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Abstract. We propose new zero-knowledge proofs for efficient and post-
quantum ring confidential transaction (RingCT) protocols based on lat-
tice assumptions in Blockchain systems. First, we introduce an inner-
product based linear equation satisfiability approach for balance proofs
with a wide range (e.g. 64-bit precision). Unlike existing balance proofs
that require additional proofs for some “corrector values” [CCS’19], our
approach avoids the corrector values for better efficiency. Furthermore,
we design a ring signature scheme to efficiently hide a user’s identity
in large anonymity sets. Different from existing approaches that adopt
a one-out-of-many proof [CCS’19, Crypto’'19], we show that a linear
sum proof suffices in ring signatures which could avoid the costly bi-
nary proof part. We further use the idea of “unbalanced” relations to
build a logarithmic-size ring signature scheme. Finally, we show how to
adopt these techniques in RingCT protocols and implement a proto-
type to compare the performance with existing approaches. The results
show our solutions can reduce about 25% proof size of Crypto’19, and
up to 70% proof size, 30% proving time, and 20% verification time of
CCS’19. We also believe our techniques are of independent interest for
other privacy-preserving applications such as secure e-voting and are ap-
plicable in a generic setting.

Keywords: Lattice-based cryptography, zero-knowledge proof, balance proof,
ring signature, RingCT, blockchain

1 Introduction

Cryptocurrencies adopt the blockchain technique where each participant main-
tains a ledger of all transactions to avoid any tampering attempts from minority
attackers. In private/anonymous cryptocurrencies, the amount® stored in each

* This is not the final version. The experiment part needs to be changed due to some
major changes.

3 In this paper, the “amount” refers to “account balance”. We avoid using balance
here as it conflicts with balance proofs.



account and the user’s identity need to be hidden from the outside world. Mean-
while, it also requires public verification to ensure each transaction is valid. Ex-
isting solutions such as Monero [32] and Zcash [34] adopt zero-knowledge proofs
(ZKPs) to prove useful statements without leaking any private information. For
instance, in Monero, a ring confidential transaction (RingCT) protocol is used
with a range proof to show all amounts are non-negative and the difference be-
tween outputs and inputs is zero (balance property), and a ring signature-like
approach to hide the identity of a spender with one-out-of-many proofs [27].
However, as the security of these implementations is mainly based on discrete
logarithm assumptions, they are at risk of potential attacks from quantum com-
puters.

This deficiency has impelled the development of “post-quantum” solutions.
Among all approaches, lattice-based cryptography is one of the most promising
candidates based on computational lattice problems. Unfortunately, the costs of
lattice-based solutions increase significantly in comparison with those in discrete
logarithm settings. Taking the range proof in Crypto’19 [14] as an example, a
single proof costs nearly 200KB size while the Bulletproofs protocol [11] costs
less than 1KB. Even worse, as the amounts in a RingCT protocol need to be com-
mitted separately, the efficient aggregation approach in [14] cannot be adopted.
MatRiCT (CCS’19 [17]) is the first practical lattice-based RingCT protocol to
optimize the proof size in a blockchain environment and is currently applied in
Hcash [31]. By using a novel balance proof with hashed-message commitments
(HMC) to show a transaction is valid, MatRiCT reduces the size of commitments
and allows proofs on a wide range. Furthermore, it adopts techniques such as
batched commitments and rejection sampling for secrets with a fixed Hamming
weight in one-out-of-many proofs to improve the efficiency of the ring signature.
MatRiCT+ [16] further improves the performance of MatRiCT by optimizing
the underlying cyclotomic rings. However, both MatRiCT and MatRiCT+ re-
quire some “corrector values” in balance proofs. Proving corrector values are
correct imposes a prohibitive cost.

1.1 Our Contribution

The main goal of this paper is to propose efficient, scalable, and practical ZKPs
for existing post-quantum* anonymous cryptocurrencies such as Heash [31]. We
focus on some key problems in lattice-based RingCT protocols (e.g., MatRiCT)
and significantly reduce the proof size and proving/verification time with our new
ZKP techniques. Besides, as our approaches optimize the high-level ZKP rela-
tions, which are independent from the cyclotomic ring improvements in [16], our
techniques can also be applied in MatRiCT+ to achieve more efficient RingCT
protocols (here we focus on MatRiCT as our improvements are based on the tech-
niques proposed in MatRiCT). To achieve the high efficiency of our approach, we

4 The post-quantum security referred in this paper relies on the hardness of “post-
quantum” lattice assumptions and does not necessarily involve security proofs in
quantum random oracle model [21]. Instead, we use ROM for Fiat-Shamir transfor-
mation in the security analysis, as with [14-17].



propose two novel techniques, linear equation satisfiability (Section 4.1 and 5.1)
and unbalanced linear sum proof (Section 4.2 and 5.2). The former technique
implies balance relations in RingCT protocols. The latter one proves a weaker
but still secure relation to replace the one-out-of-many relation in ring signa-
tures. Since both of them do not rely on lattice settings, we believe our results
are of independent interest for ZKPs in a generic setting and other applications
(Section 9).
We conclude our revelations as follows:

— “Corrector values” are unnecessary in a balance proof. We analyze the bal-
ance proof in MatRiCT and find the corrector values can be reduced without
sacrificing the security of the proof (Section 3.1).

— Verification of multiple accounts can be batched in one. To reduce the cost
in the verification of multiple accounts, we propose a partial amortization
for binary proofs to batch multiple relations (Section 3.2).

— Inner-product relation is efficient in proving linear equation satisfiability.
Based on our observation, we generalize balance proofs to a linear equation

satisfiability (Section 4.1 and 5.1). Specifically, we solve the overflow problem

. . . . . . k=1 o
in inner-product relations under lattice settings, i.e., ensuring — =12 fi

mod ¢ is small under a small ¢ (more details in Section 4.1). Finally, we
build a more efficient balance proof for RingCT protocol (Section 6.1).

— The binary proof is redundant in ring signatures. We analyze existing ring
signatures (one-out-of-many proofs) and show the binary proof used in these
approaches requires a larger parameter set. Furthermore, we prove it is suf-
ficient to use a linear sum proof for ring signatures without the binary proof
part in a one-out-of-many proof (Section 3.3).

— Unbalanced linear sum proof is secure and efficient for ring signatures. To
propose an efficient ring signature scheme, we leverage the idea of relaxed
relation and build our linear sum proof with an “unbalanced” relation (Sec-
tion 4.2 and 5.2). Furthermore, we design an efficient ring signature scheme
based on the unbalanced linear sum proof (Section 6.2). To apply our pro-
posed techniques on RingCT protocols, we need to solve some additional
problems such as double-spending. We describe how to address these issues
and build a practical RingCT protocol for real-world post-quantum anony-
mous cryptocurrencies (Section 8).

1.2 Related Work

In anonymous cryptocurrencies, RingCT protocols [17,27, 35, 38] adopt range
proofs to show transaction amounts are valid and ring signature-like approaches
to hide a spender’s identity. We describe existing work in these two directions.
Range proofs. To guarantee the amount of each account in a confidential
transaction is valid, range proofs [11,28,30] are used in RingCT protocols. By
encapsulating the amounts in homomorphic commitments, the prover proves that
1) all the inputs and outputs are non-negative and 2) the sum of inputs equals
outputs. The proofs can be succinct and efficient with a trusted setup [6, 18,19,



29], but will undermine the decentralized property of blockchain systems at the
same time where no particular trusted authority should be involved. Though
the trusted setup can be replaced by a secure multi-party computation, the
process is costly and may not be reusable when the application (i.e., circuit)
is updated [6,19]. Currently, the smallest proof without a trusted setup is the
Bulletproofs protocol [11], which leverages the vector compression idea in [8].
However, these approaches fail to address quantum attacks as they are proposed
based on discrete logarithm assumptions.

One of the most promising post-quantum cryptography candidates is lattice-
based cryptography. Esgin et al. propose new range proofs in lattice settings
based on the unbounded-message commitment (UMC) scheme and further adopt
a new packing technique for efficient batch processing [14]. Unfortunately, the
size of a UMC commitment is linear to the message size which is not suitable for
large values such as amounts of different accounts. Besides, the batch processing
in [14] is only efficient when the amounts of all accounts are committed together
in a single commitment, while the amounts are usually committed separately in a
RingCT protocol. The first practical lattice-based RingCT approach is MatRiCT
[17] (applied in Hcash [31]). Instead of using UMC to commit to an amount
directly, MatRiCT commits to the bits of an amount with HMC [15] and further
adopts a balance proof with some “corrector values” to show the sums of inputs
and outputs are equal. MatRiCT+ [16] further reduces the proof size and running
time of MatRiCT by optimizing the underlying cyclotomic rings. Here we focus
on MatRiCT since our improvements are based on the techniques proposed in
MatRiCT, which are quite independent from the improvements in MatRiCT+.
Though the efficiency has been improved compared with [14], a subtle issue
prevents the use of MatRiCT and MatRiCT+ in general cases: the corrector
values require additional range proofs when dealing with multiple input and
output accounts (more details in Section 3.1).

Ring signatures. To hide the identity of a signer, ring signatures (one-out-
of-many proofs) allow one to prove the knowledge of a secret key corresponding
to an element in a set of public keys. The idea of the ring signature is proposed by
Rivest, Shamir, and Tauman [33]. In discrete logarithm settings, logarithmic-size
ring signatures [7,20] have been used in different applications. Most of current
anonymous cryptocurrencies are implemented based on discrete logarithm as-
sumptions which cannot provide post-quantum security.

On the side of lattice settings, linear-size ring signatures have been pro-
posed [25,36], but these approaches are inefficient for large anonymous groups.
Libert et al. [24] design a Merkle tree based accumulator and build a ZKP sys-
tem for this accumulator. With these tools, logarithmic-size ring and group sig-
natures are proposed. Furthermore, a linkable version of [24] (signatures created
by the same signer can be linked) is introduced in [37]. Though the signature size
of [24,37] is logarithmic, the zero-knowledge arguments applied in the accumu-
lator require multiple protocol iterations (multi-shot proofs) to get a negligible
soundness error. Esgin et al. [15] introduce new tools for ZKPs to extend the dis-
crete logarithm proof techniques in [20] to lattice settings. Logarithmic-size ring



signatures can be easily achieved with these new techniques. A further improve-
ment in [14] makes the underlying ZKPs achieve a negligible soundness error at
a single protocol iteration (i.e., the one-shot proof in Appendix A) and reduces
the signature size accordingly. Following the blueprint of [14], MatRiCT [17]
batches commitments in binary proofs and improves the rejection sampling to
build a more efficient ring signature scheme. Besides, MatRiCT uses two sets
of compatible parameters for the ring signature to reduce the size (discussed in
Section 3.3).

2 Preliminaries

2.1 Notations

We use Z; = Z/qZ to denote the ring of integers modulo g represented by the
range [—%-%, 41]. The rings are defined by R = Z[X]/(X? + 1) and R, =
Zy[X]/(X* + 1) where d > 1 is a power of 2. Bold-face lower-case letters such
as a and bold-face capital letters such as A are used to denote column vectors
and matrices respectively. Commitments are denoted by capital letters such as C
even though they may be vectors. We use (a, b) to denote appending vector a to

b. For a vector a = (ag, - - ,ai—1), the norms are defined as ||a| = Zf;ol a?,

lally = 321 |ai], and [|a]|oo = max; |a;]. The norms of a polynomial are defined
in a similar way as a vector. Suppose & € Z,, we denote z* = (1,x,22,--- ,2*71).
Furthermore, the inner-product of two k-dimensional vectors a and b is denoted
as (a,b) = Zf;ol a;b; and the Hadamard product is denoted as a o b = (ag -
bo, -+ ,ak—1 - br—1). The Kronecker’s delta is denoted as d;; such that 0;; =1
when j = ¢ and otherwise d,; = 0. HW (z) denotes the Hamming weight of the
coefficient vector of x € R. Uniform distribution on a set S is denoted by U(S),
and a < S denotes sampling a from a distribution S, or uniformly sampling
from a set S. S™? indicates that totally md coefficients are sampled to generate
m polynomials in R of degree d. iz denotes the set of polynomials in R with
infinity norm at most B € Z*.
The challenge space in a X-protocol is defined as follows:

C={zxeR:deg(x)=d—1NHW(x) =wA |||l = p}. (1)

Clearly, we can observe ||z||; < pw and |C| = (3}) -(2p)*. We denote all non-zero
challenges as C*.

Lemma 1. (Lemma 3 in [14]) For anyyi,--- ,yn € C*, we have || [T yilloo <
(2p)" - w" ™t and | TTZy will < Vd - (2p)" - w" "
2.2 Rejection Sampling

In XY-protocols, a prover needs to encode its witness b as f with a challenge x
and a masking vector a, f = xb + a. In the M-SIS assumption (described in



Section 2.3), it is important to hide the distribution of b from the distribution of
(z, f). The most commonly used approach is the rejection sampling to restrict
the distribution of (x, f) being independent of b by rejecting f which are out of
bounds [26]. We summarize rejection sampling in Algorithm 1, where T'= ||b||
and ¢ is a positive value to control the deviation of the normal distribution.
Returning 1 means f passes the rejection sampling.

Algorithm 1 Rejection Sampling
Rej(f,b,,T)

1 0 = ¢T; p(9) = exp(£ + 55); u « [0,1)
2

2: if u > ﬁ ~exp(7_2(f’2?j”b” ) then

3:  Return L

4: end if

5: Return 1

2.3 M-SIS and M-LWE Problems

We define the two well-known lattice problems [22], module short integer solution
(M-SIS) and module learning with errors (M-LWE), which our schemes’ security
relies on.

