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Abstract—Applications today rely on cloud databases for
storing and querying time-series data. While outsourcing storage
is convenient, this data is often sensitive, making data breaches
a serious concern. We present Waldo, a time-series database
with rich functionality and strong security guarantees: Waldo
supports multi-predicate filtering, protects data contents as well
as query filter values and search access patterns, and provides
malicious security in the 3-party honest-majority setting. In
contrast, prior systems such as Timecrypt and Zeph have limited
functionality and security: (1) these systems can only filter on
time, and (2) they reveal the queried time interval to the server.
Oblivious RAM (ORAM) and generic multiparty computation
(MPC) are natural choices for eliminating leakage from prior
work, but both of these are prohibitively expensive in our setting
due to the number of roundtrips and bandwidth overhead,
respectively. To minimize both, Waldo builds on top of function
secret sharing, enabling Waldo to evaluate predicates without
client interaction. We develop new techniques for applying
function secret sharing to the encrypted database setting
where there are malicious servers, secret inputs, and chained
predicates. With 32-core machines, Waldo runs a query with 8
range predicates over 218 records in 3.03s, compared to 12.88s for
an MPC baseline and 16.56s for an ORAM baseline. Compared
to Waldo, the MPC baseline uses 9 − 82× more bandwidth
between servers (for different numbers of records), while the
ORAM baseline uses 20 − 152× more bandwidth between the
client and server(s) (for different numbers of predicates).

I. Introduction
Organizations today rely on the ability to continuously collect
and analyze time-series data. To cheaply store and query
this data, organizations turn to cloud databases [7, 52, 101].
However, many systems produce time-series data that is not
only useful, but also sensitive. For example, remote patient
monitoring systems and smart homes both generate time-series
data that users might not want to store in the cloud due to
the danger of data breaches [68, 73, 77, 90].
One solution to this problem is to perform queries over

encrypted time-series data, as Timecrypt [21] and Zeph [22]
do. These systems have two serious limitations. The first is
that they only support aggregation by time over a data stream
(e.g. average heart rate over a week). Many modern time-series
databases [9, 52, 76, 101] support multidimensional data and
allow users to filter based on different predicates that are
not predefined. Multi-predicate queries are critical for some
applications. For example, a doctor might want to run the
following query to assess congestive heart failure risk without
revealing the filter values or query result to the server [97]:

SELECT COUNT(*) FROM MedicalHistory

WHERE (systolic < 90 OR diastolic < 50 OR

weight_gain > 2 OR heart_rate < 40

OR heart_rate > 90) AND (time BETWEEN

2021:07:01:00:00 AND 2021:08:01:00:00)

The second limitation is that Timecrypt and Zeph reveal the
query time interval to the server, which could be problematic
for some applications. For example, if a doctor is querying
for a patient’s heart rate, the queried time period could
reveal when the patient had a heart attack or started a new
medication. To address the first limitation (functionality), we
could leverage techniques from encrypted databases [41, 51, 80–
82, 85, 93, 103, 113]. While many of these systems can
support multi-predicate queries, they generally achieve good
performance by permitting some leakage, which an attacker
can exploit to learn information about the query and the
database contents (e.g. the attacker could learn the patient’s
blood pressure) [23, 46–48, 56, 58, 61, 62, 64, 79, 84, 111].

Both oblivious RAM (ORAM) [45, 78] and general-purpose
secure multiparty computation (MPC) [44, 108, 110] are
natural tools for this problem. ORAM is suited to the trusted
proxy setting (common in encrypted databases [80, 82, 85]),
and MPC works in the distributed-trust setting where servers
are deployed in different trust domains (the same setting used
in Zeph [22]). Unfortunately, both are prohibitively expensive
for the time-series setting. Storing a multidimensional tree in
ORAM makes it possible to execute queries in polylogarithmic
time, but appends are just as or more expensive than executing
queries and require many round-trips, which results in poor
throughput due to the append-intensive nature of time-series
workloads (§VII). General-purpose MPC is also a poor fit,
as existing tools require massive amounts of communication
(§VII). In a distributed-trust setting in which servers are likely
deployed in different clouds to minimize the chance that
multiple servers are compromised, many round-trips and large
bandwidth imply high latency and high monetary cost.
We present Waldo, an oblivious, maliciously secure time-

series database that leverages distributed trust. Waldo provides:
• Multi-predicate functionality: Waldo provides two types
of indices: one that supports additive aggregates (e.g.
sum, count, mean, variance, standard deviation) based on
multiple predicates (§IV) and another that supports arbitrary
aggregates (e.g. max, min, top-k) over a time interval (§V).
Prior work [21, 22] only supports aggregation over time.

• Obliviousness with malicious security: Waldo distributes
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trust to protect not only the data contents, but also the query
filter values and search access patterns (§III). Our design
uses three servers and provides malicious security when at
least two servers are honest.

• Efficiency: We implement and evaluate Waldo (§VI,§VII) on
a set of 32-core machines. With features modulo 28, Waldo
(specifically our index with multi-predicate support in §IV)
runs a query with 8 range predicates for 210 records in 0.22s,
compared with 1.75s for an MPC baseline and 9.60s for an
ORAM baseline, and 220 records in 11.82s, compared with
45.72s for MPC and 16.70s for ORAM. The MPC baseline
uses 9−82× more bandwidth between servers than Waldo for
210 to 220 records, and the ORAM baseline uses 20 − 152×
more bandwidth between the client and server(s) than Waldo
for 1-10 predicates. Waldo is also highly parallelizable.

A. Summary of techniques
As we show in §VII, ORAM and general-purpose MPC
are poorly suited to the time-series database setting due to
the many rounds of interaction (ORAM) and substantial
communication overhead (MPC) they require. We design
Waldo to overcome these shortcomings and be efficient when
servers are in different trust domains: we need to rely less
on communication, which is limited and expensive [1], and
instead take advantage of compute resources, which are
significantly cheaper and easy to increase. With this goal in
mind, we turn to function secret sharing (FSS) [17, 18], a
recent cryptographic tool that allows the client to generate
compact shares of a function that the servers can then use to
evaluate the corresponding equality or range predicate without
learning what the predicate is (critical for security). Crucially,
the servers can evaluate their shares of the predicate without
interaction (in contrast, other state-of-the-art MPC techniques
require interaction proportional to the number of comparisons).

At its core, FSS is a simple primitive designed for semihonest
servers with public inputs where efficient implementations
exist for a limited class of functions [17, 18]. The high-level
challenge in Waldo is to adapt this fairly simple primitive
to the much more complex encrypted time-series database
setting where there are malicious servers, secret inputs, and
chained predicates. Prior work has explored applying FSS in
different settings that require some combination of private data,
malicious security, and complex queries [16, 19, 20, 30, 33, 106],
but as we discuss below (and in §IX), these techniques do not
easily translate to our setting. These shortcomings motivate the
techniques we develop in Waldo, which we summarize below.
FSS for private predicates (§IV-A). Using FSS to evaluate
predicates on private data is not straightforward because, for
correctness, servers evaluating function shares must provide the
same input. Providing the input in plaintext is clearly a problem
for implementing equality or range predicates where the server
should not know the values being compared. To circumvent this
problem, prior works on FSS for secure computation [16, 19]
use additive masks to hide secret values, but as we discuss
in §IV-A, this technique is highly inefficient in our setting,
requiring client communication linear in the database size. To

solve this problem, we develop a shared one-hot index, which
hides the contents of the data while supporting high-throughput
appends and private queries with FSS. The way in which we
split our index across the servers is inspired by Bunn et al.’s dis-
tributed ORAM [20] that combines FSS with replicated secret
sharing [10]. However, distributed ORAM only requires a block
storage abstraction, whereas we need to evaluate different range
and equality predicates on the database contents. We introduce
new techniques that build on top of FSS and replicated secret
sharing to obliviously evaluate predicates (§IV-A).

Combining multiple predicates (§IV-B). To support multi-
predicate queries, we need a mechanism for efficiently
combining the outputs of equality and range queries. There
are two critical challenges here: (1) how to structure the
outputs of the FSS evaluations so that they can be efficiently
merged, and (2) how to perform the actual merging. To solve
(1), we design our shared one-hot index such that the FSS
evaluation output is a vector of zeroes and ones that can easily
be combined with a vector for another predicate. Then, to
address (2), we leverage the fact that our vectors are shared
using replicated secret sharing to take advantage of existing
communication-efficient techniques for semihonest 3-party
honest-majority multiplication [10, 99]. Our techniques for
combining predicates are effective for computing count, sum,
and, by extension, mean, variance, and standard deviation.

Supporting complex aggregates (§V). The above protocol
supports complex filtering, but a limited set of aggregates. To
support more complex aggregates (e.g. max, min, top-k), we
show how to build a shared aggregate tree that supports any
user-defined aggregation function where the server does not
have to know how values are aggregated. Like our shared one-
hot index, our shared aggregate tree uses FSS and replicated
secret sharing to hide the query and data. Our shared aggregate
tree only supports aggregation over time, but notably, queries
do not require any server interaction. Furthermore, server
execution time is independent of the aggregation function.

Providing malicious security (§IV-C, §V). For both types
of queries, we need to defend against a malicious adversary
that might try to tamper with the query results. Some 3-party
honest-majority MPC protocols can rely on replication coupled
with cut-and-choose [42, 71] or triple sacrifice techniques [35],
but these solutions don’t work for us because we use 2-party
FSS. We need to authenticate the results of the FSS evaluations
in a way that is compatible with our techniques for combining
outputs from multiple predicates. Our solution is inspired by
Boyle et al.’s use of information-theoretic MACs [14, 27, 28]
for authenticating FSS evaluation outputs [16]. The challenge
is to make this approach compatible with multiplications: the
multiplication protocol that we use for combining multiple pred-
icate outputs is very efficient, but designed for the semihonest
setting [10, 99]. We show how to use authenticated outputs from
FSS evaluations to securely chain multiplications together such
that the client only needs to check the integrity of the final result
and a random linear combination of intermediate results.
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Data producers Queriers

Fig. 1: System architecture.
Here the ECG sensor and
blood pressure monitor are
data producers, and the
doctors are queriers. The
servers are deployed in dif-
ferent trust domains.

II. System overview
A. Time-series workloads
Waldo accounts for these elements of time-series workloads:
• Append-only: Time-series databases tend to be append-only,
as records represent data captured at some timestamp [102].

• Write-intensive: Time-series workloads have a high ratio
of appends to queries, and so the database must be able to
process a large volume of appends quickly [53, 72].

• Multiple features, multiple predicates: The data recorded
for a timestamp often has multiple features. Therefore,
queries with predicates corresponding to more than one
feature are very common [54, 89].

• Recent data is more valuable: Even though the number of
records grows rapidly over time (time-series workloads are
append-only and append-intensive), the most recent data is
the most relevant, and the value of data decays over time [53].

