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Abstract

Outsourcing computation allows a resource limited client to expand its computational ca-
pabilities by outsourcing computation to other nodes or clouds. A basic requirement of out-
sourcing is providing assurance that the computation result is correct. We consider a smart
contract based outsourcing system that achieves assurance by replicating the computation on
two servers and accepts the computation result if the two responses match. Correct computation
result is obtained by using incentivization to instigate correct behaviour in servers. We show
that all previous replication based incentivized outsourcing protocols with proven correctness,
fail when automated by a smart contract because of the copy attack where a contractor sim-
ply copies the submitted response of the other contractor. We then design an incentivization
mechanism that uses two lightweight challenge-response protocols that are used when the sub-
mitted results are compared, and employs monetary rewards, fines, and bounties to incentivize
correct computation. We use game theory to model and analyze our mechanism, and prove
that with appropriate choices of the mechanism parameters, there is a single Nash equilibrium
corresponding to the contractors’ strategy of correctly computing the result. Our work provides
a foundation for replicated incentivized computation in the smart contract setting and opens
new research directions.

1 Introduction

Outsourcing computation enables a client to expand its computational capability and use computa-
tional power of cloud providers such as Microsoft or Amazon to run resource intensive applications
such as natural language processing and machine learning algorithms. Outsourcing computation
have also been increasingly used for large computations by breaking them into smaller pieces that
are outsourced to volunteer nodes that are driven by altruistic causes, or incentivized to partici-
pate in the computation. One of the earliest examples of such distributed computation systems is
SETI@home project [25] that had the goal of finding extraterrestrial intelligence, and more recently
in pandemic and projects such as finding COVID vaccine [19].

Verifying computation results. An essential requirement of outsourcing computation is the
guarantee that the computed result is correct. Verifying computation results dates back the work
of Babai [2] on proof systems that show NP hardness of a class of group theory problems, leading
to a large body of influential works in cryptography and theoretical computer science [12, 15],
and more recently to verifiable computation systems [11, 10, 7, 31]. These verifiable computation
systems are cryptographic; they use a single computing server to provide security guarantee against
a malicious cloud that can arbitrarily deviate from the computation. The systems are elegant and
attractive theoretically, but have limited applications in practice because of high computation and
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communication cost, rigidity of parameters, and the challenge of correct implementation of complex
cryptographic algorithms [14, 30].
A natural way of obtaining confidence in the computation result is to replicate the computation
on multiple computing nodes, with the smallest number of replicas being two. To obtain correct
result with two possibly malicious servers, one must assume that at least one server is honest and
computes correctly; otherwise, there can be no correct result in the system to guarantee correctness.
Canetti et al. [5] showed that in this minimum setting with the assumption of one honest server,
one can use an efficient interactive protocol based on refereed computation model of Feige et al. [9],
to always identify the malicious server and obtain correct computation result. This assumption,
however, cannot be made in real-life outsourcing scenarios where a client simply chooses two servers
from a pool of bidding ones.1

Incentivized outsourcing systems remove the assumption of a trusted server and allow that
both servers to deviate from the computation, however assume they are rational and have well-
defined utilities, which is reducing their computing costs. The model captures deviating behaviour
of clouds, whose goal is to cut their cost and receive the reward with minimum amount of work
and has been used to analyze deployed outsourcing systems such as Truebit [28] that uses a smart
contract and replicated computation to provide correctness guarantee for outsourced computation.
Belenkiy et al. [4] formalized the basic rational adversary setting when a Problem Giver hires two
rational Contractor(s) (minimum number of replicas) for the computation, and used game theoretic
analysis to prove that by choosing the monetary values of reward, fine, and bounty (extra reward
in certain defined cases), the contractors can be incentivized to correctly perform their respective
computations. That is, they proved that their game of incentivized computation has a single
Nash equilibrium that corresponds to the contractors being Diligent (honest). In their system, the
Problem Giver simply compares the received responses and accepts if they match. If the results do
not match, extra assumptions are made on the system; for example, with high probability one of
the two servers is diligent, or the outsourcing is repeated with two new servers [17].

Smart contracts for outsourcing. A blockchain-based smart contract (SC) is a public program
that resides on the blockchain, and runs on the underlying consensus based computation platform
that ensures trusted execution of the program. Smart contracts offer an attractive approach to con-
structing an outsourcing computation service based on replication, using the trusted SC to manage
outsourcing and result comparison, as well as payments and fund transfers natively. Using smart
contracts to manage incentivized outsourcing protocols, in addition to the attractive properties
of guaranteed correctness and transparency of SC execution, has the very important property of
support for native transfer of fund between user accounts, which is essential in incentivized proto-
cols. SC computation, however, is very expensive (each instruction is run by the consensus nodes
in the blockchain) and so the main computation must be performed off-chain. An attractive way
of building an SC-based outsourced computation system would be to base it on a protocol with
provable correctness, such as Belenkiy et al. [4]: (i) Problem Giver sends the computation descrip-
tion to the SC, (ii) SC chooses two contractors to perform the computation; (ii) if the submitted
results match, SC accepts and rewards the contractors, else, it uses followup procedures, such as
running the protocol with another set of two contractors, to obtain the result. Using monetary
compensations will ensure with a high probability that the protocol will produce correct results,
according to Belenkiy et al. (We omit details such as registration fees.)

1In fact, if the client was able to know one of the clouds is honest, then with high likelihood can determine which
of the two is the trustworthy one.
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Our main observation is that this SC-managed system that is based on a protocol with provable
correctness will completely fail because of the copy attack, in which a contractor will wait for the
other contractor to send its response, and copy and submit the same response. This attack is
inevitable because SC cannot hold any private randomness and so its communication and computa-
tion will be transparent. Copy attack perfectly matches the rationality assumption, as it minimizes
the computation of the copying contractor, and is possible because of (i) the delay due to the
communication with the blockchain and the consensus algorithm, and (ii) the transparency of SC.
The attack effectively incentivizes computing nodes not to perform the correct computation, and
undermines the independence of the two computations, which is the basis of computation correct-
ness by replication.
An overview of our results. We define the game of incentivized computation outsourcing to two
independent rational contractors using an SC, define strategies of the contractors, and design two
challenge-response protocols that are used by the SC to detect deviating contractors that, together
with the monetary incentives, will provably result in the correct computation result. Our proof is
game theoretic and uses Nash equilibrium as the solution concept, and provides a foundation for
incentivized verifiable computation in SC setting.
Defining the game. Copy attack can create a “waiting deadlock” which could leave the parties
waiting indefinitely: each contractor waits to see the result of the other contractor. Rational
contractors however can avoid this deadlock by using randomized submission time. The SC will use
time limits (that can be implemented, for example, by requiring certain number of blocks added
to the blockchain) to ensure timely completion of the results, and challenge-response protocols
together with the payments to influence the behaviour of the players. The game is between two
contractors, each wanting to maximize their utility.
Strategies. We start with the two basic strategies that were introduced in [4]: Diligent (D) strategy
where the contractor follows the protocol, and Lazy (L) where the contractor uses a shortcut
algorithm that produces the correct result with probability q < 1. Note that the Lazy strategy is
general and includes any maliciously-constructed computation that has less cost (fewer computation
steps) than the original computation. We assume that the same algorithm is used by all Lazy
contractors.2 This is effectively the worst case in the sense that two Lazy contractors will have
matching results and in Belenkiy et al. protocol, they both will receive the reward (and SC will
accept the matching result). In the SC setting, however, we show that the contractors will have
four new attractive strategies: a third basic strategy, Guess (G), where the computation result
is simply guessed, and three types of copy strategies where the contractor starts with the aim of
copying but uses one of the three basic strategies as a backup strategy when its copy attempt fails.
In more details, a Copy attacker will choose a random time (within a well-defined interval) to copy;
however, if there is no published result by the other contractor, it will use its backup strategy,
which is one of the three basic types (D,L,G).

