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Abstract

In this work we present a new construction for a batched Obliv-
ious Pseudorandom Function (OPRF) based on Vector-OLE and the
PaXoS data structure. We then use it in the standard transforma-
tion for achieving Private Set Intersection (PSI) from an OPRF. Our
overall construction is highly efficient with O(n) communication and
computation. We demonstrate that our protocol can achieve malicious
security at only a very small overhead compared to the semi-honest
variant. For input sizes n = 220, our malicious protocol needs 6.2 sec-
onds and less than 59 MB communication. This corresponds to under
450 bits per element, which is the lowest number for any published PSI
protocol (semi-honest or malicious) to date. Moreover, in theory our
semi-honest (resp. malicious) protocol can achieve as low as 219 (resp.
260) bits per element for n = 220 at the added cost of interpolating a
polynomial over n elements.

As a second contribution, we present an extension where the output
of the PSI is secret-shared between the two parties. This functionality
is generally referred to as Circuit-PSI. It allows the parties to perform
a subsequent MPC protocol on the secret-shared outputs, e.g., train
a machine learning model. Our circuit PSI protocol builds on our
OPRF construction along with another application of the PaXoS data
structure. It achieves semi-honest security and allows for a highly
efficient implementation, up to 3x faster than previous work.

1 Introduction

We consider the problem of private set intersection (PSI) in a two-party
setting. Here, two mutually distrusting parties, a receiver and a sender,
each hold a set of identifiers X,Y respectively. The goal of the two parties
is for the receiver to learn the intersection X ∩ Y without revealing any
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additional information to the parties. In particular, the sender should not
learn any information about X beyond the size of it. Similarly, the receiver
should not learn anything about Y \X beyond the size of Y .

A common approach to PSI is based on oblivious pseudo-random func-
tions (OPRFs). An OPRF allows the receiver to input x and learn Fk(x),
where F is a PRF, and k is known to the sender. A straight-forward PSI
protocol can be obtained by running an OPRF protocol for each x ∈ X,
and then having the sender send {Fk(y) | y ∈ Y } to the receiver. The
receiver can then locally compare the sender’s OPRF values to her own to
learn which elements of X are in the intersection. This is the basis of several
PSI protocols (see Section 1.4), and our first contribution also follows this
paradigm.

While PSI alone has interesting applications, such as private contact
discovery [KLS+17, DRRT18, KRS+19], other variants of PSI are gaining
traction from a practical perspective. For example, both Google [IKN+20]
and Facebook [BKM+20] have implemented variants of PSI that allow them
to compute functions of the intersection, where only the result of the function
evaluation and the intersection size is revealed, but not the intersection itself.

A generalization of these PSI-with-computation protocols yields circuit
PSI, where the output isn’t revealed to either party, but instead is secret-
shared between the parties. More precisely, the receiver learns a random
vector Q⃗0 and the sender learns Q⃗1 such that (q0i ⊕ q1i ) = 1 if i corresponds
to an element x ∈ X in the intersection, and (q0i ⊕ q1i ) = 0 otherwise. Note
that this means that not even the intersection size is revealed to either party.
We additionally can allow the sender (resp. receiver) to input an “associated
value” ỹj (resp. x̃i) for each yj ∈ Y (resp. xi ∈ X). In this case, the output

also includes a random vector Z⃗0 to the receiver and Z⃗1 to the sender such
that (z0i ⊕ z1i ) = (ỹj ||x̃i) if xi = yj .

1.1 Contributions

PSI: We present a protocol for private set intersection (Section 4) based on
two building blocks. The first building block is a protocol known as Vector
OLE and presented in Figure 2. Multiple implementations of VOLE have
recently been presented [BCG+19, SGRR19, WYKW20, YWL+20]. We
use an improved version of [SGRR19] in this paper. The second building
block is a linear system solver, e.g. PaXoS [PRTY20], which we adapt for
our purposes as shown in Figure 1. Combining these two primitives in
a novel way, we obtain an OPRF protocol (Figure 4). This construction
is highly efficient, requiring an amortized 2.4κ bits of communication per
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input in our computationally efficient version or just κ bits when optimized
for communication. We also demonstrate that malicious security can be
obtained with only a very small overhead.

From an OPRF it is easy to obtain an PSI protocol which is our final
goal. This final step is shown in Figure 6. We show that the malicious
variant of this well known transformation can be optimized which reduces
its overhead by as much as 50% compared to prior art [PRTY20, CKT10].
Our final PSI protocol is secure against both semi-honest and malicious
adversaries, and we provide an implementation for both threat models. It is
also highly efficient, requiring just 5.4 (resp. 6.2) seconds and less than 54
(resp. 59) MB communication in the semi-honest (resp. malicious) setting.

Circuit PSI: Our second contribution is a protocol for circuit PSI. In
Section 5, we show that using our variant of the PaXoS solver along with
any OPRF protocol yields an Oblivious Programmable PRF (OPPRF) pro-
tocol. Given this, we then construct the final protocol in Section 6 with the
additional help of data structure known as a cuckoo hash table. We also
implement two variants of our circuit PSI protocol in the semi-honest model
and show that they outperform the best previous approach [PSTY19].

1.2 Notation

We use κ as the computational security parameter and λ for statistical
security. The receiver’s set is detonated as X while the sender’s is Y . Their
respective sizes are nx, ny. Often we will just assume both set are of size n.
[a, b] denotes the set {a, a+1, ..., b} and [b] is shorthand for [1, b]. We denote
row vectors A⃗ = (a1, ..., an) using the arrow notation while the elements are
indexed without it. A set S = {s1, ..., sn} will use similar notation. For a
matrix M , we use M⃗i to denote its i-th row vector, and Mi,j for the element

at row i and column j. ⟨A⃗, B⃗⟩ denotes the inner product of A⃗, B⃗. We use =
to denote the statement that the values are equal. Assignment is denoted
as := and for some set S, the notation s ← S means that s is assigned a
uniformly random element from S. If a function F is deterministic then
we write y := F (x) while if F is randomized we use y ← F (x) to denote
y := F (x; r) for r ← {0, 1}∗.

1.3 Overview

OPRF. We now present a simplified version of our main protocols. Our
core building block is a functionality known as (random) vector OLE which
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allows the parties to sample random vectors A⃗, B⃗, C⃗ ∈ Fm and element
∆ ∈ F such that C⃗ = ∆A⃗ + B⃗. The PSI receiver will hold A⃗, C⃗ while
the sender will hold B⃗,∆. We note that in the vector OLE literature, the
sender/receiver roles are typically reversed.

The parties (implicitly) sample an exponentially large random matrix
M∗ ∈ {0, 1}|F|×m. The receiver defines M ∈ {0, 1}n×m which is the sub-
matrix indexed by the rows x ∈ X. The receiver then solves the linear
system

MP⃗ ⊺ = (0, ..., 0)⊺

for the unknown P⃗ ∈ Fm. For now let us assume P⃗ is some random solution
and not the trivial (0, ..., 0) solution1. The protocol proceeds by having the
receiver send A⃗+ P⃗ to the sender who defines

K⃗ :=B⃗ +∆(A⃗+ P⃗ )

The crucial observation is that

MK⃗⊺ =MB⃗⊺ +∆(MA⃗⊺ +MP⃗ ⊺)

=MB⃗⊺ +∆MA⃗⊺

=MC⃗⊺

In particular, for each x ∈ X it holds that ⟨M⃗∗
x , K⃗⟩ = ⟨M⃗∗

x , C⃗⟩ where M⃗∗
x is

the x’th row of M∗. An OPRF can then be obtained by having the receiver
apply a random oracle as

H(⟨M⃗∗
x , C⃗⟩), x ∈ X

while the sender computes the output at any y as

FK⃗(y) := H(⟨M⃗∗
y , K⃗⟩)

To ensure efficiency we will require M∗ to be of a special form such that
solving MP⃗ ⊺ = (0, ..., 0)⊺ is efficient while also computing ⟨M⃗∗

x , V⃗ ⟩ in O(1)
time. Specifically, we will use the PaXoS solver [PRTY20] to enable these
properties.

To achieve security it is crucial that the receiver can not compute the
OPRF F at any other point x ̸∈ X. In the formulation above this effec-
tively means that it is hard to find a x ̸∈ X, such that ⟨M⃗∗

x , P⃗ ⟩ = 0. We
demonstrate how such a property can be obtained at little to no overhead.

1In our malicious OPRF construction (Section 3.2), we will instead use a random oracle
H, and set MP⃗ ⊺ = (H(x0),H(x1), . . . ,H(xn))

⊺. We stick to the semi-honest variant here
for ease of presentation.
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PSI. We then employ our OPRF construction as a subroutine to obtain a
PSI protocol. This traditional transformation instructs the receiver to input
their set X into an OPRF protocol to obtain F (x) for x ∈ X. The sender
can then send Y ′ = {F (y) | y ∈ Y } which allows the receiver to identify the
common items. In the malicious setting, one must show how the simulator
extracts the set Y from observing Y ′. The traditional analysis [PRTY20,
CKT10] effectively achieves this by requiring the OPRF F to be second-
preimage resistant and as such each y′ ∈ Y ′ must be of length 2κ ≈ 256
bits. We demonstrate that in fact preimage resistance is sufficient which
allows the OPRF to have κ bit output which reduces the communication
overhead by approximately 33%, or as much as 50% when |Y | ≫ |X|.

Programmable OPRF. We present extension of our OPRF protocol to
achieve a functionality known as a Programmable OPRF (OPPRF) [PSTY19].
This building block will allow the sender to sample an OPPRF key k such
that Fk(yi) = vi for their choice of yi, vi. At all other locations the output
of Fk will be random.

