . ,
(vn, g) ∈ wires are the incoming wires of g in sorted order. The outputs are then xv for v ∈ outputs.
See Figure 2 for the formal algorithm.

9



+
×

×
φ

x1

x2

y1

y2

~x · ~y

Figure 3: A bounded RM circuit for computing the dot product of a pair of two element vectors.
The new wire type MUL is drawn with a line, and the new conversion operation φ with a triangle.

Restricted multiplication (RM) circuits. We can now define restricted multiplication circuits
using the above definitions.

Definition 8. The RM circuit prototype over a ring K has wire types types = {IN,REG}, gate
types for constants and linear operations {1IN, 1REG,+IN,+REG,×IN c,×REG c} for all c ∈ K, and a
single nonlinear multiplication operation × : IN× REG→ REG. An RM circuit is a circuit for this
circuit prototype.

An RM circuit can be evaluated just like an RMS program.

Definition 9. The evaluation semantics for RM circuits over K has values(IN) = values(REG) = K
and performs each gate operation in the ring K.

However, this is not the only semantics assigned to RM programs. In fact, our HSS definition is
based on the idea of giving multiple different semantics to the same circuit: one for the plaintexts
and one for the shares. The latter define what shares are and how homomorphic operations are
evaluated on them.

Bounded RM circuits. Unfortunately, our construction will not be capable of evaluating all
RM circuits. Similarly to [BGI16], we have a share conversion step that only works for values of
bounded size. This conversion step is normally done on the output of every multiplication, but it
can be delayed until after further linear operations. We generalize RM circuits with another wire
type to represent unconverted values.

Definition 10. The bounded RM circuit prototype over a ring R has wire types types = {IN,REG,MUL}
and gate types for a) the constant 1 for all wire types, b) linear operations for all wire types, c) a
multiplication operation × : IN× REG → MUL, and d) a conversion operation φ : MUL → REG. A
bounded RM circuit is a circuit for this circuit prototype.

An example of this new kind of circuit is illustrated in Figure 3.

Definition 11. The evaluation semantics for bounded RM circuits over K, given a bound M ⊆ K,
sets values(IN) = values(REG) = values(MUL) = K ∪ {⊥} and assigns the usual operations in K for
linear operations and multiplication. eval(φ)(x) is x if x ∈ M , or ⊥ otherwise. ⊥ is an absorbing
element for all operations, so if any input is ⊥ then the output is ⊥.

The value ⊥ allows the circuit evaluation to fail if the input to the conversion operation isn’t
bounded. This idea is generalized by the following definition.

Definition 12. A semantics (values, eval) is called a failure semantics if, for all wire types w ∈
types, there is a special value ⊥ ∈ values(w) called failure that is absorbing for all functions in
eval(gates). That is, for any g ∈ gates, eval(g)(. . . ,⊥, . . .) = ⊥, no matter what the other arguments
are.

The evaluation semantics of bounded RM circuits is a failure semantics.

10



3.2 Homomorphic Secret Sharing

Instead of taking a whole circuit to evaluate at once, our two-server HSS definition works piecemeal,
by assigning three different semantics to the same circuit prototype. The first semantics is the usual
one that works over the plaintexts, while the other two define, for each of the two servers, the what
values the shares may take and how homomorphic operations may be computed on them. In a sense,
these share semantics define compilers that turn the circuit into something that can be evaluated
on shares, one gate at a time. The idea is that if we require that the plaintext semantics and
share semantics be compatible with each other in a certain way, it implies that the homomorphic
operations correctly evaluate the circuit to the sames result as if it were evaluated on the plaintext.

In our construction we are using Damg̊ard–Jurik encryption, so K will be Z/N sZ, which depends
on the public key N and cannot be fixed in advance. This means that the operations we can perform
have to be sampled randomly, at the same time as the public key, even though it is more usual to
define homomorphic secret sharing in terms of some fixed operations (see e.g. [BGI+17]). Therefore,
the plaintext evaluation will depend on the public key. We give the homomorphic operations access
to shares of the secret key as well, as some of our operations (such as getting shares of 1) will
depend on them.

Definition 13. A (1 − p)-correct two-server Homomorphic Secret Sharing (HSS) scheme with
public-key setup consists of PPT algorithms:

• (pk, sk0, sk1) ← Setup(1κ) outputs the keys and the circuit prototype, where κ is the security
parameter.

• ((types, gates, in, out), (values, eval)) := Eval(pk) gives the circuit prototype and the plaintext
evaluation semantics. This must be a failure semantics.

• (valuesj , evalj) := Hom(j, pk, skj) outputs the homomorphic evaluation semantics for server j,
except that evalj takes an extra argument r, which is a stream of random coins.

• (s0, s1) ← Share(pk, sk0, sk1, w, x), given a wire type w ∈ types and a value x ∈ values(w),
outputs shares sj ∈ valuesj(w).

• y ← Decode(pk, sk0, sk1, w, s0, s1) decodes an output y ∈ values(w) from shares sj ∈ valuesj(w),
where w ∈ types.

The following conditions are imposed.

• Correctness: Running Decode on the shares from Share must output the original input x when
x is not failure. More precisely, the following distribution outputs true with probability at
least 1− p, for any PPT adversary A.

(pk, sk0, sk1)← Setup(1κ)
(w, x)← A(pk, sk0, sk1)
(s0, s1)← Share(pk, sk0, sk1, w, x)
y ← Decode(pk, sk0, sk1, w, s0, s1)

return x
?
= y ∨ x ?

= ⊥

• Homomorphism: The semantics must commute with Decode. That is, the following distribu-
tions are indistinguishable except with advantage p, for any PPT adversary A such that the
first distribution never returns ⊥.
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(pk, sk0, sk1)← Setup(1κ)
(proto, (values, eval)) := Eval(pk)
(view, g, {(si0, si1)}i)← A(pk, sk0, sk1)
r ← $
for i := 1 to n:
xi ← Decode(pk, sk0, sk1, in(g)i, si0, si1)

y := eval(g)(x1, . . . , xn)
return view, r, y

(pk, sk0, sk1)← Setup(1κ)
(proto, (values, eval)) := Eval(pk)
(view, g, {(si0, si1)}i)← A(pk, sk0, sk1)
r ← $
(valuesj , evalj) := Hom(j, pk, skj),∀j ∈ {0, 1}
s′j := evalj(g, r)(s1, . . . , sn),∀j ∈ {0, 1}
y ← Decode(pk, sk0, sk1, out(g), s′0, s

′
1)

return view, r, y

• Privacy: Share must give each server no information about x. More precisely, we need the
oracles O0,pk,sk0,sk1 and O1,pk,sk0,sk1 to be indistinguishable, for any PPT adversary A and any
compromised server j ∈ {0, 1}.

Oi,pk,sk0,sk1(w, x0, x1):

(s0, s1)← Share(pk, sk0, sk1, w, xi)
return sj

Formally, Pr[(pk, sk0, sk1) ← Setup(1κ); AOi,pk,sk0,sk1 (pk, skj) = 1] must be negligibly different
between i = 0 and i = 1.

There are some important differences from the existing HSS definition such as [BGI+17]. In
order to split the evaluation up into gates, we give a definition of homomorphism correctness
that works on individual gates. We cannot simply use their definition for each gate, because their
correctness property assumes that the shares input to Eval come directly from Share, not from other
homomorphic operations. By allowing the shares to be chosen adversarially, we can accurately
model online computation, where the adversary may dynamically choose what to evaluate based
on the shares and keys.

However, HSS is not 100% correct. What’s to stop the adversary from choosing shares (or even
a sequence of gates that would generate those shares) that cause the HSS to fail? In [BGI16] this is
solved by sampling a PRF provided to both parties, as part of Share, and using it to randomize the
conversion operation. This works since the circuit is chosen before the shares. But our adversary
gets to choose the shares, so we have to explicitly introduce into the homomorphism property a
stream of randomness r that is sampled after the input shares have been determined. It could be
instantiated with a shared PRG, reseeded whenever the circuit might be chosen adaptively based
on the previous seed. If it were necessary to somehow adaptively change the circuit without using
any communication at all, a random oracle evaluated on a description of the current gate and where
the input shares came from would be an alternative.

For compatibility with existing constructions of HSS, we include an error probability p in our
definition, even though in our HSS scheme p is negligible. The DDH-based construction of [BGI16]
satisfies our definition with p = 1

poly(κ) . We do not prove this, but it should become clear that the
same techniques we use to prove that our HSS scheme satisfies the definition would also work when
applied to theirs. The LWE-based construction of [BKS19] should also work — this time with p a
negligible function of κ.

The homomorphism property requires that decoding then performing a plaintext operation
must work the same as doing the operation homomorphically, then decoding.3 Why not go the

3This structure may seem familiar to readers interested in category theory. In fact, we hit on these definitions
by thinking of circuit semantics as functors. The homomorphism property then requires that Decode be a natural
transformation from the homomorphic evaluation semantics to the plaintext evaluation semantics.
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other way round using Share and Hom, by requiring that the output of the homomorphic operation
be indistinguishable from sharing the plaintext value? It turns out that this property is harder to
achieve, as it is actually a form of circuit privacy. It asserts that the real distribution, where the
shares are produced from a homomorphically evaluated circuit, is indistinguishable from an ideal
distribution where the shares are simulated just using Share. Unfortunately, we cannot achieve this
property because our construction involves holding shares of integers that may grow in size as they
pass through the circuit. There’s no way for Share to always produce shares of the right size.

Since our correctness and homomorphism definitions are in terms of performing a single oper-
ation, we need to prove that they can be composed into correctly evaluating a whole circuit.

Lemma 14. In any (1 − p)-correct two-server HSS scheme, evaluating an arbitrary circuit on
shares and then decoding the result vs. decoding the inputs and evaluating the circuit has distin-
guisher advantage at most np if the circuit has n gates. More precisely, following distributions are
distinguishable with advantage at most np if the PPT A outputs a circuit f of at most n gates.