The protocol. Each contractor will submit a response that is a pair (y, z) where y is the computa-
tion result and z is a commitment to the execution trace of its computation. The commitment is
constructed by forming a Merkle tree on the sequence of computation states of the contractor as
it computes the function. The presented responses will match if the contractors both use Diligent,
Lazy, or Copy strategies, where the latter two cases correspond to incorrect and untrusted results.
Thus, matching responses will not guarantee correct result, and SC must use extra checking pro-
tocols. We introduce two challenge-response cryptographic subprotocols between the SC and the

2The same assumption as [4, 17].
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contractors, to assist the SC in distinguishing strategies of deviating contractors. The first subpro-
tocol is the Match Check protocol, which is a single-round challenge-response protocol and is used
when the two responses match. The protocol allows the SC to decide if (y, z) is obtained through
a computation or, it is copied or simply guessed (using G strategy). (We note that the responses
will match if one contractor simply guesses its response, and the second contractor copies it.) The
second subprotocol is called the Mismatch Check protocol, and is used when the two responses do
not match. The subprotocol is an efficient multi-round challenge-response bisection protocol that
allows the SC to correctly decide the correct one between a response pair (D,L) by performing a
single computation step on the blockchain. These subprotocols, however, cannot distinguish (L,L)
from (D,D), and (L,G) from (D,G), leading to rewarding non-diligent servers. That is, the Match
Check protocol will accept the responses of two contractors corresponding to (L,L), and Mismatch
Check protocol, when used for non-matching responses of contractors with strategy pair (L,G),
will accept the contractor with strategy L. Proving correctness of computation result is by showing
that with the above protocols and correct choices of incentive values, the game has a single Nash
Equilibrium that corresponds to the strategy pair (D,D). Using reasonable assumptions on the
system parameters (Section 4), we prove that our solution achieves correctness of the computation
result (Theorem 4.1).

Contributions: Copy attack is the rushing behaviour of a rational contractor in the SC set-
ting. Our work shows that copy attack has a devastating effect on the correctness of SC managed
outsourcing services that are based on known incentivized replicated computation systems with
provable correctness [4, 17, 20]. Game modelling in SC setting requires a wider set of strate-
gies because of blockchain and SC environment. Our analysis lays the foundation of incentivized
outsourcing to multiple rational contractors in this setting.
Copy attack in related works. Avizheh et al. [1] showed that copy attack will break security of
[5] in the malicious adversary model (that assumes one honest contractor) when used in the SC
setting. Avizheh et al. showed the attack can be prevented by adding a single challenge-response
step when the two responses match. The protocol, however, does not provide full security proof in
blockchain environment. Our game model for incentivized outsourcing in SC setting is an overhaul
of the mechanism in [4] and we prove correctness of our mechanism with respect to the desired
outcome.

2 Preliminaries

Smart Contracts. A blockchain is a decentralized distributed ledger system that maintains a
sequence of blocks that are ordered groups of transactions that are agreed upon by all system
participants using a consensus algorithm. Blockchain systems allow users to have accounts and
make transactions to other accounts. A smart contract is a trusted program that runs on a dis-
tributed ledger system (e.g., Ethereum), and its computation, communication, and stored values
are transparent. More details can be found in [23].
Strategic Games. A strategic game is a model of interactive decision making where players
choose their actions simultaneously and independently. A player’s utility is their received payments
minus their costs. We consider two-player games that can be described by a table, with rows and
columns labelled by possible strategies (actions) of players 1 and 2, respectively. Each cell of the
table contains a pair of real numbers corresponding to the utilities of players 1 and 2, respectively.
The goal of a player is to maximize their utility. Nash equilibrium corresponds to a cell of the table
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where every player’s strategy is the best response, given the other player’s strategies. Therefore, no
single rational player would deviate from the equilibrium. In the computational setting, negligible
differences in the utilities may be ignored, and players should be implementable in probabilistic
polynomial time. For details, refer to [21].
Incentivizing correct computation. Belenkiy et al. proposed an incentive mechanism [4] in-
cluding (i) reward, the money paid to a contractor that correctly performs the computation, (ii)
fine, the money charged to a contractor that is detected to have produced an incorrect result, and
(iii) bounty, which is the money that is paid to a contractor that correctly performs the compu-
tation while the other contractor is detected to return an incorrect result. The two contractors
use two strategies D or L. Using game theoretic analysis, Belenkiy et al. proved that the game
of incentivized computation has a single Nash equilibrium, which corresponds to both contractors
performing the computation correctly.
Merkle Hash Tree is a binary tree that is constructed over a sequence of data elements D =
(d1, · · · , dn) using a collision-resistant hash function. The leaves of the tree are the hash values of
elements of D, and an internal node is the hash of the concatenation of its two child nodes. A Merkle
tree construction starts from the leaves and moves to the root that is denoted by z = MHroot(D).
The proof of consistency for the element di with respect to the root z, called Merkle proof, is denoted
by pi = MHproof (D, di), and consists of the hash values of the siblings of nodes along the path from
H(di) to the root. Given a Merkle proof pi for the element di and the root z for the data sequence
D, the V erifyMHProof(z, i, di, pi) function verifies consistency of di, with respect to the Merkle
tree with root z using the proof pi. The function is efficiently (logarithmic in the sequence length)
and publicly computable, and outputs True if the verification succeeds, and False otherwise.
Computation trace. The response of a contractor consists of a claimed calculated value, and a
commitment to the computation trace. We express the computation by a Turing machine (TM)
with an input tape that initially stores the input. A computation state corresponds to a TM
configuration (state, head, tape) and can be stored as a reduced configuration defined by [5]:

(state, head, tape[head];MHroot(tape))

where tape[head] denotes the tape content at the location of the head, and MHroot denotes the root
of a Merkle Hash tree over the tape. A contractor uses the sequence of execution states to express
the computation trace. Let the jth reduced configuration be denoted by rcj = (sj , hj , vj , rtj), where
sj and hj represent the state and head position, respectively, vj represents the tape at the given
head position, tape[head] , and rtj = MHroot(tj) is the root of the Merkle tree on the tape tj at that
stage. Let RC = (rc1 · · · rcn), denote the sequence of reduced configurations of the Turing Machine,
and let z denote the root of the Merkle tree that is constructed over RC. Figure 1 visualizes a
sample reduced configuration with its Merkle tree, and the Merkle tree built over the sequence of
reduced configurations, resulting in the z value.

3 Model

We consider a setting with three types of entities: (i) a Problem Giver who wants to outsource
the computation of a deterministic function3 f() on an input x, (ii) a set of Contractors who are
incentized to perform the computation, and (iii) a Smart Contract (SC) that interacts with the
parties.

3A randomized algorithm can be outsourced after de-randomization using a pseudorandom generator.
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State Head Tape[Head]

Tape[0] Tape[1] Tape[N]...

H(Tape[0],
Tape[1])

H(Tape[N-1],
Tape[N])

MHroot(Tape)

...

Reduced Configuration 1 (rc1)

H(rc1) H(rc2) H(rcn)...

H(H(rc1),
H(rc2))

H(H(rcn-1),
H(rcn))

z

...

Figure 1: Merkle tree built on the sequence of reduced configurations. A reduced configuration
includes the root of the Merkle tree built on the tape of that state.

The SC receives deposits from the participants, and after receiving responses from the contractors,
executes a Judge protocol that decides on the computation result based on the received responses,
and possibly additional interactions with the contractors, and performs money transfers to/from
contractors’ accounts as specified by the protocol. The Problem Giver makes the required deposit
to the SC in advance, and expects to obtain the correct computation result. A Contractor is rational
and wants to maximize its utility that is expressed as the net reward. The SC is a transparent
trusted program that runs on the blockchain consensus computer and executes the prescribed
protocol. The SC can be created by the Problem Giver, or by an established service provider.
Outsourced computation. The Problem Giver wants the value of a function f() on an input
x. The function is expressed by a Turing Machine (TM) for the computation of f() on the input
tape that contains x. The response of a contractor is a pair (y, z) where y is the computation
result (if correct, y = f(x)), and z is the root of a Merkle hash tree that is constructed on the
sequence of reduced configurations of the TM’s computation. SC randomly chooses two contractors,
from a pool of available contractors. The pool is large enough that we can assume the two chosen
contractors are independent.