The parties first perform a normal OPRF protocol for an OPRF F ′,
where the receiver inputs their set X and receive F ′(x) for x ∈ X. The
sender solves the system

MP⃗ ⊺ = (v1 − F ′(y1), ..., vn − F ′(yn))
⊺

where M ∈ {0, 1}n×m the submatrix of M∗ indexed by the rows yi. The
sender will send P⃗ to the receiver who outputs

x′ := F ′(x) + ⟨M⃗∗
x , P⃗ ⟩

for x ∈ X. Observe that at x = yi ∈ Y

x′ :=F ′(x) + ⟨M⃗∗
x , P⃗ ⟩

=F ′(yi) + vi − F ′(yi)

=vi

as desired. It can be shown that at all other points y ̸∈ Y , the output is
completely random. One security concern is that P⃗ might leak information
about Y . Indeed, the PaXoS solver requires m larger than n, therefore
several solutions could exist, and which P⃗ is output by PaXoS may leak
information. We show that this is the case for PaXoS and then present
an extension which is uniformly distributed under some constraints. We
call our extension XoPaXoS and present it in Section 2. Our full OPPRF
protocol is presented in Section 5.
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Circuit-PSI. Finally, we present our Circuit PSI extension which allows
the output of the PSI to be secret shared between the two parties. Our
protocol builds on the previous approach of Pinkas et al. [PSTY19] by re-
placing their OPPRF construction with ours. For completeness we present
this construction in Section 6.

1.4 Related Work

Early PSI protocols based on OPRFs/Diffie–Hellman (DH) have been around
since the 1980s [Mea86], and they still form the basis of many modern PSI
protocols [CT10, IKN+20, BKM+20]. The advantage of DH-based proto-
cols is their low communication cost and constant round complexity, which
however comes at the cost of high computational overhead. A more compu-
tationally efficient protocol based on oblivious transfer extension [IKNP03]
(as opposed to OPRF based) was presented by Schneider et al. [PSSZ15]
along with many derivatives [PSZ14, KKRT16, RR17b, OOS17].

More recently, these two paradigms have begun to merge, and vari-
ous OPRF constructions have been proposed [DCW13, KKRT16, RR17a,
PRTY19, PRTY20, CM20] which more closely resemble [IKNP03]. All of
these come with higher communication cost than [Mea86], but they sig-
nificantly reduce computation. However, as the evaluation of [CM20] has
shown, the optimal choice of protocol often depends on the network setting.
Our work also follows the OPRF-based approach, building on the recent PSI
protocol of [PRTY20], but significantly reducing communication. As our ex-
periments in Section 7 show, our protocol works particularly well in settings
with limited bandwidth and large input sizes. For an extended overview
of the different approaches to PSI, see [IKN+20, Section 4.1] and [PSZ18,
Section 1.2].

The first circuit PSI protocols were based entirely on generic techniques
such as garbled circuits [HEK12] or GMW [PSSZ15, PSZ18]. Subsequent
works improved computation and communication [CO18, PSWW18, PSTY19],
and the linear-complexity protocol of [PSTY19] forms the current state of
the art. Their protocol combines an oblivious programmable PRF (OPPRF)
based on polynomial interpolation with a relatively small GMW circuit. Our
circuit PSI protocol follows a similar approach, but uses our new OPRF con-
struction, as well as a novel way to program it based on PaXoS [PRTY20].
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Parameters:

� Statistical security parameter λ and computational security parameter κ.

� Input length n.

� A finite group G.

� For m′ = 2.4n, let d = O(λ) upper bound the size of 2-core of a (m′, n)-Cuckoo graph [PRTY20].

� Output length m = m′ + d+ λ.

� A random function row : G×{0, 1}κ → {0, 1}m s.t. ∀x, the weight of the first m′ bits of row(x) is 2.

Encode ((z1, v1), ..., (zn, vn); r) :

1. Define row′ : G→ {0, 1}m′
and ˜row(z) s.t. row′(z)|| ˜row(z) = row(z, r) for all z. Let

M :=

row(z1, r)...
row(zn, r)

 ∈ {0, 1}n×m

and let M ′ ∈ {0, 1}n×m′
, M̃ ∈ {0, 1}n×d+λ s.t. M ′||M̃ = M .

2. Let G = (V, E) be a graph with vertex set V = [m′] and edge set E = {(c0, c1) | i ∈ [n],M ′
i,c0

=

M ′
i,c1

= 1}. Let G̃ = (Ṽ, Ẽ) be the 2-core of G.

3. Let R ⊂ [n] index the rows of M in the 2-core, i.e. R = {i | M ′
i,c0

= M ′
i,c1

= 1 ∧ (c0, c1) ∈ Ẽ}. Let

d̃ := |R| and abort if d̃ > d.

4. Let M̃ ′ ∈ {0, 1}d̃×(d+λ) be the submatrix of M̃ obtained by taking the row indexed by R. Abort if
M̃ ′ does not contain an invertible d̃× d̃ matrix. Otherwise let M̃∗ be one such matrix and C ⊂ [d+λ]
index the corresponding columns of M̃ ′.

5. Let C ′ := {j | i ∈ R,M ′
i,j = 1} ∪ ([d+ λ] \ C +m′) and for i ∈ C ′ assign Pi ← G. For i ∈ R, define

v′i := vi − (MP⃗ ⊺)i where Pi is assumed to be zero if unassigned.

6. Using Gaussian elimination solve the system M̃∗(Pm′+C1 , ..., Pm′+Cd̃
)⊺ = (v′R1

, ..., v′Rd̃
)⊺.

7. Let T ⊂ [m′] such that each tree in G has a single vertex in T . For i ∈ T , assign Pi ← G.

8. Let I := {j | i ∈ R,M ′
i,j = 1} ∪ T and I := [m′] \ I.

9. While I ̸= ∅, select an i ∈ I and do the following: Update I := I \ {i} and I := I ∪ {i}. For all
j ∈ {j | (j, i) ∈ E ∧ j ̸∈ I}. Identify k s.t. {h0(zk, r), h1(zk, r)} = {i, j} and assign Pj := vk − Pi.

10. Return P⃗ .

Decode (P⃗ , z, r) :

1. Return ⟨row(z, r), P⃗ ⟩.

Figure 1: XoPaXoS algorithm.
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2 Oblivious Key Value Stores & PaXoS

Our constructions makes use of a type of linear system solvers called an
oblivious key value store (OKVS)[GPR+21]. As discussed before, we will use
these solvers to encode our input sets (z1, ..., zn) = Z and values (v1, ..., vn) =
V as a vector P⃗ ∈ Gm. There will exist a function Decode such that
Decode(P⃗ , zi) = vi for i ∈ [n] and is linear with respect to P⃗ . There are
three main performance metrics that we are concerted with. The first is the
rate ρ = m/n which denotes how compact the encoding is, i.e. n items can
be encoded as m element vector. The last two metrics are the running time
of the encoder/solver and that of the decoder/matrix multiplier.

Each instance of a solver is parameterized by a finite group G, integer
m ≥ n, security parameter λ and an implicit random matrix M∗ ∈ G|G|×m.
The instance is fixed by samplingM∗ ←M from some setM which depends
on the particular solver. For any set Z ⊂ G s.t. |Z| = n, the solver will
output P⃗ ∈ Gm s.t.

MP⃗ ⊺ = (v1, ..., vn)
⊺

where M ∈ {0, 1}n×m is the submatrix of M∗ obtained by taking the rows
indexed by z ∈ Z. The target values v1, ..., vn ∈ G can be arbitrary. Our
application will require the solver to output a solution with probability 1−
O(2−λ).

Since M∗ is exponential in size, it is more efficient to represent it as
a random seed r ∈ {0, 1}κ and define the i-th row as being the output
of the random function row(i, r). Therefore we will have the property
⟨row(xi, r), P⃗ ⟩ = vi. For easy of presentation we will further abstract this
via the Decode function defined as Decode(P⃗ , xi, r) := ⟨row(xi, r), P⃗ ⟩. We
note that this is a very general encoding framework and encompasses several
schemes, e.g. PaXoS, interpolation, bloom filters, and many others.

The Vandermonde OKVS. One example of this general approach is
polynomial interpolation. In this case we require G to also be a field andM
contains only the Vandermonde matrix, i.e. row(i, r) = (1, i, i2, ..., in−1) for
all r. As such it achieves an optimal rate of ρ = 1, i.e. m = n. In this case,
solving the system requires O(n log2 n) time using polynomial interpolation
and decoding n points also requires O(n log2 n) time [BM74]. For large n it
is also possible to construct row in such a way that t smaller systems of size
O(λ) are constructed and solved independently [PSTY19]. This so called
binning technique effectively results in a O(n log2 λ) running time while also
maintaining near optimal rate ρ ≈ 1.
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The PaXoS OKVS. The PaXoS solver [PRTY20] significantly improves
on polynomial interpolation in that it achieves O(n) running time. However,
it comes at the cost of rate ρ ≈ 2.4, i.e., m ≈ 2.4n. The scheme of [PRTY20]
defines row as outputting a binary vector s.t. the first m′ := 2.4n elements
have weight 2 while the last m−m′ = O(λ) bits are distributed uniformly.
There is also a PaXoS variant which achieves a slightly better rate of ρ = 2
but at an increased running time. In this paper, we only make use of the
first scheme.

Other Solvers. Other solvers have also been considered in the context
of PSI and OPRF. A garbled bloom filter [DCW13, RR17a] where row(i, r)
is a random weight κ vector of length m = 2κn. Another options is to let
row : G×{0, 1}κ → Gm be a random function withm = n+O(λ). The Bloom
filter has a linear time solver but very poor rate while the latter requires
O(n3) time (via Guassian elimination) and near optimal rate. Constructing
more efficient solvers remains an open question. With the advent of PaXoS
we believe significant progress can be made at achieving improved rates, i.e.,
ρ < 2, while at the same time maintaining a linear running time. Evidence
of this is that PaXoS is based on cuckoo hashing which is known to achieve
a significantly better rate when the matrix has weight 3 instead of weight
2 used by PaXoS [DRRT18, PSZ18]. Moreover, solvers for such systems
have been presented [LM10, KS12], but it is unclear whether they can be
made robust enough to succeed with probability 1 − O(2λ). As we will
see in Section 7, our communication overhead is dominated by ρκn, so the
performance of the solver has a direct impact.

