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Abstract

Non-malleable codes are introduced to protect the communication against adversarial

tampering of data, as a relaxation of the error-correcting codes and error-detecting codes.

To explicitly construct non-malleable codes is a central and challenging problem which has

drawn considerable attention and been extensively studied in the past few years. Recently,

Rasmussen and Sahai built an interesting connection between non-malleable codes and

(non-bipartite) expander graphs, which is the first explicit construction of non-malleable

codes based on graph theory other than the typically exploited extractors. So far, there is

no other graph-based construction for non-malleable codes yet. In this paper, we aim to

explore more connections between non-malleable codes and graph theory. Specifically, we

first extend the Rasmussen-Sahai construction to bipartite expander graphs. Accordingly,

we establish several explicit constructions for non-malleable codes based on Lubotzky-

Phillips-Sarnak Ramanujan graphs and generalized quadrangles, respectively. It is shown

that the resulting codes can either work for a more flexible split-state model or have better

code rate in comparison with the existing results.

1 Introduction

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [21, 22], are resilient

to adversarial tampering on arbitrary number of symbols which is beyond the scope of error-

correcting and error-detecting codes. Consider the following “tampering experiment”. A

message m ∈ M is encoded via a (randomized) encoding function enc : M → X , yielding
a codeword c = enc(m). However the codeword c is modified by an adversary using some

tampering function f ∈ F with f : X → X to an erroneous word c̃ = f(c), and c̃ is decoded

using a deterministic function dec, resulting m̃ = dec(c̃). In terms of the practical application,

the reliability m̃ = m is desired. An error-correcting code with minimum distance d can
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guarantee the reliable communication with respect to the family F which satisfies that for

f ∈ F the Hamming distance between c̃ = f(c) and c is at most ⌊(d − 1)/2⌋. However it is

impossible to achieve the reliability using error-correcting codes if the tampering family F is

large. In order to deal with this, Dziembowski et al. [21] proposed the non-malleable codes

(with respect to F), which ensure that either the tampered codeword is correctly decoded,

i.e., m̃ = m, or the decoded message m̃ is completely unrelated to the original message m. As

remarked in [21] and [22], the concept of non-malleable codes is in a spirit of non-malleablity

proposed by Dolev, Dwork and Naor [17] in cryptographic primitives. Informally, the non-

malleability in the context of encryption requires that given the ciphertext it is impossible to

generate a different ciphertext so that the respective plaintexts are related [17].

It is known that no non-malleable code exists if the tampering family F is the entire space

of functions. Thus the study on non-malleable codes has focused on the specific families F .
One typical tampering family is with the split-state model, which has also been investigated

in the context of leakage cryptography [13, 20]. Roughly speaking, this model assumes that

the encoded memory/state of the system is partitioned into two parts and adversaries can

arbitrarily tamper the data stored in each part independently. More precisely, each message is

encoded into a word c = (L,R) ∈ L×R and adversaries try to tamper it using some functions

g : L → L and h : R → R which change c to c̃ = (g(L), h(R)) ∈ L×R. Moreover, if |L| = |R|,
we call it equally-sized split-state model.

To explicitly construct non-malleable codes is a fundamental and challenging problem. In

the literature, explicit non-malleable codes for the split-state model have been derived based

on two-source extractors and additive combinatorics, see [1], [2], [3], [4], [5], [6], [7], [10], [11],

[18], [29], [30] for example. Notably, Dziembowski, Kazana and Obremski [18] pointed out:

“This brings a natural question if we could show some relationship between the extractors and

the non-malleable codes in the split-state model. Unfortunately, there is no obvious way of

formalizing the conjecture that non-malleable codes need to be based on extractors”. Recently,

Rasmussen and Sahai [36] discovered that (non-bipartite) expander graphs could provide non-

malleable codes for the split-state model, which in some sense answers Dziembowski-Kazana-

Obremski’s question in [18]. Inspired by [36], we are interested with exploring more graph-

theoretic constructions for split-state non-malleable codes. More precisely, we shall study the

following problem.

Problem 1. Based on graph theory, provide explicit constructions of non-malleable codes for

the split-state model.

Indeed, Rasmussen and Sahai [36] provided an elegant answer to Problem 1. However

we noticed that the construction in [36] cannot be directly transferred to the general split-

state model. Inspired by this, we initially extend the construction in [36] to bipartite graphs.