(pk, sk0, sk1)← Setup(1κ)
(proto, sempt) := Eval(pk)
(view, f, {(s0v, s1v)}v)← A(pk, sk0, sk1)
(nodes,wires, inputs, outputs, type, gate) := f
r ← $

for v ∈ inputs:
xv ← Decode(pk, sk0, sk1, type(v), s0v, s1v)

return view, r,Run(f, sempt, {xv}v)

(pk, sk0, sk1)← Setup(1κ)
(proto, sempt) := Eval(pk)
(view, f, {(s0v, s1v)}v)← A(pk, sk0, sk1)
(nodes,wires, inputs, outputs, type, gate) := f
r ← $
for j ∈ {0, 1}:
s′j := Run(f,Hom(j, pk, skj), {sjv}v, r)

for v ∈ outputs:
yv ← Decode(pk, sk0, sk1, type(v), s′0v, s

′
1v)

return view, r, y

In the second distribution, the extra parameter r to Run represents giving each homomorphic gate
evaluating its own piece of the random stream r.

Proof. We give a hybrid proof starting from the right distribution and going to the left. Partition the
circuit f into two parts g and h, where everything in g comes before everything in h in topological
order. The circuit g is evaluated using Hom, then its outputs are fed into Decode and used to
evaluate h in plaintext. Initially g is the whole circuit and h is nothing, and in each hybrid we shift
a gate from g into h, picking a gate that comes last in topological order. The difference caused by
the change is that before the gate was evaluated homomorphically, then decoded, while afterwards
its inputs are decoded and then it is evaluated in plaintext. Since r is a freshly random string for
each gate, the homomorphism property shows that this change has advantage at most p.

After all gates have been moved from g to h, we are at the left distribution. Since there are n
gates to shift over, the total advantage is bounded by np.

An important property of our HSS scheme is that Decode authenticates its shares, at least for
some wire types. More precisely, we can set up an experiment where shares are provided honestly to
both the adversary and an honest server, the honest server performs some homomorphic operations
on its shares, then they each provide an input to a decode operation. The adversary wins if it
manages to obtain a different result than would be obtained with two honest servers.

Definition 15. An HSS scheme is authenticated for wire types A ⊆ types if it is impossible for
a single party to find a share of a wire type in A that decodes to a different result than would be
obtained if they were honest. Formally, PPTs can only win AuthGame (Figure 4) with negligible
probability.
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AuthGame

init(j ∈ {0, 1}):
(pk, sk0, sk1)← Setup(1κ)
((types, gates, in, out), (values, eval)) := Eval(pk)
(valuesk, evalk) := Hom(k, pk, skk),∀k ∈ {0, 1}
U,W := empty list
return pk, skj

share(w ∈ types, x ∈ values(w)):

(s0, s1)← Share(pk, sk0, sk1, w, x)
append (s0, s1) to U and w to W
return sj

eval(g ∈ gates, i1, . . . , in):

assert W [i1]W [i2] · · ·W [in] = in(g)
r ← $
sk := evalk(g, r)(U [i1]k, . . . , U [in]k),∀k ∈ {0, 1}
append (s0, s1) to U and out(g) to W
return r

guess(i, sj ∈ valuesj(W [i])):

assert W [i] ∈ A
s j := U [i]j
y ← Decode(pk, sk0, sk1,W [i], U [i]0, U [i]1)
z ← Decode(pk, sk0, sk1,W [i], s0, s1)

win if y 6 ?= z ∧ y 6 ?= ⊥ ∧ z 6 ?= ⊥

Figure 4: Game defining authentication for wire types A ⊆ types. An adversary A is given oracle
access to the interface of AuthGame, which emulates an honest party. A is required to call init
exactly once, before calling anything else in AuthGame, and only wins by making a successful call
to guess.
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Some applications have a single trusted client, who can run the Share and Decode operations
themselves. Others might not trust the client, or have numerous mutually distrusting clients and
so need to implement these algorithms with MPC. We define a couple special cases where these
operations can be implemented more easily, without the need for generic MPC.

Definition 16. A two-server HSS scheme has public-key sharing if there is a UC secure 3-party
protocol to compute (s0, s1)← Share(pk, sk0, sk1, w, x), where x is provided by the client, skj is input
by server j, all parties know pk and w, and sj is output to server j. All protocol messages must
come from the client.

Definition 17. A two-server HSS scheme has additive decoding for wire type w if values(w) is an
abelian group and there are PPT algorithms f0, f1 such that

Decode(pk, sk0, sk1, w, s0, s1) = f1(pk, sk1, s1)− f0(pk, sk0, s0).

4 Main Construction

4.1 Distance Function

Similarly to [BGI16], share conversion for our HSS scheme works by picking a subset of ciphertexts
to be “special”, and measuring the “distance” from the nearest special point. Here “distance”
means the number of times some generator must be divided to reach the special point. We pick
the subset of values in

[
−N

2 ,
N
2

)
to be special, i.e. those c ∈ Z/N s+1Z where c = c mod N . The

generator in our case is exp(1). The only special point that can be reached is c mod N because
exp(1) mod N = 1. This choice of generator allows the distance to be computed efficiently using
log.

DistN,s : (Z/N s+1Z)× → Z/N sZ

c 7→ log
( c

c mod N

)
This is justified by the following theorem, which shows that DistN,s preserves the distance

between two ciphertexts.

Theorem 18. For any c ∈ (Z/N s+1Z)× and x ∈ Z/N sZ,

DistN,s(c exp(x))−DistN,s(c) = x.

Proof. First, we need to show that DistN,s(c) is always well defined. We have c
c mod N ≡N

c
c ≡N 1,

so log
(

c
c mod N

)
is well defined. Then,

DistN,s(c exp(x))−DistN,s(c)

= log

(
c exp(x)

c exp(x) mod N

)
− log

( c

c mod N

)
= log

(
c exp(x)

c mod N

)
− log

( c

c mod N

)
= x.
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Setup(1κ):

(N,ϕ)← DJ.KeyGen(1κ)
ϕ0 ← [0, N)
ϕ1 := ϕ0 + ϕ
return N,ϕ0, ϕ1

valuesj(IN) = (Z/N s+1Z)×

valuesj(REG) = Z
valuesj(MUL) = Z/N sZ

evalj(×, r)(c, sj) = DistN,s(c
sj )

evalj(φ, r)(sj) = (sj + r) mod N s

Share(N,ϕ0, ϕ1, IN, x):

c← DJ.EncN,s(x)
return c, c

Share(N,ϕ0, ϕ1,REG, x):

s0 ← [0, N s+12κ)
x′ := x mod N s

return s0, s0 + (ϕ1 − ϕ0)x′

Share(N,ϕ0, ϕ1,MUL, x):

s0 ← Z/N sZ
return s0, s0 + (ϕ1 − ϕ0)x

Decode(N,ϕ0, ϕ1, IN, s0, s1):

if s0 6= s1: return ⊥
return DJ.DecN,s,ϕ1−ϕ0(s0)

Decode(N,ϕ0, ϕ1,REG, s0, s1):

if s1 − s0 /∈ (ϕ1 − ϕ0)Z:
return ⊥

return (s1 − s0)/(ϕ1 − ϕ0) +N sZ
Decode(N,ϕ0, ϕ1,MUL, s0, s1):

return (s1 − s0)/(ϕ1 − ϕ0)

Figure 5: Our HSS scheme for bounded RM circuits. In the top left the encryption is setup and the
secret key shared between the two parties. The secret share sets are in the top right, along with the
non-trivial homomorphic that may be performed on them. The linear operations are given by the
abelian group structure that the shares are in, so we omit them. Share and Decode for the three
types of shares are shown in the bottom.

Note that we have only shown the correctness of the distance function modulo N s. Our con-
struction will in fact need to convert its outputs to be in Z, as there is no consistent way to
exponentiate to a power that is in Z/N sZ when the multiplicative order of the base does not divide
N s. The following lemma will be used to show that using · mod N s to convert shares to Z works
with all but negligible probability.

Lemma 19. For any N ∈ Z+, x ∈ Z, and uniformly random r ∈ Z/NZ, we have

Pr
[
x = (r + x) mod N − r mod N

]
= max

(
1− |x|

N
, 0

)
.

Proof. The condition may equivalently be written as

r mod N + x =
(
r mod N + x

)
mod N.

This clearly holds if and only if −N
2 ≤ r mod N + x < N

2 , i.e. if it is already reduced so taking the
modulus will not change it. If x ≥ 0 then this is equivalent to r ∈ [−N

2 ,
N
2 − x), which contains

N − x (or none, if x > N) of the N possible integer values for r mod N . The case of negative x is

symmetric, so the probability is either N−|x|
N = 1− |x|N , or 0 if it would otherwise be negative.

4.2 HSS Construction

Now we have everything required to define our main HSS scheme, which will be parameterized by
a ciphertext size s and a bound M on the values. To start, we generate a random Damg̊ard–Jurik
key pair (N,ϕ) and share ϕ between the two parties in Setup (Figure 5). The plaintext evaluation
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semantics Eval(N) are then the evaluation semantics (Definition 11) for bounded RM circuits over
Z/N sZ bounded in [−M,M ].

Our three types of shares of a value x will be ciphertexts in (Z/N s+1Z)×, additive shares of ϕx
in Z, and additive shares of ϕx in Z/N sZ (see values in Figure 5). We let Share encrypt or generate
these shares and Decode decrypt or decode them, while checking for consistency between the two
parties’ shares. The share types are all abelian groups, allowing the circuit’s linear operations to
be defined on the shares easily. We omit these, other than noting that constructing 1REG and 1MUL

requires secret shares of the private key ϕ. In fact, additive secret shares of ϕ are exactly the same
as our REG and MUL shares of 1.

The homomorphic multiplication function evalj(×, r) in Figure 5 is based on cϕx essentially
decrypting x times the plaintext, so when performed on additive shares s0, s1 of ϕx this gives
multiplicative shares of the decryption. We then use the distance function to convert them to
additive shares. As these shares are only in Z/N sZ, we define evalj(φ, r) to pick a representative
in Z, allowing the result to be converted to shares in Z.

Theorem 20. Figure 5 describes a (1−MN1−s)-correct HSS scheme (Definition 13) under DCR.

Proof. There are three properties to be proved.

Correctness: For the IN wire type, this is just the correctness of Damg̊ard–Jurik encryption. For
REG and MUL we have s1− s0 = (ϕ1−ϕ0)x, so dividing out ϕ1−ϕ0 inside Decode gives the
correct decoding.