• Aggregation: Aggregation queries are very common in
time-series workloads. Plaintext time-series databases build
specialized indices to quickly aggregate data [8, 101]

B. Running example: Remote Patient Monitoring
Time-series data is critical to many applications, including
smart homes [75], smart cars [95], energy conservation [96],
agriculture [24], and industrial IoT [100]. We now discuss re-
mote patient monitoring as a running example (although Waldo
can support a wide variety of applications). Remote patient
monitoring systems allow doctors to use sensors to monitor at-
risk patients while they are home. The COVID-19 pandemic has
made these tools even more critical, with more patients opting
for telehealth visits and the federal government expanding
Medicare coverage to remote patient monitoring [74].
RPM can be particularly valuable for at-risk patients to

manage conditions such as hypertension, chronic obstructive
pulmonary disease, diabetes, and asthma [86]. In some cases,
doctors only need to monitor a single vital sign (e.g. glucose
levels in a diabetes patient), but in a growing number of cases,
doctors find it valuable to make decisions based on more
biometric data (e.g. blood pressure, heart rate, and weight [98]).

One challenge for remote patient monitoring is that this data
is extremely sensitive and the query itself can reveal information
about a patient’s condition. For example, the threshold vital
signs that a doctor checks for may reveal if a patient is diabetic.
Waldo ensures that the attacker only learns the database
schema and the structure, origin, and timing of queries (§III).

C. System architecture
The Waldo system is composed of the following entities (Fig. 1):
• Clients: There are two types of clients: data producers
and queriers. Some clients may be both.

– Data producers: Sensors or other devices collect
real-time data and update the servers’ state.

– Queriers: Queriers query the data collected by the
data producers and stored at the servers.

• Servers: Three servers in different trust domains store data
collected by data producers and execute queries made by
queriers. If a majority of the servers are honest, the single
malicious server cannot not learn the data contents, query
filter values, or any search access patterns. These “logical”
servers might be distributed across multiple machines.

Because Waldo leverages distributed trust (§III), each server
should be deployed in a different trust domain. This could mean
that the servers are hosted in different clouds, managed by
different, potentially competing organizations, and/or deployed
in different jurisdictions. Clients send messages directly to each
of the three servers. This is in contrast to prior works that use
a trusted proxy [80, 82, 85]: with a trusted proxy, users route
their queries through a computationally powerful machine that
interacts with the server on behalf of the clients. The proxy
model has the disadvantage that the clients must set up a power-
ful, trusted-by-all machine rather than outsourcing computation
to the cloud. In Waldo, both storage and computation are out-
sourced, and clients interact directly with the untrusted servers.

D. Waldo API
We now describe the API that clients use to interact with Waldo.
Waldo exposes two types of indices to clients: WaldoTable and
WaldoTree. WaldoTable stores multiple features for a single
timestamp and supports multi-predicate queries. WaldoTree, on
the other hand, stores a single feature for a timestamp and only
supports queries over a time range. While WaldoTable supports
more complex multi-predicate filtering, WaldoTree supports
a larger class of aggregation functions and is more performant.
WaldoTree is also useful for queries with predefined filters (as
it is faster and uses less storage than WaldoTable), whereas
WaldoTable is useful when queries are unpredictable. Both
types of indices support Init, Append, and Query operations
where Init and Append are invoked by data producers, and
Query is invoked by the queriers. All routines trigger execution
at the servers. We describe the API for both below.
WaldoTable:
• Init(1_, 1B̃ , schema): Initialize a table index given
computational security parameter _, statistical security
parameter B̃, and a schema layout parameter schema =
(#, �, 2ℓ1 , . . . , 2ℓ� ) where # is the number of records in
the window, � is the number of features associated with
a timestamp, and 2ℓ8 is the feature size for feature 8.

• Append(C, E1, . . . , E� ): Update the table index
to store record with timestamp C and values
E1 ∈ Z2ℓ1 , . . . , E� ∈ Z2ℓ� .

• Query(%1 ∧ · · · ∧ %=, feature, type) → G: Aggregate by
type for feature over the boolean formula composed
of predicates %1, . . . , %=, where each %8 implicitly
conveys the feature it applies to. Here type ∈
{count, sum, mean, variance, stdev}. Output the
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aggregate of values in feature filtered by the query
predicates (or abort if integrity checks fail).

WaldoTree:
• Init(1_, 1B̃ , schema). Initialize a tree index given compu-
tational security parameter _, statistical security parameter
B̃, and a schema layout parameter schema = (2ℓ , type),
where 2ℓ is the feature size of the values in the tree index
and type is any user-defined aggregation function (§V).

• Append(C, E): Update the tree index to store record with
timestamp C and value E ∈ Z2ℓ .

• Query(C1, C2) → G: Aggregate over time interval (C1, C2)
by type (set during initialization) and output the result
(or abort if integrity checks fail).

In WaldoTable, the schema parameter takes a number of
records in the window, # . Because records are constantly
appended, # is not the total number of records in the table,
but rather the number of most recent records that the client
can query (recall that the most recent data is typically the
most valuable). The parameter # represents a tradeoff between
performance (smaller # values result in better performance)
and query expressiveness (clients might want access to data
further in the past). WaldoTable can easily be extended to
support multiple window sizes # if the client is willing to
reveal which window size is being used for the current query.

WaldoTable supports both equality (G = 0) and range
(0 < G < 1) predicates. Clients can chain predicates together
using AND operations. The servers can easily compute NOTs
(§IV-B), and so we can express any combination of ANDs,
ORs, and NOTs via De Morgan’s laws in a WaldoTable query.
Access control.Waldo enforces different permissions for clients
across different tables. Because the servers know the identity
of the client, access control is straightforward: all three servers
must participate to compute a query, and we allow at most
one server to be malicious, so we can restrict the types of
queries that different users are allowed to make using a standard
database access control list [31]. Each server checks a client’s
permissions, and if a client doesn’t have permission for that op-
eration, the honest servers will simply refuse to participate. Note
that the servers can only enforce permissions for the parts of the
query that are public (e.g. the data that the query is executing
on and the query structure), but not the parts that remain private.
Also, permission to make some types of queries (e.g. mean)
implicitly gives permission to view some intermediate values
(e.g. sum and count to compute mean). Access control can be at
the record level in WaldoTable and at the database-table level
in WaldoTree. For simplicity, when describing the design of
Waldo, we focus on the case of a single table, as it is straightfor-
ward to extend this design to multiple tables with access control.

E. Notation
In Waldo, we consider all database values ∈ Z2ℓ where ℓ de-
pends on the feature size defined in schema. Waldo uses secret-
sharing to split a value G ∈ Z2ℓ into parts [G]1, . . . , [G] ? ∈ Z2ℓ

where ? ∈ {2, 3} such that G = (∑?

8=1 [G]8) mod 2ℓ . Note that
we can sample shares in Z2< for < ≥ ℓ to represent values

in Z2ℓ . We sometimes use G1, . . . , G? and G (1) , . . . , G (?) to
also refer to the secret shares of G, and within a server’s
context, we sometimes drop the share subscript altogether.
All arithmetic operations such as (+,−, ·) correspond to
ring operations. Arithmetic operations on vectors refers to
their component-wise application in the underlying ring. [#]
denotes the set {0, . . . , # − 1}. We use 0 ← 1 to denote
assignment of 1’s value to 0, and 0 ←R R denotes randomly
sampling 0 from ring R. We denote the computational security
parameter as _ and the statistical security parameter as B̃.

III. Threat model and security guarantees
We describe Waldo’s security guarantees and, due to
space constraints, delegate Waldo’s formalism (detailing its
guarantees) to §A. Waldo operates in the malicious three-party
honest-majority setting, meaning that it provides security with
abort if at most one server is malicious. In the malicious
threat model, the attacker can influence the server’s behavior
arbitrarily. If a server is malicious, the client does not receive
output and only learns that an error occurred.
If at most one server is corrupted, then Waldo guarantees

that the attacker does not learn the record contents, query filter
values, or any search access patterns and only learns public
information. The public information available to the attacker
is: (1) the database schema (i.e. for each table, the number of
records, number of features, and the size of each feature); (2)
the structure of the query (i.e. the number of predicates, the type
of each predicate, the structure of conjunctions and negations,
the feature being aggregated, and, in the case of WaldoTable,
the aggregation function); and (3) when a query is performed
and which client performed the query. The predicate type
includes whether the predicate is an equality or range (single-
sided or interval) predicate and the feature corresponding
to the predicate. To make the query structure leakage more
concrete, we consider the congestive heart failure query in §I:
the attacker learns that the query is computing COUNT(*) for
(RANGE(f1) OR RANGE(f2) OR RANGE(f3) OR RANGE(f4) OR

RANGE(f5)) AND (RANGE(f6) AND RANGE(f6)) where RANGE

implies a single-sided range predicate and the mapping of
features to feature ID is consistent across queries. Expressing
queries in terms of some query “normal form” with dummy
predicates could eliminate leakage due to query structure,
although this would negatively impact performance and query
expressiveness. As discussed in §II-D, for some types of
queries, clients are able to learn intermediate values (e.g. the
client learns sum and count when running a mean query).
Notably, Waldo does not reveal any information about the

filter values, which records are selected in a query, or how
many records are selected, among other potential sources
of leakage; protecting access patterns and volume leakage
defends against a large class of leakage-abuse attacks [23, 46–
48, 56, 58, 61, 62, 64, 79, 84, 111]. Because Waldo is maliciously
secure, the client can check the integrity of the query result. If
at most one server is corrupted, Waldo ensures that only clients
granted permission to make queries or updates to a given table
are able to perform those operations. Waldo does not provide
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availability if any one server refuses to provide service.
We formally model the end-to-end security guarantees of

Waldo by defining an ideal functionality F that specifies the
behavior of an ideal system, capturing the properties discussed
above. F additionally captures the fact that the client can verify
the integrity of the result. In §A, we present a formal definition
of security using F , which we use in the following theorem:

Theorem 1: Using Definition 1 (§A), Waldo securely
evaluates (with abort) the ideal functionality F (§A) when
instantiated with secure distributed point and comparison
functions and a pseudo-random function, all with a
computational security parameter of _.

We include the full proof in §A.

IV. Multi-predicate queries
In this section, we describe how to implement the WaldoTable
API to filter on multiple predicates. We will start with a
strawman that provides limited functionality and incomplete
security and show how to modify our scheme to support the
full query functionality and security guarantees we want.

A. Single predicate with semihonest security
Our first step is to choose a building block to help us
obliviously filter by predicates. As we discussed previously,
ORAM and generic MPC are natural candidates, but these
solutions perform poorly in the time-series setting (§VII). We
instead identified two-party function secret-sharing to be an
excellent fit for equality and range predicates.
Tool: Function Secret Sharing (FSS). Two-party function
secret sharing (FSS) makes it possible to split a function 5 into
succinct function shares such that any strict subset of the shares
doesn’t reveal anything about the function 5 , but when the
evaluations at a given point G are combined, the result is 5 (G).
A two-party FSS scheme is defined by the following algorithms:
• Gen(1_, 5 ) →  1,  2: Given the security parameter 1_ and
a function description 5 , output keys  1 and  2.

