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Abstract. The LWE problem with its ring variants is today the most
prominent candidate for building efficient public key cryptosystems resis-
tant to quantum computers. NTRU-type cryptosystems use an LWE-type
variant with small max-norm secrets, usually with ternary coefficients
from the set {−1,0,1}. The presumably best attack on these schemes is a
hybrid attack that combines lattice reduction techniques with Odlyzko’s
Meet-in-the-Middle approach. Odlyzko’s algorithm is a classical combina-
torial attack that for key space size S runs in time S0.5. We substantially
improve on this Meet-in-the-Middle approach, using the representation
technique developed for subset sum algorithms. Asymptotically, our
heuristic Meet-in-the-Middle attack runs in time roughly S0.25, which
also beats the S

1
3 complexity of the best known quantum algorithm.

For the round-3 NIST post-quantum encryptions NTRU and NTRU Prime
we obtain non-asymptotic instantiations of our attack with complexity
roughly S0.3. As opposed to other combinatorial attacks, our attack
benefits from larger LWE field sizes q, as they are often used in modern
lattice-based signatures. For example, for BLISS and GLP signatures we
obtain non-asymptotic combinatorial attacks around S0.28.
Our attacks do not invalidate the security claims of the aforementioned
schemes. However, they establish improved combinatorial upper bounds
for their security. We leave it is an open question whether our new Meet-
in-the-Middle attack in combination with lattice reduction can be used
to speed up the hybrid attack.
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1 Introduction

In the LWE problem [Reg03], we are given a (random) matrix A ∈ Zm×nq and a
target vector b ∈ Zmq with the promise that there exist small s ∈ Znq and e ∈ Zmq
such that As = b + e mod q. In this paper, we consider only the case m = n,
i.e. m equals the LWE dimension n, which is the standard setting in modern
lattice-based encryption and signature schemes. In the Ring-LWE case [LPR10],
one uses the algebraic structure of rings to compactly represent A. All results in
this work also apply to the ring setting, and in fact all of our applications are in
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the ring setting, but for the sake of LWE generality we do not exploit any ring
properties in our analysis.

The LWE problem, and especially its ring variants, are an extremely versatile
source for the construction of cryptographic primitives [Reg03,Gen09,GPV08,
BDK+17]. Due to its beautiful connection to worst-case lattice problems, one
usually calls the resulting schemes lattice-based, although the LWE problem is
per se more a combinatorial problem that asks to find a small solution s to some
erroneous—by error e—linear system of equations.

While asymptotically the worst-case connection of LWE to hard lattice
problems guarantees security for sufficiently large dimension n, it is still a tricky
business to instantiate LWE parameters (n,q) and the error distribution for e that
lead to practical cryptographic schemes, which yet provide a concrete level of
security. LWE security proofs usually utilize a discrete Gaussian distribution for
e (and often also for s). However, certain schemes prove security with Gaussians,
and then in turn define especially efficient parameters sets where s,e are binary or
ternary vectors, such as BLISS [DDLL13] or GLP [GLP12]. The NTRU encryption
scheme took the other way round, starting with an efficient scheme [HPS98],
whose security was later proved for less efficient variants [SS11]. LWE with
s,e ∈ {0,1}n is also known as binary-LWE, and its security has been studied
recently [BLP+13,MP13,BG14,BGPW16]. In this paper, we focus on ternary
vectors s,e ∈ {−1,0,1}n, as they are frequently used in modern NTRU-type
schemes. Limiting the distribution to vectors of small max-norm 1 (or any small
constant) has several advantages for cryptographic schemes.

Efficiency and simplicity. The implementation of discrete Gaussian sampling
is quite involved, and costs a reasonable amount of random bits [DN12]. Proper
randomness is in practice often a scarce source. Instead, sampling ternary vectors
is comparably simple and much less error-prone to implement. Moreover, the
resulting keys are especially compact.

Correctness of decryption. The use of ternary vectors allows to define encryp-
tion schemes that always decrypt correctly. Among the remaining lattice-based
encryption schemes in NIST competition’s third round there are only two schemes,
both NTRU variants with ternary secrets, that do not have decryption failure.
This property is particularly important, since even smallish decryption failures
give rise to powerful attacks [HNP+03,DRV20].

As a consequence, designers of recent cryptosystems often replace Gaussian
error distributions by small max-norm secrets (still guarding against lattice
attacks), with the argument that despite of 25 years NTRU-type cryptanalysis
there is no combinatorial algorithm better than Odlyzko’s Meet-in-the-Middle
(MitM) attack—mentioned in the original 1996 NTRU paper [HPS98]— that
can directly take advantage of small max-norm keys, such as ternary keys. Our
work invalidates this argument. Our new MitM attack for ternary secrets heavily
uses the small max-norm property and significantly improves over Odlyzko’s
algorithm.

The development of more involved combinatorial LWEMitM search algorithms
usually directly influences the parameter choice of NTRU-type cryptosystems,
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since the presumably best known attack on these schemes—Howgrave-Graham’s
Hybrid approach [How07]—is up to now a combination of Odlyzko’s MitM attack
on a projected sub-key and lattice reduction on a projected sub-lattice. The
Hybrid attack balances the cost of MitM and lattice reduction by properly
adjusting the dimensions of these projections.

On the one hand, there is a long line of research that decreased the complexity
of lattice reduction [NV08,Laa15,BDGL16,HKL18], using involved techniques.
On the other hand, for the combinatorial part there is still only the comparatively
simple and costly Odlyzko MitM with square root complexity of the search space.
The best quantum attack is a quantum version of Odlyzko’s MitM that achieves
third root complexity of the search space [WMM13,dBDJW18]. This complexity
imbalance currently puts large emphasis on lattice reduction in the Hybrid attack.

On the theoretical side, we cannot expect to fully break LWE with ternary keys.
In 2013, Brakerski, Langlois, Peikert, Regev, Stehlé [BLP+13] and Micciancio,
Peikert [MP13] provide reductions showing that LWE with binary or ternary
secrets is indeed still hard. However, these reductions require to increase the
LWE dimension from n to approximately n log q. Our new MitM approach gives
cryptanalytic indication that small norm secrets are indeed significantly easier to
recover.

We would like to point out that other known algebraic/combinatorial at-
tacks [GJS15,KF15,ACF+14] do not work in our scenario due to the limited
number of samples m = n, or because they require superpolynomial q.

Our Results. We give the first significant progress for MitM attacks on ternary
LWE keys since Odlyzko’s attack from 1996 [HPS98,HGSW03]. Let the LWE
secret key s ∈ Znq be taken from an exponential (in n) search space size S.
Then Odlyzko’s attack recovers s in time S0.5. E.g. random ternary secrets
s ∈ {−1,0,1}n have S = 3n and Odlyzko’s attack runs in time 3n/2 = 2log2(3)n/2. A
quantum version of Odlyzko’s attack runs in time S 1

3 [WMM13,dBDJW18].
Other attacks [MS01,Ngu21] use the structure of the public LWE key A in the

ring setting, but these speedups are polynomial in n and thus lead to run time
S0.5−o(1). We show that the exponent 0.5 can be significantly reduced for small
max-norm keys s and e in the supposedly hard LWE case where q is polynomial
in n. Notice that for larger q efficient attacks are known [ABD16].

In a nutshell, our algorithm guesses r coordinates of e ∈ Zq, where r =
O( n

log q ) = O(
n

log n ) is slightly sub-linear in the LWE dimension n. This can be
done in slightly subexponential time 2O(

n
log q ). We then solve a vectorial subset

sum problem As = b+ e on the known r coordinates. This is done by generalizing
search tree-based subset sum algorithms [HJ10,BCJ11,BBSS20] to our setting,
where the columns of A define the subset sum instance with target vector b, and
the max-norm of s defines which linear combinations are allowed.

In the original subset sum setting, we are allowed to take 0/1-combinations,
whereas for ternary s we have to take 0/±1 combinations. Intuitively, although
a larger digit set for the linear combinations increases the combinatorial com-
plexity, it might at the time weaken subset sum instances, since it introduces
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symmetries. The latter effect can be seen in our results. Our subset sum instances
on r coordinates can be solved more efficiently than the original 0/1-instances
from [HJ10,BCJ11,BBSS20], despite the fact that—as opposed to the subset
sum setting—we also have to take the complexity of guessing r coordinates of e
into account.

Eventually, our subset sum-type algorithm outputs two (sorted) lists of size
Sc, c < 0.5 from which the secret s can be recovered in time linear in the list
size by using Odlyzko’s algorithm on the remaining n − r coordinates.

We give different instantiations of our algorithm using different representations
of s = s1 + s2 as a sum of two vectors s1, s2 ∈ Z

n
q. The more representations we

have of s, the larger is the number r of guessed coordinates, and the smaller gets
c. Intuitively, choosing larger r in this tradeoff pays off, since key guessing is
slightly subexponential, whereas S is fully exponentially in n.

This bias in the tradeoff can be seen in the instantiations of our MitM. We
choose three different instantiations—called Rep-0, Rep-1, Rep-2—with an
increasing number of representations. More representations yield smaller list sizes
and therefore complexities Sc with smaller c. For Rep-0, Rep-1 and Rep-2
we optimize the search trees in our subset sum-type list construction to find a
minimal c, while using relatively small search tree depths 3 or 4.

We also show that, despite the key guessing, our MitM leads to significantly
improved non-asymptotic combinatorial attacks. As running example, we consider
the current NIST round-3 candidate encryption schemes NTRU [CDH+19] and
NTRU Prime [BCLvV17, BCLvV], which both have ternary secrets s,e. As
examples for signature schemes, we address the efficient GLP version [GLP12] of
Lyubashevksy’s scheme [Lyu12] and BLISS [DDLL13], both using ternary secrets.
For BLISS we also analyze an instance with secret s ∈ {−2,−1,0,1,2}n.

