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Abstract. Commitments to key-value maps (or, authenticated dictionaries) are an important building block
in cryptographic applications, including cryptocurrencies and distributed file systems.
In this work we study short commitments to key-value maps with two additional properties: double-hiding
(both keys and values should be hidden) and homomorphism (we should be able to combine two commitments
to obtain one that is the “sum” of their key-value openings). Furthermore, we require these commitments to
be short and to support efficient transparent zero-knowledge arguments (i.e., without a trusted setup).
As our main contribution, we show how to construct commitments with the properties above as well as
efficient zero-knowledge arguments over them. We additionally discuss a range of practical optimizations
that can be carried out depending on the application domain.
Finally, we formally describe a specific application of commitments to key-value maps to scalable anonymous
ledgers. We show how to extend QuisQuis (Fauzi et al. ASIACRYPT 2019). This results in an efficient,
confidential multi-type system with a state whose size is independent of the number of transactions.
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1 Introduction

In this work we propose constructions for efficient commitments to key-value maps (with specific features) and
for efficient zero-knowledge arguments that can prove properties on committed key-value maps.
Key-Value Maps. We can loosely consider a key-value map as the equivalent of a dictionary in some pro-
gramming languages (e.g., Python): a way to map arbitrary keys—e.g., strings—to values—e.g., scalars. For
example, the balance of a user in a wallet application could be represented by a key-value map as kv =
{(USD, 100), (BTC, 10)}, where each of the different asset types (the keys) are associated to an amount (the
values). In this paper we will generally assume that values are in an algebraic group endowed with an addition
operation +.
Our Focus: Short, Homomorphic, Doubly-Hiding Commitments. A commitment to a key-value map is
roughly similar to an ordinary commitment: it cannot be opened to two different key-value maps (binding) and
it should not leak anything about neither the keys nor the values in it. In the case of key-value maps, however,
we are interested in some additional functional and efficiency-related requirements:
– Large key universe: our commitments should support a large universe of keys, potentially superpolynomial in

the security parameter4. This implies that the algorithms of the commitment scheme should have a runtime
independent of (or logarithmic in) the size of the key universe.

– Short commitments: our commitments should have size independent not only of the size of the key universe,
but also of the density of the key-value map. The density is the number of elements whose value is not zero
(e.g., the density of kv in the example above was 2).

– Homomorphic commitments: we require our commitments to support an homomorphic operation ◦. For exam-
ple assume each commitment encodes a wallet and that we have two wallets c, c′ with c = Com({(USD, 100),
(BTC, 10)}) and c′ = Com({(USD, 20), (ETH, 1)}). Then we can compute the commitment c∗ ← c ◦ c′ =
Com({(USD, 120), (BTC, 10), (ETH, 1)}) without knowing the opening of any of the commitments. Requiring
homomorphism rules out Merkle Trees as a solution. Homomorphic properties of commitments to “structured
objects” have wide applications in cryptography (see, e.g., [KZG10] for homomorphic polynomial commit-
ments). The homomorphic property is a natural one and allows many useful applications: as an example we
describe applications to privacy-preserving cryptocurrencies in Section 7 and an additional class of application
scenarios in Section 1.1.

4 This is a way to describe our setting asymptotically. We stress, however, that is not necessary: an interesting setting for
our constructions is just one where the universe of keys is concretely large.



– Efficient and transparent5 zero-knowledge proofs: we should be able to prove (and verify) efficiently arbitrary
properties over commitments of key-value maps. We are interested in zero-knowledge proofs—which allow to
prove properties over a secret value without leaking it—and where both keys and values are part of the secret.
For example, one can prove that two committed key-value maps hold the same value for some (hidden) key
k̃. More formally, given as public input commitments c, c′ and a public function f , one can prove knowledge
of a key k̃ such that c, c′ are commitments to key-value maps kv, kv′ respectively and kv[k̃] = f(kv′[k̃]).

While different subsets of these properties have been studied in literature, our contribution is to investigate
constructions that require them all. Our goal is to provide concretely efficient tools useful in different application
domains.

Key-Hiding Properties. Here we clarify what we mean by key-hiding properties and discuss how existing
solutions fail to solve our problem. We have three key sets of interest: the set of all the keys in the universe (which
we will assume to be {0, 1}∗ or a field F from now on), the set Kactive of active keys, defined as all the keys that
are being used in the system, and the set Kcom of committed keys, defined as the non-zero keys in any given
commitment. As our commitment scheme always supports an exponentially large key space, the notion of active
and committed keys is only relevant for commitments which require a NIZK about their opening. For example,
in a wallet setting, Kactive consists of all the keys (asset types) encoded in some wallet, while Kcom would consist
of those encoded in a specific given wallet. Depending on whether we want to hide the active or the committed
keys or both we get four different settings, which we discuss below (see also Fig. 1).

Public Active keys. In the case where both the active keys and the committed keys are public, Pedersen com-
mitments are already a solution to our problem. The system parameters will contain group elements h, g1, . . . , gn
where there is a known association between ki and gi for all active keys ki. E.g. A public coin setup process
generates gi = H(ki) with a hash function H. Thereby the association is known by all participants. We commit
by computing c = hr

∏
i g

vi
i , and proving properties of values is trivial to do using existing sigma protocols since

the verifier is allowed to learn the keys. In the case in which the active keys are public but the committed keys
are private, Pedersen commitment can still be used but the (proving) complexity of the ZK proof would be linear
in the number of active keys6. One of our contributions is to show how to bring this down to the size of the
committed set.

Private Active keys. It does not make sense to consider the case where the set of active keys are private
but the committed keys are public. The most interesting case is the one in which both of these sets are private.
In this setting, it would be possible to commit using a non-homomorphic version of Pedersen commitment. We
thus have 2n+1 generators (h, g1, f1, . . . , gn, fn) and we commit computing c = hrΠgvii f

ki
i . Now it is possible to

efficiently prove statements but the commitment is not homomorphic (and therefore not applicable in our settings
of interest). Our main contribution is to provide a better solution for this case.

1.1 Applications of Our Work

Application: Multi-Type QuisQuis. The privacy-preserving transaction system QuisQuis [FMMO19] cru-
cially relies commitments endowed with an homomorphic property. It builds upon accounts to which tokens are
deposited in a transaction without interaction of the receiver. A crucial performance consideration is the storage
needed for a client to participate in the system. This corresponds to the local state necessary to validate arising
updates (i.e. transactions). Compared to other privacy-preserving transaction systems like Zcash [BCG+14] or
Monero [NM+16], the design of QuisQuis achieves a state size linear in the number of participants instead of
monotonically growing over time (i.e. requireing clients to store the full history). We extend this system through
a notion of currency types such that different currencies share a common anonymity set. This allows for a dynamic
creation of confidential tokens by any participant without setting up a full separate system. For this application,
we also present a secret key based key-value map commitment7. In combination with efficient NIZKs, to show
that transactions conserve all value, we achieve small transaction sizes. We formally describe this application
in Section 7.

5 In a transparent argument system the setup does not need to be produced by a trusted party. This property is interesting
in the case of non-interactive argument systems, which are the focus of this work.

6 This is true for the aforementioned approach with sigma-protocols as well as for other straightforward applications of
NIZKs.

7 I.e., a commitment which can be opened using a secret key in place of the randomness.
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Application: Publicly Verifiable Evolving Database. Consider a database (representable as key-value
store) which receives numerous updates and where we want the content of the database to remain private but we
also are interested in the database publicly “evolving through time”.

As an example of the above, consider a register of tax-related information where users are identified by their
SSN. The set of valid identities grows dynamically, which results in a high overhead if the public parameter
changes every time. Users provide their SSN to their employer who uses it to report the salary. At the end of the
month, each employer creates a hiding key-value map commitment with one key per employee and their earned
amount as value, e.g. δCCorp X,May = Com({SSNAlice : 3142,SSNBob : 2718}). The company may either prove that
for the employee’s identity the correct amount was committed (without revealing the identities of co-workers), or
reveal the full opening to their employees. Every company publishes these commitments to a persistent log. At
the end of the year, the tax authority homomorphically adds all published commitments and can then generate
proofs on a single commitment instead of all commitments from all companies. The required value opening is
provided by the tax payers and the randomness by the companies. Employees with multiple sources of income get
the amounts homomorphically added. Different categories of income may be separated by namespaces in the key.

1.2 Technical Overview

Our Construction of Key-Value Map Commitments. In order to commit to a key-value map
{
vk
}
k∈K

we assume a group G where the discrete logarithm is hard and a hash function H modeled as a random oracle
mapping keys to group elements. We then compute a commitment as c =

∏
k∈K H(k)vkhr where h is a random

generator of the group and r is a random scalar. This can be seen as a (vector) Pedersen commitment with random
key-dependent generators and it has short homomorphic commitments. In the next paragraphs, we show how we
can construct efficient zero-knowledge proofs for circuits over such commitments.

Modular Transparent Zero-Knowledge Arguments for Committed Key-Value Maps. Fix a (large)
field F and consider a circuit C over key-value maps (we assume that F is also both the key and the value space of
the key-value map). We assume the syntax of C to be of the type C(kv1, . . . , kvℓ, ω), the kvi-s as private key-value
maps and ω as an additional private witness (ω is a vector of field elements). Given such a circuit we are interested
in proving an augmented circuit that takes as public input commitments to the ℓ key-value maps and proves their
opening in addition to the relation from circuit C. More specifically, we propose an argument system for:

C∗(c1, . . . , cℓ; (kv1, ρ1), . . . , (kvℓ, ρℓ), ω)

:= C(kv1, . . . , kvℓ, ω) ∧
∧
i∈[ℓ]

ci = Com(kvi, ρi) (1)

where the part after the semicolon is considered the private witness. A more concrete intuition on the circuit
above is: given committed key–value pairs we can prove properties of their values, their keys and any relation
between these and other private values (contained in ω).