Definition 1. M-SIS(n,m,q,7). Given A < R;}*™, the goal of the problem is
to find z € Ry such that Az =0 mod q and 0 < [|z]| <.

Definition 2. M-LWE(n,m,q,B). Given g be a distribution over R, and s <
U be a secret key. Define LWE(q, s) as the distribution obtained by sampling
a + R}, e < Up and outputting (a,(a,s) +e). The goal of the problem is to
distinguish between m given samples from either LWE(q, s) or U(Ry, Ry).

2.4 Hashed-Message Commitment

Let n,m, B, g be positive integers with m > n. Suppose a prover commits to v-
dimensional vectors over R, for v > 1. The instantiation of the hashed-message
commitment (HMC) scheme [5,17] is as follows:

— CKeygen(1?): Sample G, + Ry*™ and Gy, < Ry™Y. Output ck = G =
(G,,Gy,) € Ry,

— Commit.x(m): Sample r < {—B,---,B}™. Output r and Com;(m,r) =
G -(rom)=G, -r+ Gy -m.

— COpen_.(C, (y,m',r")): If ||(m/,r")|| < v and yC = Comex(m/, ') return
1, otherwise return 0.



Remarks. As all operations are conducted on R, the prover needs to sample
md-many Z, elements to build an m-dimensional R, vector in Commit. Further-

more, the opening algorithm COpen does not simply check C L Comeg(m/, 1)
in common lattice-based schemes [12], but with a relaxation factor y € R, as
in [9,14,17]. This is due to the straightforward soundness proofs under lattice
assumptions do not work. Thus, we use “relaxed relations” by relaxing the ver-
ification relation to overcome the complications. Besides, the verifier also needs
to check the norm of the openings, ||[(m’,r’)|| < 7, to ensure the hardness of
M-SIS problem in Defination 1.

Lemma 2. (Lemma 2.3 in [17]) For a (large) set of appropriately chosen
parameters, if M-LWE(m — n,m,q,B) problem is hard then the HMC defined
above is computationally hiding. If M-SIS(n, m+wv,q,27v) is hard, then the HMC
defined above is computationally strong ~v-binding to the same relazation factor

Y.

2.5 Vandermonde Matrix and One-Shot Proof [14]

A (k + 1)-dimensional Vandermonde matrix V is defined as follows for some
o, , Tk € R:

1x0~-~x’5
1wy ---ab

v=|... ] (2)
Lay - akf

Let adj(V') denotes adjugate matrix of V' and det(V') denotes the determinant
of V. Considering the property adj(V') -V =det(V) - Ij.41, we have

det(V) = H (xj; — ;). 3)

0<i<j<k

Let (Io,---,I%) be the last row of adj(V'). Then

I = (—1)"*k H (xj — ). A
0<s<j<k (4)
8,JF0

Lemma 3. (Lemma 4 in [14]) Let k = @, we have || det(V)]|eo <
(2p)"w"~1 when using the challenge space in Equation (1).

The one-shot proof is a technique proposed in [14] to efficiently prove non-
linear polynomial relations. Consider a k-degree polynomial relation with com-
mitments Cy = Com(myg;rg),- - ,Cr = Com(my;ry). The prover encodes the

message as (f,z) « (Xr_,z'my, Y5 2ir;) with a challenge . The verifier

checks the norms of f, z and Zf:o 2iC; = Com(f; z). This protocol has (k+1)-
special soundness as we can extract a witness in one shot with the following
approach.



Considering (k + 1) accepted transactions with distinct challenges x;’s and
responses (f;, z;)’s where i € [0,k] (C;’s are the same). We have the following
relation

1xzg--- 3375 Co Com( fo; zx)
1xg--- x’f 4 Com( fy; zx)
SRR B R : : (5)
1axy - xﬁ Ch, Com(fx; zk)

Let the Vandermonde matrix in Equation (5) be V. By multiplying both sides
of Equation (5) by adj(V'), based on Equation (4), its last row becomes

k
det(V) - Cy = ZFiCOTH(fi§ zi)
=0
k k (6)
=0 =0

Therefore, (i, 7)) is an exact opening of yC} with a relaxation factor y =
det(V).

Lemma 4. (Lemma 5 in [14]) In Equation (6), the following holds for k' =
k(k—1) .
R

7| < d(k + 1)(2p)* w"® ~* - max || fi]], .
' 7
1

w T max IEAIR

|74l < d(k +1)(2p)"

Note that the i-th row of the Vandermonde matrix (i # k) is much different
from the form in Equation (4), which involves a function of z;’s in the (—1)i*
part. This hinders us from using the one-shot proof to derive the relaxed opening
of C; directly.

2.6 Amortized Relation [3]

The amortization technique to open multiple linear forms for essentially the price
of one. In [3], Attema et al. describe two amortization techniques in discrete
logarithm settings, amortized exponentiations and amortized homomorphisms.
Here we focus on the first one and ignore randomness for simplicity. Consider
the following relation

ek, (Bi P (b)) ¢
RA“““E"P‘{womck() By, g(bs) = Pk >}’ ®)



where g(+) is a homomorphic function, it is equivalent to prove® Comck(zle x'b;) =
Zle x'B; and g(Zle r'b;) = Zle 2! P; with a challenge x. The prover can
further uses one vector a to generate the response as f = a + Zle 2'b; as a
standard X-protocol.

Attema et al. proved the completeness, special soundness, and SHVZK pros-
perities of the above amortized X-protocol in discrete logarithm settings (Theo-
rem 4 and Theorem 5 in [3]). In this paper, we leverage this idea in the balance
proof and extent it to lattice settings.

3 Observations and Techniques

We first analyze the balance proof and ring signature scheme in MatRiCT [17].
Then we show the performance of these approaches can be further improved
with our new techniques.

3.1 Corrector Values in Balance Proofs

In existing RingCT protocols, to prove a transaction is valid, a spender (prover)
needs to show 1) all the inputs and outputs are non-negative and 2) the difference
between inputs and outputs is zero. The former relation can be checked in a
range proof while the latter one is quite simple as Com(aj;*) + Com(ag; *) =
Com(a; + ag;*) holds under a homomorphic commitment scheme. In lattice
settings, some approaches use UMC to commit to an unbounded secret like
amount [5,14]. However, as the size of a UMC commitment grows linearly with
the secret size, using a range proof directly is not practical in lattice-based
RingCT protocols.

MatRiCT [17] commits to bits of each amount with HMC to avoid the cost
of UMC. Thus, the former relation can be proved in a binary proof. For the
latter one, it requires “corrector values” to ensure Bits(a;) + Bits(az) equals to
Bits(a; + a2) after some corrections. For instance, suppose a prover wants to
prove that the following relations hold for M inputs and S outputs:

a; >0, Vi€ [0,M); A b >0, Viel0,5); (9)
M-—1

S-1
Z a; = Z bi; (10)
i=0 i=0

where a;’s are input accounts and b;’s are output accounts. A balance proof
first converts each account into bits, a; = (ai0, - ,aik—1) < Bits(a;) and
b; = (bio, - ,bik—1) < Bits(b;), and commits to each a; and b;. Then, the
prover shows 1) a; and b; are binary vectors for Equation (9) and 2) Equation

5 In discrete logarithm settings, it should be Hle Bt and Hle Pt Here we express
in a additive group since it is more suitable under lattice settings.



(10) holds such that:

M-1 S—1 M—-1k-—1 S—1k—1
Zai Zbl<:> 2&1]—2 2
=0 =0 =0 j=0 =0 j=0
S—1 M—1

< bij — a;;+7;— 217541 =0, Vje€ [O,k),
=0 =0

where 7;’s are correct values to ensure Zf;ol bij — Zf\/lo ! a;;+7; — 27541 =0
holds for all j € [0,k) and 70 = 7, = 0.

The balance proof requires additional work to ensure 7;’s are properly gen-
erated. In general, the prover needs to ensure 7; € [-M + 1,5 — 1] (Lemma
4.1 in [17]) with standard range proofs®. It is acceptable to embed 7;’s in the
binary proof of b; ;’s when M = 1 and S < 2, as with the Algorithm 8 and
9 in [17]. However, in other cases, the cost of range proofs is not negligible.
Taking the state-of-the-art range proof in [14] as an example, the additional
range proof requires 3 UMCs (the commitment of 7;’s needs to be included), a
(k—1)log(S + M — 1)(d/s)-size vector (i.e., f]@’s in [14] where s refers to the
number of packing slots in [14]), and a 3md-size randomness (i.e., z in [14]).
Even for a small range, the proof size is prohibitively large as the UMCs and
HMCs cannot be batched together. More specifically, under the settings of [17],
the range proof costs nearly 200KB, while other parts only cost about 100KB
when M =2 and S = 3.

One observation is that the corrector values (7g,- - , 1) are unnecessary for
balance proofs. To prove Equation (10) holds, one can simply prove

M—-1k—1 S—1k—1
> Z%u D> b
i—0 i=0 j=0

k—1 M—-1

@»223’(521% = aiy) =0
§=0

=0 1=0

Let ¢; = Zfz_ol bi,j_ZMO " a; ;. We can rewrite Equation (11) as Ek 1 90¢; = 0.
The fact behind this idea is that though Bits(ay) + Bits(az) # B1ts(a1 +as), we
have (Bits(a1), 2%) + (Bits(az), 2%) = (Bits(a; + as), 2%). Accordingly, we can
fully remove the range proofs of 7;’s as well as the commitments and responses
to 7;’s

Additionally, the prover can also avoid sending the commitment of ¢;’s as it
can be derived from the following equation:

M—1
Com(cq, - ,Cr—1;%) = Z Com(b;; ) Com(a; *). (12)
3 1=0

5 Esgin points out that the range proof can be replaced by an alternative approach
(described in Appendix F).



Meanwhile, the range proofs of ¢;’s can be avoided when a;’s and b;’s are binary
vectors since Equation (12) implies ¢; € [-M, S].

When using the inner-product relation in lattice settings, a serious problem
arises at the same time: after encoding ¢; as f; = xc; + d; (d; is a masking
value and z is a challenge), Zf;é 27 f; can be greater than g, i.e., (Zf;ol 27 f;
mod q) # 25;3 27 f;. Accordingly, verifying Z;:é 2fi=x Zf;é 2i¢c; —&—Zf;é 27d,
on R, may not imply Zf;é 2J ¢; = 0. A straightforward solution is to use a
large ¢ to avoid overflowing. However, such a solution will result in a large proof
size, making it impractical for real-world applications. In this paper, we solve
this problem with a new approach to find proper d;’s to ensure both f;’s and
Z?;& 27 f; are short at the same time. More details are given in Section 4.1.

The idea of using an inner-product equation to prove balance relations can
be generalized to prove the satisfiability of a linear equation (Section 4.1 and
5.1). Besides, we also observe the range of corrector values can be limited to
{-1,0,1}. As we do not adopt this approach in this paper, we only discuss it in
Appendix E.

3.2 Randomness of masking values

In MatRiCT (as well as other RingCT-based cryptocurrencies such Monero), a
spender needs to use a masking vector hide the amount of money in each account
in a transaction. For example, when dealing with N accounts (b;, 7, Bi){igl
such that B; = Com(b;; 7 ;), the prover needs to use N vectors, (ti,rtﬂ;)zif)l
to generate the responses g; = xb; +t; and 2z ; = xry; + r; with a challenge
x. Accordingly, the verifier needs to check Com(g;; zp,;) = «B; + G; holds for
all i € [0,5). Since the verification is conducted separately for each 7, all z;’s
must be included in the proof, which increases the proof size when dealing with
multiple accounts.

Our observation is it is possible to batch the verification of Com(g;; 2p,;) =
xB; + G; with the amortized technique in [3]. Unfortunately, since the binary
relation b; o (1 — b;) = 0 is not homomorphic, it cannot be regarded as the g(-)
in Equation (8). This brings us the idea of partial amortization: only using the
batched verification for Com(g;; 2p,;) = ©B; + G; and leaving the binary relation
part unchanged. Specifically, we show proving COJrn(ZiI\:O1 C'b;, Ef\; _01 Cirpy) =
Ei]\;f)l ¢'B; implies Com(f)i; 71;) = yB; for a challenge ¢ and a relaxation fac-
tor y in lattice settings. Since the non-homomorphic binary relation does not
involve r,; (i.e., B;), the prover can batch r,’s and only send one element

N=1 .4
zZp = Zi:o C’Lzb,b

Note that it is important to keep the masking form as g; = xb; + t; for
the non-homomorphic binary relation, which hinders us from using g = t +
Zivzgl 21, in [3]. Therefore, the prover needs to send a commitment for the

batched masking values G = Com(zij\;}1 City; Z?;Bl Ciry;) to allow the verifier
to check Com(Zf\[:_O1 Clgiszy) = Zf;ol ¢'B;+G. As a result, the proof size can



be reduced when dealing with multiple accounts since only one element, z;, is
needed in the proof.