PaXoS Details. We now present the PaXoS solver [PRTY20] in detail.
LetM ′ ∈ {0, 1}n×m′

be the submatrix formed by the firstm′ = 2.4n columns
of M which itself consists of rows row(z1, r), ..., row(zn, r). As such, each row
of M ′ has weight 2. The solver first analyses the sparse system formed by
M ′ as follows. Let G be the graph consisting of m′ vertices V = [m′] and
the edge set E = {(c0, c1) | i ∈ [n] ∧M ′

i,c0
= M ′

i,c1
= 1}. That is, for each

constraint vi = ⟨P⃗ , row(zi, r)⟩ = Pc0 + Pc1 + ... there is an edge between
vertices (c0, c1) = ei. G is called the cuckoo-graph [PRTY20].

First, let us assume that G has no cycles and therefore consists of one or
more trees. This case can be solved by doing a linear pass over the nodes
along tree edges, and assigning values on the way. In particular: (1) Initialize
Pi := 0 for i ∈ [m]. (2) Let I ⊆ V s.t. each tree in G has a single vertex in I
and I := V \I. (3) Pick an i ∈ I and for each edge (j, i) ∈ E such that j ∈ I,
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identify ek ∈ E , i.e. M ′
k,i = M ′

k,j = 1, and update Pj := vk − Pi. Note that
because G is acyclic, Pi will not change value later. Update I := I ∪ {j}.
Finally, define I := I \ {i}, I := I ∪ {i} and if I ̸= ∅, go back to (3).

Observe that this algorithm does not work if G contains a cycle since at
some point in step (3) Pj will have already been updated. To address this,
the solver first identifies the so called 2-core graph G̃ which is the subgraph
of G which only contains the cycles along with any paths between these
cycles. Observe that the graph formed by G \ G̃ is acyclic.

The solver uses Gaussian elimination to solve the constraints contained
in G̃ = (Ṽ, Ẽ) with the use of the m − m′ additional columns of M . In
particular, [PRTY20] show that for m′ = 2.4n, the size of Ẽ is bounded by
d = O(λ) with overwhelming probability. Let the actual number of edges
in G̃ be d̃ < d. They then consider the submatix M̃ formed by the last
m−m′ columns of M and the d̃ rows corresponding to edges in G̃. In their
parameterization they set m = d+λ+m′. As such M̃ is a (d+λ)× d̃ random
binary matrix. With probability 1−O(2−λ) there exists an invertible d̃× d̃
submatrix M̃∗ within M̃ [PRTY20]. The d̃ constraints in G̃ can then be
solved for using Gaussian elimination on M̃∗ which requires O(d̃3) = O(λ3)
time. The remaining Pi values corresponding to G̃ and M̃ are assigned the
value zero, and the remaining constraints in G \ G̃ can then be solved using
the linear time algorithm described above.

X-oblivious PaXoS. We now present a modified scheme detailed in Fig-
ure 1 which we denote as XoPaXoS. Looking forward our Circuit PSI protocol
will require an additional simulation property of the encode algorithm. In-
formally, given that the vi values are uniform, we require the the distribution
of P⃗ is independent of the zi values. More formally, we will require that the
distributions

D0(z1, ..., zn) := (Encode((z1, v1), ..., (zn, vn), r), r)

where r ← {0, 1}κ; vi ← G, ∀i ∈ [n]

D1(z1, ..., zn) := (P⃗ , r), where r ← {0, 1}κ; P⃗ ← Gm

be indistinguishable for any PPT adversary except with probability 2−λ.
However, this does not hold for the [PRTY20] construction outlined

above. In particular, the PaXoS algorithm assigns zero to Pi values in
two locations. When solving the 2-core using Gaussian elimination some
of the column of M̃ are not used and therefore the corresponding Pi are
assigned zero. The XoPaXoS scheme rectifies this in Step 5 of Figure 1 by
first assigning random values to the redundant Pi positions and then solving
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the remaining (fully constrained) system using Gaussian elimination. It is
easy to verify that the Pi values output by Gaussian elimination have the
desired distribution.

Secondly, when performing the linear pass over the trees of G, a vertex i
from each tree is picked and Pi is assigned zero. In Step 7 of XoPaXoS, we
again replace this assignment with sampling Pi uniformly from G. Finally,
the remaining assignments have the form Pi := vk + Pj + ... where each
assignment contains a distinct uniform vk value and therefore Pi is uniform
as desired. These modifications make the Encode algorithm randomized even
for a fixed r. In particular, we assume Encode takes an addition random tape
as input from which the uniform Pi values are sampled. We note that the
original PaXoS algorithm can be obtained by omitting these addition steps
and instead initializing all Pi to zero.

OKVS Extraction. As with [PRTY20], our protocols will construct an
OKVS P⃗ := Encode((x1, H(x1)), ..., (xn, H(xn))) whereH : {0, 1}∗ → {0, 1}out
is a random oracle. An important task in proving the security of our pro-
tocols will be for the simulator to extract the effective input for an OKVS
generated using a random oracle. In particular, given a OKVS P⃗ , the sim-
ulator will extract the effective input as X ′ = {x | Decode(x, P⃗ ) = H(x)}.
This is accomplished by the simulator checking for all x that have been
queried to H.

For [semi] honest parties, this will correspond to a set of size n with
overwhelming probability. However, it is possible for malicious parties to
construct an OKVS with additional elements in it. Indeed, with good prob-
ability the M will be invertible and therefore it is easy to construct a P⃗
such that the effective X ′ is of size n′ = m. It is also possible to construct
an OKVS P⃗ of size m that results in a effective input size of more than
m. [PRTY20] gives an information theoretic argument that if out = O(κ)
then with overwhelming probability the effective input has size at most
n′ = |X ′| = O(n). Their argument crucially relies on H being a random
oracle. They show that if X ′ was larger than this, then the effect is that H
is compressable which contradicts that its a random function. In particular,
[PRTY20] proves that

Pr[|{x | Decode(x, P⃗ ) = H(x)}| > n′] ≤
(
q
n′

)
2(n′−m)out

(1)

where q is the number of H queries the adversary makes. For example, if
out = 128 and q ≤ 2100 then there is less than a 2−128 probability that there
exists a set X ′ with |X ′| ≥ 3.2m.
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Strong OKVS Extraction Conjecture. Although it is standard to al-
low some difference between n and n′, we conjecture that is it infeasible
to find a set X ′ with n′ > m when the OKVS row hash function row is a
one-way-function.

Conjecture 2.1 (Strong OKVS Extraction). When the row hash function
row for an OKVS scheme (Encode, Decode) is a one-way random oracle
and H : {0, 1}∗ → {0, 1}out} is a random oracle with out = O(κ), it is
computationally infeasible to construct a encoding P⃗ of size m such that
|{x | Decode(x, P⃗ ) = H(x)}| > m.

We give some evidence for this conjecture. First, recall that for each
x ∈ X ′, by definition it holds that

⟨row(x), P⃗ ⟩ = H(x).

For the sake of illustration, consider the case that x ∈ Gm and define
row(x) = x. That is, row is not one-way and the equation above simpli-
fies to

⟨x, P⃗ ⟩ = H(x).

The astute reader might recognize this formulation as the infamous ROS
(Random inhomogeneities in a Overdetermined Solvable system of linear
equations) problem which stated that it is computational intractable find
a P⃗ s.t. |X ′| > m. This assumption was used to construct various blind
signatures and was shown to be false[BLL+21]. In particular, [BLL+21] gives
an algorithm for constructing a P⃗ with an effective input size of n′ = m+1.
This attack on the ROS problem crucially relies on the fact that the attacker
has full control over x and that it appears inside the inner product. This
allows them to start with an arbitrary set X of size 2m which defines a
system of equations. This system can be solved to determine a subset of X
of size m along with an additional x∗ value that will be correctly decoded.
[BLL+21] only describes the attack for constructing set of size m + 1 but
the attack can be extend to find a limited number of additional collisions.

We contrast this with our construction where row is a one-way function.
This implies that although the attacker can find xi and an additional hash
value h such that ⟨row(xi), P⃗ ⟩ = H(xi) for i ∈ [m] and ⟨h, P⃗ ⟩ = h, they
are unable to determine the preimage of h since row is a one-way random
oracle. We note that for row for the PaXoS scheme to be one-way, we require(
m′

2

)
(2m−m′

) = O(2κ).
We were not able to formally prove this conjecture and leave analyzing

it as an interesting open problem. We stress however that the information

12



theoretical bound of [PRTY20] holds unconditionally and this conjecture
only tightens the bound.

We thank Seongkwang Kim and Yongha Son for bringing to our attention
that the prior version of this paper did not correctly address the problem of
extracting the effective input.

3 Vole Based OPRF

3.1 Vector OLE

The VOLE functionality Fvole is presented in Figure 2. Let F be some finite
field, e.g., F = GF (2κ). The parties have no input. The Sender obtains a
random value ∆ ∈ F and a random vector B⃗ ∈ Fm. The Receiver obtains a
random vector A⃗′ ∈ Fm and the vector

C⃗ = A⃗′∆+ B⃗.

That is, the i-th position of C⃗ is equal to A′
i∆ + Bi. We note that several

definitions of VOLE have been introduced in the literature, for both chosen-
input and random variants [ADI+17, BCGI18, BCG+19, WYKW20]. In the
context of these previous works, the functionality described here can be seen
as random reversed vector OLE. We refer to it as VOLE for simplicity.

A naive implementation of a VOLE generator would be to run a two-
party multiplication protocol (e.g., Gilboa multiplication [Gil99]) for each
i ∈ [m]. The drawback here is that communication is linear in m. Recently,
significant advances have been made in developing VOLE generators with
sub-linear communication. [BCGI18] presented the first protocols in that
direction based on the LPN assumption. Their two protocols, a primal
and a dual variant, rely on two different flavors of LPN. While the primal
variant can be instantiated from LPN with cheap local linear codes, its
communication grows asymptotically with the square-root of the output size.
The dual variant, on the other hand, allows for logarithmic communication,
but requires more computation.

