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Abstract. Existing models for non-interactive MPC cannot provide full privacy for inputs, because
they inherently leak the residual function (i.e., the output of the function on the honest parties’ input
together with all possible values of the adversarial inputs). For example, in any non-interactive sealed-bid
auction, the last bidder can figure out what was the highest previous bid.
We present a new MPC model which avoids this privacy leak. To achieve this, we utilize a blockchain in
a novel way, incorporating smart contracts and arbitrary parties that can be incentivized to perform
computation (“bounty hunters,” akin to miners). Security is maintained under a monetary assumption
about the parties: an honest party can temporarily supply a recoverable collateral of value higher than
the computational cost an adversary can expend.
We thus construct non-interactive MPC protocols with strong security guarantees (full security, no
residual leakage) in the short term. Over time, as the adversary can invest more and more computational
resources, the security guarantee decays. Thus, our model, which we call Gage MPC, is suitable for
secure computation with limited-time secrecy, such as auctions.
A key ingredient in our protocols is a primitive we call “Gage Time Capsules” (GaTC): a time capsule
that allows a party to commit to a value that others are able to reveal but only at a designated
computational cost. A GaTC allows a party to commit to a value together with a monetary collateral.
If the original party properly opens the GaTC, it can recover the collateral. Otherwise, the collateral is
used to incentivize bounty hunters to open the GaTC. This primitive is used to ensure completion of
Gage MPC protocols on the desired inputs.
As a requisite tool (of independent interest), we present a generalization of garbled circuit that are more
robust: they can tolerate exposure of extra input labels. This is in contrast to Yao’s garbled circuits,
whose secrecy breaks down if even a single extra label is exposed.
Finally, we present a proof-of-concept implementation of a special case of our construction, yielding an
auction functionality over an Ethereum-like blockchain.

1 Introduction

Secure multiparty computation (MPC) is a fundamental area in cryptography, with a rich body of work
developed since the first papers in the 80’s [12,21,35,52,59]. The setting involves n parties, each holding a
private input, who wish to compute a function on their inputs in a manner that reveals only the output, and
preserves the privacy of the inputs.

Interaction in MPC. The question of availability and required interaction among the parties in MPC
protocols has been extensively studied. Most of the literature on secure computation requires all parties to
remain online throughout the computation, engaging in interactive communication with each other. This
requirement is problematic in many settings, where the parties are not all available for interaction at the same
time (e.g., due to geographic or power constraints), and may not even be a priori aware of all other parties.

Thus, an important goal is to reduce interaction and online coordination in secure computation. Ideally,
we envision the following setting for non-interactive MPC (NIMPC). When a party is available it carries
out some local computation based on its input and any needed auxiliary information, and then it posts its
result to some public bulletin board. Once all the parties are done, an output-producing party combines the
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information from the public repository and computes the output of the function while maintaining security,
i.e., no information on the inputs is leaked beyond the output of the function.6 However, it is known that
this privacy-preserving ideal is impossible: leakage of the residual function [39] is inherent. Specifically, an
adversary controlling the output-producing party and some of the computing parties can always repeatedly
apply the legitimate protocol on any desired inputs provided by the colluding parties, to compute the function
on more than a single input (see e.g., [10, 39]).

The works of [10,39] further prove that, beyond the leakage of the residual function, there also needs to
be some additional setup assumption in order to achieve Non-Interactive MPC. The results of [10,31] work in
the semi-honest model and assume some pre-dealt correlated randomness that is given to the parties. The
works of [36, 39] rely on the existence of a PKI and assume the availability of an output-computing party
that is online at all times and can be viewed as a “coordinator” among the parties. Each party engages in an
interactive computation with the output-computing party, but the parties do not need to interact with each
other. These papers provide solutions for restricted classes of functions. In [38] a solution is presented for all
functions, at the expense of making a much stronger assumption, namely indistinguishability obfuscation, and
a PKI. However, when collusions occur, all these results suffer from the unavoidable leakage of the residual
function.

MPC and Blockchain. In 2008, Nakamoto proposed Bitcoin [47] as the first decentralized cryptocurrency.
The core of Bitcoin is an append-only ledger, called blockchain, maintained by a consensus protocol. Transac-
tions are combined into blocks. For a block to be added to the blockchain, a proof of work is used: parties
called miners need to solve a cryptographic puzzle. This process is called mining and successful miners are
automatically rewarded using the BTC asset, whose issuance and ownership are managed by the blockchain
itself. It soon became clear that the consensus protocol can be extended to not only record transactions, but
also store arbitrary state and enforce properties about this state and related transactions, through what
became known as smart contracts. This unearthed the potential of combining blockchain technology with
MPC, and the interaction between these two designs has evolved over several steps.

Gen I. Utilizing the blockchain to provide an implementation for the broadcast channel required for many
MPC protocols (e.g., via OP_RETURN data).

Gen II. Incorporating payments into MPC protocols.
Gen III. This work. Incorporating smart contracts and the miners as active participants in the MPC.

Gen II started with such results as [7, 14,43] that introduced monetary compensation and incentives in
order to go beyond existing lower bounds in MPC. In particular, they address the fairness impossibility result
of [24], which states that in a two-party setting it cannot be avoided that one party learns the output of
the protocol and aborts prior to the other party learning the output. These papers present solutions which
require each party to commit to a collateral via the payment capabilities of the blockchain. In case one party
aborts, their collateral can be used to provide financial compensation for the party that did not receive the
output. Thus, the collateral is used to incentivize the party to provide the output, and not abort. Note that
while in some scenarios this incentive may be sufficient in order to achieve fairness, in fact the solution itself
does not guarantee that this happens. It may be the case that despite facing a monetary loss, the party that
learns the output might think that it is beneficial to quit the computation and prevent the other party from
learning the output. This could happen due to e.g., failure, irrationality, or large external incentives to abort.

Our Work: Gage MPC (Gen III).7 In this paper, we propose a new model and constructions of non-
interactive MPC for any function, without the privacy-violating leakage of the residual function, and with
security against semi-honest adversaries.8 Thus, we circumnavigate the aforementioned impossibility.

Our model, which we call the Gage MPC model, assumes a monetary mechanism and a corresponding
assumption that enables our solution. There is a party, which we refer to as party zero, that sets up the
6 Due to the new monetary-incentivized model we consider, our work realizes a slightly modified version of NIMPC
that we define later.

7 Gage is an archaic word that means: a valued object deposited as a guarantee of good faith.
8 We assume a semi-honest adversary only for the first step of the protocol: parties are required to post honestly-
generated messages on the blockchain in the first step of the protocol. Later they can arbitrarily misbehave.
Furthermore this restriction can be lifted using additional zero-knowledge proofs.
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Fig. 1. Gage MPC design.

computations, and puts down some collateral. At a later stage, party zero can come back to provide some
final message(s) that allow for the computation of the output. If this last step is completed, party zero can
recover the collateral. We call this path of operation the nominal opening, which reflects the behavior of an
honest party zero. If party zero fails to provide the messages then the collateral is used as payment to bounty
hunters who will complete the execution via an expensive computation. (These might be, but don’t have to
be, the same as the blockchain miners.) We call this the bounty opening. The bounty opening does not depend
on any a priori determined miner (or set of miners) and thus, as long as there exist parties wishing to be paid
for computation, the bounty opening will complete successfully. This means that under no circumstances can
party zero prevent the computation from being completed and the output from being exposed. This is in
contrast to the Gen II MPC solutions [7,14,43], where the party also puts down a collateral, but forgoing the
collateral enables to prevent the exposure of the output.

This bounty opening path matches the desired NIMPC setup outlined above. Each party posts a message
and then the output computing party (in this case, the bounty hunters) will open the commitments and
evaluate the output (which is announced on the blockchain). On the other hand, the nominal path (and Gage
MPC 2-party protocol presented in Section 6) resembles a different flavor of NIMPC. That is, party zero will
come for a second round to open the commitments, and so allow computing the output, to avoid losing the
collateral. Nonetheless, party zero is not required to stay online all the time since the parties are posting their
messages on the blockchain. Also, the rest of the participants perform a single round of interaction as before.

We rely on the underlying blockchain to ensure a consistent consensus view of these events, as well as
delivery of commitment openings messages within bounded time (see below).

The collateral amount, along with the computational difficulty of the bounty opening, are set according to
the difficulty that party zero wishes to create for adversaries interested in computing the (residual) function
on additional inputs. To make such additional computations very expensive, party zero will set a high
computational difficulty, and post a corresponding large collateral to compensate bounty hunters for their
potential effort (in the case where party zero later aborts and bounty opening become necessary). This
collateral is awarded only for the first opening; an adversary who tries to evaluate the (residual) function
on additional inputs would have to perform the expensive computation and pay its cost without being
compensated by the collateral.

Crucially, party zero can always recover the collateral via the nominal path, and in that way not lose it.
This implies that the collateral can in fact be much higher than the amount of money party zero has, as party
zero can for example take a short-term loan.9 In contrast, for the adversary to break security, the collateral
amount is the actual cost that needs to be spent for computing the function, which can be prohibitively high.
This lends to the introduction of a new type of monetary assumption:

An honest party can put down a temporary collateral of value much higher than what an adversary
can expend on computation.

In our theorems we will prove that as long as the adversary does not spend (significantly) more than some
amount related to the collateral, then it will not learn any additional information.

On Circumventing the Lower Bounds. The aforementioned impossibility, saying the leakage of the
residual function is inherent in the standard model, is described for parties that all execute the same protocol.
9 The main cost for the honest party is the time value of money. E.g., with a 10% APY loan, and a collateral locked
for 3 days, the cost of a $1K collateral is less than $1.
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Yet, it extends to our setting where there exists a special party, party zero, that speaks first.10 The necessity
of correlated randomness likewise persists.11

Our constructions avoid this by creating a setting where to compute the function on any set of inputs
requires considerable computational effort. This effort effectively disarms the adversary from being able to
compute the residual function, thus eliminating its leakage and circumventing the lower bound. Furthermore,
we eliminate setup assumptions such as pre-shared correlated randomness (or PKI), or the need for a dedicated
party to be available throughout to ensure the resolution of the computation. Our only requirements are the
existence of the blockchain and availability of bounty hunters (i.e., parties willing to perform computation for
a reward).

The assumption that party zero makes about the adversary’s financial abilities might not hold indefinitely.
The model allows for a highly incentivized, wealthy, and patient adversary to attack the computation by
outspending the collateral amount, and revealing additional information about the function. Thus, there
are two points to note. First, caution should be taken when making assumptions about the finances of the
adversary. Second, the confidence we have in the assumption holding in relation to the adversary, due to the
nature of the assumption, is weakened over time. This implies that the guarantee that there is no leakage of
any additional information about the function (and in particular of the residual function) holds in the short
term and decays over time.

Thus, one should consider under what circumstances it makes sense to use this model. A natural setting
could be where the computation is of an ephemeral nature, and long after the output of the function has
been announced, it is acceptable if additional information about the inputs is eventually revealed. Auction
settings (as in our sample application) are often such.

1.1 Overview of our Design

Our design creates a sequence of primitives built on top of one another. It starts with Proof-of-Opening Time
Capsules which are incorporated into Gage Time Capsules. Those are combined with Label-Driven MPC
(LD-MPC) to finally construct our Gage MPC (Figure 1 shows how these primitives are combined in the
Gage MPC construction). In the following sections and appendices we provide a description of our design
and the flavor of each one of these constructions.

Blockchain Model. Our model relies on the following blockchain model properties. We assume that the
blockchain provides an any-to-all broadcast channel, i.e., an ordered list of messages that is consistently
visible to all. Any party can post a message that becomes visible to all parties within some bounded time.
Furthermore, we assume a liveness property, i.e., messages cannot be blocked or delayed beyond some bounded
duration (e.g., in Ethereum, it is assumed that the majority of the mining power is honest, and in particular
will not censor transactions that carry adequate transaction fees; the requisite fees and queue size are publicly
known). Functionally, we require the blockchain to support smart contracts, i.e., updating its consensus state
according to (simple) programs we prescribe.

Gage Time Capsules. We build on a primitive we call Gage Time Capsule (GaTC). A GaTC is a
commitment mechanism, that contrary to regular commitments, ensures that the committed value is exposed
when needed.

We start with a simplified construction of GaTC to give the main ideas that underlie this primitive. GaTC
bring time capsules [11, 54] to the blockchain. Recall, that time capsules enable a party to commit to a value
in such a manner that another party, if it wishes, can brute-force open the commitment. GaTC combine, via
a smart contract on the blockchain, a time capsule and a collateral that acts as an incentive mechanism for
opening the time capsule. The GaTC will have two time periods. In the initial grace period, the creator of the
GaTC will be able to open the commitment and retrieve the collateral. In the second period, if the collateral
has not been retrieved, it will be used to pay bounty hunters who work to open the commitment. This use
10 Consider the case of two parties P0 and P1. In the non-interactive setting, after P0 speaks, an honest P1 must be

able to compute the output of the function. This implies that a faulty P1 can in fact compute the function on any
input that it wishes, exposing the residual function.

11 Party zero could send correlated randomness to all the other parties, but only if it knows their identity in advance
and has establishing secure channels or PKI with them.
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GaTC Opening by P0
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Fig. 2. A GaTC consists of a collection of POTCs with a single associated collateral. The collateral can be transferred
to the party that opens the desired POTC, either P0 through the nominal path or a bounty hunter. The index j
indicates which POTC to open.

of the collateral is similar to the notion of incentives for proof of work [29]. Interestingly, this incentive
mechanism ensures that given a large enough pool of bounty hunters, it is virtually guaranteed that the GaTC
will be opened if and when needed. Note, that these bounty hunters are independent of the parties of the
protocol and thus it does not matter which ones participate in the opening. In addition, these bounty hunters
do not need to be related to the miners maintaining the blockchain in case of proof-of-work blockchains.

In contrast to designs of time capsules that require a minimum amount of sequential time to be opened,
we are interested in time capsules that require some minimum amount of work to be opened. The work can
be parallelized, and will be parallelized between the bounty hunters.

However, this naive construction of GaTC from time capsules suffers from the problem that if a bounty
hunter finds an opening, other parties may steal it and claim the collateral in place of the bounty hunter who
did the work. That is why instead of using plain time capsules, we introduce and use Proof-of-Opening Time
Capsules (POTC). A POTC adds a decommitment value which requires time to compute. In opening the
POTC the bounty hunter proves that it knows this value rather than exposing it in the clear. This proof can
be tied to the bounty hunter in such a way that only the bounty hunter who produced the proof will be able
to claim the collateral.

Another problem to consider, is the risk of an attacker posting malformed commitments that cannot
be opened. This presents a denial of service (DoS) attack against bounty hunters who would waste their
computation resources without reward. For simplicity, we assume a semi-honest adversary for the first step
(the commitment posting). This assumption can be removed using a generic NIZK proof that P0 generates to
prove the well-formedness of the commitment.

The previous high-level definition of GaTC is actually still insufficient for our purpose: we need a more
sophisticated primitive. A GaTC will bundle together a few POTCs and will accept as input an index (see
Figure 2). It will only incentivize the opening of the POTC that relates to the given index. No incentives will
be given for the opening of the other POTCs inside the GaTC.

Our monetary assumption is utilized in the design of GaTCs. The level of the collateral sets the complexity
of opening a POTC. We assume that the complexity is set high enough that the adversary would not be
interested in exerting the level of computational power that is required to open the number of additional
POTCs within the GaTC so as to violate the security of the general protocol.

In Section 2 we propose an idealized instantiation of POTCs in the random oracle model and the generic
group model. We use Fiat-Shamir in order to provide the proofs for the opening. In Section 3 we define our
GaTC and provide an instantiation of those. Our GaTC can be used over any blockchain, including proof-of-
stake based ones, as long as there are bounty hunters in the world who are interested in receiving the incentives.

