
Ciminion: Symmetric Encryption Based on
Toffoli-Gates over Large Finite Fields

Christoph Dobraunig1,2, Lorenzo Grassi3, Anna Guinet3, and Daniël Kuijsters3

1 Lamarr Security Research, Graz, Austria
2 IAIK, Graz University of Technology, Graz, Austria

3 Digital Security Group, Radboud University, Nijmegen, The Netherlands
christoph.dobraunig@lamarr.at, lgrassi@science.ru.nl, email@annagui.net,

Daniel.Kuijsters@ru.nl

Abstract. Motivated by new applications such as secure Multi-Party
Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-
Knowledge proofs (ZK), the need for symmetric encryption schemes that
minimize the number of field multiplications in their natural algorithmic
description is apparent. This development has brought forward many
dedicated symmetric encryption schemes that minimize the number of
multiplications in F2𝑛 or F𝑝, with 𝑝 being prime. These novel schemes
have lead to new cryptanalytic insights that have broken many of said
schemes. Interestingly, to the best of our knowledge, all of the newly
proposed schemes that minimize the number of multiplications use those
multiplications exclusively in S-boxes based on a power mapping that is
typically 𝑥3 or 𝑥−1. Furthermore, most of those schemes rely on complex
and resource-intensive linear layers to achieve a low multiplication count.
In this paper, we present Ciminion, an encryption scheme minimizing the
number of field multiplications in large binary or prime fields, while using
a very lightweight linear layer. In contrast to other schemes that aim to
minimize field multiplications in F2𝑛 or F𝑝, Ciminion relies on the Toffoli
gate to improve the non-linear diffusion of the overall design. In addition,
we have tailored the primitive for the use in a Farfalle-like construction
in order to minimize the number of rounds of the used primitive, and
hence, the number of field multiplications as far as possible.

Keywords: Symmetric Encryption · Low Multiplicative Complexity

1 Introduction

Recently, several symmetric schemes have been proposed to reduce the number of
field multiplications in their natural algorithmic description, often referred to as
the multiplicative complexity. These ciphers fall into two main categories. The first
one contains ciphers that minimize the use of multiplications in F2, for instance,
Flip [53], Keyvrium [22], LowMC [4], and Rasta [33]. The second category is
comprised of ciphers having a natural description in larger fields, which are mostly
binary fields F2𝑛 and prime fields F𝑝. Examples include MiMC [3], GMiMC [2],
Jarvis [8], Hades [40], Poseidon [39] and Vision and Rescue [6]. The design of

low multiplicative complexity ciphers is motivated by applications such as secure
Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and
Zero-Knowledge proofs (ZK). These recent ciphers based on specialized designs
highly outperform “traditionally” designed ones in these applications. The search
of minimizing the multiplicative complexity while providing a sufficient security
level is an opportunity to explore and evaluate innovative design strategies.

The sheer number of potentially devastating attacks on recently published
designs implies that the design of schemes with low multiplicative complexity
has not reached a mature state yet. Indeed, we count numerous attacks on
variants of LowMC [32,58], Flip [34], MiMC [35], GMiMC [15,19], Jarvis [1], and
Starkad/Poseidon [15]. Attacks that are performed on schemes defined for larger
fields mostly exploit weaknesses of the algebraic cipher description, e.g., Gröbner
bases attacks on Jarvis [1] or higher-order differential attacks on MiMC [35].
Nonetheless, attack vectors such as differential cryptanalysis [17] and linear
cryptanalysis [51] do not appear to threaten the security of these designs. Indeed,
the latter two techniques seem to be able to attack only a tiny fraction of the
rounds compared to algebraic attacks.

Interestingly, the mentioned ciphers working over larger fields are inspired
by design strategies proposed in the 1990s to mitigate differential cryptanalysis.
For example, MiMC resembles the Knudsen-Nyberg cipher [55], Jarvis claims to
be inspired by the design of Rijndael [27,28], while Hades, Vision, and Rescue
take inspiration from Shark [59]. The latter ciphers have a linear layer that
consists of the application of a single MDS matrix to the state. An important
commonality between all those examples is a non-linear layer that operates on
individual field elements, e.g., cubing single field elements or computing their
inverse. Furthermore, design strategies naturally working over larger fields easily
prevent differential cryptanalysis. However, algebraic attacks seem to be their
main threat. Therefore, it is worth exploring different design strategies to increase
the resistance against algebraic attacks.
Our Design: Ciminion. In that spirit, Ciminion offers a different design
approach in which we do not apply non-linear transformations to individual field
elements. Instead, we use the ability of the multiplication to provide non-linear
diffusion between field elements. Our cipher is built upon the Toffoli gate [61],
which is a simple non-linear bijection of field elements that transforms the triple
(𝑎, 𝑏, 𝑐) into the triple (𝑎, 𝑏, 𝑎𝑏+ 𝑐). The binary version of the Toffoli gate is used
as a building block in modern ciphers, such as FRIET [60], which inspired our
design. In addition to this, the S-box of Xoodoo [26] can also be described as
the consecutive application of three binary Toffoli gates. With respect to the
linear layer, we learned from ciphers like LowMC [4] that very heavy linear layers
can have a considerably negative impact on the performance of applications [31].
Therefore, we decide to pair the Toffoli gate with a relatively lightweight linear
layer to construct a cryptographic permutation on triples of field elements.
Compared to the designs that use a non-linear bijection of a single field element,
e.g., cubing in F2𝑛 for odd 𝑛, we can define our permutation on any field, and
then provide a thorough security analysis for prime fields and binary fields.

2

(a) Farfalle Construction

𝐴𝑅𝐾(·)

𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 . . . 𝑆

𝑀(·)

...

𝐴𝑅𝐾(·)

. . . 𝑆

𝑀(·)

...

𝐴𝑅𝐾(·)

𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 . . . 𝑆

𝑀(·)

𝑅𝑓 rounds

𝑅𝑃 rounds

𝑅𝑓 rounds

𝑅𝑓 rounds

𝑅𝑃 rounds

𝑅𝑓 rounds

(b) A Hades-like scheme.

Fig. 1: Comparison of a Farfalle construction and a Hades-like scheme.

We do not use a bare primitive in the applications, but we employ prim-
itives in a mode of operation. Indeed, instead of constructing a primitive of
low multiplicative complexity, our goal is to provide a cryptographic function
of low multiplicative complexity. We achieve this by using a modified version
of the Farfalle construction to make it possible to perform stream encryption.
Farfalle [12] is an efficiently parallelizable permutation-based construction with a
variable input and output length pseudorandom function (PRF). It is built upon
a primitive, and modes are employed on top of it. The primitive is a PRF that
takes as input a key with a string (or a sequence of strings), and produces an
arbitrary-length output. The Farfalle construction involves two basic ingredients:
a set of permutations of a 𝑏-bit state, and the so-called rolling function that is used
to derive distinct 𝑏-bit mask values from a 𝑏-bit secret key, or to evolve the secret
state. The Farfalle construction consists of a compression layer that is followed
by an expansion layer. The compression layer produces a single 𝑏-bit accumulator
value from a tuple of 𝑏-bit blocks representing the input data. The expansion
layer first (non-linearly) transforms the accumulator value into a 𝑏-bit rolling
state. Then, it (non-linearly) transforms a tuple of variants of this rolling state
which are produced by iterating the rolling function, into a tuple of (truncated)
𝑏-bit output blocks. Both the compression and expansion layers involve 𝑏-bit
mask values derived from the master key.

We slightly modify Farfalle (see Fig. 3) and instantiate it with two different
permutations: 𝑝𝐶 for the compression part, and 𝑝𝐸 for the expansion part. Those
two permutations are obtained by iterating the same round function, but with a
different number of rounds. In our construction, the permutation 𝑝𝐶 takes an
input that is the concatenation of a nonce ℵ and a secret key, and it derives
a secret intermediate state from this input. Then, the intermediate state is
updated by using a simple rolling function, and fixed intermediate keys. From
this intermediate state, the keystream for encrypting the plaintext is derived
by using the permutation 𝑝𝐸 . In order to prevent backward computation, the
outputs of the expansion layers are truncated. Our security analysis that is

3

0 10 20 30 40 50 600

0.2

0.4

0.6

0.8

1 ·104

𝑡

#
M

ul
tip

lic
at

io
ns

MiMC-CTR
GMiMC𝑒𝑟𝑓

Rescue
HadesMiMC
Ciminion

Fig. 2: Number of MPC multiplications of several designs over (F𝑝)𝑡, with 𝑝 ≈ 2128

and 𝑡 ≥ 2 (security level of 128 bits).

presented in Sect. 4 shows that 𝑝𝐸 requires a significantly lower number of rounds
than 𝑝𝐶 . The relatively low number of multiplications that is used per encrypted
plaintext element leads to a remarkably overall low multiplicative complexity.
The full specification for Ciminion is presented in Sect. 2. A detailed rationale
of the choices made during the design process is given in Sect. 3. A reference
implementation can be found at https://github.com/ongetekend/ciminion.
A Concrete Use Case: Multi-Party Computation. The primary motivation
of our design is to explore the limits on the use of non-linear operations in
cipher design, while limiting the use of linear operations, and ensuring a secure
design. The main body of our paper is thus dedicated to cryptanalysis which is
accompanied by one specific use-case, namely Secure Multi-Party Computation.

MPC is a subfield of cryptography that aims to create methods for parties to
jointly compute a function over their inputs, without exposing these inputs. In
recent years, MPC protocols have converged to a linearly homomorphic secret
sharing scheme, whereby each participant is given a share of each secret value.
Then, each participant locally adds shares of different secrets to generate the
shares of the sum of the secrets. In order to get data securely in and out of a
secret-sharing-based MPC system, an efficient solution is to directly evaluate
a symmetric primitive within such system. In this setting, “traditional” PRFs
based on, e.g., AES or SHA-3 are not efficient. Indeed, they were designed with
different computing environments in mind. Hence, they work over data types that
do not easily match the possible operations in the MPC application. As developed
in [42], “traditional” PRFs like AES and SHA-3 are rather bit/byte/word-oriented
schemes, which complicate their representation using arithmetic in F𝑝 or/and
F2𝑛 for large integer 𝑛, or prime 𝑝.

From a theoretical point of view, the problem of secure MPC is strongly
connected to the problem of masking a cryptographic implementation. This

4

https://github.com/ongetekend/ciminion

observation has been made in [44,45]. The intuition behind is that both masking
and MPC aim to perform computations on shared data. In more detail, the
common strategy behind these techniques is to combine random and unknown
masks with a shared secret value, and to perform operations on these masked
values. Only at the end of the computation, the values are unmasked by combining
them, in a manner that is defined by the masking scheme. In our scheme,
we use a linear sharing scheme, because affine operations (e.g., additions, or
multiplications with a constant) are non-interactive and resource efficient, unlike
the multiplications that require some communication between the parties. The
number of multiplications required to perform a computation is a good estimate
of the complexity of an MPC protocol.

However, in practice, other factors influence the efficiency of a design. For
instance, while one multiplication requires one round of communication, a batch of
multiplications can be processed into a single round in many cases. In that regard,
Ciminion makes it possible to batch several multiplications due to the parallel
execution of 𝑝𝐸 . Another alternative to speed up the processing of messages
is to execute some communication rounds in an offline/pre-computation phase
before receiving the input to the computation. This offline phase is cheaper than
the online rounds. For example, in the case of Ciminion, precomputing several
intermediate states is possible by applying 𝑝𝐶 to different nonces ℵ. As a result,
for the encryption of arriving messages, those intermediate states only have to
be expanded, and processed by 𝑝𝐸 to encrypt the plaintext.

Sect. 5 demonstrates that our design Ciminion has a lower number of mul-
tiplications compared to several other schemes working over larger fields. The
comparison of the number of multiplications in MPC applications to the ciphers
that are presented in the literature, is shown in Fig. 2, when working over a field
(F𝑝)𝑡 with 𝑝 ≈ 2128 and 𝑡 ≥ 1, and with a security level of 128 bits (which the
most common case in the literature). It indicates that our design needs approx-
imately 𝑡 + 14 · ⌈𝑡/2⌉ ≈ 8 · 𝑡 multiplications compared to 12 · 𝑡 multiplications
that are required by HadesMiMC, or 60 · 𝑡 multiplications that is needed by
Rescue. These two schemes that have recently been proposed in the literature
are our main competitors. Additionally, our design employs a low number of
linear operations when compared with other designs present in the literature.
Indeed, Ciminion grows linearly w.r.t. 𝑡, whereas the number of linear operations
grows quadratically in HadesMiMC and Rescue. That is because their rounds
are instantiated via the multiplication with a 𝑡× 𝑡 MDS matrix. Even if the cost
of a linear operation is considerably lower than the cost of a non-linear one in
MPC applications, it is desirable to keep both numbers as low as possible. Our
design has this advantage.

2 Specification

2.1 Mode

In order to create a nonce-based stream-encryption scheme, we propose to work
with the mode of operation described in Fig. 3. First, the scheme takes a nonce ℵ

5

pC

K2

K1

ℵ

pE

P3

C3

pE

K3
K4

rol

K2l−1
K2l

rol

P4

C4

P2l−1

C2l−1

P2l

C2l

pE

P1

C1

P2

C2

Fig. 3: Encryption with Ciminion over F2𝑛 . The construction is similar over F𝑝

(⊕ is replaced by +, the addition modulo 𝑝).

along with two subkey elements 𝐾1 and 𝐾2 as input, and processes these input
with a permutation 𝑝𝐶 to output an intermediate state. This intermediate state
is then processed by a permutation 𝑝𝐸 , and truncated to two elements so that
two plaintext elements 𝑃1 and 𝑃2 can be encrypted. If more elements need to be
encrypted, the intermediate state can be expanded by repeatedly performing an
addition of two subkey elements to the intermediate state, then followed by a call
to the rolling function rol. After each call to the rolling function rol, two more
plaintext elements 𝑃2𝑖 and 𝑃2𝑖+1 can be encrypted thanks to the application of
𝑝𝐸 to the resulting state. We consider the field elements as atomic, and therefore,
our mode can cope with a different number of elements without the need for
padding. The algorithmic description of the mode of operation that is described
in Fig. 3, is provided in App. I.

2.2 Permutations

We describe two permutations of the vector space F3
𝑞. They act on a state of

triples (𝑎, 𝑏, 𝑐) ∈ F3
𝑞. The first permutation is defined for a prime number 𝑞 = 𝑝

of log2(𝑝) ≈ 𝑛 bits, while the second permutation is specified for 𝑞 = 2𝑛. Both
permutations are the result of the repeated application of a round function. Their
only difference is the number of repeated applications that we call rounds. As

6

RC1 `

ai−1

bi−1

ci−1

ai

bi

ci

RC2 `

RC3 `

·RC4 `

Fig. 4: Round function 𝑓𝑖.

Fig. 5: rol.

pC

MK2

MK1

IVH

K1

pC

. . .

. . .

. . . pC

K2l−1 K2l

Fig. 6: Key generation.

presented in Fig. 3, we employ two permutations 𝑝𝐶 and 𝑝𝐸 that have respectively
𝑁 and 𝑅 rounds.

Round Function. We write 𝑓𝑖 for round 𝑖. It uses four round constants RC ℓ,
with ℓ = 𝑖 for 𝑝𝐶 , and ℓ = 𝑖+𝑁 −𝑅 for 𝑝𝐸 . We assume that RC4 ℓ /∈ {0, 1}. For
each 𝑖 ≥ 1, 𝑓𝑖 maps a state (𝑎𝑖−1, 𝑏𝑖−1, 𝑐𝑖−1) at its input to the state (𝑎𝑖, 𝑏𝑖, 𝑐𝑖)
at its output, where the relation between these two states is⎡⎣𝑎𝑖

𝑏𝑖

𝑐𝑖

⎤⎦ :=

⎡⎣0 0 1
1 RC4 ℓ RC4 ℓ

0 1 1

⎤⎦ ·
⎡⎣ 𝑎𝑖−1

𝑏𝑖−1
𝑐𝑖−1 + 𝑎𝑖−1 · 𝑏𝑖−1

⎤⎦ +

⎡⎣RC3 ℓ

RC1 ℓ

RC2 ℓ

⎤⎦ .

2.3 The Rolling Function

Our rolling function rol is a simple NLFSR as depicted in Fig. 5. The rolling
function takes three field elements 𝜄𝑎, 𝜄𝑏, and 𝜄𝑐 at the input. It outputs three
field elements: 𝜔𝑎 := 𝜄𝑐 + 𝜄𝑎 · 𝜄𝑏, 𝜔𝑏 := 𝜄𝑎, and 𝜔𝑐 := 𝜄𝑏. The latter variables form
the input of the permutation 𝑝𝐸 in our Farfalle-like mode Fig. 3.

2.4 SubKeys and Round Constants

SubKeys Generation. We derive the SubKey material 𝐾𝑖 from two master
keys 𝑀𝐾1, and 𝑀𝐾2. As a result, the secret is shared in a compact manner,
while the expanded key is usually stored on a device, and used when needed. To
expand the key, we use the sponge construction [13] instantiated with the permuta-

7

Table 1: Proposed number of rounds based on 𝑓 . The security level 𝑠 must satisfy
64 ≤ 𝑠 ≤ log2(𝑞), and 𝑞 ≥ 264, where 𝑞 is the number of elements in the field.

Instance 𝑝𝐶 𝑝𝐸 (two output words per block)

Standard 𝑠 + 6 max
{︀⌈︀

𝑠+37
12

⌉︀
, 6

}︀
Data limit 2𝑠/2 elements 2(𝑠+6)

3 max
{︀⌈︀

𝑠+37
12

⌉︀
, 6

}︀
Conservative 𝑠 + 6 max

{︀(︀⌈︀
3
2 ·

𝑠+37
12

⌉︀)︀
, 9

}︀

tion 𝑝𝐶 . The value IV 𝐻 can be made publicly available, and is typically set to one.