For these schemes, we illustrate the effects of our new MitM LWE key search,
instantiated with Rep-0 to Rep-2. We compute the list sizes and therefore
complexities non-asymptotically exact, but for ease of exposition throughout the
paper we ignore polynomial factors that stem from list operations like sorting
or hashing. These polynomial factors usually increase the run time, but tricks
like using rotations in ring-LWE might also decrease our complexities by other
polynomial factors.

Our non-asymptotic analysis nicely illustrates the tradeoff between guess-
ing r coordinates and decreasing the complexity of the subset sum-type list
constructions. See Table 1 for a numerical example.

(n,q,w) Odlyzko[bit] Rep-0 [bit] Rep-1 [bit] Rep-2 [bit]
NTRU (821,4096,510) 643 520 = 487+33 393 = 334+59 378 = 318+60

Table 1: Illustration of our non-asymptotic improvements.

The largest of the three proposed NTRU parameter sets is (n,q) = (821,4096),
where the ternary secret has exactly 255 1-coordinates and 255 (−1)-coordinates.
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This gives search space size S =
( 821
255,255,311

)
≈ 21286. Thus, we obtain S0.5 ≈ 2643,

or 643 bit, complexity for Odlyzko’s attack.
Using Rep-0, we decrease to 520 bit, where we require 487 bit for the subset

sum-type list construction and 33 bit for key guessing. Using Rep-1, we further
decrease to 393 bit, using 334 bit for list construction and 59 bit for guessing.
Eventually using Rep-2, we even further decrease to 378 bit, using only 318 bit
for list construction and 60 bit for guessing.

In total, our new purely combinatorial MitM on parameter set (821,4096)
has complexity 2378 ≈ S0.29—with list construction time 2318 ≈ S0.25—instead
of Odlyzko’s 2643 ≈ S

1
2 . For all six officially proposed instances of NTRU and

NTRU Prime we obtain complexity roughly S0.3. For BLISS signatures we obtain
complexities between S0.28 and S0.3, and for GLP signatures complexity S0.28.
The reason for these improved complexities is that lattice-based signatures (as
opposed to encryption schemes) typically use larger q, from which our LWE
MitM key search algorithm benefits.

The memory requirement of our attack is roughly S0.25, asymptotically and
non-asymptotically, as compared to S0.5 for Odlyzko’s attack. However, we show
that our techniques also lead to time-memory tradeoffs that improve over the
best known time-memory tradeoff for Odlyzko’s attack by van Vredendaal [vV16].

(n,q,w) Rep-2[bit] lattice [bit]
NTRU-Encypt
(509,2048,254) 227 123
(677,2048,254) 273 162
(821,4096,510) 378 196
NTRU Prime
(653,4621,288) 272 145
(761,4591,286) 301 168
(857,5167,322) 338 189

NTRU ees659ep1
(659,2048,98) 176 115

BLISS
I+II:(512,12289,154) 187 103
IV:(512,12289,230,30) 246 104

GLP I
(512,8383489,342) 225 58

Table 2: Comparison of our MitM (non-asymptotic Rep-2) with lattice estimate [APS15]

Although our MitM performs much better than the best known combinatorial
attack, our results do not invalidate the security claims of current LWE-type
systems like NTRU, BLISS and GLP. In comparison to the current best lattice
estimates ( [APS15] using Core-SVP 20.292β+16.4), our results so far cannot
compete, see Table 2. For modern schemes like NTRU, NTRU Prime and BLISS
our attack complexities are almost the square of the estimated lattice complexities.
However, for the NTRU standard ees659ep1 [ntr08] with its small weight w = 98
we achieve a purely classical MitM using complexity only 2157 for list construction
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and additionally 219 for key guessing. This is not too far off from the current
115-bit lattice estimate. Thus, our attack shows its strength in the small error
regime, as one would expect from a combinatorial attack.

We also consider it important to establish new solid combinatorial upper
bounds on the security of small key LWE-type schemes. Up to now, the LWE
parameter selection is solely based on lattice reduction estimates which involve
not only a good amount of heuristics like e.g. the Gaussian Heuristic and the
Geometric Series Assumption, but also a variety of run time formulas for esti-
mating BKZ lattice reduction. Our impression is that (for good reasons) the
security of current LWE type schemes is rather underestimated by current lattice
complexity estimates.

In contrast, our MitM uses only very mild heuristic assumptions from subset
sum-type list constructions that have already been thoroughly experimentally
verified in other settings [BCJ11,BJMM12], and our run time analysis can be
considered quite accurate.

The major open problem that arises from our work is whether our MitM
attack can be used to speed up the lattice hybrid attack by the amount that we
improve over Odlyzko’s MitM. We discuss potential directions in Section 10.

Organization of our paper. We recall known MitM attacks from Odlyzko
(Section 3) and Howgrave-Graham (Section 4, not to be confused with Hybrid).
These two MitMs are sometimes mixed in the literature, although they are
algorithmically different. We show that Howgrave-Graham’s method is strictly
inferior, but it can be used as the basis for our improved LWE MitM key search
algorithm Meet-LWE in Section 5. We instantiate Meet-LWE with different
representations Rep-0 (Section 6), Rep-1 (Section 7) and Rep-2 (Section 8).
Some improved time-memory tradeoffs are given in Section 9. In Section 10, we
discuss why Meet-LWE fails to be directly applicable to Howgrave-Graham’s
lattice Hybrid attack, and discuss possible work-arounds.

2 Preliminaries

2.1 LWE-Key and Max-Norm Key Search

Definition 1 (Small Max-Norm LWE Secret Key). An LWE public key
is a tuple (A,b) ∈ Zm×nq satisfying the identity

As = b + e mod q

for some secret vectors s ∈ Znq and e ∈ Zmq . We call s,e small max-norm LWE
secret keys if ‖s‖∞ = ‖e‖∞ = O(1). We call max-norm 1 vectors ternary. We
denote the set of n-dimensional ternary vectors by T n = Znq ∩ {−1,0,1}n.

All small max-norm LWE keys allow for simple checking of key guess correct-
ness. Namely, with overwhelming probability (over the randomness of A) there is
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a unique s such that As − b has small max-norm. Throughout the paper, we use
square A ∈ Zn×nq , and assume that A’s entries are uniformly at random from Zq.
For Ring-LWE type cryptosystems the entries are in fact dependent, but we do
not make use of any ring structure.

If not specified otherwise we use ternary LWE keys, since almost all promi-
nent running examples of NTRU-type cryptosystems in this paper— NTRU [CDH+19],
NTRU Prime [BCLvV], BLISS [DDLL13] and GLP [GLP12]—use coefficients
in {−1,0,1}. We also analyze a max-norm 2 BLISS example in Section 8.3. In
principle, our technique applies to any max-norm, but we consider our algorithms
most effective for very small max-norms like 1 and 2. Moreover, our technique is
currently harder to analyze with increasing max-norm.

Most NTRU-type systems such as the above examples do not only use small
max-norm keys, but they also restrict the number of non-zero entries.

Definition 2 (Weight). Let s = (s1, . . . , sn) ∈ Fnq. Then the weight w of s is
defined as its Hamming weight w :=

∑
si,0 1. We often specify the weight relative

to n as w = ωn for some 0 ≤ ω ≤ 1. We denote the set of n-dimensional ternary
weight-w vectors that split their weight evenly in w/2 (−1)-entries and 1-entries
by

T n(w/2) = {s ∈ T n | s has w/2 (±1)-entries each.}

For notational convenience we omit any roundings. Asymptotically, roundings
can be neglected. For real-world security estimates we round appropriately.

NTRU’s security analysis so far yields an optimal relative weight in the range
ω ∈ [13 ,

2
3 ] [CDH+19, BCLvV]. A prominent choice is ω = 3

8 , which is used in
one (out of three) suggested NTRU parameter sets with dimension n = 677 and
in two (out of three) suggested NTRU Prime parameter sets with n = 761 and
n = 857. Througout the paper when we speak of NTRU instances, we address
parameter sets of the HPS variant, but in principle our attack also applies to
HRSS, see [CDH+19]. Similar, with NTRU Prime we address the Streamlined
NTRU variant, but our attack also works for NTRU LPRime, see [BCLvV].

2.2 Search Space, Entropy and Representations

Obviously, there are 3n ternary vectors s ∈ T n. When using asymptotics (and
only in this case!), we frequently approximate sets of vectors with a fixed number
of certain coefficients by the following well-known Shannon entropy formula that
stems from Stirling’s approximation [MU17].

Lemma 1 (Multinomial approximation). Let D = {d1, . . . , dk} ⊂ Zq be a
digit set of cardinality k. The number of vectors s ∈ Znq ∩ Dn having exactly cin
many di-entries,

∑n
i=1 ci = 1, is(

n
c1n, . . . , ckn

)
≈ 2H(c1 ,...,ck )n, with entropy H(c1, . . . , ck) =

k∑
i=1

ci log2

(
1
ci

)
.
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Notice that Lemma 1 approximates the number of ternary vectors having
exactly n/3 coefficients for each of −1,0,1 as

2H( 13 ,
1
3 ,

1
3 )n = 23· 13 log2(3)n = 3n.

The straight-forward proof of Lemma 1 via Stirling approximation shows that
the approximation suppresses for the above setting a 1

n -factor, which implies that
a 1

n -fraction of all ternary vectors splits its coefficients evenly among the entries
−1,0,1. In our notation, T n(n/3) is up to a (small) polynomial factor as large as
T n.

For ease of notation, in the following we always assume that we search for
ternary keys with a predefined portion of entries. This is true e.g. for NTRU,
GLP and BLISS. However, we can easily generalize our attack to systems with
arbitrary portions of entries, such as NTRU Prime, by simply guessing each
portion. Since we only consider constant max-norm, such a guessing costs only
an nO(1)-factor.