A first implementation of a primal VOLE generator was provided in
[SGRR19], while concurrently, [BCG+19] provide an implementation of dual
VOLE over binary fields. Recently, [YWL+20] improved on the protocols
of [SGRR19], significantly reducing the communication overhead. Their
main observation is that the primal VOLE generator works by expanding
a size-O(

√
m) random seed correlation to a size-m pseudorandom correla-

tion. Now by applying this expansion iteratively, they manage to get VOLE
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Parameters: There are two parties, a Sender and a Receiver. Let F be
a field. Let m denote the size of the output vectors.

Functionality: Upon receiving (sender, sid) from the Sender and
(receiver, sid) from the Receiver.

� If the Receiver is malicious, wait for them to send C⃗, A⃗ ∈ Fm.
Sample ∆← F and compute B⃗ := C⃗ − A⃗∆. Otherwise,

� If the Sender is malicious, wait for them to send B⃗ ∈ Fm,∆ ∈ F.
Sample A⃗← Fm and compute C⃗ := B⃗ + A⃗∆. Otherwise,

� Sample A⃗, B⃗ ← Fm,∆← F and compute C⃗ := B⃗ + A⃗∆.

The functionality sends ∆, B⃗ to the Sender and C⃗ := A⃗∆+ B⃗, A⃗ to the
Receiver.

Figure 2: Ideal functionality Fvole of random reversed Vector-OLE (vole).

correlations of size m from a much shorter seed. Each expansion still takes
O(
√
m) communication, but as [YWL+20] show, the LPN security parame-

ters can be optimized so that the concrete communication complexity is still
far below the non-iterative approach. Since they focus on the application
of VOLE to correlated OT, the implementation of [YWL+20] is limited to
binary fields. However, [WYKW20] extend this paradigm to VOLE over
general fields, for which they also provide a consistency check for malicious
security. In our implementation (Section 7), we use an improved version of
the library of [SGRR19], incorporating the iterative approach of [YWL+20]
and the consistency check of [WYKW20].

3.2 Malicious Secure Oblivious PRF.

We now present our main (multi-input) OPRF construction in the Fvole-
hybrid model. Our construction Πoprf is detailed in Figure 4 and realizes the
functionality Foprf from Figure 3 in the malicious setting. Our protocol will
make use of two random oracles, H : F× F→ {0, 1}out,HF : F→ F.

First, the receiver will solve the systemrow(x1)...
row(xn)

 P⃗ ⊺ = (HF(x1), ...,H
F(xn))

⊺

as a function of the set X. Depending on the choice of row this can cor-
respond to polynomial interpolation, a bloom filter solver, PaXoS or some

14



other fast solver, see Section 2. Recall that for all x ∈ X it holds that
Decode(P⃗ , x) = ⟨row(x), P⃗ ⟩ = HF(x) and that Decode is a linear function in
P⃗ . Another important property is that Decode(P⃗ , x) = HF(x) only for the
elements in the set X, except the negligible probability2.

The parties first invoke Fvole where the Receiver obtains A⃗′, C⃗ ∈ Fm

while the Sender obtains ∆ ∈ F, B⃗ ∈ Fm. Recall that C⃗ = A⃗′∆ + B⃗. The
Receiver computes A⃗ := P⃗ + A⃗′ and sends this to the Sender who computes
K⃗ := B⃗ + A⃗∆. The parties will run a coin flipping protocol to then choose
a random w ← F.

The Sender defines their the PRF function as

F (x) = H(Decode(K⃗, x)−∆HF(x) + w, x).

The Receiver outputs the values

X ′ := {H(Decode(C⃗, x) + w, x) | x ∈ X}.

To understand why F (x) = H(Decode(C⃗, x) +w, x) for x ∈ X, observe that

Decode(K⃗, x)−∆HF(x) =Decode(B⃗ + P⃗∆+ A⃗′∆, x)−∆HF(x)

=⟨B⃗ + P⃗∆+ A⃗′∆, row(x)⟩ −∆HF(x)

=⟨B⃗ + A⃗′∆, row(x)⟩+ ⟨P⃗∆, row(x)⟩ −∆HF(x)

=⟨C⃗, row(x)⟩+∆⟨P⃗ , row(x)⟩ −∆HF(x)

=⟨C⃗, row(x)⟩+∆HF(x)−∆HF(x), ∀x ∈ X

=Decode(C⃗, x), ∀x ∈ X

When this is decoded at any x ∈ X recall that Decode(P⃗ , x) = HF(x) and
therefore the receiver will compute the correct value Decode(C⃗, x). Also
recall that this encoding has the property that at all other locations x′ ̸∈ X it
holds that Decode(P⃗∆, x′) ̸= HF(x′) and therefore the outputs will disagree.
Finally, we obtain an OPRF by hashing away the linear correlation using
the hash function H.

The final random oracle H call also contains to x to facilitate extraction
in the case of a malicious Sender. In particular, our functionality requires
the OPRF to effectively behave like a random oracle for the Sender. This
differs from a normal PRF where there is no security with respect to the
party holding the secret key.

2In the case of a malicious Receiver and depending on the choice of row, it may be
possible for |X| > n with noticeable probability. However, for PaXoS this can be bounded
as |X| ≤ m ≈ 2.4n while interpolation ensures that |X| ≤ m = n.
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Parameters: There are two parties, a Sender and a Receiver. Let
n, n′ ∈ Z be parameters such that if Receiver is malicious then |X| < n′

and otherwise |X| = n. Let out ∈ Z be the output bit length.

Functionality: Upon input (sender, sid) from the Sender and
(receiver, sid, X) from the Receiver, the functionality samples F : F →
{0, 1}out and sends X ′ := {F (x) | x ∈ X} to the Receiver.
Subsequently, upon input (sender, sid, y) from the Sender, the function-
ality returns F (y) to the Sender.

Figure 3: Ideal functionality Foprf batched Oblivious PRF.

Theorem 3.1. The Protocol Πoprf realizes the Foprf functionality against a
Malicious adversary in the random oracle, Fvole-hybrid model.

Proof. First observe that the protocol is correct. We prove the following
two Lemmas:

Lemma 3.2. The Protocol Πoprf realizes the Foprf functionality against a
Malicious Sender A in the random oracle, Fvole-hybrid model.

Proof. The simulator S interacts with the Sender as follows:

� S plays the role of Fvole. When A sends (sender, sid) to Fvole, S waits
for A to send ∆, B⃗.

� On behalf of the Receiver, S sends uniform r, A⃗ to A.

� Whenever A queries H(q, y), if q = ⟨K⃗, row(y, r)⟩ − ∆HF(y) + w and
H(q, y) has not previously been queried, S sends (sender, sid, y) to Foprf

and programs H(q, y) to the response. Otherwise H responds normally.

To prove that this simulation is indistinguishable consider the following hy-
brids:

� Hybrid 0: The same as the real protocol except S in this hybrid plays
the role of Fvole.

� Hybrid 1: S in this hybrid samples A⃗ uniformly as opposed to A⃗ :=
P⃗ + A⃗′. Since A⃗′ is distributed uniformly in the view of the A, this
hybrid has an identical distribution.

� Hybrid 2: When S in this hybrid samples r, it aborts if any of the
row(·, r) queries have previously been made. Since r is sampled uni-
formly the probability of this is O(2−κ) and therefore this hybrid is
indistinguishable from the previous.
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� Hybrid 3: S in this hybrid does not call Encode, and so does not abort
if Encode fails. Since none of row(·, r) queries have previously been
made, the PaXoS cuckoo-graph is uniformly sampled from all (n,m)-
cuckoo graphs and therefore the probability of abort is bounded by 2−λ

[PRTY20]. Therefore this hybrid is statistically indistinguishable from
the previous. Observe that this hybrid no longer uses the Receiver’s
input.

� Hybrid 4: WheneverA queries H(q, y) after receiving A⃗, if q = ⟨K⃗, row(y, r)⟩+
w and H(q, y) has previously been queried, this hybrid aborts. Oth-
erwise it sends (sender, sid, y) to Foprf and programs H(q, y) to the
response.

Observe that r is uniformly distributed prior to it being sent. There-
fore, any given q = ⟨K⃗, row(y, r)⟩−HF(y)∆+w is similarly distributed
and A has a negligible probability of previously querying H(q, y). We
conclude that this hybrid is indistinguishable from the simulation.

Lemma 3.3. The Protocol Πoprf realizes the Foprf functionality against a
Malicious Receiver A in the random oracle, Fvole-hybrid model.

Proof. The simulator S interacts with the Receiver as follows:

� S plays the role of Fvole and receives A⃗′, C⃗ from A.

� When A sends r, A⃗, S computes P⃗ := A⃗− A⃗′. For each of the previous
HF(x) queries made by A, S checks if Decode(P⃗ , x, r) = HF(x) and
if so adds x to set X. S sends (Receiver, sid, X) to Foprf and receives
{F (x) | x ∈ X} in response.

� S samples w ← {0, 1}κ. For each x ∈ X, S programs H(Decode(C⃗, x, r)+
w, x) := F (x). S sends w to A.

To prove that this simulation is indistinguishable consider the following hy-
brids:

� Hybrid 0: The same as the real protocol except the S plays the role of
Fvole. When A sends (receiver, sid) to Fvole, S waits to receive A⃗′, C⃗.

� Hybrid 1: When A sends r, A⃗, S in this hybrid computes P⃗ := A⃗− A⃗′.
For each of the previous HF(x) queries made by A, this hybrid checks
if Decode(P⃗ , x, r) = HF(x) and if so adds x to set X. This hybrid sends
(Receiver, sid, X) to Foprf and receives {F (x) | x ∈ X} in response.
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� Hybrid 2: S in this hybrid does not sample ws at the beginning of
the protocol and sends a random value for cs instead H(ws). Right
before ws is should be sent, S samples ws and programs H(ws) := cs.
Conditioned on H(ws) not previously being queried, this hybrid is
identically distributed and therefore indistinguishable in general since
ws is uniform.

� Hybrid 3: When ws ← {0, 1}κ is sampled, S in this hybrid aborts
if any H(Decode(C⃗, x, r) + w, x) has been made by A. Since ws was
just sampled, each Decode(...) + ... + ws is uniform and therefore the
probability of abort is at most O(2−κ).