Homomorphism: We omit the trivial proofs for the linear operations allowed in bounded RM
circuits. For multiplication, we have

cs1

cs0
= cs1−s0 = cϕy = exp(ϕx)y = exp(ϕxy),

where x = DJ.DecN,s,ϕ(c) and y = s1−s0
ϕ are the two input share decodings. Then Theorem 18

shows that eval1(×, r)(c, s1)− eval0(×, r)(c, s0) = ϕxy.

The correctness of share conversion evalj(×, r)(φ) with probability 1− ϕM
Ns follows directly

from Lemma 19. Adding r to both shares before taking the modulus guarantees that s0 is
uniformly random, as is required by the lemma, and does not change s1 − s0 ≡Ns ϕx. This
is the only step with imperfect correctness, so because ϕ < N we get that the overall scheme
is (1−MN1−s)-correct.

Privacy: We must show that Share leaks nothing about the value being shared to any individual
server. We present a hybrid proof, starting with the adversary A having access to O0,pk,sk0,sk1 ,
and ending with A accessing O1,pk,sk0,sk1 .

1. Use dummy shares of 0 in Share for wire types REG and MUL. For MUL, s0 and s1

individually are uniformly random, independent of x, so this is indistinguishable to the
adversary, who only gets to see sj . Similarly, the distribution for s0 when sharing a
REG value does not depend on x, while s1 is uniform in the range [ϕx′, ϕx′ +N s+12κ),
which is statistically indistinguishable from being uniform in [0, N s+12κ) because the

distributions are identical in all but a negligible fraction |ϕx′|
Ns+12κ

< 2−κ of the possibilities.
After this change, ϕ is unused by Share.
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2. Instead of setting ϕ1 = ϕ0 +ϕ, sample ϕ1 ← [N, 2N). This is indistinguishable because
ϕ0 is uniform in [0, N), the adversary only gets to see ϕj , and [N, 2N) and [ϕ,ϕ + N)
overlap in all but N −ϕ = p+ q− 1 out of N possibilities. Therefore, the adversary has

advantage at most p+q−1
N ≤ 2`(κ)+1

22(`(κ)−1) = 2−`(κ)+3, which is negligible.

3. Notice that the private key ϕ is now totally unused. Therefore, swapping the oracle to
O1,pk,sk0,sk1 is indistinguishable. Specifically, Share for wire types REG and MUL already
ignores its input, while for wire type IN, Theorem 3 shows that Share encrypts its input
securely.

4. Undo hybrids 2 and 1. We are now at a distribution where A is given oracle access to
O1,pk,sk0,sk1 , and Setup and Share once more have their real implementations.

We proved that each operation in our HSS scheme has an error rate of at mostMN1−s. Normally
s should be chosen to be the smallest such that MN1−s ≤ 2−k, to make the error rate negligible.
For many applications (including ORAM), M ≤ 2−κN , in which case s = 2 is most efficient.
Concretely, at the 128-bit security level N ≈ 23072, so s = 2 is sufficient for plaintexts of up to 2944
bits.

Authentication. Shares of type IN are trivially authenticated, as both parties always have the
same share. REG values are always multiples of ϕ, so to create a fake share the adversary would
have to guess a multiple of ϕ to offset their share by. Finding a multiple of ϕ would give an attack
against privacy.

Theorem 21. The HSS scheme in Figure 5 is authenticated for wire types {IN,REG}.

Proof. We defer this proof to the appendix. See Appendix A.2.

Public-key sharing. Our construction also satisfies public-key sharing (Definition 16). This is
easiest to see for IN shares, because they are just encryptions under the public key N . We can
build public-key sharing for the other share types from this. To share out a MUL share of x, just
give out IN shares of x, then run the RM circuit to compute x × 1REG, which produces MUL wire
type shares. Finally, REG shares of x can be given out by splitting x into pieces small enough to
guarantee that φ will succeed (so x =

∑
i xiM

i), then doing public key sharing on every xi. Then
they are converted back to REG type with φ, and x =

∑
i xiM

i is then computed inside an RM
circuit. Note that in all cases the client only needs to send a message to both servers, who then do
some local computation to find the shares.

4.3 Additive Decoding

Notice how in the previous HSS scheme, decoding REG shares is almost additive. The only flaw is
that we need to divide by ϕ. With circular security we could simply encrypt ϕ−1 and multiply it
as the last step. It’s a little trickier without.

Instead, we generate a second key (N ′, ϕ′) and use it to encrypt ϕ−1 mod N ′s
′
, avoiding the

need for a circular security assumption. But then how do we decrypt this ciphertext? If the shares
were multiplied by ϕ′(ϕ′−1 mod N ′s

′
) then during decryption the ϕ′ϕ′−1 would cancel, since it is

modulo N ′s
′
, and similarly ϕ would cancel with ϕ−1. But ϕ′−1 mod N ′s

′
is nearly as large as N ′s

′
,

requiring s to be around double s′ and making the scheme less efficient.
There’s a trick to avoid this, however. Let ν = N ′−s

′
mod ϕ′. Then,

1−N ′s′ν ≡ϕ′N ′s′ ϕ
′(ϕ′−1 mod N ′s

′
). (1)
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valuesj(REG) = Z× Z× Z
Setup(1κ):

(N,ϕ)← DJ.KeyGen(1κ)
(N ′, ϕ′)← DJ.KeyGen(1κ)
µ := ϕ−1 mod N ′s−2

ν :=
(
N ′s−2

)−1
mod ϕ′

c′ ← DJ.EncN ′,s−2(µ)
ϕ0, ϕ

′
0 ← [0, NN ′2κ)

return (N,N ′, c′), (ϕ0, ϕ
′
0), (ϕ0 + ϕ,ϕ′0 + ϕν)

Share(. . . ,REG, x):

x′ := x mod N s

s0, s
′
0 ← [0, N s+1N ′2κ)

v0 ← [0, N s2κ)
s1 := s0 + (ϕ1 − ϕ0)x′

s′1 := s′0 + (ϕ′1 − ϕ′0)x′

v1 := v0 + x′

return (s0, s
′
0, v0), (s1, s

′
1, v1)

Share(. . . ,MUL, x):

(s0, s
′
0, v0), (s1, s

′
1, v1)← Share(. . . ,REG, x)

return (s0, s
′
0), (s1, s

′
1)

valuesj(MUL) = Z/N sZ× Z/N sZ
evalj(×, r)(c, (sj , s′j , vj)):

return DistN,s(c
sj ),DistN,s(c

s′j )
evalj(φ, r ‖ r′ ‖ r′′)((tj , t′j)):
sj := (tj + r) mod N s

s′j := (t′j + r′) mod N s

vj := DistN ′,s−2

(
c′ sj−N

′s−2s′j
)

vj := (vj + r′′) mod N ′s−2

return (sj , s
′
j , vj)

Decode(. . . ,REG, (s0, s
′
0, v0), (s1, s

′
1, v1)):

if (s1 − s0) 6= (ϕ1 − ϕ0)(v1 − v0)
∨ (s′1 − s′0) 6= (ϕ′1 − ϕ′0)(v1 − v0):
return ⊥

return v1 − v0 +N sZ
Decode(. . . ,MUL, (s0, s

′
0), (s1, s

′
1)):

ν := (ϕ′1 − ϕ′0)/(ϕ1 − ϕ0)
if (s′1 − s′0) 6= ν(s1 − s0):

return ⊥
return (s1 − s0)/(ϕ1 − ϕ0)

Figure 6: Modifications to the HSS scheme in Figure 5 needed to support additive decoding.
Only those functions that have been modified are shown. For compactness, the public and
private keys in Share and Decode have been omitted with an ellipsis, rather than writing out
(N,N ′, c′), (ϕ0, ϕ

′
0), (ϕ1, ϕ

′
1) every time.
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by the Chinese remainder theorem, since modulo ϕ′ they are both 0, and modulo N ′s
′

they are
both 1. Therefore, 1 − N ′s′ν is just as good for decoding the result, because the final decryption
is of a ciphertext in (Z/N ′s′Z)×, which has order ϕ′N ′s

′
. If for every value x we maintain shares

of ϕx and ϕνx (which are both relatively small), we can do additive decoding by first computing
shares of ϕ(1−N ′s′ν)x, then doing a final multiply by the encryption of ϕ−1 to get additive shares
of x.

We show the modified HSS scheme in Figure 6. Setup now computes the second key pair
(N ′, ϕ′) and gives out an encryption c′ of µ = ϕ−1 under the second key. It also returns secret
shares ϕ′1 − ϕ′0 = ϕν alongside the secret shares of ϕ. The REG shares have the biggest changes.
Not only does they keep track of shares of both ϕx and ϕνx, but they also keep shares (v0, v1) of x.
This is because the only time we have an upper bound on the size of a plaintext value x is during
evalj(φ, r), so we compute additive shares of x then and cache them. The MUL shares also needed
to be changed to keep shares of both ϕx and ϕνx. We set s′ = s− 2 because the additive decoding
value x is much smaller (by a factor of nearly NN ′) than ϕνx. The former is computed modulo
N ′s−2 while the latter is found modulo N s, which makes the error probabilities similar.

Theorem 22. Assuming DCR, the modified scheme in Figure 6 is a (1−p)-correct HSS scheme that
is authenticated for all wire types and has additive decoding for REG wires, where p = MN ′

(
N1−s+

N ′ 1−s
)
.

Proof. We defer this proof to the appendix. See Appendix A.3.

Choosing s to achieve a negligible error rate is essentially the same as for the previous con-
struction. Because N and N ′ are of approximately the same size, s should be chosen such that
p ≈ 2MN2−s ≤ 2−k. Roughly, s just needs to be incremented compared to the non-additive-
decoding scheme. Public key sharing works for this new protocol in exactly the same way as before,
since we did not change the sharing process for IN shares, and public key sharing of everything else
was based on that one share type.

5 Distributed Oblivious RAM

An oblivious RAM (ORAM) allows a client to outsource its data (a sequence of N blocks) to an
untrusted server, such that it can access any sequence of data blocks on the server while hiding the
access pattern [Ost92, Gol87]. While traditionally ORAM protocols were designed assuming a single
server which stores data passively, recent works have considered more general settings, allowing
for multiple servers with computational capabilities [DvDF+16, HOY+17, FNR+15]. Given the
result in [Gol87], all passive server ORAM protocols incur at least Ω(logN) bandwidth overhead.
However, if we allow for server side computation, constant bandwidth blowup can be achieved for
large block sizes [DvDF+16]. In this section we propose a new malicious secure ORAM construction
based on 2 party HSS. Our construction achieves constant bandwidth blowup for blocks of size at
least Ω(log4N) bits.