2.3 Asymptotics and Real-World Applications

Although our NTRU-applications in mind require real-world security estimates, we
usually start our analysis with asymptotic notion, before giving non-asymptotics
for concrete instances. Asymptotics often allows for much cleaner results, clearly
indicating the dependence on the involved LWE parameters (n,q,w). In the
asymptotic setting, we suppress all polynomial factors. For exponential run times,
we simply round the run time exponent upwards, e.g. n2 · 2n/3 is upper bounded
as 20.334n.

All modern NTRU-type cryptosystems require q = Ω(n), encryption schemes
have such a lower bound to eliminate decryption errors. E.g. NTRU Prime
restricts the weight w ≥ 1

3 n and chooses q ≥ 16w + 1, and NTRU recommends
only parameter sets q ∈ [83 n, 16

3 n]. Restricting q = O(n) is used to obtain small
ciphertexts/signatures.

3 Odlyzko’s Meet-in-the-Middle algorithm

Odlyzko’s attack was originally designed for binary vectors, but the following
generalization to ternary (or even small max-norm) vectors is straight-forward.

In the following, we use the short-hand multinomial notion
( n
a1 ,...,ak , ·

)
, where ·

stands for the missing argument n − a1 − . . . − ak . Analogous, we use the entropy
notion H(c1, . . . , ck, ·), where · represents the missing arguments 1 − c1 − . . . − ck .

Let the search space consist of all ternary weight-w vectors s ∈ T n(w/2)
with even number w/2 of ±1. By Lemma 1, the search space size S can be
approximated as

S =

(
n

w
2 ,

w
2 , ·

)
≈ 2H(ω2 ,

ω
2 , ·)n.
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We split s = (s1, s2) ∈ T
n/2(w/4) × T n/2(w/4) in ternary weight-w/2 vectors s1, s2

with again an even split of ±1. Notice that we may rerandomize the positions
of (±1)-entries in s via permutation of A’s columns. The probability that a
rerandomized s has the desired weight distribution split can be estimated via
Lemma 1 as ( n

2
w
4 ,

w
4 , ·

)2( n
w
2 ,

w
2 , ·

) ≈ 22H(ω2 ,
ω
2 , ·)

n
2 −H(

ω
2 ,

ω
2 , ·)n = 1.

Since ≈ suppresses polynomial factors, our probability is more precisely 1/poly(n).
Thus via permutation of A’s columns we always achieve the desired distribution
after poly(n) iterations. Therefore, without loss of generality we always assume
throughout this paper that we can evenly split all coefficients of our secrets (up
to minor rounding issues).

Let A = (A1 |A2) ∈ Z
n×n
q , where A1 (respectively A2) denote the left (re-

spectively right) n/2 columns of A. From Definition 1 we obtain the identity
A1s1 = b − A2s2 + e mod q. Thus, the terms A1s1 and b − A2s2 differ by at most
±1. We may rewrite this as

A1s1 + e1 = b − A2s2 + e2 mod q where e1,e2 ∈ {0,1}n. (1)

Since we do not know the error vectors e1,e2, Odlyzko proposed a simple
locality sensitive hashing approach. We assign to each x = (x1, . . . , xn) ∈ Znq
coordinate-wise the following binary hash labels `(x)i that can be interpreted as
most significant bits of the xi

` : Znq → {0,1}n with `(x)i =
{

0 if 0 ≤ xi < bq/2c − 1
1 if bq/2c ≤ xi < q − 1

. (2)

For any candidates s1, s2 we hash A1s1 and b − A2s2. Notice that for the two
border values bq/2c − 1 and q − 1 the error vectors e1,e2 may result in a flip of
the hash value. Therefore, we assign for these entries both labels 0 and 1.

Example: Let q = 4096. Then the vector x = (0,2047,3000,4095) with border
values 2047,4095 in positions 2,4 gets assigned all four labels from the set
{0} × {0,1} × {1} × {0,1}.

For all elements we store their labels (sorted). Let X be a random variable
for the number of border values for each entry. Then every entry is stored in 2X
places. Since E[X] = 2

q n = Θ(1) , every element occupies only linear space.
Odlyzko’s MitM algorithm is given in Algorithm 1, complexities for our

addressed cryptosystems can be found in Table 3.

3.1 Correctness

By definition of the hash function ` every candidate tuple (s1, s2) that satisfies
Equation (1) for some binary e1,e2 ∈ {0,1}n leads to colliding labels `(A1s1) =
`(b − A2s2).
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Algorithm 1 Odlyzko’s Meet-in-the-Middle
Input: LWE public key (A,b) ∈ Zn×nq × Zmq , weight w ∈ N
Output: s ∈ T n(w/2) satisfying e := As − b mod q ∈ T n

1: for all s1 ∈ T n/2(w/4) do
2: Store (s1, `(A1s1)) in list L1.
3: for all s2 ∈ T n/2(w/4) do
4: Store (s2, `(b − A2s2)) in list L2.
5: for all matches of (s1, ·) and (s2, ·) in the second component of L1 × L2 do
6: if A(s1, s2) − b mod q ∈ T n then return s = (s1, s2)

(n,q,w) S Odlyzko
NTRU (509,2048,254) 754 bit 377 bit

(677,2048,254) 891 bit 445 bit
(821,4096,510) 1286 bit 643 bit

NTRU Prime (653,4621,288) 925 bit 463 bit
(761,4591,286) 1003 bit 502 bit
(857,5167,322) 1131 bit 566 bit

BLISS I+II (512,12289,154) 597 bit 299 bit
GLP I (512,8383489,342) 802 bit 401 bit

Table 3: Odlyzko’s MitM complexity.

Contrary, let (s1, s2) be a candidate tuple that does not satisfy Equation (1)
for some binary e1,e2 ∈ {0,1}n. By A’s randomness we have colliding labels
`(A1s1) = `(b − A2s2) with probability only (roughly) 2−n.

Notice that Odlyzko’s locality sensitive hashing makes use of a large field size
q to separate wrong candidates (s1, s2) from the unique correct solution.

3.2 Runtime

Runtime and memory consumption of Algorithm 1 is dominated by the list sizes

|L1 | = |L2 | =

( n
2

w
4 ,

w
4 , ·

)
≈ 2H(ω2 ,

ω
2 , ·)

n
2 =
√
S. (3)

Notice that in line 5 of Algorithm 1 we expect 2−n · |L1 | · |L2 | matches, which is
larger than |L1 |, |L2 |, if |L1 |, |L2 | are larger than 2n. In this case, we may modify
Odlyzko’s hash function such that its range gets greater than the list sizes (by
assigning more than two labels, see also Section 9).

4 Howgrave-Graham’s MitM algorithm

There is a second Meet-in-the-Middle attack that was first analyzed in [HGSW03].
Howgrave-Graham described it in [How07] as Odlyzko’s MitM, which let people
mix (and confuse) both approaches in the literature.
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We briefly discuss this second MitM, which we attribute to Howgrave-Graham.
We show that it performs worse than Odlyzko’s MitM for ternary vectors for
every weight w. However, Howgrave-Graham’s method is a first step to our new
MitM, since both approaches are based on ambiguous sum representations, also
known as the representation technique.

Whereas Odlyzko splits s = (s1, s2) uniquely as n/2-dimensional si, Howgrave-
Graham represents s ∈ T n(w/2) ambiguously as s1 + s2 with n-dimensional
si ∈ T n(w/4). As a consequence, the search space for the si is of increased size

S(1) =

(
n

w
4 ,

w
4 , ·

)
, (4)

as compared to
( n

2
w
4 ,

w
4 , ·

)
from (3) in Odlyzko’s MitM. But the ambiguity also

introduces R(1) =
(w/2
w/4

)
·
(w/2
w/4

)
representations of the desired solution s, since each

of the w/2 1-coordinates in s can be represented as 1 + 0 or 0 + 1, and analogous
for the w/2 (−1)-coordinates.

Note that our MitM identity from Equation (1) now becomes As1 + e1 =
b − As2 + e2. We describe Howgrave-Graham’s approach in Algorithm 2. Its
correctness follows analogous to Section 3.1.

Algorithm 2 Howgrave-Graham’s Meet-in-the-Middle
Input: LWE public key (A,b) ∈ Zn×nq × Zmq , weight w ∈ N
Output: s ∈ T n(w/2) satisfying e := As − b mod q ∈ T n

1: repeat
2: Sample some s1 ∈ T n(w/4). Store (s1, `(A1s1)) in list L1.
3: Sample some s2 ∈ T n(w/4). Store (s2, `(b − A2s2)) in list L2.
4: until there exists a match (s1, ·), (s2, ·) in 2nd component of L1×L2 with s1+s2 ∈ T n

5: if A(s1 + s2) − b mod q ∈ T n then return s = (s1 + s2)

Run Time. In each iteration of the repeat-loop we hit a vector s1 or s2 that is
part of a representation (s1, s2) of s with probability p = R(1)

S(1)
. After

√
R(1) hits,

by the birthday paradox we expect to have both parts s1, s2 of a representation
in L1, L2. Thus the expected number of iterations in Algorithm 2 is

p−1 ·
√

R(1) =
S(1)

R(1)
·
√

R(1) =
(

n
w
4 ,

w
4 , ·

)
·

(w
2
w
4

)−1
≈ 2(H(

ω
4 ,

ω
4 , ·)−

ω
2 )n.