S in this hybrid programs H(Decode(C⃗, x, r) + w, x) := F (x) for all
x ∈ X and sends ws to A. Since the F (x) are uniform, programming
H does not change the distribution.

� Hybrid 4: S in this hybrid aborts if A ever makes an H(v, x) query
such that (v, x) ∈ {(Decode(K⃗, x, r) − ∆HF(x) + w, x) | x ∈ F \ X}.
Observe that

Decode(K⃗, x, r)−∆HF(x) = ⟨K⃗, row(x, r)⟩ −∆HF(x)

= ⟨B⃗ + P⃗∆+ A⃗′∆, row(x, r)⟩ −∆HF(x)

= ⟨C⃗ + P⃗∆, row(x, r)⟩ −∆HF(x)

= ∆(⟨P⃗ , row(x, r)⟩ − HF(x)) + ⟨C⃗, row(x, r)⟩

and recall that ∆ is uniformly distributed in the view of A. So for all
x s.t. ⟨P⃗ , row(x, r)⟩ ̸= HF(x), the distribution of ∆(⟨P⃗ , row(x, r)⟩ −
HF(x)) is uniform in the view of A. Now consider the case that
⟨P⃗ , row(x, r)⟩ = HF(x). W.l.o.g., let us assume that all HF(x) queries
are made prior to sending A⃗. Recall from Section 2 that P⃗ ∈ Fm

where m ≈ 2.4n for PaXoS and that by Equation 1 the effective input
X ′ = {x | Decode(x, P⃗ ) = H(x)} is of size at most n′ := |X ′| = O(n)
with overwhelming probability. Moreover, by Conjecture 2.1, it holds
that n′ = m.

4 Private Set Intersection

Using our OPRF protocol from the previous section, we now obtain a PSI
protocol via the well known transformation shown in Figure 6. The ideal
functionality for PSI is given in Figure 5. Given a malicious or semi-honest
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OPRF, this transformation achieves malicious or semi-honest security, re-
spectively. While the general transformation is known and implicitly or
explicitly used by used by [CKT10, DCW13, RR17a, PRTY19, PRTY20,
CM20], we provide a tight analysis in the malicious setting which reduces
our communication by 20% to 50% compared to [CKT10, PRTY20].

The OPRF to PSI transformation works as follows. The PSI receiver
sends their set X to the OPRF functionality Foprf and receives back F (x)
for all x ∈ X. The sender queries Foprf to learn F (y) for their y. The sender
sends Y ′ := {F (y) | y ∈ Y } to the receiver who can compute X ∩ Y := {x |
x ∈ X ∧ F (x) ∈ Y ′}.

To ensure the correctness of this protocol it is crucial that there are not
any spurious collisions between the F (x) and F (y) values. In particular,
since F is a random function it is possible that x ̸= y ∧F (x) = F (y). In the
semi-honest setting, the standard approach is to define the output domain
of F to be {0, 1}out where out := λ + log2(nxny). Since the X,Y are fixed
prior to randomly sampling F , the probability for any x ̸∈ Y to result in
F (x) ∈ Y ′ is purely a statistical problem3. In particular,

Pr
x,Y,F

[F (x) ∈ {F (y) | y ∈ Y } ∧ x ̸∈ Y ] = 2−outny = 2−out+log2(ny).

If we take the union bound over x ∈ X, the overall probability of a collision
is nx2

−out+log2(ny) = 2−out+log2(nynx) = 2−λ.
In the malicious setting the situation is complicated by the fact that the

simulator must extract the sender’s set Y by observing the sender’s Foprf

queries and the value of Y ′. The folklore approach is to extract Y := {y |
y ∈ Y ∗ ∧ F (y) ∈ Y ′} where Y ∗ is the set of inputs the sender queried the
Foprf at. However, in the event that there exists distinct y, y′ ∈ Y ∗ s.t.
F (y) = F (y′), then more than one y is extracted for each y∗ ∈ Y ∗.

The probability that there exists distinct y, y′ ∈ Y ∗ s.t. F (y) = F (y′)
is at most 2−out+2 log2(ny

∗) where ny
∗ := |Y ∗|. Therefore, it is expected to

occur when ny
∗ ≥ 2out/2. As such, in the folklore analysis and that of

[CKT10, PRTY20], it is required that out := 2κ in order for the security
argument to hold.

We now present a new extraction procedure which allows out = κ. In
our protocol this effectively reduces the sender’s communication by half,
therefore reducing the overall communication by half when |X| ≪ |Y |.

Our extraction procedure is to only extract y ∈ Y ∗ if it is distinct.
Intuitively, the reason security still holds is that collisions within Y ∗ are

3In the Foprf hybrid where F is truly random.

19



unlikely to collide with the receiver’s set X. In particular, the receiver’s set
X is first fixed and then the function F is sampled. Thus, the probability
that there exists a y ∈ Y ∗ and y ̸∈ X, yet F (x) = F (y) is at most

2−out+log2(nxny
∗) = O(2−out+log2(κ)+log2(ny

∗))

and therefore if out := κ the probability is O(2−κ+log(κ)+log(ny
∗)). Concretely,

if κ = 128, nx = 230 then the sender would have to make an expected
ny

∗ = 298 Foprf queries in order to expect to distinguish as opposed to 249

queries via the folklore analysis.

Theorem 4.1. The Protocol Πpsi realizes the Fpsi functionality against a
Malicious adversary in the Foprf-hybrid model.

Proof. Consider a malicious sender. The simulator interacts with the sender
as:

� The simulator plays the role of Foprf. The simulator observes all the
(sender, sid, y) messages. Let Y ∗ be the set of all such y.

� When the sender sends Y ′, the simulator computes Ŷ := {y | y ∈
Y ∗ ∧ ∄y′ ∈ Y ∗ s.t. y ̸= y′ ∧ F (y) = F (y′)} and extracts Y := {y | y ∈
Ŷ ∧ F (y) ∈ Y ′} and sends Y to Fpsi.

First, conditioned on there not being any F (y) = F (y′) collisions, it is easy
to verify that the simulation above is correct and indistinguishable.

Now consider some collision F (y) = F (y′). Observe that the simulator
only needs to extract y, y′ if there is a noticeable probability of one of them
being in X. W.l.o.g., let us assume y ∈ X. Therefore, consider the probabil-
ity of F (y′) = F (x) for some x ∈ X. Since |X| = nx = O(κ), the probability
of the sender finding such a (target preimage) collision is O(2−κ).

Consider a malicious receiver. The simulator is as follows:

� The simulator plays the role of Foprf.

� When the receiver sends (receiver, sid, X) to Foprf, the simulator ob-
serves X and sends X ′ back as the Foprf would.

� The simulator forwards X to Fpsi and receives Z = X ∩Y in response.

� The simulator computes Y ′ as containing all {F (z) | z ∈ Z} along
with ny − |Z| uniform values from {0, 1}out \X ′. The simulator sends
Y ′.

This simulation is identical to the real protocol except for the dummy
items being sampled from {0, 1}out \X ′ instead of {0, 1}out. However, since
2out − |X| = O(2κ) this change is indistinguishable.
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5 Oblivious Programmable PRF

We now turn our attention to constructing our circuit PSI protocol. To
achieve this, we first construct a type of protocol known as an oblivious
programmable PRF (OPPRF). The functionality is shown in Figure 7. The
sender has a set of input pairs (y1, z1), ..., (yn, zn). The functionality samples
a key k such that Fk(yi) = zi and at all other input points it outputs a
random value. The receiver on input points x1, ..., xn then obtains Fk(xi)
for all i.

We instantiate this functionality using an OPRF protocol, and the XoPaXoS
solver. The parties call the OPRF functionality Foprf with X being the
receiver’s input. The sender obtains k while the receiver obtains X ′ =
{Fk(x1), ..., Fk(xn)}. The sender constructs a solver for P⃗ such that Decode(P⃗ , yi) =
zi − Fk(yi) using XoPaXoS and sends P⃗ to the receiver who then outputs
x∗i := x′i + Decode(P⃗ , xi) for all i. When xi = yj , then

x∗ := Fk(xi) + Decode(P⃗ , xi) = Fk(xi) + zj − Fk(xi) = zj .

The sender outputs the key k∗ := (k, P⃗ ) where the OPPRF function is
defined as F ∗

k∗(x) := Fk(x) + Decode(P, x).
With respect to security, first observe that the vi values outside the

intersection are information theoretically hidden in the Foprf hybrid. What

remains to be shown is that the distribution of P⃗ does not depend on Y \
X. Recall from Section 2 that this is the exact issue XoPaXoS addresses
compared to PaXoS. Intuitively, XoPaXoS ensures that each position of P⃗ is
either assigned a uniformly random value or is the sum of previous positions
and some zi − Fk(yi). We prove security of this protocol in Theorem 5.1.

Theorem 5.1. The Protocol Πopprf realizes the Fopprf functionality against
a semi-honest adversary in the Foprf-hybrid model.

Proof. Consider a semi-honest sender. Observe that the protocol is correct.
Since the receiver does not send any messages the simulation is trivial.

Consider a malicious receiver. The simulator generates the receiver’s
transcript as follows:

� The simulator samples uniform values Fk(x) for x ∈ X.

� The simulator sendsX to Fopprf functionality and receives back x′1, ..., x
′
n.

� Samples P⃗ uniformly from all vectors such that Decode(P⃗ , xi) = x′i −
Fk(xi).
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� The simulator outputs ({Fk(x) | x ∈ X}, P⃗ ) as the transcript.

Clearly the Fk(x) values are identically distributed. What remains to be
shown is that P⃗ has the same distribution as it would in the real protocol.
Recall from Section 2 that XoPaXoS assign values to P⃗ in four ways

� During Step 5, Pi ← G for i ∈ C ′. Recall that Step 4 identifies d̃ of
the last d+ λ columns which form an invertible matrix for the 2-core.
These columns are indexed by C. Then C ′ is defined as C ′ = {j |
i ∈ R,M ′

i,j = 1} ∪ ([d + λ] \ C +m′) indexes all positions of P⃗ which
interact with the 2-core along with all of the last d+λ columns which
are not used to invert.

