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Abstract

We revisit decentralized random beacons with a focus on practical distributed ap-
plications. Decentralized random beacons (Beaver and So, Eurocrypt’93) provide the
functionality for n parties to generate an unpredictable sequence of bits in a way that
cannot be biased, which is useful for any decentralized protocol requiring trusted ran-
domness.

Existing beacon constructions are highly inefficient in practical settings where
protocol parties need to rejoin after crashes or disconnections, and more significantly
where smart contracts may rely on arbitrary index points in high-volume streams.
For this, we introduce a new notion of history-generating decentralized random
beacons (HGDRBs).

Roughly, the history-generation property of HGDRBs allows for previous beacon
outputs to be efficiently generated knowing only the current value and the public key.
At application layers, history-generation supports registering a sparser set of on-chain
values if desired, so that apps like lotteries can utilize on-chain values without incurring
high-frequency costs, enjoying all the benefits of DRBs implemented off-chain or with
decoupled, special-purpose chains. Unlike rollups, HG is tailored specifically to recov-
ering and verifying pseudorandom bit sequences and thus enjoys unique optimizations
investigated in this work.

We introduce STROBE: an efficient HGDRB construction which generalizes
the original squaring-based RSA approach of Beaver and So. STROBE enjoys several
useful properties that make it suited for practical applications that use beacons:

1. history-generating: it can regenerate and verify high-throughput beacon streams,
supporting sparse (thus cost-effective) ledger entries;

2. concisely self-verifying: NIZK-free, with state and validation employing a
single ring element;
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3. eco-friendly: stake-based rather than work based;

4. unbounded: refresh-free, addressing limitations of Beaver and So;

5. delay-free: results are immediately available.

1 Introduction

A random beacon is a shared source of agreed-upon random bits. First introduced in 1981
by Rabin [49] in the context of digitally-signed documents, beacons use unpredictability to
put adversarial strategies in doubt. Trusted beacons are increasingly recognized as a critical
resource for Decentralized Finance (DeFi), blockchains, Byzantine Fault Tolerance (BFT),
leader elections, and a range of Decentralized Applications (dApps) including lotteries.

At fundamental protocol layers such as consensus, beacons drastically reduce the time
and effort needed to withstand protocol-defeating attacks. For example, Feldman and Micali
[34] implemented a common coin to achieve 2-round probabilistic consensus, breaking the
deterministic lower bound of f + 1 rounds [30].

At higher levels of abstraction, new and important properties and optimizations emerge.
Crash failures, delays, and asynchrony in the interactions between processes or the execution
of smart contracts in a ledger environment make it essential to have stronger and coordinated
record-keeping, to make it easier to retrieve and verify past results.

To complicate matters, many high-level applications like lotteries or gaming require high-
frequency streams. Frequencies and latencies at the scale of seconds are too slow. Registering
streams bit-by-bit in real-time on a ledger is simply infeasible given transaction throughputs
and latencies, let alone enormously cost-prohibitive fees.

Registering intermittent results is a feasible and cheaper workaround - as long as the
intermittent results provide sufficient content and validation to enable optimistic fault de-
tection and recourse for any on-chain relying parties. To date, such applications either run
at very slow speeds (lotteries) or require centralized trust (gaming platforms).

While a naive approach might register a long sequence accompanied by aggregate signa-
tures and rollups to prove step-by-step correctness, so that relying parties can check content
and validity, we take a novel and alternative approach, employing history generation for
streamlined communication size and speed. Our protocols are direct and simple, providing
a concise element to regenerate the entire back sequence (effectively compressing it) and to
validate it (obviating NIZKs, let alone aggregation).

Decentralized random beacons. Beaver and So presented the first decentralized
beacon (DRB) in [7], achieved by way of a threshold homomorphic secret sharing of future
bits. Their approach capitalized on the Blum-Blum-Shub pseudorandom generator [9], in
which successive squares in an RSA ring are produced. By reversing the sequence and
employing tricks for threshold Lagrange interpolation, [7] gave a self-certifying sequence
obviating any need for ZKPs.

History-generating DRBs. A key contribution of this work is the notion and imple-
mentation of history generation, a technique that is essentially equivalent to compressing
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long sequences and providing a maximally concise validity check. In the context of ran-
dom streams produced by DRBs, we are able to take strong advantage of the sequential
nature of the stream to achieve optimizations exceeding those available to general-purpose
calculations-with-ZKPs.