Our Template for Zero-Knowledge Arguments on Committed Key-Value Maps. We now describe
how to prove properties on committed key-value maps. The following refers to the setting with private-active-
keys/private-committed-keys (see lower-right quadrant in Figure 1). We denote the construction for the doubly-
private case by Z -dp (first part alternatively spelled “ZKeyWee”, as a pun on “ZK for KV”, and pronounced
“zee-kee-wee”; “dp” stands for doubly-private).

Our construction follows a basic blueprint, which we now exemplify through a concrete case. Consider a
committed key-value map

{
vk
}
k∈K

and the problem of proving in zero-knowledge that all its values vk are in

some range {0, . . . 2µ− 1}. We proceed in two steps: we first let the prover send the verifier what we call key-tags,
these are masked versions of the non-zero keys in the committed key-value map. The prover will also show that
they are valid maskings of some set of keys. By providing key-tags, we can then break the rest of the relation
in two parts: a) showing knowledge of values (and randomness) that combined with the key-tags produce the
commitment c (part of the public input); b) showing that these values are in range. We now elaborate on each of
these steps.

Given a key-value map
{
vk
}
k∈K

with density n (the number of non-zero keys8) we provide n key-tags by

sending bk = H(k)hrk for a random rk. The prover should also prove that each of them is of the prescribed

8 Here we consider the case where leaking the density of the key-value map is not a problem. We will also adapt our
construction where this leakage does not occur if an upper bound on this density is known.
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Public Kactive Private Kactive

Public Kcom
c = hr ∏

i g
vi
i &

Σ-protocols
(Uninteresting case)

Private Kcom
c as in Fig. 2 &

Z -set (Sec. 1.2+ Appx. A)

c as in Fig. 2 &

Z -dp (Sec. 4)

Fig. 1: How to construct commitments to key-value maps & NIZKs over them within our settings and with our
requirements of interests. (Kactive: “active” keys set, i.e., all the keys committed somewhere; Kcom committed
keys set, i.e. those that open the commitments we are using in a proof right now). The related constructions are
specified in the second lines with our two contributions Z -set and Z -dp.

form. We stress that, in order to do this, we use the heuristic technique of proving a random oracle in zero-
knowledge by assuming there exists a circuit for it (a non-standard but common technique; see, e.g., [Val08]).
Next, the prover would show knowledge of values v1, . . . , vn and an appropriate r′ such that c = bv1k1

· · · bvnkn
hr

′

and vi ∈ {0, . . . 2µ − 1} for all i ∈ [n]. The latter relation—comprising reconstructing the commitment from the
key-tags and the range proof—can for example be performed through a system like the generalized Bulletproofs
in LMR [LMR19] or compressed Σ-protocols [ACR20]. These provide interfaces to prove bilinear circuits, of
which we only use the non-bilinear gates, with logarithmic proof sizes. We stress that our focus is on transparent
solutions, i.e., without a trusted setup; all our constructions can be instantiated in a fully transparent manner.
We discuss an experimental evaluation in Section 6. We estimate our system can open n = 100 values and prove
they are in range in approximately one minute. A very loose estimate for the size of the corresponding proof is
< 6KB using [LMR19] in the Ristretto curve (see also Table 1 and Section 4.3).

We remark on two properties of the template of our construction above. First, we can easily reduce its amortized
cost by splitting it into an offline stage (independent of the commitments on which we are carrying out proofs)
and an online stage. We further discuss these improvements in Section 5. Second, we adapt and optimize our
construction to the scenario with public active keys and private committed keys (lower-left quadrant in Figure 1).
We describe this next.

A 2nd Construction with Registration of Active Keys. In some settings, although the whole universe
of keys can be extremely large, the set of active keys Kactive at any given time can have a manageable size and
be publicly known. Consider for example applications (e.g. multi-asset transaction system) where there is an
exponentially large set of potential asset types (keys), but only a manageable subset of them are present in the
system (active) at any given time. Moreover, before becoming active in the system they plausibly need to be
registered (for example, through a first “genesis” transaction for that specific asset type). In such settings we
can leverage the partial knowledge on existing keys to improve efficiency. We do this by introducing an operation
that preprocesses the parameters of the system (or CRS) specializing them for a specific set of active keys. Our
proposed construction for this setting—denoted by Z -set (for “registered set” of keys) and discussed in more
detail in Appendix A—assumes the specialized CRS for the set Kactive to contain an accumulator9 to the set
of (unmasked) key-tags corresponding to Kactive, i.e., to the set Bactive = {H(k) : k ∈ Kactive}. Thus, in the
online stage, we can produce a proof on a commitment c = Com(

{
vk
}
k∈K

) by: 1) producing masked key-tags

B′ = {H(k)hrk : k ∈ K} produced with some fresh randomness rk; 2) showing that each b′k ∈ B′ is of the form
b · hrk for some b in the accumulator; 3) showing knowledge of vk-s such that c = hr

∏
k b

′vk
k .

The main advantage of the construction above, Z -set, is that it does not require the hashing H(k) for the key-
tags to be proven in zero-knowledge (by exploiting the fact that the keys are public and “pre-registered”). This can
result in savings in verification time of one order of magnitude compared to Z -dp (we elaborate in Appendix A.4);
such savings also apply to the multi-type transaction systems Multi-type QuisQuis (Section 7) and can be extended
to other transaction systems (our techniques in Z -set are compatible with other frameworks besides QuisQuis
and they could be straightforwardly applied, e.g, to obtain a multi-type version of Veksel [CHA21]).

Multi-Type QuisQuis. In contrast to the original QuisQuis where an account stored a scalar value representing
an amount, we generalize accounts to store tokens of different types in a key-value map. Each key corresponds

9 An accumulator is a cryptographic data structure that allows to commit to a set in a binding manner and to prove
membership of an element efficiently. NB: we can compute accumulators deterministically from a set, i.e., without a
trusted authority.
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to a type, also known as currency, and the value specifies how many tokens of the specific type are held by the
account. An account acct holds a balance kv, represented as a key-value map. To transfer tokens from one account
to another, a transaction includes both accounts as active inputs, denoted by the set P. The transaction subtracts
tokens from one account with a secret index s and adds them to the other one. The output of the transaction are
two updated accounts belonging to the same users as the inputs; the input accounts are discarded. To achieve
anonymity, the input consists of P together with a potentially large anonymity set of accounts A which keep
their balance unchanged but provide set anonymity for the active accounts. The sender uses Z -set with a circuit
to prove that they have enough funds (knowledge of secret key and positive balance) and that the updates are
consistent.

1.3 Related Work

Authenticated Data Structures Besides the aforementioned straw-man schemes based on Pedersen, a common
approach to succinct key-value commitments uses Merkle trees. They are not homomorphic and opening them
in zero-knowledge requires proving a number of hashes logarithmic in the number of committed elements, which
can be expensive.

A related primitive is that of vector commitments [CF13]. A limitation of using vector commitments as key-
value map commitments in general is that values need to be stored at positions that have already been agreed upon.
That is, since we need to know for each key k what is the index ik it refers to in the vector. This type of common
agreement may be achieved in the setting in the bottom left quadrant in Fig. 1 (public active keys) but not in the
bottom right one (private active keys). Also, while some constructions of vector commitments are homomorphic
(e.g., [CF13]) they lose this property when hiding is added to them (which is usually achieved by storing hiding
commitments to the values of interest). Other constructions do not have this limitation ([LY10, BG18]) but, like
vector commitments in general, only support public active keys. We finally remark that, vector commitments
focus on a different notion of succinctness than the one that is the focus in this paper. Our focus is on a proof size
that is sublinear in the size of the circuit we apply on the opening, but not necessarily sublinear in the number
of committed elements.

There is a large body of work on succinct commitments to key-value maps, e.g.10, [AR20, CFG+20, BBF19,
TXN20]. 11 Differently from our work, constructions in literature are not homomorphic and do not directly support
hiding of keys/values. We observe, however, that if one could do without homomorphism the latter problem could
be mitigated for some of these constructions by applying masking of keys/values and zero-knowledge. This is
true for example for some of the works based on groups of unknown-order [CFG+20, BBF19] where we can
use techniques to compose algebraic accumulators proofs and succinct zero-knowledge proof systems described
in [BCFK19].

The work in [AK20] formalizes encryption on distributed key-value maps with consistency properties; it is not
concerned with homomorphism or efficient zero-knowledge. The work in [GPR+21] studies “oblivious key-value
stores”. Their setting is, however, different from ours: these data-structures hide the keys only if the values are
random (not applicable in our setting) and are not homomorphic. Other works on efficient Zero-Knowledge and
key-value maps include Spice [SAGL18]. The authors use data-structures that hide the key but that are not
homomorphic. Their constructions use a trusted setup.

Confidential Transaction Systems and Multiple Token Types Here we describe works related to our
application, a multi-type version of QuisQuis.

Works on confidential transaction systems include Zcash [BCG+14], Monero [NM+16], Omniring [LRR+19],
and Veksel [CHA21]. We now compare these works against the QuisQuis framework, which we extend in this
work. The most critical aspect is sender anonymity. Zcash obtains the largest anonymity set among these works
(as large as the UTXO set), but it does not have plausible deniability12 and requires a trusted setup. Monero
does not have these limitations; it is unclear how the anonymity in Monero fares against that in QuisQuis (see
Discussion in [FMMO19]). Omniring improves the transaction size from being linear in the size of the anonymity

10 We refer the reader to [TXN20] for a survey of this rapidly growing field.
11 The constructions in [CFG+20] and [BBF19] focus on vector commitments but they can be both be compiled into

commitments to key-value maps: both the construction in [BBF19] and the first construction in [CFG+20] can be using
compiled the techniques described in Section 5.4 of [BBF19]; the second construction of [CFG+20] is very similar to
that in [AR20] and can be turned into a key-value commitments with similar tricks.

12 Plausible deniability: no one can tell if a user meant to be involved in a transaction.
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set (Monero) to a logarithmic size. Both Zcash and Monero style systems, however, have transaction outputs that
can (essentially) never be removed from the UTXO set. The payment system in Veksel, like QuisQuis, does not
have this drawback. Differently from QuisQuis, Veksel achieves O(1) transaction sizes, but at the price of weaker
anonymity guarantees. In all these systems amounts are confidential, yet they lack a notion of type/currency.