� Next, in Step 6, the remaining d̃ positions of P⃗ corresponding are
assigned a value such that Decode(P⃗ , yi) = v′i − Fk(yi) for the i in the
2-core which is equivalent to solving

M̃∗(PC1+m′ , ..., PCd̃+m′)⊺ = (y′R1
, ..., y′Rd̃

)⊺.

Since this is a fully determined system, there is exactly one solution.

� In Step 7 a single node i from each tree in G is assigned a uniform
value.

� Lastly, observe that the rest of the system is fully determined. That
is, each the the remaining Pi position are assigned a value with the
form

Pi := v′k − Fk(yk)−
∑

j∈{...}

Pj .

The analysis above can be reordered such that Step 5, 7 are performed
first. Then there is exactly one solution to the correctness constraint.

6 Circuit PSI

We now construct a circuit PSI protocol from our OPPRF. Our construction
(Figure 10) builds on the approach of [PSTY19], using our novel XoPaXoS
and VOLE-based OPPRF from the previous section. As we will see in the
experiments (Section 7), this translates into a significant speedup compared
to [PSTY19]. The ideal functionality for circuit PSI is given in Figure 9. It
allows both sender and receiver to input a set of associated values, which
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will be secret-shared alongside the elements in the intersection. The associ-
ated values corresponding to elements in the intersection can then be used
in any subsequent MPC phase, and could for example be used to compute
sums [IKN+20] or inner products [SGRP19] of the intersection. Since our
protocol is effectively the same as [PSTY19] with the substitution of our OP-
PRF and F2pc implementation, we defer the proof of security to [PSTY19].

Cuckoo Hashing. We make use of a data structure known as a cuckoo
hash table. Given a set X, one can create a hash table T of size m =
ϵ|X|. This table is parameterized by k hash functions h1, . . . , hk : {0, 1}∗ →
{1, 2, ...,m}. There is a procedure [PSZ18, DRRT18] s.t. with overwhelming
probability for all x ∈ X, x can be storied in T at T [hj(x)] for a j ∈ [k],
and only one item will be stored at any position of T . We discuss concrete
parameter choices for ϵ and k in Section 7.2.

We will also refer to a procedure known as simple hashing of a set Y
where we store y ∈ Y at all locations T [hj(y)]. For simple hashing, each
position of T may hold more than one value. It can be shown that if the
table has m = O(|Y |) positions, then any given location of the table will
hold at most O(log |Y |) items.

Protocol. The full circuit PSI protocol is constructed using the OPPRF
and cuckoo hashing. The receiver will construct a cuckoo hash table Tx of
their set X. The sender will construct a simple has table Ty of their set Y .

For each i ∈ [m] the sender will sample a random value ri ← {0, 1}ℓ
where ℓ := λ + log2m. For all i and y ∈ Ty[i], the sender will construct a
list L = {(y′, ri)} where y′ = H(y, j) and j is defined such that i = hj(y).
That is, j is the hash function index that mapped y to this bin. The receiver
constructs set X ′ which is defined as the collection of all H(x, j) such that
x is stored at Tx[hj(x)]. The sender then provides L as their input to Fopprf

while the receiver inputs X ′. In response the receiver obtains the set X∗.
As an explanation of this, let us focus on some bin index i such that

x was mapped to bin Tx[i] due to hash function hj , i.e., Tx[i] = x and
hj(x) = i. Furthermore, let us assume that there is some y ∈ Y s.t. x =
y. Since the sender did simple hashing, they too mapped y to bin Ty[i]
since hj(y) = i. For this y, they programmed the OPPRF with the pair
(H(y, j), ri). When the receiver inputs H(x, j) to the OPPRF they receive
the value ri in response. If x ̸∈ Y , then the receiver will receive a random
value. Therefore, for each i, the receiver now has a value r′i which is equal
to ri (held by the sender) if Tx[i] ∈ Y and otherwise r′i is random per the
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OPPRF security definition.
The final step of the protocol is to use a generic MPC protocol to compare

each r′i with ri to check if they are equal. The output of this generic MPC
will be secret shared which will be the output of the protocol.

In the event that the sender has “associated values”, they will program
the OPPRF with L = {(y′, ri||ỹ ⊕ wi)} where ỹ is the associated value
for y′, and wi is an random value that the sender samples for each bin
i ∈ {1, 2, ...,m} in the same way as ri. The receiver will then obtain r′i||w′

i

from the OPPRF protocol for each i. The generic MPC will then take as
input {(r′i, w′

i)} from the receiver and {(ri, wi, x̃)} from the sender. For each i
the MPC computation will compute qi := (r′i = ri) and zi := qi·

(
(w′

i⊕wi)||x̃
)

and then output secret shares of qi and zi.

7 Performance Evaluation

7.1 Theoretical Comparison.

All protocols compared here are largely based on efficient symmetric key
primitives – with the exception of the DH-PSI protocol – and can be in-
stantiated with O(nx + ny) running time. Since these protocols are asymp-
totically similar, it becomes difficult to compare them. As we do below,
one metric is to implement the protocol and compare their running times.
However, the quality of the implementation has a large impact on running
time. Arguably a more objective metric is the total communication which
is independent of the implementation.

Table 1 shows a theoretical comparison of the communication required
by various PSI protocols. We present the communication overhead in three
ways. The general case in terms of nx, ny, κ, λ; when we fix κ = 128, λ = 40;
and when we fix all the parameters. Many protocols contain addition param-
eters that allow a for some type of tradeoff. For these we chose representative
values.

Our semi-honest protocol requires sending ρκnx+(λ+log(nyny))ny bits
plus the overhead of performing a VOLE of size ρnx. Here, ρ is the rate
of the linear system solver which is being employed by the protocol. We
consider two values of ρ. The first is ρ = 2.4 which corresponds to the
PaXoS solver while the second is ρ = 1 when Vandermonde/interpolation
solver is used.

To estimate the overhead of the VOLE protocol we experimentally deter-
mined that our implementation requires a total of 217κ 20

√
nx bits. We note

that this is the approximate overhead of our implementation and may not
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Table 1: Comparison of theoretical communication cost of various PSI proto-
cols. Several protocols have additional parameters which have been approxi-
mated in terms of κ, λ. In particular, the coefficients shown below often vary
(non-linearly) as a function of n, κ, λ. In these cases we chose representative
values. The third column contains the overhead for fixed λ = 40, κ = 128
while the last three columns also fix the set sizes.

Protocol Communication
n = ny = nx

216 220 224

Semi-Honest

DH-PSI 4κnx + (λ+ log(nxny))ny 512nx + 40ny + log(nxny)ny 584n 592n 600n

[KKRT16] 6κnx + 3(λ+ log(nxny))ny 768nx + 120ny + 3 log(nxny)ny 984n 1008n 1032n

[PRTY19] Low-Comm 3.5κnx + 1.02(2 + λ+ log(nx))ny 450nx + 43ny + 1.02 log(nx)ny 509n 513n 517n

[PRTY19] Fast 3.5(1 + 1/λ)κnx + 2(λ+ log(nxny))ny 461nx + 80ny + 2 log(nxny)ny 603n 619n 635n

[PRTY20] 9.3κnx + (λ+ log(nxny))ny 461nx + 40ny + log(nxny)ny 1208n 1268n 1302n

[CM20] 4.8κnx + (λ+ log(nxny))ny 620nx + 40ny + log(nxny)ny 678n 694n 702n

Ours total (PaXoS) 2.4κnx + (λ+ log(nxny))ny + 217κnx
0.05 224nx

0.05 + 307nx + 40ny + log(nxny)ny 914n 426n 398n

Ours total (interpolation) κnx + (λ+ log(nxny))ny + 217κnx
0.05 224nx

0.05 + 128nx + 40ny + log(nxny)ny 702n 245n 219n

Ours online (PaXoS) 2.4κnx + (λ+ log(nxny))ny + 213κnx
0.13 220nx

0.13 + 307nx + 40ny + log(nxny)ny 502n 398n 396n

Ours online (interpolation) κnx + (λ+ log(nxny))ny + 213κnx
0.13 220nx

0.13 + 128nx + 40ny + log(nxny)ny 310n 218n 217n

Malicious

[PRTY20] 11.8κnx + 2κny 1512nx + 256ny 1766n 1766n 1766n

Ours total (PaXoS) 2.4κnx + (λ+ log(nxny))ny + 217κnx
0.05 224nx

0.05 + 307nx + 128ny 960n 474n 438n

Ours total (interpolation) κnx + (λ+ log(nxny))ny + 217κnx
0.05 224nx

0.05 + 128nx + 128ny 754n 293n 259n

Ours online (PaXoS) 2.4κnx + κny + 213κnx
0.13 220nx

0.13 + 307nx + 128ny 558n 446n 436n

Ours online (interpolation) κnx + κny + 213κnx
0.13 220nx

0.13 + 128nx + 128ny 366n 266n 257n

be asymptotically correct for nx ≫ 224. Since the cost of the VOLE is highly
sublinear, the overhead it contributes quickly diminishes as nx increase. For
example, the VOLE requires 27,800 bits per element for nx = 210 while only
requiring 38 bits per element for nx = 220. From this we can conclude that
our protocol works best for large sets, e.g. nx ≥ 216.

We also consider a setting where we perform a one time VOLE pre-
processing phase. In this case the bulk of the VOLE computation can be
performed before the X,Y sets or their sizes nx, ny are known. This is akin
to performing base OTs ahead of time as is done by all the protocols com-
pared below (except DH-PSI). With preprocessing the online overhead of the
VOLE decreases to approximately 213κ 8

√
nx bits, an improvement of 16×.

In addition, sublinear VOLE constructions are relatively new and there are
likely more optimizations opportunities, like the recent work of [YWL+20]
which we utilize.