We see in Figure 1 that the run time exponent H(ω4 ,
ω
4 , ·) −

ω
2 is larger than

Odlyzko’s run time exponent 1
2 H(ω2 ,

ω
2 , ·) for every ω ∈ [

1
3 ,

2
3 ] (in fact this holds for

all 0 ≤ ω ≤ 1). E.g. for the prominent NTRU setting ω = 3
8 we obtain exponents

0.697 versus 0.665. Hence, one should always prefer Odlyzko’s algorithm for
ternary secrets.
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Fig. 1: Run Time Comparison Odlyzko vs Howgrave-Graham

Intuitively, in a subset sum-type approach of the representation technique as
in [HJ10], one would try to construct two lists L1, L2 with entries (s1, `(As1)),
(s2, `(b − As2)) recursively such that on expectation L1 × L2 contains a single
representation. However, the non-linearity of Odlyzko’s hash function ` hinders
such a direct recursive application of the representation technique. We solve this
technical issue in the following section.

5 Our New MitM Algorithm – High Level Idea

Let us first state our new LWE key search algorithm Meet-LWE in a high-
level manner, for an illustration see Figure 2. Moreover, we introduce some
more scalable notation that will prove useful in subsequent sections. For ease of
exposition, we again focus on ternary secret LWE keys s,e ∈ T n.

As in Section 4, we represent a weight-w ternary s ∈ T n as a sum s1 + s2 of
n-dimensional s1, s2 in R(1) ways. Here, s1, s2 may be ternary weight-w/2 vectors
(Section 6), ternary vectors with weight larger than w/2 (Section 7), or even
non-ternary vectors (Section 8). As a rule of thumb, the larger the search space
for s1, s2, the larger also the number of representations R(1).

Let us start with the LWE identity As1 = b − As2 + e for some ternary e ∈
{0,1}n. Define e1 ∈ T

n/2 × 0n/2 and e2 ∈ 0n/2 × T n/2 such that e = e2 − e1. Then
we obtain

As1 + e1 = b − As2 + e2 with e1 ∈ T
n/2 × 0n/2,e2 ∈ 0n/2 × T n/2. (5)

Thus, we split e in a typical MitM fashion into e1,e2.
Assume for a moment that we know the error vector e, and thus e1,e2. Let

r = blogq R(1)c, and fix a randomly chosen target vector t ∈ Zrq. Moreover, let us
define the projection πr on the first r coordinates as

πr : Znq → Zrq, x = (x1, . . . , xn) 7→ (x1, . . . , xr ), (6)

12



Tree Tree

L(1)1

t

L(1)2

t

L(0)

n − r

r

T (0)

Fig. 2: Meet-LWE high level structure

which is a ring homomorphism (as opposed to Odlyzko’s hash function).
Notice that the range Zrq of πr has size qr < qlogq R(1) = R(1). Therefore,

we expect that for at least one out of the R(1) representations (s1, s2) of s its
projection via πr matches the random target t, i.e.

πr (As1 + e1) = t mod q.

By Equation (5) and πr ’s ring homomorphism property, this automatically implies
the second identity πr (b − As2 + e2) = t mod q, as well. Let us stress that for
checking both identities it suffices to only know the first r coordinates πr (e) of e.
As in Equation (5), we may split πr (e) = πr (e2) − πr (e1).

Let ` : Fnq → {0,1}n be Odlyzko’s hash function from Equation (2). Our goal
is to construct lists L(1)1 , L(1)2 (see also Figure 2) satisfying

L(1)1 = {(s1, `(As1)) | πr (As1 + e1) = t mod q},

L(1)2 = {(s2, `(b − As2)) | πr (b − As2 + e2) = t mod q}. (7)

Our resulting LWE MitM key search is given in Algorithm 3, called Meet-LWE.

5.1 Correctness

In a nutshell, Meet-LWE (Algorithm 3) constructs an s that fulfills As = b + e
on r coordinates exactly, and on the remaining n − r coordinates approximately
via Odlyzko’s hash function. Thus, Meet-LWE’s correctness follows from the
discussion in Section 3 and 4.

While Odlyzko’s matching of s1, s2 guarantees that A(s1 + s2) − b ∈ T n (with
high probability), it does not ensure that s = s1 + s2 is a ternary weight-w

13



Algorithm 3 LWE Key Search Meet-LWE (High-Level)
Input: LWE key (A,b) ∈ Zn×nq × Znq , weight w ∈ N
Output: ternary weight-w s satisfying e = As − b mod q ∈ T n

1: We represent s = s1 + s2 using different vector sets for s1, s2 (see Sections 6 to 8).
Let R(1) be the resulting number of representations. Let r = blogq(R(1))c.

2: for all πr (e1) ∈ T r/2 × 0r/2 do
3: Construct L(1)1 from Equation (7), using some tree-based list construction.
4: for all πr (e2) ∈ 0r/2 × T r/2 do
5: Construct L(1)2 from Equation (7), using some tree-based list construction.
6: . For both list constructions see Sections 6 to 8.
7: for all matches of (s1, ·) and (s2, ·) in the second component of L1 × L2 do
8: if (s := s1 + s2 ∈ T n has weight w) and (As − b mod q ∈ T n) then return s

vector. Therefore, we check for consistency of s in line 8 of Algorithm 3. Filtering
out inconsistent solutions is called Match-and-filter, a standard technique for
representations [BCJ11,BJMM12].

5.2 Runtime

Algorithm 3 has two outer for-loops that each guess r/2 coordinates of e with
inner loops that are subset sum-type list construction steps.

Let us start with the outer loop’s guessing complexity Tg. Assume e is a
random ternary vector. Then the guessing complexity is

Tg = 3r/2 ≤ 3
1
2 logq R(1) = 2

1
2 log2(3)

log2 R(1)
log2 q .

For low weight e we may further improve. This could be e.g. done for BLISS,
but for simplicity we ignore such improvements in this paper. For all other
cryptosystems that we address in our applications e is not low weight.

In our instantiations of Meet-LWE in the following sections, we have
log2 R(1) = O(n). Since q = Ω(n) (see Section 2), we obtain a guessing complexity
of

Tg = 2O
(

n
log q

)
= 2O

(
n

log n

)
.

Since the inner loop has—as in Odlyzko’s attack—list construction complexity
T` = 2O(n), the overall asymptotic complexity T = Tg ·T` is fully determined by the
inner loop’s complexity T` , and guessing r coordinates of e just adds an o(1)-term
to the inner loop’s run time exponent!

In the following sections, we see that guessing πr (e1), πr (e2) also leads to
tolerable non-asymptotic overheads Tg for real-world parameters, for which we
cannot simply neglect a 2O(

n
log n )-term.

In Section 6-8, we instantiate Algorithm 3 with varying representations
of ternary s with increasing R(1). As a warm-up, we start in Section 6 with
Howgrave-Graham’s representation from Section 4 as s = s(1)1 +s(1)2 ∈ T

n(w/2) with

14



ternary s(1)1 , s(1)2 ∈ T
n(w/4). This already leads to an (asymptotical) complexity

improvement from S(1)√
R(1)

downto S(1)

R(1)
, superior to Odlyzko’s attack.

6 Rep-0: First Instantiation of Meet-LWE

The reader is advised to compare Figures 2 and 3. Meet-LWE’s tree-based list
construction from Figure 2 is realized by a single additional tree layer in Figure 3.

L(2)1 L(2)2 L(2)3 L(2)4

s(2)1 , s(2)3 ∈ T
n
2
(w

8
)
× 0

n
2

s(2)2 , s(2)4 ∈ 0
n
2 × T

n
2
(w

8
)

L(1)1

t

L(1)2

t

s(1)1 , s(1)2 ∈ T n
(w

4
)

T (1)

L(0) s ∈ T n
(w

2
)

}
r

}
r

T (0)

Fig. 3: Rep-0 instantiation of Meet-LWE

Let s ∈ T n(w/2) be the weight-w ternary secret. We represent s as the sum of
weight-w/2 ternary secrets s(1)1 , s(1)2 ∈ T

n(w/4).
Recall from Section 4, Equation (4) that the search space for the s(1)i is of

size S(1) =
( n
w
4 ,

w
4 , ·

)
≈ 2H(ω4 ,

ω
4 , ·)n and we have R(1) =

(w/2
w/4

)2
≈ 2ωn representations.

Hence the lists L(1)1 , L(1)2 in Algorithm 3 are both of size

L(1) =
S(1)

qr
≈

S(1)

R(1)
=

(
n

w
4 ,

w
4 , ·

) (w
2
w
4

)−2
≈ 2(H(

ω
4 ,

ω
4 , ·)−ω)n.

Let us construct L(1)1 , L(1)2 in a standard MitM manner. Namely, we enumerate
s(1)1 ∈ T

n(w/4) as the sum of

s(2)1 ∈ T
n
2 (w/8) × 0

n
2 and s(2)2 ∈ 0

n
2 × T

n
2 (w/8).

Analogous, we proceed with s(1)2 . All four s(2)i are from a search space of size
S(2) =

√
S(1). Thus, on level 2 of our complete binary search tree we obtain four
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lists L(2)1 , . . . , L(2)4 each of size

L(2) = S(2) =
( n

2
w
8 ,

w
8 , ·

)
≈ 2

1
2 H(

ω
4 ,

ω
4 , ·)n.

The time T (1) to construct the level-1 lists L(1)1 , respectively L(1)2 , from the (sorted)
level-2 lists L(2)1 , L(2)2 , respectively L(2)3 , L(2)4 , is

T (1) = max{L(2), L(1)}.

From Section 3.2, we know that Meet-LWE’s final approximate matching
on n − r coordinates can be realized via Odlyzko’s hash function in time

T (0) = max{L(1),2−(n−r)(L(1))2} = L(1) for all ω ∈ [0,1].