Label-Driven MPC (LD-MPC). Our construction is based on a garbled circuit framework, i.e., there is a
wire for each input and labels associated with that wire. In order to carry out the computation there is a need
to know one label for each wire. The general idea would be that the labels of the wires would be committed to
via GaTCs and if needed would be brute-force opened to enable the computation. However, Yao-like schemes
leak information about the inputs of the parties even in the case that only one additional label, beyond those
required for the computation, is exposed [10]. Given this leakage, basing our solution on Yao will provide
only limited results. Thus, we introduce a generalization of garbled circuits, called Label-Driven MPC that is
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Fig. 3. Gage MPC. The fully private input versions are for two parties only.

robust in the face of exposure of additional labels. This is a powerful generalization that can find applications
in other settings.

We obtain more robust garbled circuits by adding one level of indirection. In order to compute the desired
Yao garbled circuit C we add a computation of a circuit C ′ on top of it. The output of the computation of
the circuit C ′ will be the needed label for each input wire for the computation of the circuit C. It would
seem that we have not done much, but the circuit C ′ will be designed in an innovative way by addressing two
issues.

The first element in the creation of C ′ is that we choose an error correcting code that takes words of
length γ and expands them to codewords of length γ + κ (for a code of minimal distance κ+ 1) where κ is
the desired robustness level. The circuit C ′ will have γ + κ inputs and the computation that it will execute is
to test whether the input is a word in the code. If it is, it will output the labels for the circuit C. Observe
that the error correcting code in a sense adds a buffer of security. To move from one legal codeword to
another there is a need to change κ input wires in C ′. Given our general idea that the labels of wires will be
committed via GaTCs this expansion with error correcting codes provides the desired security level.

The second issue is that if C ′ is built as a Yao garbled circuit it may still suffer from the vulnerability of
having a single additional wire exposed. However, C ′ is a simple linear computation, one that only needs to
test if the input is in the code. Given that this is a linear computation we can rely on techniques from NIMPC
[13] that provide robustness to linear computations.12 Utilizing these techniques we can offer robustness to
C ′ and thus in return provide robustness to the original computation.

Gage MPC. To achieve our final result of an MPC protocol that circumvents the lower bound of leaking
the residual function we define the model of Gage Multiparty Computations and combine our new LD-MPC
with our GaTC.

We consider a public function f , with parties P0, P1 . . . , PN holding inputs x0, x1, . . . , xN to f . The parties
will compute f(x0, x1, . . . , xN ). We note that if we want the function itself to be private, we can set the public
function f to be a universal circuit, and input the actual private function as the input x0 of party zero, P0.

We will combine different LD-MPC to achieve our solutions: a basic solution (based on Yao), and en-
hancements utilizing the more robust version of LD-MPC. We provide the following security guarantees.

0-robust security, public inputs. In this setting, the input of party zero, P0, is the only private one, and other
parties’ inputs are all public. This solution utilizes a standard garbled circuit that creates two labels for each
input wire. The POTCs of the two labels of a wire are combined into a GaTCi for each wire i by P0. More
specifically, GaTCi for wire i has POTCi,0 for label µi,0 (wire value = 0) and POTCi,1 for µi,1 (wire value
= 1) in it. It incentivizes to open only one of the labels. For the sake of simplicity, in the introduction, we
assume that each party Pi has a single input bit corresponding to the input wire i.

The nominal execution works as follows. Once the parties post their inputs this fixes the index that
GaTCi should open: for input b of party Pi it should open the POTCi,b. Party P0 then comes and opens all

12 The main result of [13] is the construction of κ = O(1)-robust NIMPC for polynomial-size circuits. Such NIMPC
would provide κ = O(1)-robust LD-MPC. Unfortunately, this would not yield robustness for larger κ values. Instead,
we use an intermediate result of [13] that gives a fully robust NIMPC for linear functions, and combine them with
the ideas we described above.
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the values and reveals the committed labels, which allows everybody to evaluate the garbled circuit and learn
the output y = f(x0, . . . , xN ). Party P0 further retrieves its collateral.

In case P0 misbehaves and does not reveal the labels, after the initial grace period, bounty hunters are
incentivized to open the POTCs of those labels and receive the collateral as payment. Once all the needed
POTCs are opened, the output y is computed the same way as in the nominal execution.

As stated, the underlying garbled circuit is not robust to the exposure of additional labels, and thus
this computation inherits this lack of robustness. However, as long as the adversary does not exert the
computational effort required to open any additional POTC, the resulting protocol achieves classical MPC
security: the adversary learns no additional information but y, x1, . . . , xN .

If the difficulty of opening a POTC is set high enough and if there are relatively few GaTCs (i.e., few
input wires), the total collateral (of all the GaTCs) is not much larger than the difficulty of opening a single
GaTC. In that case, it is reasonable to assume that the adversary cannot open any additional POTC and
security holds.

However, when there are many input wires, this assumption becomes less likely. The adversary may have
enough power to brute force one of the other labels on its own. To prevent this exposure we utilize our more
robust LD-MPC.

κ-robust security, public inputs. We present a design that protects against an adversary exerting enough
computational effort to open up to κ additional POTCs (i.e., learning κ additional garbled circuit labels).
We use the κ-secure LD-MPC. We will want to relate the complexity of the work to the number γ of inputs
to the function. If the adversary wants to compute the function on an additional input, we would like the
adversary to have to work almost as much as it costs to compute the function on a single input. Thus, we set
the parameters as follows. The length of the expanded input is γ′ = γ + κ implying that to compute the
function on one input requires a number of POTCs (or labels) equals to γ′. We would like the robustness κ
to equal (1− ε)γ′. This creates a (1− ε)γ′-robust Gage MPC with γ′ wires, where ε > 0. In other words, this
new protocol ensures security as long as the adversary can only exert enough computational effort to open a
1− ε fraction of the POTCs that bounty hunters would have to open in the bounty case. We remark that this
is the best that can be achieved. Indeed, if the adversary can open as many POTCs as bounty hunters would
have to open if P0 misbehaves, then the adversary would be able to evaluate the function f on another set of
inputs. This would break security (in other words, γ′-opening security is never achievable for a protocol with
γ′ wires).

We stress that the adversary who puts enough computational effort to open more than κ additional
POTCs may learn more than the output of the function on one additional input. After exerting enough
computation power, it may even learn the full function. We leave it as an open question whether there exists
an efficient solution whose security degrades more gracefully.

0-robust security, private inputs, two parties. We provide a second, orthogonal transformation that provides
privacy for all parties’ inputs (rather than just P0). We address this setting only for the case of two-party
secure computation (and we discuss how this can be extended to the general multiparty case while pointing out
potential practicality limitations). Thus, we consider parties P0, P1 holding private inputs x0, x1 respectively,
trying to securely compute f(x0, x1).13 We can address this setting by combining a two-round two-party
secure computation evaluating the desired function with a Gage MPC. This is done by transforming the
second step of the evaluation of the two-round protocol into a Gage MPC protocol.

κ-robust security, private inputs, two parties. The two transformations described above can be combined, to
achieve Gage two-party secure computation with secret inputs and κ-robust security. See Fig. 3.

1.2 Application: Private Decentralized Auctions

An important application, highlighting the power of Gage MPC, is on-chain trading. Auctions allowing parties
to place bids for a published offer, and more generally exchanges allowing to place multiple bids and offers
(orders) in an order book, are crucial components of economic markets.
13 As mentioned above, using universal circuits this can also be used when P0 holds a private function g and P1 holds

an input x and they compute g(x).
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The emergence of blockchain technology saw the introduction of many decentralized exchanges (or
auctions), which are implemented using a blockchain and often trade assets whose ownership is represented
on the blockchain. Goals and motivation in constructing such systems include: eliminating the need for
trusted parties to deliver correct execution, privacy, or asset custody (credit risk); reducing costs, fees and
onboarding barriers; avoiding censorship; and enabling integration with other blockchain-based systems, such
as electronic commerce and decentralized finance instruments. Many such systems have been implemented
[1–4,6,45,51,57], and the total trading volume in decentralized exchanges has recently exceeded US $20B per
month [27].

The existing schemes that implement decentralized blockchain-based order-book exchanges follow two
paradigms: open orders books where the orders are broadcast in plaintext, recorded on the blockchain, and then
settled later (by the miners following consensus rules), or some weak notion of hidden order books (i.e., dark
pools) to keep the offers and bids secret. An example of the latter is the commit-and-open paradigm: sending
the order in the form of (hiding and biding) commitments to a smart contract, and later publicly opening all
these commitments [6]. Another approach is to send orders in secret-shared form to a committee, which uses
MPC to reveal just the outcome, while letting unexecuted orders remain hidden [5]. Both approaches have
the drawback that they require the continued availability and participation of specific parties (the traders in
the former; the MPC committee members in the latter), and if these parties become unavailable, the orders
can never be executed. The requisite participation is incentivized by escrows, or “bonds”, that are confiscated
if those parties fail to operate correctly. They are, however, technically at liberty to abort and just accept the
penalty. That is, they operate in the Gen II model.

Crucially, these approaches do not guarantee execution, they are not resilient to auxiliary incentives that
may induce participants to abort even if this entails a penalty. For instance, a bidder may realize that the
market price has jumped and their already-committed-to offer, if executed, would cause them enormous
loss. Or an auction seller, who has committed to a reserve price, may later realize that revealing their low
reserve price will harm them in some future transaction. Either of these, or an attacker trying to cause a
denial-of-service disruption, may be willing to forego their bonds or bribe MPC parties to lose theirs.

An alternative, automated market marker, forgoes order books and implements the trading counterparty
as a smart contract. All bids and offers are public, as is the trading algorithm itself (which moreover must be
supplied with large liquidity pools).

A recent scheme, which (like us) targets the issue of guaranteed execution without requiring the parties to
stay online, exploits time-lock puzzles to realize a sequential blockchain-based auction functionality [28]. It
follows the commit-and-open paradigm; parties seal their bids in commitments, provide time-lock puzzles
for the opening, then if the parties do not come later to open their commitments other miners will open
the puzzles and execute the auction. Their goal is to build an auction-based proof-of-stake (PoS) mining
algorithm to discourage hoarding currency.

Our Gage MPC construction enables auctions which have guaranteed evaluation, and moreover, are privacy-
preserving. Unlike [28], which opens all inputs in the clear during the execution phase, our scheme reveals only
whether or not the bid matched the offer. The offer price remains secret, and (if using the aforementioned
private-input transformation) so does the bid. The privacy level can be calibrated by configuring the amount
of computation required to force-open the puzzles, i.e., the bounty-hunting path, which is translated into
monetary cost.

Such privacy was unnecessary for the narrow setting of [28], but it is clearly of interest in more general
auction applications. Moreover, we provide a general auction functionality that can be used by any user to
trade any asset represented on the blockchain.14 Lastly, note that these auctions are merely a special case,
and our construction extend to any (efficiently-computable) two-party functionality, including those that
control asset flows in more complex ways. Thus, we solve a special case of the important problem of trustless
privacy-preserving smart contracts.

Implementation of POTC and Simple Auctions. As a proof of concept, and to demonstrate the
potential practicality of our constructions, we implemented a library that provides a generic interface for our
14 It is unclear how the mining auctions of [28] would be thus generalized, when their incentives are specific to mining,

i.e., the prospects of transaction fees and block rewards. For instance, without incentive for the nominal path, a
party can post a bid and then disappear, leaving it to others to expensively open the commitment and execute the
auction — with no penalty, thus enabling a DoS attack.
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POTC operations, and evaluated its performance overhead for each operation. Next, we used the library to
implement an instantiation of Gage MPC for a simple auction functionality, in our basic security setting
(public-inputs, no additional opening). That is, a seller posts an offer with a secret reserve price, while buyers’
offers are public. Our prototype implementation is fully integrated in Ethereum Virtual Machine (EVM).
Our implementation is described in Section 7.

1.3 Related Work

Our work is related to several concepts found in the literature, including time capsules, Non-Interactive
MPC, and the use of blockchains to circumvent some impossibility results and/or build new cryptographic
primitives. In what follows, we provide a brief description of some of the works in each of these areas, while a
more detailed discussion can be found in Appendix A.

The notion of time capsules was first introduced in [11], and is closely related to the notions of timed
commitments [17] and time-lock puzzles [54]. These constructions are different from our use of time capsules.
In particular, the constructions of [17, 54] need to ensure that the attacker cannot utilize parallelism in order
to improve the run-time for the breaking protocol. Yet, we focus on the total amount of computation that the
adversary needs to compute in order to break the time capsule, irrespective if this work is done in parallel or
not. Thus, most applications that would need to enforce some minimal amount of work, with the fine-grained
capability of configuring the amount of information leakage based on the computation power of the adversary,
would need our modified time-capsules notion and construction. Other recent works [19, 46] introduced
the notion of homomorphic time-lock puzzles, which allows to combine homomorphically time puzzles and
then open a single puzzle containing the result of the computation. Homomorphic time-lock puzzles also
allow to design decentralized auctions, however the known constructions either require indistinguishability
obfuscation [46] or multi-key fully homomorphic encryption [19]. The auction-based mining proposed in [28],
similar to our work, brings the notion of time-lock puzzles to the blockchain by having miners force open
unopened puzzles. However, as discussed above, its focus is on the time needed for opening rather than the
computational effort, and it does not incentivize the nominal path of puzzle opening, thereby leaving the
miners vulnerable to a DoS attack.

Another related concept is verifiable delay functions [16,30], in which a sequential function is evaluated
over some input and takes at least t time steps to be completed, while verifying the correctness of the output is
much more efficient. Similar to time-lock puzzles, VDFs are about ensuring a given bound on the computation
delay is satisfied (and that parallelism is not effective in attacking the scheme) rather than the amount of
computation. On the other hand, the notion of pricing functions [29,48], where the proof-of-work mining is an
example of such functions, are similar in spirit to our work. The goal is to utilize moderately hard functions
to put a price on some actions (e.g., sending spam emails) in terms of amount of computation. Our work
extends this model by involving explicit monetary rewards to enforce computation completion.

On the blockchain model and circumventing impossibility results, as mentioned before, several works
targeted the fairness issue in MPC. The works in [7, 14] realize a financial-based notion of fairness in which
the party that aborts after learning the output loses its penalty deposit to the honest players. This notion was
formalized in [43] under what is called secure MPC with compensation. As opposed to our constructions, the
output is not guaranteed: the honest players just get compensated if they do not receive the output. On the
other hand, [23] does not rely on financial incentives and achieve full fairness utilizing a public bulletin board
(can be instantiated using a blockchain). However, their constructions require either extractable witness
encryption which has no known practical implementation (nor even theoretical constructions under standard
assumptions) or the use of secure hardware like SGX. A more recent work [33] exploited the consensus
protocols in blockchains, particularly that what matters is the honest power majority (whether it is computing
power, or stake, etc.) rather than the number of parties to circumvent the n/3 lower bound of MPC with
malicious parties when no private correlated randomness setup (e.g., a PKI) is used.

A related line of work used the blockchain model as an alternative to strong assumptions. In [37] it is used
to avoid the trusted setup needed for non-interactive knowledge (NIZK) proof systems, [22] strengthened this
model and allowed the use of global public blockchains.

For implementing new cryptographic primitives or functionalities in the blockchain model, [41] used a
public bulletin board to enable a trusted execution environment (TEE) hosted by an untrusted computer,
to create a secure state without requiring a persistent internal storage. In [44], a privacy preserving smart
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contract framework is proposed, which permits implementing MPC protocols on the blockchain. However,
the proposed framework requires to trust a manager with the users’ inputs. Our scheme does not introduce a
privileged entity; it is fully distributed and decentralized. A stronger privacy notion appears in [18], where
not only the user’s input is protected, but also the executed functionality. Our scheme addresses both data
privacy and function privacy (by garbling a universal circuit), but without requiring a privacy-preserving
ledger as in [18].

