
Where Star Wars Meets Star Trek: SABER and
Dilithium on the Same Polynomial Multiplier

Andrea Basso1,2, Furkan Aydin3,4, Daniel Dinu3, Joseph Friel3, Avinash
Varna3, Manoj Sastry2 and Santosh Ghosh2

1 University of Birmingham, UK
2 Intel Labs, Intel Corporation, USA

3 IPAS, Intel Corporation, USA
4 North Carolina State University, USA

Abstract. Secure communication often require both encryption and digital signatures
to guarantee the confidentiality of the message and the authenticity of the parties.
However, post-quantum cryptographic protocols are often studied independently. In
this work, we identify a powerful synergy between two finalist protocols in the NIST
standardization process. In particular, we propose a technique that enables SABER
and Dilithium to share the exact same polynomial multiplier. Since polynomial
multiplication plays a key role in each protocol, this has a significant impact on
hardware implementations that support both SABER and Dilithium. We estimate
that existing Dilithium implementations can add support for SABER with only a
4% increase in LUT count. A minor trade-off of the proposed multiplier is that it
can produce inexact results with some limited inputs. We thus carry out a thorough
analysis of such cases, where we prove that the probability of these events occurring
is near zero, and we show that this characteristic does not affect the security of the
implementation.
We then implement the proposed multiplier in hardware to obtain a design that
offers competitive performance/area trade-offs. Our NTT implementation achieves
a latency of 519 cycles while consuming 2,012 LUTs and only 331 flip-flops when
implemented on an Artix-7 FPGA. We also propose a shuffling-based method to
provide side-channel protection with low overhead during polynomial multiplication.
Finally, we evaluate the side-channel security of the proposed design on a Sakura-X
FPGA board.
Keywords: Polynomial multiplication · SABER · Dilithium

1 Introduction
Since Peter Shor developed a quantum algorithm to factorize integers and solve discrete
log problems in 1997 [Sho97], the advent of quantum computers poses a threat against the
majority of widely used cryptosystems. While publicly available quantum computers are
still far from being powerful enough to break RSA or Diffie-Hellman as used today, the high
pace of technological development might close the gap soon. It is thus urgent to migrate
current cryptosystems to quantum-resistant protocols. To bootstrap the development and
the analysis of such protocols, in 2016 the American National Institute of Standards and
Technology (NIST) started a post-quantum cryptography standardization process [oST].
The process is now in its third round, and the first batch of selected standards is expected
to be announced at the beginning of 2022. In the current round, there are four finalist
key encapsulation mechanisms (KEMs), Classic McEliece, Kyber, NTRU, and SABER,
and three finalist digital signature protocols, Dilithium, Falcon, and Rainbow. These

2 SABER and Dilithium on the Same Polynomial Multiplier

protocols rely on different mathematical primitives and offer a diverse range of performance,
communication costs, and additional properties.

The protocols submitted to the NIST competition have been studied and analyzed
by the cryptographic community, both in their theoretical guarantees as well as in their
implementational aspects. Most implementation studies have researched the protocols
independently of each other, and they have not considered whether it is possible to optimize
different schemes to work with each other. It is of particular interest to research the
possible synergies between KEMs and digital signatures. This is because a wide array of
applications requires implementing both. A classic example is the TLS handshake [Res18]
that guarantees the security of HTTPS as well as many other internet communications.
Another example is the Signal protocol [MP] that underlies the security of private messaging
for billions of people. More generally, whenever secure communication is needed between
authenticated parties, both encryption and signatures are used.

In this work, we aim to close this research gap and present a powerful synergy between
a finalist KEM protocol and a finalist digital signature scheme. In particular, we make the
following contributions:

1. We propose a technique that computes polynomial multiplication in SABER and
Dilithium using exactly the same multiplier. Since polynomial multiplication makes
up the majority of computations in both protocols, reusing the same multiplier can
have significant benefits for hardware implementations that support both protocols.

2. The proposed multiplier has a non-zero failure rate, i.e. there are specific inputs that
cause the multiplier to produce an inexact result. We thoroughly study such cases
and prove that they happen with negligible probability. We also show that this does
not affect the security of the system.

3. We design a hardware implementation of the polynomial multiplication based on
the NTT. The resulting design achieves comparable performance with multipliers
reported in the literature, while reducing the area consumption and achieving a high
clock frequency.

4. We propose a constant-time Fisher-Yates shuffling-based protection technique that
increase side-channel security with low overheads. We also perform a side-channel
evaluation to validate the security of the design.

The choice of protocols The reason why we propose a strong synergy between SABER
and Dilithium is not casual, since we argue that these protocols are the most compatible
among the round 3 finalists of the NIST standardization process. If we consider all protocols
in the last round, there are four KEM schemes and three digital signature protocols. One
KEM (Classic McEliece) and one signature (Rainbow) rely on mathematical primitives
that do not have a correspondent in the other category, which makes them ill-fitted to
share a significant part with other protocols. The remaining protocols are all lattice-
based, with three (Kyber, SABER, and Dilithium) being based on the hardness of the
Learning With Error (LWE) problem, and the remaining two (NTRU, Falcon) based on
the NTRU problem. While further research is needed to evaluate the possibility of a
unique multiplier for both NTRU and Falcon, the two protocols have significantly different
polynomial multiplication characteristics. This makes them unlikely to be able to share
the same multiplier. Lastly, among the LWE-based protocols, Kyber and Dilithium have
incompatible multiplication strategies because both protocols prescribe the use of the NTT
for polynomial multiplication, but each protocol requires different moduli and different
techniques. Conversely, SABER does not require any particular multiplication algorithm,
which allows it to adapt to use the Dilithium polynomial multiplier.

A. Basso et al. 3

Related work The literature does not report any fully in-hardware implementation
that supports both post-quantum encryption and digital signatures. A recent work by
Fritzmann et al. [FBR+] proposes a software/hardware codesign that accelerates many
building blocks for a wide variety of post-quantum protocols, but each protocol uses
dedicated logic within the NTT to support different prime moduli. There exist several
reported implementations that support a single protocol. The first complete hardware
implementations of Dilithium [RMJ+21] brings high speed results at a significant area
consumption cost, while a more recent implementation by Land et al. [LSG21] achieves
better trade-offs. A software/hardware codesign for Dilithium has also been reported by
Zhou et al. [ZHL+21], but the hardware accelerator only focuses on Keccak and polynomial
multiplication. For SABER, several implementations have been reported. The first
hardware implementation [RB20] computes polynomial multiplication using the hardware-
friendly schoolbook method. The same design was later improved by [BR20] and eventually
transformed into an ASIC design [IAR+21] that can achieve high clock frequencies. Another
ASIC implementation by Zhu et al. [ZZY+21] achieves high performance by computing
polynomial multiplication with the Karatsuba algorithm. The application of the NTT
in SABER is first reported by Chung et al. [CHK+20], which was used for a software
implementation. The only hardware implementations of SABER that rely on the NTT
are two hardware/software codesigns: the already mentioned accelerator by Fritzmann et
al. [FBR+] and RISQ-V [FSS20], a RISC-V accelerator for post-quantum cryptography.
Lastly, shuffling-based countermeasures against side-channel attacks on the NTT are
discussed by Ravi et al. [RPBC20] in software and by Zijlstra et al. [ZBT19] in hardware.
Recently, [AMJ+21] proposed a unified hardware accelerator that supports both Dilithium
and SABER. The accelerator uses the same NTT core for both protocols, but unlike this
work it relies on different prime moduli for SABER and Dilithium.

Paper organization The paper introduces some preliminaries in Section 2, including
a brief description of SABER and Dilitihium. Then, Section 3 presents a technique to
use the exact same multiplier in both protocols, while the implementation of such a
multiplier is reported in Section 4. Section 5 proposes a low-overhead countermeasure
against side-channel attacks based on shuffling, and the results of our implementation and
side-channel analysis are reported in Section 6.