Round Constants Generation. We generate the round constants RC1 ℓ, RC2 ℓ,
RC3 ℓ, and RC4 ℓ with Shake-256 [14,54]. The detail is provided in App. A.

2.5 Number of Rounds and Security Claim for Encryption

In this paper, we assume throughout that the security level of 𝑠 bits satisfies the
condition 64 ≤ 𝑠 ≤ ⌊log2(𝑞)⌋. This implies that 𝑞 ≥ 264.

In Tab. 1, we define three sets of round numbers for each permutation in our
encryption scheme:

– The “standard” set guarantees 𝑠 bit of security; in the following sections, we
present our security analysis that supports the chosen number of rounds for
this case.

– For our MPC application, we propose a number of rounds if the data available
to the attacker is limited to 2𝑠/2; our security analysis that supports the
chosen number of rounds for this case is presented in App. F.

– Finally, we present a “conservative” number of rounds where we arbitrarily
decided to increase the number of rounds by 50% of the standard instance.

Since many cryptanalytic attacks become more difficult with an increased
number of rounds, we encourage to study reduced-round variants of our design
to facilitate third-party cryptanalysis, and to estimate the security margin. For
this reason, it is possible to specify toy versions of our cipher, i.e., with 𝑞 < 264

which aim at achieving, for example, only 32 bits of security.

3 Design Rationale

3.1 Mode of Operation

In order to provide encryption, our first design choice is to choose between a mode
of operation that is built upon a block cipher or a cryptographic permutation. In
either case, a datapath design is necessary. However, a block cipher requires an
additional key schedule, unlike a cryptographic permutation. If a designer opts
for a block cipher, the key schedule can be chosen to be either a non-linear, an

8

pC

K2

K1

ℵ

pE

K2s+2

C2s

rol

rol

P2s

C2s+1

K2s+3 P2s+1

pE

K3

C1

P1

C2

K4 P2

Fig. 7: Intermediate step in constructing Fig. 3

affine, or a trivial transformation, where the round keys are equal to the master
key apart from round constants. In this case, the designer has to be careful,
because a poor key schedule leads to weaknesses and attacks [19]. Considering
that the research in low multiplicative complexity ciphers is a relatively new
research area, we decided to limit our focus to the essential components of a
primitive. Therefore, we opted for permutation-based cryptography.

Since we consider the application of low multiplicative ciphers in areas that
have enough resources to profit from parallel processing, we base our mode of
operation on the Farfalle construction [12] as depicted in Fig. 1a. The Farfalle
construction is a highly versatile construction that provides many functionalities.
A Modified Version of Farfalle. As already mentioned in the introduction,
our mode of operation resembles the Farfalle construction. In this section, we
explain and support the modifications that we performed on the original Farfalle
construction, as depicted in Fig. 1a. The aim of those modifications is to both
increase the resistance of the construction against algebraic attacks which are the
most competitive ones in our scenario, and to increase its efficiency in our target
application scenario, that is to say to minimize the number of multiplications.
We focus first on the security aspect, before explaining in further detail how we
reach our efficiency goal.

Our first modification is for simplicity. Since the functionality provided by
the Farfalle construction to compress information is not needed, we merge 𝑝𝑐 and
𝑝𝑑 to a single permutation 𝑝𝐶 .

Our second modification is to truncate the output. This prevents meet-in-the-
middle style attacks that require the knowledge of the full output.

The third modification is to manipulate different keys 𝐾𝑖 (see Fig. 7) instead
of employing the same key 𝑘′ for each output block. Since we aim to have a
permutation with a low degree, Gröbner bases are the main threat. For the
scheme that is depicted in Fig. 7, an attacker has to exploit equations of the form
𝑓(𝑥) + 𝐾𝑖 = 𝑦 and 𝑓(𝑥′) + 𝐾𝑖 = 𝑦′, with 𝑓(𝑥) − 𝑓(𝑥′) = 𝑦 − 𝑦′ for a Gröbner
basis attack. We describe this scenario in more detail in Sect. 4.4.

9

Our last modification is to move the keys 𝐾𝑖 from the output of 𝑝𝐸 to the
input of our rolling function, and hence, effectively to the input of 𝑝𝐸 (Fig. 3).
Fig. 3 is our final construction, and it provides two main benefits. First, having
the keys at the input does not make it possible to easily cancel them by computing
the difference of the output as described before. Hence, this adds an additional
barrier in mounting successful Gröbner basis attacks. Second, we can use a simple
non-linear rolling function, because the addition of the key stream during the
rolling function prevents the attacker from easily detecting short cycles within it.
Minimizing the Number of Multiplications. One main reason to use the
Farfalle construction is that its three permutations 𝑝𝑐, 𝑝𝑑, and 𝑝𝑒 do not have to
provide protection against all possible attack vectors. Indeed, the permutation
𝑝𝑒 alone does not have to provide resistance against higher-order differential
attacks [47, 49]. The latter are particular algebraic attacks that exploit the
low degree polynomial descriptions of the scheme. Resistance against higher-
order differential attacks (higher-order attacks in short) can be provided by
the permutations 𝑝𝑐, and 𝑝𝑑, and it inherently depends on the algebraic degree
that a permutation achieves. Hence, requiring protection against higher-order
attacks provides a lower bound on the number of multiplications that are needed
in a permutation. In a nutshell, since 𝑝𝑒 does not have to be secure against
higher-order attacks, we can use a permutation with fewer multiplications. This
benefits the multiplication count of the scheme, since the permutations 𝑝𝑐 and
𝑝𝑑 are called only once independently of the number of output words.
The Rolling Function. An integral part of the Farfalle construction is the rolling
function rol. The permutations 𝑝𝑐 and 𝑝𝑒 (Fig. 1a) in the Farfalle construction are
usually chosen to be very lightweight, such that the algebraic degree is relatively
low. Hence, to prevent higher-order attacks, the rolling function is chosen to
be non-linear. In our modified version, the same is true up to the intermediate
construction as depicted in Fig. 7. In this case, rol has to be non-linear in order
to use a permutation 𝑝𝐸 of low degree. For our final construction (Fig. 3), we
do not see any straightforward way to exploit higher-order attacks due to the
unknown keys at the inputs of 𝑝𝐸 . Thus, we could use a linear rolling function
rol, but we rather choose to use a simple non-linear rol for Ciminion. That is
because it makes it possible to analyze the security of Fig. 7, and to keep the
same conclusion when we opt for the stronger version of Fig. 3. In addition, we
present Aiminion in App. B, a version of our design that does not follow this
line of reasoning. Aiminion uses a linear rolling function, and nine rounds of 𝑝𝐸 .
We deem this version to be an interesting target for further analysis that aims to
evaluate the security impact of switching from a non-linear to a linear rolling
function.
Generating the Subkeys. Instead of sharing all subkeys 𝐾𝑖 directly by com-
municating parties to encrypt messages, we specify a derivation of the subkeys
𝐾𝑖 from two master keys MK1, and MK2. These subkeys can be generated in
a single precomputation step. For the storage of the subkeys, trade-offs can be
made to store as many subkeys as needed, and to split messages into lengths
that match the stored subkey lengths.

10

3.2 The Round Function

Our round function is composed of three layers: a non-linear transformation, a
linear transformation, and a round constant addition. Like classical designs, we
employ the same non-linear and linear transformations for each round, but with
different round constant additions. This makes it easier to implement, and to
reduce code-size and area requirements. Nonetheless, some primitives that have
been designed to lower the multiplicative complexity use a different linear layer
for each round, like in LowMC [4].
Non-linear Transformation. Most primitives operating in large fields have a
variant of powering field elements, e.g., 𝑥3 or 𝑥−1. These mappings became popular
to guard against linear and differential cryptanalysis due to their properties [55].
The most popular design that uses such mappings is the AES [28], where 𝑥−1 is
used as part of its S-box. For ciphers that aim at a low multiplicative complexity,
these power mappings are interesting because they often have an inverse of
high degree, which provides protection against algebraic attacks. However, they
impose some restrictions, e.g., the map 𝑥 ↦→ 𝑥𝛼 for integer 𝛼 ≥ 2 is a bijection
in F𝑞 if and only if gcd(𝑞 − 1, 𝛼) = 1 (e.g., 𝑥 ↦→ 𝑥3 is a permutation over F2𝑛

for odd 𝑛 only). Hence, one has to consider several power values 𝛼 in order for
𝑥𝛼 to stay a permutation for any field. In a design that should make it possible
to be instantiated for a wide variety of fields, considering those special cases
complicates the design of the cipher.

Instead of a power mapping, the non-linear element in our designs is the Toffoli
gate [61]. Indeed, algebraic attacks are the main threat against designs aiming to
lower the multiplicative complexity, and the multiplications are the main cost
factor in our design. It thus seems counter intuitive to spend the non-linear
element on simply manipulating a single field element, as is the case for power
mappings. Therefore, we choose to multiply two elements of the state, instead of
operating on a single state element, in order to increase the non-linear diffusion.
Furthermore, the Toffoli gate is a permutation for any field, and therefore we
are not restricted to a specific field. We mitigate potential negative effects of the
property of the Toffoli gate to provide the same degree in forward and backward
direction by mandating its use only in modes that truncate the permutation
output, and that never evaluate its inverse using the secret key.
Linear Transformation. We present the linear transformation in its matrix
form, the coefficients of which must be carefully chosen. One possibility is to
use an MDS matrix. Since an MDS matrix has the highest branch number [24]
among all possible matrices, it plays an important role in proving lower bounds
on the linear and differential trail weight. However, we do not need to rely on
MDS matrices as the field multiplications already have advantageous properties
against linear and differential attacks.

Another option is to randomly choose the coefficients of the matrix for each
round, and then verify that the matrix is invertible. This strategy was used in one
of the first low multiplicative complexity designs, namely LowMC [4]. However,
the drawback is that random matrices contribute significantly to the cost of the

11

primitive in some scenarios, and the security analysis becomes more involved.
Hence, we have decided to use a much simpler linear layer.

In order to provide sufficient diffusion, complex equation systems, and low
multiplicative complexity, the degree of the functions that output equations
depending on the input variables must grow as fast as possible. By applying a
single multiplication per round, the degree doubles per round in the best scenario.
However, this also depends on the linear layer. For instance, this layer could be a
simple layer permuting the elements (e.g., the 3× 3 circulant matrix 𝑐𝑖𝑟𝑐(0, 0, 1)),
for which the univariate degree of a single element only grows according to a
Fibonacci sequence. To ensure that the univariate degree of a single element
doubles per round, the result of the previous multiplication has to be reused in
the multiplication of the next round. This is also applicable to the inverse of the
permutation. Hence, we decided to use the following matrix for the linear layer:

𝑀 =

⎡⎣0 0 1
1 RC4 RC4
0 1 1

⎤⎦ (and 𝑀−1 =

⎡⎣ 0 1 −RC4
−1 0 1
1 0 0

⎤⎦),

Here, 𝑀0,2,𝑀1,2,𝑀
−1

0,2,𝑀
−1

1,2 ̸= 0 with 𝑀𝑖,𝑗 denoting the element of the
matrix 𝑀 at row 𝑖 and column 𝑗. The use of the round constant RC4 /∈ {0, 1}
is motivated by aiming to improve the diffusion, and to avoid a weakness with
respect to linear cryptanalysis that we discuss in Sect. 4.1.
About Quadratic Functions. In addition to the matrix multiplication, another
(semi-)linear transformation4 over a binary field F2𝑛 is the quadratic permutation
𝑥 ↦→ 𝑥2. This transformation can be exploited as a component in the round
function (e.g., as a replacement of the multiplication by RC4) to both increase
the diffusion and the overall degree of the function that describes the scheme.
However, we do not employ it for several reasons. First, even if the quadratic
permutation is linear over F2𝑛 , its cost in an application like MPC might not be
negligible. Indeed, the quadratic permutation costs one multiplication as detailed
in [42]. As a result, even if it makes it possible to reduce the overall number of
rounds due to a faster growth of the degree, the overall number of multiplications5

would not change for applications like MPC. Secondly, the quadratic function
is not a permutation over F𝑝 for a prime 𝑝 ̸= 2. Thus, its introduction implies
having to work with two different round functions: one for the binary case and
one for the prime case. Since our goal is to present a simple and elegant general
scheme, we decided not to use it.
Round Constants. The round constants break up the symmetry in the design.
They prevent the simplification of the algebraic description of the round function.
However, as we manipulate many round constants, and since they influence
the rounds in a complex manner, we use an extendable output function to
obtain round constant values without an obvious structure. We performed some
4 A function 𝑓 over (F, +) is semi-linear if for each 𝑥, 𝑦 ∈ F: 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦). It

is linear if it is semi-linear and if for each 𝑥 ∈ F: 𝑓(𝛼 · 𝑥) = 𝛼 · 𝑓(𝑥).
5 A minimum number of multiplications is required to reach maximum degree, which

is one of the property required by a cryptographic scheme to be secure.

12

experiments where we added round constants to one or two state elements. These
instances provided simpler algebraic descriptions. Considering the small costs of
manipulating dense round constants, we decide to use three round constants to
complicate the algebraic description of the cipher, even after a few rounds.

4 Security Analysis

We present our security analysis of Ciminion with respect to “standard” appli-
cation of the attacks that are found in the literature. This analysis determines
the required number of rounds to provide some level of confidence in its security.
Due to page limitation, further analysis is presented in App. D-E.

First and foremost, the number of rounds that guarantees security up to 𝑠
bits are computed under the assumption that the data available to the attacker is
limited to 2𝑠, except if specified in a different way. Moreover, we do not make any
claim about the security against related-key attacks and known- or chosen-key
distinguishers (including the zero-sum partitions). The latter are out the scope
of this paper.

We observe that the attack vectors penetrating the highest number of rounds
are algebraic attacks. On the contrary, traditional attacks, such as differential and
linear cryptanalysis, are infeasible after a small number of rounds. As detailed
in the following, in order to protect against algebraic attacks and higher-order
differential attacks, we increase the number of rounds proportionally to the
security level 𝑠. A constant number of rounds is added to prevent an adversary
from guessing part of the key or the initial or middle state, or to linearize part
of the state. Hence, the numbers of rounds for 𝑝𝐶 and 𝑝𝐸 are respectively 𝑠+ 6
and

⌈︀
𝑠+19

12 + 1.5
⌉︀

for the standard security level.

4.1 Linear Cryptanalysis

Linear cryptanalysis [51] is a known-plaintext attack that abuses high correla-
tions [25] between sums of input bits and sums of output bits of a cryptographic
primitive. However, classical correlation analysis is not restricted to solely primi-
tives operating on elements of binary fields. In this section, we apply the existing
theory developed by Baignères et al. [9] for correlation analysis of primitives that
operate on elements of arbitrary sets to the permutations defined in Sect. 2.
General Correlation Analysis. An application of the theory to ciphers op-
erating on elements of binary fields is presented by Daemen and Rijmen [29].
Classical correlation analysis is briefly recalled in App. C.1. In this section, we
apply the theory to the more general case of primitives operating on elements of
F𝑞 where 𝑞 = 𝑝𝑛. Henceforth, we suppose that 𝑓 : (F𝑞)𝑙 → (F𝑞)𝑚.

Correlation analysis is the study of characters, and their configuration in the
𝑙-dimensional vector space 𝐿2((F𝑞)𝑙) of complex-valued functions (F𝑞)𝑙 → C. The
space 𝐿2((F𝑞)𝑙) comes with the inner product ⟨𝑔, ℎ⟩ =

∑︀
𝑔(𝑥)ℎ(𝑥), which defines

the norm ‖𝑔‖ =
√︀
⟨𝑔, 𝑔⟩ = 𝑞

𝑙
2 .

13

𝑣 + 𝑥

𝑐𝑙𝑣 + 𝑤 + 𝑦

𝑢 + 𝑐𝑙𝑣 + 𝑤
𝑢 + 𝑐𝑙𝑣 + 𝑤

𝑦𝑥

𝑢 + 𝑐𝑙𝑣 + 𝑤

·RC4 ℓ

𝑣

𝑣

𝑐𝑙𝑣𝑐𝑙𝑣 + 𝑤

𝑐𝑙𝑣 + 𝑤

𝑐𝑙𝑣 + 𝑤

𝑣

𝑤

𝑢

RC1 ℓ

RC2 ℓ

RC3 ℓ

𝑢

𝑣

𝑤

Fig. 8: Mask propagation in 𝑓

A character is an additive homomorphism from (F𝑞)𝑙 into 𝑆 := {𝑧 ∈ C : |𝑧| =
1}. It is well-known that any character on (F𝑞)𝑙 is of the form

𝜒𝑢(𝑥) = 𝑒
2𝜋𝑖

𝑝 Tr𝑞
𝑝(𝑢⊤𝑥) ,

for some 𝑢 ∈ (F𝑞)𝑙. We recall that for 𝑞 = 2 we have that 𝜒𝑢(𝑥) = (−1)𝑢⊤𝑥, which
appears in classical correlation analysis. Here, Tr𝑞

𝑝(𝑥) = 𝑥+ 𝑥2 + · · ·+ 𝑥𝑝𝑙−1 ∈ F𝑝

is the trace function. For this reason, 𝑢⊤𝑥 is called a vectorial trace parity and 𝑢
a trace mask vector. We call the ordered pair (𝑢, 𝑣) a linear approximation of 𝑓 ,
where 𝑢 is understood to be the mask at the input and 𝑣 to be the mask at the
output of 𝑓 .

We define the vectorial trace parity correlation in the following definition.

Definition 1 (Correlation).

