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Abstract. With the proposal of Picnic3, it has become interesting to
investigate the security of LowMC with a full S-box layer. To significantly
improve the efficiency of the Picnic signature, the designers of Picnic3
recommended to use the 4-round LowMC as the underlying block cipher,
which has been shown to be insecure with 2 chosen plaintexts by
Liu-Isobe-Meier [6]. However, the attack scenario is very different and
constrained in Picnic as the attacker is only allowed to know one single
plaintext-ciphertext pair under the same key for LowMC. Recently,
Banik et al. proposed guess-and-determine attacks [7] on reduced LowMC
in the Picnic setting. A major finding in their attacks is that the 3-bit
S-box of LowMC can be linearized by guessing a quadratic equation.
Notably, the attack on 2-round LowMC with a full S-box layer can be
achieved with time complexity 22m where m is the number of S-boxes in
each round. As k = 3m, their attacks can not reach 3 rounds where k is
the length of the key in bits. Although Banik et al. have improved the
attacks with the meet-in-the-middle strategies [7], its memory complexity
is rather high, which is m × 2m bits of memory. In this note, we aim
at low-memory key-recovery attacks as it is more fair to compare it
with a pure exhaustive search. Specifically, we will describe improved
algebraic attacks on 2-round LowMC by expressing the 3-bit S-box as
14 linearly independent quadratic boolean equations, which is inspired
by the unsuccessful algebraic attacks on AES. As a result, the algebraic
attacks on 2-round LowMC with key sizes of 129/192/255 bits can be
improved by a factor of 24/26.3/27.6, respectively. It seems that our
attacks imply the attacks on 3-round LowMC. However, by taking the
cost of gaussian elimination into account, the derived attacks on 3-round
LowMC with key sizes of 192 and 255 bits are only about 22.3 and 23.7

times faster than the brute force. Our techniques are further applied
to the instances with a partial S-box layer and significantly improve
previous attacks with negligible memory complexity.

Keywords: LowMC, linearization, key recovery, algebraic attack, XL



1 Preliminaries

In this section, we will describe the notations, the specification of LowMC and
costs of the exhaustive key search.

1.1 Notation

As there are several instances for both LowMC and LowMC-M, we use the
following notations to describe the parameters of LowMC [2].

1. n represents the block size.
2. k represents the size of the master key.
3. m represents the number of S-boxes in each round.
4. R represents the total number of rounds.

1.2 Description of LowMC

LowMC [2] is family of SPN block ciphers proposed by Albrecht et al. in
Eurocrypt 2015. Different from conventional block ciphers, the instantiation
of LowMC is not fixed and each user can independently choose parameters to
instantiate LowMC.

LowMC follows a common encryption procedure as most block ciphers.
Specifically, it starts with a key whitening (WK) and then iterates a round
function by R times. The round function at the (i+1)-th (0 ≤ i ≤ R− 1) round
can be described below:

1. SBoxLayer (SB): A 3-bit S-box S(x0, x1, x2) = (x0⊕x1x2, x0⊕x1⊕x0x2, x0⊕
x1 ⊕ x2 ⊕ x0x1) will be applied on the first 3m bits of the state in parallel,
while an identical mapping is applied on the remaining n− 3m bits.

2. LinearLayer (L): A regular matrix Li ∈ Fn×n
2 is randomly generated and

multiply the n-bit state with Li.
3. ConstantAddition (AC): An n-bit constant Ci ∈ Fn

2 is randomly generated
and is XORed to the n-bit state.

4. KeyAddition (AK): A full-rank n × k binary matrix Mi+1 is randomly
generated. The n-bit round key Ki+1 is obtained by multiplying the k-bit
master key with Mi+1. Then, the n-bit state is XORed with Ki+1.

The whitening key is denoted by K0 and it is also calculated by multiplying the
master key with a random n× k binary matrix M0.