Specifically, in this paper, we first establish a coding scheme based on bipartite graphs. Then
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Ref. |L| |R| code rate comments

[36, Sec. C] q3 q3 1
24 log2(1/ε)+O(1)

q = p2, p is a prime

Cor. 17 Θ(p5/2 log(p)) Θ(p5/2 log(p)) 1
20 log2(1/ε)+O(log log(1/ε))

p is an odd prime

Table 1: Explicit graph-based ε-non-malleable codes in this paper and [36]

Ref. #vertices n |L| |R| code rate
minimum rate for n

(|L| = |R| = n/2)

Thm. 18 2q2(q + 1) (q + 2)q2 q3
1

log2(q
6 + 2q5)

1

log2(q
6 + 2q5 + q4)

Thm. 20 (q3 + q2 + 2)(q5 + 1) (q2 + 1)(q5 + 1) (q3 + 1)(q5 + 1)
1

log2(q
15 +O(q14))

1

log2(q
16 +O(q15))

Table 2: Code rates of non-malleable codes based on bipartite graphs with n vertices, where q

is a prime power

we prove that when the underlying bipartite graph is an (r, s)-biregular graph with the second

largest eigenvalue µ, our coding scheme providesO
(µ3/2
√
rs

)
-non-malleable codes for the split-state

model which is not necessarily to be equally-sized (see Theorem 10). This can be seen as an

extension of the coding scheme in [36] in the sense that we could deduce the codes for equally-

sized split-state model in [36] as special cases (see Remark 9). Based on this, we provide several

more solutions to Problem 1 by means of Lubotzky-Phillips-Sarnak Ramanujan graphs and

generalized quadrangles (see Tables 1 and 2). In particular, the resulting non-malleable codes

can either work for more flexible non-equally-sized split-state model (see Theorems 18, 20) or

have better code rate (see Theorem 16, Corollary 17) in comparison with the non-malleable

codes in [36, Section C]. In particular, for a given size of graphs, codes for non-equally-sized

split-state model in general realize larger code rate than the rate of codes for equally-sized

split-state model (see Table 2 and Section 4).

The remainder of this paper is organized as follows. Section 2 briefly reviews non-malleable

codes and basics in graph theory. Section 3 provides the coding scheme based on bipartite

graphs and discusses its non-malleability. Section 4 analyzes the code rate of the established

non-malleable codes. Section 5 presents several explicit constructions for non-malleable codes.

Section 6 concludes this paper. Appendix proves Theorem 10.
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2 Preliminaries

In this section we recall the notion of non-malleable codes and some useful basics in graph the-

ory. Throughout this paper, let x← X denote that the random variable x sampled uniformly

from a set X . Let ⊥ denote a special symbol.

For positive-valued functions f and g over N, we say f = O(g) as n → ∞ if there exists

a constant C > 0 that f(n) ≤ Cg(n) holds for any sufficiently large n. Similarly f = Ω(g)

as n → ∞ if there exists a constant C > 0 that f(n) ≥ Cg(n) holds for any sufficiently large

n. In particular f = Θ(g) as n → ∞ if Ω(g) = f = O(g) holds. Also f = o(g) as n → ∞ if

lim
n→∞

f(n)/g(n) = 0.

2.1 Non-malleable codes

LetM be a set of messages and X a set of codewords. A coding scheme is a pair of functions

(enc,dec), where enc :M→ X is a randomized encoding function, and dec : X →M∪{⊥} is
a deterministic decoding function. Assume that for all m ∈M,

Pr[dec(enc(m)) = m] = 1,

where the probability is taken over the randomness of enc.

Let A,B be two random variables over the same set X . Then the statistical distance

between A and B is defined as

∆(A,B) :=
1

2

∑
x∈X

∣∣∣∣Pr[A = x]− Pr[B = x]

∣∣∣∣.
Definition 2 (Split-state non-malleable codes). In the split-state model, assume X = L ×R
is the product set of sets L and R. Let F be a set of functions from L × R to itself, where

each f ∈ F can be represented as f(L,R) = (g(L), h(R)) for all (L,R) ∈ L × R with some

g : L → L and h : R → R. Then a coding scheme (enc, dec) such that enc :M→ L×R and

dec : L×R →M∪{⊥} is called an ε-non-malleable code with respect to F if for every f ∈ F ,
there exists a probability distribution Df onM∪ {same∗,⊥} such that for every m ∈ M, we

have ∆(Am
f , Bm

f ) ≤ ε, where for m ∈ M and f ∈ F , let Am
f and Bm

f be events defined as

follows.