Goals of Incentivized Outsourced Computation are the following:
1. With overwhelming probability the Problem Giver receives correct result.
2. Contractors are incentivized to participate and correctly perform the computation.
3. The computation and communication of the SC is minimal.

An implied goal of the system is that a contractor that has correctly performed the computation
is always rewarded.
Strategies. There are two basic strategies, (i) Diligent (D) that correctly executes f(x), and (ii)
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Lazy (L), where the contractor deviates from correct calculation to reduce its computation cost.
A lazy algorithm is referred to as a q-algorithm, and generates the correct result (not the correct
response) with a non-negligible chance q (generating the correct response has negligible probability
ε). A q-algorithm can be any maliciously constructed algorithm that performs fewer computation
steps and produces an acceptable value for the computation. It can simply skip some steps of
the original computation; but in all cases the contractor has a computation trace that matches its
committed root of execution tree. For example, a SETI@Home [25] image processing program can
simply skip processing some pixels of the image. We assume all all Lazy contractors use the same
algorithm and so their computation results match. Thus, without additional measures, they will
receive the reward. Belenkiy et al. [4] made the same assumption, inspired by the case that the same
SETI@Home [25] fake clients were downloaded by multiple participants (see [4]). A maliciously
constructed program can be made available to rational contractors, who will be attracted to the
reduced computation and the possibility of not being caught.
New strategies. We consider a new basic Guess (G) strategy, where a contractor guesses the
value of f(x). The strategy has negligible cost and because of copy attack, can lead to matching
results. The main difference between G and L strategies is that a (G,G) strategy pair will not lead
to matching responses (negligible chance), while an (L,L) pair will output matching responses. By
requiring the Merkle hash of the computation to be included in the contractor’s response, the prob-
ability that two submitted guessed responses match will be negligible even when the computation
result itself (f(x)) is from a small domain.
Copy strategy allows a contractor to completely skip the computation. A Copy contractor waits for
the “other” contractor to submit its response to the SC and copies and submits that response as its
own. This strategy is possible because of (i) SC’s transparency of computation and communication,
and (ii) the time interval between submitting a transaction to the blockchain network, and having
it published on the blockchain. Copy strategy is very attractive because it allows a contractor
to produce a matching result, and receive the reward with negligible work. However, since both
contractors can use this strategy, both contractors may end up waiting indefinitely. To overcome
this deadlock, a contractor will use a random time that is chosen from an appropriate range [T1, T2],
and copies the published response if exists; else, it resorts to one of the basic strategies. This leads
to Copy-Diligent (CD), Copy-Lazy (CL), and Copy-Guess(CG) strategies. Thus we obtain a total
of six strategies (including D,L,G) as below:

• Diligent (D): Computes using the original algorithm. The response will always be accepted
and rewarded. The cost is cost(1).

• Lazy (L): Computes using a q-algorithm that is assumed common for all Lazy contractors.
The result will be correct with probability q, and the cost will be cost(q). With the use of
hashing, the response (result together with the hash of the computation) will be correct only
with negligible probability. This is a very critical observation on the Lazy contractors, first
made by [4].

• Guess (G): Creates a random bit string that matches the format of the submission to the
SC. The response will be correct with probability ε, and the cost is cost(ε) .

• Copy: The contractor chooses a random time from a time period; if the “other” contractor
has sent its response, it copies the response; else the contractor continues with one of the
original strategies: D, L, and G. There are three variations: Copy-Diligent (CD), Copy-Lazy
(CL), and Copy-Guess (CG). The cost of successful copying is cost(ε).

Towards a sound Judge protocol in the SC setting. A first attempt to construct a Judge
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Algorithm 1 Problem Giver

Set f, r, f(), x, τSC .
Deposit 2r to the SC account.
Wait τSC .
Obtain the result y and any fines collected from SC.

Algorithm 2 Contractor

Deposit f to the SC account.
Obtain f, r, f(), x, τSC from the SC.
Run the strategy (D,L,G,CD,CL, or CG), obtaining the result y and the hash z.
Submit the response (y, z) to the SC.
If accepted by the SC, obtain r and get back the deposit of f .

protocol is to base it on the Belenkiy et al. [4] protocol with proved correctness: (i) if the two
responses match, the Judge protocol outputs the result rewarding the contractors, (ii) else (when
the responses differ) the Judge uses additional steps to identify the correct result and the contractor
that is Diligent (if any). The following theorem proves that in the SC setting this Judge protocol
cannot produce correct result for the Problem Giver using reward, bounty, and fine as incentive.

Theorem 3.1. The incentivized computation protocol, with the possible contractor strategies
D,L,CG and the Judge protocol above (based on [4, 20, 17]) in the smart contract setting, has
a single Nash equilibrium that corresponds to the (CG,CG) strategy pair, leading to incorrect com-
putation result for the Problem Giver. Proof is in the Appendix.

The proof of this theorem (formally given in the Appendix) is based on the idea that copying is
better than being Lazy since it has a lower cost, and CG is the best response againstD again because
of having a lower cost. Indeed, the Copy attacker gets the reward without getting caught when
matched against a Diligent contractor, and its cost is minimal. When two Copy-Guess contractors
get matched, one of them will copy the other, resulting in neither being caught, and therefore both
getting the reward.

4 A Judge Protocol with Guaranteed Correctness

We first introduce notations that are used to express the working of the system, and then give
reasonable assumptions that will be used in the game analysis. Pseudocodes for the Problem Giver
and the contractors are in Algorithms 1, 2, and 3, respectively.

Notations:
• y, z: The response of a contractor, which includes the result y of the computation, together

with the Merkle root z of the computation trace.
• r: The reward of a contractor in two cases, (i) when the SC receives two matching responses,

and (ii) when the SC receives two conflicting responses, but the contractor succeeds in the
Mismatch Check protocol.

• f : The fine charged to a contractor when their response is detected as incorrect. The fine
can be enforced by requiring the contractors to make a deposit at the start of the protocol.

• cost(1): The cost of the original algorithm, run by the Diligent contractors.
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Algorithm 3 Copy contractor

Deposit f to the SC account.
Obtain f, r, f(), x, τSC from the SC.
Pick a random time t in [T1, T2].
At time t, check the SC.
if there is already a response (y, z) stored at the SC then

Submit the same response (y, z) to the SC.
else

Run the strategy (D,L, or G) according to the type, obtaining the result y′ and the hash z′.
Submit the response (y′, z′) to the SC.

end if
If accepted by the SC, obtain r and get back the deposit of f .

• cost(q): The cost of a q-algorithm, run by the Lazy contractors.
• cost(ε): The cost of guessing and copying both. ε is a negligible value.
• τD, τL: Time to compute the function using D and L strategies.
• τN : Network delay between a contractor and the SC.
• τSC : Smart Contract deadline for receiving computation results.
• qS : The probability that the copying is successful for a Copy contractor, when the other con-

tractor also uses Copy strategy. (Interestingly, our results turn out to be nicely independent
of the actual value of this probability.)

• q0: The probability that neither contractor can copy the other’s response (because of closeness
of random times). Note that q0 + 2qS = 1 since either one of the contractors could copy or
neither could, when both contractors use Copy strategies (they cannot both copy).

• f(): The function to compute, picked by the Problem Giver.
• x: The input to the function, picked by the Problem Giver.
• y: The result submitted by a contractor. Ideally, we want that y = f(x).
• z: The Merkle tree root submitted by a contractor.
• A contractor’s strategies are: D: Diligent, L: Lazy, G: Guess, CD: Copy-Diligent, CL:

Copy-Lazy, CG: Copy-Guess.
• C refers to a Copy contractor (CD,CL, or CG) who could successfully copy.