1.3 Costs of the Exhaustive Key Search

In Picnic3, the LowMC with a full S-box layer is adopted, where k = n = 3m.
To fairly compare our attacks with the exhaustive key search, we introduce an
equivalent representation of LowMC in order to speed up the exhaustive key
search. Specifically, we compute the inverse of M0, which will be denoted by
M−1

0 . Then, Mi (0 ≤ i ≤ R) will be multiplied with M−1
0 and the obtained
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matrices are denoted by Ei, i.e. Ei = Mi · M−1
0 (0 ≤ i ≤ R). In this way,

E0 is an identity matrix. Therefore, in the exhaustive key search, the cost to
compute the whitening key is eliminated. Then, to further accelerate the matrix
multiplication in the linear layer and the round key addition, for each row of Ei

(i > 0) and Lj (j ≥ 0), we only record the positions whose value is ”1”. As Ei

and Lj are all randomly generated, it is expected that in each row, the number of
such positions is 3m/2. Therefore, the cost of the matrix multiplication is reduced
from 3m×3m to 4.5m2 bit operations. As a result, for the exhaustive key search
attack on r-round LowMC, the costs can be evaluated as r× 2× 4.5m2 = 9rm2

bit operations as the matrix multiplication is the most expensive part.

2 Quadratic Boolean Equations inside the S-box

Denote the 3-bit input and output of the S-box by (x0, x1, x2) and (x3, x4, x5),
respectively. Based on the definition of the S-box, the following relations hold:

x3 = x0 ⊕ x1x2, (1)

x4 = x0 ⊕ x1 ⊕ x0x2, (2)

x5 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1. (3)

Therefore, the inverse of the S-box can be written as follows:

x0 = x3 ⊕ x4 ⊕ x4x5, (4)

x1 = x4 ⊕ x3x5, (5)

x2 = x3 ⊕ x4 ⊕ x5 ⊕ x3x4. (6)

2.1 More Quadratic Boolean Equations

From the definition of the S-box, we can obtain 8 additional quadratic boolean
equations as shown below:

x3x1 = x0x1 ⊕ x1x2, (7)

x3x2 = x0x2 ⊕ x1x2, (8)

x4x0 = x0 ⊕ x0x1 ⊕ x0x2, (9)

x4x2 = x1x2, (10)

x5x0 = x0 ⊕ x0x2, (11)

x5x1 = x1 ⊕ x1x2, (12)

x3x0 ⊕ x0 = x4x1 ⊕ x0x1 ⊕ x1, (13)

x4x1 ⊕ x0x1 ⊕ x1 = x5x2 ⊕ x0x2 ⊕ x1x2 ⊕ x2. (14)

Therefore, combining with the definitions of the S-box and its inverse, there
will be 14 quadratic boolean equations. By treating the quadratic term as
independent variables, we find that these 14 quadratic boolean equations are
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indeed linearly independent by applying the gaussian elimination. We also feel
interested whether it is possible to find more independent quadratic boolean
equations describing the 3-bit S-box. As a result, we searched all possible
quadratic equations over GF(2) in terms of 6 variables, whose time complexity
is 8×221 = 224. For all the obtained valid quadratic boolean equations, after the
gaussian elimination is applied, it is found that there are only 14 independent
quadratic equations. Consequently, 14 is the maximum number of the linearly
independent quadratic boolean equations describing the 3-bit S-box of LowMC.
It also proves that the above 14 quadratic equations are indeed one combination
of the 14 linearly independent equations. Indeed, such an idea to write as many
linearly independent quadratic equations as possible to describe an S-box has
been used in the unsuccessful attacks on AES [4]. In addition, the similar idea
has also been used in the XL algorithm [3] to generate more equations to solve
an overdefined system of quadratic multivariate polynomial equations.

Remark. In the algebraic attack on AES [4], one input-output point, i.e. the
input and output are both 0, is discarded in order to represent the 8-bit S-box
of AES as a simple quadratic polynomial equation XY = 1, where X and Y
represent the input and output of the S-box, respectively. Consequently, we are
also motivated to consider whether it is possible to obtain more equations by
discarding an input-output point of the 3-bit S-box of LowMC. By discarding
any nonzero input-output point, i.e. the input of the discarded point satisfies
(x0, x1, x2) ̸= (0, 0, 0), we find that the number of linearly independent quadratic
boolean equations is increased to 15 from 14. However, as only 1 more equation
can be used and the cost of the success probability will be decreased if using
15 equations, we find that such a small increase indeed cannot improve the
attacks by only using 14 probability-1 quadratic boolean equations. We are not
interested to investigate the case when 2 and more points are discarded as the
success probability decreases significantly.

3 Improved Algebraic Attacks on Reduced LowMC

It has been proved by Banik et al. that guessing arbitrary output bit5 for the 3-
bit S-box will make the 3 output bits linear in the 3 input bits and vice versa [7].
Indeed, even without such an observation on the S-box of LowMC, we can achieve
the same time complexity with the linearization technique.