3.3 Binary Proof in Ring Signatures

In most of existing ring signatures [14,15,17], a one-out-of-many proof is used
to show a prover (signer) knows an opening of a public key P, in a public
key set (P, --,Pn_1). The idea for this proof is regarding a public key as
a commitment to zero. Thus, by constructing a secret binary sequence § =
(01,0, ,01,nv—1) with Hamming weight 1, a prover proves 1) § is well-formed
and 2) Zﬁ\;}l 0;;P; = P, is a commitment to 0. A straightforward solution for
the former relation is to use a binary proof to show ¢ is a binary vector and
Zfif)l s = Z?{:Bl (xd; + a;) = x for a challenge x and some masking values a;’s
where Zij\;l a; = 0. However, this approach is inefficient as the proof size is
O(N) due to the size of 4.

The efficient logarithmic-size ring signatures “compress” § to several shorter
delta vectors and allow the verifier to “reconstruct” & with these vectors [14,
15,17]. Suppose N = B¥. Write | = (lp,--- ,lx_1) and i = (ig,--- ,ir_1) as the
representations in base 8 such that §;; = Hf;é 01, ,i;- Instead of proving that
an N-size vector § is well-formed, the prover only needs to prove k-many [-size
vectors, (01,0, ,5;1,”3_1)?;3, are well-formed, which reduces the proof size to
O(kB).

We have two observations. First, to ensure security, the binary proof requires
a larger parameter set than other parts of the proof. This is due to 1) the hardness
of the M-SIS problem and 2) b(1—b) = 0 may not hold in R, for a smaller ¢ [17].
Though the binary proof is simple, its larger parameters indicate a larger proof
size. Motivated by this, we analyze ring signatures and find proving § being
a binary sequence is redundant. For example, a signer can prove knowing the
opening to 2P, instead of P, without sacrificing security. Generally speaking, it
is sufficient to relax the one-out-of-many proof by proving the knowledge of an
opening to Zﬁ_ol b; P; in ring signatures, where b;’s are short and not all b;’s
are 0. While reducing binary proof is nice in itself, we would like to highlight
that it is particularly important for ring signatures. As “the binary proof requires
a much bigger modulus than (other parts of) the one-out-of-many proof” [17],
avoiding the binary proof fully releases ring signatures from the burden of large
parameters. Therefore, instead of running a full one-out-of-many proof, ring
signatures can use a much more efficient linear sum proof with a small modulus.

Our second observation is the linear sum proof may be difficult to adopt the
“compressing” technique in [14,15,17] to achieve logarithmic-size ring signatures
as there may not exist (b0, --- ,b; 3—1) such that b; = H?;& bjq,; foralli € [0, N)
and finding such a solution can be very inefficient. This brings us to the idea
of adopting “unbalanced” relations as in relaxed proofs: using a stricter relation
in proving, but checking the original relation in verifying. For instance, as a
linear sum relation is sound for ring signatures and a one-out-of-many relation
is stricter than the linear sum relation, a prover can use b; = §;; in the one-out-



of-many relation to generate a proof. The verifier checks the linear sum relation
of the proof instead of the one-out-of-many relation.

Though our “unbalanced” relation is derived from relaxed relations, the mo-
tivations behind are different. In our approach, we start from the verifier’s side
and show verifying a linear sum proof suffices in ring signatures. To improve the
efficiency, we restrict the prover’s relation and require the prover to run under a
one-out-of-many relation. The key idea is to find a strict and efficient relation
for provers. On the other hand, existing relaxed proofs start from the prover’s
side and find straightforward soundness proofs do not work. They need to relax
the relation on the verifier’s side to overcome the complications. The key is to
find a relaxzed but sound relation for verifiers. Thus we use the term “unbalanced
relations” to distinguish with relaxed relations. We describe the unbalance linear
sum proof in Section 4.2 and 5.2

Notice that in the linkable version of our ring signatures, the verifier can
further ensure a one-out-of-many relation with two additional checks: 1) only
one correct serial number is included, which implies exactly one b; is non-zero;
and 2) ZZN:_OI b; = 1, which ensures the non-zero b; is 1 (step 23 in Protocol 4).
We show more details in Section 8.

4 New Techniques for RingCT Protocols

Based on the ideas in Section 3, we propose two general techniques. The RingCT
protocol can be regarded as an application of these techniques.

4.1 Linear Equation Satisfiability

Definition. Let N be a positive integer and wy, - -+ ,wy—1 be (public) integers.
The linear function is defined as:
N—-1
F(Xo,-+, Xyo1) = Y wiX;. (13)
i=0

The linear equation satisfiability is to prove the knowledge of the witness (b;) figl

such that F'(bg,--- ,by—1) =0.
To support b;’s with a wide range in lattice settings, we also use the HMC
to commit to the bits of b;’s with B; = Com(b;;*), where b; is the binary

representation of b;. Thus, F(bg, -+ ,byx_1) can be rewritten as:
N-1
F'(bo,-- ,by_1) = > (wi : (2’“,bi>). (14)
i=0

Definition 3. The following defines the linear equation relations, proving Rpg
and relazed opening R’ p:

ck, (wi, Bi)12o"), (biyroi) g )« bi € {0,135 Al ]| < T}

o )t
AB; = Comck(bi;'rb,i) A F/(bo, oo 7bN—1) =0

Rup(T) = { (P (wi, B)Lo") (9, (biy Pi) ") b € {0, 11 A7l < T\
LE Ay € C* AyB; = Comep(ybi; 7)) A F'(bo, -+ ,by_1) =0

Rus(T) = { ((



where T and T are norm bounds of ry; and Ty,; respectively.

Inner-product based proof. Based on the idea discussed in Section 3.1,
we propose an inner-product based proof for the linear equation satisfiability.
The Rpg indicates two important relations: 1) B;’s are commitments to bits
and 2) F'(bg, -+ ,bx_1) = 0. The former one can be proved in a binary proof.
For the second relation we can rewrite Equation (14) as

N—1 k-1
F'(by, - by-1) = 0= 3 (w3 2bi;) =0
i=0 j=0 (15)
k—1 N—1 k-1
<:>Z (2j . Z wibi,j) = ZQjCj =0,
j=0 i=0 j=0
where b; ; is the j-th element of b; and ¢; = Ziligl w;b; ;. Denote ¢ = (co, -+, Cr—1).

The verifier can compute the commitment of ¢ with w;’s and B;’s: C = Com(c; x) =
Z?:Ol w;B;. Let f = zc + d with some masking values d = (dg, -+ ,d—1) and
a challenge , D = Com(d; %), dum = (d,2F). We have

Com(f;*) = Com(zc + d;*) = zC + D,

(f,28) = (ze + d, 2%) = z(c, 2%) + (d, 2%) = dum, (16)

which ensure F’(bg, - -+ ,by—_1) = 0 holds. Note that the prover can avoid sending
fo. The verifier computes fo = dsum — Zf;ll 27 f; and only checks the first
equation in (16).

Overflow issue. One important issue for the second equation is that it may
not imply (e, 2¥) = 0 when verifying on R, for a smaller g, i.e., g < 2k Here we
propose two solutions.

— Our first approach is simple and straightforward: the prover computes and
sends dg,;, on R to avoid the overflow problem. Accordingly, the verifier
computes fo on R and checks fy € R,.

— Our second approach can avoid sending dgum by finding short d;’s while en-
suring (d, 2F) = 0. Specifically, the prover samples (d;);“;ll and sets dj, =

dj, = 0. By setting d; = d; — 2d},,, we have (d,2) = Y% [2/d; —

Zk 2jdj = dy — 2*d;, = 0. Therefore, the prove can avoid sending dgum

j=1

and compute fy = — 25;11 27 f;. Notice that the norms of d; will be bigger
than the first approach (but still acceptable) which indicates a less strict
soundness. In our second approach, though the form of d;’s is very similar
to the form of corrector values in Equation (11), the intuitions behind are
different. MatRiCT uses 7;’s to prove a stronger relation that each bit is 0
in Equation (11), i.e., ¢; + 7; — 2741 = 0. It further needs masking values

to encode a; ;’s, b; ;’s, and 7;’s respectively. In our approach, we prove the
original relation Zf;é ¢j = 0. d;’s are used for masking c¢;’s instead of cor-
recting each bit. No corrector values are required and the additional range
proofs can be avoided.



Partial amortization for binary proofs. As discussed in Section 3.1, we
propose partially amortized binary proofs to show B;’s are commitments to bits.
The binary relation can be written as

For the latter relation, the prover encodes b; as g; = xb; +1t; with a challenge
x and a masking vector t;, which further allows the prover to check Com((g; o
(-1 —g)¥h%) = 2E + F, where E = Com((¢; o (1 — 2b;))N ;%) and
F = Com((—t; o t;)N'; ¥). This works the same as a standard binary proof.

The former relation is equivalent to Com(Zf\;l (b ) = Zf\!ol ¢'B; with
a challenge (. Since g; = zb; + t;, the prover needs to send the commitment of
the batched masking vectors, G = Com(zi]igl C't;; %), to allow the verifier to
check Com(ZiV:?)l Clgi) = xZﬁBl (‘B; + G. We briefly describe the partially
amortized binary proof in Protocol 2.

Protocol 2 Partially Amortized Binary Proof (Sketch)

P((Bi)is ' (0)i5") V((Bi)iLy')
1: ¢ (+C
2: Sample ¢;’s
3: E = Com((t; o (1 — 2bi))i]i61; %)
4: F = Com((—t; ot;) N ' %)
5 G = Com(zisz_ol C'ti; *)
E,F,G

T <+ C
6: g, = xbl + ti

9gi
g eE+ F £ Com((g; o (x-1— )5k %)
8: e Y NNCB + G £ Com(XNG g #)

Note that in our binary proof, we do not batch the commitments as
Com((b;)N 5!, (i o (1 —2b;)) Y51 %) and Com((£:) X5, (<t 0 t)N 5t #) as [17]
since verifying Com((fi)No" %) = xCom((b;)i " %) + Com((t;)N gt *) is re-
dundant (it has been checked on B; and G as the last step of verification).

Remarks. In the security analysis (soundness), if we use the one-shot proof
[14] directly to extract the relaxed opening of B;’s, we will end up with a painful
process to compute the i-th row elements in the Vandermonde matrix for the
norm bounds. Here we use a trick to swap the i-th row with the last one to get
a new Vandermonde matrix. Note the determinants of the two matrices are only
different in sign, which enables us to use the same relaxation value for all B;’s.
More details are presented in Appendix B.



4.2 Ring Signature

Definition. Let r be a private key and P, be the corresponding public key in
a public key set P = (Py, -+, Py_1) for some N > 1 and 0 <1 < N. The goal
of ring signatures is to show the knowledge of a secret key(s) corresponding to a
public key(s) in P. Based on the idea in Section 3.3, we show that proving the
knowledge of an opening of a short non-zero linear sum relation of the public
keys suffices for ring signatures, i.e., knowing some bounded b;’s and an opening
to Zij\;_ol b; P; where at least one b; is not zero. This is formally given in Lemma
5.

Lemma 5. In ring signatures, if the commitment scheme is computational hid-
ing and y-binding, then it is hard to efficiently extract (bi)ZN:Bl and an opening
to Zi\[:gl b; P; with non-negligible probability, such that b; € [—Brg, Brs] and at
least one b; is not zero, with respect to insider corruption’ in the random oracle
model.

Proof. Assume there exists a PPT adversary F that can efficiently extract b;’s
and a valid opening (0, s) of Zili_ol b; P; with non-negligible probability, then
we have a collision finder A which can break the binding property of the HMC
commitment scheme, and solve the M-SIS problem accordingly.

Specifically, A samples r + {—B,--- , B} and computes an invalid public key
P, = Com(1,0,---,0;7). Due to the hiding probability of the commitment
scheme, F cannot distinguish P; with other public keys. By calling F, A gets
(bi)i\;f)l and a valid opening (0, s) of Zf\!ol b; P;. With non-negligible probability,
we have b; # 0 since F can only make polynomially many registration queries
to A (calling RKeygen). Then, A uses all private keys but 7; to compute s’ =
8§ — >, bir;. Since by # 0, we have a binding collision for the commitment
scheme, ((b;,0,---,0),b;7) and (0, s’). More details about the security reduction
is presented in Appendix D.

Remarks. The adversary A interacts as a collision finder with the HMC chal-
lenger and as a ring signature challenger with the F. Thus, A can access all
private keys by calling RKeygen as these key pairs will not help to find a col-
lision without a signature forgery [14,17,20]. Besides, since b;’s are important
to compute the HMC collision, we require F also provide b;’s along with the
forgery s (i.e., F here is not exactly as a ring signature forger). More details of
F extracting b;’s are presented in the proof of Theorem 4 (here F works as the
adversary A in Theorem 4).

Unbalanced Linear Sum Proof. We further leverage the idea of unbal-
anced relations in Section 3.3 to propose a logarithmic-size unbalanced linear
sum proof, i.e., the prover uses a one-out-of-many relation to run the protocol
by setting b; = d;; and the verifier checks under a linear sum relation. To ensure

" The attacker can obtain private keys to some public keys with corruption queries.
Accordingly, the signature forgery should not include these “corrupted” public keys
in its ring.



at least one b; is not zero, the verifier checks whether ||b]| > 0 in the opening.
The unbalanced linear sum relations are defined as follows:

Definition 4. The following defines the unbalanced relations for our unbalanced
linear sum proof, proving Ris and relaxed opening R’ g:

_ (ck, P), (L,m)) :
Rus(T) = {z €O,N)Allrl <T AP = Comer(0;7) } |

((ck, P), (y,0,7)) : [B]] > O A [[bil] < To A 7] < ToA

N—1
y > biP; = Come,(0;7) Ay is a product of ; € C*
i=0

RILS(’??H 7\;‘) =

)

where T, 7A7,, and 7\; are norm bounds of r, b;, and T respectively.