• Eval( 8 , G) → H8: Given the key  8 and input G, output
value H8 , corresponding to this party’s share of 5 (G). We
assume that key  8 implicitly contains the party index 8.

Adding together the two outputs of Eval H1, H2 yields 5 (G).
We identify two FSS constructions as a natural fit for

Waldo: distributed point functions and distributed comparison
functions [16–18]. Distributed point functions (DPFs) are
FSS schemes for the point function 5U,V where 5U,V (U) = V
and 5U,V (U′) = 0 for all U′ ≠ U [17, 18]. Similarly distributed
comparison functions (DCFs) are for functions 6U,V where
6U,V (G) = V if G < U and 6U,V (G) = 0 otherwise [16].
Analogously, DCFs can also describe predicates G > U.
Constructions for interval containment (IC) build on DCFs to
express functions of the form 0 < G < 1 [19]. Throughout the
paper, we will use Gen= (1_, U, V) and Gen< (1_, U, V) to refer
to FSS generator algorithms for DPFs and DCFs respectively.
For 0 < G < 1 predicates, we use the IC construction from
Boyle et al. [19] that requires 2 DCF keys per IC, and we refer
to its generator as GenIC (1_, 0, 1, V). For all these cases, we

refer to the evaluation algorithms as Eval, and we assume the
keys implicitly convey the type of algorithm being invoked.
DPFs are a natural fit for equality queries, and DCFs are

a natural fit for range queries.

FSS for private data. Applying FSS to filter public
data based on an equality or range predicate is fairly
straightforward [16, 18, 106]. Two servers store identical copies
of a public database (here the database is just a list of values).
To privately query the database for the number of records
matching a predicate, the client generates FSS keys with V = 1
for the equality or range predicate using a DPF or a DCF and
sends a key to each server. Each server evaluates its key on
each value in the database, sums the evaluations together, and
sends the results back to the client, computing

∑#
8=1 Eval( , 38)

for a database composed of values 38 , . . . , 3# with FSS key  
on server B. When the client sums the results from each server,
it obtains the number of records matching the predicate.

Leveraging FSS to search over private data, however, intro-
duces a new challenge: the server cannot simply evaluate its FSS
key on the database contents because the server should not be
able to view the database contents. At the same time, the servers
need to evaluate their keys on identical copies of the database
to produce correct outputs. Prior works on using FSS for secure
computation [16, 19] keep values secret by ensuring that the
servers hold additively masked versions of the secret. To output
shares of 5 (G) instead of 5 (G + A) (where 5 is the shared func-
tion, G is the secret input, and A is the mask), they rely on shar-
ing the matching function 5̃A = 5 (G−A). In the database setting,
each entry G8 must be masked with an independently sampled A8 .
Thus we would need a different 5̃A8 for each database entry G8
even though the servers only need to evaluate a single function
5 . This practically means that the size of the function shares
would match the size of the database, defeating the purpose of
using FSS to minimize communication. Therefore, we need dif-
ferent techniques for the encrypted time-series database setting.

Our solution to this problem is inspired by that of Dory [30].
For each feature, we build a table of size # × 2ℓ where #
is the number of records that can be queried (the window
size from §II-D) and 2ℓ is the feature size (i.e. the number
of possible values for that feature). For each record, the
corresponding row in the table is set to “1” at the location
corresponding to record value and “0” elsewhere. We call this
structure a one-hot index, as it is a table of “one-hot” vectors,
and we use this tool as a building block to construct a shared
one-hot index. While the construction of the core one-hot
index is very similar to the data structure in Dory, the shared
one-hot index we construct from it provides more powerful
functionality and guarantees confidentiality and integrity using
different techniques, as we discuss later.
Now we can leverage FSS using the structure rather than

content of the search index. We want to compute the number of
records matching the predicate. For every entry 38, 9 in the table
� for record 8 ∈ [#] and feature value 9 ∈ [2ℓ], the server
B evaluates its FSS key  on the current value 9 , multiplies
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the evaluation by the table entry 38, 9 , and then computes

EvalPred(B,  , �) ←
2ℓ−1∑
9=0

(
Eval( , 9) ·

#∑
8=0

38, 9

)
(1)

There are two remaining challenges here. First, we need to
understand how to encode different types of record values
using a small feature size 2ℓ , as the computation required is
$ (# · 2ℓ). Second, while this clearly works if 38, 9 ∈ {0, 1},
if the values 38, 9 are encrypted, then the summation will not
produce the correct result. We address both below.

Encoding values with a small feature size. Choosing a small
feature size 2ℓ is critical for good performance in WaldoTable.
For the remote patient monitoring applications we examine,
we find that all sensitive fields with a predicate computed over
them are already from a small domain (size 28) or can easily
be mapped to one (§VII-B). Notably only the values being
compared in predicates need to use small feature sizes; the
values being aggregated are not subject to these restrictions.
We summarize three techniques for encoding values in a large
domain using a small feature size below.
One way to represent a large set of values using a small

feature size is by bucketing intervals in Z2ℓ , improving
performance at the expense of precision. Bucketing
preserves ordering for range predicates and is used in prior
work [6, 22, 26] to efficiently compute aggregate statistics.
Candidates for bucketing include attributes such as weight,
blood glucose level, salary, GPA, or percentages.
Hash maps or Bloom filters can compress large values for

point queries where high precision is required (for Bloom filters,
the client needs to check that each bit at each hash location is
1). One example of a field that can be represented in this way
and is only used in point queries is an identifier (e.g. a client
ID, company ID, social security number, or phone number).
Large domains can also be represented via a conjunction

of predicates. For example, a time can be represented as a
timestamp or as a conjunction of the year, month, day, hour, and
minute. The number of predicates can leak information about
the resulting filter, although this leakage can be eliminated
by always using the maximum number of predicates.

Identifying replicated secret sharing (RSS). To solve the sec-
ond problem (protecting the database contents while computing
the correct sum), we turn to secret sharing. In standard 2-out-
of-2 secret sharing, to secret share a value G ∈ Z2: , we sample
shares [G]1, [G]2 ←R Z2: such that G = [G]1 + [G]2. Since the
output of Eval is 2-out-of-2 shares of 5 (G), if the table � is
also shared in the same way, then each of the 2ℓ multiplications
in Equation (1) will require expensive MPC tools [13]. While
2ℓ secure multiplications might seem feasible, to chain together
predicates, we will show in §IV-B that we need to perform
# · 2ℓ multiplications to evaluate a single predicate, which is
impractical if these multiplications must use Beaver triples [13].
To overcome this challenge, we leverage replicated secret shar-
ing, which hides the data contents while only requiring local
multiplications. Replicated secret sharing requires switching
from two servers to three servers, but this third server allows
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3, K2

1K1
1, K1
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Fig. 2: Query predicate evaluation with FSS and RSS.

us to significantly improve performance. This combination of
RSS with FSS makes single-depth multiplications essentially
free (no communication required).

We use the 2-out-of-3 replicated secret sharing from Araki
et al. [10]. To secret share a value G ∈ Z2: , sample shares
[G]1, [G]2, [G]3 ←R Z2: such that G = [G]1 + [G]2 + [G]3. Each
server gets a pair of shares: (1 has ( [G]1, [G]2), (2 has
( [G]2, [G]3), and (3 has ( [G]3, [G]1).

Layering RSS with FSS. RSS provides the replication
necessary for FSS without sacrificing confidentiality. If the
database is split into shares [�]1, [�]2, [�]3, then the client
can generate three pairs of FSS keys ( 1

1 ,  
1
2 ), ( 

2
1 ,  

2
2 ),

and ( 3
1 ,  

3
2 ). Each server’s share of the database is a pair

(�.first, �.second), where (1 has ( [�]1, [�]2), (2 has
( [�]2, [�]3), and (3 has ( [�]3, [�]1). The client sends (1
( 1

1 ,  
2
1 ), (2 ( 2

2 ,  
3
1 ), and (3 ( 3

2 ,  
1
2 )). Then

• (1 computes G (1)1 ← EvalPred(1,  1
1 , [�]1) and

G
(2)
1 ← EvalPred(1,  2

1 , [�]2),
• (2 computes G (2)2 ← EvalPred(2,  2

2 , [�]2) and
G
(3)
1 ← EvalPred(2,  3

1 , [�]3), and
• (3 computes G (3)2 ← EvalPred(3,  3

2 , [�]3) and
G
(1)
2 ← EvalPred(3,  1

2 , [�]1).

Client can fetch these and compute G (1) ← G
(1)
1 + G

(1)
2 , G (2) ←

G
(2)
1 +G

(2)
2 , G (3) ← G

(3)
1 +G

(3)
2 , and G ← G (1)+G (2)+G (3) . This way,

RSS allows us to hide contents of the data from servers and eval-
uate a single predicate without communication between servers
(Fig. 2). We call this data structure (and the corresponding
API for appending to and querying it) a shared one-hot index.

Appends to this shared one-hot index are straightforward:
to append value E8 corresponding to feature 8 with feature
size 2ℓ8 , the data producer generates a one-hot vector + ∈ Z2ℓ8

2:
where + 9 = 1 if 9 = E8 and + 9 = 0 if 9 ≠ E8 . Then, the data
producer splits + component-wise into RSS shares and sends
a pair of shares to each server. Each server appends each
share to its corresponding table. Note that we do not support
private updates to existing records, and so we only consider
append-only workloads like time-series. Bunn et al. [20]
also explore how FSS and RSS compliment each other in
the distributed ORAM setting. They show how to provide
a private key-value store interface, whereas we build a data
structure that can handle more complex queries while only
requiring a small number of FSS keys.