Thus, the total run time of list construction is T` = max{T (1),T (0)} = max{L(2), L(1)}.
This implies that we obtain run time exponent

max
{

1
2 H

(ω
4 ,
ω

4 , ·
)
,H

(ω
4 ,
ω

4 , ·
)
− ω

}
,

which improves on Odlyzko’s exponent 1
2 H(ω2 ,

ω
2 , ·) for every ω ∈ [0,0.87].

Remark 1. We could slightly improve our Rep-0 attack such that the size of L(1)

dominates the run time for all ω ≤ 2
3 , i.e. up to random s ∈ T n. As described

above, L(2) dominates for ω ≥ 0.58. However, such an improvement comes at the
cost of adding a third tree layer. As Rep-0 is mainly for didactical reasons to
make the reader familiar with the technique, we chose to sacrifice optimality for
the sake of a simpler algorithmic description. The Rep-0 results are superseeded
anyway in subsequent sections, where we optimize our tree depth.

Theorem 1. Let s,e be ternary LWE key with s having weight w = ωn. Then s
can be found in time and space (neglecting polynomial factors)

3logq

(
(w/2w/4)

)
·max

{( n
2

w
8 ,

w
8 , ·

)
,

(
n

w
4 ,

w
4 , ·

) (w
2
w
4

)−2
}
≈ 2max{ 1

2 H(
ω
4 ,

ω
4 , ·),H(

ω
4 ,

ω
4 , ·)−ω}n.

Proof. We have R(1) =
(w/2
w/4

)2
representations. In Meet-LWE we guess in total

r = blogq R(1)c coordinates of e ∈ T n via some standard MitM approach in time

Tg = 3r/2 ≤ 3logq

(
(w/2w/4)

)
.

The run time T` of Meet-LWE’s list construction is dominated by the maximum
of the sizes L(2), L(1) of the lists on level 2 and 1:

T` = max
{
L(2), L(1)

}
= max

{
S(2),

S(1)

R(1)

}
= max

{( n
2

w
8 ,

w
8 , ·

)
,

(
n

w
4 ,

w
4 , ·

) (w
2
w
4

)−2
}
.

Meet-LWE’s total run time is T = Tg · T` . �
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(n,q,w) Odlyzko Rep-0 [bit] logSRep-0
NTRU (509,2048,254) 377 bit 305 = 287 + 18 0.40

(677,2048,254) 445 bit 364 = 347 + 18 0.41
(821,4096,510) 643 bit 520 = 487 + 33 0.40

NTRU Prime (653,4621,288) 463 bit 370 = 352 + 18 0.40
(761,4591,286) 502 bit 408 = 390 + 18 0.41
(857,5167,322) 565 bit 459 = 439 + 20 0.41

BLISS I+II (512,12289,154) 299 bit 247 = 238 + 9 0.41
GLP I (512,8383489,342) 401 bit 325 = 314 + 12 0.41

Table 4: Non-asymptotic complexity comparison Odlyzko (Section 3) vs. Rep-0.

In Table 4 we computed Meet-LWE’s complexity with our Rep-0 repre-
sentations using the exact formula on the left hand side of Theorem 1 (and not
the H(·)-approximation). In the notation of Section 5 we split Meet-LWE’s
complexity T in the cost T` of the inner loop for list construction, and Tg of the
outer loop for guessing r/2 coordinates. E.g. the NTRU instance (509,2048,254)
has total complexity T = 305 bit, which splits in T` = 287 bit for list construction,
and Tg = 18 bit for guessing. Since we round all complexities to the next integers,
T` + Tg might deviate from T by one.

We observe that Rep-0 already reduces Odlyzko’s bit complexities by roughly
18%, resulting in complexity S0.41. Due to a large q, key guessing in BLISS and
GLP can be performed more efficiently, as can be observed by the small Tg-values
of 9 and 12 bit.

7 Rep-1: Using Additional Ones

The idea of Rep-1 is to represent a weight-w ternary s ∈ T n(w/2) as the sum
of s(1)1 , s(1)2 ∈ T

n(w(1)), where w(1) > w/4. In comparison to Section 6, this further
increases the number R of representations. We build a complete binary search
tree T of depth 4, see Figure 4. In the following, we describe the lists L(j)i on level
j.

7.1 Level-1 lists

Define w(0) = w/2 and w(1) = w(0)/2 + ε (1). Let s1, s2 ∈ Tn(w(1)). Notice that
s1 + s2 ∈ T

n(w(0)) iff in the sum ε (1) many (−1)-coordinates cancel with 1-
coordinates, and vice versa. In the terminology of representations, we additionally
represent 0 as (−1) + 1 and 1 + (−1). Recall that in Section 6 we represented ±1
as ±1 + 0 and 0 ± 1, but 0 was always represented solely as 0 = 0 + 0.

Therefore, we increase the number of level-1 representations of s ∈ T n(w(0))
to

R(1) =
(
w(0)

w(0)

2

)2

·

(
n − 2w(0)

ε (1), ε (1), ·

)
,
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L(4)1 L(4)2 L(4)3 L(4)4 L(4)5 L(4)6 L(4)7 L(4)8 L(4)9 L(4)10 L(4)11 L(4)12 L(4)13 L(4)14 L(4)15 L(4)16

s(4)2i ∈ T
n
2
(w(3)

2
)
× 0

n
2

s(4)2i+1 ∈ 0
n
2 × T

n
2
(w(3)

2
)

L(3)1 L(3)2 L(3)3 L(3)4 L(3)5 L(3)6 L(3)7 L(3)8
s(3)
i
∈ T n

( w(2)
2 + ε (3)︸        ︷︷        ︸

w(3)

)

L(2)1 L(2)2 L(2)3 L(2)4 s(2)
i
∈ T n

( w(1)
2 + ε (2)︸        ︷︷        ︸

w(2)

)
}r(3)

L(1)1 L(1)2 s(1)
i
∈ T n

( w(0)
2 + ε (1)︸        ︷︷        ︸

w(1)

)
}
r(2)

}
r(1) = r

T (3)

T (2)

T (1)

Fig. 4: Rep-1 instantiation of Meet-LWE with depth d = 4

where the second factor accounts for our additional representations. On the
downside, an increased number w(1) of ±1 also increases the search space size to

S(1) =
(

n
w(1),w(1), ·

)
.

Our goal is to construct two lists L(1)1 , L(1)2 satisfying Equation (7), both having
size L(1) = S(1)/R(1). But as opposed to Section 6, due to the increased S(1) we
have to construct these lists recursively, until the search space gets small enough
to apply a simple MitM construction.

7.2 Level 2 ≤ j < d lists

For simplicity of exposition, we perform our analysis for trees of depth d = 4, such
that the reader may easily follow via Figure 4. The analysis naturally generalizes
to any constant d, see also Appendix A.2.

On level j ∈ {1,2,3} of our complete binary depth-4 search tree T we construct
lists L(j)1 , . . . , L(j)2 j with vectors s(j)1 , . . . , s(j)2 j of weight w(j) = w(j−1)/2 + ε (j).
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This gives us representations and search space size

R(j) =
(
w(j−1)

w( j−1)

2

)2

·

(
n − 2w(j−1)

ε (j), ε (j), ·

)
and S(j) =

(
n

w(j),w(j), ·

)
.

Let us now describe the level-2 lists more precisely, the level-3 lists are defined
analogous. We rewrite Equation (5) as the following 4-sum for some ternary
unknowns e1,e2:

As(2)1 + As(2)2 + e1 = b − As(2)3 − As(2)4 + e2 mod q.

Let r (1) := r = blogq R(1)c be the number of guessed coordinates in Meet-
LWE (Algorithm 3), and let the fixed target be t = πr (1) (As(1)1 + e1) ∈ Z

r (1)
q . Let

r (2) = blogq R(2)c be the number of fixed coordinates on level-2, which is a subset
of the r (1) fixed coordinates on level 1. Choose two random t(2)1 , t(2)2 ∈ Z

r (2)
q . Then

the level-2 lists are defined as

L(2)1 = {(s
(2)
1 , As(2)1 ) | πr (2) (As(2)1 ) = t(2)1 mod q},

L(2)2 = {(s
(2)
2 , As(2)2 ) | πr (2) (As(2)2 + e1) = πr (2) (t) − t(2)1 mod q},

L(2)3 = {(s
(2)
3 ,b − As(2)3 ) | πr (2) (b − As(2)3 ) = t(2)2 mod q},

L(2)4 = {(s
(2)
4 ,−As(2)4 ) | πr (2) (−As(2)4 + e2) = πr (2) (t) − t(2)2 mod q}. (8)

Let s(1)1 = s(2)1 + s(2)2 . Notice that by definition in Equation (8) and the linearity
of π we automatically have

πr (2) (As(1)1 +e1) = πr (2) (A(s
(2)
1 +s(2)2 )+e1) = πr (2) (As(2)1 )+πr (2) (As(2)2 +e1) = πr (2) (t) mod q.

Analogous, for s(1)2 = s(2)3 + s(2)4 we obtain πr (2) (b − As(1)2 + e2) = πr (2) (t) mod q.
That is, we automatically satisfy our target-t condition for the level-1 lists

L(1)1 , L(1)2 from Equation (7) on r (2) coordinates. It remains to match the elements
in L(2)1 × L(2)2 and L(2)3 × L(2)4 on the remaining r (1) − r (2) coordinates.

Eventually, the level-3 lists are constructed via a MitM approach out of level-4
lists, similar to Section 6.

7.3 Correctness

Notice that as opposed to the level-1 lists, we compute in (8) the value As(2)i

instead of the Odlyzko-hashed value `(As(2)i ). So whereas on level-1, we compute
an approximate matching of vectors via comparing hash values of some locality
sensitive hash function, on all other levels j > 1 we compute an exact (non-hashed)
matching of the projected vectors on r (j) coordinates.