As the table shows, our protocol outperforms prior work, especially for
large inputs. The three protocols of [PRTY19, PRTY20] mostly differ in
their linear system encoding rates. [PRTY19] considers two different types
of Vandermonde / interpolation solvers which achieve rate ρ ≈ 1 while
[PRTY20] achieves rate ρ = 2.4 via their PaXoS solver and a significantly
improved running time. Both of these works use an OT-extension type pro-
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tocol which results in sending approximately 3.5κ bits per element in their
encoding. We on the other hand depart from this OT-extension based tech-
nique and utilize sublinear VOLE. This has the advantage that we send only
κ bits per item in the encoding. For the final PSI-from-OPRF construction,
the sender will additionally send their set encoded under the OPRF which
requires λ+ log(nxny) bits per item in Y .

[KKRT16] does not encode their input into a linear system and instead
uses cuckoo hashing which has a rate of ρ ≈ 1.7. This work is also a
OT-extension type protocol which requires sending 3.5κ bits per hash table
element which results in an overhead of 6κnx. However, the cuckoo hashing
approach results in the sender needing to send 3 OPRF values per item in
Y . The core advantage of [KKRT16] is that cuckoo hashing is extremely
efficient compared to solving a linear system and as such obtains very small
running times.

In the case of malicious security, the overhead of our protocol is effec-
tively identical except that the sender now must send larger OPRF values,
i.e. κ bits per element in Y as opposed to λ+ log(nxny) bits. On the other
hand, the protocol of [PRTY20] requires increasing the number of bits per
item in the linear encoding from 3.5κ to 5κ. This has the effect that they
must send an overall encoding size of 11.8κnx. Our protocol more naturally
achieves malicious security and only requires sending κ per encoding posi-
tion. In addition, the [PRTY20] analysis states the sender must send OPRF
values of size 2κ. However, we demonstrate that our protocol remains secure
when only κ bits are sent.

7.2 Experimental Evaluation

Implementation. We implement all our protocols in C++. We use an ex-
tended version of the VOLE implementation of [SGRR19], supporting itera-
tive bootstrapping [YWL+20] and a consistency check for malicious security
[WYKW20], and assuming LPN with regular noise [BCGI18, WYKW20].
For computing the 2-core of the cuckoo graph in our PaXoS implementation,
we use igraph [igr], and we rely on libOTe [Rin] for oblivious transfers and
the GMW implementation used in our circuit PSI protocol.

To compare our protocols to previous work [KKRT16, CM20, PRTY20,
PSTY19], we perform experiments in different network settings. To that
end, we use two Amazon EC2 M5.2xlarge VMs, each featuring 8 cores at
2.5 GHz and 32 GiB of RAM. For comparability, we limit each protocol to
a single core. In the LAN, without any artificial constraints, we measured
a bandwidth of 5 Gbps between our machines. For settings with lower
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bandwidth, we use Wondershaper [HGS] to limit incoming and outgoing
traffic.

PSI. Here, we compare our semi-honest and malicious PSI implementa-
tions against the works of [KKRT16], [CM20], and [PRTY20]. The protocol
of [KKRT16] is particularly fast, but comes with a comparatively large com-
munication overhead. The semi-honest protocol of [CM20] on the other hand
comes with a lower communication overhead, but more expensive computa-
tion. Finally, the PaXoS protocol of [PRTY20] features fast computation,
but increased communication compared to [CM20]. We do not compare
against the SpOT-light protocol [PRTY19], since [CM20] outperforms it in
high-bandwidth settings4, and our protocol has even lower communication
than SpOT-low.

The results of our evaluation in the semi-honest setting are shown in
Table 2. As expected, [KKRT16] outperforms all other protocols in the
LAN setting, but is less effective with reduced bandwidth. For medium
input sizes and bandwidths, [CM20] and [PRTY20] sometimes outperform
our protocols and [KKRT16]. Our protocols particularly shine in medium to
low bandwidth settings, and with large input sizes, which is to be expected
given its low communication cost.

In the malicious setting, the state of the art is presented by [PRTY20].
Again, we compare communication and running time in different bandwidth
settings, and present our results in Table 3. While in the LAN, [PRTY20]
sometimes outperforms our implementation, we are consistently faster as
bandwidth decreases.

Since the vector OLE implementation underlying our protocols uses the
iterative bootstrapping approach of [YWL+20], our protocols have the dis-
tinctive feature that a part of the computation can be performed in a one-
time, data-independent setup phase. Our implementation of this setup phase
could be improved by tuning the LPN parameters (and thus the bootstrap-
ping iteration sizes) to the input set sizes. Currently we use the parameters
from [BCGI18, YWL+20] without any additional tuning. In our tables, we
highlight the best protocols when setup is amortized in gray. It can be seen
that in that case, our protocol more consistently outperforms previous work.

Circuit PSI. We also compare our circuit-PSI implementation to the state
of the art protocol [PSTY19]. We use the same cuckoo hashing parameters

4In low communication settings (10 Mbps and 1 Mbps), [CM20] takes 15% longer than
[PRTY19], but at the same time up to 75% longer than our protocol.

27



Table 2: Comparison of our PSI protocols to previous works in the semi-
honest setting. We compare the amount of data sent by both parties, as well
as the total running time with different bandwidths. A dash (–) indicates
experiments that either crashed or did not finish, or where only the total
communication is reported. The best protocol within a setting is marked in
blue if setup is included, and in gray if setup is excluded.

n Protocol
Communication (MB) Total running time (s)

P1 P2 Total LAN 100Mbps 10Mbps 1Mbps

216

[KKRT16] – – 7.730 0.1160 0.7250 6.884 68.82
[CM20] 0.5790 4.764 5.343 0.5853 0.6437 4.870 47.49

[PRTY20] 12.62 0.5898 13.21 0.6460 1.682 11.86 112.8
Ours 0.9965 2.702 3.699 0.1720 0.4510 3.277 31.18

Ours (w/setup) 1.171 3.062 4.232 0.5030 1.067 6.742 63.33

218

[KKRT16] – – 31.88 0.5850 2.968 28.46 283.6
[CM20] 2.520 19.23 21.75 2.017 2.194 19.50 193.8

[PRTY20] 51.94 2.621 54.56 1.517 5.976 47.66 464.2
Ours 3.066 10.30 13.37 1.227 2.192 12.26 114.1

Ours (w/setup) 3.622 10.68 14.31 1.985 3.279 16.65 151.5

220

[KKRT16] – – 128.5 2.441 11.93 114.8 1143
[CM20] 10.03 77.63 87.66 8.148 9.071 78.38 780.0

[PRTY20] 214.0 10.49 224.5 5.885 24.09 195.6 1910
Ours 12.06 40.55 52.61 4.398 8.496 48.69 449.7

Ours (w/setup) 12.62 40.93 53.55 5.396 9.850 53.35 487.7

222

[KKRT16] – – 530.1 10.19 49.30 473.6 4718
[CM20] 44.08 313.5 357.6 34.70 41.54 319.4 3182

[PRTY20] 815.7 46.14 861.9 22.94 93.67 751.3 –
Ours 47.28 161.7 208.9 23.93 40.67 199.0 1794

Ours (w/setup) 47.84 162.0 209.9 25.88 42.97 204.7 1834

224

[KKRT16] – – 2137 43.90 199.1 1910 –
[CM20] 176.3 1266 1442 189.6 198.1 1289 12 860

[PRTY20] 3364 184.5 3548 101.7 392.0 – –
Ours 204.2 645.7 849.9 90.74 156.4 814.2 7296

Ours (w/setup) 204.7 646.1 850.9 92.81 158.7 819.9 7335
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Table 3: Comparison of our PSI protocols to [PRTY20] in the malicious
setting.

n Protocol
Communication (MB) Total running time (s)

P1 P2 Total LAN 100Mbps 10Mbps 1Mbps

216
[PRTY20] 12.62 2.097 14.71 0.6510 1.808 13.13 125.5

Ours 1.390 2.702 4.092 0.2250 0.5260 3.627 34.77
Ours (w/setup) 1.564 3.062 4.626 0.5560 1.147 7.109 66.72

218
[PRTY20] 51.94 8.389 60.33 1.556 6.469 52.57 513.1

Ours 4.639 10.30 14.94 1.279 2.464 13.96 127.6
Ours (w/setup) 5.195 10.68 15.88 2.046 3.558 18.37 165.0

220
[PRTY20] 214.0 33.55 247.6 6.119 26.12 215.2 2410

Ours 17.31 40.55 57.86 5.150 9.599 54.09 495.0
Ours (w/setup) 17.86 40.93 58.79 6.157 10.94 58.76 532.6

222
[PRTY20] 815.7 134.2 950.0 23.37 101.2 826.1 –

Ours 68.25 161.7 229.9 26.50 45.19 222.5 1975
Ours (w/setup) 68.81 162.0 230.9 28.46 47.50 228.3 2015

224
[PRTY20] 3364 536.9 3901 102.8 422.1 – –

Ours 271.3 645.7 917.0 104.0 174.5 881.0 7876
Ours (w/setup) 271.9 646.1 918.0 106.0 176.8 886.7 7914

Table 4: Comparison of our Circuit-PSI protocol to [PSTY19]. Values
marked with an asterisk (*) were not measured, but computed from the
theoretical communication costs [PSTY19, Section 7.3].

n Protocol Total comm. (MB)
Total running time (s)

5 Gbps 100 Mbps

212
[PSTY19] 9.00* 0.965 1.34

Ours (IKNP) 13.4 0.495 1.19
Ours (SilentOT) 4.79 0.737 1.07

216
[PSTY19] 149* 5.01 11.3

Ours (IKNP) 171 1.52 9.03
Ours (SilentOT) 21.1 4.05 5.34

220
[PSTY19] 2540* 72.0 172

Ours (IKNP) 2830 23.3 149
Ours (SilentOT) 277 103 120

29



as [PSTY19], ϵ = 1.27 and k = 3 hash functions, following the analysis
of [PSZ18]. We note, however, that there is some disagreement in the litera-
ture regarding the correct cuckoo hashing parameters for a given statistical
security level λ. For example, for k = 3, n = 220, and λ = 40, [PSZ18]
and [DRRT18] report quite different expansion factors (1.27 vs. 1.54). In
our own experiments, we found the security level to be approximated by
λ = 240ϵ − 256 − log2 n, which requires ϵ = 1.32 for n = 220 and λ = 40.
Still, we stick to the parameters used by [PSTY19] for comparability.