In our unbalanced linear sum proofs, a prover can directly apply the “com-
pressing” technique in [14,15,17] to achieve a logarithmic-size proof. Specifically,

the prover first finds and commits to k-many sequences ((5lj}0, . 751],671)?;3

which allow the verifier to reconstruct § base on §;; = H;:é 01,,i; under a one-
out-of-many relation. After receiving a challenge x, the prover’s response con-
tains f;; = w0y, ;+a;,; with some masking values a;;’s. Let ' = (015,0, - ,01,_,,8-1),
a = (apo, - ,ak-1,5-1), and f = (fo,0, -, fk—1,8-1). To ensure &’ is well-
formed, the prover shows the following equations hold:

Com(f;*) = Com(zd’ + a;*) = 2B + A;

B-1 B—1 B—1 B—1 (18)
Z fj,i = :EZ (Sl]ﬂ' + Z aji =1+ Zaj,i, Vi e [O,k)
i=0 i=0 i=0 i=0

The second equation ensures at least one element in (d;;0,- -+, 0, 5-1) is not

0 for all j’s as Zf;ol fii =+ Zf;ol a;,; implies Zf;ol o1, = 1. Moreover,
proving &’ being “short” is done in the norm check of HMC (presented later in
steps 24 and 25 of Protocol 4). Besides, the binary proof for §’ is avoided here
as we do not require the reconstructed § being a binary vector under the linear
sum relation. Furthermore, the second equation is not a necessary condition for
the linear sum relation. However, based on the unbalanced relations in Section
3.3, the prover can efficiently show the second equation holds with a one-out-of-
many relation. Other steps such as reconstructing 6 and checking Zf\igl 01, P;
being a commitment to zero are exactly same as the one-out-of-many proofs
in [14,15,17], which are presented in Section 5.2.

We can further adopt some techniques to reduce the proof size. First, choosing
aj;’s such that Z;-B;Ol a;; = 0 can avoid the cost of sending Zf;ol a;; in Equation
(18). Moreover, the prover only needs to send (a;;)"—," which allows the verifier
torebuild a;’s with a; o = — Zf;ll a;,; for all j € [0, k) without further checking
the second equation in (18).



5 Lattice-based Proofs

We formally describe our balance proof and ring signature for RingCT proto-
cols in lattice settings. In this paper, we separate the two protocols for a clear
expression.

5.1 Linear Equation Satisfiability

We formally present our linear equation satisfiability protocol in Protocol 3
(we describe with our first approach to solve the overflow issue in Section 4.1).
Specifically, steps 8 to 12 generate and commit to masking values ¢; ;s for the
binary proof of b. ¢;’s in Equation (15) are derived in step 12 and their masking
values, d;’s, are generated in step 14. Note that in steps 16 and 17, we do not
batch the binary proof commitments as Com(b,t o (1 — 2b);*) and Com(t, —t o
t; %).

After receiving the challenge x, the prover generates the responses based on
steps 18 to 27. As (f, 2%) = du, holds, the prover can avoid sending fy in steps
20 and 21. In step 23, the randomness for ¢ (i.e., 7.) is derived based on 7 ;’s
since ¢; = Zjvgol wibi ;.

Finally, the verifier generates fy in step 32 to ensure (f,2*) = d,, holds
(i.e., F'(bg,--- ,bn_1) = 0). Here he also needs to run on R instead of R,
to avoid the overflow problem and returns false if fy is not in R, (step 35).
The commitment of ¢ (step 33) is derived based on B;’s. Step 39 ensures f;’s
are properly generated from ¢;’s and the last two steps ensure b;’s are binary
vectors.

Theorem 1. Letk = N(N—1)/2 and v = 2° T NBp w*~tmd? ¢z (md(||w||3+
N +1))1/2 Zfigl(wp)i and the HMC is hiding and vy g-binding. Protocol 3 has
(3, N + 1)-special soundness for relations Rpg(Bvmd) and R’ z(vLE) with a

completeness error 1 — 1/(u(¢p1)u(p2)(¢ps)) defined in Lemma 8.

The proof for Theorem 1 is given in Appendix B.

We can easily switch to our second approach to solve the overflow issue.
Specifically, in step 14, the prover needs to sample (d;)’;;ll from Dg2T2, sets
dp = dj, = 0.and computes d; = d; — 2d} ;. As (d, 2") = 0, dgum is no longer
needed in the rest of the protocol (by regarding dgy.», = 0). Since d; = d;- — 2d3»+1
and d; and d; 41 are sampled from D;f?TQ, except with negligible probability, we
have || f;|| < 6¢p2T5v/d based on Lemma 7. Accordingly, we need to loose the
norm bound to 6¢2T2\/a.

We can also prove the security prosperities of the above protocol in a similar
way as Theorem 1. Note that the only difference is SHVZK of f;’s. Here we need
to sample (fj’);“;ll from D(‘;2T2 and set fj = f; = 0. By writing f; = f; — 2f] 4,
we can get Z;:& 27 f; = 0. Meanwhile, since f; = f;—2f}41, the distribution of
(f1,-+, fk—1) is statistically close to the real distributions based on Lemma 7.



Protocol 3 Linear Equation Satisfiability

PLE(Ck (w“ z)ﬁiz)lz(burb z)N 1) VLE‘(Ck (wu z)f\;?)l)
1: ¢ ¢+ C
2 w= (w07' o 7WN*1)
3: Ty = pVwkN
4 Ty =max(— >, oWis D50 wi)pVwk
5 Ty = Bupy/md([wF + N + 1)
6: Ty < {_Ba 7B}md
T: T, T Dg;dTS
8 fori=0to N —1do
9: t; <_D§>?T177'tz <_D$;gl}
10:  G; = Comek(ts; 7 5)
11: end for
12: Cj = ZNolwv 1]7v] S [07k)
13: b= (b )fV ot = ()"
14: d + D¢ Tys Asum = (d,2%) € R
15: D = Com(d;ra), G = Y1, 'G
16: E = Comgg(to (1 —2b);7p)
17: F = Comep(—tot;r;)
dSum? ‘D7 E’ F? G
T <+ C
18: g=zb+t

19: ReJ(g,xb ¢1,T1)

20: ¢ = (cj);C 1,d1 = (dj)f;ll

21: fi =zc1 +dy

22: Rej(f1,zc, 2, To)

23: P, = Zf\:o WiTh,i

24: 2 =27 + T4, 29 =TT + T

25: zpi = T + Tt,iVi S [Oa N)

26: zp = vagol Clzpy

27: Rej((z,zg,(zbyi)ili_ol),x(rc,rb,(m 1)1 0 ) ¢3,T3)
f17gvz Zg’zb

28: 9 =1(90,0,""" s gN-1,k—1)
29: gi = (9,0, 7gi,k—1),VkZ'
NZ1k—1
30: h = (gi;(z - gi,j))i:o,j:o
31 f1=(f1,-",fk 1)
32: fO: sumfzj 1 fJGR
33: C= Zz 0 'w;B
34: HgZJH S 2¢1T1\/>7 Vlaj
?

35: fo € R,

2
36: I1fill < 2¢02ToVd, Vj

?

3t 21l [12gl < 2¢3T3v'md

? _ .
38: 2] < 2mdesTs 315 (wp)?

?

39: JTC—FDiCOHle((fO,"' afk—l);z)
40: tE+F < Comey (h; zg)

a1: eV NCB 4+ G = Comep (XN Cgis z)




5.2 Unbalanced Linear Sum Proof

We formally describe our unbalanced linear sum proof protocol. Based on the de-
scription of Section 4.2, the prover needs to show 1) (0,0, -+ , 1, 5-1)’s are short
non-zero vectors and are properly committed and 2) d;;’s can be constructed
with §;; = Hf;é 81,4, such that Zfi_ol ;.. P; being a commitment to zero. The
first relation is discussed in Section 4.2 which implies § = (5,0, - - ,0;, n—1) being
a short and non-zero vector. Here we briefly describe the second relation, which
follows the same process of [14,17,20].

After receiving a challenge z, the prover’s response contains f;; = xd;; ; +
a;; with some masking values a;;’s. To rebuild d;;’s, the verifier computes the

k—1
product p;(z) = Hj:O fiis:

k-1 k-1
pi(z) = H fii; = H($5zj,ij +aji;)
i=0 i=0

(19)

k—1 k—1 k—1
k j k j
=" [T G, + D pig 27 = dnia® + Y piga?,
=0 =0 =0

where p; ;’s are functions of §;, ;,’s (i.e., [) and a;;’s. Equation (19) holds for
all ¢ € [0,N). As p; ;’s are independent of x, the prover can pre-compute p; ;’s
and send E; = va:folpiyjPi to allow the verifier to cancel out the coefficients
of the terms 1,z,--- , 2"~ ! before receiving « (the randomness is omitted here
for simplicity). For x* part, it can be set to the prover’s public key P, with
Zi\!ol 01,;P;. Our unbalanced linear sum proof is formally described in Protocol
4.

In Protocol 4, steps 4 to 7 generate the masking values a;;’s for d;, ;’s and
ensure Zf;ol a;; = 0 (which further ensures 25;01 (61,5 +aj;) = x). The p; j's
in steps 11 and 14 are derived based on Equation (19).

Upon receiving the challenge z, the prover generates the responses fi, 25, and
z,. For f, the prover can avoid sending f;¢’s as Zf;ol fji =  holds. In step 21,
z, is the response to randomness in P, and E;’s based on Equation (19). As p
is sampled from D(’bnsz2 and other p;’s and r are sampled from {—5,--- ,Bymd
po is the masking vector for z¥r — Zf;ll zIp; (step 21).

Finally, the verifier computes f;o = = — Zf;ll 5 for all j € [0,k) as
E;B:_Ol i = «, which ensures Zf:_ol 01, = 1 (and further ensures at least one
element in (d;,,0,- -+ ,01;,5-1) is not 0 for all j’s). The last two steps ensure that

Zivzgl 0;,;P; is a commitment to 0 as discussed in Section 4.2.

Theorem 2. Let vi5 = (41vVEB) dF 2, 4} ¢ = (k+1)25 12y 2¢ Bmd?w prt
fork =k(k+1)/2 and k' = k(k—1)/2, the HMC is hiding and vs-binding. Pro-
tocol 4 has (k+1)-special soundness for relations Rps(BvVmd) and R, s(vLs,V}s)
with a completeness error 1 — 1/(pu(p1)p(P2)) defined in Lemma 8.

The proof for Theorem 2 is given in Appendix C.



Protocol 4 Unbalanced Linear Sum Proof

PLs(Ck,P, (l,T)) VLS(C]C,P)
1: Ty = pvVkw, T = (wp)*Bv2md
2 1, + D%
3y {—B,-- B}y
4: for j=0to k—1do
5 aji,cc,aj5-1 4 DY g
6 aj0=—> 1 aj
7: end for
8 0= (610,07 co 75116_1,5*1)
9: a=(apo, " ,0k-1,8-1)
10: po + D4
11: Fy = Zﬁ\!olpi,oPi + Com,x(0; po)
12: for j=1tok—1do
13: pj« {-B,-- B}
14: E; = Zf-vzglpi,jpi + Comcx (0; pj)
15: end for
16: B = Comk(d;7p), A = Comex(a;r,)
A, B, ()=,
T <+ C
17: 61 = (510,17 T 75lk—11ﬁ71)
18: a1 = (ao1, " ,Gk—1,8-1)

19: f1 =261 + a4
20: Rej(.f17 3361, ¢17 Tl)

. _ _ k k—1 4
21: zp =Ty + Ty, Zp =X T_Zj:(] I p;

22: Rej((2b, 2r), (a1p, 2P — Z?;ll I p;), b2, To)
.flazbazr

23: fio=2—Y1 f;:,Y5 € [0,k)
?

24: I fill < 26:1T0Vd,  V5,Vi #0
?

25: [ fioll <261 T1v/Bd,Vj € [0, k)

?

26: [2oll, 2] < 2¢2T2vV'md

27 f=(foo, s fr—1,8-1)

28: 2B+ A< Comey(f; 2)

— — _ .9
20: SN TS, fi0,) P — 07y Ejad = Comer(0; 2,)




6 Efficient ZKPs for RingCT

As applications of our techniques, we show how to build balance proofs and ring
signatures for RingCT protocols.

6.1 Non-Interactive Balance Proof

Based on Protocol 3, we design an efficient non-interactive balance proof for
RingCT protocols. Consider the case in Section 3.1 with M input accounts
(a;))X5! and S output accounts (b;)F=;'. The balance proof is a special case

of linear equation satisfiability, where N = S+ M, (wp, -+ ,ws—1) = (1,---,1),

and (wg,  ,wstpm—1) = (=1,---,—1). Accordingly, Equation (13) can be ex-
pressed as F(ag, - ,ap—1,bo,  + ,bs—1) = Zf;ol b; — Zﬁgl a;.
Let CNK;, = (raﬂ-)f\ial and CNK,,;: = (rb’i)f;()l be the sets of input and

output coin keys respectively (i.e. randomness), CN;,, = (Ai)?ial and CN,,; =

(Bi)i]\ial be the sets of input and output coins (commitments to a;’s and b;’s, i.e.,
A; = Comeg(a;74,:) and B; = Comey(bi; 1.;)). Denote the initial commitments
in Protocol 3 as CMT = (D, E, F, (Gi)fz_ol), the prover’s response as RSP =
(f1,9,%, 24, (zbyi)isz_ol), and CMT* = E. We omit descriptions of the full set of
algorithms and detail the key ones here.

e Setup(1?): Run G <+ CKeygen and set ck = G. Choose a hash function
H :{0,1}* — C. Return pp = (ck, H).

e Mint(pp,v): Sample r + {—B,--- ,B}™ and compute (vg,- - ,Vp_1) <
Bits(v), B = Comc(v; ). Return (cn, cnk) = (B, 7).