Unbounded sequences. In the threshold homomorphic VSS approach of [7], there is
a bound on the number of bits to be produced without engaging in some kind of refreshing
state. The results are limited by stakeholders rather than VDF-style delays: there is no
explicit notion of using work as a computationally-guaranteed limit on the cadence of a
beacon. We address both limitations using a generalized construction without incurring
proof-of-work.

Roadmap. In the sequel, we describe intuitions of our constructions and how applica-
tions can benefit from the novel, history-generating property. We cover related work in §2,
with particular attention to feature tradeoffs in Table 1. Details of the construction appear
in §3, with security model in §4 and proofs in §5. We describe some extension in §6 and
application details in §7.

1.1 Construction Intuition

Our starting point is to view RSA decryption as a trapdoor one-way function in reverse,
which can be efficiently verified. The beacon output of an epoch is essentially the RSA
decryption of the previous epoch’s output, and this carries on perpetually. The verification
of an output is to just RSA encrypt it with the public key and see that if it equals to the
previous epoch’s output. In this sense, the beacon is self-certifying.

Viewed in a non-distributed setting, the setup of the beacon generates RSA modulus
N = pq along with a root-ing parameter s. Then the beacon proceeds perpetually as:

x→ x1/s → x1/s
2 → · · · → x1/s

T → · · ·

To parties that just know about N as a public parameter, this provides some attractive
properties: (1) The next value in the beacon is hard to predict given the earlier values. (2)
It’s easy to verify a beacon value against the last value. In fact, we can check the value
against any historical value, except that it gets progressively harder with the gap. (3) An
especially tantalizing property is that any historical beacon value, can in fact be generated
by just knowing the current value.

Of course, the problem with this is that taking roots in an RSA ring is hard without
knowing the prime factors p and q. So we need a trusted party holding the primes to be
generating all the beacon values.

Recent advances in distributed RSA modulus generation allows us to generate a public
modulus N , with no single party knowing the factors. Imagine that in addition we also give
secret shares of s−1 (mod φ(N)) to n distinct parties:

sk1 + sk2 + · · ·+ skn = s−1 (mod φ(N))

3



At the time epoch T + 1, the n parties can then output xskiT each, where xT is the output
of the last epoch. On multiplying all the public shares, we get xT+1 = xs

−1

T (mod N). At
the same time, observe that even (n − 1) of the secret keys are effectively independently
random. Also observe every public share is also self-certifying wrt the last epoch, in the
sense xskiT = (xskiT+1)

s.
Adapting the n-of-n setting to a threshold t-of-n setting introduces additional challenges

which do not affect known-order groups. Essentially, Shamir secret sharing involves fractional
Lagrange interpolation coefficients which are efficient to compute to group elements if we
know the order. However, this is not possible to do in the exponent of RSA group elements,
as φ(N) is not public. We adapt and extend the techniques pioneered by [7] and also used
by [52] to address this challenge. The core trick is to lift the Lagrange coefficients by a factor
of n!, so that they are not fractional anymore.

2 Related Work

Random Beacons. Practical bias-resistant random beacons producing regular series of ran-
dom outputs typically follow one of three approaches: the first one uses publicly verifiable
secret sharing (PVSS) mechanisms, the second uses threshold signatures (or homomorphic
VSS) and a distributed key generation (DKG), and the third relies on verifiable delay func-
tions (VDFs).

Beacons of the first type use the following blueprint design, they need 4 rounds for
n participants to generate a random value. In the first round all nodes simultaneously
secret-share a freshly generated random value s among the rest of the nodes. They do so
by publishing the following values: n shares of s each encrypted under receiving party’s
public key, a commitment to the secret, and a non-interactive zero-knowledge proof that
those were generated correctly. In the second round, the parties run some sort of consensus
algorithm to agree which nodes did the sharing correctly and which failed. This can also be
replaced with posting the shares on chain where anyone can verify the proofs independently,
although this typically relies on consensus provided by a chain (rather than enabled by
the beacon). In the third round, the parties reveal their secrets and in the fourth round
for parties that withheld their secrets, shares of those secrets are broadcast for recovery.
The resulting beacon’s value is derived from the revealed or recovered secrets. The rounds
can be pipelined to get regular random outputs at each round. Starting from the original
proposal of Ouroboros [41] a sequence of papers (Scrape [22], Albatross [23], HydRand [51],
RandHerd [53]) has improved the communication, computation complexity per node and
the verification complexity for beacon of this type. No centralized or trusted setup and
standard cryptographic assumptions are the main advantages of those protocols. However,
those protocols still remain communication-intensive, since they need to run the full protocol
(including consensus) for every fresh random value and computation wise intensive, since
every party needs to check that every secret-share has been correctly constructed. A public
verifier needs O(n) messages to verify each beacon’s value, making it communication-wise
expensive to verify a series of random values.
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A full chain of our beacon, in contrast, can be verified using only the current beacon’s
output and the public parameters.