2 Preliminaries

2.1 Notation

Several operations in this work act on polynomials. We denote polynomials with lowercase
letters as c, or when confusion may arise as c(x). In the context of SABER, we often refer
to a generic public polynomial in the matrix AAA as a or a(x). Similarly, secret polynomials
are denoted as s or s(x). Vectors and matrices of polynomials are referred in bold typeface
and respectively lowercase (bbb) and uppercase letters (AAA).

The uniform distribution over the range [0, x) or the range [−x, x] (in the case of
secrets) is represented as Ux(·, ·). The argument of the function denotes the size of the
matrix returned, where the matrix entries are polynomials with coefficients uniformly
distributed. With a slight abuse of notation, when only one argument is present, the
function returns a vector of polynomials. The centered binomial distribution is represented
by βµ(·), where the argument represents the length of the vector returned, and the vector
elements are polynomials with binomially distributed coefficients. A centered binomial
distribution with parameter µ is a discrete distribution over the interval [−µ/2, µ/2], with

4 SABER and Dilithium on the Same Polynomial Multiplier

Algorithm 1: SABER KeyGen
1 seedAAA ← U1(1)
2 AAA = gen(seedAAA)
3 sss = βµ(l)
4 bbb = b 1

8AAA
Tssse

5 return pk = (seedAAA, bbb), sk = sss

Algorithm 2: SABER Decryption
1 v = bbb′Tsss
2 m′ = extract(v, cm)
3 return m′

Algorithm 3: Saber Encryption
1 AAA = gen(seedAAA)
2 s′s′s′ = βµ(l)
3 bbb′ = b 1

8AAAsss
′e

4 v′ = bbbTsss′

5 cm = embed(v′,m)
6 return c = (cm, b′b′b′)

the probability density function given by

p(X = x) = µ!
(µ/2 + x)!(µ/2− x)!2

−µ. (1)

Since a centered binomial distribution represents the distribution of the sum of µ random
bits, the sum of multiple centered binomial variables Bi with parameter µi is again a
centered binomial random variable with parameter µ′ =

∑
i µi.

For modular reduction, we use x mod p to denote the usual modular reduction that
takes in input a value x in the range [0, (p − 1)2] and outputs a value x′ ∈ [0, p − 1]
such that x′ ≡ x mod p. Centered modular reduction is denoted by mod± and outputs
a value in the range

[
−bp−1

2 c, b
p
2c
]1. Throughout the paper, q denotes the Dilithium

prime 223 − 213 + 1. Additional notation and constants used in the protocol descriptions
are explained in their corresponding specifications [BMD+20, BDK+20], to which we refer
for a more complete treatment of SABER and Dilithium.

The Number Theoretical Transform (NTT) is an adaptation of the Fast Fourier
Transform in the finite field domain and it is used to achieve the asymptotically fastest
polynomial multiplication algorithm. We refer to the forward NTT as NTT(·), and
we usually denote the resulting polynomial in the NTT domain with a tilde, so that
ã = NTT (a). We write the inverse NTT as INTT(·) and the coefficient-wise multiplication
between ã and s̃ as ã◦ s̃. For a more complete treatment of the NTT, we refer to [CHK+20,
Sec. 2], [POG15], and [LN16].

2.2 SABER
SABER [BMD+20] is a key encapsulation mechanism (KEM) based on the Module Learning
With Rounding (Mod-LWR) problem. Most of its operations act on polynomials. Matrices
and vectors have polynomials as their elements, and all polynomials have 256 coefficients.
The coefficients are integers modulo 213 or 210. A key characteristic of SABER is its usage
of power-of-two moduli. This greatly simplifies the rounding operation, which becomes
a simple addition and bitshift, and it increases the performance of side-channel resistant
implementations, but it prevents a straightforward application of the NTT to compute
polynomial multiplication.

The key generation (Algorithm 1) of the public-key encryption protocol mainly consists
of generating a LWR sample. A second LWR sample is computed during encryption
(Algorithm 3), and the new secret is used to compute a polynomial v′. The message is
then embedded into this polynomial, which makes up the ciphertext together with the
generated LWR sample. Lastly, the message is decrypted (Algorithm 2) by recomputing the

1We use this interval, rather than the more common
[
−b p

2 c, b
p−1

2 c
]
to follow Dilithium’s specification.

A. Basso et al. 5

Algorithm 4: Dilithium KeyGen
1 AAA = Uq(k, l)
2 s1s1s1 = Uη(l)
3 s2s2s2 = Uη(k)
4 ttt = AAAs1s1s1 + s2s2s2
5 return pk = (AAA,ttt), sk = (s1s1s1, s2s2s2)

Algorithm 5: Dilithium Verify
1 w′1w

′
1w
′
1 = HighBits(AAAzzz − cttt)

2 if Validz(zzz) and c == H(M || w′1w′1w′1)
then

3 return 1
4 else
5 return 0

Algorithm 6: Dilithium Sign
1 zzz = ⊥
2 while zzz == ⊥ do
3 yyy = Uγ1(l)
4 w1w1w1 = HighBits(AAAyyy)
5 c(x) = H(M || w1w1w1)
6 zzz = yyy + cs1s1s1
7 if not Validz(zzz) or

not ValidA(AAAyyy − cs2s2s2) then
8 zzz = ⊥
9 return σ = (zzz, c)

polynomial v, similar to v′, and extracting the message. In Algorithm 2 and Algorithm 3,
the function extract is the inverse of embed, i.e. extract(v, embed(v,m)) = m. The KEM
protocol is then obtained by applying the Fujisaki-Okamoto to the public-key encryption
scheme.

From an implementation point of view, most of the computation time of SABER is
spent on polynomial multiplication. Note that implementers are free to choose the most
suitable multiplication algorithm.

2.3 Dilithium
CRYSTALS-Dilithium [BDK+20] is a digital signature protocol that bases its security
on the modular learning with error (Mod-LWE) problem. This is similar to the underly-
ing problem of SABER, but Dilithium randomly samples the error term while SABER
introduces it deterministically through a rounding operation.

Similarly to SABER, all operations act on polynomials modulo the 〈x256+1〉 polynomial.
The main difference is the use of the prime modulus q = 223 − 213 + 1, which enables fast
multiplication via the NTT. Since the matrix AAA is generated directly in the NTT domain,
it is not possible to use alternative multiplication algorithms.

The key generation of Dilithium (Algorithm 4) consists of generating a Mod-LWE
sample. When signing (Algorithm 6), Dilithium generates a random vector yyy and derives a
polynomial c based on the message and the product w1w1w1 = AAAyyy. The signature then consists
of the polynomial c and the vector zzz, obtained as zzz = yyy + cs1s1s1, if these values pass some
tests that guarantee correctness and security. If not, the procedure is repeated with a
different random vector yyy until the final checks succeed. On average, Dilithium requires
5.1 repetitions until a valid signature is computed at security level 3. Lastly, verification
(Algorithm 5) recomputes w1w1w1 and considers a signature valid only if the vector z satisfies
the signing checks and c can be recomputed from the message and w1w1w1. Note that the
protocol depicted in Algs. 4, 5, 6 is simplified for clarity and does not contain message
compression. Similarly to SABER, polynomial multiplication takes up the majority of
computation times, since it is required in most operations that are not sampling or hashing.

3 Polynomial multiplier strategy
Polynomial multiplication plays a key role in both SABER and Dilithium. The main
similarities and differences in how multiplication is computed in the two protocols are

6 SABER and Dilithium on the Same Polynomial Multiplier

represented in Table 1. We see that both protocols use polynomials with 256 coefficients
and compute multiplication modulo 〈x256 +1〉. However, the similarities end here. The two
protocols use different moduli (10/13-bit long vs 23) and SABER relies on power-of-two
moduli, rather than prime ones, which prevents a straightforward application of the NTT.
Lastly, Dilithium generates the public matrix AAA in the NTT form to reduce computation
times. This implies that any implementation of Dilithium is required to use NTT modulo
q to compute polynomial multiplication. In SABER, however, implementers are free to
choose the most suitable multiplication algorithm.