Am
f :=


(L,R)← enc(m);

Output dec(g(L), h(R))

 ,

Bm
f :=


m̃← Df ;

If m̃ = same∗ output m else output m̃

 .
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Hereafter, as in [18] and [36], the symbol “⊥” from Definition 2 will be dropped since it

usually denotes the situation when the decoding function detects tampering and outputs an

error message, which is not dealt in this paper. As mentioned in [18], this would be not so

problematic for practical applications.

Definition 3 (Code rate). For a coding scheme C with the set of messagesM and the set of

codewords X , the code rate R(C) is defined as

R(C) := log2 |M|
log2 |X |

.

In particular if M = {0, 1}κ and X = {0, 1}n then R(C) is the ratio of the message length κ

and codeword length n.

This paper focuses on single-bit non-malleable codes, i.e., M = {0, 1}. It is shown in [18]

that single-bit non-malleable codes can be formulated as in the following Theorem 4 as well.

Theorem 4 ([18], [19]). Let (enc, dec) be a coding scheme with enc : {0, 1} → X and dec :

X → {0, 1}. Let F be a set of functions from X to itself. Then (enc,dec) is an ε-non-malleable

code with respect to F if and only if it holds for every f ∈ F that

1

2

∑
b∈{0,1}

Pr
[
dec
(
f(enc(b))

)
= 1− b

]
≤ 1

2
+ ε

where the probability is over the uniform choice of b and the randomness of enc.

2.2 Expander graphs

Throughout this paper, we assume that all graphs are undirected and simple, i.e., without

multiple edges and loops. Let G = (V,E) denote a graph G with vertex set V and edge set

E. Let G = (V1, V2, E) be a bipartite graph with a partition (V1, V2) of vertex set and edge

set E ⊂ {{v1, v2} : v1 ∈ V1, v2 ∈ V2}. For convenience, we identify G = (V1, V2, E) with an

orientation
−→
G = (V1, V2,

−→
E ) where

−→
E = {(v1, v2) : {v1, v2} ∈ E} ⊂ V1 × V2.

We call
−→
G the associated orientation of G.

We say a vertex has degree d if it connects exactly d edges. A graph G is called a d-

regular graph if every vertex has degree d. A bipartite graph G = (V1, V2, E) is called an

(r, s)-biregular graph if every vertex of V1 and V2 has degree r and s, respectively. Clearly,

for an (r, s)-biregular graph G = (V1, V2, E) and its associate orientation
−→
G = (V1, V2,

−→
E ), the

following equation holds.

|E| = |
−→
E | = r|V1| = s|V2|. (2.1)
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Let G = (V,E) be a graph with n vertices. Then the adjacency matrix of G, denoted by

A(G), is a |V | × |V | binary matrix such that the (u,w)-entry is 1 if and only if {u,w} ∈ E.

Clearly, A(G) is a symmetric matrix and thus has exactly n real eigenvalues with multiplicity,

denoted by λ1 ≥ λ2 ≥ · · · ≥ λn.

Lemma 5 (e.g. [9]). Let G be a graph with n vertices.

1. If G is d-regular, then λ1 = d and λn ≥ −d, where λn = −d if and only if G is bipartite.

2. If G is (r, s)-biregular, then λ1 =
√
rs and λn = −

√
rs.

By Lemma 5, the largest eigenvalue of a (bi-)regular graph is always determined. However,

the second largest eigenvalue typically has rich properties. For a d-regular graph G, denote

λ(G) := max
2≤i≤n

|λi|. For an (r, s)-biregular graph G, denote

µ(G) := max
2≤i≤n−1

|λi|.

An (r, s)-biregular graph G is a µ-spectral expander if µ(G) ≤ µ. It has the following nice

expansion property.

Proposition 6 ([40]). Let G = (V1, V2, E) be an (r, s)-biregular graph which is a µ-spectral ex-

pander. For a subset S ⊂ V1, define the neighbour of S as N(S) := {u ∈ V2 : u is adjacent to some vertex in S},
and let ρ(S) := |S|

|V1| . Then for every subset S ⊂ V1,

|N(S)|
|S|

≥ r2

ρ(S)(rs− µ2) + µ2
.