Beacons of the second type rely on a setup phase where a secret key is generated in
a distributed manner, after which homomorphic VSS and/or threshold signatures can be
employed. The use of homomorphic VSS was pioneered in the first DRB in 1993 [7], where
successive values of a BBS generator are revealed. The shares of square roots are, homomor-
phically and similar in spirit to threshold RSA, square roots of shares. The shares and the
reconstructed values each act as verifiers of previous values (viz. by way of squaring). This
particular solution suffers from a need to refresh to new sequence values periodically; it is
not unbounded as-is.

In numerous other, generalized approaches of this second style, nodes can use a unique
threshold signature scheme, such as threshold BLS [14,15] (tBLS) in Dfinity [39] and drand [32]
or as threshold RSA (tRSA) signatures [52] in Cachin et al. [20]) to sign an agreed-upon
progression of values (either block-hashes, or round-numbers, or a combination of those).
The main advantage of those protocols is efficiency (each party only sends a single message
per beacon’s value) and ease of public verifiability (current beacon’s value can be verified
using only public parameters). The disadvantages are a complicated setup phase (though
straightforward when a trusted party is assumed), for example to generate the threshold key
for tBLS over the Internet it still takes elaborate protocols with O(n4) communication com-
plexity costs [40,44] and O(f) worse case run time. We improve on the approach of tRSA by
building a random beacon straight from the RSA assumption requiring no additional proofs
for correctness of signature’s shares. Our scheme naturally gives a novel property of history
generation in contrast to existing approaches.

There is also a third approach that relies on a proof-of-delay mechanism [10]: either
a block-hash is passed through a verifiable delay function (VDF), or the values submitted
by the participants are passed through a VDF function to generate a random value. Most
prominent systems are RANDAO w. VDF [31], continuous VDF [33] and RandRunner [50].
But those approaches are highly computationally intensive for the prover and require precise
estimates of concrete complexity, which are hard to predict in practice (competitions with
high-reward incentives were set-up by Chia Networks (chia.net) and Ethereum (ethereum.
org) in partnership with Protocol Labs (protocol.ai) to get concrete estimates of VDFs’
complexity). In the presence of a quantum adversary a quantum-resistant VDF could be
used to produce a quantum-resistant random beacon, e.g. Veedo [54].

Distributed generation of an RSA modulus and an inverse of a public exponent.
The setup of our construction requires the generation of an RSA modulus N that is a product
of two primes. The most common way of generating such a modulus in a centralized setting
(a.k.a. with a trusted setup), is to randomly sample κ-bits integers running Miller-Rabin
probabilistic primality tests on them [46,48] until two primes are obtained with overwhelming
probability, multiplying them gives a 2κ-bits bi-prime N . Since currently there is no known
way to sample a bi-prime (using only public randomness) for which nobody knows the factors,
the only way to alleviate the trusted setup is to distribute the generation of the bi-prime
modulus via a dedicated multi-party computation protocol. Boneh and Franklin [12, 13]
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Albatross [23]
HydRand [51]
RandHerd [53]

N N N Y Y N none PVSS

RandRunner [50]
RANDAO++ [31]
cVDF [33]
Veedo [54]

N N Y Y Y N yes/no VDF

Dfinity [39]
drand [32]

N N Y Y Y N DKG tBLS

C03 [18]
BS93 [7]

N Y Y N Y Y mod.gen. RSA

STROBE mod.gen.+
(this work)

Y Y Y Y Y Y
inverse

RSA

Table 1: Comparison among several beacon protocols. Self-certifying beacons give inex-
pensive verification of a beacon value against the previous one with no zero-knowledge proofs.
Refresh-free beacons allow for generation of indefinite sequence of random values per single
setup. BA-free beacons do not need to use Byzantine-Agreement protocols. ROM-free
beacons do not rely on a random oracle assumption. Beacons based on the RSA assumption
require a trusted setup or a distributed RSA modulus generation (mod.gen), our protocol
additionally requires the generation of an inverse of a public exponent. Some VDF-based
beacons do require a setup: those based on RSA.