Like [PSTY19], our construction uses a generic two-party computation
phase in the end (Step 5 in Figure 10). We implement two variants of this
step: one using the standard IKNP OT extension [IKNP03] to implement
the GMW offline phase, and one using the more recent SilentOT [BCG+19].

Our results in Table 4 show that our protocols outperform [PSTY19]
in both high and low-bandwidth settings. Since the main communication
bottleneck is the GMW phase, the SilentOT variant works particularly well
in the low-communication setting. In the LAN, our IKNP variant still out-
performs [PSTY19] (who also used IKNP) in terms of running time, which
showcases the efficiency of our novel OPPRF construction.

8 Conclusion

In this paper, we have shown how to combine two cryptographic primitives,
namely Vector-OLE and linear system solvers like (Xo)PaXoS, into highly
efficient O(P)PRF and PSI protocols. Our final protocols outperform pre-
vious work in terms of communication, and as a consequence, in terms of
running time in bandwidth-constrained environments. From a theoretical
perspective, we provide a more efficient reduction from OPRF to PSI.

As discussed in Section 2, there are many ways to implement the linear
system solvers we require for VOLE-PSI. One approach, based on polyno-
mial interpolation, promises to result in the lowest communication complex-
ity, but as previous work has shown, this comes at the cost of expensive
computation. The approach presented in this paper, using PaXoS, allows
for fast computation, but incurs a higher communication blowup of asymp-
totically 2.4κn. It remains an open question whether there are more effi-
cient (i.e., smaller) data structures that also allow for linear encoding and
decoding. Should these become available, they will directly improve the
communication complexity of our protocols.
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Parameters: There are two parties, a Sender and a Receiver with a set
X ⊆ F where |X| = n.

Protocol: Upon input (sender, sid) from the Sender and (receiver, sid, X)
from the Receiver, the protocol specifies the following:

1. The Sender samples ws ← F and sends cs := HF(ws) to the Re-
ceiver.

2. The Receiver samples r ← {0, 1}κ, wr ← F and solves the systemsrow(x1, r)...
row(xn, r)

 P⃗ = (HF(x1), ...,H
F(xn))

for P⃗ as a function of their set {x1, ..., xn} = X ⊂ F.

3. The Sender sends (sender, sid) and the Receiver sends (receiver, sid)
to Fvole with dimension m and |F| ≈ 2κ. The parties respectively
receive ∆, B⃗ and C⃗ := A⃗′∆+ B⃗, A⃗′.

4. The Receiver sends r, wr, A⃗ := P⃗ + A⃗′ to the Sender who defines
K⃗ := B⃗ + A⃗∆.

5. The Sender sends ws to the Receiver who aborts if cs ̸= HF(ws).
Both parties define w := wr + ws .

6. The Receiver outputs X ′ := {H(Decode(C⃗, x) + w, x) | x ∈ X}.

Subsequently, upon each input (sender, sid, y) from the Sender, the pro-
tocol specifies that the Sender outputs F (y) = H(Decode(K⃗, y, r) −
∆HF(y) + w, y).

Figure 4: Protocol Πoprf which realizes the Oblivious PRF functionality
Foprf.
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Parameters: There are two parties, a sender with set Y ⊂ F and a
receiver with a set of keyX ⊆ F. Let ny, nx, nx

′ ∈ Z be public parameters
where nx ≤ nx

′.

Functionality: Upon receiving (sender, sid, Y ) from the sender and
(receiver, sid, X) from the receiver. If |Y | > ny, abort. If the receiver
is malicious and |X| > nx

′, then abort. If the receiver is honest and
|X| > nx, then abort.
The functionality outputs X ∩ Y to the receiver.

Figure 5: Ideal functionality Fpsi of Private Set Intersection.
Parameters: There are two parties, a sender with set Y ⊂ F and a
receiver with a set of key X ⊆ F.
In the Semi-honest setting, let out := λ + log2(nx) + log2(ny). In the
malicious setting let out := κ. Let Foprf be the OPRF functionality with
n = nx and nx

′ := n′ and the output length out.

Protocol:

1. The sender sends (sender, sid) and receiver sends (receiver, sid, X)
to Foprf. The receiver receives X ′ = {F (x) | x ∈ X}.

2. For y ∈ Y , the sender sends (sender, sid, y) to Foprf and receives
back F (y).

3. The sender sends Y ′ := {F (y) | y ∈ Y } to the receiver in a random
order.

4. The receiver outputs {x | F (x) ∈ Y ′, x ∈ X}.

Figure 6: Protocol Πpsi which realizes the PSI functionality Fpsi.

Parameters: There are two parties, a sender with input L =
{(y1, z1), ..., (yny , zny)} where yi ∈ F, zi ∈ {0, 1}out and a receiver with a
set X ⊆ F where |X| = nx.

Functionality: Upon input (sender, sid, L) from the sender and
(receiver, sid, X) from the receiver, the functionality samples a random
function F : F → {0, 1}out such that Fk(y) = z for each (y, z) ∈ L and
sends X ′ := {Fk(x) | x ∈ X} to the receiver.
Subsequently, upon input (sender, sid, y) from the sender, the function-
ality returns F (y) to the sender.

Figure 7: Ideal functionality Fopprf of Oblivious Programmable PRF.
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Parameters: There are two parties, a sender with L =
{(y1, z1), ..., (yℓ, zℓ)} and a receiver with a set X ⊆ F where |X| = n.

Protocol: Upon input (sender, sid, L) from the sender and
(receiver, sid, X) from the receiver, the parties do the following:

1. The sender sends (sender, sid, L) and the receiver sends
(receiver, sid, X) to Foprf with |F̂| ≈ 2κ. The parties respectively
receive k and X ′ = {Fk(x) | x ∈ X}.

2. The sender uses the XoPaXoS solver to compute P⃗ ∈ Fm over the
field F such that P⃗ ← Encode((y1, z1−Fk(y1)), ..., (yℓ, zℓ−Fk(yℓ)))
and sends it to the receiver.

3. The receiver outputs {x∗1, ..., x∗n} such that x∗i := x′i+Decode(P, xi).

Subsequently, upon input (sender, sid, y) from the sender, output:
Fk(x) + Decode(P, x).

Figure 8: Protocol Πopprf which realizes the Oblivious Programmable PRF
functionality Fopprf.

Parameters: There are two parties, a sender with set Y ⊂ F, associated
values Ỹ ⊂ {0, 1}σy and a receiver with a set of keys X ⊆ F, associated
values X̃ ⊂ {0, 1}σx where |Y | = |Ỹ | = ny, |X| = |X̃| = nx. The
functionality is parameterized by Reorder : Fn → (π : [n] → [m]) which
on input X outputs a injective function π.

Functionality: Upon receiving (sender, sid, Y, Ỹ ) from the sender and
(receiver, sid, X, X̃) the functionality computes π ← Reorder(X) and uni-
formly samples Q0, Q1 ∈ {0, 1}m, Z0, Z1 ∈ {0, 1}(σx+σy)×m such that

q0i′ ⊕ q1i′ = 1, z0i′ ⊕ z1i′ = (x̃i′ ||ỹi) if ∃xi ∈ X, yj ∈ Y s.t. xi = yj ,

q0i′ ⊕ q1i′ = 0, z0i′ ⊕ z1i′ = 0 otherwise

where i′ = π(i). Output Q0, Z0, π to the receiver and Q1, Z1 to the
sender.

Figure 9: Ideal functionality Fcpsi of Circuit Private Set Intersection.
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Parameters: There are two parties, a sender with set Y ⊂ F, associated
values Ỹ ⊂ {0, 1}σy and a receiver with a set of key X ⊆ F, associated
values X̃ ⊂ {0, 1}σx where |Y | = |Ỹ | = ny, |X| = |X̃| = nx. The
protocol is parameterized by an expansion factor ϵ, cuckoo hash table
size m = ϵnx, and k hash functions hj : {0, 1}∗ → m.

Protocol:

1. The receiver constructs a cuckoo hash table Tx of X such that
x ∈ X, there exists a j ∈ [k] such that H(x||j) = Tx[hj(x)].

2. The sender constructs a simple hash table Ty of Y such that y ∈ Y ,
for all j ∈ [k] it holds that H(y||j) ∈ Ty[hj(y)].

3. For all i, the sender samples random ri ∈ {0, 1}ℓ, wi ∈ {0, 1}σy

and for all y′ ∈ Ty[i], the receiver defines L := {(y′, ri||ỹ ⊕ wi)} ∈
(F×{0, 1}ℓ+σy)m where ỹ is associated value for y s.t. y′ = H(y, j).

4. The sender sends (sender, sid, L) and the receiver
sends (receiver, sid, Tx

′) to Fopprf where Tx
′ :=

(H(1, Tx[1]), ...,H(m,Tx[m])). The receiver receives
X∗ = {(r′i||w′

i) | i ∈ [m]}.

5. For each i, the sender sends (receiver, sid, r′i||w′
i) and the receiver

sends (sender, sid, ri||wi||x̃) to F2pc where x̃ is the associated value
with x = Tx[i] (or zero if Tx[i] is empty). F2pc computes a circuit
C that for each i ∈ [m]:

(a) Sets qi := 1 if r′i = ri and qi := 0 otherwise,

(b) Outputs secret shares q0i , q
1
i of qi and z0i , z

1
i of zi := qi ·

(
(w′

i⊕
wi)||x̃

)
.

Figure 10: Protocol Πcpsi which realizes the circuit PSI functionality Fcpsi.

Parameters: There are two parties, a sender and a receiver. The func-
tionality is parameterized by a circuit C : {0, 1}in1+in2 → {0, 1}out1+out2 .

Functionality: Upon receiving (sender, sid, X) from the sender and
(receiver, sid, Y ) where X ∈ {0, 1}in1 and Y ∈ {0, 1}in2 , the function-
ality computes (Z1, Z2) := C(X,Y ) and returns Z1 ∈ {0, 1}in1 to the
receiver and Z2 ∈ {0, 1}in2 to the sender.

Figure 11: Ideal functionality F2pc of generic two party computation.
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