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Abstract. Post-quantum cryptography (PQC) is a trend that has a deserved NIST
status, and which aims to be resistant to quantum computer attacks like Shor and
Grover algorithms [1]. We choose to follow a non-standard way to achieve PQC:
taking any standard asymmetric protocol and replacing numeric field arithmetic
with GF(28) field operations [2]. By doing so, itis easy to implement R-propped
asymmetric systems as present and former papers show [3,4,5]. Here R stands
for Rijndael as we work over the AES field. This approach yields secure post-
quantum protocols since the resulting multiplicative monoid resists known quantum
algorithm and classical linearization attacks like Tsaban’s Algebraic Span [6] or
Roman’kov linearization attacks [7]. Here we develop an original group-based digital
signature protocol and R-propped it. The protocol security relies on the intractability
of a generalized discrete log problem, combined with the power sets of algebraic ring
extension tensors [2]. The semantic security and classical and quantum security
levels are discussed. Finally, we present a numerical example of the proposed
protocol.
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Introduction

1.1.

1.2.

PQCProposalsBased on Combinatorial Group Theory

Besides currently evaluated PQC solutions like code-based, hash-based, multi
quadratic, or lattice-based cryptography, there remain overlooked solutions belonging to
non-commutative (NCC) and non-associative (NAC) algebraic cryptography. The general
structure of these solutions relies on one-way trapdoor functions (OWTF) extracted from
the combinatorial group theory [8].

Motivation of the present work

In this paper, we develop an algebraic digital signature protocol The main target is to
achieve quantum-attacks resistance.

R-propping consists of replacing numerical field operations with algebraic operations
using the AES field [2]. As a benefit, no big number libraries are needed, and eradicating the
critical dependency on pseudo-random generators that affects protocols that security relies
on big prime numbers.

The R-propping solution is described below as an Algebraic Extension Ring (AER). For
background knowledge about algebraic solutions, we refer to the Myasnikov et al NCC
treatise [8].



2. Background

2.1. Algebraic Extension Ring (AER). The algebraic extension ring framework
[2] includes the following structures:

F,s6: aka. GF[28], the AES (advanced encryption standard) field [9]
Primitive polynomial: 1+x+x3+x4+x8 with <I+x> as the multiplicative subgroup
(F5ss) generator:

M[F,s, d] d-dimensional square matrix of field elements. (bytes). Therefore, a d-
dimensional square matrix is equivalent to a rank-3 Boolean tensor.

The AER platform has two substructures:

(M[F;56, d], ®, 0) Abelian group using field sum as operation and null matrix (tensor)
as the identity element.

(M[F5<s, d], ©, 1) Non-commutative monoid using field product as operation and
identity matrix (tensor) as the identity element.

From here on, when referring to field elements (bytes) we call them simply elements, and
when we refer to any d-dimensional matrix of the AER we will use the term d-dim tensor.

Detailed information on AER could be read at[2].

2.2. Generalized discrete logarithm problem (GDLP) in AER framework.

Given tz=(t1)%, where t1is an unknown tensor and x an unknown integer, compute
exponent x for a given t; tensor.

3. R-Propped group-based digital signature protocol

It is proposed an indirect signature procedure, so a suitable public hashing of a binary
message msg of arbitrary length n should be defined. We choose a numeric output h(msg)
=h({0, 1}*) € [1, period]. A period is defined at 3.1. This function should be publicly available
together with the tensor product and power functions. The protocol uses the AES
framework [9]. The implementation takes the following steps:

3.1. Define the desired security level from Table 2., selecting the corresponding base
generator go and period and using the numeric definition in Table 1. This go and
period are both public data.

3.2. Any signer defines his msg and compute h(msg).

3.3. The signer generates a random secret exponent r in the range [2, period-2] and
computes the r-power of go. This will be the actual private generator g. Then he
computes a random session private key (a) in the range [2, period-2] and the
corresponding public key and the first component of the digital signature so=(g)?

3.4. The signer computes the inverse tensor g! raising g to power period -1 and
control that the product g.g! = identity tensor. If not, returns to 3.3.

3.5. The signer defines a secret session key k in the range [2, period-2] and computes
the exponent kh = k. h, where h=h(msg).

3.6. The signer compute the signatures si= so (g1)kh and s2=(g)k.

3.7. The signer publishes the digital signature (so, s1, s2) together with the message
msg.



3.8. Any verifier should:
3.8.1. Using the msg, recalculate h’=h(msg)
3.8.2. compute the power s3=(s2)

3.8.3. Verify if the product sl.s3 = s0. If true, then the computed h’= h(msg)
matches the original h=h(msg), so the signature is valid, else it would be
rejected.

3.9. If verified, the origin of the signature, the integrity of message, and non-
repudiation are assured.

4. The cryptographic security of the R-Propped B-D protocol

Using R-Propping we design private keys (exponents) of certain public tensors for
which this approach is unfeasible.