Table 1: Comparison of polynomial multiplication characteristics in SABER and Dilitihium.
SABER Dilithium

Polynomial modulus 〈x256 + 1〉 〈x256 + 1〉
Coefficient modulus 210, 213 223 − 213 + 1

(power-of-two) (prime)
Secret coeff. range [−3, 3], [−4, 4], [−5, 5] [−2, 2], [−4, 4]

Multiplication algorithm – NTT

In the next section, we present a technique to compute polynomial multiplication in
both SABER and Dilitihium with the same algorithm. Since it is not possible to deviate
from the NTT modulo q technique in Dilitihium, we present a solution that exploits the
flexibility of SABER to compute multiplication in SABER by reusing the polynomial
multiplier of Dilithium.

3.1 NTT-based multiplication in SABER
The application of the NTT to compute polynomial multiplication modulo 〈x256 + 1〉
requires that the coefficient ring contains a 512-th root of unity, which implies that the
coefficient modulus needs to be prime. This prevents a straightforward application of the
NTT in SABER, which uses power-of-two moduli. However, it is possible to avoid this
issue by switching to a larger modulus.

In the context of SABER, Chung et al. [CHK+20] proposed such a technique, where
they relied on an incomplete NTT with a 25-bit modulus. Another work by Fritzmann et
al. [FBR+] has also reported an implementation of SABER with NTT-based multiplication,
where larger moduli are used (39-bit long). The technique used in these works involves
lifting the coefficients of the polynomials in SABER from Z/213Z to Z/q′Z, where q′ is a
larger prime modulus such that Z/q′Z contains a 512-th root of unity. It is then possible
to compute the NTT-based multiplication and finally reduce the result modulo 213 to
obtain the final result.

These techniques use large moduli to avoid precision errors introduced by the modular
reduction. In other words, one needs the new modulus to be larger than the maximum
possible coefficient in the product polynomial. If that is not the case, coefficients larger
than the modulus would be reduced, and the final product would be incorrect due to the
incompatibility between different moduli.

Let us now consider what modulus q′ should be used in SABER. All polynomials
have 256 coefficients, and the public polynomial coefficients lie in the interval [0, 213 − 1],
while the secret coefficients range between -4 and 4 at security level 3. A straightforward
approach would represent the negative secret coefficients as modulo 213, so that −1 is
represented as 213 − 1. In this case, the largest product polynomial coefficient is obtained
when the public polynomial consists of all coefficients set to 213 − 1 and all the secret
coefficients are equal to −1, so that the product polynomial has a coefficient equal to

A. Basso et al. 7

256× (213−1)× (213−1) = 17,175,675,136. The NTT modulus q′ then needs to be greater
than this value, thus at least 34-bit long. More simply, if the coefficients are 13-bit long
and there are 28 coefficients, the modulus q′ needs to be at least 13 + 13 + 8 = 34-bit long.

It is possible to do better by considering that one operand, the secret polynomial, has
small coefficients between −4 and 4. To exploit such smallness, however, signed operations
are needed to represent elements such as −4 with 3 bits (plus sign), rather than with 13 bits
as q′−4. Thus, we can replace the modular reduction operation with the centered modular
reduction, denoted by mod± , that maps integer to the interval [−(q′ − 1)/2,+(q′/2],
where q′ is the modulus. The public polynomial coefficients are thus represented as integers
in the interval [−212 + 1, 212].

This allows us to reduce the size of the prime q′, since the maximum absolute value of
a coefficient in the product of two polynomials is then 256× 4× 212. To avoid modular
reductions, we require that the prime q′ satisfies q′/2 > 256× 4× 212, where q′/2 is due to
the centered modular reduction. We would thus need a modulus q′ that is strictly larger
than 223, hence 24-bit long.

Algorithm 7: NTT-based multiplication for SABER
Data: Polynomials a(x) with ai ∈ [0, 213) and s(x) with si ∈ [−4, 4]
Result: a(x)s(x) mod 〈x256 + 1〉, with coefficients in [0, 213)

1 a±(x)← a(x) mod± 213;
2 ã(x)← NTT(a±);
3 s̃(x)← NTT(s);
4 c̃(x)← ã ◦ s̃;
5 c±(x)← INTT(c̃);
6 c(x)← c±(x) mod 213;
7 return c(x)

Our proposal We have established that computing polynomial multiplication in SABER
via the NTT requires a prime modulus q′ such that q′/2 > 256×4×212. The Dilithium prime
q = 223−213 +1 almost satisfies the condition. Indeed, we have q/2 ≈ (256×4×212)−212.
This means that if polynomial multiplication is computed in SABER with the Dilithium
modulus, there exist polynomials for which the procedure returns the wrong result. However,
such polynomials are extremely rare and, if we accept a negligible failure probability, we
can use the exact same Dilithium polynomial multiplier to compute multiplication in
SABER without any adaptation.

We are thus proposing a method to compute polynomial multiplication in SABER and
Dilithium using exactly the same multiplier, without the need to adapt it for either protocol.
The overall computations are represented in Algorithm 7. An important component that
enables the unified multiplier is the fact that the NTT (lines 2 and 3), coefficient-wise
multiplication (line 4), and inverse NTT (line 5) are computed with signed arithmetic (in
two’s complement) and a centered modular reduction. Signed arithmetic and the centered
modular reduction are used to reduce the size of the modulus that SABER can work
with, whereas the usage of two’s complement allows to implement lines 1 and 6 practically
“for free”. Indeed, they do not correspond to any additional computations because the
modulus is a power-of-two and that allows to freely move between centered and positive
representations. That is because the bitstring representation of a number n mod 2x is the
same as that of the two’s complement representation of the centered reduction n mod± 2x.
Lastly, note that lines 2 to 5 represent how polynomial multiplication is computed within
Dilithium, which shows that the same algorithm can be used unchanged for both SABER
and Dilithium.

8 SABER and Dilithium on the Same Polynomial Multiplier

3.2 Error analysis
We now quantify the error probability when polynomial multiplication in SABER is
computed following Algorithm 7. From the analysis in the previous section, we have seen
that the multiplication fails when the product polynomial has a coefficient whose absolute
value is greater than q/2 = 222 − 212 + 1/2.

Firstly, if the secret polynomial has two or more coefficients different than 4 or −4, then
there is no public polynomial that can cause any multiplication failure. That is because
even if s(x) has 254 coefficients equal to 4 and the two equal to 3, and the public polynomial
is maximal (all coefficients equal to 212), the largest coefficient in the product polynomial
is 212 × (4× 254 + 3× 2) = 4,186,112, which is less than q/2. Similarly, we obtain that if
the secret coefficient has 255 coefficients equal to 4 and the remaining coefficient equal to
3, the only public polynomial that causes a failure is the one with all coefficients equal
to 212. Lastly, when the secret polynomial consists of only coefficients equal to 4, more
public polynomials can lead to failure cases. Indeed, all the public polynomials with all the
coefficients greater or equal to 212 − 4 do so. Moreover, note that generally if polynomials
a(x) and s(x) lead to a multiplication failure, so do −a(x) and −s(x), but also −a(x) and
s(x), and a(x) and −s(x). This is because the failure cases are determined by the largest
absolute value in the product polynomial, thus the sign does not have a significant effect.
There is one main exception though, because the asymmetry in the range of the centered
modular reduction. Since the coefficient range is [−(212− 1), 212], we have that −212 ≡ 212

and thus there is no additional failure case.
Given a complete description of the failure cases, it is now possible to compute the

probability of these events happening. Let us consider the joint probability distribution over
both polynomials. The public polynomial is uniformly distributed, hence the probability
that all its coefficients are in the set S := {±(212−4),±(212−3),±(212−2),±(212−1), 212}
is given by

ppub =
(

#S
213

)256
≈ 2−2516.