The work in [PBF+19] introduces confidential types by using homomorphic commitments whose construction
is the “single key” version of ours. Their design has also been used in SwapCT [EMP+21] and integrated in
MimbleWimble [YYD+19]. Another construction of confidential types is that of Cloaked Assets developed by
Stellar, which separates types and values in two different data structures, similar to our non-homomorphic exam-
ple. Therefore a transactor requires the openings of all inputs to create a conservation proof, providing no sender
anonymity.

2 Notation and Preliminaries

Preliminaries on (Sparse) Key-Value Maps We assume a universe of keys K and a universe of values V
such that in a key-value map, keys are a subset of K and values are any element in V; they may be of size
superpolynomial in a security parameter λ. We assume V to be an additive group endowed with some operation
+. A key-value map is defined as a function kv : K → V. We call its density the number of elements that are
mapped to a non-zero value in V. Our focus is on sparse key-value maps whose density grows asymptotically
with poly(λ) (and in practice may be concretely small). We can represent a sparse key-value map as a set of pairs{
(k, vk)

}
k∈K

where K ⊆ K: this maps each element k ∈ K to vk and any other element to 0 ∈ V. We often use

the more succinct notation
{
vk
}
k∈K

for a key-value map
{
(k, vk)

}
k∈K

over the set K (we assume that the set

K is implicitly part of the description of
{
vk
}
k∈K

). Hence the empty set ∅ represents the key-value map with

all elements in the universe initialized to zero; we denote the latter empty key-value map ∅kv to be explicit. We
denote by −kv the key-value map associating the value −kv(k) to each key k; we define a sum of key-value maps
as follows:

{
vk
}
k∈K

+
{
v′k′

}
k′∈K′ := (k, vk + v′k′)k∈K∪K′ . A partition of a key-value map

{
vk
}
k∈K

is a pair of

key-value maps (
{
v′k′

}
k′∈K′ ,

{
v′′k′′

}
k′′∈K′′) such that (K ′,K ′′) is a partition of K.

Cryptographic Assumptions For convenience we use a different, but equivalent, formulation of the discrete
logarithm assumption. Below G denotes a group generator.

Assumption 1 (Generalized DLOG [BBB+18]) ∀ PPT A,m ≥ 2 :

Pr

 G← G(1λ); (g1, . . . , gm)←$ G
(a1, . . . , am)← A(G, g1, . . . , gm)

:

∃j∗ ∈ [m] aj∗ ̸= 0 ∧∏
j∈[m]

g
aj

j = 1G

 ≤ negl(λ)

NIZKs Here we describe the basic notion of non-interactive zero-knowledge. In Section 4 we provide explicit
syntax for the specific setting of NIZKs over committed key-value maps.

Definition 1. A NIZK for a relation family R = {Rλ}λ∈N is a tuple of algorithms NIZK = (Setup,Prove,
VerProof) with the following syntax:

– NIZK.Setup(1λ) → crs outputs a common-reference string crs; if the argument system is transparent this can
consist of uniform random elements.

– NIZK.Prove(crs,x,w) → π takes as input a string crs, an input description x (in which we embed the whole
public input), a witness w such that Rλ(x,w); it returns a proof π.

– NIZK.VerProof(crs,x, π) → b ∈ {0, 1} takes as input a string crs, a public input x, a proof π; it accepts or
rejects the proof.

Whenever the relation family is obviously defined, we talk about a “NIZK for a relation R”. We require a NIZK to
be complete, that is, for any λ ∈ N and (x,w) ∈ Rλ it holds with overwhelming probability that VerProof(crs,x, π)
where crs← Setup(1λ) and π ← Prove(crs,x,w). Other properties we require are: knowledge-soundness and zero-
knowledge. Informally, the former states we can efficiently “extract” a valid witness from a proof that passes
verification; the latter states that the proof leaks nothing about the witness (this is modeled through a simulator
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that can output a valid proof for an input in the language without knowing the witness). Notationally, we separate
public and private inputs in relations and proving algorithm through a semicolon.

Knowledge-Soundness. For all λ ∈ N and for all (non-uniform) efficient adversaries A, auxiliary input
z ∈ {0, 1}poly(λ), there exists a (non-uniform) efficient extractor E such that

Pr

[
crs← Setup(1λ); (x, π)← A(z, crs)
w← E(z, crs)

:
Rλ(x,w) ̸= 1 ∧

Vfy(crs,x, π) = 1

]
≤ negl(λ)

Zero-Knowledge. There exists a PPT simulator S such that for any λ ∈ N, PPT A, auxiliary input z ∈
{0, 1}poly(λ), and it holds p0 = p1 where

pb := Pr

[
crs← Setup(1λ); (x,w)← A(z, crs)

π ← Xb(crs,x,w) if Rλ(x,w) o.w. ⊥
: A(z, crs, π) = 1

]

X0(crs,x,w) := S(z, crs,x) and X1(crs,x,w) := Prove(crs,x,w).

On efficiency of NIZKs. The efficiency (proving/verification runtimes and proof size) of a NIZK often
depends on the size of the description of a relation in constraints (these roughly correspond to the multiplication
gates of its circuit representation). We will refer to this notion later in the text. See also [BBB+18].

3 Key-Value Commitments

Here we define homomorphic commitments to key-value maps where both keys and values are hidden. To the
best of our knowledge this definition is new, but it straightforwardly extends homomorphic commitments with
key-value maps as message space. In the appendix (Appendix D.2)we also present an extended construction,
which we use to build Multi-Type Quis-Quis.

Definition 2 (Commitment to Key-Value Maps (kvC)). The following is a syntax for our key-value maps

Setup(1λ)→ pp generates public parameters.
Com(pp,

{
vk
}
k∈K

; r)→ c commits to the key-value map with randomness r. We keep the randomness implicit

whenever it does not affect clarity and we assume it to be sampled from an additive group.13

Definition 3 (Hiding). A key-value map commitment is hiding if for all key-value maps
{
v′k′

}
k′∈K′ ,

{
v′′k′′

}
k′′∈K′′

(even of different size), for pp← Setup(1λ) the following two distributions are computationally indistinguishable:

{Com(pp,
{
v′k′

}
k′∈K′)} ≈ {Com(pp,

{
v′′k′′

}
k′′∈K′′)}

Definition 4 (Binding). A key-value map commitment is (computationally) binding if for any PPT adversary
A, it holds that

Pr


pp← Setup(1λ)

(c,
{
v′k′

}
k′∈K′ , r

′,{
v′′k′′

}
k′′∈K′′ , r

′′)← A(pp)
:

c = Com(pp,
{
v′k′

}
k′∈K′ , r

′) ∧
c = Com(pp,

{
v′′k′′

}
k′′∈K′′ , r

′′) ∧{
v′k′

}
k′∈K′ ̸=

{
v′′k′′

}
k′′∈K′′

 ≤ negl(λ)

Definition 5 (Homomorphism). We say a commitment to a key-value map is homomorphic if there exists
an operation ◦ such that Setup always produces pp such that for all maps

{
vk
}
k∈K

,
{
v′k′

}
k′∈K′ and randomness

r, r′ it holds that

Com(
{
vk
}
k∈K

; r) ◦ Com(
{
v′k′

}
k′∈K′ ; r

′) = Com(
{
v∗k∗

}
k∗∈K∗ ; r + r′)

where K∗ = K ∪K ′ and (k∗, v∗k∗) =


(k∗, vk∗) if k∗ ∈ K \K ′

(k∗, v′k∗) if k∗ ∈ K ′ \K
(k∗, vk∗ + v′k∗) if k∗ ∈ K ∩K ′

13 We will use this when defining the homomorphic property of commitments.
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Setup(1λ)→ pp: samples group G; g, h←$ G; return pp = (G, g, h).
Com(pp,

{
vk
}
k∈K

; r)→ c: return
∏

k∈K H(k)vkhr.

Fig. 2: Our construction for kvC.

3.1 Construction

We recap some of the properties we are interested in obtaining in our construction: (i) support large key uni-
verse; (ii) small commitments and small parameters; (iii) homomorphic (Definition 5); (iv) support efficient
non-interactive zero-knowledge proof of knowledge of opening (in particular they should run in time linear in the
density of the key-value map).

In Figure 2 we propose a construction based on random-oracle with the properties above. Our commitment
construction is an extension to key-value maps of the one in [PBF+19]. Given a prime p we consider the universe
of values V = Zp, a group G isomorphic to it and for which the GDLOG assumption holds, a hash function H
modeled as a random oracle and an arbitrary key universe K such that H : K → G. We prove Theorem 1 in
Appendix B.

Theorem 1. If H is a random oracle and under the GDLOG assumption the construction in Figure 2 is a kvC
with value universe Zp.

4 Arguments on Key-Value Commitments (Doubly-Private Setting)

Here we formalize and construct zero-knowledge arguments over key-value map commitments for the setting in
which there is no information on the keys available in the system and those we are using in our proof.
Circuits over Key-Value Maps To support arbitrary computation on committed key-value maps, we provide
an interface which supports any arithmetic circuit of the following form. The keys and values kv as well as an
additional witness ω are field elements in F. The circuit consists of multiplication gates of the form F × F → F.
They have an unbounded outbound degree and any linear relations are directly expressed between outputs and
inputs.

We write any circuit using multiplication gates in the domain KVℓ × Fnω as CF(kv1, . . . , kvℓ, ω). This circuit
depends on the desired property the openings should have. Here ω is an additional private witness that may not
depend on the opening to the key-value maps.