C𝑓 (𝑢, 𝑣) = ⟨𝜇𝑢, 𝜇𝑣 ∘ 𝑓⟩
‖𝜇𝑢‖‖𝜇𝑣 ∘ 𝑓‖

= 1
𝑞𝑙

∑︁
𝑥∈(F𝑞)𝑙

𝑒
2𝜋𝑖

𝑝 Tr𝑞
𝑝(𝑢⊤𝑥−𝑣⊤𝑓(𝑥))

This helps us to define a more general linear probability metric as follows.

Definition 2 (Linear probability). LP𝑓 (𝑢, 𝑣) = |C𝑓 (𝑢, 𝑣)|2

The idea is then to consider the permutation as a circuit made of simple building
blocks. Those blocks correspond to the operators that we apply, and for which we
attach to each edge a trace mask vector. Importantly, these trace mask vectors
are in one-to-one correspondence with characters. The goal of the attacker is to
construct a linear trail from the end of the permutation to the beginning, with
the goal of maximizing the linear probability of each building block. A list of
the linear probabilities of each such building block can be found in App. C.2 to
deduce the result of the analysis.
On Three-round Linear Trails. Fig. 8 illustrates how the linear masks prop-
agate through the round function when the linear probabilities of all building
blocks are maximized. In this Figure, 𝑐ℓ := RC4 ℓ. The attacker is able to choose

14

𝑢, 𝑣, and 𝑤 freely at the beginning of the first round, and afterwards, a mask at
the input of the next round is determined by a mask at the output of the former
round. We write 𝑅𝑖 for the 𝑖’th round function. Moreover, we use the notation
𝑐𝑖𝑗 := 𝑐𝑖𝑐𝑗 and 𝑐𝑖𝑗𝑘 := 𝑐𝑖𝑐𝑗𝑐𝑘, where the subscript refers to the round number.
The masks evolve as follows:⎛⎝𝑢

𝑣
𝑤

⎞⎠ 𝑅0−−→

⎛⎝ 𝑣
𝑐1𝑣 + 𝑤

𝑢+ 𝑐1𝑣 + 𝑤

⎞⎠ 𝑅1−−→

⎛⎝ 𝑐1𝑣 + 𝑤
𝑢+ (𝑐1 + 𝑐12)𝑣 + (1 + 𝑐2)𝑤

𝑢+ (1 + 𝑐1 + 𝑐12)𝑣 + (1 + 𝑐2)𝑤

⎞⎠
𝑅2−−→

⎛⎝ 𝑢+ (𝑐1 + 𝑐12)𝑣 + (1 + 𝑐2)𝑤
(1 + 𝑐3)𝑢+ (1 + 𝑐1 + 𝑐12 + 𝑐13 + 𝑐123)𝑣 + (1 + 𝑐2 + 𝑐3 + 𝑐23)𝑤
(1 + 𝑐3)𝑢+ (1 + 2𝑐1 + 𝑐13 + 𝑐12 + 𝑐123)𝑣 + (2 + 𝑐2 + 𝑐3 + 𝑐23)𝑤

⎞⎠ .

An implicit assumption in both Fig. 8, and the mask derivation above, is that the
masks at the output of the multiplication and at the input of the third branch
are equal. However, an attacker can only make sure that this assumption is valid
if the following system of equations has a non-zero solution:⎛⎝ 1 𝑐1 1

1 1 + 𝑐1 + 𝑐12 1 + 𝑐2
1 + 𝑐3 1 + 2𝑐1 + 𝑐13 + 𝑐12 + 𝑐123 2 + 𝑐2 + 𝑐3 + 𝑐23

⎞⎠ ⎛⎝𝑢
𝑣
𝑤

⎞⎠ =

⎛⎝0
0
0

⎞⎠ .

If we denote by 𝐴 the matrix above, then this happens if and only if the matrix
is singular, i.e., if det(𝐴) = 𝑐2𝑐3 + 1 = 0. If either 𝑐2 or 𝑐3 is equal to zero, then
the condition does not hold. If both are non-zero, then the condition is equivalent
to requiring that 𝑐2 = −𝑐−1

3 . In this case, we can freely choose one value, which
determines the other. Hence, the probability that the condition holds is equal to
𝑞−1
𝑞2 < 1

𝑞 . Since log2(𝑞) is the security parameter, this probability is negligible
and there exists no three-round trail with a linear probability of 1.
Clustering of Linear Trails. We have LP𝑓 (𝑢, 𝑣) ≥

∑︀
𝑄∈LT𝑓 (𝑢,𝑣) LP(𝑄), where

LT𝑓 (𝑢, 𝑣) is the set of linear trails contained in (𝑢, 𝑣). If we suppose now that
an attacker is able to find more than 𝑞 linear trails, i.e., if |LT𝑓 (𝑢, 𝑣)| > 𝑞, then
we have LP𝑓 (𝑢, 𝑣) > 1

𝑞 . However, log2(𝑞) is the security parameter, therefore the
latter condition is not feasible. In a nutshell, three rounds are sufficient to resist
against linear cryptanalysis.
Round Constant Multiplication Necessity. If the multiplication by the
round constant is not present, or RC4 ℓ = 1, then the masks evolve as follows
over a single round:⎛⎝𝑢

𝑣
𝑤

⎞⎠ 𝑓−1

−−→

⎛⎝ 𝑣 + 𝑥
𝑣 + 𝑤 + 𝑦
𝑢+ 𝑣 + 𝑤

⎞⎠ if 𝑢=𝑣 and 𝑥=𝑦=𝑤=0−−−−−−−−−−−−−−→

⎛⎝𝑣𝑣
0

⎞⎠ 𝑓−1

−−→

⎛⎝ 𝑣
𝑣
2𝑣

⎞⎠ ,

where (𝑥, 𝑦) is the mask vector at the input of the multiplication function,
which, like 𝑢, 𝑣, and 𝑤, can be freely chosen. Hence, if we choose 𝑢 = 𝑣, and
𝑥 = 𝑦 = 𝑤 = 0, and since the characteristic of the field is equal to two, then a one-
round approximation with a linear probability of one can be chained indefinitely.
This is the reason behind including a multiplication by a non-trivial constant.

15

4.2 Differential Cryptanalysis

Differential cryptanalysis exploits the probability distribution of a non-zero input
difference leading to an output difference after a given number of rounds [17]. As
Ciminion is an iterated cipher, a cryptanalyst searches for ordered sequences
of differences over 𝑟 rounds that are called differential characteristics/trails. A
differential trail has a Differential Probability (DP). Assuming the independence
of the rounds, the DP of a differential trail is the product of the DPs of its
one-round differences (Definition 3).

Definition 3 (One-round differential probability). Let (𝛼𝑎, 𝛼𝑏, 𝛼𝑐) ∈ (F𝑝)3

be the input of the round, and (𝛼*
𝑎, 𝛼

*
𝑏 , 𝛼

*
𝑐) ∈ (F𝑝)3 the chosen non-zero input dif-

ference. The probability that an input difference is mapped to an output difference
(𝛽*

𝑎, 𝛽
*
𝑏 , 𝛽

*
𝑐) ∈ (F𝑝)3 through one iteration of the round function 𝑓 is equal to

|𝑓(𝛼*
𝑎 + 𝛼𝑎, 𝛼

*
𝑏 + 𝛼𝑏, 𝛼

*
𝑐 + 𝛼𝑐)− 𝑓(𝛼𝑎, 𝛼𝑏, 𝛼𝑐) = (𝛽*

𝑎, 𝛽
*
𝑏 , 𝛽

*
𝑐)|

|(F𝑝)3|
.

The operation + is replaced by ⊕ in F2𝑛 .

However, in general, the attacker does not have any information about the
intermediate differences of the differential trail. Hence, the attacker only fixes
the input and the output differences over 𝑟 rounds, and works with differentials.
A differential is a collection of differential trails with fixed input and output
differences, and free intermediate differences. The DP of a differential over 𝑟
rounds is the sum of all DPs of the differential trails that have the same input
and output difference over the same number of rounds as the differential.

In this paper, we perform the differential cryptanalysis by grouping fixed
differences in sets. Those sets impose some conditions to satisfy between the
differences of the branches of the round, and/or specify that some differences at
the input of the branches equal zero. Then, given an input difference, we study
the possible sets of output differences after a round, and we determine the DP
that an input difference is mapped into an output difference over a round. The
goal is to find the longest differential trail with the highest DP.

Toward this end, we build a state finite machine (more details in App. C.3)
that represents all the encountered sets of differences as states associated to their
differential probabilities. To construct the graph, we start with a difference of the
form {(0, 0, 𝑥)|𝑥 ̸= 0}, and we search for the possible sets of output differences
until we have explored all the possibilities from each newly reached set. Hereafter,
let us assume that the difference 𝑥 is not zero. We see that an input difference
from {(0, 0, 𝑥)} is mapped into an output difference of the form {(𝑥,RC4 ℓ𝑥, 𝑥)}
after one round with probability one. Indeed, since the input difference goes
through the non-linear operation and stays unchanged, the output difference is
simply the result of the linear operation applied to the input difference. For the
other cases, a non-zero input difference propagates to an output difference over
one round with probability equal to 𝑝−1 in F𝑝, or 2−𝑛 in F2𝑛 . From those results,
we determine the differential over three rounds with the highest DP.

16

On Three-round Differentials. The differential trail in F𝑝 with the highest
DP is

{(0, 0, 𝑥)} prob. 1−−−−→ {(𝑥, RC4 ℓ𝑥, 𝑥)} prob. 𝑝−1
−−−−−−→ {(−RC4 ℓ𝑥, 𝑥, 0)} prob. 𝑝−1

−−−−−−→ {(0, 0, 𝑥)} ,

where the fixed input difference 𝑥 is equal to another fixed value in the following
rounds, and satisfies the conditions imposed by the set (for details see App. C.3).
Additionally, this differential trail holds if and only if the round constant RC4 ℓ

introduced by the first round is equal to the round constant RC4 ℓ of the third
round.

In F2𝑛 , we obtain almost the same state finite machine as in Fig. 9. The
only exception is that the set of differences {(−RC4 ℓ𝑥, 𝑥, 0)} corresponds to
{(RC4 ℓ𝑥, 𝑥, 0)}, because −𝑧 is equal to 𝑧 for each 𝑧 ∈ F2𝑛 . Hence, the differential
trail in F2𝑛 with the highest DP is

{(0, 0, 𝑥)} prob. 1−−−−→ {(𝑥, RC4 ℓ𝑥, 𝑥)} prob. 2−𝑛

−−−−−−→ {(RC4 ℓ𝑥, 𝑥, 0)} prob. 2−𝑛

−−−−−−→ {(0, 0, 𝑥)} ,

under the same conditions that in F𝑝.
In summary, a fixed difference from {(0, 0, 𝑥)} is mapped to the difference

of the form {(𝑥,RC4 ℓ𝑥, 𝑥)} after one round with probability one in F2𝑛 and in
F𝑝. Moreover, as depicted in Fig. 9, an input difference can be mapped to an
output difference of the form {(0, 0, 𝑥)} with DP 𝑝−1 (resp. 2−𝑛) if and only if
this difference is of the form {(−RC4 ℓ𝑥, 𝑥, 0)}. This means that the only possible
differential trail over three rounds with input and output differences of the form
{(0, 0, 𝑥)} are the ones given before. The DP of this differential trail is expressed
in the following Lemma.

Lemma 1. A differential trail over three rounds has a probability at most equal
to 𝑝−2 in F𝑝 and 2−2𝑛 in F2𝑛 .

The DP of all other differential trails over three round are at most equal to 𝑝−3

in F𝑝 and 2−3𝑛 in F2𝑛 . Since the security level 𝑠 satisfies 𝑠 ≤ log2(𝑝) in F𝑝 and
𝑠 ≤ 𝑛 in F2𝑛 , we therefore conjecture that three rounds are sufficient to guarantee
security against “basic” differential distinguishers. We thus choose to have at least
six rounds for the permutations 𝑝𝐸 and 𝑝𝐶 , which is twice the number of rounds
necessary to guarantee security against “basic” differential/linear distinguishers.
The minimal number of rounds for the permutations should provide security
against more advanced statistical distinguishers.

4.3 Higher-Order Differential and Interpolation Attacks

If a cryptographic scheme has a simple algebraic representation, higher-order
attacks [47, 49] and interpolation attack [46] have to be considered. In this part,
we only focus on higher-order differential attacks. We conjecture that the number
of rounds necessary to prevent higher-order differential attacks is also sufficient
to prevent interpolation attacks (see details in App. D). This result is not novel,
and the same applies for other schemes, like MiMC, as further explained in [35].

17

Background. We recall from Fig. 3 that an attacker can only directly manipulate
a single element, and the two other elements are the secret subkeys. We therefore
operate with this single element to input value sets, while keeping the two
other elements fixed. Each output element is the result of a non-linear function
depending on the input element 𝑥, and two fixed elements that are the input of
the permutation. Thus, we have 𝑓𝑁 (𝑥) = 𝑝(𝑥, const, const) in F2𝑛 , and 𝑓𝑝(𝑥) =
𝑝(𝑥, const, const) in F𝑝.

A given function 𝑓𝑝 over prime fields F𝑝 is represented by 𝑓𝑝(𝑥) =
∑︀𝑝−1

𝑖=0 𝜅𝑖𝑥
𝑖

with constants 𝜅𝑖 ∈ F𝑝. The degree of the function 𝑓𝑝(𝑥) that we denote by
𝑑F𝑝 , corresponds to the highest value 𝑖 for which 𝜅𝑖 ̸= 0. The same holds for a
function 𝑓𝑛 working over binary extension fields F2𝑛 . For the latter, 𝑓𝑁 (𝑥) =⨁︀𝑑

𝑖=0 𝜅𝑖𝑥
𝑖 with 𝜅𝑖 ∈ F2𝑛 , and 𝑑F2𝑛 is the degree of the function 𝑓𝑛(𝑥). Like

previously, the degree is the highest value 𝑖 for which 𝜅𝑖 ̸= 0. In F2𝑛 , the function
can as well be represented by its algebraic norm form (ANF)

−→
𝑓𝑛(𝑥1, . . . , 𝑥𝑛),

whose output element 𝑗 is defined by its coordinate function 𝑓𝑛,𝑗(𝑥1, . . . , 𝑥𝑛) =⨁︀
𝑢=(𝑢1,...,𝑢2) 𝜅𝑗,𝑢 ·𝑥𝑢1

1 · . . . ·𝑥𝑢𝑛
𝑛 with 𝜅𝑗,𝑢 ∈ F2. The degree 𝑑F𝑛

2
of
−→
𝑓𝑛 corresponds

to the maximal Hamming weight of 𝑢 for which 𝜅𝑗,𝑢 ̸= 0, that is to say 𝑑F𝑛
2

=
max𝑖≤𝑑{ℎ𝑤(𝑖) |𝜅𝑖 ̸= 0}.

For the last representation, as proved by Lai [49] and in [47], if we iterate
over a vector space 𝒱 having a dimension strictly higher than 𝑑F𝑛

2
, we obtain

the following result:
⨁︀

𝑣∈𝒱⊕𝜈 𝑓𝑛(𝑣) = 0 . A similar result has also been recently
presented for the prime case in [35, Proposition 2]. More precisely, if the degree
of 𝑓𝑝(𝑥) is 𝑑F𝑝 , then iterating over all elements of a multiplicative subgroup 𝒢 of
F𝑡

𝑝 of size |𝒢| > 𝑑F𝑝
leads to

∑︀
𝑥∈𝒢 𝑓𝑝(𝑥) = 𝑓𝑝(0) · |𝒢| . The last sum is equal to

zero modulo 𝑝 since |𝒢| is a multiple of 𝑝.
In order to provide security against higher-order differential attacks based on

the presented zero-sums, we choose the number of rounds of our permutation to
have a function of a degree higher than our security claim.
Overview of our Security Argument. In our construction, we assume that
an attacker can choose the nonce ℵ, which is the input of the permutation 𝑝𝐶 .
For the first call of this permutation, we want to prevent an attacker to input
value sets that always result in the same constant after the application of the
permutation 𝑝𝐶 . This requirement is necessary, since we assume in the remaining
analysis that the output values of 𝑝𝐶 are unpredictable by an attacker. We
emphasize that if the output of the permutation 𝑝𝐶 is guaranteed to be randomly
distributed, then this is sufficient to prevent higher-order differential attacks.
That is because the inverse of the final permutations 𝑝𝐸 is never evaluated, and
the attacker cannot construct an affine subspace in the middle of the construction.
Estimating the Degree of 𝑝𝐶 : Necessary Number of Rounds. We study
the evolution of the degrees 𝑑F𝑝

and 𝑑F2𝑛 for the permutation 𝑝𝐶 for which the
round function 𝑓 (Fig. 3) is iterated 𝑟 times. We conclude that the degree of
the permutation 𝑝𝐶 remains unchanged for two rounds, if an input element is
present at branch 𝑎, and the input at the branch 𝑏 is zero. For a higher number
of rounds, the degree increases. We have chosen the affine layer to ensure that
the output of the multiplication can affect both inputs of the multiplication in

18

the next round. This should make it possible for the maximal possible degree
of the output functions to increase faster than having affine layers without this
property. In the best case, the maximal degree of the function can be doubled
per round.

Considering both previous observations, a minimum of 𝑠 + 2 rounds are
required to obtain at least 𝑑F𝑝

≈ 2𝑠, or 𝑑F2𝑛 ≈ 2𝑠. As we want to ensure that the
polynomial representation of 𝑝𝐶 is dense, it is then advisable to add more rounds
as a safety margin. In order to reach this goal, we arbitrarily decided to add four
more rounds.