6



B. Multiple predicates with semihonest security
So far, we have focused on evaluating a single predicate,
but our goal is to filter records based on a combination of
multiple predicates. We have also focused only on counting
the number of records matching a predicate, but in practice we
additionally want to compute sums (below we describe how
to use sum and count as a foundation for other aggregates).
To support both of these, we transition from each server

computing a single value (the number of records matching the
predicate) to each server computing a filter (a vector of size
# where the value at index 8 = 1 if record 8 ∈ [#] matches
the predicate). Server B with FSS key  and table � with
table entry 38, 9 ∈ Z2ℓ can compute

FilterPred(B,  , �) ←
( 2ℓ−1∑
8=0

(
Eval( , 8) · 30,8

)
, . . . ,

2ℓ−1∑
8=0

(
Eval( , 8) · 3#−1,8

) )
(2)

From this filter, it is easy to count the number of matching
records as before: simply sum the elements in the filter.
Computing the sum of values for records matching the filter
requires more work, as we need to compute the dot product
of the filter � and the values , , where , is a vector of
database values corresponding to the feature being added (not
in one-hot form), and both are secret-shared.
Combining filters using logical ANDs also requires

multiplication. Given two filters �1 and �2, we can compute
�1 ∧ �2 by multiplying �1 and �2 together because all the
elements are in {0, 1}. The NOT operator can be easily
computed locally (one pair of shares is set to [G]8 ← 1 − [G]8
and the others are set to [G]8 ← −[G]8), and the OR operator
can be written as a combination of ANDs and NOTs. Thus the
problems of aggregating by sum and combining filters both
reduce to the problem of multiplying secret-shared values.
Tool: Multiplying RSS shares. Generic MPC tools for
multiplication are particularly efficient in the three-party honest-
majority setting. Given shares G8 , G8+1, H8 , H8+1, we can compute
I8 = G8H8 + G8+1H8 + G8H8+1. Then I1 + I2 + I3 = GH, yielding a 3-
out-of-3 additive sharing. We refer to this existing technique as
Mult, which takes in RSS shares of operands G, H and outputs
3-out-of-3 shares of GH. To obtain a replicated secret-sharing,
(8 can send a blinded share I8 + U8 to (8+1 where (U1, U2, U3)
is a fresh secret-sharing of zero. To generate fresh sharings of
zero, we rely on a pseudorandom function (PRF) keyed during
initialization. During setup, server (8 samples PRF key :8 and
sends :8 to server (8+1. The 9 th share of zero is (I1, I2, I3)
where I8 = PRF(:8 , 9) − PRF(:8−1, 9). This general approach
is used in CryptGPU [99], and the technique for generating
fresh sharings of zero is from Araki et al. [10]. We refer to this
technique for resharing 3-out-of-3 shares to get RSS shares as
Reshare, and Mult followed by Reshare as MultAndReshare,
which takes RSS shares of G, H and outputs RSS shares of GH.
Supporting multiple predicates. This multiplication tool
simplifies the problem of summation and combining multiple
filters. The local computation costs are small, but now each

server must send # values where # is the number of records
for each multiplication. Generating filters using FSS with
RSS produces filters that are 3-out-of-3 shared, and so before
multiplying them, we use the same share conversion trick to get
replicated secret shares. To reduce the cost of share conversion,
we can precompute the PRF evaluations and store them until we
receive a query, making the online cost of multiplication and
resharing depend almost entirely on the cost of communication.
Supporting different types of aggregates. So far, we have
described how to compute count (summing elements in the filter
�) and sum (computing the dot product of � and the values,).
We now discuss how to use these building blocks to compute
other functions using previously known techniques. A well-
known technique for computing the mean is to run a sum and a
count query and divide locally. By storing not just the value -
but also -2, it is also straightforward to compute the variance of
- as Var(-) = � [-2] − (� [-])2 using the above technique to
compute the mean and then squaring and subtracting locally. For
standard deviation, the client locally computes the square root of
variance. When using the same filter with different aggregation
functions, we can reuse the filter to save computation.

C. Multiple predicates with malicious security
Up to this point, we have only considered a semihonest
adversary, but to defend against a malicious adversary, the
client needs to be able to check that the servers performed
the computation correctly. We leverage information-theoretic
MACs from MPC [27] and show how to provide integrity
when chaining together predicates evaluated using FSS.
Tool: Information-theoretic MACs. To authenticate a value
G in the ring Z2: , we use the information-theoretic MACs
from SPDZ2: [27]. The servers hold shares of G over the ring
Z2:+B where B is the statistical security parameter. For some
MAC key U ∈ Z2:+B not known to the servers, the servers
also hold shares of UG ∈ Z2:+B . These MACs are additively
homomorphic: UG1 + UG2 = U(G1 + G2). All computation is
now performed in Z2:+B over both the value and the MAC,
and the protocol aborts if the output H and the MAC tag f
do not satisfy UH = f. The probability that the attacker can
forge the MAC is the probability that the attacker can guess B
lower bits of U, which is 1/2B . We choose to use rings rather
than fields even though this means that we need a larger ring
because it allows us to take advantage of native instructions
for addition and multiplication in our implementation.
Encoding information-theoretic MACs. We would like to
apply information-theoretic MACs to Waldo such that the
client chooses a value U ←R Z2:+B and then receives a query
result of the form (G, f = UG). Existing RSS-based 3PC works
in the honest-majority setting provide malicious security for
multiplications by replication combined with either cut-and-
choose techniques [42, 71] or triple sacrifice [35]. Our setting is
different because we are interleaving 2-party FSS with 3-party
RSS. Using 2-party FSS requires us to use dishonest-majority
techniques to provide malicious security, and information-
theoretic MACs are a natural candidate here [14, 16, 27, 28].
Because we use MACs to authenticate the FSS evaluations,
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we can take advantage of authenticated input shares to provide
malicious security when we combine filters via multiplication.

To authenticate multiplications, we use linear combinations
of all intermediate values G8 and their MAC tags f8 with
random coefficients j8 , i.e.,

∑
j8G8 and

∑
j8f8 where f8 =

UG8 [27]. This technique allows us to safely compute the MAC
tag for GH by multiplying f = UG directly with H because the
batch check via random linear combinations ensures that GH
is bound to the resulting MAC tag. The servers can compute
shares of a random value j8 using the same technique with
PRFs that we use to generate random sharings of zero [10];
we refer to this as RandCoeff, which outputs RSS shares of
random values and takes as input server index ∈ {1, 2, 3} and
the number of shares needed. With RSS shares of j8 values,
servers invoke the Mult function with RSS shares of j8 and G8
to get 3-out-of-3 shares of j8G8 and similarly for j8f8 . We refer
to this function as RandComb. Prior MPC work that computes
random linear combinations of MACs requires the servers to
perform a two-round commit-and-open protocol [27], but we
can avoid this cost by taking advantage of the client. Each server
simply sends the client its share of H =

∑
j8G8 and I =

∑
j8f8

and the client assembles the shares and checks that UH = I. Prior
work [27] shows that this check catches any introduced errors
with high probability; however, we only achieve B̃ = B−log(B+1)
parametric statistical security (see Lemma 2).

The only remaining challenge is how to encode U. A natural
choice would be to keep two versions of the database where
if the first version contains G, the second version contains
UG. Then, the servers execute queries on both versions. This
solution is secure but requires twice the amount of storage
and makes revocation challenging: every client knows U, so if
access is revoked, the entire table must be rebuilt with a new U′.
Instead, in our approach, the client chooses an U value for

every query and encodes U in the FSS key itself. Instead of
sending one key per predicate, the client now sends two FSS
keys per predicate: one that evaluates to 1 on the desired input
(as in the semihonest case), and another that evaluates to U
on the desired input. The servers execute the query for the
keys that evaluate to 1 to produce G and then for the keys that
evaluate to U to produce f, and the client checks that UG = f.
This has two key benefits: (1) we do not need to expand the size
of the index for malicious security, and (2) clients do not need
to share U values (no recomputation necessary when access is
revoked). Boyle et al. [16] first explored the idea of supporting
malicious security by encoding U values directly in FSS keys,
but for the MPC setting rather than the client-server setting in
databases. A key difference between these settings is that, in
the MPC setting, the parties must perform a joint verification
protocol, whereas in our setting, the client can verify the
MAC directly from the shares produced by each server.

D. Putting it together
We present the final protocol for the client in Fig. 3 and the
server in Fig. 4 and provide a high-level overview below.
In Fig. 3, the client begins by sampling the MAC key U.

For each predicate %8 , the client samples three pairs of FSS

keys, which evaluate to shares of 1 for inputs satisfying %8 . In
addition, for malicious security, the client samples three extra
key pairs, which evaluate to shares of U when %8 is satisfied.
The client sends the keys corresponding to the servers’ RSS
shares of the data, along with the predicate feature IDs, the ID
of the feature being aggregated, and the type of aggregation
(e.g. sum, count). Once the client receives responses from the
servers, it reconstructs the query result G and the MAC tag
f, as well as the value <̂ and its MAC tag f̂ that contain
traces of malicious behavior via a random linear combination
of the entire transcript. The client can then verify the MAC
tags and output G if the checks pass.

In Fig. 4, the servers receive FSS keys corresponding to the
query result and the query MAC tag for each predicate and
each RSS share of the data. For each predicate in the query, the
servers need to compute RSS shares of the intermediate filter
and its corresponding MAC tag. To do this, they evaluate each
FSS key on the corresponding table share to generate a 1-out-
of-6 share of the resulting filter (FilterPred from §IV-B). Each
server has RSS shares of the table and receives 2 FSS keys to
evaluate each predicate, so it generates two 1-out-of-6 shares of
the predicate filter, which it can then combine into a single 1-
out-of-3 share. By running the Reshare protocol, the servers can
convert their 1-out-of-3 shares to RSS shares. Then the servers
run MultAndReshare (§IV-B) to combine predicates together
and output an RSS sharing of the accumulated filter. They can
then use shares of the final accumulated filter to compute shares
of the final aggregate. By performing this process for both the
FSS keys for the query result and the FSS keys for the MAC
tag, the servers can compute shares of both the query result
and the MAC tag. To ensure that the malicious server does
not manipulate the filter shares or corresponding MAC tags
during multiplication, the servers must compute a random linear
combination of all the messages they received using RandCoeff
(§IV-C). The servers send back shares of the final result G and
the corresponding MAC tag f, as well as the accumulated ran-
dom linear combination <̂ and its corresponding MAC tag f̂.

V. Complex aggregates over time ranges
While our shared one-hot index can compute a useful set
of aggregates using sum and count queries, not all valuable
aggregates can be expressed as a combination of dot products
(e.g. min, max, top-k). In many cases, the client needs to
compute a complex aggregate over a time period (e.g. a doctor
might want to compute the maximum glucose level of a
diabetic patient in the last week). Our WaldoTree index allows
the client to compute any aggregate function over a time
period without server-server interaction and without revealing
the time interval being queried (as prior work does [21, 22]).
Because it is more efficient than WaldoTable and doesn’t
require interaction between the servers, WaldoTree is also
valuable in cases where the query predicates are predefined.