System Parameters and Assumptions:
1. r > cost(1). That is, the reward of performing the computation correctly exceeds the cost of

the computation. Otherwise, a rational contractor will not join the system.
2. All Lazy contractors use the same deterministic q-algorithm. This represents for example,

downloading a fake client. Therefore, the result of two Lazy contractors always match.
3. A q-algorithm produces correct computation result with probability q, per [4]. Note that

this only holds for the correctness of the computation result y = f(x), which is part of a
contractor’s response. The probability of producing the correct response (which also includes
the Merkle hash) is negligible. When two Lazy contractors get matched, they produce the
same response.

4. When a Lazy contractor is matched against a Diligent contractor, the probability that their
responses (y, z) match, is negligible. This is because the Lazy and Diligent algorithms are
different in at least one step, and so their corresponding execution trace on the same input x
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and their associated Merkle roots, will be different with overwhelming probability. Similarly,
when a Guessing contractor gets matched against a non-copy contractor, the probability that
they return the same response is negligible. The probability of guessing a response that
matches the response of another G,L, or D amounts to correct guessing of binary strings
that are at least 128 or 160 bits (Merkle root), and so is negligible. 4

5. The cost of a q-algorithm is cost(q), and cost(1) > cost(q). (Otherwise there is no need to
employ a q-algorithm.)

6. cost(q) > cost(ε). Thus, guessing and copying constitute the least costly actions.
7. Once a computation result is produced, it will be submitted to the SC. That is, a contractor

will not add additional delay to the computation.
8. A contractor knows a good estimate of the computation time of different strategies, as well

as network delay. That is, in particular, it knows upper bounds on τD > τL and τN .
9. The interval [T1, T2] that is used by the Copy contractors is [τD + τN , τSC − τN ]. That is, a

copying contractor waits for a non-copy contractor to produce and submit its response.
10. The probability that two Copy contractors pick very close random times such that neither have

the opportunity to copy from the other is negligible. This can happen if the first contractor
cannot copy because no result is published, and the second contractor’s time is too close to
the first contractor to receive its published value. Note that the random time can always be
selected at coarser intervals (e.g., at multiples of τN ). We assume the probability of selecting
the exact same (coarse) time is negligible.

11. The computation deadline, τSC , is set by the smart contract and is public. This time satisfies
τSC > τD + τN so that a Diligent strategy can succeed.

12. The interval [T1, T2] that is used by the Copy contractors is [τD + τN , τSC − τN − T ] where
T is τD if the contractor is Copy-Diligent, τL if the contractor is Copy-Lazy, negligible if the
contractor is Copy-Guess.

13. τSC >> 2τD + 2τN such that Copy-Diligent is a viable strategy (a CD contractor can wait
for a D contractor to finish, and if there is still no submitted response, can still execute its
own Diligent computation).

Assumptions (7), (8) and (9) imply that the copy strategy C will be used after the contractor that
uses D, L, or G strategy has completed and submitted its computation, and the result can be seen
by the copying contractor. This implies a Copy contractor always succeeds copying the response
of a non-copy contractor. Assumption (10) implies that when two Copy contractors play against
each other, one of them will succeed in copying (i.e., q0 is negligible). We show that our results
turn out to be independent of this assumption and we only use it for simplicity of the presentation
and analysis.

4.1 The New Judge protocol

Let the two contractors, denoted by Pi, i = 1, 2, send the response pairs (yi, zi), i = 1, 2 to the SC.
For D strategy yi = f(x). For other basic strategies yi = f(x) with be with probabilities q and
ε for L and G, respectively. Upon the receipt of both responses, the SC runs the following Judge
protocol:

4Recall that the difference between G and L strategies is that the response submitted by two L contractors will
match, whereas the response submitted by two G contractors will not match, except with negligible probability. Thus,
the Lazy contractor paradigm is enough to model submitting matching guesses (e.g., using the same pseudorandom
seed).
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Algorithm 4 Match Check

Let ni, i = 1, 2 denote the lengths of RCi, i = 1, 2.
Judge generates two PRNs, rand1 and rand2.
Judge→ Pi : randi, i = 1, 2
Pi → Judge : (rcirandi , rc

i
randi+1,MHProof(RCi, rcirandi),

MHProof(RCi, rcirandi+1), p
i
randi

), i = 1, 2.
Judge uses V erifyComittedReducedStep() on the submitted response.
The result of a contractor who passes the verification will be accepted.

Algorithm 5 Mismatch Check Protocol

n′ = min{n1, n2}, where ni is the length of the sequence of reduced configurations of Pi.
zi = MHroot(RCi), i = 1, 2
Perform Committed Binary-Search (Algorithm 6)given zi = MHroot(RCi), i = 1, 2, with the
two contractors to find the smallest j, where rc1j = rc2j and rc1j+1 6= rc2j+1.
Judge → Pi : j , i=1,2.
Pi →Judge :
(rcij ,MHProof(rcij , RC

i), rcij+1,MHProof(rcij+1, RC
i), pij)

Judge verifies using V erifyCommittedReducedStep().
Result of Pi is accepted if the output is True.

• If (y1, z1) = (y2, z2), run the Match Check protocol (Algorithm 4).
• Else, (y1, z1) 6= (y2, z2), run the Mismatch Check protocol (Algorithm 5).

Checking matching submissions. Matching responses occur in all variations of Copy, and also
for strategy pairs (L,L) and (D,D) and so does not correspond to guaranteed correctness. Without
this check for matching submissions, it is not possible to prevent copy attack. We prove this in
the full version by showing that the equilibrium remains at (CG,CG) when only Mismatch Check
subprotocol (Algorithm 5) is used, and matching responses are simply accepted. This is true even
with the use of bounties. The subprotocols employ an algorithm V erifyCommittedReducedStep()
that first checks consistency of two consecutive computation state (TM configuration) against the
submitted Merkle root by verifying their corresponding submitted paths to the root, and then runs
that single step of computation on the SC starting from the earlier state and verifies the resulting
state against the latter one. Details are in the Appendix.
Note that the strategy pair (L,L) will be rewarded with a probability. This is because this pair
will result in matching responses, that leads to Match Check protocol be run. The challenged
steps, however, will be responded consistently with the committed roots, because there is a (good)
probability (assuming the worst-case) that the Match Check protocol chooses a computation step
that is the same in the q-algorithm and the original computation. This leaves the Lazy approach
undetected. For example, consider a Lazy approach where the contractor skips the last several
steps of the correct computation. This cuts down the cost of computation, and will not be detected
by the Judge protocol when two L responses are received, and so the computation result will be
incorrect. Similarly, for (L,C) strategy pair, the challenged step of the q-algorithm can be the same
as the correct algorithm and so L strategy will mistakenly be identified as D, whereas C strategy
will be detected and penalized, since it cannot respond to the challenge as it did not perform any
computation. With the new Match Check protocol, copying is bad because it cannot respond to
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Algorithm 6 Committed Binary-Search Protocol

Input: ng, nb, z
1 = MHroot(RC

1), z2 = MHroot(RC
2)

repeat
w = (nb − ng)/2 + ng
Problem Giver → P1, P2 : w
Pi → Problem Giver : rciw,MHproof (rciw, RC

i) i=1,2
if V erifyMHProof(zi, w, rciw, p

i
w) = False then

Declare i as Cheater, Exit.
end if
if (rc1w = rc2w), then
ng = (nb − ng)/2 + ng,

else
nb = (nb − ng)/2 + ng

end if
until nb = ng + 1

Strategies Match Check Result Strategies Mismatch Check Result

D,D D + D+ D,L D + L−
D,C D + C− D,G D + G−
L,L L+ L+ L,G L+ G−
L,C L+ C− G,G G− G−
G,C G− C−

Table 1: Judge protocol results. The worst-case for the Problem Giver is assumed. There is no
ordering of the contractors since the result would be symmetric (e.g., D,C and C,D are the same
in this representation). + indicates being rewarded, − indicates being fined.

the Judge challenges.
Despite these incorrect detections, using fines, rewards, and bounties will result in the desired
(Diligent) equilibrium.