5.1 Definition: Distributed ORAM

We consider a 3 party distributed ORAM model with a single client and 2 non-colluding servers.
All the parties maintain a state (stc, sts0, sts1) which is updated after each ORAM operation, where
stc is the client state and sts0, sts1 are the states of the two servers respectively.

Definition 23. A distributed 2-server ORAM construction with security parameter κ consists of
the following two interactive protocols:
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• (st′c, st
′
s0, st

′
s1)← Setup(D): The client inputs an N sized array D of blocks, where each block

is of length B bits. This function initializes the ORAM with the array D.

• (data, st′c, st
′
s0, st

′
s1)← Access(in, stc, sts0, sts1): The client receives as input an ORAM oper-

ation in = (op, idx, data), where op = {read,write}, idx ∈ [1 . . . N ] and data ∈ {0, 1}B∪{⊥}.
If op = read then the client should return the block D[idx]. If op = write, then this protocol
should update the content of block D[idx] in the ORAM with data.

We use the simulation based definition for a malicious secure ORAM as was considered in
[DvDF+16] (see Appendix B.1).

5.2 An Overview of Bounded Feedback and Onion ORAM

Our protocol is inspired by the Onion ORAM protocol proposed in [DvDF+16], which in turn
is based on the passive server Bounded Feedback ORAM protocol from the same paper. In this
subsection we describe Bounded Feedback ORAM and how it can be modified to give the single
server Onion ORAM construction.

Bounded Feedback ORAM Similar to other tree-based ORAMs, its server memory is organized
in the form of an L depth binary tree T , where each node of the tree (also referred to as a bucket)
contains Z blocks. The leaves of the tree are numbered from 0 to 2L− 1. P(l) represent the blocks
on the path to leaf l on this tree and P(l, k) represents the kth bucket from the root node on this
same path respectively.

As is the case for all tree based ORAMs, each block is mapped to a unique random leaf node
in this tree. And this mapping is stored in a position map (PosMap) by the client. The key
invariant that’s maintained is that each block (with index addr) is present in some bucket on the
path P(PosMap[addr]).

For each block in the tree, the server also stores the corresponding meta-data (addr, label), where
addr is the logical address of the block and label = PosMap[addr]. The corresponding metadata
tree is referred to as md. We use the shorthand md[l] to represent the list of all metadata present
on the path l in md.

ORAM Access To read/write a block addr the client looks up the corresponding leaf label
PosMap[addr] from the position map. It further downloads all the blocks on the path PosMap[addr]
in tree T from the server. The client can now locally read and update the block addr. The block
addr is remapped to a new random leaf label and is inserted in the root bucket. All the downloaded
blocks on path l are re-encrypted and stored back on the server. To ensure that no bucket overflows
except with negligible probability, after every A (a parameter) Access operation the blocks are
percolated towards the leaves in the tree while maintaining the key invariant. This process is also
called the eviction algorithm. Most tree based ORAMs often differ in their eviction procedures.

Triplet Eviction Algorithm As is the case for other tree based ORAMs, eviction is performed
along a specific path (let say l). For k = 0 to L, the algorithm pushes all the blocks in bucket
P(l, k) into one of its two children buckets. This process can be carried out without violating
the key invariant. After every A ORAM accesses, the next eviction path is chosen in the reverse
lexicographic order of a parameter G, which is initialized to 0 and incremented by 1 after each
eviction procedure. Given the analysis in [DvDF+16], the parameters Z = A = Θ(λ) ensure
negligible overflow probability for each bucket, where λ is the statistical security parameter.
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Recursion Storing the position map requires spaceO(N logN). To avoid the large client memory,
we can recursively store the position map in a smaller ORAM on the server. This recursive approach
used in all tree based ORAMs does not incur any additional asymptotic cost for blocks of size
Ω(log2N), where N is the size of the database. For all the ORAM protocols we describe ahead, we
will ignore the cost of recursion for larger block sizes.

How Onion ORAM Differs The Onion ORAM protocol is similar to the Bounded Feedback
ORAM with the key distinction that all computation on the data blocks is performed by the server
locally. For this purpose the ORAM data structure is encrypted using an additively homomophic
encryption scheme, which allows the server to perform access and evict algorithms locally. More
details on the Onion ORAM construction can be found in Appendix B.2.

5.3 Our HSS based ORAM construction

In our construction the server side computation of Onion ORAM is divided across 2 non-colluding
servers using our HSS construction.

The two servers store two ORAM binary trees (T0, T1) respectively, and they also have additive
shares of authenticated meta-data (md, H(md)) corresponding to each block in the tree. Each block
b in our scheme is a sequence of chunks (b1, b2, . . . , bC) (for some parameter C), where each chunk
can be secret shared as wires of type REG using HSS.

The server side computation in Onion ORAM can be replaced with homomorphic computation
on the HSS shares by the two servers, where the client sends an encrypted index as a wire type
IN. For the eviction procedure, we conceptually use the same technique as used in Onion ORAM,
which uses Θ(ZL) select operations. We next describe the selection and evict algorithms in a little
more detail.

Selection. An advantage of using HSS is being able to evaluate a limited kind of arithmetic
circuit, so we can encode more than just a single bit in a ciphertext. In fact, we can do a 1-of-m
select operation by sending just a single ciphertext to the servers. Suppose we want to select the
ith element of a sequence y0, . . . , ym−1, for some i ∈ [0,m−1]. Then if we interpolate a polynomial
p(X) through the points p(0) = y0, . . . , p(m − 1) = ym−1, then we can evaluate p(i) to find yi.
Polynomial interpolation is a linear operation, and so can be performed separately by each server,
on its own share of {yi}i.

However, there’s one small issue that we’ve skipped over. We can only evaluate bounded RM
circuit, and representing a fraction in the ring is very likely to produce a large number that is
outside of the bound. We instead use the Newton polynomial interpolation, representing p as

p(X) =
m−1∑
j=0

∆j [y]

j!
(X)j where ∆j [y] =

j∑
k=0

(
j

k

)
(−1)j−kyk,

where (X)j = X(X − 1) · · · (X − j + 1) is the falling factorial. Although we only show the direct
formula for computing the differences ∆j [y], faster FFT-based methods would also work. Notice
that the finite differences ∆j [y] are all integers, so only need to evaluate (m− 1)! p(i) to remove all
of the fractions, and then divide by (m− 1)! at the last step, which works since p(i) is an integer.
We can evaluate this polynomial using a variant of Horner’s rule, which is efficient inside an RM
circuit (Figure 7).

p(X) =

((
∆m−1[y]

(m− 1)!
(X −m+ 2) +

∆m−2[y]

(m− 2)!

)
(X −m+ 3) + · · ·

)
X +

∆0[y]

0!
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select(i ∈ IN, y0 ∈ REG, . . . , ym−1 ∈ REG):

D[j] := (m−1)!
j!

∑j
k=0

(
j
k

)
(−1)j−k ×REG yk

z := 0REG
for j := m− 1 to 0:
z := z +REG D[j]
z := φ(z × (i+IN (1− j))

z := 1
(m−1)! ×REG z

return z

SelectShare(pk, sk0, sk1, i, {y0k}k, {y1k}k):

in[“i”] := Share(pk, sk0, sk1, IN, i)
for j ∈ {0, 1}:

for each chunk index c:
for k := 0 to m− 1:
in[“y” ‖ k] := yjk[c]

sj [c] := Run(select,Hom(j, pk, skj), in)
return s0, s1

Select(pk, sk0, sk1, i, {y0k}k, {y1k}k):

(s0, s1)← SelectShare(pk, sk0, sk1,
i, {y0k}k, {y1k}k)

for j ∈ {0, 1}:
s′j :=

∑
cM
′csj [c]

z′ := Decode′(pk, sk0, sk1,REG, s′0, s
′
1)

for each chunk index c:

z[c] := b z′

M′c c mod M ′

return z

Figure 7: Left: Selection operation pseudocode. The pseudocode follows the wire-type rules of
a bounded RM circuit, and could easily be unrolled into a circuit. Right: The distributed Select
algorithm, which runs the select RM circuit on the given shares, then decodes the result to find yi.
Client computation is colored red and server computation is colored blue. Because in our HSS the
REG secret shares do not depending at all on the ciphertext size parameter s, we can pack together
several shares (by treating them as a base M ′ number) and decode them all at once, which reduces
the overhead of the secret sharing step. However, we need Decode from Figure 5 to be modified
slightly, to not take its output modulo N s, and we call this modification Decode′.

We need to compute a size bound M on the values in this computation, given the known bound
M ′ on every yi. We have

∣∣∆j [y]
∣∣ ≤M ′∑k

(
j
k

)
= 2jM ′. Let S be a subexpression in the evaluation

of (m − 1)! p(X). Then |S| ≤
∑m−1

j=0

∣∣∣ (m−1)!
j! ∆j [y]mj

∣∣∣, because every (x − j + 1) ≤ m, and going

from S to this we only add more nonnegative terms and multiply more factors of m ≥ 1. This can
be turned into an upper bound, which we will use to set M .

|S| ≤
m−1∑
j=0

(m− 1)!

j!
2jmjM ′ ≤ (m− 1)!M ′

∞∑
j=0

(2m)j

j!
= (m− 1)!M ′e2m ≤M (2)

Eviction. We need to move up to Z blocks in a parent node in the tree into a child node, which
has locations for Z blocks. We do this by performing Z instances of 1-of-(Z + 1) Select, allowing
each block location in a child node to select any of its parent node’s blocks, or its existing value if
it was already filled. This algorithm is shown in Figure 8.

Using these two algorithms, we describe our Setup and Access function for our proposed ORAM
scheme in Figure 9 and Figure 10 respectively. The notation used in these protocol descriptions is
also summarized in Appendix B.3.

Our ORAM construction can also be used for implementing 2 party secure computation of RAM
programs. In Appendix B.5 we further discuss how the public-key sharing property (Definition 16)
and additive decoding (Definition 17) of our HSS scheme help realize this protocol more efficiently.