We call our solution to this problem a shared aggregate tree.
Our core data structure is inspired by ideas from authenticated
data structures [65], Faber et al. [38], Arx [82], and Time-
crypt [21]: each leaf node contains a (private) record value, and
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Client.WaldoTable.Query(1 ,(2 ,(3 (%1 ∧ · · · ∧ %= , ?, type)
1: U←R Z2:+B ,K8 ,K

′
8
← {} for 8 ∈ {1, 2, 3}

2: ∀8 ∈ {1, . . . , =}, ?8 ← idx(%8)
3: for 8 = 1 to = do
4: for 9 = 1 to 3 do
5: ( 91 )8 , ( 

9

2 )8 ← Gen(1_, %8 , 1)
6: ( ′ 91 )8 , ( 

′ 9
2 )8 ← Gen(1_, %8 , U)

7: end for
8: K1 ← K1

⋃( 1
1 )8 , ( 

2
1 )8 and K′1 ← K′1

⋃( ′11 )8 , ( 
′2
1 )8

9: K2 ← K2
⋃( 2

2 )8 , ( 
3
1 )8 and K′2 ← K′2

⋃( ′22 )8 , ( 
′3
1 )8

10: K3 ← K3
⋃( 3

2 )8 , ( 
1
2 )8 and K′3 ← K′3

⋃( ′32 )8 , ( 
′1
2 )8

11: end for
12: for 8 = 1 to 3 do
13: (G8 , f8 , <̂8 , f̂8) ←

(8 .WaldoTable.Query(K8 ,K′8 , {? 9 } 9 , ?, type)
14: end for
15: G ← ∑3

8=1 G8 , f ←
∑3
8=1 f8 , <̂←

∑3
8=1 <̂8 , f̂ ←

∑3
8=1 f̂8

16: if (U · G ≠ f) ∨ (U · <̂ ≠ f̂) then
17: Output ⊥ and broadcast ⊥ to all servers
18: end if
19: Output G

Fig. 3: Client WaldoTable.Query algorithm. Gen(1_, %8 , V) refers to
Gen= (1_, 0, V),Gen< (1_, 0, V), or GenIC (1_, 0, 1, V) depending on
the predicate %8 being G = 0, G < 0, or 0 < G < 1, respectively. We
denote %8’s feature ID as idx(%8), and {?8}8 denotes {?1, . . . , ?=}.

each internal node contains the (private) aggregate of its two
children. Each leaf node has a public timestamp, and the = leaf
nodes are ordered by time so that each internal node has a public
time interval. In this way, the client can compute an aggregate
over some time interval by retrieving at most 2 log = + 1 nodes.
This set of nodes represents the covering set, as it covers the
time range that the client is querying (see Fig. 5). Once the
client has retrieved the nodes in the covering set, the client can
locally aggregate the intermediate aggregates to compute the
query result. To hide the contents of the tree from the server, we
can again use RSS to share the aggregate value of each node.

Oblivious queries. The client cannot directly request the
covering set from the server, as this set reveals to the server
the time period being queried. To hide this set, we can once
again leverage FSS. We use the same techniques for combining
FSS with RSS discussed in §IV-A and so do not describe the
interplay between FSS and RSS. As a strawman, the client
could send 2 log = + 1 logical DPF keys to the servers (here
we refer to each “logical” FSS key as corresponding to 3
“physical” FSS keys, one for each of the 3 pairs of servers),
each of which corresponds to a node in the covering set. Note
that this strawman solution requires the timestamps at leaf
nodes to be at regular intervals (we fix this issue in our final
solution). To prevent query leakage, clients always need to
send 2 log = + 1 keys to the servers.

We can reduce the number of FSS keys that the client needs
to send to just two logical keys per server pair by instead using
DCFs for the two intervals 0 < G and G < 1. The client gener-
ates the DCF keys for the leaf level of the tree, sends the keys
to the server, and then each server evaluates its DCF keys on
the timestamp for each leaf separately for both 0 < G and G < 1.
We say that a leaf node is “activated” if its DCF evaluation is a

Server.WaldoTable.Query(1 ,(2 ,(3 (K,K′, {?8 }8 , ?, type)
1: Parse K as ( 1)1, ( 2)1, . . . , ( 1)= , ( 2)=
2: Parse K′ as ( ′1)1, ( 

′
2)1, . . . , ( 

′
1)= , ( 

′
2)=

3: <̂← 0, f̂ ← 0, I1 ← 1 if ID = 2 and 0 otherwise, and I2 ← 1 if
ID = 1 and 0 otherwise.

4: �̃ ← (I#1 , I
#
2 ) , �̃ ′ ← (I

#
1 , I

#
2 ) ∈ Z

#

2:+B
× Z#

2:+B
.

5: for 8 = 1 to = do
6: �1 ← FilterPred(ID, ( 1)8 , )?8 .first)
7: �2 ← FilterPred(ID, ( 2)8 , )?8 .second)
8: �′1 ← FilterPred(ID, ( ′1)8 , )?8 .first)
9: �′2 ← FilterPred(ID, ( ′2)8 , )?8 .second)
10: � ← �1 +�2 and �′ ← �′1 +�

′
2

11: �̃ ← Reshare(1 ,(2 ,(3 (�) and �̃ ′ ← Reshare(1 ,(2 ,(3 (�′)
12: �̃ ← MultAndReshare(1 ,(2 ,(3 (�̃ , �̃ )
13: �̃ ′ ←MultAndReshare(1 ,(2 ,(3 (�̃ ′, �̃ )
14: {j̃1, . . . , ˜j2# } ← RandCoeff (ID, 2# )
15: <̂← <̂ + RandComb(�̃ | |�̃ , {j̃1, . . . , ˜j2# })
16: f̂ ← f̂ + RandComb(�̃ ′ | |�̃ ′, {j̃1, . . . , ˜j2# })
17: end for
18: if type is sum then
19: G ← ∑#

8=1 Mult
(
�̃8 , (�?)8

)
, f ← ∑#

8=1 Mult
(
�̃ ′8 , (�?)8

)
20: end if
21: if type is count then
22: G ← ∑#

8=1 �̃8 .first, f ← ∑#
8=1 �̃

′
8 .first

23: end if
24: Output (G, f, <̂, f̂)

Fig. 4: Server WaldoTable.Query algorithm. We use # for the window
size, = for the number of query predicates, and ID ∈ {1, 2, 3} for the
server id. Variables with “tilde" denote RSS shares. The variables
�,) refer to RSS shares of database and its corresponding shared
one-hot index, respectively. We use (� ?)8 to denote the 8th record’s
?th feature in � (not in one-hot form), )?8 refers to the shared one-hot
index for ?8 th feature, and �̃8 denotes 8th RSS share in �̃. We use
first, second to access the respective component from an RSS share.
For simplicity we assume that predicates are chained via conjunctions;
disjunctions can be expressed by adding negations.

0 1 72 3 4 5 6
Timestamp

Fig. 5: Node activation for the query 0 < G < 7. Green nodes are
activated, and nodes with dashed boundary are in the covering set.

secret-share of one, meaning that the node is within the range
that the client is querying for (note that to protect the client’s
query, the server does not know whether or not a node is acti-
vated). Each server then projects the DCF evaluation for each
single-sided range at the leaf nodes to the internal nodes. Projec-
tion maintains the invariant that an internal node is “activated”
only if both of its children are. We can perform this projection
by copying the value of the left or right child to the parent
depending on the direction of the single-sided range being
evaluated. For example, in Fig. 5, the value of node 0 is copied
to the parent of node 0 and node 1 (as this is the left side of the
range), and the value of node 7 is copied to the parent of node 6
and node 7 (as this is the right side of the range). This projection
operation allows us to correctly copy the DCF evaluations (se-
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cret shares of the activation status) from the leaf nodes to the in-
ternal nodes (1) without knowing which nodes are actually acti-
vated, while (2) maintaining the invariant that a node is only ac-
tivated if its time interval covers part of the queried time range.

However, we only want to retrieve the nodes in the covering
set (i.e. the nodes where the parent is not also activated); we
can’t retrieve all activated nodes because the number of total
activated nodes is large and depends on the queried range.
To filter out nodes where the parents are also activated, we
compute two sums for each level ℓ: (1) the sum of all the
activated nodes -ℓ , and (2) the sum of the children of the
activated nodes .ℓ . Then for each level ℓ, we return -ℓ −.ℓ−1.
This ensures that we return at most one node per level (we
compute each single-sided range separately). At the end of
the protocol, the client receives log = values for each of the
single-sided ranges, which the client can then use to recover
the covering set for the intersection of the two ranges.
High-throughput appends. Because the leaves are ordered
by time, appends are fairly straightforward. Nothing about the
append is unpredictable or secret except for the value that the
client is appending, and so the server simply sends the path
from the root to the right-most leaf node (the tree will populate
leaves moving to the right). The client uses these nodes to
compute a path that incorporates the new value being appended
at the internal node and aggregates and sends this path (secret-
shared) to the servers. The servers use this path to update the
tree to incorporate the new node. To keep the tree balanced,
the servers can periodically rotate the tree (if all servers rotate
the tree in the same way, the RSS sharings remain correct).
Because access control is only at the table level for WaldoTree,
clients can view the aggregates in the upper levels of the tree
without a problem. Like WaldoTable, WaldoTree does not
support privates updates to existing records (this functionality
would require privately writing an arbitrary path in the tree).

One way to reduce the append overhead for resource-
constrained data producers is to batch appends: the client
retrieves the path along the right edge of the tree and then
sends back the nodes for paths for the new values in one
round trip. This greatly reduces not only round trips, but also
total bandwidth because (1) only one path needs to be fetched,
and (2) many of the new paths sent to the servers overlap.
Malicious security. Malicious security for our shared
aggregate tree is straightforward. As in the shared one-hot
index, we use information-theoretic MACs for queries by
encoding them directly into the FSS key, as initially proposed
by Boyle et al. [16]. For our appends, we need to ensure that
the servers send the correct version of the right-most path in
the tree. Here, we can rely on the fact that at most one server
is malicious and each secret share is stored at two servers: if a
pair of shares don’t match, the client knows a server is corrupt.
Summarizing old data. We need to ensure that the tree size
(and query execution time) stays bounded as the number of
records increases. Our approach is inspired by Timecrypt [21].
When our tree reaches a maximum size, we rotate the tree,
causing the left-most leaves to exceed the maximum depth.

We then prune these leaves, leaving previously internal nodes
as leaf nodes to summarize the pruned data. The client can no
longer make fine-grained queries over old data, but can make
coarse-grained queries that include this old data. Summarizing
older data is common in modern time-series databases [52, 101].
Aggregation functions. The aggregation function does not
need to be based on addition and can include min, max, top-k,
bottom-k, histograms, and quantiles (some functions, like
top-k, require storing multiple aggregate values per node).
Our shared aggregate tree can also in principle support sketch
algorithms [70], as well as aggregation-based encodings that
allow private training of linear models [26, 57]. Notably,
aggregation functions with the same output size will require
the same amount of server execution time.
Final protocol. We present the final protocol for the client in
Fig. 12 and the server in Fig. 13 (included in the appendix).

VI. Implementation
We implemented Waldo in ∼6,200 lines of C/C++ code
(excluding tests and benchmarking infrastructure). We used the
libPSI [3] DPF implementation (with some minor modifica-
tions), the cryptoTools library [2] for cryptographic primitives,
and gRPC for communication. We configured Waldo to aggre-
gate values of up to size 232 and set our statistical security pa-
rameter B̃ = 80 and computational security parameter _ = 128.
This allows us to use a 128-bit ring, which makes the additions
and multiplications used to evaluate predicates very fast. Our
implementation is available at https://github.com/ucbrise/waldo.
EvalAll for DCFs. We extend the state-of-the-art DCF
construction from Boyle et al. [16] to perform full domain
evaluations more efficiently. Waldo’s protocols rely on evaluat-
ing FSS key  on each point in the domain of size 2ℓ , referred
to as EvalAll( ) [18]. Boyle et al. [18] proposed an EvalAll
optimization for DPFs that reduces pseudorandom generator
(PRG) invocations by a factor of ℓ. We apply this same insight
to DCFs, providing the first EvalAll implementation for DCFs
that we are aware of. This optimization improves single-
threaded execution time for DCF EvalAll by 7.5× for ℓ = 20.
Parallelism. We parallelize most of the query computation in
WaldoTable and WaldoTree across 32 threads. Waldo achieves
parallelism both within and across the evaluation of predicates.
We can additionally parallelize the PRF evaluations for share
conversion and malicious security.