By Proposition 6, it is readily seen that if G is a µ-spectral expander with small µ, then G

has a good expansion property and thus we are interested in how µ(G) can be small.

Lemma 7 ([27]). Suppose that G is a sufficiently large graph. Then the followings hold.

(1) If G is d-regular, then λ(G) = Ω(
√
d).

(2) If G is (r, s)-biregular, then µ(G) = Ω(
√
r + s).

3 Codes from bipartite graphs

In this section we provide a bipartite graph based coding scheme and show that it produces

non-malleable codes.
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3.1 A coding scheme

First we propose a coding scheme based on bipartite graphs.

Construction 8. Let G = (V1, V2, E) be a bipartite graph and
−→
G = (V1, V2,

−→
E ) the associated

orientation of G. Then the associated graph code CG := (encG, decG) consists of the functions

encG : {0, 1} → V1 × V2, decG : V1 × V2 → {0, 1}

such that

encG(b) :=

(u,w)← (V1 × V2) \
−→
E if b = 0;

(u,w)←
−→
E if b = 1,

decG(v1, v2) :=

0 if (v1, v2) /∈
−→
E ;

1 if (v1, v2) ∈
−→
E .

Remark 9. Rasmussen and Sahai [36] designed a coding scheme based on a graph G = (V,E)

so that the space of codewords is V × V , but it works only for equally-sized split-state model

with |L| = |R| = |V |. On the other hand, our code can be applied to a more flexible split-state

model, i.e. |L| = |V1| may not be necessary equal to |R| = |V2|. An advantage of such model

is discussed in Section 4 afterwards.

3.2 Non-malleability

We show that the coding scheme in Construction 8 based on biregular spectral expanders can

produce non-malleable codes for the split-state model.

Theorem 10. Let G = (V1, V2, E) be an (r, s)-biregular graph with n vertices which is a

µ-spectral expander. Suppose that r = r(n), s = s(n) with r, s → ∞ as n → ∞ (hence

µ = µ(n) → ∞). Assume that |E| = Ω
(
(rs)2 log(rs)

µ

)
(n → ∞). Let F be the set of all

functions f = (g, h) with g : V1 → V1 and h : V2 → V2, where f(v1, v2) := (g(v1), h(v2)) for

any (v1, v2) ∈ V1 × V2. Then the code CG is an O
(

µ
3
2√
rs

)
-non-malleable code with respect to F

as n→∞.

The proof of Theorem 10 is referred to Appendix.

Remark 11. Suppose that G is an (r, s)-biregular graph with s ≥ r = ω(
√
s) and µ(G) =

O(
√
s). Then Theorem 10 guarantees that the code CG is an O(s1/4/r1/2)-non-malleable code,

where s1/4/r1/2 = o(1) by the assumption on r and s. On the other hand, according to

Lemma 7, the quantity O(s1/4/r1/2) in Theorem 10 is best possible up to a constant.

The following corollary follows from Theorem 10 and (2.1).
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Corollary 12. Let G = (V1, V2, E) be a bipartite d-regular graph with |V1| = |V2| = n/2 which

is a µ-spectral expander. Suppose that n = Ω
(
log(d)·d3

µ

)
and F is as in Theorem 10. Then the

code CG is an O
(
µ3/2

d

)
-non-malleable code with respect to F .

Remark 13. Corollary 12 actually includes the explicit construction of non-malleable codes

by Rasmussen and Sahai [36, Section C]. Indeed, for a finite abelian group X and a subset S of

X, the Cayley graph Cay(X,S) is an |S|-regular graph with vertex set X in which two vertices

x and y are adjacent if and only if xy−1 ∈ S. Note that from Cay(X,S), a bipartite |S|-regular
graph can be easily obtained as follows. Take two disjoint copies X1 and X2 of X and construct

a bipartite graph so that x1 ∈ X1 and x2 ∈ X2 are adjacent if and only if x1x
−1
2 ∈ S; such

a bipartite regular graph is called a bi-Cayley graph [35]. For a prime p let Fp denote the

p-element field and q = p2. Rasmussen and Sahai [36] constructed an O(q−1/4)-non-malleable

code from a non-bipartite graph Cay(F6
p, S) with some S ⊂ F6

p such that |S| = q. In terms

of Corollary 12, the corresponding bi-Cayley graph provides the same non-malleable code as

in [36, Section C].