Specifically, considering the definition of the S-box, we find that if x0 is
guessed, then (x4, x5) can be written as linear expressions in terms of (x1, x2).
However, the expression of x3 is quadratic in (x1, x2). Therefore, we introduce
a new variable to represent x3 and treat this variable as independent of the
variables representing the key bits. In this way, by guessing 1 input bit of each
S-box in the first round and introducing m extra variables, the first round is
linearized. Similarly, in the second round, by guessing 1 output bit of each S-
box, we can obtain 3m linear equations in terms of 3m+m−m = 3m variables as

5 The results are more general and we refer the interested readers to [7].
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m key bits are already known. Therefore, the time complexity to attack 2-round
LowMC is 22m times of solving 3m linear equations in terms of 3m variables.
With the best time complexity of gaussian elimination using the M4RI library [1],
the attack on 2-round LowMC can be evaluated as 22m× (3m)2.8 bit operations.

3.1 Improved Attacks on 2-Round LowMC

To improve the attacks, we try to make full use of the guessed information
and the 14 quadratic boolean equations describing the 3-bit S-box. Specifically,
when guessing 1 input bit of the S-box, assuming that the guessed bit is x0, we
cannot write x3 as linear expressions in terms of (x1, x2). However, we can derive
3 linearly independent quadratic equations rather than 1 equation in terms of
(x1, x2, x3), as specified below:

x3 = x0 ⊕ x1x2, (15)

x3x1 = x0x1 ⊕ x1x2, (16)

x3x2 = x0x2 ⊕ x1x2. (17)

Similarly, if 1 output bit of the S-box is guessed, supposing the guessed bit
is x4, we cannot write x1 as linear expressions in terms of (x3, x5). However, we
can still derive 3 linearly independent quadratic boolean equations in terms of
(x3, x4, x5), as specified below:

x1 = x4 ⊕ x3x5, (18)

x1x3 = x3x4 ⊕ x3x5, (19)

x1x5 = x4x5 ⊕ x3x5. (20)

In our improved attacks, for all the S-boxes in the first round, 1 input bit is
guessed and m new variables are introduced, thus implying that the first round
is fully linearized. For the second round, we only try to linearize x S-boxes
by guessing the corresponding x output bits. Then, we reduce the number of
variables from 3m to 3m − 3x by choosing 3m − 3x variables as free variables,
which can be achieved by applying the gaussian elimination to the 3x linear
equations derived from the x guessed output bits. In this way, we need to
compute the solutions of the 3m− 3x variables. To make this phase efficient, we
adopt the linearization technique once again, i.e. the 3m−3x variables can form

at most (3m−3x)(3m−3x−1)
2 quadratic terms and they are treated as new variables.

It should be emphasized that applying the gaussian elimination to the 3x linear
equations is still time-consuming. However, in our attacks, this cost is negligible
compared with the cost to compute the solutions of the 3m− 3x variables with

the linearization technique. The reason is that (3m−3x)(3m−3x−1)
2 + (3m− 3x) is

much larger than 3m.
From our previous description to collect quadratic equations, it can be found

that the number of quadratic equations is

3m+ 3x+ 14(m− x).
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Therefore, the following constraint should hold to efficiently compute the
solution of the 3m− 3x variables:

3m+ 3x+ 14(m− x) ≥ (3m− 3x)(3m− 3x− 1)

2
+ (3m− 3x)

⇒ 28m ≥ (3m− 3x)(3m− 3x− 1) + 16x

When m takes 43, 64, and 85, the maximal value of x is 35, 54 and 74,
respectively. Therefore, the costs of our attacks on 2-round LowMC with key sizes
of 129, 192 and 255 bits are 243+35 × 3002.8 ≈ 2101.24, 264+54 × 4652.8 ≈ 2142.92

and 285+74×5612.8 ≈ 2184.76 bit operations, respectively, while the corresponding
costs are 2105.6, 2149.28 and 2192.4 bit operations in Banik et al.’s attacks.
Consequently, the attack on 2-round LowMC with key sizes of 129, 192 and
255 bits are improved by a factor of about 24, 26.3 and 27.6, respectively.