5.4 Proof of Security

Intuitively, the adversary learns nothing looking at one server’s binary tree data - which consists
of one share of each corresponding plaintext block chunks. Hence the view of the adversary in this
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Evict(pk, sk0, sk1, le,md, {x0k}k, {x1k}k, {y0k}k, {y1k}k):
remap := array of zeros

for each block b of parent node b le2 c.
if md says b is present and needs to move to le:

find next empty location b′ in le
remap[b′] := b

for each block b of node le:
inj := (yjb, xj0, . . . , xj(Z−1))∀j ∈ {0, 1}
y0b, y1b ← SelectShare(pk, sk0, sk1, remap[b], in0, in1)

return {y0k}k, {y1k}k

Figure 8: The distributed Evict algorithm. Inputs are le, the location of the node to evict into, the
shares {x0k}k, {x1k}k of the blocks in the parent node of le, and shares {y0k}k, {y1k}k of node le.

case can be simulated given the privacy guarantee of our HSS scheme. Our scheme satisfies the
authenticated shares property, hence any tampering of the shares by the adversary would make
the protocol abort. The meta data is authenticated using a universal hash function that satisfies
uniform difference property.

Theorem 24. The distributed ORAM construction described in Figure 9 and Figure 10 is a secure
ORAM.

Proof. See Appendix B.4.

5.5 Complexity Analysis

First, we must determine the dependence between the parameters. Each share stores a number
in [0,M ′ − 1), and since there are C share chunks per block this gives B = C log2M

′. For the
HSS parameters, we choose the smallest possible ciphertext size (s = 2) as this will decrease
the communication bandwidth of data sent to the servers. Therefore, we should set MN−1 = 2−λ,
whereN = 2Θ(`(κ)) is the Damg̊ard–Jurik public key, to have a statistical correctness error negligible
in λ. We set M ′ to be as large as possible (as determined by Equation 2) in order to reduce the
number of chunks (which take extra computation) while keeping the same block size and ciphertext
size. So we set M ′ = 1

(m−1)!e
−2mM , where m = Z(L + 1) is the largest number of options in a

select operation, and get log2M
′ = Θ(`(κ) − λ − ZL log(ZL)) = Θ(`(κ) − λ logN log(λ)), where

we have assumed that λ = Ω(log(N)).
Next, we analyze the complexity of each part.

Communication complexity The communication complexity from client to the servers consists
of Θ(ZL) ciphertexts sent on every eviction (once every A accesses), plus 1 sent for every access.
From the server to the client, we get B + Θ(`(κ)) bits sent from each server, for the shares we
decode plus the extra Θ(`(κ)) coming from the fact that the shares were already multiplied by the
private key before they were sent back. This comes to a total of 2B + Θ(`(κ) logN) amortized
communication for each access.

Client Computation The client computation is dominated by the Share function calls in the
Select operations in the protocol. This is dominated by eviction, where it invokes Z(L+1) instances
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Let (Setup, Share,Eval,Run,Decode) be a 2 party HSS scheme as in Definition 13
H is a universal family that satisfies uniform difference property

Protocol parameters: B, λ, κ

Setup(D):

(T,md)← Bounded-Feedback-ORAM-Setup on input D
h←$ H
hash← h(md)
Picks random shares md0 and hash0
md1 ← md+ md0 and hash1 ← hash + hash0
G, cnt← 0
(pk, sk0, sk1)← Setup(1κ)
For each block b ∈ T , for each chunk index c:

(b0[c], b1[c])← Share(pk, sk0, sk1,REG, b[c])
For i = 0, 1, and for each block b in T :

Set corresponding block in Ti as bi
stc = (G, cnt,PosMap, pk, sk0, sk1)
For i = 0, 1, stsi = (Ti,mdi, hashi, ski)

Figure 9: The 2-server distributed ORAM Setup function. In this protocol we assume the ORAM
Setup protocol for the Bounded Feedback ORAM given in [DvDF+16]. Client side computation is
colored red and server side computation is colored blue.

of Share, each taking time Õ(`2(κ)) because they are dominated by exponentiation. This takes a
total of Õ(logN`2(κ)) amortized time per access.

Server Computation For the server the most computationally intensive step is the computation
in the Select operations. We require evaluation of a O(m) gate RM circuit for a m-way select. This
is dominated by the Evict step, which requires CZ(L + 1) evaluations of a Z + 1-way selection.
The cost of evaluating a gate is dominated by exponentiation, so we get an amortized cost of
Õ(Cλ logN`2(κ)).

We use a similarly parameter regime to Onion ORAM, where we set the statistical secu-
rity parameter λ = ω(logN) and computational security parameter κ = ω(logN), and based
on the best known attacks on Damg̊ard–Jurik encryption (from factoring), set `(κ) = Θ(κ3).
The communication complexity is then 2B + O(log4N), so we set the minimum block size to
be B = ω(O(log4N)) to get constant communication overhead. Then the number of chunks is

determined to be C = B
log2M

′ = Θ( log4N
log3N

) = Θ(logN). Finally, we find the client side compu-

tation Õ(log7N) = Õ(B log4N), and the server-side computation Õ(log3N`2(κ)) = Õ(log9N) =
Õ(B log5N).

6 Trapdoor Hash Functions

The idea of using a distance function to compute a distributed discrete logarithm has been applied
to more than just HSS. One such application is to trapdoor hash functions, which have applications
to rate-1 OT, PIR, and private matrix-vector products, among others [DGI+19]. In this section
we present a new trapdoor hash function based on DCR and our distance function, and show
that it has negligible error probability. We then talk about possible generalizations allowed by our
construction.

We present our trapdoor hash in Figure 11. See also Appendix C.1, where we review the
definition of a trapdoor hash function, with some notational changes. We support linear predicates,
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Access(in = (op, addr, data), stc, sts0, sts1)):

l′ ←$ [0, 2L − 1]
l← PosMap[addr]
PosMap[addr]← l′

Compute arrays mdi[l], hashi[l]
For j = 0 to Z(L+ 1):

if H(md1[l, j]−md0[l, j]) 6= hash1[l, j]− hash0[l, j] then abort
md← md1[l]−md0[1] // Element wise subtraction
Find i 3 md[i, 0] = addr
data← Select (i,P0(l),P1(l))
if data = ⊥ then abort
if op = write then data = data′ else output data
Set md[l, j]← (addr, l′) for the least index j 3 md[l, j] 6= ⊥
md[l, i]← ⊥
For each chunk index c:

(b0[c], b1[c])← Share(pk, sk0, sk1,REG, data[c])
Sample new random md0 and hash0
md1 ← md + md0 and hash1 ← H(md) + hash0
md[l]← mdi and h(md[l])← hashi
Set (cnt+ 1)th block in bucket Pi(l, 1) as bi
// Eviction
cnt← cnt+ 1 mod A

if cnt
?
= 0:

le ← reverse bit string of G // Picking paths in reverse lexicographic order
G← (G+ 1 mod 2L)
For k ← 0 to L− 1:

For each child bucket C of P(le):
b ∈ 02Z

For i ∈ [0, Z − 1] : Set b[i]← 1 if ith block in P(le) can be moved into C
For i ∈ [0, Z − 1] : Set b[Z + i]← 1 if ith block in C is real
Evict (b, (P0(le)||C0), (P1(le)||C1))

Figure 10: The 2-server distributed ORAM Access function. Client side computation is colored red
and server side computation is colored blue.

Setup(1κ, 1n):

p, q ← (2`(κ)−1, 2`(κ)) s.t.

p, q, p−1
2 , q−1

2 are prime
N := pq
(g0, g1, . . . , gn)← (Z/N2Z)×

return N, g0, . . . , gn

KeyGen((N, g0, . . . , gn), f):

write f(x) =
⊕

i fixi
k ← [0, N)
K0 := gk0
Ki := gki exp(fi/2),∀i ∈ [1, n]
return K, k

Hash((N, g0, . . . , gn), x, ρ):

r ← [0, N) from random bits ρ

return g2r
0

∏
i g

2xi
i

Eval((N, g0, . . . , gn),K, x, ρ):

r ← [0, N) from random bits ρ

d := DistN,1

(
K2r

0

∏
iK

2xi
i

)
e := d mod N mod 2
return e

Decode((N, g0, . . . , gn), k, h):

e0 := DistN,1(hk) mod N mod 2
return e0, e0

Figure 11: Trapdoor hash function for linear predicates from DCR based on our distance function,
which achieves a negligible error rate.
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Fn := {f(x) =
⊕

i fixi | fi ∈ {0, 1}}. [DGI+19] also gave a DCR-based construction that was in
many ways similar, but since they used the distance function of [BGI16] they had an inverse
polynomial error rate. We instead achieve a negligible error probability.

Note that, unlike Damg̊ard–Jurik, we need to generate N as a product of safe primes, so that
ϕ
4 will also be the product of two primes. We also have to square the generators in Hash. This is
to ensure that g2

0 will generate a subgroup of (Z/N2Z)× containing all of the g2
i , as we need any

information that Hash would reveal about x to be masked by r. Without this, the Jacobi symbol
of the hash would leak one bit of information about x if the Jacobi symbol of g0 is 1, and there
might be other issues as well. This was missed in a previous version of the paper.

Theorem 25. The construction in Figure 11 is a (1− n
N )-correct rate-1 trapdoor hash function.

Proof. See Appendix C.2.

6.1 Generalizations

Trapdoor hash functions are only defined to output a single bit, but our construction is really
suited to producing a longer output. A possible generalization would be to allow output in any
abelian group G, so the correctness property would be that if e ← Eval(crs, pk, x; ρ) and e0 ←
Decode(crs, sk, h) then e − e0 = f(x). Then we could achieve G = Z (as long as we have a bound
on |f(x)|) by simply removing the last mod 2 step from Eval and Decode. And G = Z/NZ (or even
G = Z/N sZ) would work with perfect correctness if the final mod N were removed as well.