4 Non-equally-sized split-state model

In this section we discuss the code rate of non-malleable codes for non-equally-sized split-state

model. Recall from Theorem 10 that the non-malleable code CG is established for a given

integer n and a bipartite graph G = (V1, V2, E) with n vertices. The robustness ε of the non-

malleable code CG relies on the parameters |V1|, |V2|, r, s and µ, which are functions of n. In

terms of the code rate, we also have the following interesting observation.

Lemma 14. Let n be a positive integer. Let G = (V1, V2, E) be a bipartite graph with n

vertices. Then

R(CG) =
1

log2(|V1||V2|)
. (4.1)

Moreover assuming |V1| ≥ |V2| we have

R(CG) ≥
1

log2(⌈n/2⌉ · ⌊n/2⌋)
, (4.2)

where the equality holds if and only if |V1| = ⌈n/2⌉ and |V2| = ⌊n/2⌋.

Proof. The equation (4.1) immediately follows from the construction of CG (Construction 8).

Also (4.2) can be proved by finding the maximum value of log2(|V1||V2|) under the conditions

that |V1| + |V2| = n and 1 ≤ |V1|, |V2| ≤ n − 1. Notice that |V2| = n − |V1|, then |V1||V2| =
|V1|(n − |V1|) is maximized if and only if |V1| = ⌈n/2⌉ and |V2| = ⌊n/2⌋. Since the function

log2(·) is monotone-increasing, the inequality (4.2) follows.
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According to Lemma 14, for any bipartite graph G = (V1, V2, E) with n vertices, it is

readily seen that the smallest code rate occurs when |V1| = |V2| (i.e. equally-sized). In other

words, the non-malleable codes derived from Construction 8 can have better code rate for non-

equally-sized split-state model in comparison with equally-sized split-state model in general.

Furthermore it is worth noting that the larger the ratio of |V1| and |V2| is, the better the code

rate is. In addition to the above analysis on code rate, one could also derive code rate according

to the robustness parameter ε of the established code in Construction 8 (see Section 5.1, for

example).

5 Explicit constructions

In this section, we present explicit non-malleable codes based on specific biregular spectral

expanders.

5.1 Via Lubotzky-Phillips-Sarnak Ramanujan graphs

In this subsection, we construct non-malleable codes based on suitably chosen graphs from

known families of bipartite regular graphs. The resulting codes can have better code rate in

comparison with the codes in [36] (see also Remark 13).

To show our construction based on Corollary 12, we need the following claim.

Claim 15. For a given large prime p, there exist explicit (bipartite) (p+ 1)-regular graphs G

with Θ(p5/2 log(p)) vertices and µ(G) ≤ 2
√
p.

Our construction of graphs is based on the following Ramanujan graphs due to Lubotzky,

Phillips and Sarnak [32], and Margulis [33] (see also [14, Theorem 4.2.2]). Let p, r be two

distinct odd primes such that r > 2
√
p and p is a quadratic non-residue modulo r. Then

one can explicitly construct a bipartite (p + 1)-regular graph Xp,r with r(r2 − 1) vertices

and µ(Xp,r) ≤ 2
√
p for every r > 2

√
p. Indeed the graph Xp,r is constructed as a Cayley

graph Cay(PGL2(Fr), S) with some explicit generating set S ⊂ PGL2(Fr) of size p+ 1, where

PGL2(Fr) denotes the projective general linear group of rank 2 over the r-element field Fr.

The details of the construction can be found in [14]. Note that (e.g. [34]) for each prime p,

one could check whether two given vertices are adjacent in Xp,r in O(log(r))-time, and hence

the graph can be constructed in poly(r)-time.

Proof of Claim 15. To prove Claim 15, it suffices to take the graphXp,r with r = Θ(p5/6 log1/3(p)).

Indeed for each sufficiently large prime p, by Bertrand’s postulate, there exists a prime r =

Θ(p5/6 log1/3(p)) > 2
√
p, which can be found in poly(p)-time. If p is a quadratic non-residue

modulo r, then Xp,r is a bipartite (p + 1)-regular graph with Θ(p5/2 log(p)) vertices and

µ(Xp,r) ≤ 2
√
p.

9



Thus we obtain the following theorem.