2 Proof-of-Opening Time Capsules

In this section we present proof-of-opening time capsules (POTC), which enhance time capsules [11,54] to
add the feature that a party that opens the time capsule can prove in zero knowledge that it knows the
opening (rather than exposing the committed value in the clear). We propose candidate constructions that
satisfy our definition. The feature of proving the opening will be critical for our design of the new concept
of GaTC and Gage MPC. Though we see the definition and proof of these time capsules as an important
contribution of our paper, it is not the main one. We thus focus here on the aspects needed for the subsequent
constructions, while (due to space limitation) formal security definitions, constructions, and proofs can be
found in Appendix B.

2.1 Definition

We start by defining proof-of-opening time capsules. At a high level, POTC adds the following to the original
time capsules [11,54]. First, it allows the decommitment information to be different from the randomness
used in generating the commitment (i.e, the capsule). As such, we introduce an additional algorithm to verify
a decommitment. Second, it does not require the opening party to reveal the decommitment. This is needed
since the simple method of revealing the decommitment does not work for our purposes; an attacker who
observes this value being sent can block or front-run it, and present this opening as their own. By requiring a
zero knowledge proof instead to prove opening, our approach disarms such a malicious party and protects the
party who did the work to open a capsule.

In the definition below, λ is a standard cryptographic security parameter (in particular, a computation
time of 2λ is not feasible). On the other hand, λ∗ is a parameter capturing the hardness of forced-opening.
That is, 2λ∗ is the time it takes to recover the message and a decommitment from the commitment alone; it
should be feasible (polynomial), but hard (λ∗ is a measure of how costly this is).

Definition 2.1 (informal). A Proof-of-Opening Time Capsule is defined by five polynomial-time algorithms
that make use of a hash function H modeled as a random oracle:

– Commitment: (c, d)← TC.Com(1λ, 1λ∗ , µ) takes as input the security parameter λ, the opening hardness
parameter λ∗, a message µ ∈ {0, 1}poly(λ), and outputs a commitment or time capsule c and its associated
decommitment d.

– Decommitment Verification: TC.DVer(1λ, c, µ, d) takes as input the security parameter λ, a commitment
c, a message µ, a decommitment d and outputs 1 if the decommitment is valid with regards to c and µ;
and outputs 0 otherwise.

– Forced Opening: (µ, d)← TC.ForceOpen(c) takes as input a commitment c, brute-forces its opening, and
outputs the committed message µ and a valid decommitment d.

– Opening Proof: π ← TC.Prove(c, µ, d, tag) generates a proof π, with tag tag, that c commits to µ using
the witness d.

– Proof Verification: TC.PVer(1λ, c, µ, π, tag) takes as input the security parameter λ, a commitment c, a
message µ, a proof π, a tag tag, and outputs 1 if the proof is valid with regards to c, µ, and tag; and
outputs 0 otherwise.

We require the following properties to be satisfied:

Perfect correctness. TC.DVer returns 1 for honestly generated commitments and decommitments. TC.PVer
returns 1 for honestly generated commitments and proofs. Furthermore, TC.ForceOpen makes about 2λ∗

evaluations of H.
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Binding and Soundness. It is not possible to find a commitment c for which there exists two valid decom-
mitments d, d′ (resp., two valid proofs) for two different messages µ 6= µ′.

Hiding and Simulatability. The original definition of time capsule stated that it should take about 2λ∗

evaluations of H to learn any information about the committed message µ of a commitment c. This notion
is insufficient for our purpose, as we may use many time capsules, in which case the adversary may be
able to open some of them. What we require is that if the adversary makes significantly fewer than κ · 2λ∗

evaluations of H, it should not be able to learn more than κ of the values in the capsules. This property is
surprisingly difficult to formalize: our formal definition is simulation-based and uses ideas from trapdoor
commitments [32].

Non-Malleability. Generating opening proofs for a new tag tag (for which no such proof was generated)
for κ different commitments requires to make around κ · 2λ∗ evaluations of H. In particular, seeing
proofs-of-opening for a commitment c and a tag tag′ does not help in generating a proof-of-opening for
the same commitment and a different tag tag 6= tag′. This property is used to ensure that parties cannot
“steal” proof-of-opening from another party.

2.2 Construction

We have the following theorem.

Theorem 2.2. There exists a POTC in the random oracle and generic group model.15

In this section, we present a simplified construction without proof-of-opening. Adding proof-of-opening
could be done generically using simulation-extractable NIZK, but this would be highly inefficient. Instead,
in Appendix B.3, we show how to transform the time capsule below to make it more algebraic and uses a
Fiat-Shamir proof.

Our time capsule construction is based on the original construction in [11] and references within. In this
original construction, to commit to a message µ, the committer first selects a low-entropy seed s R← {0, 1}λ

∗
,

then hashes this seed and uses this hash as a one-time pad to “encrypt” µ as c2 := H2(s) xor µ (where H2 is
a hash function). It also includes in the commitment a hash of the seed, namely, c1 := H1(s) where H1 is
another hash function, that is used to verify if a seed is the valid one. The commitment is c := (c1, c2).16

Intuitively, to force open a commitment, we need to enumerate the possible seeds s, hash them, and check
which one corresponds to c1. This requires at most 2λ∗ hash evaluations of H1, and on average 2λ∗/2 hash
evaluations of H1.

Unfortunately, such a time-capsule does not satisfy our definition of security. An adversary making even a
single hash evaluation of H1 and H2 may stumble upon the correct seed s, with probability 1/2λ∗ , which is
not negligible. This makes such a commitment construction difficult, if not impossible, to use as a building
block of any cryptographic protocol.

We fix the above construction as follows. Instead of using a single seed s ∈ {0, 1}λ
∗
, we use k seeds

s1, . . . , sk ∈ {0, 1}νs , where νs = λ∗ − blog2 kc. We commit to each seed individually by computing c1,i =
H1(i‖si), and then encrypt the message µ as c2 := H2(1‖s1) xor · · · xor H2(k‖sk) xor µ. Thus, force opening a
commitment takes about 2νs · k ≈ 2λ∗ hash evaluations (by trying every si).

However, the main difference now is that if the adversary can only make significantly fewer than 2λ∗

hash evaluations, the commitment will remain statistically hiding. For example, if the adversary makes at
most k − 1 hash evaluations, the message µ is perfectly hidden since the adversary will be missing one of the
one-time pad masks H2(i‖si). This argument can be extended to an adversary making many more than k
hash evaluations using a careful probability analysis and tail bounds.

To provide more intuition of why this is true, let us consider two cases which require around the same
number of hash evaluations to brute force, which is about 215:
Case 1. A single 15-bit seed. The probability that the adversary succeeds with q hash evaluations is around
q/215 = q/32768. This is never negligible.
15 The construction uses both a hash function modeled as a random oracle and a cyclic group modeled as a generic

group.
16 For the sake of simplicity, we do not include any salts in this overview, and assume that a single commitment is

made. This is already sufficient to explain the issue we want to highlight.
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Case 2. Eight 12-bit seeds. Let us simplify the probability analysis by allowing the adversary to make q hash
evaluations per seed, instead of q hash evaluations in total (this only makes the adversary stronger). For each
seed, the adversary will hash the correct seed value with probability around q/212, which is not negligible.
However, the adversary must guess correctly each seed value, and each of these events are independent, so
the adversary’s success probability is about q8/(212)8 = q8/296, which is negligible in practice (by which we
mean, less than 2−80).

We give some concrete parameters to show that the construction is efficient in Table 1 on page 27. Even
for 128 bits of security where the adversary should not learn any committed message (κ = 0), if the honest
parties are assumed to make about 240 hash evaluation to force open a commitment while the adversary is
restricted to 230 hash evaluations, then only k = 15 seeds are required. For weaker notions of security (where
the adversary is allowed to open κ > 0 messages), the number of used seeds can be further decreased.

3 Gage Time Capsules

3.1 Definition

We proceed to introduce the notion of a Gage Time Capsule (GaTC), which guarantees that one of several
posted commitments is opened according to some rule, even if the original committer does not cooperate in
the opening.

A GaTC allows a committer party to publish several commitments to values, and designate a controller
party that will choose which commitment will be opened.17 The committer also posts a collateral. It is
guaranteed that once the controller has made the choice of which commitment to open, the commitment will
indeed be opened shortly afterwards, one way or another. Either the committer will open the designated
commitment within a prescribed time window, and thereby reclaim the posted collateral; or someone (an
arbitrary bounty hunter) will force-open the commitment, and receive the collateral as profitable compensation
for the requisite computational effort.

Abstractly, the GaTC functionality has the following interface. Given a broadcast channel, a consensus
view of public events’ ordering, an approximate global clock, and means to programmatically transfer assets
(all of these will be realized, below, by an underlying blockchain):

– Creation: The committer party invokes GaTC.Create(1λ, 1λ∗ ,µ, ctrl, deposit) (where λ is the security
parameter and λ∗ is the opening hardness parameter as defined in POTC) to commit to a vector of
messages µ = (µ0, . . . , µL−1) where µi ∈ {0, 1}νµ , and places an associated collateral of a prescribed
monetary value, represented by deposit. Initially, this collateral is locked up and inaccessible. The existence
of this new GaTC, and L, become public, but not the content of µ. The committer party also designates
the party represented by ctrl as the controller of this GaTC.

– Request opening: The controller party invokes GaTC.RequestOpen(σ) once, where σ ∈ ZL, to choose
which commitment should be opened. This index σ becomes public. From this event, we measure a
prescribed time duration to a deadline T .

– Nominal opening: Subsequently, the committer may invoke GaTC.NominalOpen(), which causes the value
µσ to be publicly released. If this is the first time that the committer called GaTC.NominalOpen, and
moreover either the deadline T has not yet passed or no call to GaTC.ForceOpen has been completed yet,
then the collateral is returned to the committer.18

– Bounty opening: GaTC.ForceOpen() can be invoked by any party (serving as a bounty hunter). This
will cause that party to perform a computationally expensive process, and eventually publish the value
µσ. If the deadline T has passed, and moreover this is the first invocation of GaTC.NominalOpen or
GaTC.ForceOpen that completed, then the the collateral is transferred to the bounty hunter.

– Querying the result: GaTC.GetResult() may be invoked by anyone, after GaTC.RequestOpen has been
invoked. This returns µσ if GaTC.NominalOpen or GaTC.ForceOpen have already been invoked and
completed; otherwise it returns ⊥.

17 In our applications, the designated controller will be an existing smart contract, which commits to the procedure by
which it will be decided which value to open.

18 We assume a global clock; in the realization, this will be defined by the length of a blockchain’s consensus view,
measured in blocks.
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Implicit parameters. For brevity, we let the message length be constant, and thus omit it from this
description. We also omit specification of the collateral amount and of the time window until the committer’s
deadline; these need to be calibrated to the properties of the application and the underlying asset and
blockchain. In particular, the collateral amount should suffice to compensate and incentivize the computation
of TC.ForceOpen (from the POTC) within GaTC.ForceOpen.

The time window for the deadline should be long enough to allow the committer party to open the time
capsules and recover its collateral. It is fixed independent of how long it takes to compute the opening by the
bounty hunters. It only depends on how long (in number of blocks) an adversary can censor a transaction
(i.e., prevent it from being added to the blockchain), assuring that the committer party can post the opening.

3.2 Realization on a Blockchain

Model. We realize the GaTC functionality using a POTC scheme TC along with a blockchain that supports
smart contracts and assets with monetary value. Specifically, we assume an append-only ledger, composed of
blocks each of which records an ordered list of transactions; a consensus algorithm that provides all parties
with a consistent consensus view of this ledger; and a permissionless censorship-free protocol for appending
transactions to this ledger. We assume that the transaction syntax and semantics support smart contracts, i.e.,
user-defined stateful interactive programs executed by the blockchain’s consensus rules (e.g., as implemented
in Ethereum). We also assume that transactions can represent ownership and transfers of assets with monetary
value, such as a native cryptocurrency (e.g., ETH) or other tokens (e.g., ERC-20 or ERC-721).

We consider time in terms of rounds, where a round is the time needed to append (i.e., mine) a block on
the blockchain. Hence, a capsule’s grace period, i.e., the time during which P0 can use the nominal path, is
defind in number of rounds. We assume a secure blockchain that satisfies the liveness and persistence security
properties [34, 50]. In particular, censorship (blocking publication of a valid transaction for unbounded time)
is assumed infeasible due to the liveness property, as discussed in Section 1.1.

Construction. A GaTC coordination smart contract, designated GaTCContract, implements the func-
tionality of storing the state of POTCs, implementing the requisite rules (e.g., checking the proofs of opening),
and handling the collateral (i.e., taking custody of it and paying this collateral to the correct party when the
conditions are fulfilled). The POTC scheme is used with suitable security parameter λ and opening hardness
parameter λ∗, and assets of correspondingly suitable value are used as a collateral and for compensating
bounty hunters.

Thus, the GaTC is realized as a “decentralized app,” where each of the GaTC’s algorithms consists of a
portion executed by a party and/or a portion executed by GaTCContract, as follows (in any of the steps
below, which corresponds to some message asking to perform a specific operation, if any of the checks fail the
contract will simply ignore the calling message).19

– The committer invokes GaTC.Create(1λ, 1λ∗ ,µ, ctrl, deposit) where µ = (µ0, . . . , µL−1) and deposit grants
control over the assets to be placed as collateral (a spending key for a wallet with adequate balance):
1. The committer runs (ci, di)← TC.Com(1λ, 1λ∗ , µi) for i ∈ ZL where λ is the security parameter and
λ∗ is the opening hardness parameter (see Section 2.1).

2. The committer calls a method of GaTCContract that, given c = {ci}i∈ZL , deposit, ctrl and
(implicitly) the caller address cmtr:20
(a) initializes GaTCContract’s state with the following values: c,21 the controller’s address ctrl,

the committer’s address cmtr, σ = ⊥ and µ = ⊥;
(b) moves ownership of the collateral to GaTCContract using deposit.

3. The committer remembers {(ci, µi, di)}i∈ZL for later.
19 For simplicity, we assume that GaTCContract is created anew for every instance of the GaTC. It can be trivially

extended to serve multiple instances.
20 We identify parties with their account address on the blockchain, and assume they control the assets in this account

as well as the ability to send messages that are identified as sent from this account, as in Ethereum.
21 Since persistent storage in smart contracts is expensive in platforms such as Ethereum, costs can be reduced by

storing only the Merkle tree root of the vector c, and then including Merkle authentication paths in later calls to
the smart contracts. We omit this optimization for simplicity.



14 Almashaqbeh et al.

– The controller invokes GaTC.RequestOpen(σ), where σ ∈ ZL:
1. The controller calls a method of GaTCContract that, given σ and the caller:

(a) verifies that the caller is ctrl, and that the stored σ is ⊥;
(b) stores the new σ;
(c) stores the deadline T , expressed as a block number and computed by adding a constant to the

current block number.
– The committer invokes GaTC.NominalOpen():

1. The committer retrieves σ from GaTCContract, and aborts if it is ⊥.
2. The committer runs π ← TC.Prove(cσ, µσ, dσ, cmtr) where cmtr is the committer’s account address.
3. The committer calls a method of GaTCContract that, given µ̄ = µσ and π:

(a) verifies that the stored µ is ⊥, and the stored σ is not ⊥;
(b) verifies that TC.PVer(1λ, cσ, µ̄, π, cmtr) = 1;
(c) updates the stored µ to µ̄;
(d) transfers the deposit to cmtr.

– A bounty hunter invokes GaTC.ForceOpen():
1. The bounty hunter retrieves σ and cσ from GaTCContract (and aborts if σ is ⊥).
2. The bounty hunter runs (µ̄, d̄)← TC.ForceOpen(cσ).
3. The bounty hunter runs π ← TC.Prove(cσ, µ̄, d̄, hntr) where hntr is the bounty hunter’s account

address.
4. The bounty hunter calls a method of GaTCContract that, given µ̄, π and hntr:

(a) verifies that the stored µ is ⊥, and the stored σ is not ⊥;
(b) verifies the current time (block number) is later than T ;
(c) verifies that TC.PVer(1λ, cσ, µ̄, π, hntr) = 1;
(d) updates the stored µ to µ̄;
(e) transfers the deposit to hntr.