° Spend((ai)?igl, (bi)f;(},pp, CN,p,, CNK;,,): Parse CN;,, = (Az-)ﬁal and CNK;,, =
(ra:i)is". Set a; + Bits(a;) for i € [0, M) and b; + Bits(b;) for i € [0,.5). Call
Mint(pp, b;) = (cn;, cnk;) = (By, 1) for i € [0,S5) to mint coins for output
accounts. Set CN,,; = (cni);":o1 and CNK,,; = (cnk,»)fz_ol. Proceed as follows:

L. Run Prg(ck, (1, Bi)isg's (=1, 4025 1), ((biy 76,)i 0 s (@i, mai)i ) to gen-
erate CMT based on the first 18 steps® of Protocol 3.

2. Compute x = H(ck, (A)Mg1, (Bi)i=;, CMT).

Compute RSP by running the remaining steps of Prp.

4. Return CN,y; and 7 = (CMT™*, z, RSP).

e Verify(CN;,, CNyy, 7, pp): Parse CNy, = (Ai)i\io_l, CNyyt = (Bi)fz_ol, T =
(CMT*, z,RSP). Proceed as follows:

1. Compute C, D, F', and G based on step 33, 39, 40, and 41 of Protocol 3 and
set CMT = (D, E, F,G).

2. Return 0 if = # H(ck, (A", (B2, CMT).

3. Return the output of Vg(ck, ((1, Bi);i_ol, (—1, A)M 1)) with (CMT, 2, RSP).

@

Notice that this non-interactive balance proof does not ensure anonymity.
It can be extended to an anonymous RingCT protocol with the linkable ring
signature scheme (described in Section 8).

8 In existing anonymous cryptocurrency implementations, binary proofs for inputs a;’s
can be reduced as they have been verified as output accounts in previous transactions.



Theorem 3. Let v p = 2" NBp*w* tmd?¢3(S + M + 1) Efigl(wp)i, and

the HMC' is hiding and ~pg-binding. The balance proof has (3, N + 1)-special
soundness for relations Rrp(Bvmd) and R g(vLEg) with a completeness error
1= 1/(u(@)1u(é2)1a(9)) defined in Lemma 8.

Proof. Considering N = S+M, (wg, - ,ws—1) = (1,--+,1),and (wg, - ,ws+pm—1) =

(=1,---,—1), we have |w|; =S+ M > 1. Equation (24) can be further simpli-
fied as:
Bupy/md(w|? + N + 1) < Bup(S + M + 1)Vmd = Ts. (20)
N—-1

Thus, we have vp g = 2" T NBp w ™ tmd?¢3(S + M + 1) 3,2 (wp)".
Other parts can be derived directly from Theorem 1.

6.2 Ring Signature

Protocol 4 can be used to construct an efficient ring signature scheme. Let M
be the message to be signed, the initial commitment in Protocol 4 be CMT =
(A, B, (Ej);:é), and the prover’s response be RSP = (f1, 2y, 2,.). Denote CMT* =
(B, (Ej)fgll) The ring signature is defined as follows:

e RSetup(1*): Run G «+ CKeygen and set ck = G. Choose a hash function
H:{0,1}* — C. Return pp = (ck, H).

e RKeygen(pp): Sample r < {—B,--- , B} and compute P = Com4(0; 7).
Return (pk, sk) = (P, r).

e RSign(M, P, pp, sk): Parse P = (Py,---,Pny—_1) and P, = Comg(0; sk)
for I € [0, N). Proceed as follows:

1. Generate CMT by running Prs(ck, P, (I, 7)), step 1 to 16 in Protocol 4.
2. Compute x = H(ck, M, P,CMT).

3. Compute RSP by running the remaining steps of Przg.

4. Return 7 = (CMT"*, z, RSP).

e RVerify(M, P, w,pp): Parse P = (Py,--- ,Pn_1), 7 = (CMT"*, 2, RSP),
and CMT* = (B, (F;)"Z}). Proceed as follows:

j=1

1. Compute A and Ej based on step 28 and 29 of Protocol 4 and set CMT =
(Av B, (Ej);c;(})
2. Return 0 if @ # H(ck, M, P,CMT).

3. Return the output of Vyg(ck, P) with (CMT, z, RSP).

The correctness and anonymity of the ring signature can be derived directly
from the completeness and SHVZK of Protocol 4. The unforgeability of the ring
signature is formally described as follows:

Theorem 4. If the commitment scheme is computational hiding and y-binding,
then the ring signature scheme described above is unforgeable with respect to
insider corruption in the random oracle model.



Proof. Assume there exists a PPT adversary F that can efficiently forge a ring
signature with non-negligible probability, we have an adversary A which can
break the binding property of the commitment scheme, and solve the M-SIS
problem accordingly.

A samples r + {—B,---,B} and computes an invalid public key pk; =
Comx(1,0,---,0;7). Due to the hiding probability of the commitment scheme,
F cannot distinguish pk; with other public keys. Then, A runs F for (k+1) times
to get (k+1) forgeries with distinct challenges and a same CMT" part based on
the forking lemma (pk; is not corrupted). Furthermore, A reconstructs CMT and
runs the extractor of Protocol 4 with the (k + 1) forgeries to get valid b; = y*b;
for ¢ € [0, N) and a valid opening (0, s) of y Zi\:)l b; - pk; for some public keys.
Thus, we have proper b.’s and a valid opening (0,y*~1s) of Zf;ol b - pk;. Based
on Lemma 5, we have a collision for the commitment scheme, ((b},0,--- ,0),b/r)
and (0,y* 's — > iz biri) as (0,0, ,0) # 0 (r;’s are the private keys as the
output of Corrupt(i) in the proof of Lemma 5). More details about the security
reduction is presented in Appendix D.

7 Evaluation

Implementation. To evaluate the performance of the proposed proofs, we
give a reference implementation of both MatRiCT [17] and our approaches in
Golang [2]. The underlaying polynomial ring operations are implemented with
LAGoO [23]°. For the linear equation satisfiability, we only implement the bal-
ance proof version (i.e., w;’s are fixed in our code) to compare with the balance
proof in MatRiCT. The code of MatRiCT and our work is published in [2]. All
experiments are performed on a personal laptop equipped with Intel i7-8750H
2.20GHz CPU and 8GB memory.

Proof size: balance proof. We first evaluate the performance of our balance
proof. Referring to [17], we consider the scenario that requires 64-bit precision for
amounts (i.e., k = 64) and set the parameters as: B = 1, (d,w,p) = (64,56, 8),
q=(227-22141).(226-21241) ~ 253 (n,m) = (32,65), and ¢; = ¢ = ¢h3 = 15.
These parameters are chosen based on a “root Hermite factor” of § ~ 1.0045
for both M-LWE and M-SIS, and ensure 128-bit security based on the “LWE
estimator” [1]. More details are discussed in [14,17].

As the Algorithm 8 and 9 in [17] only deal with M = 1 and S < 2, we
need to include an additional range proof in MatRiCT for other cases. However,
MatRiCT does no specified range proof approaches in [17]. According to the dis-
cussion in Section 3.1, we use the state-of-the-art range proof in [14] to evaluate
the performance of MatRiCT (the number of slot in CRT packing is set to 16 as
with [14]). For M =1 and S < 2 cases, we follow algorithms 8 and 9 in [17] as
the implementation of MatRiCT.

First, we show the balance proof size growth with the number of input ac-
counts in Figure 1. Different from the result in [17], our result shows the proof

9 We also found a bug in MulPoly function of LAGo. Please refer to our repository [2]
for more details.
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size is relatively small and does not scale linearly with M. It is because [17]
takes N'M input accounts for anonymity (NN is the set size as in ring signatures).
Thus, other (N — 1)M hiding accounts contribute to a great part of the proof
size, which scales linearly with the size in [17]. While in our experiment, we do
not consider anonymity in balance proofs. Furthermore, there is a clear burst in
MatRiCT when M = 2. It is due to the additional range proofs for corrector
values. The burst also indicates the cost of range proofs is prohibitively large for
real-world implementations. Besides, the proof size does not increase much with
M except for M = 1. For some M, e.g. M € [30,40], the size remains the same.
This is an expected result as M contributes to the size of each element in g,
zp, and z,, instead of the length of these vectors. Finally, our balance proof can
reduce about 15% size of MatriCT when M = 1 and more than 70% in other
cases.

Second, we present the balance proof size growth with the number of output
accounts in Figure 2. As discussed above, the burst of MatRiCT is caused by
range proofs. When S > 2, the proof size scales linearly with S due to the cost
of (25.4)5=;. As S also contributes to the size of vector elements, the growth is
not exactly linear. Generally speaking, our approach can reduce 15% proof size
of MatRiCT when S < 2 and up to 60% for other cases.
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Proof size: ring signature. We further evaluate the performance of our
ring signature, and compare with Crypto’19 [14] and MatRiCT [17]. We use
the same settings in [17] with two sets of parameters: (f,7h) = (32,65), § =
(227221 41).(226—21241) ~ 253 for the binary proof part; and (n, m) = (18, 38),
q=231—2'8 193 11~ 23 for other parts. Other settings for the two parts are
same (i.e., (d,w,p) = (64, 56,8)). Please note that as our unbalanced linear sum
proof avoids the binary proofs, only the smaller parameters, n, m, and ¢, affect
the performance.

The signature size growth with the logarithmic ring size log(V) is depicted in
Figure 3. The result of Crypto’19 is not as “smooth” as that in [14]. It is caused
by the parameters we used are different from short infinity norm challenges
n [14]. Besides, our result also shows that MatRiCT does not improve much of
Crypto’19, which is different from the results in [17]. This is mainly caused by
the parameter settings, as d and ¢ in [14] are much larger than those in [17].
Since MatRiCT uses the same blueprint in Crypto’19, Crypto’19 is also improved
under MatRiCT settings. Moreover, in our ring signature approach, as we avoid
the cost of a binary proof, the sizes of a commitment and z;, z,- elements are much
smaller. A further observation is that all approaches do not scale logarithmically
in N. This is due to the growth of element size. Comparing with existing state-
of-the-art approaches, our ring signature is the most efficient which can reduce
about 50% and 20% of the signature size in Crypto’19 and MatRiCT respectively.



Proving/verification time. Finally, we compare the proving and verifica-
tion time of our approaches with MatRiCT [17]. As we explained earlier, the
balance proof in MatRiCT only works when M =1 and S < 2, we only compare
the performance in two cases, (M,S) = (1,1) and (M, S) = (1,2). The results
are depicted in Figure 4. Our inner-product based approach reduces nearly 30%
proving time of the MatRiCT, as we do not involve ¢;’s in binary proofs. Besides,
since the commitment of ¢;’s is derived from A;’s and B;’s, our approach also
reduce the time of committing to corrector values. Furthermore, our approach
reduces nearly 20% verification time of the MatRiCT. The main reason is verify-
ing the inner-product relation (step 35 of Protocol 3) is much more efficient than
the balance relation with corrector values. The efficiency of binary verification
is also improved when removing the corrector values.

The performances of ring signatures are depicted in Figure 5. Our unbal-
anced linear sum approach can reduce nearly 35% time of the one-out-of-many
approach when N = 64. This is mainly contributed by avoiding the binary proof
parts in our approach. When N is small, the binary proof/verification cost is
only a small portion of the whole cost and thus the improvement is less signifi-
cant. Besides, one interesting result is that the verification time does not increase
much when N = 64. It is because we set § = 4 and k = 3 in this case, while in
other cases 8 = N and k = 1. Though the verification time is greatly reduced
under these settings, the proof size increases accordingly. Thus, for other cases,
we keep 5 = N and k = 1 as in [14]. Nevertheless, our approaches outperform
MatRiCT in all settings.

Additionally, we show the proving and verification time of a balance proof
for various inputs (M) and outputs (S) in Figure 6 and Figure 7 respectively.
As a prover does not need to verify input accounts (input accounts have been
verifier in previous transactions as output accounts), there is almost no change
in proving/verification time (similar as the result of proof size in Figure 1).
Furthermore, the proving and verification time scales linearly with S since the
prover needs to generate proofs for output accounts and the verifier needs to
check these proofs accordingly. As stated in [14], “the most common cases for
the number of input/output accounts are (M, S) = (1,2) and (M, S) = (2,2)”,
the time cost of our approaches are acceptable in most scenarios.

8 RingCT Protocol

Though the unbalanced linear sum proof is secure for ring signatures, it cannot
be applied in RingCT directly. Besides, we also need to avoid double-spending.
We show how these issues are addressed to apply our techniques in RingCT.
Combining two proofs. In a RingCT protocol, a spender needs to prove
a transaction is valid and hides the identity of input accounts simultaneously.
This can be achieved by adding hiding accounts into inputs and proving the bal-
ance and linear sum relations in one proof. Consider NM inputs (CNEfl))j-V:Bl =

(INl(-j ))ij\ia;ﬁ)—17 which have M spender’s accounts (the spender owns the amount

values and coin keys at index j = [, (inl(.l), inkgl))i]‘ial, such that INZ(.Z) = Com(inl(-l), inkz(-l))),



and (N — 1) M hiding accounts, CN(] ) where j # 1. To transfer funds to S output
accounts (OUT,; = Com(outl,outk ))l "y, the spender needs to send an addi-
tional commitment Com(c;r,) and compute public keys P; = Zfzol OUT,; —
Zi]\ial INEJ) — Com(e;rl) for j € [0,N).