VII. Evaluation
In evaluating Waldo, we ask the following questions:
1) How does the performance of Waldo compare to that

of an ORAM and generic MPC baseline in terms of
latency (§VII-C, §VII-D), throughput (§VII-E), bandwidth
(§VII-F), and monetary cost (§VII-G)?

2) How do the individual components of Waldo perform,
and how are they affected by different parameter settings
(§VII-C, §VII-D)?

Experimental setup. We evaluate Waldo on AWS EC2
instances. For the servers, we use r5n.16xlarge instances
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with 32 physical cores and 512 GB memory running on a
3.1 GHz Intel Xeon scalable processor. For the client, we
use an r4.2xlarge instance with 4 physical cores and 61
GB memory running on a 2.3 GHz Intel Xeon E5-2686 v4
processor. To model the cost of transferring data between trust
domains where the servers are geographically close but located
in different data centers, server machines have a network
bandwidth of 3 Gbps (max bandwidth to an external IP address
in Google Cloud [25]) with 20ms RTT (the ping time we
measured between AWS regions us-west-1 and us-west-2).

A. Baselines
We now describe the two baselines that we compare Waldo
to: a multidimensional tree in ORAM, and our functionality
executed in a generic MPC framework. We do not compare
against Timecrypt [21] or Zeph [22] because they do not
support multi-predicate queries and provide less security (only
semihonest security and they leak the query).
Oblivious multidimensional tree. Prior work shows how
to achieve obliviousness for multidimensional queries by
layering oblivious tools like private information retrieval with
a multidimensional tree [43, 60]. Because we need to support
both searches and updates, we store a multidimensional tree in
ORAM. We use an R-tree [49] because it handles updates well
(k-d trees cannot be rebalanced [15]). However, R-trees are
poorly suited to oblivious exact query execution (prior work
uses them for approximate queries). While the average-case
search complexity is logarithmic in tree size, the worst-case
search complexity is linear. Our baseline does not pad the
number of node accesses to the worst-case (this is impractical),
and so its security guarantees are weaker than Waldo’s. An
interesting direction for future work would be to design a mul-
tidimensional tree for time-series data compatible with ORAM.
We implement our oblivious R-tree by taking an existing

R-tree implementation [49] and replacing reads and writes to
nodes in local memory with ORAM accesses. We use SEAL-
ORAM’s implementation of PathORAM [5], which relies on
MongoDB for block storage. Because Waldo uses an in-memory
index, we configure MongoDB to use a memory-mapped file.
A full-fledged implementation would use techniques from
oblivious data structures (ODS) [107] to encode data about
the position map in the R-tree itself to minimize client local
storage. For simplicity, we store the entire position map locally,
as using ODS techniques would likely only add overhead (at
the bare minimum, we would need to keep pointers in ORAM
blocks). We use random data and random predicate values for
our ORAM baseline, which adds a small amount of noise to
our experiments (in contrast, Waldo and our MP-SPDZ baseline
are fully oblivious, and so their performance is not affected by
the data or query values). Point and range queries are executed
in the same way, and we set tree dimension to the number
of query predicates (for WaldoTable, the dimension is 1).
MP-SPDZ. For the MPC baseline, we implement Waldo’s
functionality in MP-SPDZ [4, 59], a state-of-the-art framework
for general-purpose MPC. For WaldoTable queries, servers first
check which records match the predicate(s), select the values

for the matching records, and then aggregate. For WaldoTree
queries, to give our baseline the advantage, we assume that the
client encodes the query as indices of nodes in the covering set
(padded to the worst-case size). Servers securely select nodes
from secret shares of these indices and then aggregate by depth.

MP-SPDZ offers implementations of many different 3-party
honest-majority protocols. We tested each and found that the
post-processing variant of the RSS-based maliciously secure
protocol from Eerikson et al. [35] was best for our setting. We
used the library’s mixed-mode circuit support, as well as loop
decorators to parallelize computation and reduce the number of
round trips. Values are aggregated modulo 232 with 80-bit sta-
tistical security. All comparisons and equality checks are done
only over ℓ bits for feature size of 2ℓ , as in Waldo. For simplic-
ity, we only implement the server processing and so only report
server execution time (the client only has to submit a query).

B. Queries for real-world applications

We measure the performance of WaldoTable by evaluating
sum queries with conjunctions of 2, 4, and 8 point and range
predicates. A count query is a slightly cheaper version of
the sum query (does not include a final multiplication by the
values being summed), and mean, standard deviation, and
variance are simply combinations of sum and count queries.
For simplicity, we measure the case where all predicates are
either point or range predicates, although real queries would
likely contain a mix. Because Waldo is oblivious, performance
does not depend on the query values or data contents. However,
to make our results more concrete, we describe real-world
applications where doctors need to examine relationships
between measurements that correspond to two, four, and eight
predicates. Throughout our evaluation, we use feature size 28

as it supports the applications we describe below (to the best
of our knowledge as we are not medical experts).
Queries with two predicates can be used to compute the

number of times an asthma patient’s peak exipatory flow
rate exceeded some patient-specific threshold in the last
week [87]. Queries with four predicates can help identify
at-risk pregnancies: doctors need to check for elevated
blood pressure (systolic < 120 AND diastolic < 80) and
sudden weight change over a time period [69]. Queries
with eight predicates are useful for predicting heart failure
decompensation: the success of the HeartLogic index has shown
that the relationship between the first and third heart sounds,
intrathoracic impedance, respiration rate, the ratio of respiration
rate to tidal volume, heart rate, and patient activity over a time
period can help identify at-risk heart failure patients [91].

WaldoTree queries can be used to compute a patient’s
maximum or minimum heart rate (for patients with heart
conditions) or maximum or minimum glucose levels (for
diabetic patients) over some time period. The execution time
is independent of the time interval and aggregation function
(we do not measure the time for the client to aggregate nodes
in the covering set, as this should be very fast).
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WaldoTable latency (s)

– Point – – Range –
log # % = 2 % = 4 % = 8 % = 2 % = 4 % = 8

M
al
ic
io
us

10 0.08 0.13 0.23 0.07 0.12 0.22
12 0.09 0.14 0.24 0.08 0.13 0.24
14 0.11 0.18 0.31 0.10 0.17 0.32
16 0.22 0.40 0.79 0.21 0.39 0.77
18 0.78 1.53 3.11 0.80 1.56 3.03
20 3.10 6.00 11.94 3.03 6.18 11.82

Se
m
ih
on

es
t 10 0.07 0.12 0.21 0.07 0.11 0.21

12 0.08 0.12 0.22 0.07 0.12 0.21
14 0.09 0.14 0.23 0.08 0.13 0.23
16 0.11 0.16 0.28 0.10 0.15 0.27
18 0.19 0.28 0.49 0.18 0.27 0.47
20 0.57 0.94 1.70 0.55 0.90 1.65

TABLE 6: WaldoTable query latency for % predicates and # records.

C. Latency: WaldoTable

Understanding Waldo’s performance. In Table 6, we show
WaldoTable query latency for different numbers of records #
and different numbers of predicates %. As expected in Waldo,
after a certain point (# = 216), the latency grows linearly with
# and %, as both computation and communication costs are
$ (#%) (fixed ℓ). Range and point predicates perform very sim-
ilarly (small performance differences are due to implementation
differences). For larger values of # , the overhead of malicious
security is 6−7× that of semihonest security: we can use 32-bit
integers rather than 128-bit integers if we only need semihonest
security (4× saving), and we don’t need MACs (2× saving).
Fig. 7 illustrates the breakdown in query execution time

for 210 and 220 records with different numbers of predicates
(%). The majority of the overhead is due to network latency,
particularly for smaller # and larger %. This is due to the
fact that the number of Waldo round-trips is linear in %. For
larger numbers of records, the computation and the bandwidth
increase, but the number of round trips does not, and so the
ratio of compute time to network time increases. Note that
the PRF evaluation time (for re-sharing after multiplications
and random linear combinations of MACs) could be moved
into a separate preprocessing step to reduce online latency.
Comparison to baselines. In Fig. 8a, we show how
WaldoTable’s query latency compares to that of the two base-
lines for different numbers of records # with 8 predicates. The
latency of WaldoTable and MP-SPDZ increase at roughly the
same rate, as expected, as both incur costs linear in # . Although
they grow at similar rates, WaldoTable remains substantially
faster than MP-SPDZ, 7.8× for 210 records for both point and
range queries, and for 220 records, 2.5× for point queries and
3.9× for range queries (range predicates are more expensive to
evaluate in MP-SPDZ as they require two comparisons rather
than one). On a slightly slower 1Gbps connection between the
servers, Waldo performs 7.8× better than MP-SPDZ for 220

records with 8 range predicates. On the other hand, the ORAM
baseline latency starts high but grows slowly, as expected due
to its polylogarithmic complexity: for 210 records, Waldo is ap-
proximately 37× faster, and for 220 records, approximately 1.4×
faster. Recall that our ORAM baseline does not pad to the max-
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Fig. 7: Breakdown of WaldoTable query latency with different
numbers of predicates (%).
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Fig. 8: WaldoTable query latency is for 8 predicates, and latency for
point and range predicates is almost identical.

imum number of accesses and so has an advantage over Waldo.
Parallelism across servers. WaldoTable is parallelizable not
just across cores, but also across servers without introducing
new trust domains. We can split each “logical” server into
= “physical” servers. The client divides its index into =

equally-sized sub-indexes and delegates a sub-index to a triple
of servers split across trust domains. The client can run its
query on all = sub-indexes and locally aggregate the results.
Because each triple processes its query chunk independently,
parallelism is trivial. By using 12 servers instead of 3, we
estimate that 8-predicate range queries take 3.0s, whereas with
3 servers they take 11.82s.

D. Latency: WaldoTree

In Fig. 8b, we show that WaldoTree queries are much faster
than queries in our two baselines. WaldoTree achieves an
8 − 20× improvement in query latency over MP-SPDZ, with
the gap increasing for larger # . This gap is due to the fact
that WaldoTree does not require server interaction, whereas
MP-SPDZ requires a substantial amount of communication for
comparisons. WaldoTree achieves a 45× improvement over
ORAM for 210 records and a 17× improvement for 220 records.
Again, this improvement is due to the fact that WaldoTree
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Fig. 9: WaldoTable is configured with 8 predicates and has similar
throughput for point and range predicates. ORAM throughput fluctu-
ates due to the fact that it is not fully oblivious (doesn’t make the max
number of accesses) and we randomly sample the data and queries.

does not require any network overhead to execute the query
whereas the client must perform many ORAM accesses to
traverse the tree, resulting in many round trips.