– GaTC.GetResult(): returns the µ as stored in GaTCContract (possibly ⊥).

Note that within the smart contract GaTCContract, the only cryptographic operation is calling
TC.PVer to verify proofs; the rest is simple logic, storage and retrieval of (publicly known) state, and asset
transfers.

Security. The above construction realizes the definition of GaTC from Section 3.1. For brevity we omit a
full formal treatment, but note the following nuances:

By assumption, the underlying blockchain serializes on-chain events, including calls to the smart contract.
This avoids time-of-check-to-time-of-use vulnerabilities in the tests done by the smart contracts.

There is the concern of front-running attacks by bounty hunters (i.e., stealing someone else’s opening
proofs while they’re still in the process of being published to the blockchain, and claiming the collateral for
themselves). This is prevented using the tags associated with each proof, which convey the identity of the
prover (i.e., the initiator or the bounty hunter who ran TC.ForceOpen). The non-malleability property of the
POTC guarantees that the tag associated with a proof cannot be changed by others.

If a commitment opening transaction, sent by the committer or bounty hunter, is blocked for sufficiently
long, then the collateral may be collected by another bounty hunter. However, as mentioned under the
paragraph “Model” above, prolonged censorship is assumed infeasible due to the liveliness properties of the
underlying blockchain.

4 Sample GaTC Usage: Auctions

As a tutorial example of using GaTCs in a higher-level application, we show a simple protocol that implements
fully-decentralized semi-private reserve-price auctions over the blockchain, when the set of possible prices is
small enough that costs (storage and computation) can be linear in the size of this set.22 Using Gage Time
Capsule, we ensure that the auction is completed even if the seller tries to abort it. Section 6 below extends
22 While we use auctions for concreteness, this approach naturally extends to evaluating any function with a small

truth table, where the function is secret and the input is public. Complexity is linear in the size of the truth table.
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this to general MPC (and in particular auctions with a large range of prices), and Section 7 describes our
implementation.

One-shot reserve-price auction. Consider an auction for trading digital assets (e.g., selling some Ethereum-
based token for some amount of Ether). A seller P0 announces on the blockchain that she wants to sell a
token, but only if the potential buyer pays at least a secret reserve price x0, known to be in a predefined set,
x0 ∈ ZL = {0, . . . , L− 1}.23 A buyer P1 can then come and announce (publicly) a price x1 on the blockchain.
If x1 ≥ x0, the auction succeeds, P1 should get the token and P0 obtains x0 coins in return. Otherwise, the
auction completes without moving these assets.

Construction. The application-layer protocol (here: the auction) is implemented as a decentralized app: a
combination of a smart contract and local instructions to parties. Concretely, we implement an application-
contract AuctionContract which handles the aspect of the auction protocol that rely on consensus state and
rules. In turn, AuctionContract makes use of a single GaTC and its associated contract GaTCContract.
The role of AuctionContract is to collect application-level inputs from the parties (here: the auction
bid); instruct the GaTC which commitments to open accordingly (by calling GaTC.RequestOpen), and then
learn the opening (by calling GaTC.GetResult) and act on it (here: by announcing the auction’s outcome and
potentially transferring the token and the coins if the auction is successful).

Because AuctionContract decides which index the underlying GaTC will be queried on, it serves
as the controller for that GaTC. Thus, in the realization, the address of the application contract will be
passed as ctrl to GaTC.Create, which tells the underlying GaTCContract to respect GaTC.RequestOpen
calls from the application contract. This means that at the time when the GaTC is created and the collateral
is deposited, it comes with irrevocable instructions for how to determine which commitment to open (which
may depend on anything visible to the application contract).

To initiate an auction with a secret reserve price x0, the seller P0 does the following:

1. Create an instance of the AuctionContract smart contract (which implements the behavior described
below).

2. Let µ = (µ0, . . . , µL) where µi = 0 if i < x0 and µi = 1 if i ≥ x0. (This is the truth table of the “does the
bid reach the reserve price x0?” function.)

3. Prepare a deposit deposit of a collateral (e.g., a given amount of Ether).
4. Call GaTC.Create(µ,AuctionContract, deposit) to create a GaTC for µ, with the AuctionContract

instance as the controller that determines which entry of µ will be opened.
5. Call a method of AuctionContract that tell it to control this instance of GaTCContract.
6. Broadcast the existence of the auction and the address of AuctionContract instance that serves it.

Later, a buyer P1 wishes to post a bid on this auction, with a public bid price x1. To do so, it calls a
Bid method of AuctionContract, passing x1. If this is the first such call, then Bid records the account
address of P1 and the bid x1, and invokes GaTC.RequestOpen(x1).

Subsequently, the GaTC ensures that value µx1 will be revealed, whether by having P0 invoke GaTC.NominalOpen(),
or by having some bounty hunter invoke GaTC.ForceOpen(). In either case, and regardless of the auction’s
outcome, whoever successfully posted the commitment opening will collect the collateral: in the nominal
case, P0 just gets the collateral back; whereas in the bounty case, the bounty hunter receives the collateral
as compensation and incentive for their computational work. Given a sufficiently large collateral, this is
guaranteed to occur in the presence of rational bounty hunters.

Once the GaTC has been opened, GaTC.GetResult() will output µx1 when called. Thus the auction outcome
can be decided: if µx1 = 1 the bid has met the reserve price and the trade is settled, meaning that P0 gets
x1 coins and P1 gets the token; otherwise the reserve price was not met, and P0 and P1 retain their assets.
(Automatic settlement can be implemented within AuctionContract, by having it take custody of the
token being sold and of the bid, and then either sending them back or exchange one for the other, according
to the bid outcome.)

Note that the above protocol assures the decision and settlement, regardless of whether the parties are
online and cooperative when the auction outcome is decided and settled.
23 We assume here that prices are denominated in small integers. More generally, we can support an arbitrary

monotonically-increasing list of L real-valued prices, and let x0 (and x1 below) serve as indices into this list.
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The above protocol protects the privacy of the reserve price, though not of the bids. To make the
latter private as well, and reveal nothing but the final result, one can use the additional “private inputs”
transformation described in Section 1.1.

5 Label-Driven MPC

In this section we present a generalization of garbled circuits which we call Label-Driven MPC (LD-MPC).
The purpose of this generalization is to provide constructions of MPC that use secret labels and that are
more robust to the exposure of additional labels, beyond the ones required for the computation. Due to space
limitation, formal definitions and constructions are provided in Appendix C. Here, we only provide informal
definitions.

LD-MPC is defined as follows. Party P0 holds a secret input x0 and a public function f to be computed
on x0 and on the inputs x1, . . . , xN held by parties P1, . . . , PN . P0 generates a message m0 as well as labels
{µj,u}j∈[γ],u∈ZL for γ wires: (m0, {µj,u}j∈[γ],u∈ZL) ← Msg0(1λ, x0). For a Yao-based construction, γ is the
number of inputs and L = 2 (see Construction C.9 in Appendix C). The other parties Pi can generate
messages mi depending on P0’s message m0 and their input xi: mi ← Msgi(m0, xi).

Finally, evaluation is done in two steps. First the set of labels that need to be used (represented by a vector
σ ∈ ZγL) is computed: σ := Eval1(m0,m1, . . . ,mN ). For a Yao-based construction, σ = x1‖ . . . ‖xN . Then the
output y = f(x0, x1, . . . , xN ) is computed from the labels {µj,σj}j selected by σ: y ← Eval2(m0,m1, . . . ,mN ,

{µj,σj}j∈[γ]).

6 Gage MPC

In this section we describe how to achieve our final goal of Gage MPC. We utilize our Gage TC (GaTC) and
Label-Driven MPC. Recall that Gage MPC enables a party P0 with private input x0, to allow the evaluation
of a function f(x0, •, . . . , •), on a set of inputs x1, . . . , xN held by parties P1, . . . , PN . As described in the
Introduction this is achieved as follows: P0 takes the labels created by the Label-Driven MPC and for each
wire, create a GaTC with the labels of this wire. Party P0 deposits a collateral to create each GaTC. Once the
parties P1, . . . , PN reveal their messages m1, . . . ,mN corresponding to their respective inputs x1, . . . , xN , this
defines which labels need to be revealed (i.e., which POTC in each GaTC needs to be opened). Each GaTC
then gives party P0 a grace period during which it can open the needed POTC and retrieve its collateral. After
the grace period, the collateral is utilized to pay bounty hunters to complete the computation by opening the
needed POTCs. In either case, the output f(x1, . . . , xN ) can be publicly computed from the opened labels.

The security of the Gage MPC follows from the security of the Label-Driven MPC and the GaTC. Moreover,
security holds even under parallel composition, since GaTC already allows for parallel commitments.

We assume that party P0 also has an address which it will use for retrieving its collateral. Let Π =
(Msg0,Msg1, . . . ,MsgN ,Eval1,Eval2) be a Label-Driven MPC for the computation of the function f held by
P0. Given the secret input x0, party P0 proceeds as follows to create a Gage MPC.

1. Setup carried out by P0:
(a) Run (m0, {µj,u}j∈[γ],u∈ZL)← Msg0(1λ, x0). Set µj = {µj,u}u∈ZL for j ∈ [γ].
(b) Determine level of complexity desired for the opening of the label of a wire. Fix the collateral to the

amount related to this level of complexity. Create γ payment transactions {depositj}j∈[γ] for this
collateral amount, one for each wire.

(c) Instantiate γ times the GaTC functionality as: {GaTCj}j∈[γ] incorporating the collateral from the
previous step.

(d) Create an application smart contract GMPC that will implement the full MPC and will serve as
controller for the GaTC:
– Party Pi can invoke (a single time) GMPC.Msg(i,mi) with message mi to record the message mi.
– If all the messages m1, . . . ,mN are recorded, GMPC computes σ := Eval1(m0, . . . ,mN ). Then for

each j ∈ [γ], invoke GaTCj .RequestOpen(σj).



Gage MPC 17

– Any party can invoke GMPC.GetResult() to get the result of the computation. If the result
y was already computed before, GMPC outputs y. Otherwise, for each j ∈ [γ], it invokes
GaTCj .GetResult() to get µj,σj . If one of µj,σj is ⊥, output ⊥. Otherwise, compute and out-
put y ← Eval2(m0,m1, . . . ,mN , {µj,σj}j).

(e) Call GaTCj .Create as follows:
GaTCj .Create(µj ,GMPC, depositj)

2. Pi, i ∈ [N ], computes mi ← Msgi(m0, xi) and invokes GMPC.Msg(i,mi).
3. Nominal path: Given σ party P0 invokes GaTCj .NominalOpen() for all j ∈ [γ] to reveal the labels {µj,σj}

necessary to finish the computation.
4. Bounty path: After deadline T (from GaTC), any bounty hunter opening a time capsule that must be

opened (corresponding to a σj) receives the corresponding collateral.
5. Once all openings are available (whether if by the nominal path or the bounty path) anybody can get the

result of the computation by invoking GMPC.GetResult().

7 Implementation of Time Capsule and Gage Auction

We implemented a C++ library for POTC and used it to build a real-world application of Gage MPC, namely,
Gage auctions over a blockchain. We used the Ivory Runtime Library [53] for elliptic curve operations over
Curve25519 and garble circuit operations. With the chosen parameters, all POTC operations, except the
force opening, take less than a few milliseconds on a standard laptop. The real-world application uses the
Parity version of the Ethereum Virtual Machine (EVM). We implemented both the simple scheme from
Section 4 and the one based on Section C.1. We only implemented the Label-Driven MPC that corresponds
to a standard garbled circuit. More robust Label-Driven MPC essentially adds an additional NIMPC. This
essentially replaces 2γ 128-bit label by around γ2/ε labels of size 2(γ + 1)2 log γ, where γ is the original
number of labels, and we want to achieve (1− ε)γ-robustness. Overhead computation cost for evaluation is
about 2γ sums of γ terms modulo a prime number of size log γ. More details can be found in Appendix D.
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innovative computation model that can be utilized to realize new cryptographic primitives and protocols,
as well as circumventing some impossibility results. In this section, we review some of the prior works
that exploited this model, in addition to one of the important applications of our constructions, namely,
decentralized auctions and exchanges.

A.1 Cryptographic Constructions in the Blockchain Model

The works under this category varies based on which aspects of the blockchain model they exploit. These include
the fully decentralized and publicly verifiable payment service, the public bulletin board that blockchains
build, and the consensus protocols (and their features) that power this model.

The framework introduced in [14] employs the distributed currency exchange medium of cryptocurrencies
to design fair MPC protocols (with dishonest majority). These protocols realize a financial-based notion of
fairness in which the party that aborts after learning the output loses its penalty deposit to the honest players.
A similar approach has been applied in [7] by building timed commitments that are tied to penalty deposits.
The committer loses this deposit if she does not open the commitment within a predefined timeframe. A
notion for this financial-based fairness has been formalized in [43] under what is called secure MPC with
compensation. The work also extended the previous fairness model to guarantee output delivery or robustness.
Another work [9] introduced the notion of Insured MPC and investigated the precise properties of public
verifiability needed to achieve this fairness notion, instead of just assuming the use of a public blockchain.

All the previous schemes do not realize complete fairness, i.e., all or none of the parties will obtain the
output. Also, they face the challenge of how to accurately estimate the adversary’s incentive to set the
penalty deposit in a way that economically motivate continuing the protocol until the end. [23] solved this
problem by utilizing a public bulletin board (can be instantiated using a blockchain) and witness encryption
to achieve complete fairness. The proposed scheme, first, runs an unfair MPC to produce a ciphertext of the
output, and then requires a witness to be posted on the bulletin board in order to decrypt, which allows
everyone to learn the output. However, the instantiations of this construction require either extractable
witness encryption, which has no known practical implementation (nor even theoretical constructions under
standard assumptions), or the use of secure hardware like SGX.

A recent work [33] studied the observation that in blockchain-based consensus what matters is the honest
power majority (computing power, or stake, etc.) rather than the number of parties. Then they exploit it to
circumvent the n/3 lower bound of MPC with malicious parties when no private correlated randomness setup
(e.g., a PKI) is used. The authors introduced the notion of resource-restricted paradigm and used it along
with a fresh CRS to implement MPC that tolerate t < n/2 malicious parties.

Other works combined the blockchain model with hardware devices to implement secure computations.
For example, [41] used a public bulletin board to enable a trusted execution environment (TEE) hosted by an
untrusted computer to create a secure state without requiring a persistent internal storage. This also allows
implementing interactive secure computations that depend on external events logged on the bulletin board.
Our scheme supports this feature as well; opening time capsules can be tied to any event or message posting
on the blockchain. In another work [44], a privacy preserving smart contract framework is proposed, which
permits implementing MPC protocols on the blockchain. However, it requires trusting a manager with the
users’ inputs. Our scheme does not introduce such a special entity, and thus, it is fully decentralized. On the
other hand, [18] targeted a stronger privacy notion, in which not only the user’s input is protected, but also
the executed functionality. The authors developed a decentralized private computation primitive that enables
users to implement any computation off-chain and publish on-chain transactions attesting to the state change.
Validating these transactions does not reveal anything about off-chain computations, nor require re-executing
them. Similarly, our scheme addresses both data privacy and function privacy (as mentioned previously, one
can garble a universal circuit in our incentivized MPC to keep the function private). However, our scheme is
more general in the sense it works over any ledger, while [18] needs a privacy preserving ledger.

A related line of work used the blockchain model as an alternative to strong assumptions. [37] used it to
avoid the trusted setup needed for non-interactive knowledge (NIZK) proof systems, and constructed one time
programs from proof-of-stake blockchain without any trusted hardware tokens. Despite being innovative, this
work relies on a strong simulator that controls the honest miners, and hence, realizes only local (or private)
blockchains. [22] strengthened this model by relying on a weaker simulator that does not have this additional
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power, which allowed the use of global public blockchains. The authors also exploited the blockchain model
to construct a concurrent self-composable MPC based on standard assumptions.