4.1 Arguments for Circuits over Committed Key-Value Maps

Here we present the overview of our argument system which works over committed key-value maps and takes an
arbitrary inner circuit operating on the openings of the commitments. To be clear, we spell out its formalization
explicitly but it is a special case of Definition 1. Given an inner circuit CF as described above, our high level
interface for proofs has the following form:

kvNIZK.Setup(1λ)→ crs takes a security parameter λ and outputs a crs.
kvNIZK.Prove(crs, CF, c1, . . . , cℓ, (kv1, ρ1), . . . , (kvℓ, ρℓ), ω)→ π takes the crs and a circuit CF as well as ℓ commit-

ments ci and their openings (kvi, ρi) and an auxiliary witness ω. It outputs a proof π
kvNIZK.VerProof(crs, CF, c1, . . . , cℓ, π)→ b ∈ {0, 1} takes the crs, a circuit CF, and ℓ commitments ci. The output

bit b returns the validity of the proof π.

The relation we want to prove is defined by the circuit C∗ in Equation (1). To clarify our notation we re-define
correctness for arguments for committed key-value maps.

Definition 6 (kvNIZK Correctness). A kvNIZK is correct if, for any λ ∈ N with crs ∈ kvNIZK.Setup(1λ), circuit

CF, key-value maps k⃗v ∈ KVℓ and randomness ρ⃗ ∈ Fℓ with ∀i ∈ [ℓ] : ci = Com(kvi, ρi) and any ω ∈ Fnω for which
C∗(c1, . . . , cℓ; (kv1, ρ1), . . . , (kvℓ, ρℓ), ω) = 1 it holds that

kvNIZK.VerProof(crs, CF, c1, . . . , cℓ, π) = 1 where

π ← kvNIZK.Prove(crs, CF, c1, . . . , cℓ, (kv1, ρ1), . . . , (kvℓ, ρℓ), ω).

As for NIZKs, we require knowledge-soundness and zero-knowledge.
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4.2 Construction with Intermediate Key-Tags

Our construction has two stages. First the prover creates some key-tags bk and proves that they are well formed
(i.e., they are obtained by hashing a key and masking with a random group element, both known to the prover).
These key-tags are then used in a subsequent proof for the opening of the commitment and the actual relation. Intu-
itively, since the prover knows how the key-tags have been produced, the prover is able to compute openings of the
input commitments under the new “base” (h, b1, . . . , bn)—as opposed to the original base (g,H(k1), . . . ,H(kn))—
by appropriately computing the randomizers as a function of the values in the commitment and the randomness
used for producing the key-tags. This allows to avoid proving properties of the hash function in the second part
of the proof. The full construction Z -dp is presented in Figure 3. For sake of presentation and w.l.o.g., in the
construction we assume that all our key-value maps include the same keys k1, . . . , kn.

The protocol is described in the random oracle model where all parties have access to H : {0, 1}∗ → G.

Setup(1λ): 1. compute crstags ← NIZK.Setuptags(1
λ), crsC ← NIZK.Setup(1λ).

2. generate the commitment key h
$←− G (setup for kv commitments).

3. sample random generators g⃗
$←− Gn where n is the maximum number of committed keys (≤ number of active

keys ) in a commitment.
4. Output crs = (crstags, crsC, h, g⃗)

Prove(crs, CF, c1, . . . , cℓ, (kv1, ρ1), . . . , (kvℓ, ρℓ), ω):
1. From all key-value maps kvi, extract the set of non-zero keys Ki and define (k1, . . . , kn) :=

⋃
i∈[ℓ]{k ∈ Ki}.

Parse kvi = {(k, vi,k) : k = k1, . . . , kn} for each i = 1, . . . , ℓ

2. Sample random values r⃗
$←− Fn and create the key-tags bki = H(ki)h

ri . Additionally, create a vector Pedersen

commitment to all keys (called pre-image commitment) c∗ = hs
∏n
i=1 g

ki
i with randomness s

$←− F.
3. Generate a proof that the key-tags are well formed by proving knowledge of the pre-images ki i.e., generate

a proof
πtags ← NIZK.Provetags(crs, bk1 , . . . , bkn , c

∗; k1, . . . , kn, r⃗, s)

for the relation

Rtags(bk1 , . . . , bkn , c
∗; k1, . . . , kn, r⃗, s) :=

(c∗ = hs
n∏
i=1

gkii ∧ ∀i ∈ [n] : bki = H(ki)h
ri)

4. Generate a proof

πC ← NIZK.ProveC(crs, C
F, c1, . . . , cℓ, bk1 , . . . , bkn , c

∗;

(kv1, ρ1), . . . , (kvℓ, ρℓ), r⃗, s, ω)

for the relation

RC(C
F, c1, . . . , cℓ, bk1 , . . . , bkn , c

∗; (kv1, ρ1), . . . , (kvℓ, ρℓ), r⃗, s, ω) :=

c∗ = hs
n∏
i=1

gkii ∧ ∀i ∈ [ℓ] : ci = h
ρi−

∑n
j=1 rjvi,kj

n∏
j=1

b
vi,kj

kj

∧CF((kvi)i∈[ℓ], ω) = 1

(2)

5. Return both proofs including the key-tags and the pre-image commitment π := (bk1 , . . . , bkn , c
∗, πtags, πC)

VerProof(crs, CF, c1, . . . , cℓ, π):
1. Parse π as (bk1 , . . . , bkn , c

∗, πtags, πC).
2. Verify b0 ← NIZK.VerProoftags(crs, bk1 , . . . , bkn , c

∗, πtags)
3. Verify b1 ← NIZK.VerProofC(crs, C

F, c1, . . . , cℓ, bk1 , . . . , bkn , c
∗, πC)

4. return b0 ∧ b1

Fig. 3: Z -dp, our construction for kvNIZK
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Theorem 2. Under the GDLOG assumption, if NIZKtags and NIZKC are secure (correct, zero-knowledge, knowledge-
sound) NIZKs for their required relation families, then the construction Z -dp is a secure kvNIZK for arbitrary
circuits over the key-value map commitment in Fig. 2.

Proof. Correctness: Correctness follows by inspection. In particular, note that when proving RC the prover
“opens” the commitments ci under the base defined by the key-tags bk’s. Since the bk’s are generated with
the same h as the original commitment and the prover knows the openings of the bk’s, the prover can find the
right value to be used as exponent for h.

Knowledge-Soundness: To prove knowledge-soundness, assume the existence of extractors Etags, EC for the
two sub-relations. We build an extractor E∗ that on input a statement (CF, c1, . . . , cℓ) and accepting proof
(b1, . . . , bn, c

∗, πtags, πC), outputs ((kv1, ρ1), . . . , (kvℓ, ρℓ), ω). Our E∗ works as follows. It first extracts through
(k′1, . . . , k

′
n, r⃗

′, s′)← Etags(b1, . . . , bn, c∗, πtags) and then the rest through ((kv1, ρ
′
1), . . . , (kvℓ, ρ

′
ℓ), r⃗, s, ω)← EC(CF,

c1, . . . , cℓ, b1, . . . , bn, c
∗, πC) such that the two relations hold for the extracted witnesses. We first argue it holds

that (k′1, . . . , k
′
ℓ, s

′) = (k1, . . . , kℓ, s), since otherwise we can construct an adversary that breaks the binding prop-
erty of the Pedersen commitment c∗. Then, we show how to extract valid openings for the input commitments ci.
Remember that thanks to the knowledge-soundness of the second proof system (for relation RC) we know that

for all commitments ci it holds c = hρ
′−

∑n
j=1 rjvkj

∏n
j=1 b

vkj

kj
(we remove the index i here to improve readability) .

Thanks to the knowledge soundness of the first proof system (for relation Rtags) we know that bkj
= H(kj)hr

′
j ,

thus we can rewrite c as

c = hρ
′−

∑n
j=1 rjvkj

n∏
j=1

H(kj)vkj hr
′
j ·vkj = hρ

′−
∑n

j=1(rj−r′j)vkj

n∏
j=1

H(kj)vkj

Thus our extractor can output ((kv1, ρ1), . . . , (kvℓ, ρℓ), ω) with ρi = ρ′i −
∑n

j=1(rj − r′j)vki,j as the witness for

the overall relation. Note that the proof does not guarantee that r⃗ = r⃗′ . However this is not a problem since
we are still guaranteed that the extracted witness for the overall relation is a valid one. Zero-Knowledge: follows
from the ZK property of the underlying arguments and the hiding property of the commitments. Details can be
found in Appendix B.

4.3 How to Instantiate the Subprotocols in Z -dp

To instantiate the well formedness of the tags, i.e. the relation Rtags, we propose to use a cryptographic hash
function such as MiMC [AGR+16], Poseidon [GKR+21], GMiMC [AGP+19], or Marvellous [AAB+19] which are
optimized for zero-knowledge proofs. They provide hashing to a field element (HF : {0, 1}∗ → F) which can
be leveraged to obtain random group elements through some of the techniques in [BCI+10, FFS+13, TK17].
A subsequent circuit then proves this hashing and the rerandomization of the group element as key-tags, i.e.,
[bki

] = [H(ki)]+ ri · [h], where brackets enclose group elements. The combined constraints can then proven by e.g.
Bulletproofs [BBB+18] or [AC20].

The circuit for the relation RC can be implemented through a generalization of Bulletproofs [LMR19]14. They
provide an interface supporting bilinear circuits with five gates to enable arbitrary computation of which we use
a subset of gates for non-bilinear circuits only. Given a circuit C constructed from the available gates, they then
provide an efficient protocol with communication complexity 6⌈log2(|C|)⌉+ 28 group elements.

5 Improvements in Practice: Offline/Online Stages

The proving algorithms of our constructions (both Z -dp and Z -set) follow a two-step template. In step (a) the
prover provides key-tags bk-s and proves they are valid. This can be done independently of the commitment. In a
following step (b) we compute a proof about properties of the commitment opening (and that actually depends
on the commitments). Crucially, in the latter step, the prover uses the key-tags as (rerandomized) “anchors” to
the keys. We observe that we can exploit the fact that (a) does not depend on the commitments to the key-value
maps (but only on the keys that they will contain) to preprocess this step.