4.4 Gröbner Basis Attacks

Preliminary. To perform a Gröbner basis [21] attack, the adversary constructs
a system of algebraic equations that represents the cipher. Finding the solution
of those equations makes it possible for the attacker to recover the key that
is denoted by the unknown variables 𝑥1, ..., 𝑥𝑛 hereafter. In order to solve this
system of equations, the attacker considers the ideal generated by the multivariate
polynomials that define the system. A Gröbner basis is a particular generating set
of the ideal. It is defined with respect to a total ordering on the set of monomials,
in particular the lexicographic order. As a Gröbner basis with respect to the
lexicographic order is of the form

{𝑥1 − ℎ1(𝑥𝑛), . . . , 𝑥𝑛−1 − ℎ𝑛−1(𝑥𝑛), ℎ𝑛(𝑥𝑛)},

the attacker can easily find the solution of the system of equations. To this end,
one method is to employ the well-known Buchberger’s criterion [21], which makes
it possible to transform a given set of generators of the ideal into a Gröbner basis.
From a theoretic point of view, state-of-the-art Gröbner basis algorithms are
simply improvements to Buchberger’s algorithm that include enhanced selection
criteria, faster reduction step by making use of fast linear algebra, and an attempt
to predict reductions to zero. The best well-known algorithm is Faugère’s F5
algorithm [11,36].

Experiments highlighted that computing a Gröbner basis with respect to
the lexicographic order is a slow process. However, computing a Gröbner basis
with respect to the grevlex order can be done in a faster manner. Fortunately,
the FGLM algorithm [37] makes it possible to transform a Gröbner basis with
respect to the grevlex order to another with respect to the lexicographic order.
To summarize, the attacker adopts the following strategy:

1. Using the F5 algorithm, compute a Gröbner basis w.r.t. the grevlex order.
2. Using the FGLM algorithm, transform the previous basis into a Gröbner

basis w.r.t. the lexicographic order.
3. Using polynomial factorization and back substitution, solve the resulting

system of equations.

Henceforth, we consider the following setting: let 𝐾 be a finite field, let
𝐴 = 𝐾[𝑥1, . . . , 𝑥𝑛] be the polynomial ring in 𝑛 variables, and let 𝐼 ⊆ 𝐴 be an

19

ideal generated by a sequence of polynomials (𝑓1, . . . , 𝑓𝑟) ∈ 𝐴𝑟 associated with
the system of equations of interest.
Cost of the F5 Algorithm. In the best adversarial scenario, we assume that the
sequence of polynomials associated with the system of equations is regular.6 In
this case, the F5 algorithm does not perform any redundant reductions to zero.

Write 𝐹𝐴/𝐼 for the Hilbert-Series of the algebra 𝐴/𝐼 and 𝐻𝐴/𝐼 for its Hilbert
polynomial. The degree of regularity 𝐷reg is the smallest integer such that
𝐹𝐴/𝐼(𝑛) = 𝐻𝐴/𝐼(𝑛) for all 𝑛 ≥ 𝐷reg. The quantity 𝐷reg plays an important role
in the cost of the algorithm. If the ideal 𝐼 is generated by a regular sequence of
degrees 𝑑1, . . . , 𝑑𝑟, then its Hilbert series equals 𝐹𝐴/𝐼(𝑡) =

∏︀𝑟

𝑖=1
(1+𝑡+𝑡2+···+𝑡𝑑𝑖−1)

(1−𝑡)𝑛−𝑟 .
From this, we deduce that deg(𝐼) =

∏︀𝑟
𝑖=1 𝑑𝑖, and 𝐷reg = 1 +

∑︀𝑟
𝑖=1(𝑑𝑖 − 1).

The main result is that if 𝑓1, . . . , 𝑓𝑟 is a regular sequence in 𝐾[𝑥1, . . . , 𝑥𝑛],
then computing a Gröbner basis with respect to the grevlex order using the F5
algorithm can be performed within

𝒪
(︂(︂

𝑛+𝐷reg

𝐷reg

)︂𝜔)︂
operations in 𝐾, where 2 ≤ 𝜔 ≤ 3 is the matrix multiplication exponent.
Costs of Gröbner Basis Conversion and of Back Substitution. FGLM is an
algorithm that converts a Gröbner basis of 𝐼 with respect to one order, to a
Gröbner basis of 𝐼 with respect to a second order in 𝒪(𝑛deg(𝐼)3) operations in
𝐾. Finally, as proved in [38], the cost of factorizing a univariate polynomial in
𝐾[𝑥] of degree 𝑑 over F𝑝𝑛 for a prime 𝑝 is 𝒪(𝑑3𝑛2 + 𝑑𝑛3).
Number of Rounds. After introducing the Gröbner Basis attack, we analyze
the minimum number of rounds that is necessary to provide security against this
attack. However, we first emphasize that:

– there are several ways to set up the system of equations that describes the
scheme. For instance, we could manipulate more equations, and thus more
variables, of lower degree. Alternatively, we could work with less equations,
and thus less variables, of higher degree. In addition, we could consider the
relation between the input and the output, or between the middle state and
the outputs, and so on. In the following, we present some of these strategies,
that seem to be the most competitive ones;

– computing the exact cost of the attack is far from an easy task. As largely
done in the literature, we assume that the most expensive step is the “F5
Algorithm”. If the cost of such a step is higher than the security level, we
conclude that the scheme is secure against the analyzed attack.

A Weaker Scheme. Instead of using the model that is described in Fig. 3, we
analyze a weaker model as illustrated in Fig. 7. In the latter, the key is added after
the expansion part, instead of before the rolling function application. This weaker
6 A sequence of polynomials (𝑓1, . . . , 𝑓𝑟) ∈ 𝐴𝑟 is called a regular sequence on 𝐴 if the

multiplication map 𝑚𝑓𝑖 : 𝐴/⟨𝑓1, . . . , 𝑓𝑖−1⟩ → 𝐴/⟨𝑓1, . . . , 𝑓𝑖−1⟩ given by 𝑚𝑓𝑖 ([𝑔]) =
[𝑔][𝑓𝑖] = [𝑔𝑓𝑖] is injective for all 2 ≤ 𝑖 ≤ 𝑟.

20

model is easier to analyze, and makes it possible to draw a conclusion regarding
the security of our scheme. Thus, we conjecture that if the scheme proposed in
Fig. 7 is secure w.r.t. Gröbner Basis attack, then the scheme in Fig. 3 is secure.
Indeed, in the scheme proposed in Fig. 7, it is always possible to consider the
difference between two or more texts to remove the final key addition. For instance,
given 𝑓(𝑥) +𝐾 = 𝑦 and 𝑓(𝑥′) +𝐾 = 𝑦′, it follows that 𝑓(𝑥)− 𝑓(𝑥′) = 𝑦− 𝑦′. As
a result, the number of variables in the system of equations to be solved remains
constant independently of the number of considered outputs. However, in Fig. 3,
given 𝑔(𝑥 + 𝐾) = 𝑦 and 𝑔(𝑥′ + 𝐾) = 𝑦′, this is not possible except if 𝑔(·) is
inverted. Nevertheless, since it is a truncated permutation, this does not seem
feasible, unless the part of the output which is truncated is either treated as a
variable (that results to have more variables than equations) or guessed by brute
force (that results in an attack whose cost is higher than the security level, and
2𝑠 ≤ 𝑞). Such consideration leads us to conjecture that the number of rounds
necessary to make the scheme proposed in Fig. 7 secure is a good indicator of
the number of rounds necessary to make the scheme in Fig. 3 secure as well.
Input-Output Relation. The number of rounds must ensure that the maximum
degree is reached. Based on that, we do not expect that the relation that holds
between the input and the output, makes it possible for the attacker to break
the scheme. In particular, let 𝑁 be the nonce, and 𝑘1, 𝑘2 be the secret keys.
If we assume that a single word is output, then an equation of degree 2𝑟 can
be expressed between each input (𝑁, 𝑘1, 𝑘2) ∈ (F𝑞)3, and the output 𝑇 ∈ F𝑞

with 𝑟 the number of rounds. Hence, if there are two different initial nonces,
then the attacker has to solve two equations in two variables. In that case,
𝐷𝑟𝑒𝑔 = 1 + 2 · (2𝑟 − 1) ≈ 2𝑟+1. The cost of the attack is thus lower bounded by[︁(︀2+2𝑟+1

2𝑟+1

)︀]︁𝜔

≥
[︁

(1+2𝑟+1)2

2

]︁𝜔

≥ 22𝑟+1, where 𝜔 ≥ 2. Consequently, 22𝑟+1 ≥ 2𝑠 if
the total number of rounds is at least

⌈︀
𝑠−1

2
⌉︀

(e.g., 64 for 𝑠 = 128). Since the
number of rounds for 𝑝𝐶 is 𝑠+ 6, this strategy does not outperform the previous
attacks as expected.

Finally, we additionally consider a strategy where new intermediate variables
are introduced to reduce the degree of the involved polynomials. We concluded
that this strategy does not reduce the solving time as it increases the number of
variables.
Middle State-Output Relation. There is another attack strategy that exploits the
relation between the middle state and the outputs. In this strategy, only 𝑝𝐸 is
involved, and several outputs are generated by the same unknown middle state.
For a given nonce 𝑁 , let (𝑥𝑁

0 , 𝑥
𝑁
1 , 𝑥

𝑁
2) ∈ (F𝑞)3 be the corresponding middle state.

Since the key is added after the permutation 𝑝𝐸 , we first eliminate the key by
considering two initial nonces, and taking the difference of the corresponding

7 Another approach would be to involve the keys in the analysis. However, since the
degree of the key-schedule is very high, the cost would then explode after few steps.
It works by manipulating the degree of the key-schedule, or by introducing new
variables for each new subkeys while keeping the degree as lower as possible. This
approach does not seem to outperform the one described in the main text.

21

output. This makes it possible to remove all the secret key material at the end,
at the cost of having three more unknown variables in the middle.7

Hence, independently of the number of outputs that are generated, there are
six variables, and thus simply the two middle states. That means that we need at
least six output blocks, and an equivalent number of equations. Since two words
are output for each call of 𝑝𝐸 , we have six equations of degree 2𝑟−1 and 2𝑟 for
the first two words, 2𝑟 and 2𝑟+1 for the next two words, and so on. We recall
that every call of the rolling function increases the degree by a factor two, while
the function that describes the output of a single block has a maximum degree,
namely 2𝑟 after 𝑟 rounds for one word, and 2𝑟−1 for the other two words. Hence,
𝐷𝑟𝑒𝑔 = 1 + (2𝑟−1 − 1) + 2 ·

∑︀1
𝑖=0(2𝑟+𝑖 − 1) + (2𝑟+2 − 1) = 21 · 2𝑟−1 − 5 ≈ 2𝑟+3.4,

and the cost of the attack is lower bounded by[︂(︂
6 + 2𝑟+3.4

2𝑟+3.4

)︂]︂𝜔

≥
[︂

(1 + 2𝑟+3.4)6

6!

]︂𝜔

≥ 212(𝑟+3.4)−19 ,

where 𝜔 ≥ 2. Therefore, 212(𝑟+3.4)−19 ≥ 2𝑠 if the number of rounds for 𝑝𝐸 is at
least

⌈︀
𝑠+19

12 − 3.4
⌉︀

(e.g., 9 for 𝑠 = 128). Like previously, potential improvement
of the attack (e.g., an enhanced description of the equations) can lead to a lower
computational cost. We thus decided to arbitrarily add five rounds as a security
margin. We conjecture that at least

⌈︀
𝑠+19

12 + 1.5
⌉︀

rounds for 𝑝𝐸 are necessary to
provide some security (e.g., 14 for 𝑠 = 128).

In addition, in order to reduce the degree of the involved polynomials, we
studied the consequences of introducing new intermediate variables in the middle,
e.g., at the output of the rolling function or among the rounds8. In that regard,
we did not improve the previous results. Moreover, we also considered a scenario
in which the attacker accesses more data, without being able to improve the
previous results.

4.5 On the Algebraic Cipher Representation

Algebraic attacks seem to be the most successful attack vector on ciphers that
have a simple representation in larger fields, while restricting the usage of mul-
tiplications. Until now, we have mainly focused on the growth of the degree to
estimate the costs of the algebraic attacks that we considered. However, this
is not the only factor that influences the cost of an algebraic attack. It is well
known that such attacks (including higher-order, interpolation, and Gröbner
basis attacks) can be more efficient if the polynomial that represents the cipher
is sparse. Consequently, it is necessary to study the algebraic representation of
the cipher for a feasible number of rounds.

To evaluate the number of monomials that we have for a given degree, we wrote
a dedicated tool. This tool produces a symbolic evaluation of the round function
8 For example, new variables can be introduced for each output of the rolling state. It

results in having more equations with lower degrees. Our analysis suggests that this
approach does not outperform the one described in the main text.

22

Table 2: Number of monomials of a certain degree for F𝑝.
Output Degree

Round Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

max 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406

2
a 1 3 4 3 1
b 1 3 4 3 1
c 1 3 4 3 1

3
a 1 3 6 8 11 8 6 3 1
b 1 3 6 8 11 8 6 3 1
c 1 3 6 8 11 8 6 3 1

4
a 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1
b 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1
c 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1

5
a 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21
b 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21
c 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21

without considering a particular field or specific round constants. Nevertheless, it
considers the fact that each element in F2𝑛 is also its inverse with respect to the
addition. Since we do not instantiate any field and constants, the reported number
of monomials might deviate from the real number of monomials here, e.g., due to
unfortunate choices of round constants that sum to zero for some monomials. As
a result, the entries in the tables are in fact upper bounds, but we do not expect
high discrepancies between the numbers reported in the tables and the “real” ones.

Prime Case. First, we consider iterations of the round function 𝑓 over F𝑝. In
Tab. 2, we evaluate the output functions at 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 depending on the
inputs 𝑎0, 𝑏0, and 𝑐0 after a certain number of rounds 𝑖 ≥ 2. We count in Tab. 2
the number of monomials for a certain multivariate degree up to a fixed degree
𝑑F𝑝

. Higher degree monomials might appear, but they are not presented in the
table. To report this behavior, we do not input 0 in the table after the highest
degree monomial. The column ‘max’ indicates the maximal number of monomials
that can be encountered for three variables. As reported in Tab. 2, the number
of monomials increases quite quickly, and we do not observe any unexpected
behavior, or missing monomials of a certain degree.
Binary Case. Tab. 3 provides the number of monomials of a certain degree in
F2𝑛 . We notice that the diffusion is slower than in F𝑝, and it may be because of
the behavior of the addition that is self inverse in F2𝑛 . More discussions on the
algebraic cipher representation in the binary case can be found in App. D.

5 Comparison with other Designs

In this section, we compare the performance of our design with other designs that
are presented in the literature for an MPC protocol using masked operations.
We mainly focus on the number of multiplications in an MPC setting, which is
often the metric that influences the most the cost in such a protocol. In addition,
we discuss the number of online and pre-computation/offline rounds, and we

23

Table 3: Number of monomials of a certain degree for F2𝑛 .
Output Degree

Round Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

max 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406

2
a 1 3 4 2 1
b 1 3 4 2 1
c 1 3 4 2 1

3
a 1 3 6 7 7 3 3 0 1
b 1 3 6 7 7 3 3 0 1
c 1 3 6 7 7 3 3 0 1

4
a 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1
b 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1
c 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1

5
a 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0
b 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0
c 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0

compare those numbers to the ones specified for other schemes. The influence of
the last two metrics on the overall costs highly varies depending on the concrete
protocol/application, and the concrete environment, in which an MPC protocol
is used, e.g., network of computers vs. a system on chip. Finally, we consider the
advantages and the disadvantages of our design w.r.t. the other ones.

5.1 MPC Costs: Ciminion & Related Works

We compare the MPC cost of Ciminion with the cost of other designs that are
published in the literature with 𝑞 ≈ 2128, and 𝑠 = 128 bits. We assume that
the amount of data available to the attacker is fixed to 2𝑠/2 = 264, which is the
most common case. Due to page limitation, we limit our analysis to Ciminion
and HadesMiMC. The latter is the main competitive design currently present in
the literature for the analyzed application. The detailed comparison with other
designs (including MiMC, GMiMC, Rescue and Vision) is provided in App. G. A
summary of the comparison is given in Tab. 4 and 5 for the binary and prime
case, respectively.