On every level j ≥ 1, our matching ensures that (on expectation) at least one
representation of the solution satisfies all conditions. Thus, we expect that the
approximate matching of level-1 lists L(1)1 and L(1)2 provides the desired solution
in Meet-LWE.
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Match-and-Filter. Notice that the sum of vector from T n(w(j)), 1 ≤ j < 4, is in
general not in the target distribution T n(w(j−1)). We filter out all vector sums
that do not have exactly w(j−1) of each (−1)- and 1-coordinates.

7.4 Run Time

The run time of Rep-1 is dominated by constructing all lists of size L(j) on all
levels j ≥ 0.

On level-4, we have sorted lists of size L(4) =
√

S(3). Ignoring polynomial
factors, the construction of each level-4 list costs time T (3) = L(3). Since we match
level-4 list elements on r (3) coordinates, the construction of level-3 lists costs on
expectation time

T (3) =
(L(4))2

qr (3)
.

Since level-3 list elements already sum to the target e = e2−e1 on r (3) coordinates,
for the construction of level-2 lists we have to match elements on the remaining
r (2) − r (3) coordinates. This can be done in expected time

T (2) =
(L(3))2

qr (2)−r (3)
.

Notice that (L(3))2

qr (2)−r (3)
≥ L(2), since we filter out matching level-3 vector sums that

are not in T n(w(2)).
Define r (4) = 0. Then in general we can construct every level- j list for 4 > j > 0

in time
T (j) =

(L(j+1))2

qr ( j)−r ( j+1) .

Once we have the level-1 lists L(1)1 , L(2)2 we construct the solution via Odlyzko’s
approximate matching. Since we already exactly matched elements on r (1) =
blogq R(1)c elements, it remains to approximately match on n − r (1) coordinates.
This can be done in time

T (0) =
(L(1))2

2n−r (1)
.

The list construction time T` and memory complexity M is then in total

T` = max{T (0), . . . ,T (4)} and M = max{L(1), . . . , L(4)}.

The following optimizations balance out the dominating terms T (1),T (2),T (3).

7.5 Optimization: Asymptotic and Non-Asymptotic

In Table 5 we optimized for different relative weights ω Meet-LWE’s list con-
struction cost T` , which depends on n and ω only (and not on q). Asymptotically,
we can neglect the guessing cost Tg. We write T` = 2c(ω)n(1+o(1)) for some constant
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ω Odlyz. Rep-0 Rep-1 logS T` ε̄ (1), ε̄ (2), ε̄ (3)
0.3 0.591 0.469 0.298 0.25 0.054, 0.024, 0.005
0.375 0.665 0.523 0.323 0.24 0.056, 0.025, 0.005
0.441 0.716 0.561 0.340 0.24 0.061, 0.028, 0.007
0.5 0.750 0.588 0.356 0.24 0.062, 0.028, 0.007
0.62 0.790 0.625 0.389 0.25 0.069, 0.028, 0.006
0.667 0.793 0.634 0.407 0.26 0.068, 0.025, 0.006

Table 5: Asymptotics of Rep-1 compared to Odlylzko (Section 3) and Rep-0 (Section 6),
where we also optimized the search tree depth for Rep-0 (see Remark 1).

c(ω) that we provide in Table 5, including the optimized additional ones that we
add on level j, parametrized by ε̄ (j) = ε ( j)

n .
Since the Rep-I exponent is roughly half of the Odlyzko MitM exponent, the

list construction takes about S 1
4 instead of S 1

2 .

(n,q,w) Odly. Rep-1 [bit] params
NTRU-Encypt
(509,2048,254) 377 243 = 212 + 31 3: 18,4

230 = 191 + 38 4: 36,16,4
(677,2048,254) 445 281 = 246 + 35 3: 22,5

275 = 229 + 45 4: 42,19,4
(821,4096,510) 643 423 = 375 + 49 3: 24,6

393 = 334 + 59 4: 56,22,6
NTRU Prime
(653,4621,288) 463 288 = 254 + 33 3: 22,5

274 = 232 + 42 4: 42,19,4
(761,4591,286) 502 313 = 277 + 35 3: 24,6

303 = 257 + 46 4: 48,22,5
(857,5167,322) 565 350 = 311 + 39 3: 27,6

338 = 290 + 49 4: 47,20,3
BLISS I+II

(512,12289,154) 299 189 = 169 + 20 3: 17,4
187 = 163 + 24 4: 27,11,1

GLP I
(512,8383489,342) 401 258 = 242 + 16 3: 16,3

241 = 222 + 19 4: 34,12,4
Table 6: Non-asymptotic comparison Odlyzko vs. Rep-1.

The parameters ε̄ (j) are useful starting points for the non-asymptotic analysis
in Table 6. Column Rep-1 is in a bit complexity format T = T` + Tg, i.e. the
total run time is expressed via T` for list construction and Tg for guessing. As an
example take the first entry 243 = 212+ 31. List construction takes time T` = 212
bit and key guessing Tg = 31 bit for a total running time of T = 243 bit.
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The params-column 4 : 36,16,4 in Table 6 denotes that we construct a search
tree of depth 4, where we add 36 additional ±1 for every level-1 list, 16 additional
±1 for every level-2 list, and 4 additional ±1 for every level-3 list. Notice that the
relative weight ω = 0.5 in Table 5 has (ε̄ (1), ε̄ (2), ε̄ (3)) = (0.062,0.028,0.007) and
509 · (ε̄ (1), ε̄ (2), ε̄ (3)) ≈ (32,14,4). Therefore, the optimal value (36,16,4) is already
well approximated by the asymptotic analysis. In fact, the parameters (32,14,4)
also yield 230 bit complexity.

We optimized every instance with depth-3 and depth-4 search trees. Increasing
to depth 5 did not give any further improvements, as predicted by our asymptotic
analysis that was also optimal for depth-4 trees.

We observe from Table 6 that for depth-4 trees the list construction bit
complexity of T` (and memory consumption) only—e.g. without Tg—is roughly
half of Odlyzko’s MitM, as predicted by Table 5. On the downside, in comparison
to Rep-0 in Table 4 the guessing complexity Tg increases quite significantly.

In a nutshell, Meet-LWE uses the additional representations to decrease T`
at the cost of Tg. Since guessing is asymptotically cheaper than list construction,
this tradeoff provides in total—already for practical size parameter settings—
significant savings.

8 Rep-2: Extending the Digit Set with Two

In Section 7 we already saw that additional ones lead to a larger number R(1) of
representations, thereby significantly improving run times. In this section, we
extend the digit set with ±2, resulting in yet slight improvements.

The benefit of representing ternary s via s(1)1 +s(1)2 with s(1)1 , s(1)2 ∈ {−2,−1,0,1,2}n
is that we obtain additionally the following variety of representations for each
coordinate of s:

(−1) = (−2) + 1 = (−1) + 0 = 0 + (−1) = 1 + (−2),
1 = (−1) + 2 = 0 + 1 = 1 + 0 = (−2) + 1, (9)
0 = (−2) + 2 = (−1) + 1 = 0 + 0 = 1 + (−1) = 2 + (−2).

Moreover, Rep-2 also allows us for the first time to analyze LWE secrets s ∈
Znq ∩ {±2,±1,0}, as they appear e.g. in some BLISS instances, see Section 8.3.

The benefits of Rep-2 come at the price of a quite involved technical analysis,
especially for counting the new representations via new optimization parameters.
Since Rep-2 is algorithmically close to Rep-1 from Figure 4, in the following
we only state the results. A detailed analysis including the semantics of our
optimization parameters ε (j)

k`
is presented in Appendix A.

While we obtained signicant savings from Rep-0 to Rep-1, the savings from
Rep-2 are in comparison quite smallish. This demonstrates that our technique
converges quite quickly, once we construct sufficiently many representations.
Similar effects were already observed in the subset sum context [HJ10,BCJ11,
BBSS20].
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8.1 Optimization – Asymptotics
As in Section 7.5 we asymptotically neglect the guessing time Tg. The total run
time T is dominated by the list construction T` = 2c(ω)(n+o(n))) for some constant
c(ω) that we provide in Table 7. We obtained optimal parameters for depth d = 4,
further increasing the depth did not improve. As usual, we denote ε̄ (j)

k`
=

ε
( j)
k`

n . In
our optimization, we always had ε̄ (2)20 = ε̄

(3)
20 = ε̄

(3)
21 = ε̄

(3)
22 = 0.

ω Odlyz. Rep-1 Rep-2 logS T` ε̄
(1)
10 , ε̄

(1)
20 , ε̄

(1)
21 , ε̄

(2)
10 , ε̄

(2)
21 , ε̄

(2)
22 , ε̄

(3)
10

0.3 0.591 0.298 0.295 0.25 50 , 0 , 1 , 26 , 0 , 0, 6 [10−3]
0.375 0.665 0.323 0.318 0.24 44 , 1 , 3 , 24 , 1 , 1, 7 [10−3]
0.441 0.716 0.340 0.334 0.23 41 , 1 , 4 , 25 , 1 , 1, 7 [10−3]
0.5 0.750 0.356 0.348 0.23 40 , 1 , 4 , 25 , 1 , 1, 7 [10−3]
0.62 0.790 0.389 0.371 0.24 35 , 1 , 5 , 26 , 1 , 1, 7 [10−3]
0.667 0.793 0.407 0.379 0.24 33 , 0 , 6 , 26 , 1 , 1, 7 [10−3]

Table 7: Asymptotics of Rep-2 in comparison to Odlyzko (Section 3) and Rep-1.

We see that in the range ω ∈ [ 3
10 ,

2
3 ], our new run time exponent is smaller than

half Odlyzko’s run time exponent. Thus, for these ω the asymptotic complexity
is less than S 1

4 (see column logS T`).