3.2 Attacks on 3-Round LowMC

For the attacks on 3-round LowMC, we fully linearize the first round by guessing
m input bits of all the S-boxes and introduce m new variables. Then, we fully
linearize the last round by guessing m output bits of the S-boxes and again
introduce m new variables. For the S-boxes in the second round, only x S-boxes
are linearized by guessing x bits. Then, the number of unknowns is still 3m−3x
as 2m linear equations in terms of the key bits are already guessed. However,
the number of quadratic equations will be increased, which is

6m+ 3x+ 14(m− x).

As a result, to efficiently compute the solutions of the 3m− 3x variables, the
following constraint should hold:

6m+ 3x+ 14(m− x) ≥ (3m− 3x)(3m− 3x− 1)

2
+ (3m− 3x)

⇒ 34m ≥ (3m− 3x)(3m− 3x− 1) + 16x

When m takes 43, 64, and 85, the maximal value of x is 33, 52 and 71,
respectively. Therefore, the costs of our attacks on 3-round LowMC with key sizes
of 129, 192 and 255 bits are 243+43+33 × 4652.8 ≈ 2143.92, 264+64+52 × 6662.8 ≈
2206.32 and 285+85+71 × 9032.8 ≈ 2268.72 bit operations.

For 3-round LowMC, the number of bit operations can be estimated as 27m2.
Therefore, our attacks on 3-round LowMC with key sizes of 192 and 255 bits
are only about 22.3 and 23.7 times faster than the brute force, respectively. It
should be emphasized that the designers of Rasta [5] also adopted the same way
to compute the time complexity of algebraic attacks, i.e. comparing the number
of bit operations.
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4 Attacks on LowMC with a Partial S-box Layer

The above strategies can be trivially applied to the case where a partial S-box
layer is used. Taking the ongoing LowMC competition into account, we only
focus on two cases m = 1 and m = 10 with n = k ∈ {128, 192, 256}.

Suppose our aim is to attack r rounds of LowMC. For the first r− 1 rounds,
assume that there are t S-boxes where one input bit will be guessed and there
are v S-boxes that we do not guess. In this way, there will be 3t + 14v + 14m
quadratic boolean equations and n−3m+t linear equations in terms of t+3v+n
variables. In addition, we have

t+ v = m(r − 1)

as there are in total m(r − 1) S-boxes in the first r − 1 rounds.
First, we apply the gaussian elimination to the n − 3m + t linear equations

and get (t+3v+n)− (n− 3m+ t) = 3v+3m free variables. Then, to efficiently
compute the solution of these 3v + 3m variables, it is required that

3t+ 14v + 14m ≥ (3v + 3m) +
(3v + 3m)× (3v + 3m− 1)

2

4.1 Attacks on r = ⌊ n
m
⌋ Rounds

Consider the challenge, i.e. the attack on r = ⌊ n
m⌋ rounds of LowMC.

Attack on (n, k,m, r) = (128, 128, 1, 128). When n = 128 and m = 1, we have
r = 128 and hence t+ v = 127. In this case, we have

3× (127− v) + 14v + 14 ≥ (3v + 3) +
(3v + 3)× (3v + 2)

2
v ≤ 9

Therefore, the time complexity to attack 128 rounds of LowMC with m = 1 and
n = k = 128 is 2127−9 × 4652.8 ≈ 2142.9 bit operations, which is equal to about
2142.9 ÷ 1283 ≈ 2121.9 calls to the LowMC instance.

Attack on (n, k,m, r) = (192, 192, 1, 192). When n = 192 and m = 1, we have
r = 192 and hence t+ v = 191. In this case, we have

3× (191− v) + 14v + 14 ≥ (3v + 3) +
(3v + 3)× (3v + 2)

2
→ v ≤ 11

Therefore, the time complexity to attack 192 rounds of LowMC with m = 1 and
n = k = 192 is 2191−11 × 6662.8 ≈ 2206.3 bit operations, which is equal to about
2206.3 ÷ 1923 ≈ 2183.5 calls to the LowMC instance.
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Attack on (n, k,m, r) = (256, 256, 1, 256). When n = 256 and m = 1, we have
r = 256 and hence t+ v = 255. In this case, we have

3× (255− v) + 14v + 14 ≥ (3v + 3) +
(3v + 3)× (3v + 2)

2
→ v ≤ 13

Therefore, the time complexity to attack 256 rounds of LowMC with m = 1 and
n = k = 256 is 2255−13 × 9032.8 ≈ 2269.5, which is equal to about 2269.5 ÷ 2563 ≈
2245.5 calls to the LowMC instance.