Consider, for instance, the running example from the introduction where the commitments contain multi-
currency wallets. Assume that the prover knows that in the future they will want to prove some properties about

14 If malleability is a concern, Bulletproofs are proven to be non-malleable in the AGM [GOP+22].
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some of their wallets (which are expected to keep changing between now and the proving time). Moreover, while a
large set Kactive of asset types might be circulating in the system, the prover knows that they will only hold a very
specific and relatively small subset Kpre of these keys (e.g., maybe only ETH, USD and EUR). If that is the case
they can preemptively perform an “offline proving stage” that would be valid for all of the online proofs they will
have to carry out later. Specifically, in Z -dp the prover performs step (a) above offline as follows. On input set
Kpre, the prover provides a set of |Kpre| key-tags B = {bk : k ∈ Kpre}, defined as usual as bk = H(k)hrk together
with a proof πtags that they were constructed honestly. The output of this step is therefore πoffl = (B, πtags).
At a later time, when input commitments c1, . . . , cℓ are available, the prover uses the pre-computed set of key-
tags B to produce a step (a) (the production of key-tags) for each of the commitments ci. In order to preserve
zero-knowledge, step (b) is modified to rerandomize the related bk-s first. The rerandomization hides the mapping
between online proofs, however the verifier learns that all commitments of the online phase contain the same set
of keys. We can similarly adapt Z -set by performing a proof of membership and masking (step 1 in Fig. 4)before
hand.

The advantage of this approach is to use a single offline stage for many proofs. The efficiency savings of this
stage (both for proving and verification time) can be significant since it involves proving/verifying hashing in
zero-knowledge. For example, we conservatively estimate approximately 5k constraints using Poseidon hashing
on a Ristretto curve [GKR+21]. Each of these hashes can be proved in the order of hundreds of milliseconds (see,
e.g., Table 5 in [GKR+21]). For n ≈ 100 this involves for example saving half a million constraints15 amounting
to around half a minute of proving time. Savings for verification time are comparable.

Naturally the offline stage preprocesses an upper bound U on the total number of active keys, since each
commitment may have openings to key-value maps of different density. This may incur a high overhead cost if U
is far from the actual densities (because we still need to process U key-tags as input to the circuit). The gains
from an offline stage can differ accordingly and should be weighed depending on the application.
Efficiency summary of our Constructions We summarize the (asymptotic) efficiency of our constructions in
Table 1. We present it for the case with offline processing, but summing the offline and online columns corresponds
to the setting without an offline stage.

6 Experimental Evaluation

Here we show the practical feasibility of our construction. Our focus is on Z -dp; we compare its efficiency to
that of Z -set in Appendix A.4.

Recall that our construction-template uses two separate steps (see also beginning of Section 5 and Fig. 3):
(a) validity of key-tags and (b) actual property on opening of commitment. We evaluate our construction on a
representative application setting for cryptocurrencies, that is a 64-bit range proof as a circuit proven in step (b).

Let n be the size of the opening of the commitment (also equal to the number of elements we are showing are
in range). We estimate the following runtimes. For step (a): ≈ n ·700ms for proving and n ·100ms for verification;
for step (b) ≈ n · 235ms for proving and n · 89ms verification. We stress that proving times for step (a) are fully
parallelizable (as we generate n independent proofs for key-tags).

These timings refer to those for a common laptop (i7-6820HQ CPU at 2.70GHz) and aim at estimating an
efficient instantiation through the zero-knowledge scheme LMR [LMR19] as NIZKtags and NIZKC using Ristretto
Curve as an underlying group.

How we derive timings. A similar derivation for Bulletproof timings was previously used in [LRR+19]. For
each timing we use the formula T (n) ≈ n ·num of constraints circuitLMR · cost per constraint. Deriving step (a):
for proving, cost per constraint is measured to be ≈ 8.97/64 ms/constraint (our experimental finding) for the im-
plementation in [dal]. For verification 1.22/64 ms/constraint. We estimate num of constraints circuitLMR(tag) ≈
5k: for a circuit for Poseidon hash [GKR+21] and fixed base exponentiation (for rerandomization) of curve
points1617 requires L = 2806 multiplicative constraints. To use this in LMR [LMR19] we need to encode

15 For some applications this can be huge—for comparison, the ZCash circuit [HBHW21] has approximately 100k con-
straints.

16 This is a lower bound but we expect it be a reasonable estimate (up to approximately a factor 2) of hashing-to-group
techniques close to those in Section 1.1 in [BCI+10].

17 Since there is no public circuit implementation for Ristretto operations for this, we use arkworks [ark] BL12-381 imple-
mentation for this estimate. We expect this to be an upper bound on Ristretto points given their smaller field size— 255

381
x

smaller, more precisely. We measure this number using the implementation in [ark]
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Table 1: Efficiency of our constructions and comparison with non-homomorphic solutions (when they are appli-
cable). Above we describe proof sizes, proving time and verification times during offline and online stage. We
also describe the additional costs for proving the homomorphism in zero-knowledge with a non-homomorphic
solution (kvadd(n)). All values are implicitly in big O notation and denote operations in a prime-order group
unless underlined. Rows marked with ⋆ refer to this work. The construction of Z -dp is in Fig. 3. “Z -set (Acc)”
refers to the instantiation of Z -set with NIZKs over accumulators in unknown-order groups we describe in
Appendix C (the more general construction is in Fig. 4 in Appendix A). “Pedersen (Non-Hom.)” refers to the
non-homomorphic solution based on Pedersen described in the introduction. Typical values for our parameters
could be M ≈ 1000 and n ≈ 100.

Kactive Kcom Construction |πoffl| |πonl| |π(kvadd(n))|
priv priv Z -dp ⋆ log(n(|H|+ |Gadd|)) log(|C|) —
priv priv Pedersen (Non-Hom.) — log(|C|) log(n)
publ priv Z -set (Acc) ⋆ n+ log(n|Gadd|) log(|C|) —

Kactive Kcom Construction Voffl Vonl V(kvadd(n))

priv priv Z -dp ⋆ n(|H|+ |Gadd|) |C| —
priv priv Pedersen (Non-Hom.) — |C| n
publ priv Z -set (Acc) ⋆ n|G?|+ n|Gadd| |C| —

Kactive Kcom Construction Poffl Ponl P(kvadd(n))

priv priv Z -dp ⋆ n(|H|+ |Gadd|) |C| —
priv priv Pedersen (Non-Hom.) — |C| n

publ priv Z -set (Acc) ⋆
(M − n+ n logn)|G?|
+n|Gadd|

|C| —

N : Size of key universe K
M : Number of active / registered keys (Kactive)
n : Number of keys in the opening of a key-value map commitment

N >> M ≥ n
|H| : Number of constraints for hashing to a group element

|Gadd| : Number of constraints for summing two group elements
|G?| : Cost of exponentiation in unknown-order group

kvadd(n) : Sum operation among key-value maps of size n
C : Circuit computed on key-value map.
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this as a witness vector (a very conservative upper bound is 2L, which we approximate to 5k). Deriving
step (b): for proving, cost per constraint is measured to be ≈ 232/64 ms/constraint. For verification 88/64
ms/constraint. We derive these estimations from BL12-38118; we know this to be a fair estimate for Ristretto [dal].
num of constraints circuitLMR(range64) ≈ 65 constraints.

7 Application: Multi-Type QuisQuis

QuisQuis [FMMO19] is a privacy-preserving transaction system which allows for pruning old transactions, keeping
the state of each participant linear in the number of users. This is a major advantage over other privacy-preserving
transaction systems, which require a state size linear in the number of transactions. A QuisQuis transaction is
a redistribution of tokens among a set of accounts. An account belongs to an owner and stores their tokens.
Instead of consuming accounts and creating new ones, QuisQuis updates the accounts. These update operations
need to change the balance of a peer without knowing their total balance. This is achieved with homomorphic
commitments.

In contrast to the original QuisQuis where an account stored a scalar value representing an amount, we
generalize accounts to store tokens of different types in a key-value map. Each key corresponds to a type, also
known as currency, and the value specifies how many tokens of the specific type are held by the account. An
account acct then belongs to a secret key sk and holds a balance kv, represented as a key-value map. To transfer
tokens from one account to another, a transaction includes both accounts as active inputs, denoted by the set P.
The transaction subtracts tokens from one account with a secret index s and adds them to the other one. The
output of the transaction are two updated accounts belonging to the same users as the inputs; the input accounts
are discarded. To achieve anonymity, the input consists of P together with a potentially large anonymity set of
accounts A which keep their balance unchanged but provide set anonymity for the active accounts.

As the central building block of our multi-type QuisQuis system, we present an updatable account based on
our key-value commitments.

7.1 Multi-Type QuisQuis: Syntax

The original QuisQuis transaction protocol consists of the three algorithms (Setup,Trans,Verify). Their multi-type
equivalent is as follows:

Setup(1λ, k⃗v)→ state: takes the security parameter λ and a vector of key-value balances k⃗v and outputs an initial
state state. One part of the state is a set of unspent accounts where each key-value balance has an account.

Trans(sk,P,A, ⃗δkv)→ tx: takes a secret key sk which corresponds to one account in the set of active accounts P
and an anonymity set A with a vector of key-value maps ⃗δkv to update tokens. Trans outputs a transaction
tx.

Verify(state, tx)→ ⊥/state′: takes a state and a transaction tx and outputs a new state′ or fails with ⊥.

To support dynamic registration of new types, we require an additional algorithm Register, which is defined as:

Register(acct, k, vk)→ tx takes an account acct and a new type k with amount vk and outputs a transaction tx.

A registration transaction is accepted by Verify if the type k has not been registered before. We define the
correctness of a transaction system more formally. Let for all λ ∈ N and k⃗v with Rkv

rng(kvi) = 1 be state ←
Setup(1λ, k⃗v). For all accounts in P,A with index sets P∗ := {i ∈ [|Sort(P ∪A)|] : accti ∈ P} and A∗ accordingly

in a canonically ordered form with Sort. All accounts in P ∪ A are part of the UTXO set in state, all ⃗δkv with
Rkv

rng(−kvs) = 1 and Rkv
rng(kvi) = 1 for i ∈ P∗{s} and kvi = ∅kv for i ∈ A∗ and sk corresponding to an account

accts ∈ P with enough tokens such that after the transaction there is no negative type Rkv
rng(kvs + δkvs) = 1, it

holds that Verify(state,Trans(sk,P,A, ⃗δkv)) = state′ where state′ ̸= ⊥ and contains an updated UTXO set with
all inputs P ∪ A removed and the transaction outputs added.