Our design has the lowest minimum number of multiplications w.r.t. all
other designs, in both F𝑝 and F2𝑛 . In (F𝑞)𝑡 for 𝑞 ≈ 2128, our design needs
approximately 𝑡 + 14 · ⌈𝑡/2⌉ ≈ 8 · 𝑡 multiplications w.r.t. 12 · 𝑡 multiplications
required by HadesMiMC or 60 · 𝑡 by Rescue. Additionally, our design has a
low number of linear operations compared to other designs. For instance, for
large 𝑡≫ 1, our design needs approximately 50 · 𝑡 affine operations (sums and
multiplications with constants) while HadesMiMC requires approximately 12 · 𝑡2 +
(157 + 4 ·max{32; ⌈log3(𝑡)⌉}) · 𝑡 affine operations. However, this advantage comes
at the price of having more online rounds than the other schemes. In particular,
104 + ⌈𝑡/2⌉ online rounds are required by our design whereas HadesMiMC and
Rescue have respectively 78 and 20 online rounds.
Ciminion. For 𝑞 ≈ 2128, and a security level of 128 bits with data limited to
264, the permutation 𝑝𝐶 counts 90 rounds. In order to output 2𝑡′ − 1 ≤ 𝑡 ≤ 2𝑡′

24

Table 4: Comparison on the MPC cost of schemes over F2𝑛
𝑡 for 𝑛 = 128 (or 129),

and a security level of 128 bits. With the exception of Vision (whose number of
offline rounds is equal to max

{︀
20, 2 ·

⌈︀ 136+𝑡
𝑡

⌉︀}︀
), the number of offline rounds for

all other schemes is zero.
Scheme Multiplications (MPC) Online Rounds

element in F2𝑛
𝑡 asymptotically (𝑡≫ 1)

Ciminion 8 · 𝑡 + 89 8 104 + ⌈𝑡/2⌉
MiMC-CTR 164 · 𝑡 164 82
Vision 𝑡 ·max

{︀
70, 7 ·

⌈︀
136+𝑡

𝑡

⌉︀}︀
70 max

{︀
50, 5 ·

⌈︀
136+𝑡

𝑡

⌉︀}︀
Table 5: Comparison on the MPC cost of schemes over F𝑝

𝑡 for 𝑝 ≈ 2128, and
a security level of ≈ 128 bits. With the exception of Rescue (whose number of
offline rounds is equal to max{30; 6 ·

⌈︀ 32.5
𝑡

⌉︀
}), the number of offline rounds for

all other schemes is zero.
Scheme Multiplications (MPC) Online Rounds

element in F𝑝
𝑡 asymptotically (𝑡≫ 1)

Ciminion 14 · ⌈𝑡/2⌉+ 𝑡 + 89 8 104 + ⌈𝑡/2⌉
MiMC-CTR 164 · 𝑡 164 82
GMiMC𝑒𝑟𝑓 4 + 4𝑡 + max

{︀
4𝑡2, 320

}︀
4 · 𝑡 2 + 2𝑡 + max

{︀
2𝑡2, 160

}︀
Rescue (𝛼 = 3) 𝑡 ·max{60; 12 ·

⌈︀
32.5

𝑡

⌉︀
} 60 max{20; 4 ·

⌈︀
32.5

𝑡

⌉︀
}

HadesMiMC 12𝑡+max{78+⌈log3(𝑡2)⌉; 142} 12 max{45 + ⌈log3(𝑡)⌉; 77}

words, we call 𝑡′ times the permutation 𝑝𝐸 that is composed of 14 rounds, and
(𝑡′ − 1) times the rolling function. Therefore, for the binary and the prime case,
the cost of Ciminion in MPC applications to generate 𝑡 words is

multiplications: 14 · ⌈𝑡/2⌉+ (𝑡− 1) + 90 ≈ 8 · 𝑡+ 89 ,
online rounds: 104 + ⌈𝑡/2⌉ ,

affine operations: 99 · ⌈𝑡/2⌉+ 629 ≈ 50 · 𝑡+ 629 .

The number of online rounds depends on 𝑡, because the rolling function is serial. It
is noteworthy that the expansion part can be performed in parallel. We emphasize
that the number of sums and multiplications with a constant9 (denoted as “affine”
operations) is proportional to the number of multiplications. That is one of the
main differences w.r.t. to the Hades construction as we argue afterwards.
HadesMiMC. HadesMiMC [40] is a block cipher that is proposed over (F𝑝)𝑡

for a prime 𝑝 such that gcd(𝑝 − 1, 3) = 1, and 𝑡 ≥ 2. It combines 𝑅𝐹 = 2𝑅𝑓

rounds with a full S-box layer (𝑅𝑓 at the beginning, and 𝑅𝑓 at the end), and
𝑅𝑃 rounds with a partial S-box layer in the middle. Each round is defined with
𝑅𝑖(𝑥) = 𝑘𝑖 + 𝑀 × 𝑆(𝑥), where 𝑀 is a 𝑡 × 𝑡 MDS matrix, and 𝑆 is the S-box
layer. This layer is defined as the concatenation of 𝑡 cube S-boxes in the rounds
9 Each round counts six additions and one multiplication with a constant.

25

with full layer, and as the concatenation of one cube S-Box and 𝑡− 1 identity
functions in the rounds with partial layer.

In addition, hash functions can be obtained by instantiating a Sponge construc-
tion with the Hades permutation, and a fixed key, like Poseidon & Starkad [39].
In [15], the authors present an attack on Starkad that exploits a weakness in the
matrix 𝑀 that defines the MixLayer. The attack takes advantage of the equation
𝑀2 = 𝜇 · 𝐼. This attack can be prevented by carefully choosing the MixLayer (we
refer to [43] for further detail). There is no attack that is based on an analogous
strategy that has been proposed for the cipher10.

In order to guarantee some security, 𝑅𝐹 and 𝑅𝑃 must satisfy a list of in-
equalities [40]. There are several combinations of (𝑅𝐹 , 𝑅𝑃) that can provide the
same level of security. In that regard, authors of [40] present a tool that makes it
possible to find the best combination that guarantees security, and minimizes
the computational cost. For a security level of approximately log2(𝑝) bits, and
with log2(𝑝)≫ 𝑡, the combination (𝑅𝐹 , 𝑅𝑃) minimizing the overall number of
multiplications is

(𝑅𝐹 , 𝑅𝑃)=
(︂

6,max
{︂⌈︂

log3(𝑝)
2

⌉︂
+ ⌈log3(𝑡)⌉; ⌈log3(𝑝)⌉ − 2⌊log3(log2(𝑝))⌋

}︂
− 2

)︂
.

In MPC applications (𝑝 ≈ 2128 and 𝑠 = 128 bits), the cost of HadesMiMC is

multiplications: 2 · (𝑡 ·𝑅𝐹 +𝑅𝑃) = 12𝑡+ max{78 + ⌈log3(𝑡2)⌉ ; 142} ,
online rounds: 𝑅𝐹 +𝑅𝑃 = max{45 + ⌈log3(𝑡)⌉; 77} ,

affine operations: 2 · 𝑡2 ·𝑅𝐹 + (4 ·𝑅𝑃 + 1) · 𝑡− 2 ·𝑅𝑃

≈ 12 · 𝑡2 + (157 + 4 ·max{32; ⌈log3(𝑡)⌉}) · 𝑡 .

Parallel S-boxes can be computed in a single online round11. To compute the
number of affine operations, we considered an equivalent representation of the
cipher in which the MixLayer of the rounds, with a partial S-box layer, is defined
by a matrix. In this matrix, only 3𝑡− 2 entries are different from zero, that is
to say the ones in the first column, in the first row , and in the first diagonal.
(A (𝑡− 1)× (𝑡− 1) submatrix is an identity matrix.) The details are presented
in [40, App. A]. Therefore, the total number of affine operations required grows
quadratically w.r.t. the number of rounds with full S-box layer, and thus w.r.t.
the number of multiplications.

Finally, we highlight that the number of multiplications is minimized when
HadesMiMC takes as input the entire message. Indeed, let us assume that the
input message is split into several parts, and that HadesMiMC is used in CTR
mode (as suggested by the designers). In the analyzed case in which the security
level is of the same order of the size of the field 𝑝, the number of rounds is
10 The main problem, in this case, regards the current impossibility to choose texts

in the middle of the cipher by bypassing the rounds with full S-Box layer when the
secret key is present.

11 We refer to [42] on how to evaluate 𝑥→ 𝑥3 within a single communication round.

26

almost constant, and independent of the parameter 𝑡 ≥ 2. It follows that using
HadesMiMC in CTR mode would require more multiplications, because every
process requires the computation of the rounds with a partial S-box layer, whereas
this computation is needed only once when the message size equals the block
size. We stress that a similar conclusion holds for Rescue/Vision, for which the
total number of multiplications would barely change when they are used in CTR
mode, rather than when the message size is equal to the block size.

5.2 Ciminion versus Hades: Advantages and Similarities

The previous comparison highlights that the two most competitive designs
for MPC applications with a low multiplicative complexity are Ciminion and
HadesMiMC. Referring to Fig. 1, we further develop the similarities and ad-
vantages between a block cipher based on a Hades design, and a cipher based
on Farfalle. We present a brief comparison between our new design and the
“ForkCipher” design that is proposed in [7] in App. G.2.
Similarities: Distribution of the S-Boxes. We focus our attention on the
distribution of the S-boxes, or more generally, the non-linear operations. Both
strategies employ a particular parallelization of the non-linear operations/S-boxes
to their advantage, in order to minimize the number of non-linear operations.
More precisely, each step is composed of 𝑡 parallel non-linear operations in the
external rounds, i.e., the rounds at the end and at the beginning. Furthermore,
each step is composed of a single non-linear operation in the internal rounds.

Both strategies take advantage of an attacker that cannot directly access the
state in the middle rounds, because the state is masked both by the external
rounds or phases, and by the presence of a key. In a Farfalle design, the attacker
knows that each output of the expansion phase always employs the same value
at the input, without accessing those inputs. In a Hades design, the attacker is
able to skip some rounds with a partial S-box layer by carefully choosing the
texts (see [15]). However, they cannot access the texts without bypassing the
rounds with the full S-box layer that depends on the key.

Having middle rounds with a single S-box makes it possible to reduce the
overall number of non-linear operations. In addition, they ensure some security
against algebraic attacks. Indeed, even a single S-box makes it possible to increase
the overall degree of the scheme. For a concrete example, let (𝑅𝑐, 𝑅𝑚, 𝑅𝑒) be the
rounds for respectively the compression part, middle part and expansion part of
Farfalle. Like previously, let (𝑅𝐹 , 𝑅𝑃) be the number of rounds with respectively
a full and a partial S-box layer in Hades. The number of multiplications is
respectively (𝑅𝑐+𝑅𝑒)·𝑡+𝑅𝑚 and 𝑅𝐹 ·𝑡+𝑅𝑃 . If 𝑅𝑃 ≫ 𝑅𝐹 and 𝑅𝑚 ≫ 𝑅𝑐+𝑅𝑒. For
a similar number of round, i.e., proportional to ≈ 𝑅𝑃 +𝑅𝐹 or/and ≈ 𝑅𝑚+𝑅𝑐+𝑅𝑒,
it is then necessary to reach the maximum degree. Our number of multiplications
is lower compared to a classical design where the rounds have a full S-box layer.
Advantages. There are major differences between Farfalle-like designs and
Hades-like designs, because of their primary intention. The Farfalle-like design
aims to behave like a Pseudo-Random Function (PRF), and the Hades-like design
like a Pseudo-Random Permutation (PRP). The latter is used as a PRF in

27

the Counter mode (CTR).12 Under the assumption that affine operations are
cheaper than non-linear ones, designers of Hades defined the MixLayer as the
multiplication with a 𝑡 × 𝑡 MDS matrix. Consequently, each round with full
S-box layer counts 𝑡2 multiplications with constants. However, when 𝑡≫ 1, linear
operations cannot be considered as free anymore, and their presences influence
the overall performance.

This problem is not present in a Farfalle-like design. Indeed, by construction,
in the first 𝑅𝑐 and the last 𝑅𝑒 rounds, the MixLayer is not required. That implies
that the first three words are never mixed with the following ones. On the contrary,
the elements are simply added together to generate the input of the compression
phase. In addition, the expansion part’s input is generated through a non-linear
rolling function whose cost grows linearly with 𝑡. Finally, since invertibility is
not required, the number of input words can be lower than the number of output
words to design a function from (F𝑞)3 to (F𝑞)𝑡 for any 𝑡 ≥ 1. Thus, independently
of the number of output words, one multiplication per round is present in the
compression phase, contrary to 𝒪(𝑡) of a Hades-like scheme.

Acknowledgements. We thank Joan Daemen for his guidance and support and the
reviewers of Eurocrypt 2021 for their valuable comments that improved the paper.
This work has been supported in part by the European Research Council under
the ERC advanced grant agreement under grant ERC-2017-ADG Nr. 788980
ESCADA, the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 681402),
and the Austrian Science Fund (FWF): J 4277-N38.

References

1. Albrecht, M.R., Cid, C., Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger,
C., Schofnegger, M.: Algebraic Cryptanalysis of STARK-Friendly Designs: Applica-
tion to MARVELlous and MiMC. In: ASIACRYPT. LNCS, vol. 11923, pp. 371–397.
Springer (2019)

2. Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru, D.,
Roy, A., Schofnegger, M.: Feistel Structures for MPC, and More. In: ESORICS.
LNCS, vol. 11736, pp. 151–171. Springer (2019)

3. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity.
In: ASIACRYPT. LNCS, vol. 10031, pp. 191–219 (2016)

4. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. In: EUROCRYPT. LNCS, vol. 9056, pp. 430–454 (2015)

5. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of Symmetric-
Key Primitives for Advanced Cryptographic Protocols. Cryptology ePrint Archive,
Report 2019/426 (2019)

6. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of Symmetric-
Key Primitives for Advanced Cryptographic Protocols. IACR Trans. Symmetric
Cryptol. 2020(3), 1–45 (2020)

12 This means that, in both cases, the cost of encryption and decryption is the same.
That is because Farfalle-like and Hades-like designs are used as stream ciphers.

28

7. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.:
Forkcipher: A New Primitive for Authenticated Encryption of Very Short Messages.
In: ASIACRYPT. LNCS, vol. 11922, pp. 153–182. Springer (2019)

8. Ashur, T., Dhooghe, S.: MARVELlous: a STARK-Friendly Family of Cryptographic
Primitives. Cryptology ePrint Archive, Report 2018/1098 (2018)

9. Baignères, T., Stern, J., Vaudenay, S.: Linear Cryptanalysis of Non Binary Ciphers.
In: SAC. pp. 184–211 (2007)

10. Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in Constant
Number of Rounds of Interaction. In: ACM Symposium. pp. 201–209. ACM (1989)

11. Bardet, M., Faugère, J., Salvy, B.: On the complexity of the F5 Gröbner basis
algorithm. J. Symb. Comput. 70, 49–70 (2015)

12. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryptol.
2017(4), 1–38 (2017)

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. Ecrypt
Hash Workshop 2007 (2007)

14. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submission
(Version 3.0) (2011)

15. Beyne, T., Canteaut, A., Dinur, I., Eichlseder, M., Leander, G., Leurent, G., Naya-
Plasencia, M., Perrin, L., Sasaki, Y., Todo, Y., Wiemer, F.: Out of Oddity – New
Cryptanalytic Techniques against Symmetric Primitives Optimized for Integrity
Proof Systems. In: CRYPTO. LNCS, vol. 12172, pp. 299–328. Springer (2020)

16. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: EUROCRYPT. LNCS, vol. 1592, pp.
12–23. Springer (1999)

17. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
CRYPTO. LNCS, vol. 537, pp. 2–21. Springer (1990)

18. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity. In: FSE. LNCS, vol. 7549, pp. 29–48. Springer (2012)

19. Bonnetain, X.: Collisions on Feistel-MiMC and univariate GMiMC. Cryptology
ePrint Archive, Report 2019/951 (2019)

20. Boura, C., Canteaut, A., De Cannière, C.: Higher-Order Differential Properties of
Keccak and Luffa. In: FSE. LNCS, vol. 6733, pp. 252–269. Springer (2011)

21. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bull. 10(3), 19–29 (1976)

22. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier,
P., Sirdey, R.: Stream Ciphers: A Practical Solution for Efficient Homomorphic-
Ciphertext Compression. J. Cryptology 31(3), 885–916 (2018)

23. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions (Extended Abstract).
In: STOC. pp. 106–112. ACM (1977)

24. Daemen, J.: Cipher and hash function design, strategies based on linear and
differential cryptanalysis, PhD Thesis. K.U.Leuven (1995)

25. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation Matrices. In: FSE. LNCS,
vol. 1008, pp. 275–285 (1994)

26. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of Xoodoo and
Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

27. Daemen, J., Rijmen, V.: The Block Cipher Rijndael. In: CARDIS. LNCS, vol. 1820,
pp. 277–284 (1998)

28. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002)

29

29. Daemen, J., Rijmen, V.: The Design of Rijndael: The Advanced Encryption Standard
(AES), chap. Correlation Analysis in GF(2n), pp. 181–194. Springer (2020)

30. Damgård, I., Fazio, N., Nicolosi, A.: Non-interactive Zero-Knowledge from Homo-
morphic Encryption. In: TCC. LNCS, vol. 3876, pp. 41–59 (2006)

31. Dinur, I., Kales, D., Promitzer, A., Ramacher, S., Rechberger, C.: Linear Equivalence
of Block Ciphers with Partial Non-Linear Layers: Application to LowMC. In:
EUROCRYPT. LNCS, vol. 11476, pp. 343–372. Springer (2019)

32. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized Interpolation Attacks on LowMC.
In: ASIACRYPT. LNCS, vol. 9453, pp. 535–560. Springer (2015)

33. Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E.,
Mendel, F., Rechberger, C.: Rasta: A Cipher with Low ANDdepth and Few ANDs
per Bit. In: CRYPTO. LNCS, vol. 10991, pp. 662–692 (2018)

34. Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP Family of Stream
Ciphers. In: CRYPTO. LNCS, vol. 9814, pp. 457–475. Springer (2016)

35. Eichlseder, M., Grassi, L., Lüftenegger, R., Øygarden, M., Rechberger, C., Schofneg-
ger, M., Wang, Q.: An Algebraic Attack on Ciphers with Low-Degree Round
Functions: Application to Full MiMC. In: ASIACRYPT. LNCS, vol. 12491, pp.
477–506. Springer (2020)

36. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero F5. In: ISSAC. pp. 75–83. ACM (2002)

37. Faugère, J., Gianni, P.M., Lazard, D., Mora, T.: Efficient Computation of Zero-
Dimensional Gröbner Bases by Change of Ordering. J. Symb. Comput. 16(4),
329–344 (1993)

38. Genovese, G.: Improving the algorithms of Berlekamp and Niederreiter for factoring
polynomials over finite fields. J. Symb. Comput. 42(1-2), 159–177 (2007)

39. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
A New Hash Function for Zero-Knowledge Proof Systems. In: USENIX Security 21.
USENIX Association (2021)

40. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
Generalization of Substitution-Permutation Networks: The HADES Design Strategy.
In: EUROCRYPT. LNCS, vol. 12106, pp. 674–704 (2020)

41. Grassi, L., Rechberger, C., Rønjom, S.: A New Structural-Differential Property of
5-Round AES. In: EUROCRYPT. LNCS, vol. 10211, pp. 289–317 (2017)

42. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-Friendly
Symmetric Key Primitives. In: CCS. pp. 430–443. ACM (2016)