The proposed tensor generators are:

dim3, period 25673 -1 -->2"24-1
158 215 6
G3=|216 221 53 ]

45 119 206

dim4, period25674 -1 -->2732-1
210 72 68 31
156 225 86 224
75 171 53 252
38 22 171 1eS

G4 =

dim7, period256712-1--> 2796-1

(147 65 106 219 36 20 37
125 14 216 138 90 186 1@
67 90 56 25 234 130 86
G7 = | 156 242 122 74 146 218 128
19 55 159 189 5 142 114
236 247 81 75 124 61 121
119 15 112 21 195 25 118

dim10, period 256714 -1 --> 27112-1

222 179 28 115 147 20 69 102 39 46
233 103 227 60 170 63 13 © 203 20
70 52 2 77 155 51 203 221 185 27
234 69 © 3 113 112 137 237 143 140
92 243 15 70 59 75 141 157 213 251
75 208 88 243 83 17 130 10 129 4

241 97 241 224 192 213 105 53 232 226
41 15 123 22 144 73 111 228 191 15
83 131 155 183 158 84 183 144 189 78
126 35 224 17 157 124 32 140 118 226

G10 =

dim12, period256720-1-->27160 -1

255 21 43 199 233 44 168 110 205 105 190 140
254 241 192 46 189 239 112 129 236 114 30 162
78 182 117 99 1 213 173 144 178 105 22 104
235 237 38 152 100 43 160 194 10 230 21 237
29 127 72 1 236 4 152 37 13 125 205 108
55 159 168 196 238 6 139 43 155 146 100 112
133 25 117 59 130 198 212 87 109 42 105 147
147 254 177 199 205 140 60 115 72 225 7 45
198 136 42 71 13 95 115 146 195 245 68 31
239 56 211 16 19 67 207 229 203 155 94 105
41 182 182 57 223 173 161 246 32 71 233 120
17 43 171 195 86 58 255 237 158 65 84 9

G12 =

Table 1. Predefined base tensors <Go> and corresponding multiplicative orders to be used for
the R-Propped protocol: any base tensor raised to the corresponding period yields the Identity
tensor. This table redefines Table 2. published in [5].



Classical and quantum security levels are as follows:

. [Grover]
<Go> . . Classical
Tensor cyclic period . Quantum
. : base Security .
dimension S [<G>| (bits) Security
& (bits)
3 G3 224-1=16777215 24 12
4 G4 232 - 1= 4294967295 32 16
7 G7 29 -1=7.92x10%8 96 48
10 G10 2112 -1=5.19x 1033 112 56
12 G12 2160 - 1=1.46x10%8 160 80

Table 2. Expected security of increasing size of private keys subject to classical and quantum
attacks. Depending on the situation, it should be chosen base generators like G7 or above from
Table 1. In any case, any random power of the base generator should be used as the actual
generator of the protocol. This table redefines Table 3. published in [5].

The IND-CPA2 semantic security [10] is assured as members of the <g> set are
indistinguishable from random tensors of the same size. More arguments and statistical
evidence of tensor structures are provided [4].

5 Step-By-Step Example

To follow procedures, we show a dim=3 toy program written for Mathematica 12
interpreted language. Detailed code with the newly defined functions is available upon
request to the author. Running as-is on an Intel®Core™i5-5200U CPU 2.20 GHz the
registered mean session time was 1.29 s.

BNV L7500 e .0, 5 b e e 13 00,818 80  b  B 9 4 870 o S SIS = e (5 8 v ]
Print ["R-PROPPING OF A GROUP-BASED DIGITAL SIGNATURE"]
PRINE[Massvevnsi svaaississiais e s tevess s psessess il
dim = 3; Print["tensor dimension = ", dim];

period = 2724 - 13 Print["tensor period = ", period];
goe = {{158, 215, 6}, {216, 221, 53}, {45, 119, 206}};
r = RandomInteger[{2, period - 2}];

Print["random power = ", rjl;

Label[stepl]; g = TFastPower[g@, r];

invg = TFastPower[g, period - 1];

If[TProd[g, invg] == IdentityMatrix[dim], nil,
GoTo[stepl]];
Print["random private generator = ", MatrixForm[g]];

a = RandomInteger[{2, period - 2}];
Print["signer private key = ", a];
s@ = TFastPower([g, a];

"

Print["signer public key = ", MatrixForm[s@]];

k = RandomInteger[{2, period - 2}];

Print["signer session key = ", k];

Print ["SIGNING PROCEDURE ($0,51,S2) «uveuuaenuasonnsnn )
h = RandomInteger[{2, period - 2}];

Print["original message hashing= ", h];

kh = kh; Print["exponent k.h = ", kh];

sl = TProd[ s@, TFastPower [invg, kh]];

Print["signature s1 = ", MatrixForm[s1]];

s2 = TFastPower([g, k];

Print["signature s2 = ", MatrixForm[s2]];
Print["VERIFYING PROCEDURE. i i e siaisnsiiesi somesinss |
Print["recalculated message hashing = ", h];

s3 = TFastPower [s2, h];

Print["s3 = s2”h = ", MatrixForm[s3]];

Print["sl1.s3=s@ ? ", TProd[sl, s3] == s0]

Table 3. Small example program of the defined protocol. In a real-world application, dim =7 or
greater should be used to get reasonable security.



tensor dimension = 3

tensor period - 16777215

random power = 15410182

69 102 164
238 25 140
17 158 135

random private generator =

signer private key - 13481815

246 252 66
16 151 1691
1e3 158 65 )

signer public key =

signer session key - 6686110

SIGNING PROCEDURE (S8,S1,852) wuiniwsims cin cninnioiainin
original message hashing= 5011236

exponent k.h = 3355675131960

239 146 169
72 2206 189
50 122 179
82 181 131
150 206 21
\ 253 63 28
VERTIFYING PROCEDURE .« civivaiciiiann aie srinaraisis aminie i sl
recalculated message hashing = 5011236

206 38 170]

signature s1 =

signature s2 -

s3 = s2*h = | 253 193 19

43 238 1 |

s1.s3=s8 ? True

Table 4. The output of the sample program that was described in Table3.

6 Conclusions

We present a PQC class of a new digital signature based on group theory. The protocol
is somehow resemblant to ElGamal’s digital signature. Practical parameters are presented,
and they solve the central question with different security levels.

Other works of the author covering this field can be found at [11].
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