Ideally, we regard P, as a commitment to zero with the private key (random-
ness) r = ZZ 0 " outk; — ZM L k(l) — 7/ The spender can further show P, is a
commitment to zero as in our ring signature scheme, which proves the amount
balance and hides the identity at the same time. Unfortunatelly, as linear sum
proof only ensures Zf\i_ol b; P; is a commitment to zero, the above approach will
incur an unbalancing problem. For instance, let M = S = 1. If the spender owns
two input accounts at indices s and t with in®) =2 and in® = 1, she can mint
out = 4 coins (more than the sum of all inputs) by setting b; = 3 and b, = —2.
As P, is a commitment to out —in‘®) (i.e., 2) and P, is a commitment to out— in(®)
(i.e., 3), bsPs + by P, is a commitment to 0 (here we use the amounts directly
instead of their bits to simplify the example). This is due to the security proof of
our ring signatures relies on P;’s being correctly generated (i.e., commitments to
0), which may not be true as P;’s are derived from different accounts. We latter
describe our solution.

Avoid double-spending. To avoid double-spending, we extend our ring
signature (Protocol 4) to provide linkability by checking the serial number of each
input account to ensure it is not included in previous transactions. This could be
done by following the blueprint of MatRiCT [17]. Consider a new commitment
key H. A serial number SN is a public commitment to zero under H with r as
the randomness, i.e., SN = H -r. At step 12 of Protocol 4, the prover also needs
to compute F; = H - p; for all j € [0,k). In the verification, the verifier can 1)
link the proof With previous ones based on SN and 2) check SN is correct with

k -SN — Z 0 €T F H - Zp.-

In a ngCT protocol7 each account has an additional account key pair,
(pk,sk) such that pk = Com(0,sk). For each input account, i € [0,S5), the
spender places it at index [ of an N-size ring PK; and runs the above linkable
version of Protocol 4, Prs(ck, PK;,SN;, (1,sk;)). As all accounts share the same
index [, f; and z; in Protocol 4 will be the same in different proofs (no need
to retransmit). To avoid double-spending, the verifier checks the serial numbers
are distinct and not included in previous transactions.

The security proof of serial numbers is the same as MatRiCT (Lemma 5.7
n [17]). Besides, the unbalancing problem does not exist here since assuming
pk;’s are properly generated is acceptable as with [17].

Avoiding unbalancing problem. To address the unbalancing problem de-
scribed above, we show a simple and efficient approach to ensure the spender can
only use one P; to run the linear sum proof. Recall the linkable version of our
unbalanced linear sum proof. The serial number check ensures a spender cannot
1) avoid sending any serial number of her real account and 2) include the serial
numbers of other’s accounts. Thus, the serial number set of a valid transaction
must be the serial numbers of all real input accounts. Accordingly, the number
of serial numbers should be HW (b) - S, which shows how many accounts are



used as real inputs in our unbalanced linear sum proof. Therefore, to ensure one
P; out of an N-size public list, the verifier checks the number of serial numbers
being S.

9 Discussion

Compatible with other techniques. As we improve the underlying ZKPs
of a RingCT protocol, our approaches preserve all distinguishing features of
MatRiCT, such as being compatible with efficient rejection sampling and ex-
tractable commitment techniques. The former one can be adopted in our un-
balanced linear sum proof to improve the acceptance probability of rejection
sampling. For a secret bit b € {0,1} and a challenge z € [—p,p|, the prover
can sample the masking value from a uniform distribution, a < [—B,, B,] when
b=1,o0ra<+ [—(Bs, —p),B, —p] when b = 0. As a will never be rejected when
b = 0, this approach improves the efficiency and avoids leaking side-channel
information when dealing binary secrets with a fixed Hamming weight. The lat-
ter technique allows one to design an auditable RingCT protocol by placing a
“mini trapdoor” in HMC. Setting G, = [A7tT]T as an LWE matrix where
t = ATs + e for some secret s (i.e., secret key for auditing) and error e, an
extractor can extract a message from a commitment C = G,.r + G,,m by com-
puting ((s,—1),C) = —(e,r) + ((s,—1)TG,,, m). Based on the fact that the
norm of ((s,—1),C) — {(s,—1)" G}, m) is small, the extractor enumerates all
possible values to recover m.

Besides MatRiCT, other techniques in MatRiCT+ [16] to optimize the un-
derlying cyclotomic rings can also be applied in our approaches. Specifically,
a new CRT-packing technique is proposed in power-of-2 cyclotomic rings to
reduce the modulus with binary CRT slots (and reduce the commitment size
accordingly). Furthermore, MatRiCT+ optimizes challenges in cyclotomic rings
to reduce their Hamming weights [16]. As both techniques are “general and of
independent interest for lattice-based proof systems” [16], our approaches can
regard them as optimized settings to further improve efficiency. Besides, since
corrector values are avoided in our solution, balance proofs can directly use these
settings without mapping under Galois automorphisms for corrector values [16].

Applications in discrete logarithm settings. Since our techniques do
not rely on lattice settings, the results are believed to be of independent interest
for RingCT protocols in a generic setting. The unbalanced linear sum proof can
be applied in discrete logarithm settings directly to improve the performance of
ring signatures by removing the binary proof part. Note that under the discrete
logarithm assumption, b;’s do not necessarily have to be short as the constraint
of “short b;’s” is only used to ensure the hiding and binding properties of HMC.
Thus, steps 24 and 25 in Protocol 4 can be avoided accordingly (in fact, all
norm checks can be avoided). However, the improvement of our unbalanced lin-
ear sum proof may be less significant as the binary proof does not require a
larger parameter set under discrete logarithm assumptions. For the linear equa-
tion satisfiability, it is compatible with bit-based commitments with Equation



(14) (commit to the bits of the secret instead of its value directly). Note that
bit-based commitments bring some advantages in existing RingCT protocols: a
binary proof implies a range proof relation directly. With our linear equation
satisfiability, we can build the balance and range relations in a different way.
Furthermore, the linear equation satisfiability has a wider application in anony-
mous DeFi applications (decentralized finance smart contracts on Ethereum).
By settings w;’s as the exchange rates of different pools, we can enable confi-
dential multi-pool transactions (inputs and outputs are from distinct pools) for
today’s anonymous DeFi such as Zether [10].

General-purpose lattice-based proof systems. Since we do not exploit
any special property of the commitment scheme other than the standard hiding
and binding properties, other approaches with intriguing properties in general-
purpose lattice-based proof systems [4,9] may be applied in our scenarios. In
standard SIS commitment schemes, the witness is a (v x [)-size matrix, S € ZZXZ.
With a (r xv)-size matrix A € Z;*", the commitment works as Com(S) = A-5 =
T € Z;*'. Based on an (I x n)-size challenge C' € {0,1}/*", the prover encodes
SasZ=S5-C+Y withY € DJ*".

First, an O(v/N)-size commitment scheme is proposed in [4] by encoding
N-many secrets into S where v = [ = O(v/N). Unfortunately, when adopting
this approach, the (f,2%) in Equation (16) cannot be calculated directly as Z
will “batch” some f;’s when computing S - C'. For instance, consider the first
element in Z, zp9 = Zé;é 80, - €i,0 + Yo,0- As fo = S0,0 - 0,0 + Yo,0, we have
20200 = 20~f0+20~(22;} s0.i+Ci0) = 2°- fo+2°-€q. Therefore, it is important to
allow the verifier to cancel out Zf;ol 2%.e; without leaking any information when
computing (f,2*). The same issue occurs in ring signatures when computing
25;01 fj,i in Equation (18) and Hf;é fi,,i; in Equation (19). The latter one
is a much thornier problem when using z; ;’s to compute H?;& fj.i;- Second,
levelled commitments and Bulletproofs folding are proposed in [9]. The proof
size can be reduced to O(Nﬁ) with d-levelled commitments or O(log?(N))
with Bulletproofs folding. Though the result is promising, we find it is hard to
be applied in our approaches due to the same reasons above. Besides, the sizes
of the extracted solutions (denoted by “slack” in [9]) also increase. Generally
speaking, we cannot directly apply these approaches if the response batches f;’s.

Open problems. Our ring signature approach avoids most of the binary
proof in existing approaches based on the fact that a one-out-of-many relation
is not a necessary condition for ring signatures. An interesting question is find-
ing the sufficient and necessary condition for ring signatures. We may further
avoid unnecessary parts of our linear sum proof to improve the efficiency of ring
signatures. Another interesting problem is to remove unnecessary parts in range
proofs or balance proofs. For instance, it is sufficient to prove the balance based
on Equation (11) even when a;’s and b;’s are not binary vectors. However, this
requires additional proofs to show (a;, 2¥) > 0 and (b;, 2¥) > 0, which may not
be efficient. Furthermore, the linear sum relation yields a “many-out-of-many”
relation [13] which can reduce the anonymity set in RingCT. Unlike [13] which



generates many public key index from a single secret | by permutations and a
linear mapping, the linear sum relation directly maps b;’s to P;’s which may be
more efficient. Thus, the logarithmic-size linear sum proof seems to be a promis-
ing solution. Finally, supporting other commitment schemes in general-purpose
lattice-based proof systems [4,9] is also promising.
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A Additional Lemmas

Lemma 6. (Lemma 8 in [14]) For any f,g € R = Z[X]/(X? + 1), we have
the following relations:

— I < Vd- || flloos

= A< Iflh < V- | f].

1F - gll < V- |IfIl- llgll.

1f - gllse < I£11- llgll,

1 - glloe < 111 - N9l oo

= T filloo < (TS 1ill) - I fulloc-

Lemma 7. (Theorem 4.4 in [26])

— For any k > 0, Pr[|z| > ko;z «+ D, < 2e=K*/2.
— For any k > 1, Pr[|z]| > koy/s;z < D2] < kses(1—k)/2

Lemma 8. (Theorem 4.6 in [26]) Let h be a probability distribution over V &
7° where s > 1 and the norm of all elements is less than T'. Let ¢ < h and ¢ > 0.
Considering an algorithm that samples y < D% and outputs Rej(z,c,$,T) for
z = y+c. The probability that the algorithm outputs 1 is within 2710 of 1/u(¢)
where p(¢) = e12/9+1/(26")  When the output is 1, the statistical distance between
the distribution of z and DS is at most 27100,

Lemma 9. (Lemma 6 in [14]) For f,g€ R and k € Z*, if f - g* =0 in R,
then f-g=01in R,.

Lemma 10. Considering independent vectorsyy,--- ,y, with distributions D%
ford > 1. If o; > 7(Z%)/\/7 for all i € [1,s] where T(Z%) is a smoothing pa-
rameter of 7%, the distribution of Zle y; is statistically close to D® -

=
V 2.i=19;

In particular, we have the distribution of Y.}, y; is statistically close to D[df N

if D¢ = D¢ (Lemma 9 in [14]) and the distribution of }__, y; is statistically
close to Di 5 if Dl = Dgﬁ for all i € [1, 5.

V2i=1
B Proof of Theorem 1

Proof. Completeness: Based on Lemma 8, the prover responds with probability
1/(1(P1)11(d2)pe(d3)). As there are at most kN-many 1’s in b and HW (z) = w,
we have at most wkN non-zero elements in zb. Since ||z|/- = p, we have,

l2b]| < pVwkN = T. (21)

0_17...



Furthermore, we have |c[o < max(=3_, _gwi, ), ~owi) based on ¢; =

Zf\;)l wibij € D, coWis 2w, >0 Wil Since there are at most k non-zero elements
in ¢ and HW (2) = w, zc has at most wk non-zero elements. Thus,

lze|| < max(— Z wi, Z w;) - pVwk = Ty. (22)

w; <0 w; >0

Let w = (wo, -+ ,wn—1). Based on Lemma 6, we have
N—

N—-1

WiTh,i |w;] - |7’b z||
> i < 3 )
<vmd - [Iry oo - lw]l1 < BVmd||w]1,

el =

and thus,

H-’E(’l"c, Ty, Tho, " rb,N—l)H

||2 2\1/2

+ e (re, 7.0, ro.n-1)7)

<Bupy/md(|w|? + N +1) = T.