8.2 Optimization – Non-Asymptotic
In the non-asymptotic analysis from Table 8, we still get slight improvements from
Rep-2 over Rep-1. We optimized our algorithm for every instance in depths d = 3
and d = 4. Take e.g. the NTRU n = 509 instance that has level-4 complexities
T` = 189 for list construction and Tg = 38 for guessing.

The params-column with 3 : 14,1,4 gives the parameters ε (1)10 , ε
(1)
21 , ε

(2)
10 . All

other depth-3 parameters were always 0 in the optimization. In our example, we
put on level 1 an amount of 14 additional ±1 (corresponding to ε (1)10 ), another
amount of 1 additional ±2 (corresponding to ε (1)21 ), and on level 2 an amount of 4
additional ±1 (corresponding to ε (2)10 ). In the level-4 params column we provide
parameters ε (1)10 , ε

(1)
21 , ε

(2)
10 , ε

(3)
10 , all others were 0.

As a function of the search space size S we get for all NTRU encryption
schemes and BLISS non-asymptotic combinatorial attack complexities around
S0.3, for GLP with its large q roughly S0.28. Notice that for all instances the list
construction costs T` are roughly S 1

4 , as predicted by the asymptotic analysis.

8.3 BLISS with s ∈ {0,±1,±2}n

The BLISS IV parameter set suggests (n,q) = (512,12289), where the secret s has
230 (±1)-entries and 30 (±2)-entries. Asymptotically, such a weight distribution
yields S0.21 with Rep-2 (adapted to s ∈ {0,±1,±2}n).
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(n,q,w) S[bit] Rep-1[bit] Rep-2[bit] params
NTRU-Encypt
(509,2048,254) 754 243 = 212 + 31 241 = 211 + 30 3: 14,1,4

230 = 191 + 38 227 = 189 + 38 4: 26,2,17,3
(677,2048,254) 891 281 = 246 + 35 281 = 246 + 35 3: 22,0,5

275 = 229 + 45 273 = 231 + 42 4: 32,1,15,1
(821,4096,510) 1286 423 = 375 + 49 419 = 371 + 49 3: 20,1,6

393 = 334 + 59 378 = 318 + 60 4: 34,5,30,6
NTRU Prime
(653,4621,288) 925 288 = 254 + 33 287 = 254 + 33 3: 18,1,5

274 = 232 + 42 272 = 229 + 42 4: 36,2,22,5
(761,4591,286) 1003 313 = 277 + 35 312 = 277 + 36 3: 22,1,6

303 = 257 + 46 301 = 258 + 43 4: 36,1,17,2
(857,5167,322) 1131 350 = 311 + 39 350 = 310 + 40 3: 25,1,7

338 = 290 + 49 338 = 291 + 47 4: 37,2,19,2
BLISS I+II

(512,12289,154) 597 189 = 169 + 20 189 = 169 + 20 3: 17, 4, 0
187 = 163 + 24 187 = 163 + 24 4: 27,0,11,1

GLP I
(512,8383489,342) 802 258 = 242 + 16 257 = 240 + 16 3: 12,1,4

241 = 222 + 19 225 = 206 + 20 4: 22,3,19,4
Table 8: Non-asymptotic comparison Rep-1 vs. Rep-2

Instance S[bit] Rep-2[bit] ε
(1)
10 , ε

(1)
12 , ε

(2)
10 , ε

(3)
10

BLISS IV (512,12289,230,30) 890 246 = 212 + 35 4: 43, 3, 19, 4
Table 9: Non-asymptotic Rep-2 on secrets s ∈ {0,±1,±2}n

Non-asymptotically, we achieve S0.28 from Table 9, where we obtain list
construction complexity T` = 212 bit and guessing complexity Tg = 35 bit.

9 Small Memory Versions

Our new Meet-LWE attack has quite large memory consumption. For all
instantiations of Meet-LWE in the previous sections the memory consumption
is (almost) as large as the list construction time T` , i.e. roughly S

1
4 .

We show in this section that our representations Rep-0, Rep-1, Rep-2 used
together with Howgrave-Graham’s algorithm from Section 4 admit small memory
versions and simple time-memory tradeoffs. Using Howgrave-Graham’s original
algorithm instead of Meet-LWE has the advantage that we do not require any
key guessing.

Let us rewrite the LWE identity from Equation (5)

As1 + e1 = b − As2 + e2 for some binary e1,e2 ∈ {0,1}n.
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We follow the general van Oorschot and Wiener strategy [vW99] that turns
a MitM attack memory-less. This strategy was already applied by van Vreden-
daal [vV16] to Odlyzko’s MitM attack from Section 3.

Let D be the search space for s1, s2 with size S. Let us define the two functions
f1, f2 with domain D as

f1 : s1 7→ πk(`(As1)) and f2 : s2 7→ πk(`(b − As2)).

Here ` : Znq → {0,1,2}n is Odlyzko’s hash function from Equation (2), changed
to ternary labels in the canonical manner (by equipartitioning Zq), such that it
has range size 3n > S. Further, πk is our projection function from Equation (6),
where we choose k = dlog3(S)e. Thus, the range of f1, f2 is approximately of size
S.

Moreover we use an encoding function h : {0,1,2}k → D that encodes the
arguments fi(·) back to D, such that we can iterate functions fi.

With a cycle-finding algorithm we find in time roughly
√

S a collision s1, s2
between f1, f2, i.e. f1(s1) = f2(s2). This implies

πk(`(As1)) = πk(`(b − As2)). (10)

Let s be the desired LWE secret key, and let (s1, s2) be a representation of s,
i.e. s = s1+s2. By definition of `, any representation (s1, s2) satisfies Equation (10).
We call a collision (s1, s2) good iff (s1, s2) is a representation of s. Let R be the
number of representations of s.

By A’s randomness, the functions f1, f2 should behave like random functions.
Therefore, we expect that there exist roughly S collisions in total between f1 and
f2. This in turn implies that we obtain a good collision with probability p = R

S
.

Since finding any collision takes time
√
S, we expect overall running time

T =
√
Sp−1 =

√
S ·
S

R
=
S

3
2

R
. (11)

van Vredendaal [vV16] chooses Odlyzko’s search space size S =
√( n

w/2,w/2, ·
)

with a unique representation of the solution. Thus, she obtains a polynomial
memory algorithm with run time S 3

2 ≈ 2 3
4 H(

ω
2 ,

ω
2 , ·)n.

But from Equation (11) we minimize T by increasing the number R of
representations, as long as S does not grow too fast. We show in the following
that this tradeoff between S and R pays off for our representations Rep-0, Rep-1,
Rep-2. To this end, we simply set S = S(1),R = R(1) using the expressions for
S(1),R(1) derived in Sections 6 to 8 and Appendix A.1.

We obtain asymptotic runtimes 2c(ω)(n+o(n)) for which we state the run time
exponents c(ω) in Table 10. The optimization parameters for Rep-1, Rep-2 are
given in the last two columns.

In comparison to the previously best results from [vV16], the runtime expo-
nents drop by 10% to 15%.
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ω Odl. [vV16] Rep-0 Rep-1 Rep-2 ε̄ (1) ε̄
(1)
10 ε̄

(1)
21

0.3 0.886 0.834 0.772 0.772 0.032 0.032 0.000
0.375 0.997 0.951 0.858 0.858 0.045 0.045 0.000
0.441 1.073 1.031 0.918 0.918 0.055 0.056 0.001
0.5 1.125 1.092 0.964 0.962 0.061 0.061 0.001
0.621 1.184 1.186 1.043 1.038 0.060 0.062 0.003
0.668 1.189 1.211 1.070 1.064 0.056 0.058 0.004

Table 10: Asymptotic complexities for polynomial memory LWE key search.

We may also utilize the well-known time-memory tradeoff provided by Parallel
Collision Search (PCS) [vW99]. Let Tc =

√
S be the time to find a single collision.

Then with PCS using memory M we find M collisions in time T =
√

MTc. Since
we need a total of p−1 = SR collisions (for finding a good collision), using memory
M ≤ p−1 we obtain the time-memory tradeoff

T =
p−1

M

√
MTc =

S
3
2

√
MR

.

E.g. if we use full memory M = p−1 = S
R , we obtain run time T = S√

R
, which

reproduces Howgrave-Graham’s run time formula from Section 4, albeit with
different (better) values of S and R.

10 Hybrid Attack

The presumably best known attack on LWE-type cryptosystems with ternary
keys is a combination of lattice reduction and MitM known as the Hybrid attack,
due to Howgrave-Graham [How07]. Here, we give only a brief outline of the
attack. We refer the reader to [How07,Wun19] for more details.

For ease of exposition we describe only the Plain Hybrid attack, a dimen-
sion reduction method [MS01] that combines lattice reduction with Brute-Force
key guessing. Howgrave-Graham [How07] then showed that Brute-Force can be
replaced by MitM at the cost of some (often quite smallish) success probabil-
ity [Wun19,Ngu21].

We write A = (A1, A2) ∈ Z
n×k
q × Z

n×(n−k)
q for some 0 ≤ k ≤ n, and the LWE key

equation as A1s1 = b − A2s2 + e. In Plain Hybrid we enumerate all candidates
(s2,b − A2s2). Define the target t(s2) := b − A2s2.

Further, we define a lattice L by the (n + k)-dimensional lattice basis

B = (b1 |b2 | . . . |bn+k) =

[
qIn A1
0 Ik

]
.

Let s2 be the correct key guess with target t(s2). L contains the vector
v = B · (k, s1) = (t(s2) + e, s1) for some suitably chosen k ∈ Zn. Thus v is close—in
distance (e, s1)—to the known target vector (t(s2),0). Hence v can be recovered
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by using Babai’s Nearest Plane algorithm [Bab86], provided we have a sufficiently
reduced basis B. Solving such a close vector instance is called Bounded Distance
Decoding.