The coefficients of the secret polynomial are binomially distributed, which means
coefficients such as 4 and −4 are not very common. To simplify the analysis, we only
compute the probability of secret polynomials which have at least 255 coefficients equal to
4 or −4, with remaining coefficient equal to 3 or −3. Such a probability can be computed
as

psec =
(

256
255

)
(2× 2−8)255 × (2× 8× 2−8) + (2× 2−8)256 ≈ 2−1782, (2)

where 2×2−8 is the probability of a coefficient being 4 or −4 (see Eq. 1), 2×8×2−8 is the
probability of a coefficient being 3 or −3, and

(256
255
)
account for any coefficient permutation.

We can thus conclude that the probability ptot that our proposed multiplication
technique fails is the product of the two probabilities, hence

ptot = ppub × psec = 2−2516 × 2−1782 = 2−4298.

Such a probability is extremely minimal and can be considered as virtually zero. Note
that these computations only provide a upper bound to the failure probability, since not all
combinations of secret polynomials and public polynomials considered lead to a failure case.

Lastly, we consider the probability for different security levels. At NIST security
level 5, FireSABER uses secret polynomials with coefficients in the range [−3, 3]. Thus,
the polynomial multiplier is always exact and never fails. At security level 1, however,
LightSABER has secret coefficients in the interval [−5, 5], which does lead to a higher
failure probability. When the secret polynomial has all coefficients equal to 5, experimental
results show that the public polynomials that lead to failures are those with coefficients

A. Basso et al. 9

whose absolute value is greater than 212 − 823. This means that #S = 2 × 823 + 1
and the probability of obtaining such a polynomial is ppub = 2−592. To compute ppub,
we only consider the case where the public polynomial is maximal. While this slightly
underestimate the failure probability, the additional terms do not affect the final result
much and this approach greatly simplifies the analysis. In this case, the largest coefficient
in the product polynomial is given by |

∑
aisi| = 212|

∑
si|, where si and ai represent

the i-th coefficient of the secret and the public polynomial. Since the multiplier fails
when the largest product coefficient is greater than q/2 = 222 − 212, this implies that
multiplication failures only occur when the sum of the secret coefficients has absolute value
greater than 210− 1. The sum of the secret coefficients is distributed according to a central
binomial distribution with µ′ = 256× µ (see Section 2.1), where µ is the parameter of the
coefficient binomial distribution. This thus gives the probability of a secret polynomial
possibly leading to a failure as psec = 2−1360, with the total failure probability equal to
ptot = 2−1952. Hence, at all security levels the proposed multiplier only fails with near-zero
probabilities.

Security considerations It is important to consider the security implications of using a
polynomial multiplier that has a negligible but non-zero failure probability.

Firstly, we note that an attacker can learn some information about the secret polynomial
only if the uniformly random public polynomial can lead to a multiplication failure, since
otherwise the multiplication does not fail and no information on the secret polynomial
is leaked. Thus the probability of an attacker recovering any information is negligible.
However, even if the public polynomial has large coefficients and could possibly lead
to a multiplication failure, the failure only happens if the secret coefficients has nearly
all coefficients with maximal absolute value. Thus an attacker would only learn with
overwhelming probability that the secret polynomial does not have 255 or more coefficients
equal to 4 or -4. While this does reduce the search space, the reduction is so minimal that
it does not lead to any feasible attack.

Moreover, the computed probability considers the distribution over both polynomials.
A natural question is whether an attacker may choose a malicious public polynomial to
boost the failure probability and possibly gain information on the secret polynomial. This
is not possible, because the public polynomial is obtained by expanding an initial seed
through a cryptographically secure hash function. This means that it is computationally
hard to find a seed such that it expands to a desired value. However, an attacker may
construct maliciously formed ciphertexts that are then multiplied with secret polynomials
during decryption. Note though that the ciphertext polynomials have 10-bit coefficients,
thus the proposed multiplier algorithm would never fail. Furthermore, even if an attacker
may influence the public polynomial through fault attacks or other methods, they would
not be able to gain significant secret information. The optimal attack would force the
public polynomial to be maximal, i.e. one with all coefficients set to 212, which would
increase the multiplier failure probability to psec. Thus any resulting attack would have a
complexity much higher than the claimed security of SABER.

Hence, the negligible probabilities of failure-leading public and secret polynomials
prevent any efficient attack and shows that the proposed implementation is secure. The
near-zero probability ppub prevents recovering any secret information, while the near-zero
probability psec shows that an attacker may not recover any meaningful information even
if they could affect the public polynomial.

3.3 Applications and extendability
The proposed technique allows to compute polynomial multiplication within SABER
and Dilithium with the exact same algorithm. This has an important effect on every
implementation that needs to support both protocols.

10 SABER and Dilithium on the Same Polynomial Multiplier

Firstly, both software and hardware implementation can benefit from our proposed
technique because it reduces the code base, speeds up development and debugging, and
simplifies the development of formally verified implementations. However, a single polyno-
mial multiplier is particularly useful in hardware implementations. Any implementation
that supports both protocols would significantly reduce their area consumption. Indeed, in
SABER implementations, polynomial multiplication takes up as much as 50% of the overall
area, with another 30% being taken up by the Keccak core (see, for instance, [RB20]).
Since the Keccak core is already a shared block between the two protocols, with our
proposed multiplier a Dilithium+SABER implementation would have only a modest area
consumption increase over a Dilithium only implementation. If we consider the most
compact hardware implementation of Dilithium [LSG21], we see that adding support for
SABER level 3 using the additional building blocks from [RB20] would only require a 4%
increase in LUT count and a 15% increase in flip-flop count. The same benefits would also
be seen in hardware/software codesign solutions, where polynomial multiplication is often
the first block to be hardware-accelerated. Similarly, a Dilithium accelerator that exposes
only high-level APIs, such as NTT or entire polynomial multiplication instructions, would
be able to accelerate SABER without any additional modification.

The proposed polynomial multiplier approach can thus bring several advantages and
significantly improve the performance of hardware implementations. It would be beneficial
to extend this to more protocols. However, the proposed technique relies on both the
specific design of SABER and Dilithium as well as their parameter choices. It thus does
not seem possible to extend this approach to more protocols. Kyber, which shares many
similarities with both SABER and Dilithium, seems to be a good candidate. Nonetheless,
Kyber requires the usage of an incomplete NTT modulo 3329, which is incompatible with
the NTT required by Dilithium. A variant of Kyber that doen not generates the public
matrix A in the NTT domain could easily be supported by the proposed unified multiplier.

4 Hardware design
We designed a hardware architecture that implements the proposed unified polynomial
multiplier. As described in the previous section, the multiplier is based on the NTT
multiplication algorithm and it uses signed arithmetic with two’s complement representation.
The proposed architecture is designed for ASIC implementation first, although applications
to FPGAs are also considered. The design goals strike a balance between performance and
area consumption, and they result in an architecture that achieves comparable latency
with existing designs while also reducing the overall area consumption.

4.1 Modular reduction
We start by optimizing the modular reduction operation through hardware-friendly com-
putations. The impact of these optimizations is significant because modular reduction is a
low-level fundamental computation whose performance affects the overall performance of
the NTT computation. By reducing the critical path of the modular reduction, it is thus
possible to increase the clock speed for the entire NTT block.