This is useful for constructing rate-1 string OT efficiently. [DGI+19] build 1-out-of-k OT in
batches of n elements, then having the receiver send n TDH public keys selecting the n bits they
are interested in. The same hash h is shared among these n evaluations of the TDH, so if n� 4`(κ)
(this is the bit length of h) then the scheme is rate 1. However, this requires sending many public
keys. Generalizing TDH to output large chunks of data would only need batches of n � 1 to
achieve rate 1, as it would provide nearly 4`(κ) bits of output per evaluation.
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A HSS Proofs and Extras

A.1 Taylor Series Proofs

Recall that

exp(x) =
s∑

k=0

(Nx)k

k!
log(1 +Nx) =

s∑
k=1

(−N)k−1xk

k
.

In this section we show that these finite Taylor series work as intended. Other proofs may be found
in textbooks on the p-adic numbers, such as [Gou20, Sec. 5.7].

Lemma 26. For any integers s,N ≥ 0 where the prime factors of N are all greater than s (i.e. s!
is coprime to N), the following identities hold for all x, y ∈ Z/N sZ.

log(exp(x)) = x in Z/N sZ. (3)

exp(log(1 +Nx)) = 1 +Nx in Z/N s+1Z. (4)

exp(x) exp(y) = exp(x+ y) in Z/N s+1Z. (5)

Therefore, exp: (Z/N sZ)+ →
(
1 +NZ/N s+1Z

)×
is a group isomorphism.

Proof. First, check that log and exp are both well defined on their respective domains. They require
division, but the denominator is either k! or k for k ≤ s, which are coprime to N by assumption,
so multiplicative inverses exists.

Let 1 + Np(x) = exp(x) and q(x) = log(1 + Nx), where p and q are polynomials defined over
Z/N sZ. That is,

p(x) =
s∑

k=1

Nk−1xk

k!
q(x) =

s∑
k=1

(−N)k−1xk

k
.

Equations (3) and (4) then become q(p(x)) = p(q(x)) = x.
Properties related to log and exp are typically proven using calculus. Derivatives can easily be

generalized to polynomials over an arbitrary commutative ring by letting

d

dx

d∑
k=0

akx
k =

d∑
k=1

kakx
k−1,

as usual. The product rule and chain rule continue to work as normal. Although it is possible to
have a non-constant polynomial h(x) where h′(x) = 0, because if k is not coprime to N then kak
could be zero when neither k nor ak is zero, we will not have this issue because we are dealing
with polynomials of degree at most s. If the degree of h(x) is at most s and h′(x) = 0 then h(x) is
constant, because then 0 < k ≤ s is coprime to N by assumption.

We now calculate p′(x) and q′(x) using the Taylor series.

p′(x) =
d

dx

s∑
k=1

Nk−1xk

k!

=

s∑
k=1

kNk−1xk−1

k!

=
s−1∑
k=0

Nkxk

k!
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=

s∑
k=0

Nkxk

k!
= 1 +Np(x),

because the additional k = s term is a multiple of N s, which is zero in Z/N sZ.

q′(x) =
d

dx

s∑
k=1

(−N)k−1xk

k
=

s−1∑
k=0

(−Nx)k

Based on how q is defined using a Taylor series for log, q′(x) ought to be 1
1+Nx . To confirm this,

multiply q′(x) by (1 +Nx).

(1 +Nx)q′(x) =

s−1∑
k=0

(−Nx)k +Nx

s−1∑
k=0

(−Nx)k

=
s−1∑
k=0

(−Nx)k −
s∑

k=1

(−Nx)k

= (−Nx)0 − (−Nx)s = 1

This is enough to prove the first identity, q(p(x)) = x. First, notice that

d

dx
q(p(x)) = q′(p(x))p′(x) = q′(p(x))(1 +Np(x)) = 1.

If q(p(x)) has degree at most s then q(p(x))−x must be constant, which proves the identity because
q(p(0)) = q(0) = 0. Both p(x) and q(x) have the property that the coefficient of xk is always a
multiple of Nk−1, i.e. Np(x) and Nq(x) can be written as polynomials of Nx. This implies the
same property for q(p(x)), because Nq(p(x)) can be written as a polynomial of Np(x), which can
then be written as a polynomial of Nx. Therefore q(p(x)) has degree at most s, as the coefficient
of xk is a multiple of Nk−1, which is zero for any k > s.

The second identity, p(q(x)) = x, is similar but more complicated to prove. As well as p′(x)
and q′(x), we also need to compute q′′(x). This may be found using the product rule:

(1 +Nx)q′(x) = 1

Nq′(x) + (1 +Nx)q′′(x) = 0

q′′(x) = −N(q′(x))2.

Similarly to q(p(x)), the coefficient of xk in p(q(x)) is a multiple of Nk−1, and also the coefficient
of xk in q′(x) is a multiple of Nk. This implies that the coefficient of xk in (p(q(x))− x)q′(x) must
always be a multiple of Nk−1, so it can have degree at most s over Z/N sZ. Then (p(q(x))−x)q′(x)
must be constant because

d

dx
(p(q(x))− x)q′(x) = p′(q(x))(q′(x))2 − q′(x) + (p(q(x))− x)q′′(x)

= (1 +Np(q(x)))(q′(x))2 − q′(x)−N(p(q(x))− x)(q′(x))2

= (1 +Nx)(q′(x))2 − q′(x)

= q′(x)− q′(x) = 0.

Evaluating at 0, we get (p(q(0)) − 0)q′(0) = p(q(0)) = 0, so (p(q(x)) − x)q′(x) = 0. Multiply by
1 +Nx, then rearrange to get p(q(x)) = x.
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Finally, we need to prove Equation (5), that exp is a homomorphism. Of the three properties,
this turns out to be the easiest to prove.

exp(x) exp(y) =
s∑
j=0

(Nx)j

j!

s∑
k=0

(Ny)k

k!

=
s∑
j=0

s∑
k=0

N j+kxjyk

j!k!

=
s∑

n=0

Nn

n!

n∑
j=0

(
n

j

)
xjyn−j

=

s∑
n=0

Nn

n!
(x+ y)n

= exp(x+ y)

For the third equality, we used that all terms with n = j+ k > s will be multiples of N s+1, i.e. will
be zero.

A.2 Proof of HSS Authentication

Theorem 21. The HSS scheme in Figure 5 is authenticated for wire types {IN,REG}.

Proof. Let A be an adversary that makes calls to AuthGame from Definition 15 that has a non-
negligible probability of making guess return true. Clearly any call to guess that returns true
must use a dishonest share, i.e. sj 6= U [i]j . This immediately proves authentication for shares of
type IN since Decode checks that the two shares are identical.

With REG shares, for neither call to Decode to return ⊥ we must have U [i]1 − U [i]0 ≡ϕ 0 ≡ϕ
s1 − s0. Since s j = U [i]j , this implies that sj ≡ϕ U [i]j . We will use this fact to build an adversary
A′ against the privacy of the HSS scheme. A′ runs A while simulating its access to share using the
Share oracle Oi,pk,sk0,sk1 . It keeps track of the half of the honest shares U [i]j that it can compute,
saving them in share and updating them in eval, the same as AuthGame does. It always returns
false from guess, which is indistinguishable until A succeeds in causing sj ≡ϕ U [i]j .

A′ checks for this case by computing the difference µ = sj − U [i]j , and if it is nonzero see-
ing whether it is a multiple of ϕ by checking if cµ ≡N 1, for O(κ) randomly chosen values
c ∈ (Z/N s+1Z)×. If so, it computes the largest k such that Nk | µ and finds µ′ = N−kµ. µ′

is sufficient to decrypt Damg̊ard–Jurik ciphertexts:

1

µ′
log(cµ

′
) =

1

ϕ
log(cϕ) = DJ.DecN,s,ϕ(c).

Then a single query to Oi,pk,sk0,sk1(IN, 0, 1) can be decrypted to find i, successfully attacking the
privacy of the HSS scheme.

A.3 Proof for Additive Decoding HSS

Theorem 22. Assuming DCR, the modified scheme in Figure 6 is a (1−p)-correct HSS scheme that
is authenticated for all wire types and has additive decoding for REG wires, where p = MN ′

(
N1−s+

N ′ 1−s
)
.
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Proof. Much of the proof is similar to Theorem 20, and we will omit parts of the proof that are
identical.

Correctness: For wire type REG, shares from Share will have v1 − v0 = x′, s1 − s0 = ϕx′, and
s′1 − s′0 = ϕνx′, so the checks in Decode will pass and Decode will output x′ + N sZ = x.
Similarly, for MUL the checks in Decode will also pass, since s′1 − s′0 = ϕνx = ν(s1 − s0), and
Decode will output (s1 − s0)/ϕ = x.

Homomorphism: For multiplication, let x = DJ.DecN,s,ϕ(c) and y = v1 − v0 be the two input
share decodings. Then,

cs1

cs0
= cs1−s0 = cϕy = exp(ϕxy)

cs
′
1

cs
′
0

= cs
′
1−s′0 = cϕνy = exp(ϕνxy).

By the correctness of the distance function (Theorem 18), evalj(×, r)(c, (sj , s′j , vj)) will then
produce valid MUL shares of xy.

The correctness of share conversion evalj(×, r)(φ) is more complicated. The input shares
will satisfy t1− t0 = ϕx+N sZ and t′1− t′0 = ϕνx+N sZ, where |x| ≤M . Applying Lemma 19

twice, we get s1−s0 = ϕx and s′1−s′0 = ϕνx, except with probability at most ϕ(1+ν)M
Ns by the

union bound. This error probability is at most MN ′N1−s because ϕ < N and ν < ϕ′ < N ′.
Then Equation 1 implies that

c′ s1−N
′s−2s′1−s0+N ′s−2s′0 = c′ϕ(1−N ′s−2ν)x = c′ϕϕ

′µ′x = exp(µϕϕ′µ′x) = exp(x),

where µ′ = ϕ′−1 mod N ′s−2. The distance function will therefore output secret shares of
x + N ′sZ. Finally, Lemma 19 shows that v1 − v0 = x, except with probability at most
MN ′2−s. Applying the union bound again, we get that the HSS scheme is (1− p)-correct, for
p = MN ′

(
N1−s +N ′ 1−s

)
.

Privacy: We present a hybrid proof, going from AO0,pk,sk0,sk1 to AO1,pk,sk0,sk1 .

1. Set x = 0 at the start of Share for wire types REG and MUL, so that the adversary gets
dummy shares. A similar argument to Theorem 20 shows that this is indistinguishable,
as the randomness in s0, s

′
0, v0 will be enough to hide ϕx, ϕνx, x in s1, s

′
1, v1. This is

because ϕ|x| < ϕν|x| < N s+1N ′ � N s+1N ′2κ and |x| < N s � N s2κ. Therefore, this
step allows the adversary an advantage of at most 3 · 2−κ.