initiated the study of distributed RSA modulus generation devising a protocol in a passive
security model with honest majority. The follow-up protocol of Algesheimer, Camenisch
and Shoup [3] devised a protocol for generation of N that is a product of two safe primes,
passively secure with honest majority. The follow-up work has hardened the original Boneh-
Franklin’s protocol to be secure in the presence of actively malicious parties and honest
majority [35]. The works mentioned above also generate an inverse (RSA decryption key)
in a distributed manner. An improvement to this part of the protocol was also made by
Catalano et al. [24]. A promising approach of getting rid of the setup phase altogether, that
was proposed in RandRunner [50] and in the work of Damg̊ard and Koprowski [28], can
potentially get applied to this work.

3 The STROBE Protocol

We now define the syntax of a History Generating Decentralized Random Beacon (HGDRB)
and describe our STROBE construction.
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Definition 1 (HGDRB). A History Generating Decentralized Random Beacon (HGDRB)
is a set of algorithms (Setup,Gen,Eval, V erifyShare, Combine, V erify,Back):

Setup: (λ, n, t)→ (pk, sk1, · · · , skn). The Setup algorithm takes the security parameter λ
and threshold parameters n and t. The scheme allows t-of-n reconstruction, with secret
shares given to n parties. The output is a public key pk and secret shares sk1, · · · , skn.

Gen: pk → x0. The (one-time) Gen algorithm samples an initial random value x0.

Eval: (ski, xT )→ xT+1,i. Each party takes the last epoch’s (T ) output xT , computes and
outputs a share of the next epoch’s output xT+1,i.

VerifyShare: (pk, xT,i, xT+1,i)→ {0, 1}. The VerifyShare algorithm checks the epoch T + 1
shares against the corresponding epoch T shares.

Combine: (pk, xT,P1 , xT,P2 , . . . , xT,Pt)→ xT+1. Given t shares from epoch T that pass VerifyShare
the Combine algorithm outputs the next epoch’s beacon value xT+1.

Verify: (pk, xT , xT+1)→ {0, 1}. The Verify algorithm checks the epoch T + 1 beacon output
against the epoch T beacon output.

Back: (pk, xT , k)→ xT−k: This outputs the beacon value at epoch T − k given the epoch T
beacon value xT and k < T .

Informally, correctness asserts that honestly computed beacon values will pass verify
checks with respect to previous beacon outputs. The same should hold for share outputs
as well. The Back function allows to compute any historical beacon value efficiently (going
back a polynomial number of epochs).

The STROBE protocol. We now provide our HGDRB construction, called STROBE.
It is based on threshold inversion in RSA groups and its security follows from the RSA
assumption.

Setup(λ, n, t): The Setup algorithm takes the security parameter λ and samples an RSA
modulus N = pq with φ(N) = 4p′q′.

Sample primes p, q such that p − 1 = 2p′, q − 1 = 2q′ with p′, q′ also being primes.
Pick a prime s, s.t. min(p′, q′) > s > n. Let N = pq and observe that s - φ(N).
Sample a1, · · · , at−1 ← [1, N ] and let f(X) = v + a1X + · · · + at−1X

t−1, where v =
(n!s)−1 (mod p′q′).

Send secret shares ski = f(i) (mod N) to parties i ∈ [1, n]. Publish pk = (N, s).

Gen(pk): The Gen algorithm samples a seed value seed ← [1, N ]. This is a public random
value that can be computed by MPC or by taking a block hash. It then outputs
x0 = seed4(n!)

2

(mod N).

The 4(n!)2 factor is an artifact of the security proof and will be explained in Section 5.
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Eval(ski, xT ): Each party takes the last epoch’s (T ) output xT , computes and outputs a
share of the next epoch’s output xT+1,i:

xT+1,i = xskiT = x
f(i)
T (mod N).

VerifyShare(pk, xT,i, xT+1,i): The epoch T + 1 shares can be self-verified against the corre-
sponding epoch T shares, by checking that

xsT+1,i = xT,i (mod N).

Combine(pk, xT,P1 , xT,P2 , . . . , xT,Pt): Given t epoch T shares, first check that each of them
pass VerifyShare. Let γ denote the set of these indices {P1, · · · , Pt}. The Combine
algorithm then computes the combined epoch T beacon value xT by computing the
interpolation:

xT =
∏
i∈γ

x
n!Li(0)
T,i (mod N),

where the Lagrange basis polynomials Li’s are defined as:

Li(X) =
∏

j∈γ,j 6=i

X − j
i− j

.