Checking mismatching submissions. When the submitted responses do not match, the SC
needs to decide which one to accept (if any). The goal is to distinguish a D strategy against L or G
strategies, as well as variations of copy strategy that result in similar strategy pairs. The Committed
Binary-Search protocol is a challenge-response bisection protocol that starts with comparing the
state of the two submitted execution traces at the mid-point, and depending on the match or
mismatch, chooses mid point of the right or left half of the trace and this is repeated until the
first step where the two computation traces of the contractors differ is found. Then, SC finds the
correct execution using V erifyCommittedReducedStep(). Details are in the Appendix.
Judge protocol. Table 1 visualizes the Judge protocol results. Observe that when two Copy
contractors get matched, the cases boil down to one of the cases in the table: (CD,CD) boils down
to (D,C) since one (either P1 or P2) copies and the other executes the computation Diligently,
and similarly (CL,CL) boils down to (L,C) and (CG,CG) boils down to (G,C). The Judge
protocol identifies a Diligent contractor (if any) and always rewards them (never fines Diligent
contractors). But, the Judge protocol may also incorrectly reward non-diligent contractors with
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P1, P2 D L G CD CL CG

D uD, uD uDB, u− uDB, u− uDB, u− uDB, u− uDB, u−
L - uL, uL uLB, u− uLB, u− uLB, u− uLB, u−
G - - u−, u− u−, u− u−, u− u−, u−
CD - - - uCDB, uCDB uCDB, uCLB uCDB, u−
CL - - - - uCLB, uCLB uCLB, u−
CG - - - - - u−, u−

Table 2: Utility table, with copy protection. The utilities in the table represent a symmetric game
(not a symmetric matrix), thus unnecessary cells are omitted.

incorrect responses.
Remark. We note that neither the Mismatch Check and Match Check protocols, nor the bounty
usage alone, can lead to an equilibrium that corresponds to the correct result. However, with a well
designed combination of them, we achieve the desired mechanism. This is an innovative aspect of
our work.

4.2 Game Analysis

Our Judge protocol design results in Table 2. Below, we detail the utilities in the table (we follow
the row order):

• The utility of D against another D is uD = r − cost(1): The results match, the contractor
will receive the reward, and pays the cost of the computation.

• The utility of D against others is r − cost(1) + b(1− ε): The Judge protocol will identify the
diligent versus others, except with negligible probability, as discussed. The Diligent contractor
will obtain the reward and the bounty. We approximate this utility as r− cost(1)+ b(1− ε) ≈
r − cost(1) + b and denote as uDB.

• The utility of the others against theD strategy is rε−f(1−ε)−cost(q) < 0: The Judge protocol
will catch them against Diligent. We approximate this as rε−f(1−ε)−cost(q) ≈ −f−cost(q)
which is negative, and denote it in the table with u−.

• The utility of strategy L, against another L is uL = r − cost(q): They both return the same
response, will be able to pass the Judge protocol (since we assume the worst-case q-algorithm),
hence they both get the reward. In any case, they pay the cost of the q-algorithm.

• The utility of the L strategy against other non-Diligent strategy (G,CD,CL,CG) is r −
cost(q) + b(1 − ε): The Judge protocol may (mistakenly) reward the L strategy and provide
extra bounty, while fining the others. We approximate this utility as r− cost(q) + b(1− ε) ≈
r − cost(q) + b and denote it as uLB.

• The utility of the G strategy against any strategy, and the utility of copy variants
(CD,CL,CG) against any non-copy strategy are all u−. This is because they cannot re-
spond properly to the challenges of Judge (guessing cannot respond to Mismatch Check and
successful copying cannot respond to Match Check), and will be fined. This also applies to
CG against CG, since in that case one of them will act like G in practice and the other will
successfully copy.

• The utility of a CD contractor against any other Copy contractor is uCDB = qSu− + (1 −
qS)uDB: When it can successfully copy, which happens with probability qS , it will be caught
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by the new Judge protocol, thereby getting fined and obtaining negative utility. But, when
it cannot copy, which happens with probability (1 − qS), it will act Diligently, and will help
catch the other contractor, obtaining uDB.

• The utility of a CL contractor against any other Copy contractor is uCLB = qSu− + (1 −
qS)uLB: When it can successfully copy, which happens with probability qS , it will be caught
by the new Judge protocol, thereby getting fined and obtaining negative utility. But, when
it cannot copy, which happens with probability (1 − qS), it will act Lazily, but will not be
caught by the Judge protocol. Instead, it will be seen as helping to catch the other contractor,
thereby obtaining uLB.

Theorem 4.1. Under the reasonable assumptions stated in Section 4, and if b > cost(1), then the
pair of strategies (D,D) gives the only computational Nash equilibrium of the strategic game in
Table 2.

Intuitively, Guess or Copy-Guess strategies will fail with our Match Check protocol, since they will
be caught and fined. Moreover, being completely Diligent is better than being Copy-Diligent, since
the latter will be caught and fined when it successfully copies. Similarly, being Lazy is better than
being Copy-Lazy. Using bounties with our Judge protocol with two checking protocols Mismatch
Check and Match Check results in an all-Diligent equilibrium.

Proof. Based on our game analysis u− is negative and G and CG strategies always get u−. There-
fore, G and CG are not rational. Thus, we focus on D,L,CD,CL.
We start by trivial observations about the utilities:

uDB > uCDB (1)

uLB > uCLB (2)

since qS > 0.
Next, with a series of best-response type of arguments, we show the equilibrium is (D,D).
First, we show that uLB > uDB:

uLB > uDB

r − cost(q) + b > r − cost(1) + b (3)

which holds because cost(q) < cost(1). Hence, observe that L is the best response against CL due
to equations (1), (2), and (3).
Second, realize that the same set of equations also imply that L is the best response against CD.
Third, we show that D is the best response against L because

uDB > uL,

r − cost(1) + b > r − cost(q) (4)

which holds as long as

b > cost(1)− cost(q)
b > cost(1) (5)
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as stated in the theorem. This means, while L is the best response against all Copy strategies, if a
contractor should choose L, then the other contractor is better of being D.
Lastly, D is the best response against D since uD > u−. In plain words, when the other contractor
is Diligent, we should be Diligent as well, as all other options get negative utility. Therefore, no
contractor has incentive to deviate from this (D,D) equilibrium.

Corollary. The (D,D) strategy pair results in correct computation result for the Problem Giver.
Together with bounties, our Judge protocol, which is an efficient verification mechanism run with
every pair of submissions, disincentivizes free riding and incentivizes Diligent behavior.
An interesting property of the bounties in our setting is that while using them partly help change
the equilibrium, they will not be used when all contractors are rational and hence act Diligently.
Thus, bounty should not be seen as an extra expense for the Problem Giver.
Finally, we argue that Theorem 4.1 holds even when assumption (10) is invalid. To show this,
consider a fine-grained version of uCDB. When this CD contractor could successfully copy, with
probability qS , then it will be penalized with negative utility u−. Thus, the qSu− part does not
change. When it could not copy and therefore resorts to the Diligent strategy, it is guaranteed that
it will get the reward (since it is Diligent), but about the bounty, there are two cases: Either the
other contractor could copy, which happens with probability qS for the other contractor, in which
case this contractor would get the bounty, or the other Copy contractor resorted to its backup
strategy, which happens with probability q0. The latter results in the following options:

• The other contractor is CD or CL: No bounty will be obtained. The utility of this contractor
would be uD.

• The other contractor is CG: The other contractor will be caught, and this contractor will
obtain bounty together with the reward, resulting in uDB.

Putting all these together, what we have is that qSu− + qSuDB + q0uD or qSu− + qSuDB + q0uDB,
where the latter is exactly uCDB, and the former is upper bounded by uCDB since uDB > uD.
Thus, our utility table above put an upper bound utility for CD against another Copy contractor.
A very similar argument holds for CL against other Copy contractors. The following are the cases
when the other Copy contractor resorted to its backup strategy:

• The other contractor is CD: This contractor will be caught and penalized, obtaining negative
utility u−.