2. Similarly, set ϕ1 = ϕ0 and ϕ′1 = ϕ′0 to make them be shares of 0. The advantage from
this step is at most 2−κ+1 because ϕ0, ϕ

′
0 ← [0, NN ′2κ) and ϕ < ϕν < NN ′.

3. Notice that one of the private keys, ϕ′, is now totally unused. Therefore, replacing c′

with DJ.EncN ′,s−2(0) is indistinguishable by the security of Damg̊ard–Jurik (Theorem 3).

4. Notice that ϕ is now unused as well. Swapping the oracle to O1,pk,sk0,sk1 is then indis-
tinguishable, because of the security of Damg̊ard–Jurik when the wire type is IN, and
because Share was made to ignore x in hybrid 1 for the other two wire types.

5. Undo hybrids 3, 2, and 1. We are now at a distribution where A is given oracle access
to O1,pk,sk0,sk1 , and Setup and Share once more have their real implementations.
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Authentication: Again, authentication can be reduced to privacy, by simulating the half of
AuthGame that works with the shares of party j using the Share oracle Oi,pk,sk0,sk1 . The
simulation of guess always returns false, but it also check if any useful information was
given to it by A. It will keep track of U [i]j , the share that the adversary was supposed to
provide, and compute the difference ∆ = sj −U [i]j to what the adversary actually provided.
For the adversary to win the AuthGame they must make Decode return something other than
⊥, while providing a different share than was expected. For REG wires, this implies that
(ϕδ, ϕνδ, δ) = ∆ for some δ ∈ Z. Therefore, the reduction can find ϕ, make a query to
Oi,pk,sk0,sk1(IN, 0, 1), then decrypt it to get i and break privacy.

For MUL wires, instead we have (δ, νδ) = ∆ for some δ ∈ Z/N sZ, so the reduction can
recover ν. Then ϕ′ | 1 − N ′s−2ν by Equation 1, so, similarly to Theorem 21, 1 − N ′s−2ν is
enough to decode ciphertexts encrypted with N ′. In particular, we can decrypt c′ to find
µ. Then ϕ ≡N ′s−2 µ−1, and this can be used to recover ϕ because ϕ = (p − 1)(q − 1) =
N + 1− (p+ q) and 0 ≤ p+ q < 2`(κ)+1 < 1

2N
′ ≤ 1

2N
′s−2, so p+ q = (N + 1− µ−1) mod N s.

We’re implicitly assuming that s ≥ 3, as otherwise the HSS scheme doesn’t make sense — the
correctness error bound would be p ≥ M ≥ 1. Finally, make a query to Oi,pk,sk0,sk1(IN, 0, 1),
then decrypt with ϕ it break privacy.

Additive Decoding: Let fj(pk, skj , (sj , s
′
j , vj)) = vj +N sZ, since v1 − v0 +N sZ is exactly what

Decode returns for REG shares when it does not error.

B ORAM Details

B.1 Security Definition

We define the ideal and real worlds as follows:

Ideal World The ideal functionality FORAM maintains the updated vector D and it correctly
answers each of client’s queries.

• Setup The environment Z sends the initial database D to the client. The client forwards this
database D to FORAM , which sends N = |D| to the simulator S and the fact that the Setup
function was being invoked. The simulator returns ok or abort to FORAM , and for both these
cases FORAM forwards to the client ok or ⊥ respectively.

• Access The environment Z sends the operation op = (read, idx) or op = (write, idx, data) to
the client, which it forwards to the ideal functionality FORAM . FORAM notifies S that the
Access function is being invoked without leaking the operation op. If S says ok, the FORAM
outputs D[idx] to the client if it was the read operation, and for a write operation it updates
D[idx]← data. If S returns abort, FORAM returns ⊥. The client forwards the message from
FORAM to Z.

Real World The environment Z sends the initial database D to the client. The client runs the
Setup protocol with the two servers S0 and S1. The adversary A controls the behavior of only
one of these two servers. Whenever the environment Z sends the operation op = (read, idx) or
op = (write, idx, data) to the client, it runs the Access protocol with the two servers. The client
forwards its output of the Access protocol to Z and the adversary outputs its view to Z after each
operation.
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Definition 27. (Simulation based security definition for privacy+verifiability) A protocol
∏
ORAM

securely realizes the ideal functional FORAM if for any probabilistic polynomial-time real-world
adversary A there exist a simulator S, such that for all non-uniform, polynomial-time environment
Z we have that:

|Pr[REAL∏
ORAM ,A,Z = 1]− Pr[IDEALFORAM ,S,Z = 1]| ≤ negl(λ)

For some negligible function negl and security parameter λ.

B.2 Brief description of Onion ORAM

The Onion ORAM protocol allows for server-side computation, and at a high level it differs from
Bounded Feedback ORAM in the following ways:

1. The server side storage is encrypted using an aditively homomorphic encryption (AHE)
scheme, where blocks at depth l in the tree at encrypted using l layers of the AHE scheme.

2. Downloading only meta-data: Rather than downloading all blocks on a path during the
access operations, it downloads only the meta-data of all the blocks on this path. It locally
computes the location of the block that it wants to read/write. The client and the server
run a homomorphic select operation to just fetch the needed data-block from this path. We
describe this selection operation below in greater detail. Similarly the selection operation is
also used in the eviction algorithm.

3. To ensure integrity of data, the protocol uses memory checking to ensure integrity of the read
only meta-data blocks. To ensure the integrity of the data blocks the protocol uses a new
verification algorithm that relies on probabilistic checking and error correcting codes.

The key building block for their protocol is the homomorphic selection operation, where the
client has an index idx and the server has ciphertexts ct1, . . . ctm (under l layers of AHE El). The
client sends an l + 1 layer encrypted m length bit vector b to the server, which is 1 at location
idx. The server can compute ct = ⊕iEl+1(bi).cti = El+1(ctidx). This allows the server to obliviously
select the “correct” ciphertext with an additional layer of encryption. This operation can be used
to ensure O(B) bandwidth for the access and the eviction protocols for blocks of size at least
Ω̃(log6N).

B.3 ORAM Notation

A list of all notations and shorthands used in the ORAM protocol description are provided in Table
1.

B.4 ORAM Proof

Theorem 24. The distributed ORAM construction described in Figure 9 and Figure 10 satisfy the
security Definition 27.

Proof. We describe the simulator and the sequence of hybrids to show that the real world and the
ideal world simulation are indistinguishable.
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Notation Meaning

N number of ORAM blocks

B size of each block in bits

C number of share chunks of each block

T0, T1 ORAM trees stored on Servers S0 and S1 respectively

L depth of the ORAM tree

Z number of blocks per bucket in the ORAM tree

P(l) path from root to lead l
also a shorthand for the array of blocks on the same path

md0,md1 shares of meta-data stored on Servers S0 and S1

md[l] the array of meta-data for root to leaf blocks on P(l)

h([a1, . . . , ak]) shorthand for the list (h(a1), h(a2), . . . , h(ak)), where h is a hash function

G eviction counter

M ′ bound on value of secret shares

M bound on share conversion in RM circuit

Table 1: Notation and shorthand used in the ORAM protocol description

Simulator S: The simulator runs the Setup protocol on behalf of the honest client and the honest
server on a dummy database D′ of size N containing all zero blocks. For each Access operation the
simulator runs the honest Access protocol using a dummy index idx′ = 0 for both the honest client
and server. If the simulated client ever aborts during the protocol, then the simulator sends abort
to FORAM and stops responding to future Access operations, else it sends ok to FORAM .

Sequence of hybrids. Next we show a sequence of hybrids which prove that the real and the
ideal simulation are indistinguishable.

Game 0: This is the real game REAL∏
ORAM ,A,Z .

Game 1: The client simulates both servers honestly, and uses the shares and shared meta-data
returned from these honest servers instead of from the real servers. The real shares are only
used to determine if the protocol should abort, with the same condition as before.

Game 0 and Game 1 can only differ if the honest shares and real shares (of either the data
or the meta-data) decode to distinct non-aborting results. For the data, this would violate
the authentication property Definition 15. Similarly, the meta-data is authenticated using
the universal hash function.

Let md0,md1 be the honest meta-data shares, and let md′0,md′1 be the real meta-data
shares. Similarly, letHmd0 , Hmd1 andH ′md0

, H ′md1
be the honest and real shares of the universal

hash of the meta-data. Because at most one party has been corrupted, we have mdi = md′i and
Hmdi = H ′mdi

for some i ∈ {0, 1}. We have H(md1−md0) = Hmd1−Hmd0 and H(md′1−md′0) =
H ′md1

−H ′md0
because the honest shares always authenticate correctly and because the protocol

must not abort for a difference to occur between the two games. Subtracting these two
equations, we get

H(md′1 −md′0)−H(md1 −md0) = H ′md1 −H
′
md0 −Hmd1 +Hmd0 = (−1)i(H ′mdi

−Hmdi
)

Notice that the right-hand side of the equation is known to the corrupted party i, as one
is the share they provided and the other is the share that they would have given had they
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been honest. Given only the honest plaintexts md1 −md0 and a single party’s shares, which
contains no information about the chosen hash H from the universal family, it must have
been possible to find the difference between two hashes. Therefore, this event has negligible
probability by the uniform differences property of the universal hash family.

Game 2: Instead of simulating two honest servers and decoding the results of their shares, the
client will now instead stores the data and meta-data plaintexts and operate on them instead.
For the meta-data, this is equivalent by the correctness of secret sharing. For the data, this
follows from the HSS scheme’s correctness, as applied to a whole circuit in Lemma 14.

Game 3: Introduce an ideal functionality FORAM which stores the correct database D and the
client sends it the Access query whenever it doesn’t abort. The equivalence of this computation
comes from the correctness of the select and eviction operations, and the correctness of Onion
ORAM.

Game 4: Make the client run the setup procedure with the real servers using the dummy database
D′, as used by the simulator, instead of the one used by the environment. Additionally,
only share dummy information in SelectShare, so i is always set to 0. These changes are
indistinguishable by the privacy property of the HSS scheme, which implies that changing
the input to Share is indistinguishable from the point of view of a single server.