In Dilithium, the modulus is q = 223 − 213 + 1, which is a Solinas prime. The input
a is the result of the multiplication between two 23-bit values, and it is thus 46-bit long.
The value a is split into five blocks as

a = a4243 + a3233 + a2223 + a1213 + a0,

since mod q we have that 223 ≡ 213 − 1, which means 233 ≡ 223 − 210 ≡ 213 − 210 − 1,
which also implies 243 ≡ 223 − 220 − 210 ≡ −220 + 213 − 210 − 1. We can thus compute

A. Basso et al. 11

modular reduction by simple bitshift operations and additions. The resulting algorithm is
represented in Algorithm 8. Adders and subtractors implemented signed arithmetic. The
value A in line 6 is in the range [−q, 3q]. Firstly, we reduce it to [−q, q] in line 7 and 8.
Note that explicit comparison can be avoided here by replacing it with the carry output of
the A− q and A− 2q. We then explicitly compare the result with q/2 and add or subtract
q to obtain a result in the range [−(q − 1)/2, q/2]

Algorithm 8: Shift-and-add modular reduction for Dilithium
Result: A ≡ a mod q, with A ∈ [0, q)

1 {a4 || a3 || a2 || a1 || a0} ← a; B |a1| = |a2| = |a3| = 10,
2 A0 ← a2 + a3 + a4; B |a0| = 13, |a4| = 3
3 A∗1 ← a1 +A0;
4 A1 ← A∗123 − (a3 + a4);
5 A2 ← −a4;
6 A← A2220 +A1210 −A0 + a0; B A2220 + a0 = {A2, 7′b0, a0}
7 if A > q then A← A− q ;
8 if A > q then A← A− q ;
9 if A > q/2 then A← A− q ;

10 if A < q/2 then A← A+ q ;
11 return A

4.2 Butterfly unit
We show how we designed and optimized the butterfly computation unit. Such a unit sits
at the core of the NTT algorithm, and is used to update the polynomial coefficients. There
exist two types of butterfly units, the Cooley-Tukey (CT) butterfly and the Gentleman-
Sande (GS) butterfly, which are shown in Figure 1 and Figure 2, respectively. They are
both composed of one multiplier, one adder and one subtractor, but the order varies.

× −

+

aj

aj+t

aj

aj+t

ω

Figure 1: Cooley-Tukey (CT) butterfly.

−

+

aj

aj+t

×aj

aj+t

ω

Figure 2: Gentleman-Sande (GS) butterfly.

Using the same butterfly type for both the forward NTT and the inverse NTT produces
results in bit-reverse order, but bit-reverse reordering operations in hardware are simple,
since they just consist of rewiring, whereas supporting both types of butterfly requires
additional logic. However, this is only possible when the NTT does not implicitly compute
any polynomial reduction, i.e. it outputs a 512 coefficient polynomial. This would then
require dedicated logic to compute the reduction modulo 〈x256 + 1〉. It is possible to
implicitly compute such reduction within the NTT, as shown in [POG15], if there exists a
512-th root of unity modulo the coefficient modulus. While a 256-th root of unity is always
needed to compute the general NTT, the additional 512-th root of unity is needed because
its 256-th power is −1, which is then needed in the modular reduction since x256 ≡ −1
mod 〈x256 + 1〉. When such an approach is chosen, using both the Cooley-Tukey and the
Gentleman-Sande butterfly greatly simplifies computations, as shown in [POG15], and it
is thus preferable over a single butterfly type.

12 SABER and Dilithium on the Same Polynomial Multiplier

To support both types while minimizing area consumption, we designed a single unit
that can supports both modes of operation. The corresponding algorithm is shown in
Algorithm 9 and its implementation is depicted in Figure 3. NTT-based multiplication
also requires to compute coefficient-wise multiplication, and the computation of matrix-
vector multiplication also involves summing several coefficient-wise multiplications before
computing the inverse NTT. To reduce the area consumption and reuse the butterfly
multipliers, the butterfly units also support a third mode of operation (not depicted)
where the butterfly receives three values aacc, a0, and a1 and computes the multiply-and-
accumulate operation that returns aacc+a0×a1. This is needed to compute coefficient-wise
multiplication in parallel with summing the result with that of previous coefficient-wise
multiplications. No additional data port is needed for this mode since the omega port can
be reused to carry the third input value.

Algorithm 9: Unified butterfly algorithm.
Data: Coefficients a0, a1,

Mode selector CT: 1 for CT, 0 for GS
Result: Updated coefficients a′0, a′1

1 m0 ← CT ? a1 : a0;
2 m1 ← CT ? 0 : a1;
3 P ← (m0 −m1)× ω;
4 s← CT ? P : a1;
5 a′0 ← a0 + s;
6 a′1 ← CT ? a0 − P : P ;
7 return (a′0, a′1)

Figure 3: Unified butterfly design.

4.3 High-level design

Figure 4: High-level design of the NTT core.

We now present the high-level design of the NTT core, which is depicted in Figure 4.
The NTT core is used to compute all three stages of polynomial multiplication: the forward
NTT, coefficient-wise multiplication, and the inverse NTT. As described in Section 4.2,
the butterfly units can support all three functionalities. The NTT core is then equipped
with three finite-state machines, one for each functionality, that determine the reading and
writing addresses for the coefficients and root-of-unity constants. To simplify the design,

A. Basso et al. 13

0 128
1 129
2 130

63 191

Memory A

64 192
65 193
66 194

127 255

Memory B

(a) Before the NTT and after INTT.

0

9

1
4

2

5

3

8

Memory A

254 255

10 11
6 7

252 253

Memory B

(b) After the NTT and before INTT.

Figure 5: Memory order. For simplicity, only the index of each coefficient is shown.

the finite state-machine for the forward and inverse NTT contains 512 states that specify
the addresses as well as the memory writing pattern. In this way, our design remains
simple and lightweight while supporting all three functionalities.

Our design uses two butterflies in parallel to achieve a trade-off between performance
and area consumption. In this way, an NTT computation requires 512 cycles. Since each
memory block can only be read and written once per cycle, four memory blocks would be
needed to support two butterflies, one for each coefficient that is read and written each
turn. However, we can reduce the number of memory blocks down to two by storing two
coefficients per memory word. This reduces the memory consumption in both FPGA and
ASIC implementations, and it simplifies the memory handling logic. To do achive this
reduction, we use a technique similar to the one presented in [CMV+15]. At the beginning
of the forward NTT computation, the memory blocks contain coefficients as represented in
Figure 5a. Each cycle, two memory words are read, the four coefficients are written back
to memory in a mixed order. For instance, after the first cycle the first word of memory A
contains the coefficients in position 0 and 64, while the first word of memory B contains
the coefficients in position 128 and 192. Furthermore, at some iterations the coefficients
are swapped before being processed by the butterfly cores, while at others the results are
fully swapped, i.e. the two coefficients that were originally saved in memory A are stored
in memory B and vice versa. By carefully scheduling these operations, it is possible to
guarantee that the four coefficients that are to be processed by the two butterfly units are
always fully stored in two words. After completing the forward NTT computation, the
memory blocks contain coefficients as represented in Figure 5b. The inverse NTT does the
opposite: it expects the input to be stored as in Figure 5b and produces the output as in
Figure 5a. The coefficient-wise multiplication reads and writes the coefficients in the same
order and thus does not affect the memory allocation.

5 Lightweight side-channel protection
There exists several side-channel attacks against implementations of the NTT, such as
those reported in [KLH+20] and [PP19]. Both propose single trace attacks against the
NTT in Dilithium. One efficient countermeasure is shuffling, which consists of randomly
reordering operations that do not depend on each other, so that the resulting power or EM
traces change at each iteration of the protocol. While this does not guarantee the same
protection as more computationally demanding techniques, such as masking, shuffling can
increase the side-channel security while requiring only low overheads.