Employing the blockchain in building secure cryptographic primitives requires a formal definition of this
model and its security notion. A large body of work has been dedicated to tackle this problem. Among
them, [34, 50] provided a property based definition of the blockchain security and proved that Bitcoin
consensus protocol satisfies these properties. While [8] introduced a universally composable treatment for
Bitcoin’s protocol. Other works targeted proof-of-stake consensus by developing both a property-based security
notion [42], and a universally composable one [25].

A.2 Blockchain-based Auctions

As mentioned previously, the emergence of blockchain technology saw the introduction of many decentralized
exchanges (or auctions), which are implemented using a blockchain and often trade assets whose ownership is
represented on the blockchain. Such an application can be built using our constructions of Gage MPC as was
introduced earlier.

In general, decentralized exchanges are implemented as “Dapps” (decentralized applications), consisting
of a smart contract running on a programmable blockchain such as Ethereum, coupled with a user-facing
application that intermediates between the smart contract and the user (and sometimes, back-end services
are also interacting with the smart contract). Ideally, the smart contract, whose correct execution is assured
by the underlying blockchain platform, tracks and executes orders and bids, while the user-facing application
lets users authorize orders, deposits and withdrawals. Examples of such on-chain decentralized exchanges
include Intrinsically Tradable Tokens [4], EtherOpt [3], Augur [51], and Altcoin.io [1].

Other exchanges, such as EtherDelta [2], IDEX [45], and 0x [57] use a hybrid architecture where order
tracking and matching are done by a centralized trading engine, but settlement is done by a smart contract.
This can improve costs, scalability and latency, while still ensuring that settlement does not violate users’
orders (e.g., limit prices and expiry). However, the drawback is that it trusts a centralized party to correctly
track and execute orders (e.g., matching an offer against the best bid). Arwen [40] follows such a hybrid
approach, where the custody service is done on-chain (by creating escrows of the cryptocurrency coins to
trade on the blockchain) while the atomic swap is done off-chain on a centralized exchange. The main goal is
to utilize the liquidity of these exchanges.

These exchanges use open orders books where the orders are broadcast in plaintext and are visible to any
interested party. They do not provide privacy for users’ inputs.

Hidden Order Book auctions, where bids are revealed only at the auction’s end, can be realized by using
a commit-and-open paradigm that combines smart contracts and cryptographic commitments [6]. In the
bidding phase, bidders send commitments to their bids, along with adequate deposits, to the smart contract.
In the opening phase, the bidders open their commitments; the smart contract computes and settles the
highest bid, and returns the deposits of bids that were opened and valid but not the highest. This approach
has the drawback that bidders’ participation in the reveal phrase is required for correct completion of the
auction with respect to the committed bids. Parties’ participation is incentivized by confiscation of their
deposit if they fail to open their commitments. However, they are at liberty to do so, and may have greater
auxiliary incentives that would make it rational to defect from the protocol.

This problem can be addressed by forced-open auctions, where our schemes allow building that as presented
earlier. Another work, namely, the time-lock puzzle-based sequential auctions in [28] achieve a similar goal
by exploiting the miners to solve time lock puzzles containing the openings of all unopened commitments.
However, the goal is to build an auction-based proof-of-stake (PoS) mining algorithm to discourage hoarding
currency rather than a generalized auction functionality. Furthermore, the proposed scheme suffer from a
potential DoS attack against miners, where participants in the auction are not strongly incentivised to open
their commitments. This leaves the miners with the job of doing that without any penalty on the participants’
side.

Another approach is taken by Ren24, which follows the aforementioned hybrid architecture, but realizes
the trusted centralized trading engine using an interactive MPC done by a committee. Orders are submitted
24 The Ren (née Republic Protocol) whitepaper [5, 60] provides only an informal and perhaps aspirational overview;

we have been unable to find any specification or implementation of the cryptographic protocol alluded to.
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to the committee by secret-sharing them across the members. The committee is assumed to have sufficiently
many honest parties, and members’ honest behavior is incentivized by bond deposits that would be confiscated
if misbehavior is detected. Compared to the commit-and-open approach, Ren’s approach has the advantage
that orders can be kept secret, unless and until they are matched and settled. However this approach, too,
would not be resilient to auxiliary incentives that exceed the value of the bonds. Moreover, it relies on
interaction with specific parties; if (sufficiently many of) these refuse to cooperate, the orders can never be
opened and executed.

Beyond hiding the order book, it may be desirable to hide the amounts and parties of settled trades.
That is not possible on public blockchains that log everything in the clear. There exist privacy-preserving
blockchain protocols [20,49,55,56,58] and deployments (e.g., Monero and Zcash). By operating the auction
or exchange functionality on such a blockchain, and with suitable integration, it appears feasible to hide all
trading and settlement information from all parties; each party would know only the orders they’ve placed
and the assets they have sent/received. Detailed study of this integration lies outside the scope of the current
work.

Automated Market Maker is an alternative model for decentralized exchanges, which does not use an
order book at all. Instead, a smart contract holds pools of the traded assets, and offers an interface by which
traders can deposit one asset and withdraw another, at an algorithmically-determined exchange rate. This
includes the constant-product market maker algorithm (used by, e.g., Uniswap and Bancor), and variants
(as used by, e.g., Curve); see [15] for a survey. Essentially, this makes one of the trading counterparties (the
market maker) ultimately non-private: not merely its orders are public, but even its trading algorithm is
published as a smart contract.

B Proof-of-Opening Time Capsules

In this section we present proof-of-opening time capsules (POTC), which enhance time capsules [11,54] to
add the feature that a party that opens the time capsule can prove in zero knowledge that it knows the
opening (rather than exposing the committed value in the clear). We propose candidate constructions that
satisfy our definition. The feature of proving the opening will be critical for our design of the new concept of
Gage Time Capsules (GaTC) and Gage MPC.

This appendix expands on the brief discussion of POTC in Section 2.

B.1 Time Capsules

We recall the notion of time capsules from [11]. In contrast to [11], we modify the definition slightly for our
setting, to allow for the decommitment information to be different from the randomness used to generate the
commitment. Because of that, we introduce an additional algorithm used to verify the decommitment.

In the definition below, λ is a standard cryptographic security parameter (in particular, 2λ is not feasible).
On the other hand, λ∗ is a parameter capturing the hardness of brute force-opening: 2λ∗ is the time it takes
to obtain a decommitment from the commitment alone; it should be feasible (polynomial), but hard (λ∗ is a
measure of how costly this is).

Definition B.1. A time capsule is defined by three polynomial-time algorithms (TC.Com,TC.DVer,TC.ForceOpen)
with the following syntax:

– Commitment: (c, d)← TC.Com(1λ, 1λ∗ , µ) takes as input the security parameter λ, the opening hardness
parameter λ∗, a message µ ∈ {0, 1}poly(λ), and outputs a commitment c and its associated decommitment
d.

– Decommitment Verification: TC.DVer(1λ, c, µ, d) takes as input the security parameter λ, a commitment
c, a message µ, a decommitment d and outputs 1 if the decommitment is valid with regards to c and µ;
and outputs 0 otherwise.

– Forced Opening: (µ, d)← TC.ForceOpen(c) takes as input a commitment c, brute-forces its opening, and
outputs the committed message µ and a valid decommitment d.

We require the following properties to be satisfied:
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Perfect correctness. There exists a negligible function negl, such that for all parameters λ, λ∗ ∈ N, all
messages µ ∈ {0, 1}poly(λ):

Pr
[
TC.DVer(1λ, c, µ, d) = 1

∣∣∣ (c, d)← TC.Com(1λ, 1λ
∗
, µ)
]

= 1 ,

and
Pr
[
TC.DVer(1λ, c, µ′, d′) = 1

∣∣∣∣ (c, d)← TC.Com(1λ, 1λ∗ , µ)
(µ′, d′)← TC.ForceOpen(c)

]
≥ 1− negl(λ) .

Furthermore, TC.ForceOpen should make at most about 2λ∗ operations.25 We assume that 2λ∗ is polynomial
in λ for all the asymptotic security analyses.

Binding. For all PPT adversaries A, there exists a negligible function negl, such that for all security
parameters λ ∈ N:

Pr

µ 6= µ′ ∧
TC.DVer(1λ, c, µ, d) = 1 ∧
TC.DVer(1λ, c, µ′, d′) = 1

∣∣∣∣∣∣ (c, µ, d, µ′, d′)← A(1λ)

 ≤ negl(λ) .

Remark B.2. The binding property holds independently from λ∗: the adversary can select any λ∗ of its
choice.

Hiding. The essence of the time capsules is dealing with the time and/or computation required to achieve the
forced opening. We start with the intuition, and give the formal definition of our actual requirement below
(see Definition B.3). Intuitively, the forced opening algorithm should take about 2λ∗ operations to open
the capsule. However, if significantly fewer operations are computed by the adversary, the capsule should
remain completely hiding. This property must hold even when there are κ+ 1 capsules: if the adversary
spends significantly fewer than κ · 2λ∗ operations, it should not be able to learn more than κ of the values
in the capsules.

The hiding property above is informal. If we only considered adversaries making significantly fewer than
2λ∗ operations, we could require that the classical hiding property holds: the commitment of a message µ0
is indistinguishable from a commitment of a message µ1. However, because we want to consider stronger
adversaries that may be able to force open several commitments but not all of them, we need to introduce a
different property. It is unclear how to extend classical hiding to this setting. Instead, we consider a much
stronger property: simulatability.

To define simulatability, we assume that our commitments are in the random oracle model and that the
operations that we count are queries to the random oracle H. Concretely, we bound by some number q, the
number of queries, made by the adversary, to H. We require the existence of a simulator able to simulate
commitments (without knowing the messages), later open them to any message, and simulate the random
oracle H. Since the adversary can make enough random oracle queries to force open a certain number κ of
commitments, to properly simulate the random oracle, the simulator may need to learn what messages were
committed to in these commitments (but not the other commitments). Hence the simulator has access to an
oracle Open′′ outputting the committed messages of any commitment made by the adversary. However, the
simulator is restricted to make at most κ queries to this oracle Open′′.

Simulatability is an extension of the security property of trapdoor commitment [32], which states that
there exists a simulator able to simulate commitments and later open them to any message.

In the formal definition of simulatability, we introduce yet another oracle O?. This oracle allows to model
the operation in the generic group model or a second random oracle H∗. We do not restrict the number of
queries to O?, thus in particular to H∗. This is in contrast to H, which the adversary can only access q times.
Introducing O? is without loss of generality: if the time capsule implementation does not require the generic
model nor an extra random oracle, then this oracle O? can be replaced by a trivial oracle doing nothing.

Definition B.3 (Simulatability). A time-capsule (TC.Com,TC.DVer,TC.ForceOpen) (that has access to
a random oracle H and another oracle O?) is (q, κ, ε)-simulatable if there exists a PPT simulator TC.Sim
25 Later we formally define operations as calls to a hash function modeled as a random oracle.
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::::
Real

:::::
World

:::::::
Oracles:

Setup: Empty tables T for the commitments, and H for the
random oracle H.

Com(µ):
(c, d) R← TC.Com(1λ, 1λ

∗
, µ)

T[c] := (µ, d)
Return c

Open(c):
Return T[c]

H(x):
If H[x] =⊥:

H[x]← {0, 1}νH
(assume the output of H has νH bits)

Return H[x]

O?(x) is defined by the scheme. It can for example
correspond to the operation of the generic group model.

::::
Ideal

::::::
World

::::::
Oracles:

Setup: Empty table T′ for the commitments.

Com′(µ):
c R← TC.Sim(com, 1λ, 1λ

∗
)

T′[c] := µ
Return c

Open′(c):
µ := T′[c]
Return TC.Sim(open, 1λ, c, µ)

H ′(x):
Return TC.SimOpen′′(H, 1λ, x)
where Open′′(c) returns µ = T′[c]
(TC.Sim is allowed to make at most κ queries to Open′′)

O′?(x):
Return TC.Sim(O∗, 1λ, x)
the first argument of TC.Sim is the letter O with the exponent
∗

Fig. 4. Oracles for Simulatability Security Notion (Definition B.3)

(making at most κ queries to an oracle Open′′ defined below), such that for any PPT adversary A making at
most q queries to the random oracle H, for any auxiliary input z ∈ {0, 1}poly(λ):

|Pr[ACom,Open,H,O?(z) = 1] − Pr[ACom′,Open′,H′,O′?(z) = 1]| ≤ ε .

where the oracles Com,Open, H,Com′,Open′, H ′, O′?,Open′′ are defined in Fig. 4. A time-capsule is (q, κ)-
simulatable if it is (q, κ, ε)-simulatable for ε that is a negligible function of the security parameter λ.

Remark B.4. Formally, we should write TC.ComH,O? , TC.DVerH,O
?

, TC.ForceOpenH,O
?

but for the sake of
simplicity we omit the oracles H,O? when they are clear from the context.

In the sequel, all time capsules are assumed to be simulatable.

Remark B.5. We work in the semi-honest model and thus implicitly assume that the commitment is honestly
generated. In cases where an adversary may generate an incorrect commitment that the forced opening
algorithm cannot open at all, there would be a need to add a generic NIZK to the commitment proving that
it was well formed.

B.2 Proof-of-Opening Time Capsules (POTC)

We now add the functionality to enable a party to prove that they know the value committed to in the time
capsule. The simplest method available to a party to show that it it knows the opening of a commitment
is to announce the opening (µ, d). However, this simple method will not work for our purposes, because an
attacker who observes this value being sent can block or front-run it, and present this opening as their own.

One way to solve this issue is to design schemes for which it is possible to prove the opening of a
commitment to a message µ without exposing the decommitment d, thus disarming the malicious party.
Intuitively, assuming that finding a decommitment of a commitment c is hard even if the committed message
µ is known, we could use generic simulation-sound extractable NIZK proofs [26] to achieve this goal. Assuming
that each party has some unique account address associated to it, we will bind this address to the proof, e.g
via a label or tag. Indeed, simulation-sound extractable proofs allow a simulator to extract the witness (the
decommitment d in our case) of proofs generated by the adversary, even if simulated proofs (containing no
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witness in particular) are provided to the adversary. This means that a malicious party cannot steal a proof
from an honest party (that we simulate and hence does not contain any witness), as otherwise, we could
extract from this malicious party a valid decommitment, which is hard (require to perform approximately
2λ∗ operations).

More formally, we introduce the notion of Proof-of-Opening Time Capsules (POTC)

Definition B.6. A proof-of-opening Time Capsule is defined by five algorithms TC = (TC.Com,TC.DVer,
TC.ForceOpen,TC.Prove,TC.PVer) with the following syntax:

– Time Capsule: (TC.Com,TC.DVer,TC.ForceOpen) is a (simulatable) time capsule. It is assumed to use a
hash function H modeled as a random oracle.

– Opening Proof: π ← TC.Prove(c, µ, d, tag) generates a proof π with tag tag that c commits to µ using the
witness d.

– Proof Verification: TC.PVer(1λ, c, µ, π, tag) takes as input the security parameter λ, a commitment c, a
message µ, a proof π, a tag tag, and outputs 1 if the proof is valid with regards to c, µ, and tag; and
outputs 0 otherwise.

We require the following properties to be satisfied:

Perfect Correctness, Binding, and Simulatability. These properties should hold for the time capsule
(TC.Com,TC.DVerTC.ForceOpen). The properties are defined exactly as in Definition B.1, except we
augment the ideal world oracles with lists to support non-malleability with respect to the same TC.Sim
(see the non-malleability definition below, and Fig. 5).

Soundness. For all PPT adversaries A, there exists a negligible function negl, such that for all security
parameters λ ∈ N:

Pr

µ 6= µ′ ∧
TC.PVer(1λ, c, µ, π, tag) = 1 ∧
TC.PVer(1λ, c, µ′, π′, tag′) = 1

∣∣∣∣∣∣ (c, µ, π, tag, µ′, π′, tag′)← A(1λ)

 ≤ negl(λ) .