43. Grassi, L., Rechberger, C., Schofnegger, M.: Weak Linear Layers in Word-Oriented
Partial SPN and HADES-Like Ciphers. Cryptology ePrint Archive, Report 2020/500
(2020)

44. Grosso, V., Standaert, F., Faust, S.: Masking vs. multiparty computation: how
large is the gap for AES? J. Cryptographic Engineering 4(1), 47–57 (2014)

45. Ishai, Y., Sahai, A., Wagner, D.A.: Private Circuits: Securing Hardware against
Probing Attacks. In: CRYPTO. LNCS, vol. 2729, pp. 463–481. Springer (2003)

46. Jakobsen, T., Knudsen, L.R.: The Interpolation Attack on Block Ciphers. In: FSE.
LNCS, vol. 1267, pp. 28–40. Springer (1997)

47. Knudsen, L.R.: Truncated and Higher Order Differentials. In: FSE. LNCS, vol. 1008,
pp. 196–211. Springer (1994)

48. Knudsen, L.R.: DEAL – A 128-bit Block Cipher. (1998)
49. Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. In: Communi-

cations and Cryptography: Two Sides of One Tapestry. pp. 227–233. Springer US
(1994)

30

50. Langford, S.K., Hellman, M.E.: Differential-Linear Cryptanalysis. In: CRYPTO.
LNCS, vol. 839, pp. 17–25. Springer (1994)

51. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: EUROCRYPT.
LNCS, vol. 765, pp. 386–397 (1993)

52. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode of Operation (Full Version). Cryptology ePrint Archive, Report 2004/193
(2004)

53. Méaux, P., Journault, A., Standaert, F., Carlet, C.: Towards Stream Ciphers for
Efficient FHE with Low-Noise Ciphertexts. In: EUROCRYPT. LNCS, vol. 9665,
pp. 311–343. Springer (2016)

54. NIST: FIPS PUB 202: SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions (August 2015)

55. Nyberg, K., Knudsen, L.R.: Provable Security Against a Differential Attack. J.
Cryptology 8(1), 27–37 (1995)

56. Procter, G.: A Security Analysis of the Composition of ChaCha20 and Poly1305.
Cryptology ePrint Archive, Report 2014/613 (2014)

57. Procter, G., Cid, C.: On Weak Keys and Forgery Attacks Against Polynomial-Based
MAC Schemes. J. Cryptol. 28(4), 769–795 (2015)

58. Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of Low-Data Instances of
Full LowMCv2. IACR Trans. Symmetric Cryptol. 2018(3), 163–181 (2018)

59. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The Cipher
SHARK. In: FSE. LNCS, vol. 1039, pp. 99–111 (1996)

60. Simon, T., Batina, L., Daemen, J., Grosso, V., Massolino, P.M.C., Papagiannopoulos,
K., Regazzoni, F., Samwel, N.: Friet: An Authenticated Encryption Scheme with
Built-in Fault Detection. In: EUROCRYPT. LNCS, vol. 12105, pp. 581–611 (2020)

61. Toffoli, T.: Reversible Computing. In: ICALP. LNCS, vol. 85, pp. 632–644. Springer
(1980)

62. Wagner, D.A.: The Boomerang Attack. In: FSE. LNCS, vol. 1636, pp. 156–170.
Springer (1999)

31

A Round Constants Generation – Details

As mentioned in the main part, the round constants RC1 ℓ, RC2 ℓ, RC3 ℓ, and
RC4 ℓ are generated using Shake-256 [14,54]. We detail this process in this section.

For prime fields, a byte sequence of the ASCII characters “GF(p)” is absorbed
with p denoting the numerical representation of the prime modulus.13 The output
sequence of Shake-256 is then split into ⌈log2(𝑝)⌉-bit unsigned integers 𝑍𝑖. These
values 𝑍𝑖 are next sequentially assigned to RC1ℓ, RC2ℓ, RC3ℓ, and RC4ℓ for
rising ℓ, as long as 1 < 𝑍𝑖 < 𝑝. Otherwise, we discard 𝑍𝑖, and we use instead the
next unsigned integer 1 < 𝑍𝑖 < 𝑝 of the sequence.

The round-constants generation process is analogous for fields over F2𝑛 . In
this case, we absorb a byte sequence corresponding to the ASCII characters
“GF(2)[X]/polynomial’, where the characters “polynomial” is the hexadecimal
representation in capital letters of the irreducible polynomial.14 Thereafter, the
output sequence of Shake-256 is split into 𝑛-bit unsigned integers 𝑍𝑖. These values
𝑍𝑖 are then sequentially assigned to RC1ℓ, RC2ℓ, RC3ℓ, and RC4ℓ for rising ℓ
as long as 𝑍𝑖 > 1. Otherwise, we discard 𝑍𝑖, and we employ instead the next
unsigned integer 𝑍𝑖 > 1 of the sequence.

B Aiminion: An Aggressive Evolution of Ciminion

For Ciminion, we modify the Farfalle [12] construction, in order to obtain a
stronger design with a fewer successful attacks. In particular, moving the keys
from the output of the construction (Fig. 7) to the inputs of 𝑝𝐸 (Fig. 3) results
in the two following observations.

1. The unknown keys 𝐾𝑖 at the inputs of 𝑝𝐸 prevent an attacker from knowing
which inputs of 𝑝𝐸 form an affine space. Hence, the rolling function rol does
not have to be non-linear to achieve this property.

2. We cannot use the middle state-output relation (see Sect. 4.4) to set up
a system of equations to be solved using Gröbner bases. In fact, despite
our attempts (not involving 𝑝𝐶), the system of equations is always under-
determined. We have less equations than secret elements.

This leads us to Aiminion. Compared to Ciminion, we use the identity as
rolling function rol, and we fix the number of rounds to nine for 𝑝𝐸 , if we solely
consider statistical attacks as a threat. This is three times the number of rounds
where only bad differential/linear trails exists, as discussed in Tab. 6.

Aiminion has an lower number of multiplication per elements than Ciminion.
Indeed, it shifts from eight for large 𝑡 to only 4.5. However, this comes at the cost
of interrupting the chain of arguments for security. In particular, probabilistically
13 For instance, if we take the prime field 17, “GF(17)” is absorbed which hexadecimal

representation is 0x474628313729.
14 For example, in F28 with the irreducible polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1, we absorb

“GF(2)[X]/11B” that is represented by 0x47462832295B585D2F313142 in hexadecimal.

32

Table 6: Proposed number of rounds for Aiminion. The security level 𝑠 must
satisfy 64 ≤ 𝑠 ≤ log2(𝑞) and 𝑞 ≥ 264, where 𝑞 is the number of elements in the
field.

Instance 𝑝𝐶 𝑝𝐸 (two words per block)

Data limit 2𝑠/2 elements 2(𝑠+6)
3 9

formed affine spaces at the inputs of 𝑝𝐸 might still be detectable. We consider
the evaluation of the complexity to find such an affine space as an interesting
topic for future evaluation.

C Statistical Attacks – Details

C.1 Classical Correlation Analysis

In this section, we present the notions of classical correlation analysis in a fashion
that eases the transition to the more general theory. In classical correlation
analysis, we consider vectorial Boolean functions 𝑓 : (F2)𝑛 → (F2)𝑛. From
a more abstract point of view, classical correlation analysis is the study of
certain characters, and their configuration in the space 𝐿2((F2)𝑛) of complex-
valued functions (F2)𝑛 → C. Let 𝑆 = {𝑧 ∈ C : |𝑧| = 1} be the multiplicative
group of complex numbers of absolute value 1. An additive character of (F2)𝑛

is a homomorphism from (F2)𝑛 (considered as an abelian group) into 𝑆. The
𝐿2((F2)𝑛)-inner product is given by

⟨𝜒, 𝜓⟩ = 1
2𝑛

∑︁
𝑥∈(F2)𝑛

𝜒(𝑥)𝜓(𝑥).

A parity of a vector 𝑥 ∈ (F2)𝑛 is the sum of a specific subset of its components.
Any parity of 𝑥 can be written as 𝑢⊤𝑥 for some 𝑢 ∈ (F2)𝑛. We call 𝑢 a mask.
Each mask 𝑢 defines a unique character 𝜒𝑢 : (F2)𝑛 → C ∩ {−1, 1} given by

𝜒𝑢(𝑥) = (−1)𝑢⊤𝑥.

Together, these notions lead to the definition of correlation.

Definition 4 (Parity Correlation). The correlation between an input mask
𝑢 and output mask 𝑣 with respect to a function 𝑓 is defined as

C𝑓 (𝑢, 𝑣) = ⟨𝜒𝑢, 𝜒𝑣 ∘ 𝑓⟩ = 1
2𝑛

∑︁
𝑥∈(F2)𝑛

(−1)𝑢⊤𝑥+𝑣⊤𝑓(𝑥) .

The number of known plaintext-ciphertext pairs required to mount a linear attack
is inversely proportional to the square of the correlation. Hence, the square of
the correlation serves as a measure to assess the effectiveness of a linear attack.
It is called the linear probability.

33

Definition 5 (Linear Probability). The linear probability of an input mask
𝑢 and output mask 𝑣 with respect to a function 𝑓 is defined as

LP𝑓 (𝑢, 𝑣) = C𝑓 (𝑢, 𝑣)2 .

C.2 Proofs of Linear Probabilities

Lemma 2 (Orthogonality Relations). Let 𝜒 and 𝜓 be additive characters of
F𝑞, then ∑︁

𝑥∈F𝑞

𝜒𝑏(𝑥)𝜒𝑐(𝑥) =
{︂

0 if 𝑏 ̸= 𝑐,
𝑞 otherwise.

Theorem 1 (Linear Probabilities of the Multiplication Function). Let
𝑚 : F𝑞 × F𝑞 → F𝑞 be given by 𝑚(𝑥, 𝑦) = 𝑥𝑦, then the linear probabilities for all
masks 𝑢 ∈ (F𝑞)2 at the input of 𝑚 and masks 𝑣 ∈ F𝑞 at the output of 𝑚 are as
seen in Tab. 7.

𝑢1 𝑢2 𝑣 LP𝑚((𝑢1, 𝑢2), 𝑣)
* * 1 1

𝑞2

0 0 0 1
0 1 0 0
1 0 0 0
1 1 0 0

Table 7: Linear probabilities of 𝑚 in F𝑞. A 0 denotes a zero value, a 1 denotes a
non-zero value, and a * denotes any value.

Proof. Let 𝑣 ̸= 0. If 𝑢1 = 0, then

LP𝑚(𝑢, 𝑣) =

⃒⃒⃒⃒
⃒⃒ 1
𝑞2

∑︁
𝑥∈F𝑞

∑︁
𝑦∈F𝑞

𝜒1(𝑢1𝑥+ 𝑢2𝑦 − 𝑣𝑥𝑦)

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒ 1
𝑞2

∑︁
𝑥∈F𝑞

∑︁
𝑦∈F𝑞

𝜒1(𝑢2𝑦 − 𝑣𝑥𝑦)

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒ 1
𝑞2

∑︁
𝑥∈F𝑞

∑︁
𝑦∈F𝑞

𝜒1(𝑢2𝑦)𝜒1(𝑣𝑥𝑦)

⃒⃒⃒⃒
⃒⃒
2

= 1
𝑞2 ,

where the last equality is due to the fact that – by Lemma 2 – the inner sum
equals 𝑞, if 𝑥 = 𝑣−1𝑢2, and 0 otherwise.

The case for which 𝑢2 = 0 is analogous to the previous one. Therefore, we
can suppose that 𝑢1 ̸= 0, and 𝑢2 ̸= 0. Let 𝑎 ∈ F𝑞, and 𝑏 ∈ F𝑞, be such that

𝑏+ 𝑢1𝑥+ 𝑢2𝑦 − 𝑣𝑥𝑦 = (1 + 𝑎𝑥)(𝑏+ 𝑢2𝑦).

34

Then,

LP𝑚(𝑢, 𝑣) =

⃒⃒⃒⃒
⃒⃒ 1
𝑞2

∑︁
𝑥∈F𝑞

∑︁
𝑦∈F𝑞

𝜒1(𝑢1𝑥+ 𝑢2𝑦 − 𝑣𝑥𝑦)

⃒⃒⃒⃒
⃒⃒
2

.

By multiplying it by |𝜒1(𝑏)|2 = 1:

=

⃒⃒⃒⃒
⃒⃒ 1
𝑞2

∑︁
𝑥∈F𝑞

∑︁
𝑦∈F𝑞

𝜒1(𝑏+ 𝑢1𝑥+ 𝑢2𝑦 − 𝑣𝑥𝑦)

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒ 1
𝑞2

∑︁
𝑥∈F𝑞

∑︁
𝑦∈F𝑞

𝜒1((1 + 𝑎𝑥)(𝑏+ 𝑣𝑦))

⃒⃒⃒⃒
⃒⃒
2

.

Note that 𝑎 ̸= 0 and 𝑣 ̸= 0, hence:

=

⃒⃒⃒⃒
⃒⃒ 1
𝑞2

∑︁
𝑥′∈F𝑞

∑︁
𝑦′∈F𝑞

𝜒1(𝑥′𝑦′)

⃒⃒⃒⃒
⃒⃒
2

= 1
𝑞2 ,

where the last equality is due to the fact that – by Lemma 2 – the inner sum
equals 𝑞, if 𝑥′ = 0, and 0 otherwise.

Next, let us consider that 𝑣 = 0. From Lemma 2, we deduce that

LP𝑚(𝑢, 0) =
{︂

1 if 𝑢 = (0, 0),
0 otherwise.

⊓⊔

Theorem 2 (Linear Probabilities of the Round Constant Addition).
Let 𝑐 : F𝑞 → F𝑞 be given by 𝑐(𝑥) = 𝑥+ 𝑐, then

LP𝑐(𝑢, 𝑣) =
{︂

1 if 𝑢 = 𝑣,
0 otherwise,

for all masks 𝑢, 𝑣 ∈ F𝑞.

Proof.

LP𝑐(𝑢, 𝑣) =

⃒⃒⃒⃒
⃒⃒1
𝑞

∑︁
𝑥∈F𝑞

𝜒1(𝑢𝑥− 𝑣𝑐(𝑥))

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒1
𝑞

∑︁
𝑥∈F𝑞

𝜒1(𝑢𝑥− 𝑣(𝑥+ 𝑐))

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒1
𝑞

∑︁
𝑥∈F𝑞

𝜒1((𝑢− 𝑣)𝑥− 𝑣𝑐)

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒1
𝑞

∑︁
𝑥∈F𝑞

𝜒1((𝑢− 𝑣)𝑥)𝜒1(𝑣𝑐)

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒1
𝑞

∑︁
𝑥∈F𝑞

𝜒1((𝑢− 𝑣)𝑥)

⃒⃒⃒⃒
⃒⃒
2

.

The result now follows from Lemma 2. ⊓⊔

35

Theorem 3 (Linear Probabilities of the Addition). Let 𝑎 : F𝑞 × F𝑞 → F𝑞

be given by 𝑎(𝑥, 𝑦) = 𝑥+ 𝑦, then

LP𝑎(𝑢, 𝑣) =
{︂

1 if 𝑢 = (𝑣, 𝑣),
0 otherwise,

for all masks 𝑢 ∈ (F𝑞)2 at the input of 𝑎, and masks 𝑣 ∈ F𝑞 at the output of 𝑎.

Proof.

LP𝑎(𝑢, 𝑣) =

⃒⃒⃒⃒
⃒⃒ 1
𝑞2

∑︁
𝑥∈F𝑞

∑︁
𝑦∈F𝑞

𝜒1(𝑢⊤(𝑥, 𝑦)− 𝑣𝑎(𝑥, 𝑦))

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒ 1
𝑞2

∑︁
𝑥∈F𝑞

∑︁
𝑦∈F𝑞

𝜒1(𝑢1𝑥+ 𝑢2𝑦 − 𝑣(𝑥+ 𝑦))

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒ 1
𝑞2

∑︁
𝑥∈F𝑞

∑︁
𝑦∈F𝑞

𝜒1((𝑢1 − 𝑣)𝑥+ (𝑢2 − 𝑣)𝑦)

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒ 1
𝑞2

∑︁
𝑥∈F𝑞

𝜒1((𝑢1 − 𝑣)𝑥)
∑︁
𝑦∈F𝑞

𝜒1((𝑢2 − 𝑣)𝑦)

⃒⃒⃒⃒
⃒⃒
2

.

By Lemma 2, both sums are non-zero if and only if 𝑢1 = 𝑢2 = 𝑣. In this case,
they both evaluate to 𝑞. ⊓⊔

Theorem 4 (Linear Probabilities of the Branch Duplication). Let 𝑑 :
F𝑞 → F𝑞 × F𝑞 be given by 𝑑(𝑥) = (𝑥, 𝑥), then

LP𝑑(𝑢, (𝑣1, 𝑣2)) =
{︂

1 if 𝑢 = 𝑣1 + 𝑣2,
0 otherwise,

for all masks 𝑢 ∈ F𝑞 at the input of 𝑑, and mask (𝑣1, 𝑣2) ∈ (F𝑞)2 at the output of
𝑑.

Proof. Remember that LP𝑑(𝑢, (𝑣1, 𝑣2)) =

⃒⃒⃒⃒
⃒ 1

𝑞

∑︀
𝑥∈F𝑞

𝜒𝑢(𝑥)𝜒𝑣1+𝑣2(𝑥)

⃒⃒⃒⃒
⃒
2

. By Lemma 2,

the sum is non-zero if and only if 𝑢 = 𝑣1 + 𝑣2. In this case, it evaluates to 𝑞. ⊓⊔

Theorem 5 (Linear Probabilities of a F𝑞-Linear Transformation.). Let
𝐿 : (F𝑞)𝑚 → (F𝑞)𝑚 be a linear transformation, then

LP𝐿(𝑢, 𝑣) =
{︂

1 if 𝑢 = 𝐿⊤𝑣,
0 otherwise,

for all masks 𝑢, 𝑣 ∈ (F𝑞)𝑚.