The NTT algorithm is composed of stages of 128 operations that are independent of
each other. Since our implementation uses two butterflies in parallel, our NTT takes 512
cycle to complete and consists of eight stages of 64 cycles, where each operation in a stage
is independent of each other. We thus propose to shuffle those 64 operations in a random
order. This leads to 64! (approximately 2296) different configurations, hence 64! different

14 SABER and Dilithium on the Same Polynomial Multiplier

power/EM traces. Since our implementation of the forward and inverse NTT relies on two
512-state finite-state machines, shuffling can be easily achieved by simply changing the
way that the state is updated within the finite-state machines.

One thing to note is that shuffling may cause memory collisions. Since the order of
execution is randomized, one operation may write at the same memory address that the
next operation needs to read from. This does not happen between operations in the same
64-cycle stage, but can take place–for instance–between the 64th and the 65th cycle of
execution. Memory collisions leads to errors because there is a one-cycle delay between the
writing operation and when that value can be read from memory. There are two possible
solutions to this error: either the random shuffle is generated in a specific way to avoid
such collisions, or an artificial 1-cycle delay is introduced between each stage. To keep
the implementation simple and have a robust implementation that does not rely on the
correctness of the shuffle generation, we opted for the second solution. Note that this
increases the latency by only 7 cycles, or about a 1% increase in cycle count.

The random order can either be generated in software and passed to the hardware
accelerator as input or generated directly in hardware. Software implementations can use,
for example, the inside-out version of the Fisher-Yates algorithm [Knu97] to generate the
shuffling order. The inside-out version of the Fisher-Yates algorithm may also be used for
in-hardware generation, but it requires 64 random numbers in a varying interval between 1
and 64, i.e. 64 random numbers are required, where the i-th number is uniformly random
in the interval [0, i − 1]. As SABER and Dilithium already require a Keccak core, the
random numbers can be obtained by hashing an input seed using a Keccak-based hash.
However, the results are uniformly random in a power-of-two range, which creates an issue
for hardware implementations. This is because uniformly random with non power-of-two
moduli requires more involved solutions, such as rejection sampling, which significantly
increase the complexity of the design.

We thus propose that in-hardware generation use a simple modular reduction operation
(which becomes an even simpler subtraction) to reduce the range of the values to the correct
one. This leads to a biased distribution, but a careful analysis shows that the entropy of
the randomization is about 2293 bits, i.e. only 3 bits lower than the ideal one. With such a
trade-off, the shuffle generation requires less randomness, uses a simpler algorithm (which
requires less logic and less development time), and guarantees a constant-time execution
at the cost of only three bits of entropy.

If the random shuffle is generated in software and passed as input to the multiplier,
the latency overhead is only 7 cycles. If the Fisher-Yates algorithm is implemented in
hardware, the random shuffle can be stored in memory (BRAM in FPGAs), thus the
area overhead is also minimal because it only consists of a single subtractor and memory
read/write logic. The performance overhead is somewhat more relevant since it requires
128 cycles, two for each coefficients due to the memory limitations. While this is one
quarter of the entire NTT execution, if the larger context of SABER and Dilithium is
considered, the Fisher-Yates computation can also be parallelized with other operations to
minimize its latency effects.

We propose to use the same randomization for all eight stages in a single NTT, but
different trade-offs between security and performance can be achieved by using different
randomizations for each stage, or conversely using the same randomization for multiple
NTTs. We also note there are other fine-grained techniques that can be applied to further
increase the noise and thus the security of the implementation, such as randomize which
butterfly unit operates on which set of data.

5.1 Extending the protection beyond the NTT
While this work focuses only on polynomial multiplication, the multiplier is designed to
be used within a larger implementation of SABER and Dilithium. If other accessory

A. Basso et al. 15

functions are also implemented in hardware, it is possible to extend the side-channel
protection to them without any additional logic or computation. We start by noting that
the unit that computes polynomial multiplication via NTT, inverse NTT and coefficient-
wise multiplication is constantly writing and reading from memory. In the last 64 cycles,
the coefficients that are written to memory are the final result and will not be further
modified. Since all accessory computations in SABER and Dilithium take place on the
result of the inverse NTT and are computed coefficient-wise, it is possible to compute
them right after the inverse NTT block and before those values are saved to memory.

For instance, consider the Power2Round function used during the Dilithium key genera-
tion. A straightforward approach consists of computing the inverse NTT and storing the
result in memory. Then, the values AAAs1s1s1 and s2s2s2 are read from memory and ttt = AAAs1s1s1 + s2s2s2 is
written back to memory. Eventually, all the coefficients of the polynomials in ttt are read
again to compute Power2Round(ttt, d) (here d is a constant), and eventually t0t0t0 and t1t1t1 are
written back to memory. In our proposed design, while computing the inverse NTT, we
also load s2s2s2 and compute Power2Round(AAAs1s1s1 + s2s2s2) after the final coefficients of As1As1As1 are
computed by the INTT and before they are stored to memory. In this way, we write
directly the final value and thus reduce the latency as well as the area consumption. The
same applies to all the other accessory computation blocks. Other examples of accessory
function that can be implemented with this approach are the rounding operations in
SABER, the message embedding and extracting in SABER, but also the HighBits and
LowBits functions in Dilithium, the MakeHint instruction in Dilithium, etc.

While this approach leads to longer critical paths and possibly higher memory bandwith,
it also significantly reduce the latency of the accessory functions and may also affect the
side-channel security. With this method, we can extend the shuffling protection to all the
accessory functions without any additional logic, since the computational units receive
the coefficients in random order. This leads to randomized traces that contribute to the
side-channel resistance. Moreover, in this way two functions are computed in parallel
(since the INTT has two butterfly units and produces four coefficients per cycle) and in
parallel with the INTT computation, thus increasing the overall noise. However, further
evaluation is needed to experimentally validate the security of this method.

6 Results

6.1 NTT-based polynomial multiplication
The proposed multiplier was described in SystemVerilog and was compiled for different
platforms. We used Synopsys Design Compiler and 10 nm Fin Field-Effect Transistor
(FinFET) technology library to compile the design for ASIC, whereas we relied on Xilinx
Vivado to target the Artix-7 XC7A200T-2-FBG676 FPGA and on Quartus Prime to target
the Stratix-10 1SD21BPT FPGA. The implemented design supports the forward NTT,
coefficient-wise multiplication and inverse NTT. The design can also compute operations
in random order, based on an input shuffle. The shuffle generation itself is not included in
the design to have a fairer comparison with existing designs.

Table 2 shows the results of our polynomial multiplier implementation, and it also
reports recent hardware implementations of the NTT, mostly for Dilithium, and polynomial
multipliers for SABER. Our design offers the lowest consumption of flip-flops of all
implementations reported in Table 2. This follows from the short critical path of the design
that allows to compute one entire butterfly operation per cycle. The design thus does
not use any pipelining buffer. The majority of the flip-flops reported is used to store the
random shuffle. Our design also offers high clock frequencies on FPGAs and it is indeed
the second fastest after the much larger implementation of [RMJ+21]. When synthesized
on 10 nm technology, the clock frequency increase very significantly up to almost 4 GHz.

16 SABER and Dilithium on the Same Polynomial Multiplier

Table 2: Comparison of implementations results of NNT-based polynomial multipliers.
The FPGA column denotes the FPGA family or the ASIC technology (A7 – Artix-7;
V7 U+ – Virtex-7 Ultrascale+; Z700 – Zynq 7000; S10 – Stratix-10, and 10nm – 10 nm
FinFET process technology). NR – values not reported. For 10 nm, the LUT and FF
column report the number of combinatorial and sequential gates. † – NTT only; ‡ – INTT
only.