=([|re (24)

Therefore, based on Lemma 8, the distributions of g; ;s, f;’s, and z, 2z, (zbﬂ-)fifol
are statistically close to Dngl, D22T27 and D;’;‘h respectively. Except with neg-
ligible probability, we have the following relations based on Lemma 7:

Hgi,jH < 2(¢1T1)\/g> Vie [O’N)aj € [05 k)v
1751l < 2(¢2T2)Vd, Vi€ [0,k), (25)
1211 124 I, (1zo.:1)/55" < 2(65T5)Vmd,

which satisfy steps 38, 40, and 41 of verification.
Finally, since z, = Zil\;_ol C'zp,i, we have

N-1 N-1
Izl = || 3 ¢z < > Iz

1=0

(26)
N-1
(Z ISl z0all) < 2mdesTs > (wp)'
=0 =0

(3, N + 1)-special soundness:

Linear equation relation. We first prove F'(by,--- ,by_1) = 0 relation
in R’ . Given 3 distinct challenges, (x,’,2"), we have 3 accepted responses
(.f17gvzazg7(zb,i)£\;61)a (f{vglvzlvz;?(zl,;,i)i]i?)l)v and ( 1ag 2! zqv(zbz)fvol)
with the same inputs and commitments dguym, (B;)N', D, E, F, (G) . Set

C = Zz 0 ! wiB;. For each transcript, compute fo = dsym — Zf 11 f] on R



and rebuild f = (fo,--- fyr—_1). Obviously, we have (f,2%) = dyy, (so do f’ and
F7). Taking (£, 2), (f', 2), and (£, 2"), we have

xC + D = Comeg(f; 2), (27)
2'C + D = Comy(f'; 2'), (28)
2"C + D = Comg(f";2"). (29)
Subtracting Equation (28) from Equation (27), we get
(x —2")C = Come(f — 52 — 2') := Come(C; 7). (30)

Setting y = z — o’ as a relaxation factor, we extract a valid opening (¢;7.) to
yC' and prove the claimed bound for R/ .
Taking Equation (30) and (27), we have
yD = y(xC + D) — 2yC = Com(yf — xC;yz — z7.)

~ 31
= Comeg(zf — o' f;22" — 2'2) := Comey(d; 7y). (31

Obviously, based on the definition of & and d, we have yf = z¢ + d.

As we conduct step 35 on R instead of R,, we have (f, 2F) = dgum, and thus
x(c, 28+ (ci, 2F) = d4ym- Based on the 77, g-binding property of the commitment
scheme, the PPT prover cannot extract a new valid opening of yC' and yD with
non-negligible probability. Thus, we also have 2'(¢, 2*) + (d, 2*) = dy,, which
implies (¢, 2%) = 0 for distinct challenges. Considering the definition of C, we
have

N-1 N-1 N-1
O = Z wiBi = Comck(z wlbi, Z wﬂ”‘byi), (32)
i=0 i=0 i=0
and thus
N—1
y(>  wibi, 2F) = (€2") =0
i=0
N-1 (33)
— 3 (wi-(255) = F/(bo, - . by-1) =0,
i=0
which proves the F'(bg, - ,by_1) = 0 relation in R p.

Binary relation. We first consider the relation of fo\;Bl ('B; + G =
Comck(Zf\:Ol C'gi; zp). Given 2 distinct challenges, (x,z’), we have 2 accepted
responses, (vaz_ol C'gi, zp) and (Zf\:()l C'gl, z}) with the same ¢, inputs, and
commitments. Accordingly, we have

N-1
T Z ¢'Bi+G = Com( C'gi; z), (34)

=z
L

[}

=

~

0

N—

¥ > ('Bi+ G = Comer (> (gl z) (35)
0

=

Il
=

1= 2



Subtracting Equation (35) from Equation (34), we get

N-1

N-1
(—a’) Y (¢'B; = Comey( Z C'(gi — g})i 2 — 2p) = Comei (D ¢'by; 7).

=0

Setting y = x—x’, we extract an opening (Zfigl Ciby; ) toy Zi]\;_ol ¢'B;, where
I7p]| < dmdesTs z:f\gol(wp)z Taking the opening to Equation (34), we have

N-1 N-1
yG = yCome (Y C'gisz) —x »_ C'yBi
=0 =0
N— N—1 . (36)
=Come( Z (yg; — xby);yzp — amp) := Comck(z C'tis7yg),
i=0 i=0

which gives an opening (221\5)1 C'tis7y) to yG.
For Zf\!ol C'yB; part, given N distinct challenges, (gs)évgol, we have N ac-

cepted responses, (vaol Clb( ),~( ))8 o with the same inputs and commit-
ments. Accordingly, we have

1 Gy e yBo Comi (SN ¢! 7
Gt yBi B Comck(vaolc b(1 ,Fl(,l))
T¢no1 - (Nt yBy_1 COmck(ZlN:_ol Cziv_1g§N_1); ;l()N—l))

(37)

Let the Vandermonde matrix on the left hand side be Viy_1. We can obtain
(I;N,l; Ty,N—1) as the opening of yeyBy_1 with another relaxation factor y. =
det(Viy—_1). Specifically, EN,l, 75, n—1 can be derived based on Equation (4).

Note that directly compute the relaxed opening of yB’s requires to compute
the s-th row of adj(Vy_1), which will be extremal complicated to derive the
norms of the opening. To avoid this problem, we swap the s-th row with the last
row:

e (s [ om0

1 G -Vt yB; Com (32N Cb( ~< )
Lovor e Vo || wBher | COmck@ﬁi‘olcx_l’EEN*);aﬁN‘”)
R : -

1 G Cs yBs Comck(zjvolczb )’ ())

(38)

Let the Vandermonde matrix on the left hand side be V. Since V; is derived
by swapping two rows of Vy_1, we have det(V;) = —det(Viy_1) = —y, for all



s # N — 1. Similar to the previous approach, we can obtain an opening (I;s; Tb,s)
of ycyBs based on Equation (4), where 7, = Zﬁ\;)l FZ-}S?}()S).
Let Kk = N(N —1)/2 and & = (N — 1)(IN — 2)/2. Based on Lemma 1 and

Lemma 4, we have the bound of |7 s]|:

N-1

70l < Nd(2p)~'w™ =" - AmdgsTs Y (wp)’

=0 (39)

2

<2 N By md g fmd(w2 + N +1) 3 (wp)’ = 1.

(2

Il
=)

Taking the opening (Zfigl City; 74) to yG, based on the last step of verifica-
tion, we have

N-1 N-1  N-1 N1
Yey Z ('gi=x Z ¢'b; + Z 'ty = Z ¢"(zbi + ycti). (40)
i=0 i=0 i=0 i=0

Based on the vy g-binding property of the commitment scheme, the PPT prover
cannot extract a new valid opening of ycyBs’s. Meanwhile, though different
challenges generate different G’s, the 7 g-binding property of the commitment
scheme avoids extracting different £;’s such that Comck(Z?:Ol C'ty;7y) (different
{;’s result in different b;’s and break the v g-binding property). Thus, the same
form in Equation (40) holds for N + 1 challenges ({s)Y_,, which indicates

yeygi = Tbi + ycti. (41)

For the relation of zE + F' = Comeg(h; z4), given 3 distinct challenges,
(x,2,2"), we have 3 accepted responses, (h;z), (h';2;), and (h”; 2z;/) with the
same inputs and commitments. Accordingly, we have

xE + F = Comc(h; zp), (42)
¥’ E+ F = Comg,(h'; 1), (43)
2"E+ F = Comg,(h"; 2)). (44)

Using the same extraction approach, we can derive the opening (€;7,) to yE
and (8;7;) to yF such that yh = z€é + 8. For each element of h, we have the
following relations for all ¢ € [0, N) and j € [0, k):

yhij = y(gi;(x = gij)) = 2€ij +5i;. (45)

Based on the v g-binding property of the commitment scheme, the responses
to «” will have the same form in Equation (45), which indicates Equation (45)
holds for z,2’, z".

Based on Equation (45), we have the following equation:

vy(@ei; +5i5) = vey(ygi(z — gij))
=ycy9i(@ycy — ycygig) = (@b + yeti ;) (wyey — abij — ycti ;) (46)
=2 (bij (yey — biy)) + 2 (i (yey — 2bi3)) — V23 5,



and thus

2® (bij(yey — biy)) + @ (tig(ey — 2bi ) — y2vei) + (— yets; — y¢ysis) =0,
(47)

Since Equation (47) holds for z, 2/, and 2", we have the following system:

1 x 2? R —yg?f,j: YeYSi
1 :c/’/ x/’; tij(yey — 2b; ;) — y?yem— =0. (48)
1a" x b b

bij (Yey — bij)

As all operations are conducted on a field R4, the Vandermonde matrix on the
left is invertible for distinct challenges. We have 3” (ygyfi)\i,j) = 0, which implies
’l;i,j =0or ZU = ycy, i.e., EZJ = ycyb; ; for b; ; € {0,1}. Thus, all b;’s are binary
vectors.

SHVZK: Assume the protocol is not aborted. The simulator samples 7, <
{-B,--- B}y, Gij Dngl for all i € [0,N) and j € [0,k), f; Dngz
for all j € (0,k), z,zg,(zbyi)ili_ol — D(’;SdTS, and sets C' = Z?LBI w;B;, E =
Comck(o;rb)a fl = (flv"‘ ,fkfl)a .f = (an"' 7fk71)7 dsum = <.f72k>a g =
(90,05 " s9s—1,k—1), 9i = (9i,0,-** »Gik—1) for all ¢ € [0, N). Then, given z, it
computes h = (g;.j(1—g:7)) 1o 120", D = Comey,(f; 2)—2C, F = Comer(g, h; 2)—
zE, and G; = Comek(9g:;2p:) — xB; for all i € [0, N). Obviously, the simu-
lated transcript ((dsum7 D,E.F, (Gi)i]if)l),x, (f1,9.%, 24, (z,,,,»)f‘gol)) will be an
accepted transcript.

Based on Lemma 7, the distributions of f1, g, z, 24, (zb,i)f\sol are statistically
close to the real distributions. The simulated distributions of dgym,, D, F, (G;) i]if)l
are the same as the real distributions. Finally, due to the hiding property of
the commitment scheme, the distribution of simulated F is computationally
indistinguishable from the real case based on the M-LWE assumption.

C Proof of Theorem 2

Proof. Completeness: Based on Lemma 8, the prover responds with probability
1/(1(P1)(p2)). As there are at most k-many 1’s in § and HW (z) = w, we have
at most wk-many non-zero elements in z4d. Since x| = p, we have,

|xd]] < pVwk =T;. (49)



Furthermore, based on Lemma 6, we have
k-1

zhr — E ! p;
j=1

k—1
<Vimd(|la" v + 3 107 psl )
j=1

k-1
< llz*r )+ lla? pyll
j=1

s (50)
<vmd (|l -l + 3 2l - l1p511s0)
j=1
k—1 _ k _
<V md((wp)k[)’ + BZ(wp)j) = Bvmd Z(wp)ﬂ.
j=1 j=1
Denote 7' = zFr — Z;:ll zIpj, we have
ey, 7| = (|| + [1e'|*)/
(51)

kN2
Sl’)’\/md(uﬂp2 + (Z w]pj)Q) < B(wp)*V2md = T.
j=1

Considering each element of f;. Based on Lemma 10, the sum of discrete
normal variables behaves as its continuous counterpart. Thus, for all j € [0, k), we

have the distribution of Z?;ll f;,i 1s statistically close to Dngl VAT Therefore,
for all j € [0,k) and ¢ € (0,3), we have

5.4l < 2(1T0) V4,
g1 B-1
1 fj0ll < Hl’ - Zi:l fid| < =l + H 21:1 i

< VW + 20 T1)VA(B — 1) & 2¢1p\/kwdf,
”zb”vHZrH < 2(¢2T2)m

(52)

(k + 1)-special soundness: Given (k + 1) distinct challenges (z4)%_,, we
have (k + 1) accepted responses ( fls),zl()s))’;:O with the same commitments
A, B, (Ej)f;é. For each transcript, compute f;j)) = x5 — Zf;ll fi(;) for all j €
[0, k), and rebuild f() = ( éi?, o f;gs;)l’ﬁfl). Taking (f(o),zéo)) and (f(l),zlgl)),
we have

20B + A = Come (£, 27), (53)

21B + A = Comg, (£, 21). (54)

Subtracting (54) from (53), we get (z¢ —21)B = Comg, (£ — £, zéo) - zlgl)),
which gives us an opening of yB with a relaxation factor y = (zg — x1):

~

yB = Comck(f(o) — f(l), zéo) — zél)) := Comgg (b, 7). (55)



Subtracting xo times of (55) from y times of (53), we have:

yA = Comck(yf(o) - JJOB; yzl§0) - Jfo?b)

:Comck(xof(l) N xozél) xlzlgo)) (56)
:=Come(@; 7y).

Obviously, we have zb+a = yf® for s = {0,1}. Taking each element in

b= (ZJ 1)? Oljk ' and @ = (@, 1)? Oljk o » we have the following system for all

i€10,8),5 €[0,k):

b+ a5 =yl (57)
Taking Z Sl) =z, and Equation (57), we have
B-1 f—1 B—1
yas = > ufi) = Y wbi+ Y G (58)
i=0 i=0 i=0
and thus
B-1 B—1
ms(zb R + Zajvi’ (59)
=0 i=0

Based on the y-binding property of the commitment scheme, Equation (59) holds
for s = {O 1}. Therefore, we have ZB —y=0 and Zz o @j,; =0, and thus
Ei:o ii =Y, le., ZZB: I b= yz bj.i for Z b;i; = 1. Based on step 23,
we have bj o =1 — Y27 ""b; ;. Thus, ||bjo|| <1 +4¢1\/kd —1) ~ 4¢,Vkdp

Now we construct b;’s for all ¢ € [0, N) with b; = HJ_O bj.i;, where i;’s are
the digits of representation of ¢ in base 8 such that ¢ = (g, - ,ix—1). Clearly,
b; # 0 if and only if b;;, # 0 for all j € [0, k).

Based on Equation (55) and Lemma 6, we have

k—1
H Jr% H Hb 711
j=0

<d"7 b0l < (4o V/E mkdkﬁ = YLs.