Attack on (n, k,m, r) = (128, 128, 10, 12). When n = 128 and m = 10, we have
r = 12 and hence t+ v = 110. In this case, we have

3× (110− v) + 14v + 140 ≥ (3v + 30) +
(3v + 30)× (3v + 29)

2
→ v = 0

Therefore, the time complexity to attack 12 rounds of LowMC with m = 10 and
n = k = 128 is 2110 × 4652.8 ≈ 2134.9 bit operations, which is equal to about
2134.9 ÷ (12× 1282) ≈ 2117.3 calls to the LowMC instances.

Attack on (n, k,m, r) = (192, 192, 10, 19). When n = 192 and m = 10, we have
r = 19 and hence t+ v = 180. In this case, we have

3× (180− v) + 14v + 140 ≥ (3v + 30) +
(3v + 30)× (3v + 29)

2
→ v ≤ 2

Therefore, the time complexity to attack 19 rounds of LowMC with m = 10 and
n = k = 192 is 2178 × 6662.8 ≈ 2204.3 bit operations, which is equal to about
2204.3 ÷ (19× 1922) ≈ 2184.9 calls to the LowMC instance.

Attack on (n, k,m, r) = (256, 256, 10, 25). When n = 256 and m = 10, we have
r = 25 and hence t+ v = 240. In this case, we have

3× (240− v) + 14v + 140 ≥ (3v + 30) +
(3v + 30)× (3v + 29)

2
→ v ≤ 4

Therefore, the time complexity to attack 25 rounds of LowMC with m = 10 and
n = k = 256 is 2236 × 9032.8 ≈ 2263.5 bit operations, which is equal to about
2263.5 ÷ (25× 2562) ≈ 2242.9 calls to the LowMC instance.

4.2 Attacks on r = 0.8 × ⌊ n
m
⌋ Rounds

Attack on (n, k,m, r) = (128, 128, 1, 103). When n = 128 and m = 1, we have
r = 103 and hence t+ v = 102. In this case, we have

3× (102− v) + 14v + 14 ≥ (3v + 3) +
(3v + 3)× (3v + 2)

2
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v ≤ 8

Therefore, the time complexity to attack 103 rounds of LowMC with m = 1 and
n = k = 128 is 2102−8 × 3782.8 ≈ 2118 bit operations.

Attack on (n, k,m, r) = (128, 128, 1, 102). When n = 128, m = 1 and r = 102,
we have t+ v = 101. In this case, we have

3× (101− v) + 14v + 14 ≥ (3v + 3) +
(3v + 3)× (3v + 2)

2
v ≤ 8

Therefore, the time complexity to attack 102 rounds of LowMC with m = 1 and
n = k = 128 is 2101−8 × 3782.8 ≈ 2117 bit operations.

Attack on (n, k,m, r) = (192, 192, 1, 154). When n = 192 and m = 1, we have
r = 154 and hence t+ v = 153. In this case, we have

3× (153− v) + 14v + 14 ≥ (3v + 3) +
(3v + 3)× (3v + 2)

2
→ v ≤ 10

Therefore, the time complexity to attack 154 rounds of LowMC with m = 1 and
n = k = 192 is 2153−10 × 5612.8 ≈ 2168.6 bit operations.

Attack on (n, k,m, r) = (192, 192, 1, 153). When n = 192, m = 1 and r = 153,
we have t+ v = 152. In this case, we have

3× (152− v) + 14v + 14 ≥ (3v + 3) +
(3v + 3)× (3v + 2)

2
→ v ≤ 10

Therefore, the time complexity to attack 153 rounds of LowMC with m = 1 and
n = k = 192 is 2152−10 × 5612.8 ≈ 2167.6 bit operations.

Attack on (n, k,m, r) = (256, 256, 1, 205). When n = 256 and m = 1, we have
r = 205 and hence t+ v = 204. In this case, we have

3× (204− v) + 14v + 14 ≥ (3v + 3) +
(3v + 3)× (3v + 2)

2
→ v ≤ 11

Therefore, the time complexity to attack 205 rounds of LowMC with m = 1 and
n = k = 256 is 2204−11 × 6662.8 ≈ 2219.3 bit operations.