Impl. FPGA log p LUTs FFs DSPs Cycles Freq. (MHz)
[FBR+] 39 2,454 1,917 7 3,584 153

[ZHL+21] A7 23 2,044 NR 16 512 216
[RMJ+21]† V7 U+ 23 2,236 2,532 48 512 637
[RMJ+21]‡ V7 U+ 23 3,309 3,389 84 512 637

[LSG21] Z7000 23 531 426 17 533/536 142
[this work] A7 23 2,012 331 6 519 333
[this work] S10 23 2,312 ALMs 412 4 519 386
[this work] 10nm 23 12,807 (com) 537 (seq) – 519 3,953

The implementation by Fritzman et al. [FBR+] uses a loosely-coupled NTT to support
a wide range of post-quantum protocols, and thus it uses a larger 39-bit long prime.
While the LUT count is comparable to our proposed multiplier, the flip-flop count is
six times higher and the cycle count is five times higher. However, the loosely-coupled
nature makes it a non-ideal comparison. The remaining implementations all focus on
Dilithium. While the performance is comparable across all implementations, including
ours, the resource consumption varies considerably. Note that our design has a latency of
519, instead of 512, to avoid memory collisions when the order of operation is shuffled. A
non-shuffled implementation takes 512 cycles. [ZHL+21] reports a comparable LUT count,
but it achieves a lower clock frequency while also consuming significantly more DSPs.
[RMJ+21] instead reports the highest clock frequencies, but at the cost of a very high
resource consumption. LUT and flip-flop count is significantly higher, especially considering
that forward and inverse NTT are implemented separately, and the implementation also
requires many times over the number of flip flops. Lastly, [LSG21] reports a very low
LUT consumption, but that is due to the high number of DSPs. Indeed, the authors
report implementing nearly all of the arithmetic with DSPs. We expect that LUT-only
implementation would favor our design. Moreover, the clock only reaches less than half
the frequency of our design.

When comparing with non-NTT based multiplier, our proposed multiplier also offers
performance improvements. In [BR20], the first high-speed polynomial multiplier is
reported to consume 10,844 LUTs and 5,150 flip-flops when implemented with area-
optimizing strategies. A single multiplication requires 256 cycles without considering
memory reading and writing operations, or 336 cycles in total. In the current design, a
NTT-based multiplication requires 2× 519 + 128 + 519 = 1,685 cycles, since forward and
inverse NTT take up 519 cycles and coefficient-wise multiplication requires 128 cycles.
This means that our multiplier takes about 5.0× the computation time of the multiplier in
[BR20], but consumes 5.4× fewer LUTs and 15.6× fewer flip-flops. However, note that
the performance balance is tilted more favorably towards our proposed design, because
some INTT operations are avoided when vector-vector multiplication is computed. For
instance, when vectors contain three polynomials, vector-vector multiplication takes 4,017
cycles since a single INTT is needed. The multiplier in [BR20] takes instead 880 cycles
for vector-vector multiplication, which means it is 4.5× faster. The difference is even
smaller because when the same polynomial is multiplied more than once, like the secret
polynomials during encryption, the NTT operation only needs to be computed once. Note,

A. Basso et al. 17

5,000 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000
number of traces

0

50

100

150

200

250

300

350

t-v
al

ue

Side-Channel Protection Disabled
Side-Channel Protection Enabled

Figure 6: Leakage detection using TVLA.

however, that the multiplier in [BR20] requires fewer memory blocks and no DSPs.
Overall, our design offers a good balance between cycle count and area consumption.

When both are considered, our implementation outperforms previous implementations
reported in the literature. Moreover, our design offers high clock frequencies on FPGAs
and very high frequencies in ASIC.

6.2 Lightweight side-channel protection
We evaluate the robustness of the lightweight side-channel protection described in Section 5
where the same randomization is used for all eight stages of the NTT using two leakage
detection techniques, namely Test Vector Leakage Assessment (TVLA) and Normalized
Inter-Class Variance (NICV). These techniques are applied to power traces sampled at 150
MS/s from a Sakura-X board clocked at 3 MHz. An unprotected implementation of the
NTT serves as a baseline for comparison. For all experiments, we focus on the first stage
of 128 operations and use Dilithium polynomials with coefficients in [−2, 2] to exhibit the
most favorable attack settings, where an attacker aims to recover one out of five possible
values for each coefficient.

TVLA Based on Welch’s t-test, the Test Vector Leakage Assessment (TVLA) method-
ology is commonly used to assess the side-channel leakage of cryptographic implemen-
tations [BCDM+13]. The t-value of a non-specific fixed-vs.-random t-test applied to
the samples of the eleventh iteration of the NTT implementation with and without the
countermeasure enabled are shown in Figure 6 for an increasing number of traces. The two
curves shown in Figure 6 have different characteristics. First, the leakage of the protected
implementation grows extremely slowly with the number of traces compared to the leakage
of the unprotected implementation. Second, all the t-values for the countermeasure enabled
for up to 200,000 traces are lower than the minimum t-value (i.e., 112 for 5,000 traces)
with the countermeasure disabled. Therefore, the lightweight side-channel protection
considerably reduces the leakage of the implementation. For a better understanding of the
remaining leakage, we continue the analysis with another leakage detection technique.

NICV Normalized-Inter Class Variance (NICV) is used to detect leakage samples in
side-channel traces and evaluate the efficiency of a side-channel countermeasure [BDGN13].
The results of applying NICV to the traces measured from the unprotected and protected
NTT implementation are shown in Figure 7a and Figure 7b, respectively. The peak shown
in Figure 7a stems from the eleventh iteration of the unprotected NTT implementation
and spans two clock cycles. In the first cycle, the combinational circuit computes the
results of the two butterflies, which are written to memory in the next cycle. Although
the memory update leaks more than the combinational circuit, the leakage in each of

18 SABER and Dilithium on the Same Polynomial Multiplier

0 50 100 150 200 250 300
Sample

0.000

0.005

0.010

0.015

0.020

0.025
NI

CV

(a) Side-Channel Protection Disabled.

0 50 100 150 200 250 300
Sample

0.0002

0.0003

0.0004

0.0005

0.0006

NI
CV

(b) Side-Channel Protection Enabled.

Figure 7: Leakage detection using NICV on 100,000 traces. The side-channel protection
reduces the leakage by two orders of magnitude.

the two cycles is clearly distinguishable from the other cycles. On the other hand, no
clear peak can be observed in Figure 7b for the same clock cycles of the protected NTT
implementation. Hence, the shuffling countermeasure breaks the relationship between the
intermediate values and the power consumption. When comparing the NICV values from
the two figures, the lightweight side-channel protection reduces the leakage of the NTT
implementation by two orders of magnitude.

Discussion Shuffling the order of the butterfly operations in each of the eight stages of the
NTT, makes multi-trace attacks significantly more difficult because the same operations
occur at different sample points in each trace. Averaging of traces, which may improve the
signal-to-noise ratio, is not straightforward for the same reason. This leaves an attacker
with the option of single-trace attacks.

Single-trace attacks pose a major threat to the implementation of both unprotected
and masked software implementations of the NTT as demonstrated on the 32-bit ARM
Cortex-M4 microcontroller [PPM17, PP19, KLH+20]. To the best of our knowledge, there
are no similar attacks on hardware implementations of the NTT in the literature. Moreover,
it is not clear whether such attacks can be extended to larger word widths or hardware
implementations. However, we adopt a conservative approach and implement a shuffling
countermeasure, which effectively thwarts this type of attacks [PPM17, PP19].

We conducted a quantitative evaluation of the leakage of our implementation with
and without the lightweight side-channel protection. When enabled, the countermeasure
significantly reduces the leakage of the implementation. Hence, the Fisher-Yates shuffling
is a cost-effective side-channel protection for hardware implementations of the NTT.