• The other contractor is CL: No bounty will be obtained. The utility of this contractor would
be uL.

• The other contractor is CG: The other contractor will be caught, and this contractor will
obtain bounty together with the reward, resulting in uLB.

Putting together, we have qSu−+ qSuLB + q0u− or qSu−+ qSuLB + q0uL or qSu−+ qSuLB + q0uLB.
The last one is exactly uCLB, and the first two are upper bounded by uCLB since uLB > u− and
uLB > uL.
The fact that the values uCDB and uCLB used in Theorem 4.1 were upper bounds mean that
equations (1) and (2) still hold using their fine-grained versions. Therefore, the theorem holds even
without assumption (10).
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5 Related Work

There is a large body of works on outsourcing and delegation of computation with correctness and
verifiability properties. Below we review the most relevant works in two groups.
Malicious Adversary Model. Interactive proof systems follow the seminal works of Babai and
Moran [3] and Goldwasser et al. [12] are single (malicious) prover system, and have led to the
development of verifiable computation systems [10] (see a survey [31] for more). Canetti et al.
[5, 6] introduced refereed delegation protocols [9] is a two server protocol that assumes one server
is honest. Avizheh et al. [1] showed that [5] is vulnerable to copy attack in the SC setting. [5]
requires secure channels and cannot be used in SC setting.
Using replicated computation for integrity checking has been used in works such as [24, 29]. These
works do not provide formal cryptographic or game theoretic modelling and analysis of their sys-
tems.
Rational Adversary Model. Outsourcing computation to multiple independent rational entities
has been popularized by projects such as SETI@Home [25] and Rosetta@Home [22] where idle
CPU time of the users were employed for computing on scientific data. In these systems, the main
goal is distributing the computation load among a number of contractors, although replication is
also used to provide some level of integrity. Participation of clients is on altruistic basis using an
unfungible leader board status. Indeed, fake clients had been employed by rational contractors,
thereby resulting in incorrect results [18].
The focus of this paper is on designing an efficient mechanism that can be used by a smart contract,
with two rational contractors, both of which can deviate from the correct computation. This is
similar to the settings in [13, 8, 24, 26, 27, 16], with the key addition of SC that automates (takes
the role of) the referee (judge) protocol to decide on the correct computation result.
Belenkiy et al. [4] were the first to define Diligent and Lazy strategies, when outsourcing to two
rational contractors simply comparing the returned responses. They argued the need to use fines
in addition to reward, to achieve correctness. They further showed that using bounty for a con-
tractor who performed Diligently against a Lazy contractor will lead to a single Nash equilibrium
corresponding to correct results. They argued that Guess strategy need not be considered by using
a “hash of the computation” that can be required for the submitted response, and will prevent the
chance of a guess to match the correct response that is produced by a correct computation.
Küpçü [17] extended the framework of [4] to multiple contractors, and added altruistic and malicious
contractors to the framework in addition to the rational ones. The protocol uses the results of
potentially multiple rounds of outsourcing to arrive at a correct decision.
All above works in the rational setting assume that the Problem Giver directly interacts with the
contractors, and communication channels can be secured (e.g., using TLS). Thus, in that setting,
copy attack need not be considered. All these works are vulnerable to copy attack in the SC setting
considered here.
Copy attack. When SC is used to automate outsourcing as a service, all previous incentivized
protocols must be revisited to provide security against copy attack. Our results in Appendix C
showed that a basic Judge protocol with only Match Check, even with considering bounty, cannot
disincentivize dishonest behavior, and in Section 4 we showed how to guarantee correctness for the
computation result. Compared to Avizheh et al. [1] in the malicious model, the challenge of our work
is developing a realistic game theoretic model for the setting that captures real world restrictions
of a smart contract environment, and design a set of assumptions and bounds on timing of the
events without being prescriptive on the exact times. Such a refined description of the world is not
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necessary in malicious adversary model of [1], which relies on the assumption of the honesty of one
contractor. Without this assumption, the SC does not have any reference point upon receiving two
responses, and needs more complex check protocols and incentive analysis to guarantee correctness.

6 Concluding Remarks

Our work is motivated by the rise of the blockchain and smart contracts, and the possibility of au-
tomating outsourcing and using cryptocurrency for implementing incentives. Replicated computa-
tion has minimum cryptographic computation overhead for the Problem Giver and the contractors.
Surprisingly, however, because of the Copy attack, none of the incentivized replicated computa-
tion systems with provable game-theoretic correctness can provide correctness in this setting. We
proposed an SC based incentivization mechanism with two checking protocols that guarantees cor-
rectness of the results. One of the challenges of our work has been to model the smart contract
environment and behaviour of rational parties that realistically captures the effect of the Copy
attack. This includes the random waiting times to avoid infinite waiting loops, and identifying at-
tractive strategies. Our final Judge protocol is the first outsourcing protocol with guaranteed correct
computation result, and lays the foundation for the more general case of multiple contractors.
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A Judge Subprotocols

Verifying a Single Step of a Committed Computation. Consider two reduced configurations rc1 =
(s1, h1, v1, r1) and rc2 = (s2, h2, v2, r2) that are claimed to be consecutive, and a proof of consistency
p1 for the first configuration where p1 = MHproof(t1, h1) where t1 is the rc1 configuration tape.
In [5], it is shown that the referee can efficiently verify this claim by simulating a single step of the
Turing machine on (s1, h1, v1), and comparing the results with the values in rc2, and outputs True
if the claim is valid and rc2 is consistent with the reduced state that results from a correct single
step starting from rc1, and False, otherwise.
We introduce V erifyCommittedReducedStep(rc1, rc2, p1) that requires the published root of RC,
and takes as input rc1,MHproof (RC, rc1), rc2,MHproof (RC, rc2), p1), where MHproof (RC, rci)
is the consistency proof of rci against the published MHroot(RC). Our modified
V erifyCommittedReducedStep() first checks the consistency of rci with the published root, and
if True, proceeds to the single step verification as above.
Committed Binary-search Protocol. The protocol is described in Algorithm 6. It uses a binary-
search subprotocol similar to [5], but with the extra checking of the proof MHproof (rciw, RC

i)
that verifies reduced configuration rciw against the Merkle root of RCi. This check is critical to
prevent the copy attack during this phase, and ensures that the submitted reduced configuration
belongs to the committed Merkle root. The binary search works as follows. Assume that zi =
MHroot(RC

i), i = 1, 2, for the two contractors are published. The SC asks each contractor to send
the number of computation steps needed for f(x), takes the smaller of the two as nb (bad index),
and sets ng (good index) to 1. The SC then asks for the reduced configuration at (nb−ng)/2 +ng,
together with the proof of consistency of the reduced configuration with respect to the corresponding
zi. Depending on the match/mismatch of the two reduced configurations, a new query for the
reduced configuration at the half interval point [ng, (nb − ng)/2 + ng] or [(nb − ng)/2 + ng, nb] will
be formed. This process is repeated until nb = ng + 1.