The polynomials satisfy the following property: for ∀i, j ∈ γ : Li(i) = 1, and Li(j) = 0
for i 6= j. The (n!) factor is essential to clear the denominators of the interpolation
coefficients, which makes sure there is no fractional exponent to compute.

Verify(pk, xT , xT+1): The epoch T + 1 beacon output can be self-verified against the corre-
sponding epoch T beacon output, by checking that

xsT+1 = xT (mod N).

Back(pk, xT , k): This outputs the beacon value at epoch T − k as:

xT−k = xs
k

T (mod N).

We assume that each share carries the identity information (metadata) about which party
generated it. Apart from the V erify (and V erifyShare) algorithms checking against the last
epoch outputs, the Back algorithm provides an alternate way to check against any previous
epoch output, all the way to epoch 0 (and 1). In fact if the shares from epoch 1 are also made
part of the trusted pk, then this provides a way of checking the beacon value without accessing
the past beacon values at all. The trade-off is that checking against beacon values in the
past grows computationally expensive with the number of epochs elapsed. As an extension
of the core protocol, we can also leverage techniques from popular VDF constructions, as
described in Section 6.
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Correctness. We have x0 = seed4(n!)
2

. Assume inductively, xT−1 = seed4(n!)
2s−T+1

. Cor-
rectness of the beacon outputs follows as below:

xT =
∏
i∈γ

x
n!Li(0)
T,i = x

n!
∑
i∈γ f(i)Li(0)

T−1 = seed4(n!)
2s−T+1n!

∑
i∈γ f(i)Li(0)

= seed4(n!)
2s−T+1n!f(0) = seed(n!)

2s−T 4(n!)vs

As v = (n!s)−1 (mod p′q′), we have 4(n!)vs = 4 (mod φ(N)). Therefore, seed4(n!)vs =
seed4 (mod N).

Substituting, we get:
xT = seed4(n!)

2s−T .

This carries the induction successfully forward, and also leads to successful verification:
xsT = xT−1. Similar steps apply to the individual shares as well.

4 Security Model

There are various flavors of security that we could require of a random beacon. To narrow
down the syntax, we will focus on stake-based, self-certifying, threshold beacons. The baseline
security we want is that an adversary should not be able to predict future beacon values
based on seeing past values and corrupting less than a threshold number of participants.

Unpredictability vs. Pseudorandomness. We could require the next beacon value
to be pseudorandom, instead of just unpredictable. We observe that we could essentially
compile an unpredictable beacon into a pseudorandom one, either by applying a random
oracle (similarly to what is described as “tick-tock” in [33]), or if we want to avoid the
RO assumption, by extracting hardcore bit(s), as in [9]. There exist applications where
unpredictability suffices, but in most of the cases, such as a decentralized lottery or leader
election, unbiased randomness is essential. .

We also note that, for a self-certifying and/or history generating beacon, there needs to
be a part of the beacon output that cannot be pseudorandom, as otherwise it cannot be used
for the certification assertion and/or historical value computation.

Active vs. Passive. A passive adversary just observes the transcript of an honest run of
the protocol, including public shares and beacon outputs and then tries to predict the next
beacon value. An active adversary, on the other hand, can actively modify the public share
values and beacon outputs. In this paper we consider active adversaries. In our setting,
the self-certification essentially ensures that there is only a unique value for each expected
public share or beacon value that can pass onto the next phase. This makes any adversarial
modifications immediately noticeable and subject to rejection.

9



Selective vs. Adaptive. Another dimension to specify the adversary is on whether we
restrict it to corrupt parties that it declares upfront (selective), or allow the parties to be
corrupted dynamically as it observes and interacts with the protocol (adaptive). Our core
protocol only satisfies selective security in this respect. We leave it as an open problem to
construct an adaptively secure protocol which retains the efficiency standard of our selective
one. A generic (complexity-leveraging) approach can be used to get an adaptively secure
scheme from a selectively secure one: the reduction simply needs to guess the set of corrupted
parties and then run the selective reduction aborting if the selection of corrupted parties does
not match the one requested by the adversary. This, unfortunately, leads to a loss in security
that is exponential in the number of parties, n, thus limiting the number of parties to be
at most logarithmic in the security parameter λ. There are other promising approaches in
the works for threshold RSA cryptosystems. Canetti et al. [21] proposed a methodology for
transforming a selectively-secure threshold scheme into an adaptively-secure one, where the
protocol needs to be modified to carefully erase secrets and to use simple zero-knowledge
proofs, the adversary is rewinded in the proof which also incurs a security loss although not
as large as with the complexity-leveraging approach. A follow-up work of Almansa et al. [4]
simplified this result for RSA, but at the cost of the secret’s re-sharing after every round,
with an emergent benefit of making the scheme proactively secure. In a proactively secure
scheme the adversary can corrupt at most t players in a time period determined by the
protocol. Since the set of corrupted parties changes, each party can become corrupt at some
point (i.e. leak its secrets), but if the party recovers from a compromise then a subsequent
secret’s re-sharing will enable the party to be honest again.