36

Proof.

LP𝐿(𝑢, 𝑣) =

⃒⃒⃒⃒
⃒⃒1
𝑞

∑︁
𝑥∈F𝑞

𝜒1(𝑢⊤𝑥− 𝑣⊤𝐿𝑥)

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒1
𝑞

∑︁
𝑥∈F𝑞

𝜒1(𝑢𝑇𝑥− (𝐿⊤𝑣)⊤𝑥)

⃒⃒⃒⃒
⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒1
𝑞

∑︁
𝑥∈F𝑞

𝜒1((𝑢− 𝐿⊤𝑣)⊤𝑥)

⃒⃒⃒⃒
⃒⃒
2

.

The result now follows from Lemma 2. ⊓⊔

C.3 Differential Attacks – Details

As mentioned in Sect. 4.2, we built a state finite machine in Fig. 9 that represents
all sets of encountered differences as states that are associated to their differential
probabilities. We focus on the prime case, but the results are analogous in F2𝑛 .

In order to understand the Figure, we mention that:

– all entries are fixed differences, where (𝑥, 𝑦, 𝑧) ̸= 0, with 𝑥 ̸= 𝑦, 𝑥 ̸= 𝑧, and
𝑧 ̸= 𝑦.

– in order to simplify the Figure, we use only three letters 𝑥, 𝑦, 𝑧 to denote the
differences for each branch. Most of the time, the value of the differences
𝑥, 𝑦, 𝑧 at the input are not equal to the value of the differences 𝑥, 𝑦, 𝑧 at the
output. For instance, if we consider the one-round difference {(𝑥,RC4𝑥, 𝑥)} ↦→
{(0, 𝑥, 𝑦)}, the value of the input difference 𝑥 is usually not equal to the value
of the output difference 𝑥. Only in a few cases, the values of the differences
𝑥, 𝑦, 𝑧 at the input are exactly equal to the value of the differences 𝑥, 𝑦, 𝑧 at
the output. This is the case for {(0, 0, 𝑥)} ↦→ {(𝑥,RC4𝑥, 𝑥)} in F2𝑛 .

– all arrows with a plain line represents a differential probability 𝑝−1 in F𝑝

(similarly, 2−𝑛 for the analogous case in F2𝑛); except for the arrow with a
doted line that has a probability one.

– an arrow starting with a diamond and ending with a hollow head indicates
that the round constant RC4 that is mentioned in the states before and after
the considered round (↦→), comes from a previous round. In other words, if
we consider the round ℓ, the round constant RC4 𝑗 that is written in the
difference states before/after this round, is introduced in a round 𝑗 < ℓ. In
addition, it is possible that the round constant RC4 ℓ of the considered ℓ-th
round is equal to the round constant of the previous or preceding state(s).
This highly determines the output state of {(−RC4𝑥, 𝑥, 0)}. For instance, if
we examine the round ℓ that has the input differences {(−RC4 𝑗<ℓ𝑥, 𝑥, 0)}, the
output differences can be either {(𝑥,RC4 𝑗<ℓ𝑥, 𝑦)} or {(𝑥, 𝑦, 𝑧)} depending
on whether RC4 𝑗<ℓ = RC4 ℓ, if none of the output differences is equal to
zero.

37

x
y
z

0
x
y

x
0
y

x
y
0

0
0
x

x
RC4 x

x

-RC4 x
x
0

x
RC4 x

y

x
RC4 x

0

x
0
0

0
RC4 x

x

x
RC4 y

y

0
x
0

x
0
x

x
y
x

Fig. 9: Differential trails for the round function in F𝑝. The three-round differential
trail with the highest DP from Sect. 4.2, is highlighted in yellow.

D On Interpolation Attacks

In our keyed mode that is depicted in Fig. 3, the subkeys 𝐾𝑖 are derived from two
master key elements MK1 and MK2. We analyze in this section how an attacker
can gather many equations with the secrets 𝐾1 and 𝐾2 for the permutation 𝑝𝐶 .
As explained for higher-order differential attacks, the goal is to guarantee that
the output of 𝑝𝐶 appears to be randomly generated. For the sake of simplicity, we
neglect in these observations any further additions of key elements and application
of 𝑝𝐸 . Moreover, we study the upper bounds on the number of monomials that
is needed to solve a system of equations.

An Upper Bound on the Number of Monomials. We know from Sect. 4.3
that the number of rounds required to reach a degree 𝑑F𝑝 , or 𝑑F2𝑛 , of approximately
2𝑠 is 𝑠 + 2 for either 𝐾1 and 𝐾2. Hence, the maximum number of possible
monomials 𝜇 of the maximal possible combinations of 𝐾1 and 𝐾2 up to degree
2𝑠 is 22𝑠. This means that if the diffusion is decent, the equations containing the
secret variables are likely to have at least 2𝑠 monomials.

38

The number of rounds that provides resistance against higher-order differ-
ential attacks should also guarantee sufficient protection against interpolation
attacks [46] which use trivial linearization of all monomials. Indeed, this attack
strategy aims to construct a polynomial corresponding to the encryption function
without any knowledge of the secret key. If an adversary can construct such
an interpolation polynomial without using the full code book, then they can
potentially employ it to set up, e.g., a key-recovery attack.

In order to set up the system of equations that describes the scheme, the
attacker first needs more than 2𝑠 inputs/outputs, which exceeds the security level.
In the following, let us assume that the attacker can collect 2𝑠 of such equations.
In order to solve this system of equations, the adversary could substitute each
monomial by another variable in order to linearize the system. The cost of this
attack is of 𝑂 (2𝑠𝜔) field operations with 𝜔 > 2. However, that is behind the
security level, if the chosen number of rounds guarantees security against the
higher-order differential attack.

For completeness, we mention that the interpolation attack has a meet-in-the
middle variant that significantly reduces the number of monomials in the system
of equations which describes our rounds. However, in our construction that is
illustrated in Fig. 3, this variant is difficult to perform because the output is
always truncated. Hence, part of the output changes while remaining secret. Each
collected equation thus adds new secret variables to the system of equations. In
that respect, we do not think that an meet-in-the-middle style approach would
work for a trivial linearization. Nonetheless, equation solving approaches might
succeed, like Gröbner bases that we discuss in Sect. 4.4, but it is not restricted
to it. Therefore, we study the equation systems obtained after a few rounds in
Sect. 4.5 to reveal any special exploitable structures in the equation systems. For
example, we search for sparse equations.

Algebraic Attack (over F2𝑛): Case RC4 𝑖 = 1. The behavior of our round
function with the round constants RC4 𝑖 set to one is presented in Tab. 8. If we
compare the number of monomials in Tab. 8 with Tab. 3, the number of monomials
in the Tab. 8 is clearly lower. Furthermore, if we consider the monomials of degree
three until the round six, we only reach eight out of ten possible monomials,
whereas we have all ten monomials in F𝑝 (Tab. 2). A deeper study reveals that
out of all possible monomials of degree three, 𝑎0𝑏0𝑐0 and 𝑐3

0 are missing. The
first one is lacking due to the use of the Toffoli gate, and hence, the value 𝑐0 is
amended to 𝑎0𝑏0 + 𝑐0 at the very beginning. In addition, 𝑐3

0 is missing due to the
interaction in the linear part. Hence, we observe that the polynomial is more
sparse (or equivalently, less dense) than when RC4 𝑖 ̸= 1.

E Other Attack Vectors and Details

In this section, we discuss attack vectors that are not directly covered by the
previous sections. These attack vectors mostly include attacks exploiting strongly

39

Table 8: Number of monomials of a certain degree, where all inputs are considered
as variables in F2𝑛 . All round constants RC4 𝑖 equal 1.

Output Degree

Round Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

max 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406

1
a 1 1 1
b 1 3 1
c 1 2 1

2
a 1 3 4 2 1
b 1 3 4 2 1
c 1 3 4 2 1

3
a 1 3 6 6 6 2 2 0 1
b 1 3 6 6 6 2 2 0 1
c 1 3 6 6 6 2 2 0 1

4
a 1 3 6 8 12 10 6 4 6 2 2 0 2 0 0 0 1
b 1 3 6 8 12 10 6 4 6 2 2 0 2 0 0 0 1
c 1 3 6 8 12 10 6 4 6 2 2 0 2 0 0 0 1

5
a 1 3 6 8 12 14 10 12 12 12 10 4 6 4 4 0 6 2 2 0 2 0 0 0 2 0 0 0
b 1 3 6 8 12 14 10 12 12 12 10 4 6 4 4 0 6 2 2 0 2 0 0 0 2 0 0 0
c 1 3 6 8 12 14 10 12 12 12 10 4 6 4 4 0 6 2 2 0 2 0 0 0 2 0 0 0

6
a 1 3 6 8 12 14 14 16 12 24 14 20 10 12 12 8 12 12 12 4 10 4 4 0 6 4 4 0
b 1 3 6 8 12 14 14 16 12 24 14 20 10 12 12 8 12 12 12 4 10 4 4 0 6 4 4 0
c 1 3 6 8 12 14 14 16 12 24 14 20 10 12 12 8 12 12 12 4 10 4 4 0 6 4 4 0

aligned round functions, but also distinguishers only applicable to the permuta-
tion.

Truncated and Impossible Differential Attacks. A variant of differential
cryptanalysis is the truncated differential cryptanalysis [47]. In the latter, the
attacker does not fix the values of the differences, but specifies conditions be-
tween the differences of the branches of the round that should be satisfied, or
fixes some differences at the input of the branches to zero. The attacker works
with truncated differential characteristics, which are a collection/set of several
differential characteristic.

Impossible differential cryptanalysis was introduced by Biham et al. [16] and
Knudsen [48]. It exploits differentials that occur with probability zero.

Regarding our scheme, we do not expect these two attacks to outperform the
attacks that are presented in Sect. 4. As an example, a truncated differential
with probability one covering one round can be used as starting point to present
an impossible differential for two rounds:

{(0, 0, 𝑥)} prob. 1−−−−→ {(𝑥,RC4 ℓ𝑥, 𝑥)} ≠ {(0, 0, 𝑦)} prob. 1←−−−− {(𝑦,RC4 ℓ𝑦, 𝑦)} ,

where (𝑥, 𝑦) ̸= 0.

Zero-Sum Distinguishers. Zero-sum distinguishers [20] are so-called inside-
out distinguishers on the permutation. With this type of distinguishers, an
attacker crafts an initial structure that is placed somewhere in the middle of

40

the permutation, and computes forward to the input and backward output of
the permutation. An attacker can compute a set of input and output values
that sums to zero by carefully selecting and employing the initial structure, and
choosing the algebraic degree of the round function and the inverse of the round
function.

To prevent the use of such distinguishers against our round function, we need
at least 2𝑠 rounds. We are fairly confident that this distinguishing property is
unlikely to extend towards distinguisher of the used modes. For instance, zero-sum
distinguisher on full Keccak-𝑝 [20] are well known. On the contrary, attacks on
constructions that use 12 rounds of the Keccak permutation, and that exploit
this property are not known. This is half the number of rounds.

Boomerang and Differential-linear Distinguishers. Boomerang [62] and
differential-linear [50] distinguishers, and their variants, rely on chaining two
good differential/linear trails. As studied in Sect. 4, we have at least one active
multiplication per three rounds in our trail. Those distinguishers are then rather
unlikely. However, even if an attacker can find good differentials, or linear hulls,
a differential-linear/boomerang distinguisher can only cover up to six rounds.

Zero-correlation Attacks. As their name suggest, these attacks exploit linear
hulls with a zero correlation [18]. In general, those linear hulls are found by
a miss-in-the-middle approach. For example, we need to find two trails that
propagate some deterministic properties, and then to combine them, in order to
ensure that the property cannot be fulfilled. However, our permutations have at
least nine rounds, and based on the results of our differential and linear analysis,
we assume that finding impossible differentials or zero-correlation linear hulls is
infeasible.

More Attacks Exploiting Strong Alignment. As a cipher working natively
on larger field elements, Ciminion could be considered to be strongly aligned.
Many more attack vectors exist that exploit strong alignment on ciphers, especially
for AES (see [41]). However, we conjecture that such attacks become quickly
infeasible, because the security level is tied to the size of the field element, and
there is a huge number of rounds compared to the number of field elements that
form the state.

F Security Analysis – Data Limit 2𝑠/2

For applications like MPC, given a security level of 𝑠 bits, the data is limited to
2𝑠/2 (namely, related to the birthday bound) instead of 2𝑠. For this reason, we
analyze in this section the number of rounds that is required to provide security,
if limited data is available to the attacker. We focus our attention on algebraic
attacks, which are the most powerful ones against our cipher. In the following,
we demonstrate that a lower number of rounds, w.r.t. the ones given previously,

41

is sufficient to provide security. Additionally, we verify that the chosen number
of rounds guarantees security against statistical attacks.

Interpolation Attack. The amount of data that is available to the attacker
highly impacts the interpolation attack. Indeed, this attack can be set up if
the number of texts is higher than or equal to the number of monomials that
defines the polynomial. Since the number of monomials is related to the degree
of the polynomial, a lower number of rounds (w.r.t. the one given previously)
is sufficient to prevent this attack. In particular, assuming that the polynomial
that describes the scheme is dense, since the degree grows as 2𝑟 after 𝑟 rounds,
approximately 𝑠/2 rounds are sufficient to prevent the attack (for data limited to
2𝑠/2). We arbitrarily decided to increase the number of rounds for 𝑝𝐶 to 2/3 · 𝑠
to provide some extra security against this attack.

Gröbner Basis Attack. The Gröbner basis attack that is described in the
previous sections, requires a few number of texts that are much lower than 2𝑠/2.
Hence, the analysis that is presented in Sect. 4.4, can also be applied in this case.
The number of rounds for 𝑝𝐶 must thus be higher than 𝑠/2, while the number of
rounds for 𝑝𝐸 must be equal to

⌈︀
𝑠+19

12 + 1.5
⌉︀
.

Statistical Attacks. Since the efficiency of statistical attacks depends on the
amount of data that is available to the attacker, a lower number of rounds w.r.t.
the standard one is still sufficient to guarantee security. We arbitrarily decided in
this case to keep the same number of rounds as in the standard scenario, namely
at least six rounds.

Conclusion. We conjecture that 2/3 · (𝑠+ 6) rounds for 𝑝𝐶 , and
⌈︀

𝑠+19
12 + 1.5

⌉︀
rounds for 𝑝𝐸 , are sufficient to provide a security level of 𝑠 bits, if the amount of
data available to the attacker is limited to 2𝑠/2. Due to argument analogous the
ones given in Sect. 4, this number of rounds provides security against statistical
attacks, and higher-order differential attack.

G Related Works: MPC Costs for Several Ciphers
Published in the Literature

G.1 Related Works

MiMC. MiMC [3] is a scheme that has been proposed over F𝑞, where 𝑞 is either
a prime 𝑝, or a power of 2 𝑞 = 2𝑛, where gcd(𝑝− 1, 3) = 1 or 𝑛 odd. The round
function of the block cipher is defined as

𝑅𝑖(𝑥) = 𝑥3 ⊕ 𝑘 ⊕ 𝑐𝑖 or 𝑅𝑖(𝑥) = 𝑥3 + 𝑘 + 𝑐𝑖 ,

for a round constant 𝑐𝑖, and a master key 𝑘. In F𝑞
𝑡, the cipher MiMC can be

used in CTR-mode.

42

The number of rounds is equal to ⌈log3(𝑝)⌉, or ⌈𝑛·log3(2)⌉. In MPC application,
the cost to evaluate a text in F𝑡 is thus given by

multiplications: 2𝑡 · ⌈log3(𝑝)⌉ ,
(# online, # offline) rounds: (⌈log3(𝑝)⌉, 0) ,

for both the binary and the prime case (it is sufficient to replace 𝑝 with 2𝑛). We
refer to [42] for a detailed explanation about the possibility to evaluate 𝑥→ 𝑥3

with a single communication round. Moreover, evaluating 𝑥→ 𝑥3 requires two
multiplications in MPC applications in the binary case.

We make some observations. First of all, in a “classical” application, the
number of multiplications in the binary case can be divided by two, since 𝑥→ 𝑥2

does not require any multiplication. Secondly, for the Boolean case only, a new
attack on full MiMC has been presented recently [35]. The latter attack combines
a distinguisher based on higher-order differential technique (that can cover up
to ⌈(𝑛− 1) · log3(2)⌉ − 1 rounds) with an interpolation technique. That makes
it possible to find the secret key. Since the data cost of such attack is half of
the full code-book, it does not apply in this context, because we are working
with a PRF. Indeed, we only consider attacks whose complexities are below the
birthday bound.

GMiMC𝑒𝑟𝑓 . GMiMC𝑒𝑟𝑓 [2] is a scheme from GMiMC family over F𝑝
𝑡. The

round function is defined as

(𝑥1, 𝑥2, . . . , 𝑥𝑡)→ (𝑥2 + (𝑥1 + 𝑘(𝑖))3, 𝑥3 + (𝑥1 + 𝑘(𝑖))3, . . . , 𝑥𝑡 + (𝑥1 + 𝑘(𝑖))3, 𝑥1).

The detail regarding the key schedule is explained in [2]. We note that the round
keys can be precomputed, thus they do not influence the cost in MPC applications.
Under the assumption that 𝑝 ≫ 𝑡, and for a security level of log2(𝑝) bits, the
number of rounds is given by15

max
{︀

2 + 2 · (𝑡+ 𝑡2), ⌈2 · log3(𝑝)⌉+ 2𝑡
}︀
.