Non-Malleability. TC is (q, κ, ε)-non-malleable if there exists a PPT simulator TC.Sim (making at most κ
queries to an oracle Open′′ defined below), such that for any PPT adversary A making at most q queries
to the random oracle H, for any auxiliary input z ∈ {0, 1}poly(λ):

Pr

TC.PVer(1λ, c, µ, π, tag)∧
(c, µ) /∈ LOpen∧
(c, µ, tag) /∈ LProve

∣∣∣∣∣∣ (c, µ, π, tag)← ACom′,Open′,Prove′,H′,O′?(z)

 ≤ ε .

where the oracles Com′,Open′,Prove′, H ′, O′?,Open′′ and the lists LOpen and LProve are defined in Fig. 5.
TC is (q, κ)-strongly-simulatable if it is (q, κ, ε)-strongly-simulatable for ε a negligible function of the
security parameter λ.

Essentially, non-malleability ensures that if an adversary can only make q queries to the random oracle,
then it can generate proofs with a fresh tag only for the commitments c it explicitly asked to open (via Open′)
or at most κ other commitments (that were implicitly opened via Open′′ through random oracle queries to
H). Intuitively, this means that to generate a proof for a fresh tag tag, the adversary must take enough time.
It cannot “steal” the proof π generated by someone else with tag tag′ and transform it into a proof with tag
tag.

B.3 Constructions

Time Capsule Construction. We start by presenting the construction (without proof of opening) that was
presented in [11] and references within. To commit to a message µ, the committer first selects a low-entropy
seed s R← {0, 1}λ

∗
, then hashes this seed and uses this hash as a one-time pad to “encrypt” µ: c2 := H2(s)xorµ
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Setup: Empty tables T′ for the commitments. Empty lists LOpen

and LProve. Com′, H′, Open′ are defined as in Fig. 4 with the
following changes: Open′ and Open′′ add (c, µ) to the list LOpen.

Prove′(c, tag):
µ := T′[c]
(µ, d)← TC.Sim(open, 1λ, c, µ)
Add (c, µ, tag) to LProve
Return TC.Prove(c, µ, d, tag)

Fig. 5. Oracles for Non-Malleability of Time Capsule with Opening Proofs (Definition B.6)

(where H2 is a hash function). It also includes in the commitment a hash of the seed to be able to know when
a seed is the valid one: c1 := H1(s) (where H1 is another hash function). The commitment is c := (c1, c2).26

Intuitively, to force open a commitment, you need to enumerate the possible seeds s, hash them, and
check which one corresponds to c1. This requires at most 2λ∗ hash evaluations of H1, and on average 2λ∗/2
hash evaluations of H1.

Unfortunately, such a time-capsule does not satisfy our definition of security: an adversary making even a
single hash evaluation of H1 and H2 may stumble upon the correct seed s, with probability 1/2λ∗ , which is
not negligible. This makes such a commitment difficult, if not impossible, to use as a building block of our
MPC constructions.

A Better Time Capsule. We fix the above construction to improve the security. Instead of using a single
seed s ∈ {0, 1}λ

∗
, we use k seeds s1, . . . , sk ∈ {0, 1}νs , where νs = λ∗ − blog2 kc. We commit to each seed

individually: c1,i = H1(i‖si) and encrypt the message µ as c2 := H2(1‖s1) xor · · · xor H2(k‖sk) xor µ. In the
worst case, force-open a commitment takes 2νs · k ≈ 2λ∗ (by enumerating every si).

However, the main difference now is that if the adversary can only make significantly fewer than 2λ∗ hash
evaluations, the commitment will remain statistically hiding. For example, if the adversary makes at most
k− 1 hash evaluations, the message µ is perfectly hidden, as the adversary will be missing one of the one-time
pad mask H2(i‖si). This argument can be extended to adversary making many more than k hash evaluations
using a careful probability analysis and tail bounds.

Formally, we have the following construction.

Construction B.7. Let H1 : {0, 1}∗ → {0, 1}2λ, HK : {0, 1}∗ → {0, 1}λ, and H2 : {0, 1}∗ → {0, 1}νµ , be hash
functions, where νµ is the length of the messages to committed.27 In the security proof, we model all these
hash functions using a single random oracle H, the input being prefixed by the name of the hash function
and the output being truncated to the correct length. This construction does not use the extra oracle O?.

The scheme is defined as follows:

– (c, d) ← TC.Com(1λ, 1λ∗ , µ) generates low-entropy seeds s1, . . . , sk
R← {0, 1}νs and a full-entropy salt

slt R← {0, 1}λ, where νs := λ∗ − blog2 kc. It defines d := (s1, . . . , sk) and:

c := (λ∗, slt, {c1,i}i∈[k], c2)

where
{
K := HK(1‖slt‖s1) xor · · · xor HK(k‖slt‖sk),
c1,i := H1(i‖slt‖si), c2 := H2(slt‖K) xor µ

(1)

– b = TC.DVer(c, µ, d) outputs b = 1 if and only if Eq. (1) is satisfied.
– (µ, d) ← TC.ForceOpen(c) for each i ∈ [k], enumerates si ∈ {0, 1}νs until finding si such that c1,i =
H1(i‖slt‖si) is satisfied. When it happens, outputs d = (s1, . . . , sk) and µ = H2(slt‖K) xor c2, where
K = HK(1‖slt‖s1) xor · · · xor HK(k‖slt‖sk).

We note that force-opening takes in the worst case k2νs ≈ 2λ∗ evaluations of the function H1 (and k
evaluation of the function HK, as well as one evaluation of the function H2). If not all s1, . . . , sk are found,
26 For the sake of simplicity, we do not include any salts in this overview, and assume that a single commitment is

made. This is already sufficient to explain the issue we want to highlight.
27 H2 is used to allow to extend the output of one-time pad to the length of the message. In the overview above, H2

essentially played the role of H2 and HK.
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then the security provided by the random oracle model ensures that the message µ remains completely hidden.
We also remark that finding a decommitment is hard, even if the committed message µ is known.

Theorem B.8. Construction B.7 is a correct, binding, and (q, κ, ε) simulatable for:

ε ≤ qk(κ+1)

2k(κ+1)νs · (k(κ+ 1))!
+ negl(λ) ≤ 1√

2πk(κ+ 1)

(
qe

(κ+ 1)2λ∗
)k(κ+1)

+ negl(λ) ,

where e is the base of the natural logarithm In particular, if q < α(κ+ 1)2λ∗ for a constant α < 1/e, then
ε ≤ negl(k) + negl(λ).

We give some concrete parameters in Table 1. We remark that even for 128 bits of security and even
κ = 0 (the strongest notion of security), if the honest parties are assumed to make about 240 hash evaluation
to force open a commitment while the adversary is restricted to 230 · (κ+ 1) hash evaluations, then k = 15 is
sufficient. And if we allow for κ ≥ 14, then a single seed can even be used.

Table 1. Concrete parameters for Construction B.7

λ∗ q k κ − log2 ε

40 230 · (κ+ 1) 9 ≥ 0 79.9
40 230 · (κ+ 1) 1 ≥ 8 79.9
40 238 · (κ+ 1) 8 ≥ 16 80

40 230 · (κ+ 1) 15 ≥ 0 131
40 230 · (κ+ 1) 1 ≥ 14 131

Proof. Correctness is straightforward.

Binding comes from the fact that H is collision resistant (as the output length is 2λ and it is modelled as a
random oralce).

Simulatability. We then construct the simulator TC.Sim as follows: TC.Sim uses a table of counters CNT[slt, i]
counting the number of queries of the form H1(slt‖i‖•) and HK(slt‖i‖•), where • ∈ {0, 1}λ

∗
. It also maintains

a table COM mapping a salt to some parameters, as well as tables H1, H2, and HK, which are the tables for
the random oracles H1, H2, and HK. When an entry does not exist in a table, its value is ⊥.
TC.Sim(com, 1λ, 1λ∗ , µ):

1. Generate slt R← {0, 1}λ. If COM[slt] 6=⊥ or there exists entries of the form slt‖? in H1, H2, or HK, abort.
2. Generate c1,1, . . . , c1,k R← {0, 1}2λ, K1, . . . ,Kk

R← {0, 1}λ, and c2 R← {0, 1}νµ . Set c := (slt, {c1,i}i∈[k], c2).
Define K = K1 xor · · · xor Kk and si :=⊥ for i ∈ [k].

3. Generates q∗1 , . . . , q∗k ← [2λ∗ ], and store COM[slt] := (c,K, {si,Ki, q
∗
i }i∈[k],⊥).

4. Return c.

TC.Sim(open, 1λ, c, µ):

1. Find slt such that COM[slt] = (c,K, {si,Ki, q
∗
i }i∈[k], d), for some K, si,Ki, q

∗
i , d.

2. If d 6=⊥, this means that the commitment was already open, return d.
3. Set H†[slt‖K] := µ xor c2.
4. For all i such that si =⊥, generate si ← {0, 1}νs and set H1[slt‖i‖si] := c1,i and HK[slt‖i‖si] := Ki.
5. Set d := (s1, . . . , sk).
6. Return d.

TC.Sim(H, x):

– If this is a query of the form H1(slt‖i‖s) (resp., HK(slt‖i‖s)):
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1. If COM[slt] =⊥, then return H1[slt‖i‖s] (resp., HK[slt‖i‖s]) —if the value is ⊥, set it to a random
value first.

2. Let COM[slt] = (c,K, {si,Ki, q
∗
i }i∈[k], d).

3. If d 6=⊥, then return H1[slt‖i‖s] (resp., HK[slt‖i‖s]) —if the value is ⊥, set it to a random value first.
4. If there were q∗i − 1 bitstrings s′ for which H1(slt‖i‖?) or HK(slt‖i‖?) was queried before, then set
si := s, H1[slt‖i‖si] := c1,i, and HK[slt‖i‖si] := Ki.

5. Otherwise set H1[slt‖i‖s] (resp., HK[slt‖i‖s]) to a random value if not already set.
6. Return H1[slt‖i‖s] (resp., HK[slt‖i‖s]).

– If this is a query of the form H2(slt‖K ′):
1. If COM[slt] =⊥, then return H2[slt‖K ′] —if the value is ⊥, set it to a random value first.
2. Let COM[slt] = (c,K, {si,Ki, q

∗
i }i∈[k], d).

3. If K ′ 6= K, then return H2[slt‖K ′] —if the value is ⊥, set it to a random value first.
4. If K ′ = K and d 6=⊥, then return H2[slt‖K ′].
5. If K ′ = K and d =⊥, then:
• If si =⊥ for some i, abort.
• Otherwise, query Open′′(c) and get the message µ. Set and return H2[slt‖K] := c2 xor µ.

It remains to prove that the ideal world with the above simulator is indistinguishable from the real
world and to prove that the simulator is making at most κ queries to Open′′. For the latter point, let ε′
be the probability that Open′ is called at least κ+ 1 times. We remark that Open′′ can only be called for
a commitment c with salt slt, when the adversary made queries to H1(slt‖i‖s) or H ′(slt‖i‖s) for at least
q∗i values s, for each i ∈ [k]. As the values q∗i are uniformly random in [2νs ] and unknown to the adversary
before it makes at least q∗i queries as specified above, the worst case is when the adversary manage to query
H1(slt‖i‖s) for i ∈ [k] and κ+ 1 different slt (corresponding to κ+ 1 different commitments. Let n := k(κ+ 1).
Let {Xi}i∈[n] be n independent random variables uniform in the integer interval [2νs ]. We have:

ε′ ≤ Pr[
n∑
i=1

Xi ≤ q] .

We conclude using the following lemma and the fact that 2νs · k ≥ 2λ∗ .

Lemma B.9. Let X1, . . . , Xn be n independent variables uniform in the integer interval [N ]. For any positive
integer q, we have:

Pr[
k∑
i=1

Xi ≤ q] ≤
qn

Nn · n! ≤
(qe)n√

2πn · (Nn)n
,

where e is the base of the natural logarithm.

Proof. Let us count the number M of tuples (x1, . . . , xn) ∈ Nn>0 such that
∑n
i=1 xi ≤ q. This is equivalent to

counting the number of possibilities to throw n balls in q bins: x1 is the index of the first bin with a ball, and
xi is the distance between the (i− 1)-th bin with a ball and the i-th bin with a ball for i ∈ {2, . . . , n}. Hence
we have: M =

(
q
n

)
.

Furthermore, we also have:

Pr[
n∑
i=1

Xi ≤ q] ≤M/Nn ≤
(
q

n

)
/Nn ,

as there are Nn tuples (x1, . . . , xn) ∈ [N ]n.
We conclude using the fact that

(
q
n

)
≤ qn/n! and the Stirling inequality n! ≥

√
2πn(n/e)n. ut

This concludes the proof of Theorem B.8. ut
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Proof of Opening Time Capsules. Using generic simulation-sound extractable NIZK proofs proving
valid decommitment would work for incentivization in this construction but would be much too expensive. To
provide better performance we change our commitment construction to be more algebraic and amenable to
efficient Fiat-Shamir zero-knowledge proofs.
Construction B.10. We assume that the security parameter defines a cyclic group G of order p and generator
g. Let h be another random generator of G (which can be generated by evaluating a hash function modeled as
a random oracle on a fixed string). Let f : {0, 1}λ → G be an injective function. Let H1 : {0, 1}∗ → {0, 1}2λ,
HK : {0, 1}∗ → {0, 1}λ, Hr : {0, 1}∗ → Zp, H2 : {0, 1}∗ → {0, 1}νµ , and H∗ : {0, 1}∗ → Zp be hash functions,
where νµ is the length of the messages to committed.

In the security proof, we model all these hash functions except H∗ using a single random oracle H, the
input being prefixed by the name of the hash function and the output being truncated to the correct length.
For simulatability and non-malleability, the adversary is restricted to make q queries to these functions. On
the other hand, G is modeled as a generic group and H∗ as a random oracle, both modeled by the oracle O?
in Definition B.6. The adversary is allowed to make a polynomial number of queries to these functions (and is
not constrained by making only q queries).

The scheme works as follows.
– (c, d) ← TC.Com(1λ, 1λ∗ , µ) generates low-entropy seeds s1, . . . , sk

R← {0, 1}νs and a full-entropy salt
slt R← {0, 1}λ, where νs := λ∗ − blog2 kc. It computes:

c := (λ∗, slt, {c1,i}i∈[k], c2, c3, c4)

where



c1,i := H1(slt‖si),
K := HK(1‖slt‖s1) xor · · · xor HK(k‖slt‖sk),
c2 := H2(slt‖K) xor µ,
r := Hr(1‖slt‖s1) + · · ·+Hr(k‖slt‖sk) ∈ Zp,
c3 := gr, c4 := hr · f(K)

(2)

d := (K, r) .

– TC.DVer(c, µ, d) checks that

c2 = H2(slt‖K) xor µ ∧ c3 = gr ∧ c4 := hr · f(K) .

– (µ, d) ← TC.ForceOpen(c) for each i ∈ [k], enumerates si ∈ {0, 1}νs until finding si such that c1,i =
H1(i‖slt‖si) is satisfied. When it happens, outputs d = (K, r) and µ = H2(slt‖K) xor c2, where K =
HK(1‖slt‖s1) xor · · · xor HK(k‖slt‖sk) and r = Hr(1‖slt‖s1) + · · ·+Hr(k‖slt‖sk).

– π ← TC.Prove(c, µ, d, tag) outputs a proof π := (K, z, ch) where (z, ch) is a Fiat-Shamir proof of knowledge
of r ∈ Zp (under the tag tag) such that:

c3 = gr ∧ c4 := hr · f(K) .

Concretely, TC.Prove generates t ← Zp, sets u3 := gt, u4 := ht, computes ch := H∗(c‖tag‖u3‖u4), and
z := t− chr ∈ Zp.

– TC.PVer(1λ, c, µ, π, tag) verifies the proof π = (K, z, e) by checking that:

u3 = gzcch
3 ∧ u4 := hz(c4/f(K))ch ∧ ch = H∗(c‖tag‖u3‖u4) ∧ c2 = H2(slt‖K) xor µ .