7 Conclusion
In this work, we proposed a technique that enables SABER and Dilithium to share the same
polynomial multiplier. Given the importance of polynomial multiplication in both protocols,
this has a significant impact on hardware implementations that support both protocols.
We estimated that existing Dilithium implementations can add support for SABER with
only a 4% increase in LUT count. A minor trade-off of the proposed multiplier is that
it can produce inexact results with some specific inputs. We thus performed a thorough
analysis of such cases, where we proved that the probability of these events occurring is
negligible, and we showed that this does not affect the security of the implementation.
We then implemented the proposed multiplier in hardware to obtain a design that offers
competitive performance/area trade-offs. We also proposed a low-overhead method to
provide side-channel protection during polynomial multiplication.

A. Basso et al. 19

This work provides an example of powerful synergy between a post-quantum encryption
protocol and a digital signature scheme. It is thus of interest to study other post-quantum
protocols and research whether similar synergies can be found. We also leave for future
work the design and implementation of a complete hardware implementation that supports
both SABER and Dilithium followed by a thorough evaluation of our proposed lightweight
side-channel countermeasure.

References
[AMJ+21] Aikata, Ahmet Can Mert, David Jacquemin, Amitabh Das, Donald Matthews,

Santosh Ghosh, and Sujoy Sinha Roy. A unified cryptoprocessor for lattice-
based signature and key-exchange. Cryptology ePrint Archive, Report
2021/1461, 2021. https://ia.cr/2021/1461.

[BCDM+13] G Becker, J Cooper, E De Mulder, G Goodwill, J Jaffe, G Kenworthy, et al.
Test vector leakage assessment (TVLA) derived test requirements (DTR)
with aes. In International Cryptographic Module Conference, 2013.

[BDGN13] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. NICV:
normalized inter-class variance for detection of side-channel leakage. IACR
Cryptol. ePrint Arch., page 717, 2013.

[BDK+20] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium
(Round 3 Submission), 2020.

[BMD+20] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter D’Anvers, Angshu-
man Karmakar, Sujoy Sinha Roy, Michiel Van Beirendonck, and Frederik
Vercauteren. SABER: Mod-LWR based KEM (Round 3 Submission), 2020.

[BR20] Andrea Basso and Sujoy Sinha Roy. Optimized Polynomial Multiplier Archi-
tectures for Post-Quantum KEM Saber, 2020. http://ia.cr/2020/1482.

[CHK+20] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT Multiplication for NTT-
unfriendly Rings, 2020. http://ia.cr/2020/1397.

[CMV+15] Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy,
Ray C. C. Cheung, Derek Pao, and Ingrid Verbauwhede. High-Speed Poly-
nomial Multiplication Architecture for Ring-LWE and SHE Cryptosystems.
IEEE Transactions on Circuits and Systems I: Regular Papers, 62(1):157–166,
January 2015.

[FBR+] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
Accelerators and Instruction Set Extensions for Post-Quantum Cryptography.

[FSS20] Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. RISQ-V: Tightly
Coupled RISC-V Accelerators for Post-Quantum Cryptography. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pages 239–280,
August 2020.

[IAR+21] Malik Imran, Felipe Almeida, Jaan Raik, Andrea Basso, Sujoy Sinha Roy,
and Samuel Pagliarini. Design Space Exploration of SABER in 65nm ASIC,
2021. http://ia.cr/2021/1202.

https://ia.cr/2021/1461
http://ia.cr/2020/1482
http://ia.cr/2020/1397
http://ia.cr/2021/1202

20 SABER and Dilithium on the Same Polynomial Multiplier

[KLH+20] Il-Ju Kim, Tae-Ho Lee, Jaeseung Han, Bo-Yeon Sim, and Dong-Guk Han.
Novel Single-Trace ML Profiling Attacks on NIST 3 Round candidate
Dilithium, 2020. http://ia.cr/2020/1383.

[Knu97] Donald Ervin Knuth. The Art of Computer Programming. Addison-Wesley,
Reading, Mass, 3rd ed edition, 1997.

[LN16] Patrick Longa and Michael Naehrig. Speeding up the Number Theoretic
Transform for Faster Ideal Lattice-Based Cryptography, 2016. http://ia.
cr/2016/504.

[LSG21] Georg Land, Pascal Sasdrich, and Tim Güneysu. A Hard Crystal - Implement-
ing Dilithium on Reconfigurable Hardware, 2021. http://ia.cr/2021/355.

[MP] Moxie Marlinspike and Trevor Perrin. The X3DH Key Agreement Protocol.

[oST] National Institute of Standards and Technology. Post-quantum cryptog-
raphy. https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization. Accessed October 2021.

[POG15] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-Performance
Ideal Lattice-Based Cryptography on 8-bit ATxmega Microcontrollers, 2015.
http://ia.cr/2015/382.

[PP19] Peter Pessl and Robert Primas. More Practical Single-Trace Attacks on
the Number Theoretic Transform. In Peter Schwabe and Nicolas Thériault,
editors, Progress in Cryptology – LATINCRYPT 2019, volume 11774, pages
130–149. Springer International Publishing, Cham, 2019.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017, volume 10529, pages 513–533. Springer, 2017.

[RB20] Sujoy Sinha Roy and Andrea Basso. High-speed Instruction-set Coprocessor
for Lattice-based Key Encapsulation Mechanism: Saber in Hardware. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 443–
466, August 2020.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
Request for Comments RFC 8446, Internet Engineering Task Force, 2018.

[RMJ+21] Sara Ricci, Lukas Malina, Petr Jedlicka, David Smekal, Jan Hajny, Petr
Cibik, and Patrik Dobias. Implementing CRYSTALS-Dilithium Signature
Scheme on FPGAs, 2021. http://ia.cr/2021/108.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopad-
hyay. On Configurable SCA Countermeasures Against Single Trace Attacks
for the NTT: A Performance Evaluation Study over Kyber and Dilithium on
the ARM Cortex-M4. In Lejla Batina, Stjepan Picek, and Mainack Mondal,
editors, Security, Privacy, and Applied Cryptography Engineering, volume
12586, pages 123–146. Springer International Publishing, Cham, 2020.

[Sho97] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing,
26(5):1484–1509, October 1997.

http://ia.cr/2020/1383
http://ia.cr/2016/504
http://ia.cr/2016/504
http://ia.cr/2021/355
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
http://ia.cr/2015/382
http://ia.cr/2021/108

A. Basso et al. 21

[ZBT19] Timo Zijlstra, Karim Bigou, and Arnaud Tisserand. FPGA Implementation
and Comparison of Protections Against SCAs for RLWE. In Feng Hao,
Sushmita Ruj, and Sourav Sen Gupta, editors, Progress in Cryptology –
INDOCRYPT 2019, volume 11898, pages 535–555. Springer International
Publishing, Cham, 2019.

[ZHL+21] Zhen Zhou, Debiao He, Zhe Liu, Min Luo, and Kim-Kwang Raymond Choo.
A Software/Hardware Co-Design of Crystals-Dilithium Signature Scheme.
ACM Transactions on Reconfigurable Technology and Systems, 14(2):1–21,
June 2021.

[ZZY+21] Yihong Zhu, Min Zhu, Bohan Yang, Wenping Zhu, Chenchen Deng, Chen
Chen, Shaojun Wei, and Leibo Liu. LWRpro: An Energy-Efficient Config-
urable Crypto-Processor for Module-LWR. IEEE Transactions on Circuits
and Systems I: Regular Papers, 68(3):1146–1159, March 2021.

	Introduction
	Preliminaries
	Notation
	SABER
	Dilithium

	Polynomial multiplier strategy
	NTT-based multiplication in SABER
	Error analysis
	Applications and extendability

	Hardware design
	Modular reduction
	Butterfly unit
	High-level design

	Lightweight side-channel protection
	Extending the protection beyond the NTT

	Results
	NTT-based polynomial multiplication
	Lightweight side-channel protection

	Conclusion