Given the above discussion, we now formally define the security model that we consider
for our core protocol: unpredictable, selective and adaptive.

Definition 2 (Selective-secure Unpredictability). We say that an HGDRB is Selective-
secure Unpredictable if the following adversary has negligible advantage:

1. The Challenger runs Setup(λ, n, t) and outputs pk to the Adversary.

2. The Adversary selects a time epoch S < poly(λ) and a set of parties γ = {P1, P2, · · · , Pt−1}
to corrupt.

3. The Challenger sends the transcript of the protocol till time epoch S to the Adversary,
as well as the secret shares for parties in γ. This includes the outputs of Gen and those
of Eval for all i ∈ [1, n] and T ≤ S.

4. The Adversary outputs a quantity x′.

5. The Adversary wins if V erify(pk, xS, x
′) passes.

Although the above definition does not explicitly let the adversary modify public share
and beacon values, this is still equivalent to an active adversary, as the self-verification of
beacon and share values ensure that only the unique correct values would not be rejected.
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5 Proof of Security

In this section, we show that the STROBE protocol satisfies Selective-secure Unpredictability
under the RSA assumption.

Definition 3 (RSA Assumption). The Challenger samples RSA number N = pq and picks
a quantity s co-prime to φ(N). Then it randomly samples z ← [1, N ] and sends (N, s, z) to
the Adversary. The Adversary outputs y. The RSA assumption states that the probability of
ys = z (mod N) is negligible.

Theorem 5.1 (Security). The STROBE protocol is Selective-secure Unpredictable under the
RSA Assumption.

Proof. Let (N, s, z) be an RSA challenge for a prime s > n.

Setup: The Challenger outputs pk = (N, s). Suppose the Adversary picks an epoch S
and corrupts parties in the set γ = {P1, · · · , Pt−1}. Sample bP1 , · · · , bPt−1 ← [1, N ]. Send
Adversary shares ski = bi, for all i ∈ γ.

Eval: Consider an implicit polynomial f(X), such that f(0) = v, where v = (n!s)−1 (mod p′q′),
and f(i) = bi, for all i ∈ γ:

f(X) = vL0(X) +
∑
i∈γ

biLi(X).

Here Li(X) are Lagrange basis polynomials of degree t− 1 each:

Li(X) =
∏

j∈{γ∪{0}},j 6=i

X − j
i− j

.

The polynomials satisfy the following property: for ∀i, j ∈ (γ∪{0}) : Li(i) = 1, and Li(j) = 0
for i 6= j. Note that it is possible to evaluate zn!Li(j) for any i, j ∈ [0, n], since the (n!) factor
eliminates the denominators of interpolation polynomials, making it possible to evaluate the
exponentiation.

Set x0 = z4(n!)
2sS and xT,j = z4f(j)(n!)

2sS−T+1
. Now, for j ∈ γ, we can compute xT,j

explicitly based on f(j) = bj. We now show that for j /∈ γ, we can compute xT,j without
explicitly computing f(j). Observe that 4v = 4(n!s)−1 (mod φ(N))), therefore zv4n!s = z4

hence xT,j can be explicitly constructed as follows:

xT,j = z4f(j)(n!)
2sS−T+1

= z(f(j)4n!s)·(n!)s
S−T

= z(4L0(j)+
∑
i∈γ bi·(4n!s)·Li(j))·(n!)sS−T

Note that the last (n!) factor is essential to make sure we can clear the denominator of
L0(j) and thus avoid any divisions in the exponent. Send x0 and the xT,j’s for all T ∈ [1, S]
and j ∈ [1, n] to the adversary.

RSA response: Let’s suppose the adversary comes up with x′ as the next epoch candidate.