18 We use a different implementation [zen] on BL12-381 points as the implementation in [dal] is not compatible with
BL12-381
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Multi-Type QuisQuis: Security The security of a QuisQuis-like transaction system consists of two main
properties. The first property we need to achieve is anonymity. A transaction system is anonymous if an adversary
cannot successfully distinguish two transactions. The transactions are created according to malicious instructions
after the adversary has interacted with an oracle signing transactions on behalf of uncompromised participants.

The second property is theft prevention. This entails that (i) the adversary cannot steal tokens from uncom-
promised accounts; (ii) the adversary cannot create tokens out of thin air. Slightly more formally, we model these
properties as follows. While interacting with the aforementioned signing oracle the balance of honest accounts
(not controlled by the adversary) must not decrease. Additionally, the total amount of tokens must not increase
from transaction to transaction. Notice, however, the number of tokens may increase as the result of mining or a
token registration—the latter counts as a “genesis” transaction.

Our variant of QuisQuis with multiple token types shares many of the same properties as the non-type aware
system. We refer the reader to the original QuisQuis paper [FMMO19] for details.

7.2 Construction

We construct the multi token QuisQuis scheme following the original QuisQuis but with two main adaptations:
each account holds tokens in multiple types and making sure a transaction guarantees that the amounts of tokens
are balanced for each of the token types.

The details of updatable accounts for key-value maps are presented in Appendix D. In a nutshell they have
the same algorithms as the original QuisQuis construction but allow for multiple kinds of tokens.

Setup The setup algorithm generates a list of updatable accounts, one for each initial balance key-value map.

Trans Our transaction structure follows that in QuisQuis where a “transaction” denotes a redistribution of
wealth among all accounts involved (P ∪ A). The transaction takes a vector of key-value maps, one for each
account. The account is then updated according to the key-value map. Key-value maps that contain only valid
positive values (Rkv

rng(δkvi) = 1) are used to deposit tokens to receiving accounts. In order to ensure that the
total number of tokens is preserved, we require that one key-value map holds negative values. This is to satisfy

that the sum of all key-value maps is zero, or
∑|δ⃗kv|

i=1 δkvi = ∅kv. For the account with the negative key-value
map (indexed by s in the canonically ordered set P ∪ A), the transaction signature ensures that the owner of
the account accts authorizes the spending by proving knowledge of the matching secret key sk. The algorithm
Trans((s, sks, kvs),P,A, k⃗v) performs the following steps:

1. Parse all input accounts P ∪ A = {acct1, . . . , acctn} and check the spending account is valid by checking

VerifyAcct(accts, (sks, kvs)) = 1. The transaction needs to be balanced:
∑|δ⃗kv|

i=1 δkvi = ∅kv and all key-value
maps other than the spending account must be non-negative ∀i ̸= s : Rkv

rng(δkvi) = 1. To support large
anonymity sets A, we choose to disclose the upper bound on active accounts by showing that δkvi = ∅kv for
i ∈ A∗ instead or a range proof. The spending account must be negative Rkv

rng(−δkvs) = 1 and the resulting

account must be valid Rkv
rng(kvs + δkvs) = 1, to prevent overspending.

2. Let outputs = (acctT1 , . . . , acct
T
n ) be a canonical order of the accounts generated by UpdateAcct(P ∪A, ⃗δkv; r).

3. Let ψ : [n] → [n] be the permutation that maps the canonically ordered inputs to the canonically ordered
outputs, i.e. input i has the same secret key as output ψ(i).

4. Create a zero knowledge proof π showing that the transaction is well formed, i.e. that it satisfies the following
relation:

Rtx-wf :



x = (inputs, outputs),w = (sk, kvs, ⃗δkv, r = (r1, r2), ψ) s.t.

VerifyUpdateAcct(acctSi , acct
T
ψ(i), δkvi) = 1∀i ∈ P∗

∧Rkv
rng(δkvi) = 1∀i ∈ P∗/{s} ∧Rkv

rng(−δkvs) = 1

∧δkvi = ∅kv∀i ∈ A∗ ∧
∑n
i=1 δkvi = ∅kv

∧VerifyAcct(acctTψ(s), sk, kvs + δkvs) = 1.

The relation ensures that the permuted output account is correctly updated by the transferred balance δkvi for
all active accounts. It then ensures that the updated key-value maps are valid, i.e. there is one spending account
at index s and no value is taken from other accounts. The balances of the accounts in the anonymity set must
not change. To ensure that the spender has enough tokens, the proof checks that the updated spender account
has no negative balance. The transaction consists of the inputs, outputs and the proof π.

Verify A transaction is valid in respect to a state if all accounts in inputs have not been used in another
transaction and the proof π is valid.
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Security Analysis Our key-value commitments provide the same hiding and binding properties as the com-
mitments to single scalars used in QuisQuis. The construction is a parallel version of the single type case and
thereby the theft security holds also for all keys in parallel. Regarding anonymity, we achieve the same properties
as QuisQuis, if we define an upper bound of the number of types involved in a transaction. For transactions with
few different types, we achieve this through padding. With a constant size transaction proof, our new transactions
are as indistinguishable as the original QuisQuis transactions.
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Appendix

A Arguments on Key-Value Commitments with Public Active Keys

In this section we consider the case where the set of active keys is known by both the prover and the verifier. We
can then add a feature by which in a setup phase it is possible to register a set of keys which are going to be used
for later proofs. This can improve the amortized efficiency when several proofs share the same set of active keys.
We dub our resulting construction Z -set.

A.1 NIZKs with Key-Registration

We define NIZK for key-value maps which allow a key-registration phase. To this goal an algorithm RegisterActiveSet
to the NIZK interface deterministically specializes a CRS to a set of active keys. Similar ideas have been used in
previous work e.g., [BCFK19, CFG+20, CHA21] where a set-dependent specialized CRS is used.

Definition 7. A NIZK for key-value maps with registration stage kvNIZKreg consists of the following algorithms:

kvNIZKreg.Setup(1λ)→ crs on input λ it outputs a crs crs.
kvNIZKreg.RegisterActiveSet(crs,Kactive)→ crsreg is a deterministic algorith that takes as input a crs, an active

set Kactive and outputs a specialized CRS crsreg 19.
kvNIZKreg.Prove(crsreg,Kactive, C

F, c1, . . . , cℓ, (kv1, ρ1), . . . , (kvℓ, ρℓ), ω)→ π takes crsreg, a circuit CF, ℓ commit-
ments ci, their openings (kvi, ρi) and auxiliary witness ω. It outputs a proof π. Each of the kvi should use
keys that are subset of Kactive. .

kvNIZKreg.VerProof(crsreg, CF, c1, . . . , cℓ, π)→ b ∈ {0, 1} takes the crsreg, a circuit CF, and ℓ commitments ci.

We require properties as in Definition 1: correctness (completeness), knowledge soundness, zero-knowledge.
Definition 7 is almost a special case of the notion for kvNIZKs, but not quite. We could express it as a NIZK
including Kactive as input to verification and require whatever RegisterActiveSet does as part of the relation.
However, as it’s standard in NIZKs, that would require the verifier to run linearly in |Kactive|. By taking it as
input only a (potentially smaller) processing of it, crsreg, the verifier can even run sublinearly in the set of active
keys (which is the case in our construction). This motivates the special interface we introduce in Definition 7.
Otherwise, the required properties are straightforward variants of those for NIZKs.

The relation we want to prove is again that defined by the circuit in Equation (1). For sake of clarity, we spell
out correctness.

Definition 8 (Correctness). We say that a NIZK for key-value maps with registration stage kvNIZKreg over
key-value map commitment scheme Ckv is correct if for any λ ∈ N with crs ∈ kvNIZK.Setup(1λ), any crs ∈
Ckv.Setup(1

λ), any set of keys Kactive, any circuit CF, any key-value maps k⃗v ∈ KVℓ with keys all in Kactive and
randomness ρ⃗ ∈ Fℓ with ∀i ∈ [ℓ] : ci = Ckv.Com(crs, kvi, ρi) and any ω ∈ Fnω for which

C(c1, . . . , cℓ; (kv1, ρ1), . . . , (kvℓ, ρℓ), ω) = 1

it holds that kvNIZK.VerProof(crsreg, CF, c1, . . . , cℓ, π) = 1 where we compute crsreg ← RegisterActiveSet(crs,Kactive),
π ← kvNIZK.Prove(crsreg, CF, c1, . . . , cℓ, (kv1, ρ1), . . . , (kvℓ, ρℓ), ω).

A.2 Accumulator-based Construction

We require the two following building blocks (described below): accumulators and NIZKs for membership over
accumulators and rereandomization.

The intuition behind our construction is to register the already hashed keys in an accumulator (without
masking). This process can be performed publicly since producing the accumulator is deterministic. In order to
output a proof, we produce a set of key-tags (masked version of the keys committed in the accumulator) and that
these are appropriate rerandomized versions of the group elements in the accumulator.

19 It is w.l.o.g. that we require the registration algorithm to register in batch the whole set of active keys. It would
be possible to define a version where we incrementally register a new key to a previously preprocessed CRS. Several
constructions, e.g. algebraic accumulators, would efficiently support this syntax.



A.2.1 Building Block: Accumulators

Definition 9 (Accumulator scheme). An accumulator scheme AccScm over universe Uλ(AccScm) (where λ
is a security parameter) consists of a quadruple of PPT algorithms AccScm = (Setup,Accum,PrvMem,VfyMem)
with the following syntax:

Setup(1λ)→ ppacc generates public parameters ppacc.
Accum(ppacc, S)→ acc deterministically computes accumulator acc for set S ⊆ Uλ(AccScm).
PrvMem(ppacc, S, S

′)→ πacc computes witness πacc that shows S′ ⊆ S.
VfyMem(ppacc, acc, S

′, πacc)→ b ∈ {0, 1} verifies through witness whether subset S′ is in the set accumulated in
acc. We do not require parameter S to be in Uλ(AccScm) from the syntax.