B Incentivized Computation in the SC Setting with Incorrect
Equilibrium

We now formally show that Belenkiy et al. and follow-up works [4, 20, 17] all lead to incorrect
results for the Problem Giver in the equilibrium, when taken directly to the SC setting.
Analysis of the problem. First, among the copy strategies, Copy-Guess (CG) is the only
(rational) meaningful strategy. The reason is the following: When a Copy contractor succeeds
in copying, the result will be accepted regardless of the Copy contractors’ type (since the Judge
protocol is only run when (y1, z1) 6= (y2, z2), but this is not the case when copying succeeds), and
therefore the reward will be obtained. This happens even when two Copy contractors get matched,
due to assumption (10). Since the Guess strategy has the lowest cost (see assumptions (5) and (6),
the CG strategy dominates the other copy strategies. Hence, in the rest of our analysis here, we will
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P1, P2 D L CG

D uD, uD uDB, u− uD, uC
L - uL, uL uL, uC
CG - - uC , uC

Table 3: Utility table of Belenkiy et al. and follow-up works in the SC setting. Note that the
utilities in the table represent a symmetric game (not a symmetric matrix), thus unnecessary cells
are omitted.

only consider CG as the copy strategy. Furthermore, CG is always better than G, since copying
may result in a better utility, while its fallback strategy (if copying is unsuccessful) is guessing
anyway. Therefore, in our formal analysis below, we will consider the two originally-considered
strategies (D,L) together with the new CG strategy.
Belenkiy et al. introduce bounty is an extra compensation that a contractor receives if they help
to identify a “cheating” contractor. That is, the bounty is only paid when the two responses do
not match. When Judge protocol identifies one response as correct and the other as incorrect,
the contractor who submitted the correct response gets the bounty, in addition to the reward.
Unfortunately, in the SC setting, even using bounty, the equilibrium leads to incorrect results for
the Problem Giver.
This can be seen using Table 3. Below, we detail the utilities in the table (we follow the row order):

• The utility of the strategy D against D or C is uD = r − cost(1): The results would match,
and the contractor will receive the reward, while paying the cost of the computation.

• The utility of the strategy D against L is r− cost(1) + b(1− ε): When D is matched against
L, the probability that they return the same response is negligible as in assumption (4).5

The Diligent contractor will additionally obtain the bounty otherwise. We approximate this
utility as r − cost(1) + b(1− ε) ≈ r − cost(1) + b and denote as uDB.

• The utility of the L strategy against the D strategy is rε− f(1− ε)− cost(q) < 0: We use ε
as the negligible probability that the responses match and then approximate it as zero. This
means rε − f(1 − ε) − cost(q) ≈ −f − cost(q) which is negative, and we simply denote it in
the table with u−.

• The utility of the Copy strategy CG against any other strategy is uC = r − cost(ε): They
always end up submitting the same answer: Either they manage to copy the other’s answer,
or the other Copy contractor copies their answer. Hence they always obtain the reward, and
only pay cost(ε).

• The utility of strategy L, against another non-Diligent strategy (L or CG) is uL = r−cost(q):
If the other contractor is L or CG, they both return the same result, hence they both get the
reward. In any case, the contractor pays the cost of the q-algorithm.

Theorem B.1. Under the reasonable assumptions that are stated in Section 4, the pair of strategies
(CG,CG) gives the only computational Nash equilibrium of the strategic game in Table 3.

Proof. First, we show that if the other contractor is L, then the best response is D. This can be

5Obtaining the same result has probability q, but same response has probability ε
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shown by proving two inequalities (uC > uL and uDB > uC). First, we show:

uC > uL

r − cost(ε) > r − cost(q) (6)

which is obvious since cost(q) > cost(ε). Second, we have:

uDB > uC

r − cost(1) + b > r − cost(ε) (7)

We note that previous works [4, 20, 17] set b > r > cost(1), which implies that uDB > uC .6

Next, consider that the other contractor is D. We show that the best response is CG. To show
that, we need to show uC > uD and uC > u−. The one involving the negative utility u− is obvious:

uC > u−

r − cost(ε) > 0 (8)

per assumptions (1), (5), and (6). The other inequality is:

uC > uD

r − cost(ε) > r − cost(1) (9)

which is obvious since cost(1) > cost(ε). Hence, (D,D) cannot be an equilibrium.
Lastly, we need to discuss what this contractor should do when the other contractor is CG. Observe
that equations (9) and (6) already show that this contractor should not be Diligent or Lazy, and
instead should also be CG. This makes the strategy pair (CG,CG) the only Nash equilibrium.

Corollary. The computation result returned to the Problem Giver by the SC is incorrect, failing
to achieve the foremost goal of outsourced computation in Section 3.

C Analysis without Match Check

We show that using the Mismatch Check protocol without the Match Check protocol does not lead
to the desired equilibrium of (D,D) strategy pair. In this extended world, the six strategies defined
are available to the contractors, and the SC employs the Mismatch Check protocol. The limited
Judge protocol runs Mismatch Check when (y1, z1) 6= (y2, z2), but does not run the Match Check.
Essentially, when the two contractors, denoted by Pi, i = 1, 2, each send a pair (yi, zi), i = 1, 2, the
SC runs the following Judge protocol.

• If (y1, z1) = (y2, z2), reward both contractors and accept y1 as the computation result.
• Else, when (y1, z1) 6= (y2, z2), run an interactive Mismatch Check protocol with the two

contractors.
This Judge protocol identifies a Diligent contractor (if any) and definitely rewards them. For
example, in the case of the mismatch between a Guessing contractor and a Diligent contractor, the
Diligent contractor always wins because the computation step that differs between the two will be

6In the case that b < cost(1) − cost(ε), we would have CG as the best response against L, still making the proof
valid.
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P1, P2 D L G CG

D uD, uD uD, u− uD, u− uD, uC
L - uL, uL uL, u− uL, uC
G - - u−, u− uC , uC
CG - - - uC , uC

Table 4: Utility table, without bounty. Note that the utilities in the table represent a symmetric
game (not a symmetric matrix), thus unnecessary cells are omitted.

run by the SC according to the specification of the correct algorithm that is known to the SC. But,
the Judge protocol may also incorrectly reward non-diligent contractors with incorrect responses.
This is because, the Committed Binary-Search will only be run when the two responses do not
match, and when the two responses are from a Lazy contractor and a Guessing contractor, the
Lazy contractor that has run the q-algorithm and has committed to a Merkle root with respect to
the RC sequence of the q-algorithm, could be able to correctly answer the SC queries against G.
Overall, it is possible that non-diligent contractors may also get the reward, instead of being fined.
The Judge protocol, however, will never fine a Diligent contractor.
Lastly, among the copy strategies, Copy-Guess (CG) is the only (rational) meaningful strategy in
this setting. The reason is the following: When a Copy contractor succeeds in copying, the result
will be accepted regardless of the Copy contractors’ type (since the Mismatch Check protocol is
only run when (y1, z1) 6= (y2, z2), but this is not the case when copying succeeds), and therefore
the reward will be obtained. This happens even when two Copy contractors get matched, due to
assumption (10). Since the Guess strategy has the lowest cost (see assumptions (5) and (6), the
CG strategy dominates the other copy strategies. Hence, in the rest of our analysis in this section,
we will only consider CG as the copy strategy.

C.1 Without Bounty

Table 4 gives the utilities of P1 and P2, when the contractors use the strategies listed in Section
3. The utilities are symmetric, and so we only need to discuss the upper half of the table. We first
analyse the system without bounty, and then in Section C.2, we consider bounty.
Observe that a Diligent contractor would always receive the reward, and G and L strategies may
receive the reward with some probability. As noted in the discussion above, a Copy contractor al-
ways succeeds against non-Copy strategies. Moreover, since we are interested in the computational
Nash equilibrium, we ignore negligible factors and for simplicity of presentation, show them as zero.
To simplify the presentation, we use u− notation to denote any utility that is negative. Below, we
detail the utilities in the table (we follow the row order):

• The utility of the D strategy, independent of the other contractor is uD = r − cost(1): They
obtain the reward, and pay the cost of the original algorithm.

• The utility of the L strategy against the D strategy is rε− f(1− ε)− cost(q) < 0: Remember
that when a Lazy and Diligent contractor get matched against each other, the probability
that they return the same response is negligible as in assumption (4). Hence, we use ε as the
negligible probability and then approximate it as zero. This means rε− f(1− ε)− cost(q) ≈
−f − cost(q) which is negative, and simply denote in the table with u−.

• The utility of the G strategy, against non-Copy strategies (D, L, or G) is rε − f(1 − ε) −
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cost(ε) < 0: Similar to the reasoning above, rε − f(1 − ε) − cost(ε) ≈ −f − cost(ε) which is
negative, and we simply denote it in the table with u−.