More precisely, the designers deduced that 2 + (𝑡+ 𝑡2)/2 are sufficient to prevent
differential attacks, under the assumption that there is a differential trail for
𝑡+ 𝑡2 rounds with prob. 4 · 𝑝−2. However, in [15], the authors demonstrated that
such differential trail has a probability equal to 2 ·𝑝−1. Consequently, they proved
the existence of differential distinguishers that can cover the full cipher (and even
more). For this reason, we adapted the number of rounds as suggested by the
authors of [2] (in a private communication16).

15 The Gröbner basis attack does not outperform the interpolation attack under the
assumption 𝑝≫ 𝑡.

16 The goal is to guarantee that each differential trail has probability lower than 𝑝−2·𝑡

for a security level of log2(𝑝) bits.

43

With the same application as in MiMC, the MPC cost using GMiMC𝑒𝑟𝑓 is
given by:

multiplications: 2 ·max
{︀

2 + 2(𝑡+ 𝑡2), ⌈2 · log3(𝑝)⌉+ 2𝑡
}︀
,

(# online, # offline) rounds: (max
{︀

2 + 2(𝑡+ 𝑡2), ⌈2 · log3(𝑝)⌉+ 2𝑡
}︀
, 0) .

Vision. Vision [5] is an AES-like scheme that works over F2𝑛
𝑡 for any 𝑛 ≥ 3,

and 𝑡 ≥ 2. The round function is composed of two sub-rounds. It is defined as
the following: 𝑅(·) = 𝑅2 ∘𝑅1(·), with

𝑅1(·) = 𝑘 ⊕𝑀 × [𝐵 ∘ 𝑆(·)] , and 𝑅2(·) = 𝑘′ ⊕𝑀 ×
[︀
𝐵−1 ∘ 𝑆(·)

]︀
.

The S-box layer 𝑆(·) is defined as the concatenation of S-boxes that work at
word level, and that are defined as 𝑥 ↦→ 1/𝑥 (where 1/0 := 0). In addition, 𝐵(·)
is defined as the concatenation of invertible linearized polynomials that work at
a word level, and that are defined as 𝐵(𝑥) = 𝑥4⊕ 𝑏2 · 𝑥2⊕ 𝑏3 · 𝑥⊕ 𝑏4. In addition,
𝑀 is a 𝑡× 𝑡 MDS matrix. For a security level of 𝑛 bits, the number of rounds is
equal to max

{︁
10, 2

⌈︀
𝑛+𝑡+8

8𝑡

⌉︀
, 2

⌈︁
2𝑛

(𝑡+1)(𝑛−4)

⌉︁}︁
.

Concerning the number of multiplications, the only non-linear operation is the
inverse. In a MPC application, the inversion step can be evaluated by using the
technique of Bar-Ilan and Beaver [10]. In brief, given 𝑥, 𝑦, 𝑧 s.t. 𝑥/𝑦 = 𝑧 (where
𝑦 ̸= 0), the idea is to manipulate the equality 𝑥 = 𝑦 · 𝑧 rather than 𝑥/𝑦 = 𝑧.
This procedure requires two communication rounds, and works for all non-zero
elements 𝑥 ∈ F2𝑛 . In scenarios where the shared value is unlikely to be zero (i.e.,
if the field is large enough), this technique can be used directly. Ignoring the zero
test, the total cost of this method is one communication round. In the latter, it is
possible to merge a multiplication, and an opening call. As presented in [5, App.
E.2 of Version: 20190520:100450], 𝐵(·) and 𝐵−1(·) require respectively two and
three multiplications in MPC. Like previously, to give an overview, instead of
using 𝐵−1(𝑥) = 𝑦, the idea is to work with 𝑦 = 𝐵(𝑥) (remember that 𝐵(·) is
semi-linear in the sense that 𝐵(𝑥⊕ 𝑦) = 𝐵(𝑥)⊕𝐵(𝑦)).

It results that the cost in MPC protocol to working over F𝑡 (for a security
level of 𝑛 bits) is given by

multiplications: 7𝑡 ·max
{︂

10, 2
⌈︂
𝑛+ 𝑡+ 8

8𝑡

⌉︂
, 2

⌈︂
2𝑛

(𝑡+ 1)(𝑛− 4)

⌉︂}︂
,

online rounds: 5 ·max
{︂

10, 2
⌈︂
𝑛+ 𝑡+ 8

8𝑡

⌉︂
, 2

⌈︂
2𝑛

(𝑡+ 1)(𝑛− 4)

⌉︂}︂
,

offline rounds: 2 ·max
{︂

10, 2
⌈︂
𝑛+ 𝑡+ 8

8𝑡

⌉︂
, 2

⌈︂
2𝑛

(𝑡+ 1)(𝑛− 4)

⌉︂}︂
.

We refer to [5, Version: 20190520:100450] for all details about the number of
online/offline rounds. In this section, we solely recall that such numbers are
independent of the number of S-boxes computed in parallel.

44

In comparison, the number of multiplications in a “classical setting” is much
higher. In particular, using a square-and-multiply strategy, 𝑥 ↦→ 𝑥−1 = 𝑥2𝑛−2

requires 𝑛 − 2 multiplications and 𝑛 − 1 squarings (see [5, App. F of Version:
20190520:100450]). In this case, the total number of multiplications is higher,
and is given by 2𝑡 · (𝑛− 2) ·max

{︁
10, 2

⌈︀
𝑛+𝑡+8

8𝑡

⌉︀
, 2

⌈︁
2𝑛

(𝑡+1)(𝑛−4)

⌉︁}︁
∈ 𝒪(𝑛 · 𝑡).

Rescue. Rescue [5] is an AES-like scheme that works over F𝑝
𝑡 for a prime 𝑝 ≥ 3,

and 𝑡 ≥ 2. Let 𝛼 ≥ 3 be the lowest integer s.t. gcd(𝑝 − 1, 𝛼) = 1. The round
function that is composed of two sub-rounds 𝑅(·) = 𝑅2 ∘ 𝑅1(·) is defined as
follows:

𝑅1(·) = 𝑘 +𝑀 × 𝑆−1(·) , and 𝑅2(·) = 𝑘′ +𝑀 × 𝑆(·) .

The S-box layer 𝑆(·) is defined as the concatenation of S-boxes that work at word
level, where as 𝑥 ↦→ 𝑥𝛼 (and S-box−1(𝑥) = 𝑥1/𝛼). 𝑀 is a 𝑡× 𝑡 MDS matrix. For
a security level of ≈ log2(𝑝) bits and 𝛼 = 3, the number of rounds is equal to
max

{︁
10, 2 ·

⌈︁
log2(𝑝)+2

4𝑡

⌉︁
; 2 ·

⌈︁
2 log2(𝑝)

(𝑡+1)·(log2(𝑝)−1)

⌉︁}︁
.

The only non-linear operations of Rescue to consider are the 𝛼, and inverse-𝛼
power maps. For any arbitrary large 𝛽, 𝑥 ↦→ 𝑥𝛽 can be computed by adapting
the exponentiation technique that was introduced by Damgård et al. [30]. This
technique requires ⌈log2 𝛽⌉+2 multiplications. Hence, the cost in a MPC protocol
is given by

multiplications:

𝑡 · (4⌈log2 𝛼⌉+ 4) ·max
{︂

5;
⌈︂

log2(𝑝) + 2
4𝑡

⌉︂
;
⌈︂

2 log2(𝑝)
(𝑡 + 1) · (log2(𝑝)− 1)

⌉︂}︂
,

online rounds: 4 ·max
{︂

5;
⌈︂

log2(𝑝) + 2
4𝑡

⌉︂
;
⌈︂

2 log2(𝑝)
(𝑡 + 1) · (log2(𝑝)− 1)

⌉︂}︂
,

offline rounds:

(2⌈log2 𝛼⌉+ 2) ·max
{︂

5;
⌈︂

log2(𝑝) + 2
4𝑡

⌉︂
;
⌈︂

2 log2(𝑝)
(𝑡 + 1) · (log2(𝑝)− 1)

⌉︂}︂
,

where we refer to [5, Version: 20190520:100450] for more details about the
number of online/offline rounds.

In comparison, the number of multiplications is higher in a “classical setting”.
In particular, 𝑥𝛼 requires approximately ⌈log2 𝛼⌉ multiplications, while 𝑥1/𝛼

requires approximately ⌈log2 𝛼⌉ + ⌈log2 𝑝⌉ multiplications (see [5, App. F of
Version: 20190520:100450]). For this reason, by applying a square-and-multiply
strategy, the number of multiplications is higher, and approximately given by
2𝑡·(2⌈log2 𝛼⌉+ ⌈log2 𝑝⌉)·max

{︁
5,

⌈︁
log2(𝑝)+2

4𝑡

⌉︁
;
⌈︁

2 log2(𝑝)
(𝑡+1)·(log2(𝑝)−1)

⌉︁}︁
∈ 𝒪(log2(𝑝)·𝑡).

G.2 About Fork-like Ciphers

Our design is based on a modified version of Farfalle that can be viewed as a
generalization of the “ForkCipher” design [7]. A ForkCipher design is instantiated

45

by keyed permutations 𝑃𝑘, 𝑃𝑘, 𝑃𝑘 over F, which are in general defined as the
concatenation of a certain number of rounds of a given cipher. In this design,
every input 𝑥 ∈ F is mapped to

ForkP(𝑥) = (𝑃𝑘 ∘ 𝑃𝑘(𝑥), 𝑃𝑘 ∘ 𝑃𝑘(𝑥)) ∈ F2.

However, unlike our design, a Fork-like cipher is invertible. That is to say, given
ForkP(𝑥) = (𝑦, 𝑦), the following operations are possible:

Decryption: 𝑥 = 𝑃−1
𝑘 ∘ 𝑃−1

𝑘 (𝑦) = 𝑃−1
𝑘 ∘ 𝑃−1

𝑘 (𝑦),
Inversion: 𝑃𝑘 ∘ 𝑃−1

𝑘 (𝑦) = 𝑦 and 𝑃𝑘 ∘ 𝑃−1
𝑘 (𝑦) = 𝑦.

None of them is possible in our design, because the input of the middle phase is
obtained by adding the outputs of the compression phase, and because of the
truncation applied on the output words.

H Towards an Authenticated Encryption Scheme

A potential direction that can be explored when authenticated encryption is
needed, is to pair our encryption scheme with a Wegman-Carter MAC [23]. This
makes it possible to process one ciphertext element with one field multiplication
as shown in Fig. 10.

To be more specific, to augment Ciminion with the authentication of ci-
phertexts, a similar approach to GHASH that is part of GCM [52], can be
used. In further detail, our construction uses 𝑇 = uhash(K̂ ,C) + prf (ℵ), where
uhash(K̂ ,C) = 𝐶1𝐾̂

2𝑙+1 + 𝐶2𝐾̂
2𝑙 + · · ·𝐶2𝑙𝐾̂

2 + len(𝐶)𝐾̂ with 𝐾̂ as secret key
element, len(𝐶) the number of field elements in 𝐶, and prf (ℵ) an instantiation
that is part of our Farfalle-like construction (Fig. 3).

The security of the resulting Wegman-Carter MAC depends on the security
of the used instance of prf (ℵ), and the 𝜖-almost-𝛥-universality of the univer-
sal hash function uhash(K̂ ,C) that is employed. We have 𝑃 (uhash(K̂ ,C) +
uhash(K̂ ,C ′) = 𝐴) ≤ 𝜖 for any constant 𝐴 over a uniformly random choice of
𝐾̂. Following McGrew and Viega [52] for our choice of uhash(K̂ ,C), we have
𝜖 ≤ (2𝑙+ 1)2−𝑛 for F2𝑛 , or 𝜖 ≤ (2𝑙+ 1)/𝑝 for F𝑝, where 2𝑙 is the maximal number
of elements per call to authenticated encryption or decryption. Like mentioned
by Procter [56], an adversary then has an advantage that is at most 𝛽𝜀 plus the
advantage in breaking prf (ℵ) for creating a forgery. In this case, 𝛽 is the total
number of queries that are made to the authenticated encryption or decryption.
Hence, for maintaining a sufficient level of security, the maximum length of
messages, the maximum number of messages, and the verification attempts have
to be limited.

Despite the latter restriction and other unfavorable properties [57] of this
style of authentication, we think that the efficiency benefits provided by Wegman-
Carter-style MACs in scenarios where finite field multiplication is the dominant
cost factor, reasonably counterbalance its downsides.

46

pC

K2

K1

ℵ
pE

pE

P1

C1

pE

K̂

0

T

K3
K4

rol

K2l+1
K2l+2

rol

P2

C2 K̂

P2l−1

C2l−1 K̂

P2l

C2l K̂

K̂

len(C)

Fig. 10: Authenticated encryption with Ciminion plus Wegman-Carter MAC
over F2𝑛 . The construction is similar over F𝑝 (⊕ is replaced by +, the addition
modulo 𝑝).

47

I Algorithms

Algorithm 1: Encryption and decryption, where F is either F2𝑛 , or F𝑝.

Encryption
Require: key 𝐾 ∈ {F}2⌈𝑜/2⌉,

nonce ℵ ∈ F,
plaintext 𝑃 ∈ {F}𝑜

Ensure: ciphertext 𝐶 ∈ {F}𝑜

Processing Nonce
𝑆1 ‖𝑆2 ‖𝑆3 ← ℵ‖𝐾1 ‖𝐾2
𝑆1 ‖𝑆2 ‖𝑆3 ← 𝑝𝐶(𝑆1 ‖𝑆2 ‖𝑆3)

Encrypting Plaintext
for 𝑖 = 1, . . . , ⌈𝑜/2⌉ do

𝑂1 ‖𝑂2 ‖𝑂3 ← 𝑝𝐸(𝑆1 ‖𝑆2 ‖𝑆3)
𝐶2𝑖−1 ← 𝑂1 + 𝑃2𝑖−1
if 𝑖<⌈𝑜/2⌉ OR ⌈𝑜/2⌉=𝑜/2 then

𝐶2𝑖 ← 𝑂2 + 𝑃2𝑖

if 𝑖<⌈𝑜/2⌉ then
𝑆2 ← 𝑆2 + 𝐾𝑖+1
𝑆3 ← 𝑆3 + 𝐾𝑖+2
𝑆1 ‖𝑆2 ‖𝑆3 ← rol(𝑆1 ‖𝑆2 ‖𝑆3)

return 𝐶1 ‖ . . . ‖𝐶𝑜

Decryption
Require: key 𝐾 ∈ {F}2⌈𝑜/2⌉,

nonce ℵ ∈ F,
ciphertext 𝐶 ∈ {F}𝑜

Ensure: plaintext 𝑃 ∈ {F}𝑜

Processing Nonce
𝑆1 ‖𝑆2 ‖𝑆3 ← ℵ‖𝐾1 ‖𝐾2
𝑆1 ‖𝑆2 ‖𝑆3 ← 𝑝𝐶(𝑆1 ‖𝑆2 ‖𝑆3)

Decrypting Ciphertext
for 𝑖 = 1, . . . , ⌈𝑜/2⌉ do

𝑂1 ‖𝑂2 ‖𝑂3 ← 𝑝𝐸(𝑆1 ‖𝑆2 ‖𝑆3)
𝑃2𝑖−1 ← 𝑂1 + 𝐶2𝑖−1
if 𝑖<⌈𝑜/2⌉ OR ⌈𝑜/2⌉=𝑜/2 then

𝑃2𝑖 ← 𝑂2 + 𝐶2𝑖

if 𝑖<⌈𝑜/2⌉ then
𝑆2 ← 𝑆2 + 𝐾𝑖+1
𝑆3 ← 𝑆3 + 𝐾𝑖+2
𝑆1 ‖𝑆2 ‖𝑆3 ← rol(𝑆1 ‖𝑆2 ‖𝑆3)

return 𝑃1 ‖ . . . ‖𝑃𝑜

48

Algorithm 2: Generation of key elements, where F is either F2𝑛 , or F𝑝.

Generation of Key Elements
Require: master key MK ∈ {F}2,

IV 𝐻 ∈ F
Ensure: key elements 𝐾 ∈ {F}𝑜

𝑆1 ‖𝑆2 ‖𝑆3 ← IV 𝐻 ‖MK1 ‖MK2
for 𝑖 = 1, . . . , 𝑜 do

𝑆1 ‖𝑆2 ‖𝑆3 ← 𝑝𝐶(𝑆1 ‖𝑆2 ‖𝑆3)
𝐾𝑖 ← 𝑆1

return 𝐾1 ‖ . . . ‖𝐾𝑜

Algorithm 3: Permutation 𝑝𝑁 and rolling function rol, where F is either F2𝑛 , or
F𝑝.

Rolling Function rol
Require: 𝜄𝑎 ∈ F,

𝜄𝑏 ∈ F,
𝜄𝑐 ∈ F

Ensure: 𝜔𝑎 ∈ F,
𝜔𝑏 ∈ F,
𝜔𝑐 ∈ F

𝜄𝑐 ← 𝜄𝑐 + 𝜄𝑎 · 𝜄𝑏

𝜔𝑎 ← 𝜄𝑐

𝜔𝑐 ← 𝜄𝑏

𝜔𝑏 ← 𝜄𝑎

return 𝜔𝑎, 𝜔𝑏, 𝜔𝑐

Permutation 𝑝𝑁

Require: 𝑎 ∈ F,
𝑏 ∈ F,
𝑐 ∈ F

Ensure: 𝑎 ∈ F,
𝑏 ∈ F,
𝑐 ∈ F

for 𝑖 = 1, . . . , 𝑁 do
𝑐← 𝑐 + 𝑎 · 𝑏
𝑏← 𝑏 + 𝑐
𝑎← 𝑎 + RC4i+E−N · 𝑏
𝑑← 𝑎 + RC1i+E−N
𝑎← 𝑐 + RC3i+E−N
𝑐← 𝑏 + RC2i+E−N
𝑏← 𝑑

return 𝑎, 𝑏, 𝑐

49

	Ciminion: Symmetric Encryption Based on Toffoli-Gates over Large Finite Fields