Given the self-certification checks upto time epoch T , we inductively have xk = xs
−k
0 =
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z4(n!)
2sS−k , for k ∈ [0, S]. If the adversary response x′ passes verification, then we should

have x′s = xS = z4(n!)
2
, Let w = (4(n!)2)−1 (mod s) and let w(4(n!)2) = 1 + ks for some

computable integer k. Then x′sw = z4(n!)
2w = z1+ks. Therefore, z = (x′wz−k)s. Hence x′wz−k

will be a winning response to the RSA challenge.

Distributions: Finally, we observe that as sS is invertible module φ(N) and sampling
uniformly from [1, N ] and [1, φ(N)] are statistically indistinguishable, the distribution of x0 in
the STROBE construction and this proof are statistically indistinguishable. Matching these
distributions is the technical reason behind the extra 4(n!)2 factor in the Gen algorithm.

6 Extensions

6.1 Dynamic beacon committees.

STROBE can also easily handle dynamically changing the participants executing the beacon
protocol. For example, this could involve rotating to a newly chosen committee (even of a
different size) of parties after some fixed number of epochs. The new committee will then
continue to generate future outputs of the beacon. In fact, the new committee can also
be chosen based on the output of the distributed beacon. Dynamic participation can be
accommodated by using the old committee to reshare the secret key to the new committee
through existing literature on dynamic proactive secret sharing [8, 45]. Note however, that
such protocols need to make the assumption that honest parties from previous committees
delete their shares so that an adversary cannot recover the secret key even by corrupting
more than a threshold number of parties from a previous committee. The above scenario is
also referred to as a “long range” attack (c.f., [26]).

6.2 Succinct proofs of beacon validation.

In earlier sections we observed that it is possible to check the beacon value xT at epoch T
against the seed value x0 by checking x0 = xs

T

T . However, this takes sequential time T . One
way to speed up verification is to exploit the RSA repeated powering structure of this check
and use existing techniques like [47,55] to add a proof in addition to the beacon value.

In particular, we can just apply Wesolowski’s [55] proof technique in reverse and produce

the proof π = x
bsT /`c
T , where ` is the result (a prime number) of a random oracle H applied

to (x0, xT , T ). The verifier computes ` and r as the remainder on dividing sT by ` and then
checks x0 = π`xrT . However, a drawback of this method is that producing the proof takes
about T time as well, which may not be ideal to do every epoch.

A better approach is to use a continuous VDF [33]. In a continuous VDF, it is efficient to
publish and use intermediate proofs at every time epoch. The Ephraim et al [33] continuous
VDF makes use of the recursive structure of Pietzak’s VDF [47]. The high level idea is
that they checkpoint a logarithmic number of past values and keep recursively merging an
appropriate number of them in order to prevent growing the proof size. We can also similarly
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checkpoint and merge based on a similar recursion, while reversing the order: x0 = xs
T/2

u and

xu = xs
T/2

T , where u = T/2 is the midpoint.
We can use a continuous VDF at defined intervals as well, instead of every epoch. A

verifier can sequentially compute the expected value until the last such interval and then
just check the VDF proof.

7 Applications

In this section, we discuss applications of random beacons. In particular, we argue how the
novel history generation feature of STROBE can enable attractive technical advancements
in many scenarios.

7.1 Blockchain-based gambling and lotteries

Lotteries and gambling smart contract solutions are gaining in popularity, and a portion of
them advertise transparency, unbiased randomness generation (uncontrollable from partici-
pants) and consumer privacy. It is well known that the original success of Bitcoin was partly
due to gambling activities, especially via the Satoshi Dice which operated since 2012 and
dominated the bitcoin transactions in its first years of operation [36]. There is a growing
number of blockchain gambling contracts, and as of September 2021, according to statistics
provided in [29], there exist at least 151 lottery, 129 casino, 70 poker and generally 600+
gambling smart contracts in Ethereum alone. Moreover, lotteries have also been proposed
as an alternative reward scheme for miners by randomly recirculating lost coins and col-
lecting gold dust [37]. Furthermore, leader election in BFT consensus schemes, can also be
implemented via a lottery [11,38].

The most common approach in proof of work ledgers is to use the block-hash as a seed
to pick winning numbers, due to its unpredictability characteristics. However, this value can
be biased [16] and VDFs on top of the original seed have been proposed [17], which however
introduce significant delays. Various other attacks have been reported which are related to
modulus bias or lack of a proof of origin mechanism for the seed [25].