• The utility of the Copy strategy CG against any other strategy is uC = r − cost(ε): They
always end up submitting the same answer: Either they manage to copy the other’s answer,
or the other Copy contractor copies their answer. Hence they always obtain the reward, and
only pay cost(ε). 7

• The utility of strategy L, against any non-Diligent strategy (L,G, or CG) is uL = r−cost(q):
If the other contractor is L or CG, they both return the same result, hence they both get
the reward. If the other is G, then the Judge protocol may still mistakenly identify this L
contractor as Diligent, and would provide the reward, depending on the q-algorithm. Since
we assume the worst-case q-algorithm, we assume that L is not caught against G, and is
indeed rewarded. In any case, they pay the cost of the q-algorithm.

Before providing the full theorem and its proof, we provide the intuition regarding the equilibrium.
Observe that a Copy-Guess strategy always obtains the reward, with minimal cost. This is because,
when matched against a non-Copy contractor, the Copy contractor will simply copy their response,
and the Judge protocol will not perform verification: the response will be accepted and the contrac-
tors will be rewarded. When two Copy contractors get matched, then either P1 or P2 will manage
to copy (discarding the negligible probability that neither could copy due to very similar random
timings). In this case, again both responses will match, regardless of which one guessed and which
one copied, and the Judge protocol will accept that response without further verification. Below,
we formally prove that (CG,CG) is the equilibrium.

Theorem C.1. Under the reasonable assumptions that are stated in Section 4, the pair of strategies
(CG,CG) gives the weak computational Nash equilibrium of the strategic game in Table 4.

Proof. We will prove that CG is the best response against any other strategy, making (CG,CG)
pair the (weak) equilibrium.
First, consider that the other contractor is D. We show that the best response is CG. To show
that, we need to show uC > uD and uC > u−. The one involving the negative utility u− is obvious:

uC > u−

r − cost(ε) > 0 (10)

per assumptions (1), (5), and (6). The other inequality one is:

uC > uD

r − cost(ε) > r − cost(1) (11)

which is obvious since cost(1) > cost(ε).
Next, we show that if the other contractor is L, then the best response is again CG. This can
be shown by proving three inequalities (uC > uD and uC > u− and uC > uL), two of which are
already proven above, and the other one we prove below:

uC > uL

r − cost(ε) > r − cost(q) (12)

7We simplified the cost of Guess and Copy strategies both as cost(ε). This is why the G strategy obtains uC

against Copy strategies (since Copy contractors will simply copy the guessed response and the two results will always
match, thereby not being caught by the Judge protocol).
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which is obvious since cost(q) > cost(ε).
Next is to show that CG is the best response against G. This can be proven via three inequalities
(uC > u− and uC > uD and uC > uL). Indeed, equations (10), (11), and (12) already show that
CG is the best response against G.
Lastly, we need to discuss what this contractor should do when the other contractor is CG. Observe
that equations (11) and (12) already show that this contractor should not be Diligent or Lazy. This
contractor is indeed indifferent between G and CG strategies in this case. This makes the strategy
pair (CG,CG) the weak Nash equilibrium.

Corollary. The computation result returned to the Problem Giver by the SC is incorrect, failing
to achieve the foremost goal of outsourced computation in Section 3.

C.2 With Bounty

Bounty is an extra compensation that a contractor receives if they help to identify a “cheating”
contractor. That is, the bounty is only paid when the two responses do not match. When Judge
protocol identifies one response as correct and the other as incorrect, the contractor who submitted
the correct response gets the bounty, in addition to the reward. Belenkiy et al. [4] showed that
this extra payment of bounty will result in a unique Nash equilibrium that corresponds to the two
contractors using Diligent strategy, resulting in the Problem Giver obtaining the correct computa-
tion result. In this section, we show that bounty in the SC setting is not enough to incentivize the
correct behavior.
This can be seen using the right side of Table 1. In the first two rows of the right side of the table,
the Diligent contractor will obtain the bounty, whereas in the last row, no contractor obtains the
bounty. The interesting case is the third row, where L and G contractors’ responses are compared.
As described earlier, both strategies can respond correctly to a single challenge. However, the
mismatch between the two responses reduces to a single computation step that will be performed
by the SC, and could accept the response of L, as L has performed a computation, which, on the
queried step, may match the correct computation. The G strategy, however, will fail because its
rc’s do not belong to a computation.
Bounty only affects the utilities below:

1. The utility of the strategyD against L orG strategies, including bounty, is r−cost(1)+b(1−ε):
When D is matched against L or G, the contractor will additionally obtain the bounty unless
both responses match, which has negligible probability due to hashing. We approximate this
utility as r − cost(1) + b(1− ε) ≈ r − cost(1) + b and denote as uDB.
Remark: There is no change for D versus other strategies (D or CG), since they will return
the same response and hence no one obtains the bounty.

2. The utility of the L strategy against G strategy, including bounty is r−cost(q)+b(1−ε): When
L is matched against G, except with negligible probability that the responses match, the Judge
protocol may (mistakenly) reward the L strategy and provide extra bounty, while fining the
G strategy of the contractor. Similarly, we approximate this utility as r− cost(q) + b(1− ε) ≈
r − cost(q) + b and denote it as uLB.

Thus three cells in the table will be affected (D vs L, D vs G, L vs G), resulting in Table 5 for the
case with bounty.
Bounty does not help in our setting, because copying is still a meaningful strategy. Note that
when the copier succeeds to copy, both responses would be the same, and hence the Match Check
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P1, P2 D L G CG

D uD, uD uDB, u− uDB, u− uD, uC
L - uL, uL uLB, u− uL, uC
G - - u−, u− uC , uC
CG - - - uC , uC

Table 5: Utility table, with bounty. Note that the utilities in the table represent a symmetric game
(not a symmetric matrix), thus unnecessary cells are omitted.

protocol would not be run, and no one obtains the bounty. Furthermore, as discussed above,
bounty incentivizes both Diligent and Lazy strategies. The following theorem formally states that
the equilibrium does not change with the bounty in our framework.

Theorem C.2. Under the reasonable assumptions that are stated in Section 4, the pair of strategies
(CG,CG) gives the weak computational Nash equilibrium of the strategic game in Table 5.

Proof. Observe that, when the other contractor is Diligent, CG is still the best response, as shown
by equations (10), (11), and (12).
Further, uLB > uDB, meaning that it is better to be Lazy than Diligent against G, due to equation
(3).
Moreover, when the other contractor is Lazy, it is better to be Diligent than Guessing, since:

uDB > u−

r − cost(1) + b > 0 (13)

which is the case due to assumption (1).
Therefore, (CG,CG) strategy pair remains a weak equilibrium.

We further show that the desirable matchings (D,D or D,L or D,G or D,CG) that result in the
acceptance of the correct result by the Problem Giver cannot be made an equilibrium regardless of
the amount of bounty employed. Note that with the Judge protocol run by the SC, at least one of
the contractors need to be Diligent for the accepted result to be correct.

Theorem C.3. No non-negative value of the bounty can make (D,D) or (D,L) or (D,G) or
(D,CG) strategy pair to be an equilibrium of the strategic game in Table 5.

Proof. (outline) Firstly, if the other contractor isD, we already showed that CG is the best response.
Hence, (D,D) cannot be an equilibrium.
Second, (D,CG) cannot be an equilibrium either, since if the other contractor is CG, then this
contractor should be CG or G as discussed in the proof of Theorem C.1.
Third, (D,G) cannot be an equilibrium, since if the other contractor is G, then this contractor
should better be L than D as shown in the proof of Theorem C.2.
Lastly, (D,L) cannot be an equilibrium, since if the other contractor is L, and then this contractor
chooses the D strategy, then the other contractor would switch to CG as shown above.

Corollary. The computation result returned to the Problem Giver by the SC is incorrect, failing
to achieve the foremost goal of outsourced computation in Section 3.
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