The Plain Hybrid approach now balances the cost for enumerating s2 with
the lattice reduction cost for recovering s1.

Problems when Applying our MitM. It is tempting to replace the key search for
s2 by our MitM approach. However, notice that we have to enumerate all vectors
s2. This can surely be done by the MitM attacks from Sections 3 and 4.

Instead, the strength of our MitM attack is that we do not enumerate all
potential keys, but only those that fulfill the LWE key equation on r coordinates.
However, we cannot use the LWE key equation anymore for our projected subkey
s2.

Work-around 1: One may introduce additional representations s = s1 + s2 for
the lattice and guessing part by letting s1, s2 overlap. But our computations so
far indicate that the cost of increasing s1’s dimension—and therefore of lattice
reduction—is not compensated by the decrease to enumerate s2 with our improved
MitM.

Work-around 2: One may define s1, s2 of full length n, but with different weight,
again introducing additional representations. Especially, by choosing smaller
weight for s2 one can balance the cost of lattice reduction and enumeration. Our
computations so far show that such a Weight Hybrid is only slightly better than
pure lattice reduction.

We leave it as an open problem whether list construction-type algorithms can
improve lattice hybrid attacks. Another interesting question is whether we can
omit key guessing in our Meet-LWE by using Nearest Neighbor techniques as
in [Laa15,MO15].

Acknowledgements: The author wants to thank Elena Kirshanova, John Schank
and Andre Esser for discussions and estimations concerning lattice reduction and
the Hybrid attack, and the anonymous reviewers for their valuable suggestions.
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A Appendix: Detailed Rep-2 Analysis

A.1 Level-1 Search Space and Representations.

Let us introduce some notation. Let n(j)0 ,n(j)1 ,n(j)2 be the number of 0, ±1 and ±2
on level j, respectively. We denote by ε (j)

k`
the number of additional ±k on level j

that represent ±`, see also Table 11.

Parameter ε
(j)
10 ε

(j)
21 ε

(j)
20

Adds ±1 ±2 ±2
(−1) + 1 (−2) + 1 (−2) + 2

Represents 1 + (−1) (−1) + 2 2 + (−2)
1 + (−2)
2 + (−1)

Table 11: Semantics of optimization parameters

E.g. we denote by ε (j)10 be the number of additional ±1 that we add on level
j to realize the representations (−1) + 1 and 1 + (−1). Hence, ε (j)10 plays the role
of ε (j) from Section 7. On level 1, we already have n(0)1 /2 many ±1 by splitting
the weight of s evenly, thus we obtain n(1)1 = n(0)1 /2 + ε

(1)
10 . Moreover, on level 1 we

obtain an overall number of n(1)2 = ε
(1)
21 + ε

(1)
20 many ±2.

Let us explicitly construct s = s(1)1 + s(1)2 ∈ T
n(w/2). We represent each level-0

coordinate in the following number of ways on level 1, as depicted in Table 12.
Notice from Table 12 that we construct in total n(0)1 = 2

(
ε
(1)
21 +

n
(0)
1
2 − ε

(1)
21

)
many

±1 and n(0)0 = n − 2n(0)1 many 0, the desired weight distribution of s.

(−2) + 1 (−1) + 0 0 + (−1) 1 + (−2)

(-1) ε
(1)
21

n
(0)
1
2 − ε

(1)
21

n
(0)
1
2 − ε

(1)
21 ε

(1)
21

(−1) + 2 0 + 1 1 + 0 2 + (−1)

1 ε
(1)
21

n
(0)
1
2 − ε

(1)
21

n
(0)
1
2 − ε

(1)
21 ε

(1)
21

(−2) + 2 (−1) + 1 0 + 0 1 + (−1) 2 + (-2)
0 ε

(1)
20 ε

(1)
10 n − 2n(0)1 − 2ε (1)10 − 2ε (1)20 ε

(1)
10 ε

(1)
20

Table 12: Amount of different level-1 representations
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From Table 12 we can also easily check the level-1 weight distribution of
s(1)1 , s(1)2 . We have

n(1)2 = ε
(1)
21 + ε

(1)
20

n(1)1 =
n(0)1
2 − ε

(1)
21 + ε

(1)
21 + ε

(1)
10 =

n(0)1
2 + ε

(1)
10

n(1)0 = 2
(

n(0)1
2 − ε

(1)
21

)
+ n − 2n(0)1 − 2ε (1)10 − 2ε (1)20

= n − n(0)1 − 2(ε (1)10 + ε
(1)
21 + ε

(1)
20 )

Notice that we get the correct terms for n(1)2 ,n(1)1 from above, and we verify that
2n(1)2 + 2n(1)1 + n(1)0 = n, as desired.

We obtain level-1 search space size

S(1) =
(

n
n(1)2 ,n(1)2 ,n(1)1 ,n(1)1 ,n(1)0

)
.

Using Table 12, the number of level-1 representations is

R(1) =
( n(0)1

ε
(1)
21 , ε

(1)
21 ,

n
(0)
1
2 − ε

(1)
21 ,

n
(0)
1
2 − ε

(1)
21

)2

·

( n − 2n(0)1

ε
(1)
20 , ε

(1)
20 , ε

(1)
10 , ε

(1)
10 , ·

)
,

where the first term represents the number of representations of ±1, and the
second term the number of representations of 0.

A.2 Level- j lists

Let d be the depth of our search tree T . For all levels 2 ≤ j ≤ d we represent
vectors s(j−1)

i ∈ {±2,±1,0}n as sums of vectors from {±,2,±1,0}n. In addition to the
level-1 representations from Equation (9), we obtain the following representations
of ±2-coordinates in s(j−1)

i :

(−2) = (−2) + 0 = (−1) + (−1) = 0 + (−2)
2 = 0 + 2 = 1 + 1 = 2 + 0. (12)

We denote by ε (j)22 the additional ±2 on level j for the representations 2 + 0, 0 + 2,
(−2) + 0 and 0 + (−2). Thus, the level-1 representations from Table 12 generalize
to those in Table 13.

We see in Table 13 that the additional ±1 for the new representations 1 + 1
and (−1) + (−1) from Equation (12) are determined as n(j−1)

2 − 2ε (j)22 (and thus do
not require yet another optimization parameter).
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(−2) + 0 (−1) + (−1) 0 + (−2)
(−2) ε

(j)
22 n(j−1)

2 − 2ε (j)22 ε
(j)
22

0 + 2 1 + 1 2 + 0
2 ε

(j)
22 n(j−1)

2 − 2ε (j)22 ε
(j)
22

(−2) + 1 (−1) + 0 0 + (−1) 1 + (−2)

(-1) ε
(j)
21

n
( j−1)
1
2 − ε

(j)
21

n
( j−1)
1
2 − ε

(j)
21 ε

(j)
21

(−1) + 2 0 + 1 1 + 0 2 + (−1)

1 ε
(j)
21

n
( j−1)
1
2 − ε

(j)
21

n
( j−1)
1
2 − ε

(j)
21 ε

(j)
21

(−2) + 2 (−1) + 1 0 + 0 1 + (−1) 2 + (-2)
0 ε

( j)
20 ε

( j)
10 n − 2n( j−1)

1 − 2n( j−1)
2 − 2ε ( j)10 − 2ε ( j)20 ε

( j)
10 ε

( j)
20

Table 13: Amount of different level- j representations

From Table 13 we check the desired level- j weight distribution for all s(j)i as

n(j)2 = ε
(j)
22 + ε

(j)
21 + ε

(j)
20

n(j)1 = n(j−1)
2 − 2ε (j)22 +

n(j−1)
1
2 − ε

(j)
21 + ε

(j)
21 + ε

(j)
10

=
n(j−1)

1
2 + ε

(j)
10 + n(j−1)

2 − 2ε (j)22

n(1)0 = 2ε (j)22 + 2
(

n(j−1)
1
2 − ε

(j)
21

)
+ n − 2n(j−1)

1 − 2n(j−1)
2 − 2ε (j)10 − 2ε (j)20

= n − n(j−1)
1 − 2n(j−1)

2 + 2
(
ε
(j)
22 − ε

(j)
10 − ε

(j)
21 − ε

(j)
20

)
. (13)

We also verify that 2n(j)2 + 2n(j)1 + n(j)0 = n.
Using Equation (13) we obtain level- j search space size

S(j) =
(

n
n(j)2 ,n(j)2 ,n(j)1 ,n(j)1 ,n(j)0

)
.

Moreover, from Table 13 we derive the number of level- j representations as

R(j) =
( n(j−1)

2

ε
(j)
22 , ε

(j)
22 , ·

)2 ( n(j−1)
1

ε
(j)
21 , ε

(j)
21 ,

n
( j−1)
1
2 − ε

(j)
21 ,

n
( j−1)
1
2 − ε

(j)
21

)2

·

( n(j−1)
0

ε
(j)
20 , ε

(j)
20 , ε

(j)
10 , ε

(j)
10 , ·

)
,

where the first term represents the number of representations of ±2, the second
term the number of representations of ±1, and the last term the number of
representations of 0.
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This results in level- j list sizes

L(j) =
S(j)

R(j)
.

The level-d lists are constructed in a Meet-in-the-Middle fashion and are therefore
of size L(d) =

√
S(d−1).

A.3 Run Time.

The construction of level-d lists takes time T (d) = L(d) =
√

S(d−1).
Analogous to the run time analysis in Section 7, we define r (d) = 0 and

construct every level- j list for 0 < j < d in time

T (j) =
(L(j+1))2

qr ( j)−r ( j+1) .

As in Section 7, we have T (0) = (L
(1))2

2n−r (1)
.

The total run time T and memory consumption M is then

T = max
i=0,...,d

{T (i)} and M = max
i=1,...,d

{L(i)}.
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