Attack on (n, k,m, r) = (256, 256, 1, 204). When n = 256, m = 1 and r = 204,
we have t+ v = 203. In this case, we have

3× (203− v) + 14v + 14 ≥ (3v + 3) +
(3v + 3)× (3v + 2)

2
→ v ≤ 11

Therefore, the time complexity to attack 204 rounds of LowMC with m = 1 and
n = k = 256 is 2203−11 × 6662.8 ≈ 2218.3 bit operations.
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Attack on (n, k,m, r) = (128, 128, 10, 10). When n = 128 and m = 10, we have
r = 10 and hence t+ v = 90. In this case, we have

3× (90− v) + 14v + 140 ≥ (3v + 30) +
(3v + 30)× (3v + 29)

2
→ v ≤ −1

Therefore, we need to guess some bits in the last round. The choice is thus to
guess 1 bit. Then, we in total guess 90+1 = 91 bits. In this case, there are in total
90 introduced intermediate variables. In addition, we have 90+ (128− 30)+3 =
191 linear equations. So, we first apply Gaussian elimination on these linear
equations in terms of 90 + 128 = 218 variables and obtain 218 − 191 = 27 free
variables. There are in total 3 × 10 × 9 + 14 × 9 = 396 quadratic equations in
terms of these 27 variables. As 27× 26÷ 2+ 27 = 378 < 396, we can solve these
27 variables with 3782.8 ≈ 224 bit operations. In total, we need 224+91 = 2115 bit
operations to attack 10 rounds of LowMC with k = n = 128 and m = 10.

Attack on (n, k,m, r) = (128, 128, 10, 11). When n = 128, m = 10 and r = 11,
we have t+ v = 100. In this case, we have

3× (100− v) + 14v + 140 ≥ (3v + 30) +
(3v + 30)× (3v + 29)

2
→ v ≤ −1

Therefore, we need to guess some bits in the last round. The choice is thus to
guess 1 bits. Then, we in total guess 100+1 = 101 bits. In this case, there are in
total 100 introduced intermediate variables. In addition, we have 100 + (128 −
30) + 3 = 201 linear equations. So, we first apply Gaussian elimination on these
linear equations in terms of 100+128 = 228 variables and obtain 228−201 = 27
free variables. There are in total 3×10×10+14×9 = 426 quadratic equations in
terms of these 27 variables. As 27× 26÷ 2+ 27 = 378 < 426, we can solve these
27 variables with 3782.8 ≈ 224 bit operations. In total, we need 224+101 = 2125

bit operations to attack 11 rounds of LowMC with k = n = 128 and m = 10.

Attack on (n, k,m, r) = (128, 128, 10, 9). When n = 128, m = 10 and r = 9,
we have t+ v = 80. In this case, we have

3× (80− v) + 14v + 140 ≥ (3v + 30) +
(3v + 30)× (3v + 29)

2
→ v ≤ −2

Therefore, we need to guess 2 bits for the last round. Then, we in total guess
80 + 2 = 82 bits. In this case, there are in total 80 introduced intermediate
variables. In addition, we have 80 + (128 − 30) + 3 × 2 = 184 linear equations.
So, we first apply Gaussian elimination on these linear equations in terms of
80 + 128 = 208 variables and obtain 208 − 184 = 24 free variables. There are
in total 3 × 10 × 8 + 14 × 8 = 352 quadratic equations in terms of these 24
variables. As 24× 23÷ 2+ 24 = 300 < 352, we can solve these 24 variables with
3002.8 ≈ 223.1 bit operations. In total, we need 223.1+82 = 2105.1 bit operations
to attack 9 rounds of LowMC with k = n = 128 and m = 10.
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Attack on (n, k,m, r) = (192, 192, 10, 16). When n = 192 and m = 10, we have
r = 16 and hence t+ v = 150. In this case, we have

3× (150− v) + 14v + 140 ≥ (3v + 30) +
(3v + 30)× (3v + 29)

2
→ v ≤ 1

Therefore, the time complexity to attack 16 rounds of LowMC with m = 10 and
n = k = 192 is 2149 × 5612.8 ≈ 2174.6 bit operations.

Attack on (n, k,m, r) = (192, 192, 10, 15). When n = 192, m = 10 and r = 15,
we have t+ v = 140. In this case, we have

3× (140− v) + 14v + 140 ≥ (3v + 30) +
(3v + 30)× (3v + 29)

2
→ v ≤ 1

Therefore, the time complexity to attack 15 rounds of LowMC with m = 10 and
n = k = 192 is 2139 × 5612.8 ≈ 2164.6 bit operations.