An accumulator scheme should satisfy correctness—the accumulator works as expected—and soundness—no
efficient adversary can pick set S and find a witness that checks on AccScm.Accum(ppacc, S) and S

′ ̸⊆ S20.

We assume the universe of the accumulator to be a group of prime order.

A.2.2 Building Block: NIZKs for membership and rerandomization We will use a NIZK for the
following relation, which intuitively states that a set of group elements (fresh key-tags) are a rerandomization of
elements accumulated in the set.

Rmem-rand((ppacc, h ∈ G, acc); (B = (b1, . . . , bn) ∈ Gn,

S = {s1, . . . , sn} ∈ Gn, πacc, (r1, . . . , rn) ∈ Zn
p ))

s.t. bi = si · hri for i ∈ [n] and VfyMem(ppacc, acc, S) = 1

We refer to the NIZK for the relation above as NIZKmem-rand.

A.2.3 Construction We describe our construction in Fig. 4. In our description we assume the buildig blocks
above and a general-purpose zero-knowledge scheme kvNIZK like the one assumed in Section 4.1.

The security of our construction can be argued analogously to the security proof of our construction in Fig. 3
given the security of NIZKmem-rand. The latter NIZK proves membership of the keys in the accumulator without
revealing anything about them and simulation is straighforward from this observation. By the binding property
of the accumulator and the knowledge-soundness of NIZKmem-rand we are guaranteed that keys at proving time
belong to the accumulated set.

A.3 Instantiation from Algebraic Accumulators in Groups of Unknown Order

It is possible to instantiate our construction above from accumulators in groups of unknown order [BBF19].
While we describe our instantiation in detail later in the appendix (see Appendix C), here we provide a high-level
view of the proof system NIZKmem-rand. Our techniques are adaptations of those in [BCFK19] and their concrete
improvements in [CHA21]. The proof system consists of two parts. One part proves in zero-knowledge the bulk
of accumulator membership. This consists of a low communication-complexity protocol where the proof partly
consists of elements in G? (by which we denote the unknown-order group). The other component is a Bulletproof
where we both perform some sanity check on the values in the first proof (for example, some hidden values
claimed by the prover should be in a certain range) and we perform a rerandomization of the group elements.
This construction can be instantiated in a completely transparent manner using class groups[BH11]21.

A breakdown of the communication complexity of the proof is as follows. Let n be the maximum number of
keys in any of the key-value commitments input to the proof algorithm. The first component provides roughly δn
elements in G? and in the prime order group, for a small constant δ. The second component consists of roughly
log(n|Gadd||C|) where |C| is the size of the circuit representing the general relation on key-value maps and |Gadd|
is the cost of representing an addition in the prime-order group. The latter can be in the order of 1K constraints
using some of the instantiations in [CHA21]. Concretely, for n ≈ 30 we estimate the size of the proof to be lower
than 180 KB plus the cost of a Bulletproof on the circuit C (of logarithmic size).

20 These definitions are standard; see [BBF19] for a formal treatment.
21 The more efficient instantiation based on RSA groups would require the existence of a trusted RSA modulus. Nonetheless,

all the other components of the construction remain transparent.
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Setup(1λ): 1. compute accumulator parameters ppacc ← AccScm.Setup(1λ)
2. compute CRS for membership&randomize relation crsmem-rand ← NIZKmem-rand.Setup(1

λ)
3. compute CRS for general-purpose NIZK crsC ← NIZK.Setup(1λ)

4. generate the commitment key h
$←− G.

5. sample random generators g⃗
$←− Gn where n is the maximum number of keys in a commitment.

6. Output crs = (ppacc, crsmem-rand, crsC, h, g⃗)
RegisterActiveSet(crs,Kactive) :

1. add hashes to an accumulator inside the new CRS by computing acc = AccScm.Accum(ppacc, H) where
H := {H(k) : k ∈ Kactive}

2. output crsreg = (crs, acc)
Prove(crsreg,Kactive, C

F, c1, . . . , cℓ, (kv1, ρ1), . . . , (kvℓ, ρℓ), ω): 1. Run steps 1,2 and 4 in NIZK.Prove as described in
Figure 3, that is: 1) parse the input; 2) create the key-tags bki = HG(ki)h

ri and commit to all keys c∗ =
hs

∏n
i=1 g

ki
i ; and 4) Generate the proof πC for the relation

RC(C
F, c1, . . . , cℓ, bk1 , . . . , bkn , c

∗; (kv1, ρ1), . . . , (kvℓ, ρℓ), r⃗, s, ω) :=

c∗ = hs
n∏
i=1

gkii ∧ ∀i ∈ [ℓ] : ci = h
ρi−

∑n
j=1 rjvi,kj

n∏
j=1

b
vi,kj

kj

∧CF((kvi)i∈[ℓ], ω) = 1

(3)

2. Prove membership&randomize relation:

πmem-rand ← NIZKmem-rand.Prove(crsmem-rand,x;w)

where
x = (ppacc, h, acc) and w = (B = (b1, . . . , bn),Kactive, πacc, (r1, . . . , rn)))

3. Return π := (B, c∗, πmem-rand, πC)
VerProof(crsreg, CF, c1, . . . , cℓ, π):

1. Parse π as (B, c∗, πmem-rand, πC)
2. Verify b0 ← NIZKmem-rand.VerProof(crsmem-rand, (ppacc, h, acc))
3. Verify b1 ← NIZK.VerProofC(crs, C

F, c1, . . . , cℓ, B, c
∗, πC)

4. return b0 ∧ b1

Fig. 4: Z -set, our accumulator-based construction for kvNIZKreg (i.e., with public previously registered active
keys)
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A.4 Discussion on Practical Benefits of Z -set

Intuitively, using an accumulator with a public set of active keys is beneficial whenever the “cost” of a proof of
membership & randomization (step 1 in Fig. 4) is lower than that of a proof for hashing & randomization (steps
1–3 in Z -dp, Fig. 3). Below we discuss when this can be the case; see also Table 1. The bottomline is: Z -set
can improve verification time trading proof size and proving time.

For proving time Fig. 4 is a worse choice because proving membership introduces a linear dependency in
|Kactive|, not present in our construction from Fig. 3. This is not just a matter of asymptotics: by our estimates,
this would also be the case for common concrete parameters for accumulators in unknown-order groups. Similar
observations hold for proof size.

Where we may see substantial gains from applying Z -set is in verification time. Ignoring the cost of the circuit
C and only considering the additive overhead we achieve the following verification times. Without registration
(Z -dp), we would have n times: one hashing subcircuit—each of approximately 5k constraints—plus rerandomiza-
tion (additional 1k contraints). This gives a total of 6nk constraints. With registration (Z -set) we have: n group
exponentiations in a group of unknown-order plus (proved with a special-purpose “accumulator-membership”
NIZK; see also Appendix C), plus n additional rerandomizations and additional sanity check constraints (for a
total around 1.5k constraints). To assess which solution is best one needs to compare the concrete costs of the n
exponentiations in groups of unknown order vs the n×4.5k constraints of the hash function. We know the first to
be cheaper and in particular to be an order of magnitude so (each exponentiation requiring tens of milliseconds,
vs hundreds of milliseconds for the case of verifying a single hash function). This time difference in verification
can be substantial. Our time estimates refer to RSA-groups and are derived from [GKR+21, CHA21, CFG+20].

B Additional Proofs

Proof of Theorem 1 As for standard Pedersen, the construction is perfectly hiding because of the masking
factor hr. As a consequence we have that for all c ∈ G, for any two key-value maps

{
vk
}
k∈K

,
{
v′k′

}
k′∈K′ , the

probability they yield commitment c is the same.
To show why the construction is binding we argue as follows. Assume an adversary that queries the random

oracle on set K∗ and that afterwards is able to provide two distinct openings for the same commitment c with
non-negligible probability (each of these openings consisting of keys, respective values and randomnesses). We can
write this commitment as c =

∏
k∈K H(k)vkhr =

∏
k′∈K′ H(k′)v

′
k′hr

′
(where w.l.o.g. we assume K∗ = K ∪K ′)

and observe that ∏
k∈K

H(k)vk
∏
k∈K′

H(k′)−v′
k′hr−r′ = 1G .

Since the random oracle evaluations are distributed as random group generators we can use this adversary to
break Assumption 1: we would pass it random generators g1, . . . , g|K∗|, h instead of the random oracle responses
and return (a1, . . . , a|K∗|, r− r′) where for each i we set ai = vki

− v′ki
if ki ∈ K ∪K ′, else ai = vki

if ki ∈ K \K ′

(and ai = v′ki
if vice versa). The probability that there would exist a single non-zero element in the vector is

non-negligible by assumption on the adversary.
Homomorphism follows easily by inspection.

Zero-Knowledge Proof in Theorem 2 For zero-knowledge, we build our simulator S∗ using the simulators
for the two subprotocols, namely Stags,SR. On input a valid statement (crs, CF, c1, . . . , cℓ), S∗ outputs π =
(b1, . . . , bn, c

∗, πtags, πC) where: b1, . . . , bn, c
∗ are random group elements, and we build simulated proofs πtags

← Stags(crstags, b1, . . . , bn, c∗) and πC ← SC(crsC, CF, c1, . . . , cℓ, b1, . . . , bn, c
∗). We can prove indistinguishability

of the simulated and the real transcript through the following hybrids:

– Hybrid 0. This is the view in the real protocol.
– Hybrid 1. This is the same as the previous hybrid, but we replace πtags with a simulated proof. Indistinguisha-

bility follows from the ZK property of the subprotocol for Rtags.
– Hybrid 2. This is the same as the previous hybrid, but we replace πC with a simulated proof. Indistinguisha-

bility follows from the ZK property of the subprotocol for RC.
– Hybrid 3. This is the same as the previous hybrid, but we replace b1, . . . , bn, c

∗ with random group elements.
Indistinguishability follows since these group elements are distributed identically in both hybrid 2 and 3 due
to the choice of the randomizers s, r⃗ in the real protocol/Hybrid 2. Note moreover that when replacing these
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commitments with random group elements we do not change the valdity of the statements to be proven by
the two simulators Stags and SC. That is, (b1, . . . , bn, c∗) and (CF, c1, . . . , cℓ, b1, . . . , bn, c

∗) are true statements
for the two sub-relations also when the group elements are randomly sampled. This is due to the fact that
both relations are trivial: since Pedersen commitments are perfectly hiding, for any kv1, . . . , kvℓ there exist
s, r⃗ such that the relation holds.