Game 5: For each Access function call, the client just runs a dummy read operation on index idx′ =
0 instead of using the operation input by the environment. Game 4 and 5 are indistinguishable
given that the physical memory access pattern on the server is indistinguishable for any
polynomial sequence of operations. This follows directly from the privacy of Onion ORAM.

After these hybrids, we are now at the simulator.

B.5 Secure 2-party computation of RAM programs

The main technique for secure computation of RAM programs is to start with a circuit MPC
protocol and use a multi-server ORAM protocol for every RAM access [GKK+12]. The client of
the ORAM protocol must be run inside the MPC protocol, which puts a premium on reducing its
computational complexity. The bottlenecks of client computation for the Access protocol are in
Select, which must encrypt Damg̊ard–Jurik ciphertexts as part of Share, and divide by ϕ as part
of Decode. We can alleviate the former with the public-key sharing property (Definition 16): use
generic MPC to give out shares i1− i0 = i of the plaintext, then use the public-key sharing protocol
to compute Share(pk, sk0, sk1, IN, ij) without using the secret key. The shares can then be combined
as the first step of the RMS circuit being evaluated. Additive decoding (Definition 17) avoids the
second problem by directly giving additive shares of the result, without any division.

These optimizations put the malicious security of the scheme in jeopardy, however. One server
could encrypt an incorrect value instead of their share of i, or they could exploit the fact that
the additive decoding algorithm does not authenticate its input. The solutions to these problems
are very similar to how we authenticate the meta-data. The generic MPC protocol can provide
an information theoretic MAC of the shares (e.g. shares of H(i) where H satisfies the uniform
difference property), which can then be checked inside the RMS circuit. The RMS circuit can
produce an information theoretic MAC of its output as well, which then after decoding can be
checked inside of MPC.
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C Trapdoor Hash Function Details

C.1 Definition

We adapt the following definition from [DGI+19]. The only changes are to the notation, and that we
allow the function f and input x to be chosen adaptively depending on the common reference string.
The main notational differences are that what they call the hash key we call the common reference
string, their encoding key is our public key, and their trapdoor is our secret key. We believe that
these changes make the resemblance between trapdoor hashes and homomorphic encryption clearer.
Also, we write the properties as algorithms that must produce indistinguishable distributions.

Definition 28. A (1 − p)-correct trapdoor hash function H for a class of predicates {Fn}n for
each input size n (Fn : {0, 1}n → {0, 1}) consists of the algorithms

• crs← Setup(1κ, 1n) samples the common reference string.

• (pk, sk) ← KeyGen(crs, f) creates a key pair that can be used to evaluate f ∈ Fn and decode
the result, respectively.

• h := Hash(crs, x; ρ) hashes an input x ∈ {0, 1}n using random bit stream ρ.

• e := Eval(crs, pk, x; ρ) evaluates the predicate represented by pk on x, returning the encoded
result.

• (e0, e1) ← Decode(crs, sk, h) takes a hash h and outputs the encodings corresponding to the
possible predicate outputs, 0 and 1.

such that the following conditions hold.

Correctness: For any x ∈ {0, 1}n, Eval(crs, pk, x; ρ) must output ef(x) and not e
f(x)

, where pk

was chosen using f . That is, for any efficient adversary A and any n, the distribution

crs← Setup(1κ, 1n)
(x, f)← A(crs)
ρ← $
h := Hash(crs, x, ρ)
(pk, sk)← KeyGen(crs, f)
e := Eval(crs, pk, x, ρ)
e0, e1 ← Decode(crs, sk, h)
return e, e0, e1

must satisfy two properties: Pr
[
e 6= ef(x)

]
is negligible and Pr

[
e = e

f(x)

]
≤ p. Here, ρ ← $

denotes generating a uniformly random bit stream.

Function Privacy: f cannot be determined from pk. More precisely, the distributions

crs← Setup(1κ, 1n)
(view, f0, f1)← A(crs)
(pk, sk)← KeyGen(crs, f0)
return view, pk

crs← Setup(1κ, 1n)
(view, f0, f1)← A(crs)
(pk, sk)← KeyGen(crs, f1)
return view, pk

must be indistinguishable, for any n and PPT adversary A.
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Input Privacy: Hash leaks nothing about its input x. Formally, for any efficient adversary A the
following distributions must be indistinguishable.

crs← Setup(1κ, 1n)
(view, x0, x1)← A(crs)
ρ← $
h := Hash(crs, x0, ρ)
return view, h

crs← Setup(1κ, 1n)
(view, x0, x1)← A(crs)
ρ← $
h := Hash(crs, x1, ρ)
return view, h

Compactness: The output size of Hash must be bounded by a polynomial in κ, independent of n.

The rate of H is |e|, the length in bits of Eval’s output.

C.2 Proof

The proof of function privacy for our scheme hinges on the following statement.

Lemma 29. For any PPT adversary A and any positive integers n, s, the following distributions
are indistinguishable if SampleN(1κ) outputs semiprimes N = pq such that 2`(κ)−1 < p, q < 2`(κ)

and the DCR assumption holds for N .

N ← SampleN(1κ)
(r1, . . . , rn)← (Z/N s+1Z)×

gi := rN
s

i ,∀i ∈ [1, n]
view, (a1, . . . , an)← A(N, g1, . . . , gn)
k ← [0, N)
return view, gk1 exp(a1), . . . , gkn exp(an)

N ← SampleN(1κ)
(r1, . . . , rn)← (Z/N s+1Z)×

gi := rN
s

i , ∀i ∈ [1, n]
view, (a1, . . . , an)← A(N, g1, . . . , gn)
k ← [0, N)
return view, gk1 , . . . , g

k
n

Proof. This is essentially the interactive vector game that was proven hard in [BG10, Lem. B.1].
However, in their game k was sampled in [1, N2(s+1)], instead of [0, N). Since the perfect powers of
N s have multiplicative order dividing ϕ, the exponent k only matters modulo ϕ. Modulo ϕ, both
[1, N2(s+1)] and [0, N) have negligible statistical distance to uniform, because ϕ/N2(s+1) < N−2s−1

is negligible, and N−ϕ
N = p+q−1

N < 2`(κ)+1

22(`(κ)−1) = 2−`(κ)+3 is also negligible. Therefore, we can sample
k from [0, N) instead.

Theorem 25. The construction in Figure 11 is a (1− n
N )-correct rate-1 trapdoor hash function.

Proof. There are five conditions that must be met, but before proving them we make a small change
to Setup. Instead of choosing all gi for i ∈ [0, n] uniformly at random in (Z/N2Z)×, choose them
as perfect powers of N . That is, sample ri ← (Z/N2Z)× and set gi = rNi . This is indistinguishable
by the DCR assumption (Definition 2). All properties that depend on Setup are defined using
indistinguishability for efficient adversaries, so this change can be viewed as a hybrid.

Correctness: Let d0 = DistN,1(hk) and d1 = DistN,1

(
K2r

0

∏
iK

2xi
i

)
. Then by Theorem 18, we

have

d1 − d0 = DistN,1

(
g2kr

0

∏
i

g2kxi
i exp(

fi
2

2xi)

)
−DistN,1(g2kr

0

∏
i

g2kxi
i )

=
∑
i

fixi +NZ.
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(Note that 2 is coprime to N , so the division fi
2 is well defined modulo N .) This means that

d1 − d0 takes the correct value modulo N .

Next, we need to use Lemma 19 to get shares in Z, without a modulus. To use it, we need to
show that the distribution of d0 is indistinguishable from being uniformly random independent
of
∑

i fixi. Imagine that we changed gk0 to gk0 exp( a2r ) in d0, for fresh randomness a← Z/NZ,

so that d0 would become DistN,1(g2kr
0 exp(a)

∏
i g

2kxi
i ) = DistN,1(g2kr

0

∏
i g

2kxi
i ) + a, which

is uniformly random. The change would be indistinguishable, by Lemma 29. Therefore,
Lemma 19 applies, proving that d1 mod N − d0 mod N =

∑
i fixi, except with a negligible

error probability of
∑
i fixi
N ≤ n

N .

Finally, e−e0 ≡2 d1 mod N−d0 mod N =
∑

i fixi ≡2 f(x), and so e = ef(x) and e 6= e
f(x)

.

Therefore the correctness property fails with probability at most n
N , which is negligible.

Function Privacy: By Lemma 29, it would be indistinguishable to sample every Ki as gki , i.e. to
set every fi to be zero. Now the distribution of pk does not depend on f , so privacy follows.

Input Privacy: First, change r ← [0, N) to r ← [0, ϕ) in Hash. This is indistinguishable because
N−ϕ
N is negligible, as was argued in Lemma 29. The hash is h = g2r

0

∏
i g

2xi
i , so if all g2

i are
in the subgroup of (Z/N2Z)× generated by g2

0 then the g2r
0 term will completely hide all the

xi. Every g2
i is a perfect power of 2N , and we will argue that g2

0 generates the subgroup of
powers of 2N .

By the Chinese remainder theorem, (Z/N2Z)× is isomorphic to (Z/p2Z)× × (Z/q2Z)×,

which are cyclic groups of order p(p−1) and q(q−1), respectively. There are p(p−1)
gcd(p(p−1),2N) =

p−1
2 powers of 2N in (Z/p2Z)×, and similarly there are q−1

2 powers of 2N in (Z/q2Z)×.
Therefore, the subgroup of powers of 2N in (Z/N2Z)× has order ϕ

4 ; this is a semiprime, so

it’s a cyclic group isomorphic to (Z/ϕ4Z)+. There are ϕ(ϕ4 ) = p−3
2

q−3
2 generators of (Z/ϕ4Z)+,

so picking a random element gives a generator with probability

p−3
2

q−3
2

p−1
2

q−1
2

=
N − 3(p+ q) + 9

N − (p+ q) + 1
≥ 1− 3

p+ q − 3

N
≥ 1− 3

2`(κ)+1

22(`(κ)−1)
= 1− negl.

This shows that g0 is a generator with all but negligible probability.

Compactness: The output of Hash is in (Z/N2Z)×, which has size bounded by 4`(κ) bits, a
polynomial in κ.

Rate: Eval outputs a single bit, so the rate is |e| = 1.
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