E. Throughput
In Fig. 9a and Fig. 9b, we compare Waldo’s throughput to that
of our ORAM baseline for a 90% append, 10% query workload
(time-series workloads are append-heavy, see §II-A). Waldo’s
throughput is orders of magnitude higher: with 210 records,
WaldoTable’s throughput is roughly 303× that of ORAM, and
with 220 records, roughly 22× that of ORAM. For WaldoTree,
this gap is even more pronounced: with 210 records, the through-
put difference is approximately 488×, and with 220 records, ap-
proximately 431×. The throughput gap is much larger than the
latency gap due to the differing cost of updates. ORAM baseline
updates require multiple ORAM accesses for inserting into and
potentially rebalancing the R-tree. In contrast, Waldo clients
only send a secret-shared one-hot vector to the three servers.

We don’t report MP-SPDZ throughput numbers because our
baseline only uses the MP-SPDZ framework for query execution
and we do not implement updates. However, it is easy to
compute a reasonable upper bound on MP-SPDZ’s throughput.
Appends in a system with MP-SPDZ would only require sending
a small amount of data to each server, and so we can use 10ms
as a lower bound for append latency (20ms round-trip time).
From this, we can upper-bound MP-SPDZ’s throughput for
90% appends and 10% searches: for WaldoTable functionality,
with 210 records, MP-SPDZ can achieve at most 5 ops/sec for
point and range predicates (Waldo’s throughput is 3.7× larger)
and with 220 records, 0.33 ops/sec for point predicates (Waldo’s
is 2× larger) and 0.22 ops/sec for range predicates (3× larger).
For WaldoTree functionality, with 210 records, MP-SPDZ can
reach at most 5.7 ops/sec (Waldo’s throughput is 7× larger), and
with 220 records, at most 0.5 ops/sec (Waldo’s is 19× larger).

F. Communication
Server communication. In Fig. 10, we compare the bandwidth
between servers for Waldo and MP-SPDZ (ORAM is single-
server). MP-SPDZ uses 80 − 82× more server bandwidth for
210 records, and 5.8 − 8.9× more for 220 records. This is due
to the fact that MP-SPDZ uses communication to perform
comparisons to evaluate predicates, whereas Waldo only uses
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Fig. 10: Overhead and cost of total bandwidth between servers
for a WaldoTable query with 8 predicates. We use the minimum
AWS egress bandwidth cost of $0.05/GB [11] to compute the cost
(bandwidth pricing is based on total egress bandwidth per month).
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Fig. 11: WaldoTable is configured with 210 records and has almost
identical bandwidth for point and range predicates.

compute for these evaluations. The MP-SPDZ bandwidth
for 210 records is inflated due to how MP-SPDZ batches
comparisons; bandwidth grows linearly starting at 214 records.

Client communication. In Fig. 11a and Fig. 11b, we show how
the client bandwidth of Waldo compares to that of our ORAM
baseline. Again, we do not include MP-SPDZ here because we
did not implement a client, although the client bandwidth cost
would likely be small. While Waldo is in the range of tens
of kilobytes, our ORAM baseline is clearly in the range of
megabytes (even without the ORAM baseline padding the num-
ber of accesses to match Waldo’s security). In Waldo, the client
only has to send 4 FSS keys to each server for every predicate
for a WaldoTable query, and 8 FSS keys total for a WaldoTree
query. In contrast, the ORAM baseline requires many
roundtrips, performing multiple ORAM accesses for queries.

G. System cost
Server bandwidth has serious implications for system cost.
Clouds typically charge steep prices for transferring data out of
the cloud to incentivize customers to keep their data in the cloud.
This cost is challenging for a distributed trust setting where
servers routinely need to send information between clouds. For
example, AWS charges $0.09/GB if communication is less than
10TB each month and $0.05/GB if communication is greater
than 150TB per month [11]. Executing a query with 8 range
predicates for 220 records with MP-SPDZ costs $1.34-$2.41
(depending on communication cost). In contrast, a Waldo query
with 8 predicates only costs $0.15-$0.27 (depending on commu-
nication cost) because Waldo uses much less communication.
Each server (r5n.16xlarge instance) only costs $4.77 per hour.
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VIII. Limitations and future work
Small feature sizes are critical for good performance in
WaldoTable. In §IV-A, we discuss techniques for encoding
values in a large domain using a small feature size. While Waldo
supports richer functionality than prior work [21, 22], it does
not support all features provided by some modern plaintext
time-series databases (e.g. retrieving individual records,
sorts, group by, or joins [9, 101]). Also, Zeph [22] supports
differential privacy [34] but Waldo does not because it provides
malicious security: the servers would need to add noise in a
verifiably correct way and without causing MAC verification
to fail. Supporting more expressive queries and providing
differential privacy are valuable directions for future work.
Finally, our ORAM baseline has weaker security guarantees
than Waldo (recall that we do not pad to the maximum number
of accesses), and so our baseline has a performance advantage.
We expect that at some point for a very large number of
records, the ORAM baseline will outperform Waldo because
of its asymptotic complexity, but because the ORAM baseline
has a performance advantage, it is not clear exactly where an
ORAM solution of comparable security overtakes Waldo.

IX. Related work
Private time series queries. Timecrypt [21] and Zeph [22]
both support queries over encrypted time-series data. Unlike
Waldo, they do not support filtering and leak the queried
time interval. Also unlike Waldo, both systems also focus
on allowing a third-party service fine-grained access to data,
with Zeph considering aggregation across users. Other works
explore similarity range queries over encrypted time-series
data [113] and queries over encrypted and compressed time-
series data [51], but these use specialized encryption schemes
that have leakage that can be leveraged in statistical attacks.
FSS for private queries and secure computation.
Splinter [106] uses FSS to allow users to make a variety
of private queries, but unlike Waldo, the data is public and
the servers are assumed to be semihonest. Dory [30] uses
DPFs to enable clients to privately search for keywords in
encrypted files without leaking search access patterns. Dory’s
queries are much simpler than Waldo’s, and while Dory
defends against malicious adversaries, its techniques don’t
easily extend to our setting because there isn’t a clear way
to combine its MAC tags for different predicates in the same
query. Durasift [39] uses = servers to support at most = − 3
conjunctions of arbitrary boolean expressions of keywords
using private information retrieval, implemented with a DPF.
Unlike Waldo, Durasift operates in the semihonest setting, can
only combine a limited number of predicates, does not support
range predicates, and operates on lists of documents rather
than aggregates. Floram [33] and Bunn et al. [20] use DPFs for
private reading and writing in the distributed ORAM setting;
these works only need to provide a block storage abstraction,
whereas Waldo must evaluate predicates and combine filters.
Boyle et al. first explored how FSS can be used to implement
secure computation [19], with subsequent work improving on
these constructions providing malicious security [16].

Encrypted databases. Encrypted databases [32, 41, 80–82, 85,
103] execute expressive queries on encrypted data, but often
achieve good performance by permitting some leakage. This
leakage can be exploited in statistical attacks to learn the query
and database contents [23, 46–48, 56, 58, 61, 62, 64, 79, 84, 111].
SisoSPIR [55] improves performance and reduce leakages
by splitting trust, but only shows how to traverse a B-tree
obliviously, which is not enough to compute multi-predicate ag-
gregates. Some encrypted databases achieve good performance
by using secure hardware [37, 40, 88, 104, 112]. These solutions
require additional trust assumptions due to known side-channel
attacks. Another set of encrypted databases are tailored to the
IoT setting, but these systems do not provide the same security
and functionality as Waldo: they use encryption schemes that
leak information about the database contents, reveal the query
to the server, or do not support filtering [50, 92, 93, 109].
Collaborative analytics. Collaborative analytics, a related line
of work, allows mutually distrusting parties to run analytics
queries over their combined data. Although the setting is
different than ours, like Waldo, these works split trust across
parties and leverage MPC techniques to run database queries.
Senate [83], Secrecy [66], SMCQL [12], and Conclave [105]
support more complex analytics queries than Waldo, although
they use more heavyweight tools to do so.
Secure Aggregation. Prior work also explores aggregating
data across many users without a single trusted server. Some
of these systems split trust across multiple servers using
secret sharing [6, 26, 29, 36, 63, 94]. Like Waldo, they support
aggregation on private data, but unlike Waldo, they do not
support private queries.

X. Conclusion
We presented Waldo, a private time-series database that
operates in the malicious three-party honest-majority setting.
While prior work [21, 22] only supports time-based filtering
and reveals the queried time intervals, Waldo enables
multi-predicate filtering while hiding the filter values and
search access patterns. Waldo contributes new techniques that
build on top of function secret sharing to enable Waldo to
evaluate predicates non-interactively. Our MPC baseline uses
9 − 82× more bandwidth between servers than Waldo (for
different numbers of records), and our ORAM baseline uses
20 − 152× more bandwidth between the client and server(s)
than Waldo (for different numbers of predicates).
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14: if U · G ( 9) ≠ f ( 9) then
15: Output ⊥ and broadcast ⊥ to all servers
16: end if
17: end for
18: Output G ← Agg( {G (0) , . . . , G (log=) })

Fig. 12: Client WaldoTree.Query algorithm. = is the number of leaves
in the current shared aggregate tree. Here the aggregate is computed
over time range 0 to C. General case follows similarly by using double
the keys and servers returning 2 log =+1 values. Aggregation function
Agg is defined by clients during call to Init procedure; it takes in a list
of values and outputs their aggregate. {G8}1

8=0
denotes {G0 , . . . , G1}.
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Appendix
A. Security analysis
We use the simulation paradigm [67] of multiparty computation
(MPC) to prove Waldo’s security guarantees. We consider
a probabilistic polynomial time (PPT) adversary A who
statically corrupts at most one of the three servers. Under
A’s control, the corrupted server is allowed to be malicious,
meaning that it can deviate arbitrarily from the protocol
specification. To keep the proof description simple, we first
assume that client behaves honestly. At the end of this section,
we extend to the case of malicious clients as well as collusion
between client and a malicious server.
Proving security under the simulation paradigm requires

defining two worlds: the real world where the actual protocol is
run by honest parties, and an ideal world where an ideal func-
tionality F takes inputs from the parties and directly outputs
the result to the concerned party. A controls the behavior of the
corrupted server as well as observes its view during the protocol
run. To make the ideal world view of A indistinguishable from
the real world, we need to define a simulator S whose job is to
“simulate" messages to A that are similar to what the client and
honest servers send to the corrupted server in the real world.
However, S can only interact with the corrupted server and
F . If the ideal functionality F correctly models the leakage

Server.WaldoTree.Query(1 ,(2 ,(3 (K,K′)
1: Parse K as  1,  2 and K′ as  ′1,  

′
2

2: Initialize empty trees %, & with = leaves each.
3: {G0, . . . , Glog= } ← {0, . . . , 0}, {f0, . . . , flog= } ← {0 . . . , 0}
4: for 8 ∈ = do
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)
7: end for
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11: end for
12: end for
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17: end for
18: end for
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25: end for
26: end for
27: Output ( {G0, . . . , Glog= }, {f0, . . . , flog= })

Fig. 13: Server WaldoTree.Query algorithm. = is the number of
leaves, ID ∈ {1, 2, 3} is the server id. ) denotes the shared aggregate
tree corresponding to WaldoTree object. ) (8)

3
denotes the 8th node on

3th level of the tree and 8.left, 8.right access the value stored on the
left and right child of a node 8, respectively. (0, 1) � (2, 3) = 02 + 13.
Here the aggregate is computed over time range 0 to C, and so on
line 10, the right child’s activation status is used at parent. General
case follows similarly by using twice as many keys and returning
2 log = + 1 values.

that our protocols claim to have and if A cannot distinguish
between the two worlds, then we deem our protocols as being
secure. To account for the case where an adversary is able to
influence the operations issued by clients, and see their final
result, we allow A to freely choose the queries issued by clients
and see the result. For simplicity, we assume that predicates are
only connected via conjunctions (see §IV-B for a discussion
of negations, which are necessary to support disjunctions).