Considering the y-binding property of the commitment scheme, the following
equation holds for (k + 1) challenges

16:]] =

(60)

yfj(? = xs/b\j,i +aj; = yrsbji +ajq, s€[0,k] (61)

We compute p;(xs) = y H ”7 = Hf é(yx bji, + aj,,) for each i €
[0, N). Obviously, for all s € [0 k] if p;(zs) is a polynomial of degree k, then
bji, # 0 for all j € [0, k), which indicates b; # 0. Thus, for all i € [0, 8), we have

at least one b; is not zero, i.e., ||b|| > 0.



As the last verification step holds, we multiply both sides of the equation by

Y

N— k—1
Zﬁ (zs)- P — ZykE zJ
= =0 (62)

bt Y Rt Y Bl = Coma(0i#a),

where E;’s are the terms multiplied by the monomials x7’s of degree at most
(k — 1) and are independent from xs. Taking all (k + 1) transcripts, we have

/
1laxg--- 33]5 g(/) Comyy, (0 ykz7("0))
1oy -k 1 Com, (0; ykzy(}))
. : = i . (63)
PN LR N—-1 :
1ay - x’]: yk Z:O b; P; Com,(0; ykzq(«k))
i=

Let the Vandermonde matrix on the left hand side of Equation (63) be V. Based
on Equation (6), we can obtain (0, %*7) as the opening of det(V)-y ZN Ly P,
where 7 = Zili_ol iz (I; is defined in Equation (4)). Based on Lemma 9, we
have

N-1
det(V) - y* Zi:O b; P; = Com,(0; y*7)
i N-1 .
=y (det(V) : Zz‘:o b P; — Comck(O;'l‘)) =0
N-1
:>y(det(V) : Zi:() bi P; — Comy,(0; 'F)) =0

N-1 N
= det(V) '?/Z._O b; P; = Com,(0; yr) = 0.

(64)

Thus we extract an opening of det(V')-y Zj":gl b;P; as (0,y7). Let k = k(k+1)/2
and k' = k(k — 1)/2. Based on Lemma 1 and Lemma 4, we have the bound of
ly7]l:

ly#ll < (k+ 1)d(2p)"~ T w" - 202ToVmd
<(k + 1)28 V20 Bmd*w p™t = .

SHVZK: Assume that the protocol is not aborted. The simulator samples
r <+ {=B, B fii Dg 7, forall i € (0,8) and j € [0,k), 25,2,
Dy, Ej <~ U(Ry) for all j € (0, k), and sets B = Com,(0; 7). Then, given z, it
computes fj o = x—ziﬂz_ll fjqforall j € [0,k) and sets f = (fo,0,- -, fe—1,8-1),
A = Comu(f;z) — B, and Ey = Y0 o (I152g fii,)Pi — Come(0; 2,) —
E;:ll Ejx7. Obviously, the simulated transcript ((4, B, (E )f “0)z, (s 26, 20)
will be an accepted transcript.

(65)



Based on Lemma 7, the distributions of f, z,, z, are statistically close to
the real distributions. The simulated distributions of A and Ey are the same
as the real ones. Due to the hiding property of the commitment scheme, the
distribution of simulated B is computationally indistinguishable from the real
case. Finally, the simulated F71,--- , Ex_1 are computationally indistinguishable
from the real cases based on the M-LWE assumption.

Considering M inputs (a;)M 5" Let a = Ziﬂio_l a;, k = [log(a)], and a[j] be
the j-th bit of @ where 0 < j < k. First, taking ZM_l [ 0] and writing it as the

binary representation (7'6(0), e T,Q(O)l) such that ZZ o aZ [0] = f 01( /(0) 21,
we have a[0] = 7'(;(0). Furthermore, taking 7; 1) and Z ! ai[1], we can write the
sum of them as the binary representation ( 6(1), . Tk(l)l) and derive a[l] = /(1)

In this way, we can observe that in order to derive a[ j], the j-th element con51sts
of two parts: Ziwg a;[j] and Zt 1 Tt/(] 2 (the latter one is the sum of all carrles

from alj — 1], - - - al0]). Thus, for all j € [0, k), writing Zij\igl a;[j]+ Zt 1 Tt

as the binary representation (Té(j ), e ,T,’C(f)l), we have
— G-1) _ ()
> a +Z7'/j - Z )9ty (66)
i=0 t=0

Obviously, a[j] = Té(j ). Thus, we have

M-1 j k—1
alfl = > ali) + >V =9 2h, (67)
i=0 t=1 t=1
Similarly, let b = 229:—01 b;, we can derive the following equation for S outputs
5—1 j 4 k-1 ‘
o) = 3 bl + D7V =S (2, (68)
i=0 t=1 t=1

when the balance property holds such that & = [log(a)] = [log(b)]. Taking
Equation (71) and (72), for all j € [0, k), we have

S—1 M—-1

bj] = alil = > bilil = Y aili]
=0 0
k—1

j —

Z nG—t) _ /(J t)) ((Tt/’(j) _ Tt/(j)) . 215) (69)

=1 t=1
5-1 M-1 J k—1
a‘l +2Tj7t)_ ( (4) 275),
=0 1=0 t=1 t=1
where Tt(j ) = T”(j ) _ /(J ) Obviously, the corrector value in [17] is a special
case of Equation (73) under k = 2 by regarding T (] D= = 75, 71(1) = Tj+1, and

Tt(] t) _ t(ﬂ) =0 when ¢t > 1.



Ass Aty Fra
HMC Challenger HMC Collision finder Ring signature challenger Ring signature forger
P=((1,0,..,0),1).
Call Rkeygen to get (P, ri). l——Registration queries
Abort if i=l. Forward queries l«—Corruption queries Corrupt(i)—
| . andresponses _ | ! L .
Using simulator for P, - Signing queri Queries
related queries. "'ge. 9 queries
Signatures

Fiat-Shamir heuristic: use

random oracle to get H(m;,...). Hash queries for (m;...)

H(m,...)

Run k+1 times with the [ Signature forgery (mo, ao)—

same commitments. Signature forgery (my, o)

Run extractor with k+1
(mj,gi)’s to get b’ and an
opening (0, y’s) for b, P;.

Acs: the Ain Lemma 5.
FLs: the F in Lemma 5.
Aqrs: the A'in Theorem 4.
Fra: the F in Theorem 4.

le———b ", and (0, y*s)

Me=((b, 0, ..., 0),b’ir)
Mi=((0, ..., 0), y*'s - Ziub'ir)

le——HMC collision (Mo,M;)——

Fig.8: Reduction from “forging a ring signature” to “finding an HMC collision” for
ring signature unforgeability.

As Tt//(j),TtI(j) € {0,1}, we have Tt(j) € {-1,0,1}, which narrows down the
range of corrector values in [17] (but requires more corrector values).

D Security Reduction (Sketch) of Lemma 5 and Theorem
4

Lemma 5 and Theorem 4 reduces “forging a ring signature” to “finding an HMC
collision” for ring signature unforgeability. The security game can be illustrated
in Figure 8.

Oracle Simulation. The ring signature challenger Az, will forward queries
and responses between the HMC collision finder A5 and the ring signature
forger Fry. Aps simulates the oracles as follows:

Registration query. Assume Fry can only query N times (N > 1). Aps ran-
domly picks ! < {0,1,--- , N—1}. For index [, Ap5 sets P, = Comx(1,0,---,0;7).
For other indices j # [, Aps calls the RKeyGen algorithm to generate a pub-
lic/private key pair (P;,7;). Upon the (i + 1)-th query, Ars returns the corre-
sponding public key P;.

Corruption query. On input a public key P;, Ars aborts when ¢ = [. Other-
wise, Aps returns the corresponding private key r;.



Signing query. When Fr4 queries to sign on message m; with a signer F; in
a public key list P; = {P;|j € t;} where t; indicates the indices of the public
keys in {Py, -+ ,Pn_1}, 1e.,t; C {l,--- N — 1}, Aps processes as follows:

— If i # 1, Aps calls RSign algorithm directly to get the corresponding signature
since he has r; and programs the Hash function (random oracle) if needed.

— If i =1, Aps runs the simulator in the proof of Theorem 2 (SHVZK prosper-
ity) to get the signature and programs the Hash function (random oracle)
so that H(ck,m;, P;, A, B, (E )f 0 ==

Hash query. For queries with inputs that have already been programmed,
Aps returns the corresponding output. Otherwise, Aps chooses z at random
from the set C\{xo," -+ ,Zm—1} where z;’s are the outputs of the Hash function
that have been programmed. The output of the Hash function for this input is
programmed to z.

Signature Forgery. At a given point, Fp4 finishes running and outputs a
forgery (m;,o0;). Since P, cannot be distinguished from other P;’s due to the
hiding property of the HMC commiement scheme and Fr4 can only make N
times of registration queries to Aps, we have the signature is signed by the
signer P, with non-negligible probability'?, i.e., b; # 0.

Output. After collecting k + 1 signature forgeries with the same commit-
ments (this can be done in polynomial time using the forking lemma), Apy
computes b)’s and an opening (0,y*1s) to ZN ! bi P; by running the extractor
in the proof of Theorem 2 ((k + 1)-special boundness) and forwards b}’s and
(0,5%71s) to Ars. Accordingly, Azs can find a collision for the HMC commit-
ment scheme, My = ((b),0,---,0),br) and M; = (0,y*"1s — > iz Uiri) since
(b7,0,---,0) # 0 (7;’s are the private keys of other users in the ring).

E An Alternative Approach to Avoid the Range Proofs
of Corrector Values

We present an alternative approach to reduce the cost of corrector values in [17]
by narrowing down the range of corrector values to {—1,0,1}. Based on the
discussion in Section 9, we can avoid the cost of UMC in range proofs.
Considering M inputs (a;)M 5" Let a = Ziwo ! al, k = [log(a)], and a;[j] be
the j-th bit of a; where 0 < j < k. First, taking Zz E aZ [0] and Writing it as
the binary representation (76(0), e 7']2(0)1) such that Z —0 " a]0] = tfo (1 A

I

2'), we have a[0] = 7 % Furthermore, taking 7'1 ) and 2%01 a;[1], we can

write the sum of them as the binary representation (Té(l), e Tk(l)l) and derive

all] = 7, ' Tn this way, we can observe that in order to derive a[j] (the j-th

bit of a = Zf\iol a;), the j-th element consists of two parts: Zi\ial a;[j] and
i G-t

T (

11T the latter one is the sum of all carries from a[j — 1], - - a[0]). Thus,

10 Other signers may also be involved such that b; # 0 for some 4 # 1.



for all j € [0, k), writing ZMO Yagi] + Zt 1 Tt(J ") as the binary representation

(T(/)(j), e Tk(J)l) we have
M-1 k=1
Clz + Z 1(j—t) _ Z Tt(]) . 2t) (70)
i=0 t=1 t=0
Obviously, a[j] = T(/)(j ) Thus, we have
: - 1(j—t) - 1(3) ot
aljl = > aily +Z = > (72 (71)
=0 = t=1
Similarly, let b = Zf:_ol b;, we can derive the following equation for S outputs
k-1 ‘
Z bilj] + Z 1(j—t) Z(TtII(J) . 2t)’ (72)
t=1

when the balance property holds such that k = [log(a)] = [log(d)]. Taking
Equation (71) and (72), for all j € [0, k), we have

> ol

0
1

S

bj) —alj] = > bili] -

-1
=0

.
Il

J k—
Z 1(j— t) /(] t)) (( 1(3) _ /(])) . 2t> (73)
=1 t=1
5-1 M-1 J k=1
a;[j +ZT(J t) t(]) .2t),

i=0 i=0 t=1 t=1
where Tt(] ) = TH(] ) /(] ). Obviously, the corrector value in [17] is a special
case of Equation (73) under k = 2 by regarding 7'1( - T; 71( D = Tj+1, and

Tt(j R t(j):OWhent>1
As Tt//(]),TtI(j) € {0,1}, we have T(J) € {-1,0,1}, which narrows down the
range of corrector values in [17] (but requires more corrector values).

F Reducing the Cost of Range Proofs in MatRiCT

Esgin points out that running a full range proof (as in [14]) is unnecessary
since 19 — 27y, -+ , Tk — 27k+1 have already been committed in C' = Com(rg —
27y, -+ , T —27Tk41). Consider one correct value 7; that falls in the range [—(M —
1), 8 —1]. A prover shifts it to 7] = 7; + (M — 1) and proves 7; € [0, 5 + M —2].
Specifically, the prover writes 7/ 1n the binary representation, ( Tio ch 1) <
Bits(7}), where | = log(S+M —1). By running a binary proof (can be aggregated
in the binary proof part of output accounts), the prover convinces the verifier



that 7' ;’s are bits after sending f;; = = - 7' ; +a;; for all j € [1,k)’s and
i€ [0, l) s with a challenge x and some Inasklng values a;;’s. Additionally, the
verifier reconstructs the masked T , [, with

-1 -1
=) =T+ ) 2a (74)
i=0 i=0
With f;’s as the masked corrector values, the verifier further checks

Com(fo — 2f1, cee ,fk — 2fk+1) = .’EC + Asum; (75)

where Ay, = Com(Zi;é 2'ag,;—2 Zi;(l) 2tay i, ,Zl ! 0 2'ak,—2 Zi;é 2t ag 1)
and fo = fr = 0. Besides, A, and Equation (75) can also be aggregated into
the binary proof verification, the prover only needs to include a (k — 1)l-size

k—10-1 .
vector, (fj,i)j:L’f:Ov in the proof.