Since the distribution in Hybrid 3 is identical to a simulated execution, this concludes the proof of zero-knowledge.

C Zero-Knowledge over Algebraic Accumulators

The numbers in our Table 1 for the registration construction refer to instantiations described in this section.

Construction of accumulators for group elements Below we describe an instantiation of an accumulator
for group elements pt on an elliptic curve. The original construction is that of accumulators in unknown-order
groups from [BBF19], while the explicit description for elliptic curve points is from [CHA21]. The adaptations we
describe in this section are important to obtain concretely efficient instantiations.

We define a permissible set P of commitments which allows to avoid collisions. It is parametrized by an
integer µ and consists of elliptic curve points where the x-coordinate is a µ-bit prime and the y-coordinate is the
“canonically chosen” square root so that the point can be described by its x-coordinate alone: P := {(x, y) ∈
(F,F) |x ∈ [2µ−1, 2µ) ∧ y ≡ 0 mod 2}

One can use µ = 251 bits for concrete instantiations in the Ristretto curve (which we can use with [LMR19]).
Below we restrict elements to prime numbers. This is standard and necessary for the soundness of the accumu-

lator scheme. We observe that, when the accumulator is computed publicly (which is the case in our applications),
it is not necessary to prove in zero-knowledge that its elements are primes. This can be done at registration time
ensuring that, when adding a key k, its hash H(k) is prime. We can naturally add a padding to the key before
registration time and, through rejection sampling, ensure we obtain a prime.

Setup(1λ)→ pp

(G?, g?)← G?(1λ)
return pp = (G?, g?)

VfyMem(pp, acc, pt, πacc)

Parse pt as pt := (x, y)

Accept iff πx
acc = acc

Add(pp, pt, acc)→ acc′

Parse pt as pt := (x, y)

if pt ̸∈ P ∨ x not a prime then

return ⊥; else return accx

PrvMem(pp, S, pt)→ πacc

S′ := {x′ : (x′, y′) ∈ S \ {pt}}

prd←
∏

x′∈S′

x′

return gprd?

Fig. 5: Accumulator Instantiation for AccScm.

For efficiency, we observe that PrvMem can executed in time growing with (M − n) + n log n for a subset of
size n and accumulated set of size M (the quasilinear factor derives from RootFactor algorithm in [BBF19]).

Instantiating NIZKmem-rand In Appendix A, we need to efficiently prove in zero-knowledge that a key-tag
(roughly, the hash of a key) is inside an accumulator (NIZKmem-rand). For our instantiations in unknown-order
groups, we can adopt a variant of the solution in [CHA21] (see their Section 5.2 and instantiations in 5.4.1 and
5.4.2). Our relation Rmem-rand has only one difference from their “one-out-of-many” relation in Section 5.2: we need
to prove the same relation for multiple key-tags (which correspond to what they call an “outer commitment”).
In other words, we need a “many-out-of-many” relation.

The subsequent change to their instantiation is almost straightforward. Their one-out-of-many relation is
composed of two parts: one described in 5.4.1 (roughly consisting of a Bulletproof execution on a gadget of
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approximately 1.5K constraints) the other in 5.4.2 (a NIZK whose proof consists of a constant number of unknown-
order and prime-order group elements). To turn them into a many-out-of-many variant we do the following. The
constraint system for 5.4.1 can simply be adapted to take as input n inputs, instead of just one. The batching
properties of Bulletproof allow the proof size to be affected only minimally. For the second component, the one
from 5.4.2, we can simply provide n runs of it. This part of the argument system grows linearly in n.

D Updatable Accounts

D.1 Preliminaries: Updatable Public Keys [FMMO19]

We need updatable public keys. Intuitively, such a key can be publicly updated and the update is indistinguishable
from a newly created key. An updatable public key scheme consists of the following algorithms:

Setup(1λ)→ pp outputs the public parameters pp.
Gen(pp)→ (sk, pk) generates a new key pair
Update(pk)→ (pk′) updates the key pk to pk′

VerifyKP(pk, sk)→ b ∈ {0, 1} verifies that a key pair is consistent.
VerifyUpdate(pk, pk′, r)→ b ∈ {0, 1} verifies that the public key pk was correctly updated to pk′ with some ran-

domness r.

The correctness follows directly from QuisQuis such that given a key pair, Update generates again a valid key
pair. The update process is verifiable by VerifyUpdate and the updated key must keep the original secret key. The
security requires (a) that an updated key is indistinguishable from a new, randomly generated one and (b) that
the update process cannot change the secret key if the update is verified.

D.2 A secret-key version with updatable keys

We now describe an extended commitment to key-value map, which is the one we will use in our constructions
for multi-type QuisQuis. In this extension we allow a party with a secret key to open the commitment even
without knowing the randomness used to commit to it. This will be useful to allow to verify that an account has
a certain balance. In order to do this we let the setup return a pair of public–secret keys Setup(1λ) → (pk, sk)
and we use the notation VerifyCommSk(pk, c, sk,

{
vk
}
k∈K

). We also require the commitment to be binding also

with respect to this function, that is no efficient adversary can output (pk, c, sk,
{
vk
}
k∈K

, sk′,
{
v′k′

}
k′∈K′) with{

vk
}
k∈K

̸=
{
v′k′

}
k′∈K′ but such that VerifyCommSk(pk, c, sk,

{
vk
}
k∈K

) = VerifyCommSk(pk, c, sk′,
{
v′k′

}
k′∈K′) =

1. We provide a construction reminiscent of ElGamal commitments in Figure 6.

Setup(1λ)→ (pk, sk): samples a group G and a generator g, z ←$ [|G|] and return (pk = (G, g, h := gz), sk =
z).

Com(pk,
{
vk
}
k∈K

; r)→ c: return (gr,
∏

k∈K H(k)vkhr).
VerifyCommSk(pk, c = (u, v), sk = z,

{
vk
}
k∈K

): return 1 iff
∏

k∈K H(k)vk = v/uz.

Fig. 6: Secret-key variant of construction for kvC.

D.3 Formalization

With a key-value commitment scheme and updatable keys, we build updatable accounts which belong to a secret
key and hold a key-value map of tokens. The important feature of an updatable account is, that anyone can
rerandomize the account and create a proof of correct rerandomization. An updated account is not linkable to
the previous version and indistinguishable from a newly created account. In combination with a shuffling proof, a
set of accounts is permuted without changing ownership and without knowledge of openings. We provide formal
details in the full version.
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Definition 10. Updatable Accounts consist of the following algorithms:

GenAcct(pp, kv)→ (acct, sk) takes an amount map
{
vk
}
k∈K

and outputs an account acct and a secret key sk

VerifyAcct(acct, (sk, kv))→ b ∈ {0, 1}∗ checks the account acct for consistency with the private key sk and the
key-value map

{
vk
}
k∈K

such that Rkv
rng(kv) = 1.

These accounts express the same updatability as the original QuisQuis accounts, such that they remain valid for
updates to the public key and homomorphic operations on the commitment. This leads to the following additional
operations:

UpdateAcct({(accti, δkvi)}ni=1; r1, r2)→ {acct′i}ni=1 takes as input set of accounts accti = (pki, ci) and key-value
maps δkvi, representing the change of amount in different types, such that Rkv

rng(δkvi) = 1 or Rkv
rng(−δkvi) = 1;

it outputs a new set of accounts {acct′i}ni=1 with acct′i = (Update(pki; r1)), c ◦ Com(δkvi, pki; r2)
VerifyUpdateAcct({(accti, acct′i, δkvi)}ni=1; r1, r2)→ {0, 1} outputs 1 if
{acct′i}ni=1 = UpdateAcct({(accti, δkvi)}ni=1, kv; r1, r2) and R

kv
rng(δkvi) = 1 or Rkv

rng(−δkvi) = 1, 0 otherwise.

E Multi-Type QuisQuis Transaction Relation

With (c1, . . . , cℓ) := (δacct2, . . . , δacctm, acct
′T
1 , δacct1), we construct a circuit which checks that the first update

account δacct1 is all negative and the remaining ones are all positive. Last, it checks that for each type, the update
values sum to zero.

CF((k1, (v1,k1
, . . . , vℓ,k1

)), . . . , (kn, (v1,kn
, . . . , vℓ,kn

)), ω) :=

∀k∈K


Rrng(−vℓ,k) = 1

∧∀i∈[ℓ−1]Rrng(vi,k) = 1

∧
∑

i∈[ℓ−2]∪{ℓ} vi,k = 0

Our kvNIZK construction builds upon Pedersen style key-value commitments, but for the multi-type QuisQuis
setting we need public key based commitments as shown in Appendix D.2. Therefore we change the relation RC

in Equation (3) to prove that the input to the circuit is still equivalent to the commitment openings.

RC(C
F, ((g1, h1), c1), . . . , ((gℓ, hℓ), cℓ), bk1 , . . . , bkn , c

∗;

(kv1, ρ1), . . . , (kvℓ, ρℓ), r, ω) :=

c∗ = hr
n∏

i=1

gki
i ∧ ∀i ∈ [ℓ] : ci = (gρi

i , h
ρi−

∑n
j=1 rjvi,kj

i

n∏
j=1

b
vi,kj

kj
)

∧CF((k1, (v1,k1
, . . . , vℓ,k1

), . . . , (kn, (v1,kn
, . . . , vℓ,kn

)), ω) = 1
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