Ideal Functionality F . We first define our stateful ideal
functionality F which stores the current time series database
and responds to requests in the following way:
1) Init(1_, 1B̃ , schema): F runs initialization given security

parameters _, B̃ and a schema layout parameter schema,
where for WaldoTable, schema = (#, �, 2ℓ1 , . . . , 2ℓ� )
with # number of records in the window, � is the number
of features and ℓ8 the feature size for 8th feature, and for
WaldoTree, schema = (2ℓ , type) with ℓ being the feature
size and type is a user-defined aggregation function.

2) WaldoTable.Append(C, E1, . . . , E� ): F updates the
current index to store record with timestamp C and value
E1 ∈ Z2ℓ1 , . . . , E� ∈ Z2ℓ� .
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3) WaldoTree.Append(C, E): F updates the tree index with
the new entry for timestamp C and value E ∈ Z2ℓ .

4) WaldoTable.Query(%1 ∧ · · · ∧ %=, feature, type) → G: F
aggregates by type for feature over the boolean formula
composed of predicates %1, . . . , %= and outputs the result
G only to the client.

5) WaldoTree.Query(C1, C2) → G: F aggregates by type over
time interval (C1, C2). It finally outputs the result G only
to the client.

We allow F to leak Leak(F) = (schema, struct&), where
query structure struct& is defined as: (1) (Init, _, B̃) for Init, (2)
(Append, C) for Append, (3) (Query, =, feature, type, kind, fid)
for WaldoTable.Query with type denoting the aggregation
function (e.g. sum, count), kind denoting point or range pred-
icates, and fid denoting a vector of feature ids corresponding
to each predicate, and (4) (Query) for WaldoTree.Query.

Definition 1. Let Π be a protocol for an encrypted time-series
database which takes as input requests from clients, say &.
F as defined above models the functionality provided by Π as
a trusted party. Let A be an adversary who observes the view
of a statically corrupted server during the protocol run and
gets the final client output. Let ViewReal

Π(&) denote A’s view in
the real world experiment. In the ideal world, a simulator S
generates a simulated view ViewIdeal

S ,Leak(F (&)) to A given only
the leakage of F . Then, ∀ non-uniform algorithms A PPT
in _, B̃, where _, B̃ are computational and statistical security
parameters, respectively, ∃ a PPT algorithm S s.t.

Pr[& ← A(1_, 1B̃); 1 ←R {0, 1};A(View1 , &) = 1]

≤ 1
2
+ negl(_) + negl( B̃)

where View0 = ViewReal
Π(&) ,View1 = ViewIdeal

S ,Leak(F (&))

Theorem 1: Using Definition 1 (§A), Waldo securely
evaluates (with abort) the ideal functionality F (§A) when
instantiated with secure distributed point and comparison
functions and a pseudo-random function, all with a
computational security parameter of _.

Proof. We begin by first providing a construction for our
simulator S for the ideal world. We work in the hybrid
model [67], where invocations of sub-protocols can be replaced
with that of the corresponding functionalities, as long as the
sub-protocol is proven to be secure. We will operate in the
FCorrelated-hybrid model, where we assume the existence of a
secure protocol ΠCorrelated (described in prior works [10, 99]),
which realizes the ideal functionality FCorrelated that generates
3-party RSS shares of the value 0 (used in Reshare) or a
random value (used in RandCoeff).
Simulator Construction. Without loss of generality, let (1
be the corrupted party. Depending on the current request &
and given access to Leak(F (&)), S does the following:
1) On receiving (Init, schema, _, B̃) from F : S stores it locally

and forwards it to A (who we assumed corrupts (1).

2) On receiving (Append, C) from F : S samples RSS shares
of a randomly sampled record satisfying the structure
dictated by the schema and appends them to the local
database. S then forwards (1’s share to A.

3) On receiving (Query) from F : S samples a random
query & satisfying the structure dictated by schema and
generates corresponding DCF keys. S then sends the
keys for (1 to A. At the end, S receives the final output
shares of (1 from A. If received shares aren’t exactly as
expected (S has the RSS shares and FSS keys of (1 to
check this), then output ⊥ to A.

4) On receiving (Query, =, feature, type, kind, fid) from F :
S samples a random query & satisfying the structure
(schema, =, feature, type, kind, fid). S generates FSS keys
(DPF keys if kind = 0 and DCF otherwise) for & and
stores them locally. It then sends the keys for (1 to A.
Given access to FCorrelated, S follows the rest of the steps
(for multiplication) emulating the actions performed by
(2, (3 in the real protocol. Since S has access to the FSS
keys as well as all the database shares, it can generate the
expected versions of messages from A that it should see.
If any of the messages deviate, S sets an abort flag and
continues. At the end, S receives the final output share
of (1 from A. If the abort flag is set, then output ⊥ to A.

We now prove that the view generated by S in the ideal world
is indistinguishable from the real world for a computationally
(in _, B) bounded A through a sequence of hybrids H0, . . . ,H5.
Hybrid 0. We start with the ideal world as our initial hybrid.
Hybrid 1. Simulator S replaces FSS keys for the random
query & with the outputs of FSS simulators SDPF and
SDCF [16, 19]. Since S has access to the database shares of all
the three servers and the simulated FSS keys, it can check if
the messages received from A are exactly as expected or not.
From the security of FSS schemes for DPF and DCF, it follows
that A’s advantage in distinguishing H0 from H1 is negl(_).
Hybrid 2. We let our ideal functionality F forward the
real queries WaldoTable.Query(%1 ∧ · · · ∧ %=, feature, type),
WaldoTree.Query(C1, C2) to S. Recall that we allow A to
specify these queries. S generates FSS keys for the real query
and replaces the simulated keys from H1 with the real ones.
From the security of aforementioned FSS schemes, it holds that
A’s advantage in distinguishing H1 from H2 remains negl(_).
Hybrid 3. We now allow F to also forward the real
append queries WaldoTable.Append(C, E1, . . . , E� ) and
WaldoTree.Append(C, E) to S. S generates and distributes
RSS shares of the real incoming record and uses that instead
of RSS shares for randomly sampled record. Although A
specifies the append query and knows the incoming record’s
value, it only sees RSS shares of at most one server. These
limited shares are independent of the actual record values.
Therefore, A’s view in H2 and H3 is identical.
Hybrid 4. This hybrid corresponds to the real world with calls
to FCorrelated. The only difference in H4 over H3 is the reliance
on MACs to detect malicious behavior. As mentioned earlier,
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we allow the adversary to observe the client’s final output for
every query that it issues. A’s view is distinguishable from H3
when the client’s output is erroneous and it still doesn’t abort.
In Lemma 2, we prove that the probability of A cheating and
not getting caught during MAC verification step is negl( B̃),
for statistical security parameter B̃. Thus the distinguishing
advantage of A between H3 and H4 is negl( B̃).
Hybrid 5. In our final hybrid, we replace the calls to FCorrelated
with the PRF calls to realize ΠCorrelated for Reshare and
RandCoeff. From the security of ΠCorrelated [10] (relies on
PRF security), we have that A cannot tell H4 and H5 apart
with probability any better than negl(_) over a random guess.

This concludes our proof that given views of either the real
or ideal world, A cannot correctly guess which view it is,
except with probability ≤ 1

2 + negl( B̃) + negl(_). �

Lemma 2. In our proposed protocols, a cheating server
is caught by the client during MAC verification step with
probability 1 − negl( B̃), where B̃ = B − log(B + 1) is the
statistical security parameter.

Proof. Any locally introduced error cascades down in the
subsequent computation across all servers due to exchange of
malformed messages from the adversary. This can be modeled
as an equivalent additive error of adversary’s choosing in the
protocol messages it sends. In particular, the only time servers
communicate with each other is during Reshare, and any error
introduced by A at this point, translates to the same error
in the RSS shares that are next established. We formalize
this using a non-uniform PPT algorithm (41, 9 , . . . , 4# , 9 ) ←
ChooseError( 9 , C), where 9 denotes the communication round
in the protocol and C is the current state available to A. C
includes all the information that A has about the distribution
of secrets, initial protocol state as well as the transcript so far.
Our MAC check is: U ·∑8, 9 j8, 9G8, 9

?
=

∑
8, 9 j8, 9f8, 9 , where

j8, 9 are random coefficients sampled from Z2:+B and G8, 9
(resp. f8, 9 ) are all messages (resp. their MACs) whose
secret shares are exchanged during 9 th communication
round in the protocol. No server knows the values j8, 9 .
Given that ∃8, 9 such that 48, 9 ≠ 0 (otherwise, there is
no tampering), then passing the MAC check requires:
U · (∑8, 9 j8, 9 (G8, 9 + 48, 9 )) −

∑
8, 9 j8, 9f8, 9 + Δ = 0, where Δ

is the corrective error A needs for the check to pass. It was
shown in [27] that given U is sampled uniformly from Z2:+B ,
the probability of passing the check 2−B+log(B+1) . �

Client and Server Collusion. In the case of an adversarial
client, the only goal of collusion can be to learn information
about database entries that aren’t accessible to the client based
on the set access control policies. If the client tries to access
databases outside its clearance, the two honest servers will
immediately abort the protocol before even sending their first
protocol message. Given that shares of the database with the
remaining server (colluding with the client) are independent of
the actual contents of the database, and neither the client nor the
server receive any message from the two honest servers except
an abort, it is straightforward to see that the case of a malicious

client is securely dealt with. Note that the case of a malicious
non-colluding client is subsumed in this preceding argument.
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