We should note that for high-throughput games, like continuous poker shuffling, VDF
delays might not be tolerable for UX reasons. On the other hand, updating the blockchain
state too often can be expensive, thus ideally a dynamic balance between the PRNG output
frequency and gas cost should be configurable. One of the main advantages of STROBE is
that the latest beacon can be automatically used to “verifiably” derive all of the previous
random numbers down to the original genesis beacon. This property can be utilized by smart
contract developers to minimize cost by skipping beacon epochs when required, but lotteries
can still continuously run for every epoch. It also works as a DoS defence, especially when
the beacon is provided by an external oracle service to the blockchain; if there is significant
delay on updates, the latest beacon suffices to execute all of the pending lottery games. This
is equivalent to supporting {smart contract}-based “light clients” of a beacon generation
committee.
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Finally, lotteries could be executed in optimistic mode [1], by blindly accepting any
submitted beacon without correctness checking. Then, in a reasonable time-frame and before
processing winner’s payout, the beacon’s validity can be challenged by providing a fraud
proof, which is nothing more than submitting a flag which triggers history validation.

7.2 Deeper Blockchain Integration

The design described in Section 3 relies on authorities on-the-side for issuing credentials. In
this section, we present designs that incorporate STROBE authorities within the infrastruc-
ture of a number of semi-permissioned Blockchains. This enables the generation of random-
ness as a side effect of the normal system operations, taking no additional dependency on
extra authorities. It remains an open problem how to embed STROBE into permissionless
systems, based on proof of work or stake. These systems have a highly dynamic set of nodes
maintaining the state of their blockchains, which cannot readily be mapped into STROBE’s
authorities.

Integration of STROBE into permissioned (BFT-based) blockchain platforms is straight-
forward. In Hyperledger Fabric Fabric [19] for instance, contracts run on private sets of com-
putation nodes and use the Fabric protocols for cross-contract calls. In this setting, STROBE
authorities can coincide with the Fabric smart contract authorities. Upon a contract setup,
they perform a setup and key distribution, and then start generating randomness when au-
thorized by the contract. For generating randomness, the only secrets maintained are the
private STROBE authorities keys; all other operations of the contract can be logged and pub-
licly verified. The threshold trust assumption—namely that of integrity and availability— is
guaranteed under the corruption of a subset of authorities is preserved, and prevents forgeries
by a single corrupted node.

We can also naturally embed STROBE into sharded scalable blockchains, as exemplified
by Omniledger [43] (which supports digital tokens), and Chainspace [2] (which supports gen-
eral smart contracts) or as part of a heterogeneous shard [5]. In these systems, transactions
are distributed and executed on ‘shards’ of authorities, whose membership and public keys
are known. STROBE authorities can naturally coincide with the nodes within a shard—a
special transaction type in Omniledger, or a special object in Chainspace, can signal to them
that generating randomness. The authorities, then issue the partial randomness share nec-
essary to reconstruct the random value, and attach it to the transaction they are processing
anyway. Users (or anyone else) can aggregate, and generate the random value by parsing
the transactions on-chain.

Incentives for Randomness Generation. One open question is on managing the in-
centives of releasing shares for the randomness beacon. On a first sight the fault-tolerance
of STROBE makes the problem a public goods game, since only a threshold needs to par-
ticipate. One way to break this has been proposed in prior work [6,42] where the shares are
published on chain and rewards are given only to “useful” shares (i.e. the first t that make
it on-chain). This breaks the public goods game and makes it a race between the authorities
who are eager to release their share and get rewarded.
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7.3 Beacon Streams

There exist applications requiring constant high-throughput of beacons, especially in the
online gaming sector. Most games require a combination of “skills” and “luck”, and as video
gaming has become a market where professional players participate in tournaments with real
prizes, a fair beacon stream would enable new types of transparent gaming features. Due to
potential internet speed issues, server overloading and other factors, reliability might be at
stake [27] and thus, some game providers prefer UDP connections to offer greater flexibility
by executing packets out of order or discarding non important ones [56]. STROBE’s history
generation feature fits really well in streaming designs, and allows client software to generate
game states by computing every missing beacon. Note that in these applications, VDF-based
beacons are not good candidates due to the intrinsic delay, while the proof of stake nature
of STROBE offers fairness guarantees by not relying in the event organizer’s or software
publisher’s honesty. Along the same lines, STROBE has an advantage in low or expensive
bandwidth locations (i.e., remote IoT devices) by allowing reading a beacon infrequently and
generating past randomness internally.
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