Remark B.11. TC.DVer cannot check that c1,i = H1(slt‖si) as it does not receive the values si. The values
c1,i are only used when force opening the commitment. The c3, c4 part, on the other hand, is used to allow
for efficient Fiat-Shamir zero-knowledge proofs.
Theorem B.12. Construction B.10 is a correct, binding, (q, κ, ε)-simulatable, sound, (q, κ, ε)-non-malleable
POTC in the random oracle model and the generic group model for:

ε ≤ qk(κ+1)

2k(κ+1)νs · (k(κ+ 1))!
+ negl(λ) ≤ 1√

2πk(κ+ 1)

(
qe

(κ+ 1)2λ∗
)k(κ+1)

+ negl(λ) ,

where e is the base of the natural logarithm In particular, if q < α(κ+ 1)2λ∗ for a constant α < 1/e, then
ε ≤ negl(k) + negl(λ).
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C Label-Driven MPC

Formally, we define Label-Driven MPC as follows:28

Definition C.1. A Label-Driven MPC for a functionality f : ({0, 1}∗)N+1 → {0, 1}∗ is defined by N + 3
algorithms (Msg0,Msg1, . . . ,MsgN ,Eval1,Eval2) with the following syntax:

– P0-Message: (m0, {µj,u}j∈[γ],u∈ZL) ← Msg0(1λ, x0) takes as input the security parameter λ, the input
x0 ∈ {0, 1}poly(λ) of P0, and outputs a message m0 and a set of labels {µj,u}j∈[γ],u∈ZL , where γ and L
are two parameters polynomial in λ.

– Pi-Message (i ∈ [N ]): mi ← Msgi(m0, xi) takes as input a message m0 from P0, the input xi ∈ {0, 1}poly(λ)

of Pi, and outputs a message mi.
– First Step of Evaluation: σ := Eval1(m0,m1, . . . ,mN ) takes as input the messages m0,m1, . . . ,mN from
all the parties and deterministically outputs a vector σ ∈ ZγL.

– Second Step of Evaluation: y ← Eval2(m0,m1, . . . ,mN , {µj,σj}j∈[γ]) takes as input the messages m0,m1, . . . ,mN

as well as the labels µj,σj and outputs the value y.

We require a Label-Driven MPC to satisfy the following properties:

Correctness. There exists a negligible function negl, such that for all security parameters λ ∈ N, all inputs
x0, . . . , xN ∈ {0, 1}poly(λ) the following probability is ≥ 1− negl(λ):

Pr

y = f({xi}i)

∣∣∣∣∣∣∣∣
(m0, {µj,u}j,u)← Msg0(1λ, x0),
∀i ∈ [N ], mi ← Msgi(m0, xi),
σ := Eval1(m0,m1, . . . ,mN ),
y ← Eval2({mi}i, {µj,σj}j)


To define security, we first define the view of the Label-Driven MPC protocol that takes as input the set

of corrupted parties, P , as well as the inputs xi and randomness ρi of all parties, as follows:

View
(
P , {xi, ρi}i∈[0,N ]

)
:= ({xi, ρi}i∈P , {mi}i∈[0,N ],M) ,

where (m0, {µj,u}j,u)← Msg0(1λ, x0; ρ0), and for all i ∈ [N ], mi ← Msgi(m0, xi), and:

– if 0 ∈ P (P0 is corrupted), M = {µj,u}j,u are the labels produced by Msg0.
– if 0 /∈ P (P0 is not corrupted),M = {µj,σj}j are the labels needed by Eval2, where σ := Eval1(m0,m1, . . . ,mN ).

In the following definition we consider the setting of MPC with private inputs where the adversary is
allowed to learn at most κ additional labels µj,u. Note that the definition for the case where P0 is corrupted
does not include κ, this is due to the fact that P0 knows already all the labels µj,u.

Definition C.2 (κ-Robust Security, Private-Inputs). A Label-Driven MPC is κ-robust secure with
private-inputs if it satisfies the following properties:

Security with Corrupted P0. There exists a stateful PPT simulator S, such that for all PPT adversaries
A, there exists a negligible function negl, such that for all security parameters λ, sets of corrupted parties
P ⊆ [0, N ], 0 ∈ P , inputs x0, x1, . . . , xN , random tapes {ρi}i∈P , auxiliary input z ∈ {0, 1}poly(λ):

|Pr[AReveal(z,View(P , {xi, ρi}i∈[0,N ])) = 1]−Pr[AS(reveal,•)(z,S(view, P , {xi, ρi}i∈P , y)) = 1]| ≤ negl(λ) ,

where y = f(x0, x1, . . . , xN ) and the adversary A is allowed access to an oracle Reveal that takes as input
a pair (j, u) and outputs µj,u.

28 Note that a LD-MPC is a tool like garbled circuits rather than a full-blown protocol, and as such, a property-based
definition is more suitable. Composability of protocols using LD-MPC can be argued from these properties.
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Security with Honest P0. This is defined similarly to security with corrupted P0 except that 0 /∈ P and
the adversary is restricted to make at most κ queries to Reveal.

κ-robust security, public-inputs is defined similarly except that S is given as input all the inputs x1, . . . , xN
except for the input of P0. When P0 is corrupted, this security notion is trivial as all the inputs are known by
the simulator. But when P0 is not corrupted, the security notion ensures the privacy of x0.

Our constructions provide the following theorems. First the basic construction which is a Yao garbled
circuit (that can be constructed assuming one-way functions):

Theorem C.3. Let f be a function that can be computed in polynomial time. Assuming the existence of
one-way functions, there exists a correct and 0-robust secure public-inputs Label-Driven MPC for f .

We further present an improved construction using error-correcting codes and NIMPC techniques and
provide the following.

Theorem C.4. Let f be a function that can be computed in polynomial time. Let ε > 0. Assuming the
existence of one-way functions, there exists a correct and (1− ε)γ-robust secure public-inputs Label-Driven
MPC for f , for some integer γ (which is also the length of the vector σ).

This is a very strong theorem as it basically turns the efforts of the adversary into a 0-1 situation. Either
the adversary exerts the full effort to complete the computation of the function on a different set of inputs or
it learns nothing.

Before providing the detailed general transformation, we recall the formal definitions of two building
blocks: error correcting code and NIMPC.

Building Block: Linear Error Correcting Code. We make use of linear error correcting codes.

Definition C.5. Let FL be a finite field.29 A [n, k, δ]L linear code is a linear subspace C with dimension
k of FnL, such that the Hamming Distance of any two distinct codewords x,x′ ∈ C is at least δ (called the
minimum distance of C). A generating matrix G of C is a n× k-matrix whose rows generates the subspace C.

For any k ≤ n ≤ L, we recall that there exist a [n, k, (n− k + 1)]L linear code: the Reed-Solomon code.

Building Block: NIMPC. Let Q1, . . . , Qν be ν parties that hold inputs χ1, . . . , χν respectively. (These
parties are different from the parties P0, P1, . . . , PN of the incentivized MPC we are constructing.) We assume
that for all i ∈ [ν], χi ∈ FL, where L is a prime number of size logarithmic in the security parameter.

An NIMPC protocol for a public function g works as follow. A trusted party or setup with some private
input χ0 ∈ {0, 1}∗ generate correlated randomness (ρ0,ρ)← NIMPC.Setupg(1λ, χ0). Each party Pi receives
ρi = {ρi,u}u∈FL and send ρi,χi to a stateless evaluator who can compute the output:

g(χ0, χ1, . . . , χν) = NIMPC.Evalg(ρ0, µ1, . . . , µν).

We define the residual function g|T̄ ,χT̄ to be the function g with the inputs corresponding to positions
T̄ = {0, . . . , ν} \ T fixed to {χi}i∈T̄ . Full robustness ensures that if the evaluator colludes with any subset T
of parties, it only learns this residual function.

We now formally define adaptively fully robust NIMPC. The classical definition of NIMPC in [10] is not
sufficient for our purposes as our Label-Driven MPC allows for adaptive corruption.

Definition C.6. A non-interactive multiparty computation (NIMPC) for a function g : {0, 1}∗×FνL → {0, 1}
∗

is defined by 2 algorithms (NIMPC.Setup,NIMPC.Eval) with the following syntax:

– Setup: (ρ0,ρ)← NIMPC.Setupg(1λ, χ0) takes as input the security parameter λ, a secret input χ0, and
outputs a bitstring ρ0 and a vector ρ = {ρi,u}i∈[ν],u∈FL of νL string of poly(λ) bits. Each party Pi receives
ρi := {ρi,u}u∈FL .

29 We use the unusual notation L for the order of the field as the usual notation q denotes the number of queries to
the random oracle.
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– Evaluation: y ← NIMPC.Evalg(ρ0, µ1, . . . , µν) takes a input the value ρ0 and the messages µ1, . . . , µν from
all the parties, and outputs the value y.

(where the index g is omitted when clear from context) satisfying the following properties:

Perfect Correctness. For all security parameters λ ∈ N, all inputs χ0 and χ = {χi}i∈[ν]:

Pr
[
g(χ0,χ) = NIMPC.Eval(ρ1,χ1 , . . . , µν,χν ) | {ρi,u}i∈[ν],u∈FL ← NIMPC.Setup(1λ, χ0)

]
= 1 .

Adaptive Full Robustness. There exists a stateful PPT simulator S such that, for all adversaries A (even
non polynomial-time ones), there exists a negligible function negl, such that for all security parameters
λ ∈ N, all inputs χ0 and χ = {χi}i∈[ν], all auxiliary inputs z ∈ {0, 1}poly(λ):

∣∣Pr[ACorrupt(z, ρ0, {ρi,χi}i∈[ν]) | ρ← NIMPC.Setupg(1λ, χ0)]−Pr[ACorrupt′(z,S(msg, 1λ, g(χ))]
∣∣ ≤ negl(λ) ,

where the oracles Corrupt,Corrupt′ are defined in Fig. 6.

::::
Real

:::::
World

:::::::
Oracles:

Setup: Empty list T of corrupted parties.

Corrupt(i):
Add i to T
Return {ρi,u}u

::::
Ideal

::::::
World

::::::
Oracles:

Setup: Empty list T of corrupted parties.

Corrupt′(i):
Add i to T
Return Sg|T̄ ,χT̄ (corrupt, i)

Fig. 6. Oracles for Adaptive Full Robustness of NIMPC (Definition C.6)

Using ideas from [13], we prove the following theorem that is used in our transformation below.

Theorem C.7. Let G be the generating matrix of a [ν, k, δ]L linear code C. Let j ∈ [k] and u ∈ FL. There
exists an NIMPC for the following function:

gG,j,u(χ0, χ1, . . . , χν) =
{

(χ0, χ1, . . . , χν) if ∃σ ∈ FkL, χᵀ = σᵀ ·G ∧ σj = u ,

(⊥, χ1, . . . , χν) otherwise,
(3)

where χ = (χ1, . . . , χν). Furthermore, the protocol can be constructed from the parameters G, j, u in time
polynomial in ν, k, δ, L.30

The function in Eq. (3) essentially outputs a secret value χ0 if χ is a valid codeword of a vector σ, where
σj is some value u. In our transformation, χ0 will be the label µj,u. We will use νL such NIMPC, one for
each j, u.

Remark C.8. The inclusion of χ1, . . . , χν in the output weakens the security requirement: the only actual
hidden value is χ0 is the following condition is not satisfied: ∃σ ∈ FkL, χᵀ = σᵀ ·G ∧ σj = u. Otherwise,
everything is revealed.

Proof Sketch of Theorem C.7. The high-level idea is to start from the NIMPC for the following function
from [13] (where such an NIMPC is called an “outputting-message NIMPC”):

gM,v(χ0, χ1, . . . , χν) =
{
χ0 if v = M · χ, where χ = (χ1, . . . , χν) ,

⊥ otherwise,

30 Based on equation 3, our work provides fully robust (i.e., robust against any number of corruptions) protocols for
the specific functionality we need.
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where M ∈ Fk×νL be a public matrix and v ∈ FkL be a public vector.31
The security property we need is slightly different from the one in [13]. On the one hand, our security

requirements are weaker: we allow χ1, . . . , χν to be revealed in any case, and we allow v to be public (while
it is secret in [13]). On the other hand, we need full robustness to hold in presence of adaptive corruptions,
while only static corruptions are handled in [13]. We can prove that the construction works in this modified
setting. Intuitively, since security holds perfectly (as it is proven via linear algebra), no adversarial input,
even if chosen adaptively, will break it.

We can then conclude using the following remark. Let G be the generating matrix of a [ν, k, δ]L linear
code C. Let j ∈ [k] and u ∈ FL. We remark that the set of vectors χ ∈ FνL such that χᵀ = σᵀ · G where
σj = u is an affine subspace of FνL and hence there exists a matrix M and a vector v such that:

∃σ ∈ FL, χᵀ = σᵀ ·G ∧ σj = u ⇔ v = Mχ .

This concludes the sketch of the proof. ut

We now proceed to present our designs for the LD-MPC.

C.1 0-Robust Secure, Public Inputs

The Yao garbled circuit design directly provides a 0-robust secure, public-inputs Label-Driven MPC. The fact
that it satisfies the definition is derived directly from the security proofs of Yao.

Construction C.9. Concretely, the construction is as follows:

– (m0, {µj,u}j∈[γ],u∈ZL)← Msg0(1λ, x0), where L = 2, garbles the circuit corresponding to the function f .
The message m0 consists of the labels corresponding to the input x0 and of the labels of the garbled
circuit itself. The values µj,u are the input labels corresponding to the inputs x1, . . . , xN .

– mi ← Msgi(m0, xi) outputs mi = xi.
– σ ← Eval1(m0, . . . ,mN ) return σ = x1‖x2‖ . . . ‖xN .
– y ← Eval2(m0, . . . ,mN , {µj,σj}j) evaluates the garbled circuit contained in m0 using the labels for x0 in

m0 and the labels {µj,σj}j for x1, . . . , xN .

We recall that a garbled circuit scheme is correct if and only if the evaluation on the correct label yields
the correct result with overwhelming probability; and it is secure if there exists a simulator able to generate
the garbled circuit and the labels corresponding to the input, knowing only the output of the function. We
thus have the following immediate theorem, which implies Theorem C.3.

Theorem C.10. Construction C.9 is correct and 0-robust secure if and only if the underlying garbled circuit
scheme is correct and secure.

C.2 From 0-Robust Secure to (1 − ε)γ′-robust Secure

In this section, we show how to transform (public- or private-inputs) Label-Driven MPC which is 0-robust
secure into one which is (1− ε)γ′-secure. What this implies is that if the number of labels required to compute
the function on a single set of input is γ′ then to compute the function on an additional set of inputs would
require to open more than (1− ε)γ′ additional labels. This is a great improvement as it increases the effort
that the adversary needs to exert considerably in order to learn information about the function beyond what
it is “legally” entitled to learn. Intuitively, when we design the Gage MPC this means that the adversary
needs to be able to force-open more than κ = (1− ε)γ′ time capsules, which is almost the number γ′ of time
capsules that bounty hunters need to open if P0 does not follow the nominal path.

We start with a high-level overview. Let us focus on the public-inputs construction from Appendix C.1 for
N + 1 = 2 parties. P0 garbles the function f(x0, ·). P1 outputs the message m1 = x1 (its input). Evaluation
consists of opening the commitments of the labels corresponding to the bits of x1 = m1, which allows to
evaluate the garbled circuit on x1.
31 The integer k in this definition (and in general, in this full section) has no relation with the number k of seeds in

the construction of time capsules in Appendix B.3.
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We proved this construction is 0-robust secure. But it is not even 1-robust secure for the following reason.
If the adversary learns one more label (i.e., by force-opening one POTC), it now has two labels for the same
wire of the garbled circuit. It is known that garbled circuits do not provide any security guarantees in this
case.