Attack on (n, k,m, r) = (256, 256, 10, 21). When n = 256 and m = 10, we have
r = 21 and hence t+ v = 200. In this case, we have

3× (200− v) + 14v + 140 ≥ (3v + 30) +
(3v + 30)× (3v + 29)

2
→ v ≤ 2

Therefore, the time complexity to attack 20 rounds of LowMC with m = 10 and
n = k = 256 is 2198 × 6662.8 ≈ 2224.3 bit operations.

Attack on (n, k,m, r) = (256, 256, 10, 20). When n = 256, m = 10 and r = 20,
we have t+ v = 190. In this case, we have

3× (190− v) + 14v + 140 ≥ (3v + 30) +
(3v + 30)× (3v + 29)

2
→ v ≤ 2

Therefore, the time complexity to attack 20 rounds of LowMC with m = 10 and
n = k = 256 is 2188 × 6662.8 ≈ 2214.3 bit operations.

Our results to solve the challenges for 3-round LowMC and ⌊ n
m⌋ rounds of

LowMC are summarized in Table 1.
Our results to solve the challenges for 2-round LowMC and 0.8×⌊ n

m⌋ rounds
of LowMC are summarized in Table 2.

5 Conclusion

By expressing the 3-bit S-box of LowMC with 14 linearly independent quadratic
boolean equations and deriving additional linearly independent quadratic boolean
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Table 1: Our results to solve the challenges for 3-round LowMC with a full
S-box layer and ⌊ n

m⌋ rounds of LowMC with a partial S-box layer, where in
the column named “Time (#calls)” the time complexity is measured as the
equivalent number of calls to the corresponding LowMC instances. If evaluating
the time complexity of Gaussian elimination with the exponent 3 rather than
2.8, the time complexity of our attacks will increase by a factor of at most 22.

n k m r Time (#bit operations) Time (#calls) Memory (in bits)

128 128 1 128 2142.9 2121.9 465× 465
128 128 10 12 2134.9 2117.3 465× 465

192 192 1 192 2206.3 2183.5 666× 666
192 192 10 19 2204.3 2184.9 666× 666

256 256 1 256 2269.5 2245.5 903× 903
256 256 10 25 2263.5 2242.9 903× 903

129 129 43 3 > brute force > brute force −
192 192 64 3 2206.32 2189.7 666× 666
255 255 85 3 2268.72 2251.3 903× 903

Table 2: Our results to solve the challenges for 2-round LowMC with a full S-
box layer and 0.8 × ⌊ n

m⌋ rounds of LowMC with a partial S-box layer, where
in the column named “Time (#calls)” the time complexity is measured as the
equivalent number of calls to the corresponding LowMC instances. If evaluating
the time complexity of Gaussian elimination with the exponent 3 rather than
2.8, the time complexity of our attacks will increase by a factor of at most 22.

n k m r Time (#bit operations) Time (#calls) Memory (in bits)

128 128 1 103 2118 297.4 378× 378
128 128 1 102 2117 296.4 378× 378
128 128 10 11 2125 2107.6 378× 378
128 128 10 10 2115 297.6 378× 378
128 128 10 9 2105.1 287.7 300× 300

192 192 1 154 2168.6 2146.2 465× 465
192 192 1 153 2167.6 2145.2 465× 465
192 192 10 16 2174.6 2155.5 561× 561
192 192 10 15 2164.6 2145.5 561× 561

256 256 1 205 2219.3 2195.7 666× 666
256 256 1 204 2218.3 2194.7 666× 666
256 256 10 21 2224.3 2204 666× 666
256 256 10 20 2214.3 2194 666× 666

129 129 43 2 2101.24 286.24 300× 300
192 192 64 2 2142.92 2126.92 465× 465
255 255 85 2 2184.76 2167.86 561× 561
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equations from the guessed quadratic equations, we are able to improve the key-
recovery attacks on 2-round LowMC and even achieve faster key-recovery attacks
on 3-round LowMC, though the advantage over the brute force is limited. A
future research may be to compare our simple attacks with the Gröbner basis
attacks or SAT-based attacks. We believe our way to deduce more equations
is also very meaningful to Gröbner basis attacks since the time complexity to
solve an overdefined system of multivariate nonlinear equations will decrease as
the number of equations increases. However, it seems that new techniques are
essential in order to break full-round (4-round) LowMC in the Picnic setting.
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