The idea of our transformation is to encode the input x1 using an error correcting code and to enforce
that the only way for the adversary to learn anything is to learn labels corresponding to valid codewords. If
the distance of the code is δ, this ensures that even if the adversary learns δ − 1 more labels, it will learn
nothing more.

To realize this idea, instead of using directly the labels of the garbled circuits, we use new labels (aka,
correlated randomness) of a non-interactive multiparty computation (NIMPC) which outputs the garbled
circuit labels, if the inputs are valid codewords (and nothing otherwise). The security properties of the
NIMPC ensures that the only way for the adversary to learn any extra label of the inner garbled circuit is for
the adversary to get labels from the NIMPC corresponding to another valid codeword. As discussed before, if
the distance of the code is δ, this requires the adversary to learn δ more labels to be able to learn any extra
label of the inner garbled circuit. Furthermore, for linear error correcting codes, such an NIMPC protocol can
be constructed using techniques in [13].

The transformation can be generalized to any Label-Driven MPC and any number of parties. Instead of
encoding x1, the vector σ is encoded using the linear error correcting code.

Concretely, our construction proceeds as follows.

Construction C.11. Let f : ({0, 1}∗)N+1 → {0, 1}∗ be a functionality. Let MPC = (Msg0, . . . ,MsgN ,Eval1,Eval2)
be a 0-opening secure Label-Driven MPC for f . For the sake of simplicity, we assume that L is a prime
power and L ≥ γ. This may slightly increase the number of labels output by Msg0, but not the number of
labels that need to be revealed to compute the output. (In particular, that does not increase the number of
labels that need to be force-open in the resulting Gage MPC when P0 does not follow the nominal path.) Let
NIMPCgG,j,u = (NIMPC.SetupgG,j,u ,NIMPC.EvalgG,j,u) be NIMPC schemes for the functions gG,j,u defined in
Eq. (3) (where k = γ).

Let ε > 0. We want the resulting Label-Driven MPC to be (1− ε)γ′-opening secure, for some well chosen
γ′ (where σ ∈ Fγ

′

L ). For that purpose, we set γ′ = dγ/εe and consider the [γ′, γ, δ]L Reed-Solomon code C
with generating matrix G. Its distance is δ = γ′ − γ ≥ (1− ε)γ′.

We then construct the following Label-Driven MPC scheme MPC′ = (Msg′0, . . . ,Msg′N ,Eval′1,Eval′2) for f :

– (m′0, {µ′j,u}j,u) ← Msg′0(1λ, x0) generates (m0, {µj,u}j,u) ← Msg0(1λ, x0) and then computes: for each
j ∈ [N ] and u ∈ FL, it generates:

(ρj,u0 ,ρj,u)← NIMPC.SetupgG,j,u(1λ, µj,u) .

It then defines and outputs:

m′0 := (m0, {ρj,u0 }j,u) ,

µ′j′,u′ := {ρj,uj′,u′}j,u for all j′ ∈ [γ′], u′ ∈ FL .

– m′i ← Msg′i(m′0, xi) behaves exactly as Msgi for i ∈ [N ].
– σ′ := Eval′1(m′0,m′1, . . . ,m′N ) computes σ := Eval1(m0,m′1, . . . ,m′N ) and outputs σ′ := σᵀ ·G.
– y ← Eval′2(m′0, . . . ,m′N , {µ′j′,σj′}j′) first computes for all j ∈ [γ]:

µj,σj = NIMPC.EvalgG,j,σj (ρj,σj0 , ρ
j,σj
1,σ′1

, . . . , ρ
j,σj
ν,σ′ν

) .

Finally it outputs y ← Eval2(m0, . . . ,mN , {µj,σj}j), where mi := m′i for i ∈ [N ].

We have the following theorem, which implies Theorem C.4 when combined with Theorem C.3:

Theorem C.12. Let MPC be a 0-robust public-inputs (resp., private-inputs) secure Label-Driven MPC (with
γ = |σ| wires) for a function f . Then for any ε > 0, there exists a (1 − ε)γ′-robust public-inputs (resp.,
private-inputs) secure Label-Driven MPC for f with γ′ wires (where γ′ = O(γ/ε)).



Gage MPC 35

We state the following security theorem, which implies Theorem C.12:

Theorem C.13. If MPC is a 0-opening public-inputs (resp., private-inputs) secure Label-Driven MPC for f
and if the NIMPC schemes NIMPCgG,j,u are adaptively fully robust, then the scheme MPC′ constructed above
is a (1− ε)γ′-opening public-inputs (resp., private-inputs) secure Label-Driven MPC for f .

Proof Sketch. The main case to prove is security when P0 is honest and the adversary force opens (1− ε)γ′
additional commitments. In that case, adaptive full robustness of the NIMPC schemes ensure that the adversary
does not learn anything more than when the adversary did not force open any additional commitment. This
is because the residual function for gG,j,u always outputs ⊥ if u 6= σj , and outputs ⊥ or µj,σj otherwise, since
the distance of the code is δ ≥ (1− ε)γ′. ut

C.3 From Public-Inputs to Private-Inputs Security

We show how to transform a public-inputs Label-Driven MPC into a private-inputs Label-Driven MPC, for
the special case that there are two parties P0 and P1 (namely N = 1). The transformation makes use of any
2-round 2-party secure computation (2PC) with solitary output protocol, namely where only P0 receives an
output. As for Label-Driven MPC, we only consider the semi-honest setting.

Definition C.14. A 2-Round 2-Party Secure Computation Protocol with solitary output (2PC for short, in
this paper) for a functionality f : ({0, 1}∗)2 → {0, 1}∗ is defined by three algorithms (2PC.Msg0, 2PC.Msg1, 2PC.Out0)
with the following syntax:

– P0-Message: (m̃0, s̃t0)← Msg0(1λ, x0) takes as input the security parameter λ, the input x0 ∈ {0, 1}poly(λ)

of P0, and output a message m̃0 and a state s̃t0.
– P1-Message: m̃1 ← 2PC.Msg1(m̃0, x1) takes as input a message m̃0 from P0, the input x1 ∈ {0, 1}poly(λ)

of P1, and output a message m̃1.
– P0-Output: y ← 2PC.Out(s̃t0, m̃1) takes a input the message m1 from P1 and the state s̃t0 of P0, and
outputs the value y.

satisfying the following properties:

Perfect Correctness. For all security parameters λ ∈ N, all inputs x0, x1 ∈ {0, 1}poly(λ):

Pr
[
f(x0, x1) = 2PC.Out(s̃t0, m̃1)

∣∣∣∣ (m̃0, s̃t0)← 2PC.Msg0(1λ, x0),
m̃1 ← 2PC.Msg1(m̃0, x1)

]
= 1 .

Security against Corrupted Pi (for i ∈ {0, 1}). There exists a simulator S, such that for all PPT ad-
versaries A, there exists a negligible function negl, such that for all security parameters λ, inputs x0, x1,
random tape ri, auxiliary inputs z ∈ {0, 1}poly(λ):

|Pr[A(z,View({i}, (x0, r0, x1, r1))) = 1] − Pr[A(z,S({i}, (xi, ri)) = 1]| ≤ negl(λ)0| ,

where:
View({i}, (x0, r0, x1, r1)) := (x0, x1, ri, m̃0, m̃1, y) ,

where (m̃0, s̃t0)← 2PC.Msg0(1λ, x0), m̃1 ← Msg1(m̃0, x1) and y = f(x0, x1) if i = 0 (i.e., P0 is corrupted).

Transformation for N + 1 = 2 parties. Let us now present the transformation from public-inputs to
private-inputs for N + 1 = 2 parties.

Construction C.15. Let f : ({0, 1}∗)2 → {0, 1}∗ be a functionality. Let 2PC = (2PC.Msg0, 2PC.Msg1, 2PC.Out0)
be a 2PC for f . Let g be the following function: g(s̃t0, m̃1) = 2PC.Out(s̃t0, m̃1). Let MPC = (Msg0,Msg1,Eval)
be a κ-opening public-inputs secure Label-Driven MPC for g.

We construct the following Label-Driven MPC protocol MPC′ = (Msg′0,Msg′1,Eval′1,Eval′2) for f :
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– (m′0, {µ′j,u}j,u) ← Msg′0(1λ, x0) generates (m̃0, s̃t0) ← 2PC.Msg0(1λ, x0), computes (m0, {µj,u}j,u) ←
MsgTC.Com

0 (1λ, s̃t0), and outputs:

m′0 := (m̃0,m0) and {µ′j,u}j,u := {µj,u}j,u .

– m′1 ← Msg′i(m′0, x1) generates m̃1 ← 2PC.Msg1(m̃0, x1), compute m1 ← Msg1(m0, m̃1), and outputs:
m′1 := m1.

– σ ← Eval′1(m′0,m′1) computes σ := Eval1(m0,m1).
– y ← Eval′2(m′0,m′1, {µj,σj}j) computes y := Eval2(m0,m1, {µj,σj}).

We have the following theorem, which implies Theorem C.17.

Theorem C.16. If 2PC is a secure 2-round 2-party secure computation scheme for f with solitary output,
and if MPC is a κ-robust public-inputs secure Label-Driven MPC for g, then the scheme MPC′ constructed
above is a κ-robust private-inputs secure Label-Driven MPC for f .

Proof sketch. Correctness follows from correctness of 2PC and MPC: using notations in the construction, the
value output by Eval′2 (on honestly generated inputs) is:

g(s̃t0, m̃1) = 2PC.Out(s̃t0, m̃1) = f(x0, x1) .

Private-Inputs Security when P0 is corrupted. P1 is simulated as follows: generate m̃1 using the simulator of
P1 for 2PC, and output m′1 := m1 ← Msg1(m0, m̃1).

Private-Inputs Security when P1 is corrupted. P0 is simulated as follows: generate m̃0 using the simulator of
P0 for 2PC, then generate m0 using the simulator of P0 for MPC, and output m′0 := (m̃0,m0). ut

The above theorem implies Theorem C.17.

Theorem C.17 (informal). In the setting with N + 1 = 2 parties, if there exists a secure 2-round 2-party
secure computation scheme 2PC with solitary output for f and if there exists a κ-robust public-inputs secure
Label-Driven MPC for a specific function g (corresponding to the “output” function of 2PC), then there exists
a κ-robust private-inputs secure Label-Driven MPC for f .

Remark C.18 (On the restriction to two parties). When there are more than two parties, private-input
κ-robust security cannot be achieved (except for very limited functionalities). The adversary can indeed
corrupt P0 and P1, honestly generate messages m0, m1, (for some inputs x0 and x1), get the messages m2, m3,
. . . , mN from parties P2, . . . , PN (on inputs x2, . . . , xN ). Then it can evaluate the output of the function
f on inputs (x0, x

′
1, x2, . . . , xN ) for any x′1 (and not just on x1), because the adversary know all the labels

{µi,u}i,u.
We remark that this impossibility relies on the fact that parties P1, . . . , PN are not allowed to produce any

labels ({µj,u}j,u) from which the adversary only see part of them ({µj,σj}j). When compiling Label-Driven
MPC into Gage MPC, this restriction will translate to the fact that only P0 is allowed to make time capsule
commitments. If we remove this restriction, we should be able to construct private-inputs Gage MPC using
2-round MPC protocols and similar ideas as the ones used below for N + 1 = 2 parties. Such a construction
however would likely be quite inefficient.

D Time Capsule Evaluation and Implementation of Gage Auctions

In order to understand how the proposed schemes will perform in practice, in this section we show a proof-of-
concept implementation of our constructions. We begin with describing a library we developed to support
the POTC interface followed by a demonstration of the library’s overhead in terms of computation and
bandwidth costs. We then explain how we use POTC and LD-MPC to build a real-world application of Gage
MPC, namely, Gage auctions over a blockchain.
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D.1 Time Capsule Library Implementation and Evaluation

We build a C++ library implementing the POTC construction found in Appendix B.10. We use SHA-256 for
hashing, and the Ivory Runtime Library [53] for elliptic curve operations over Curve25519. We remark that
our library provides a generic POTC interface, which could be of an independent interest.

For evaluating the computation and bandwidth overhead of the POTC construction, we conducted
microbenchmarks on a server with a 2.6 GHz Intel Core i7 processor and 16GB of RAM running macOS
Mojave. We use a message size of 8 bytes to model message types (e.g., labels) encountered in our LD-MPC
construction in C.1. We also use k = 8 seeds and λ∗ = 25 (See 2.2) unless otherwise noted. We chose these
values for the parameters as they provide a reasonable trade-off between the security and difficulty of opening
capsules. Each of the tested operations was called 100 times.

Computation cost. Table 2 shows the processing time needed to perform each operation within our
construction. As shown, all operations (other than TC.ForceOpen, which has a configurable difficulty, and
hence, computation cost) can be computed at a fast rate. In particular, our modest server can generate 500
capsules/sec, verify the opening of 10,000 capsules/sec, generate correctness proofs for 250 capsules/sec, and
verify 250 proofs/sec.

Table 2. Computation cost of POTC.

Operation Average Time (sec)
TC.Com 0.002± 1× 10−4

TC.DVer 0.0001± 2× 10−6

TC.ForceOpen 1004.6± 159
TC.Prove 0.004± 10−4

TC.PVer 0.004± 10−4

For TC.ForceOpen, we show how the computation cost (or difficulty) to open a capsule varies with λ∗. The
results are found in Figure 7. As expected, larger λ∗ means more computation is needed to force open the
capsule (this is represented by the longer time since we do not exploit any parallelism here). This parameter
can be configured in a way that achieves the desired level of hardness.
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Fig. 7. Impact of capsule difficulty (i.e., λ∗) on the average opening time. Note the y-axis uses a logarithmic scale to
capture the exponential relationship.

Finally, we show the bandwidth overhead of our POTC construction from Appendix B.10 in Table 3,
which also represents the storage cost. For a message size of 8 bytes, the commitment size is 346 bytes, and
the proof size is 96 bytes. While the size of the commitment increases linearly with the message size and
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number of seeds, the size of the proof is independent with respect to these parameters. These experiments
illustrate that the runtime and communication overheads of these operations are minimal relative to the
network and compute costs of a blockchain environment.

Table 3. Bandwidth cost of POTC. The size of a commitment and proof construction can be computed from the
sizes of these elements as detailed in Section C.1.

Element Size (bytes)
c1,i 32
c2 8
c3 33
c4 33
K 32
ch 32
z 32

D.2 Using Time Capsules for Gage Auctions over the Blockchain

In this section, we describe our proof-of-concept implementation of one application of Gage MPC, namely,
auctions. We build a prototype by using the Parity version of the Ethereum Virtual Machine (EVM). We
implement both the simple scheme from Section 4 and the one based on Section C.1 (we focus on the latter
in the following description). We use the Ivory library [53] to implement our LD-MPC construction found in
Section C.1, which we modify to integrate our label-based time capsules in the garbling process that sellers
use to prepare their offers that will be posted on the Ethereum blockchain.

Towards this end, and to allow posting offers and the monetary incentives of opening the time capsules,
we developed a smart contract for the auction functionality. The smart contract state is initialized to the
encoding of the garbled circuit with its time capsules by the seller. Our smart contract interface then allows
buyers to post public bids that will specify which time capsules in the underlying GaTC should be opened. It
also implement routines that can be invoked to submit proofs of the time capsule opening, which the contract
verifies with (TC.PVer) using a new EVM precompile instruction. Upon verifying the opening proof, the
smart contract pays the opening party the collateral, which the seller locked as a deposit when creating the
contract.

After obtaining the opening of all the required times capsules, the smart contract can evaluate the auction
by evaluating the offer garbled circuit using the opened labels. In the case of a match, the smart contract
closes the auction, recording the outcome so that settlement can be performed off-chain. We remark that
this implementation does not modify the underlying blockchain architecture or consensus protocol since all
added functions are at the smart contract level apart from the new precompile that we built. Hence, the
same framework can be imported to any other blockchain that supports smart contracts and precompiles.

Our smart contract prototype does not yet handle the nominal path. However, we plan to fully implement
this feature when we open-source our library and smart contract prototype for the community soon.
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