Theorem 16. For any sufficiently large prime p, suppose that r = Θ(p5/2 log(p)) is a prime

such that p is a quadratic non-residue modulo r. Then the code CG with G = Xp,r is an

O(p−1/4)-non-malleable code for the split-state model with |L| = |R| = Θ(p5/2 log(p)).

Note that Theorem 16 cannot deal with the case when r = Θ(p5/2 log(p)) is a prime

such that p is a quadratic residue modulo r. However, in this case, one can instead explicitly

construct a non-bipartite (p+1)-regular graph Y p,r with r(r2−1)/2 vertices and λ(Y p,r) ≤ 2
√
p

(see [14], [32], [33]). By [36, Theorem 7], the graph Y p,r with r = Θ(p5/2 log(p)) provides

an O(p−1/4)-non-malleable code for the split-state model with |L| = |R| = Θ(p5/2 log(p)).

Moreover, for each pair of primes p and r, one could check whether two given vertices are

adjacent or not in Xp,r and Y p,r in O(log(p))-time. By these facts and Theorem 16, we

immediately obtain the following corollary.

Corollary 17. For any sufficiently large prime p, there exists an explicit (p+1)-regular graph

G with Θ(p5/2 log(p)) vertices which provides an O(p−1/4)-non-malleable code for the split-

state model with |L| = |R| = Θ(p5/2 log(p)). In particular, for every 0 < ε < 1, there exists an

explicit ε-non-malleable code with code rate

1

20 log2(1/ε) +O(log log(1/ε))
.

Moreover, both of encoding and decoding can be done in O(log(1/ε))-time.

The last statement of Corollary 17 directly follows from the discussion in [36, Section 1.3].

Note that the explicit codes derived in [36] (see also Remark 13) have code rate 1/(24 log(1/ε)+

O(1)) while encoding and decoding time is O(log(1/ε)). In other words, the resulting codes here

can have better code rate in comparison with the codes in [36], while encoding and decoding

time are the same (up to constant).

5.2 Via generalized quadrangles

In this subsection, we provide split-state non-malleable codes based on generalized quadrangles.

The code rates of these codes can also be found in Table 2 in Introduction.

A generalized quadrangle of order (α, β) is an (α + 1, β + 1)-biregular graph GQ(α, β) =

(V1, V2, E) such that

• for all x, y ∈ V1 ∪ V2, there exists a path of length ≤ 4 connecting x and y;

• for all x, y ∈ V1 ∪ V2, if the length of the shortest path connecting x and y is h < 4, then

there exists only one path of length h connecting x and y;
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• for every x ∈ V1 ∪ V2, there exists y ∈ V1 ∪ V2 such that there exists a path of length 4

connecting x and y.

More details of generalized quadrangles can be found in [37], [41]. Now based on general-

ized quadrangles, we can derive two families of non-malleable codes for the non-equally-sized

scenario.

Theorem 18. For any prime power q, the code CG with G = GQ(q− 1, q+1) is an O(q−1/4)-

non-malleable code for the split-state model with |L| = (q + 2)q2 and |R| = q3.

We need the following lemma to prove Theorem 18.

Lemma 19 ([37], [40], [41]). For the graph GQ(α, β), we have

• |V1| = (α+ 1)(αβ + 1),

• |V2| = (β + 1)(αβ + 1),

• µ(GQ(α, β)) =
√
α+ β.

Proof of Theorem 18. To obtain the theorem, we apply an explicit construction of GQ(q −
1, q + 1) for every prime power q ([8, Sections 4 and 5]). According to (2.1) and Lemma 19,

we have |E| = r|V1| = Θ(q4) and (rs)2 log(rs)
µ = Θ(q7/2 log q). Thus by Theorem 10, the code

CG with G = GQ(q − 1, q + 1) gives the desired code.

The following theorem can deal with more unbalanced non-equally-sized scenario.

Theorem 20. For any prime power q, the code CG with G = GQ(q2, q3) is an O(q−1/4)-non-

malleable code for the split-state model with |L| = (q2 + 1)(q5 + 1) and |R| = (q3 + 1)(q5 + 1).

Proof. For every prime power q, there is an explicit construction of GQ(q2, q3) (e.g. [37,

Chapter 3]). By (2.1) and Lemma 19, we have |E| = r|V1| = Θ(q10) and (rs)2 log(rs)
µ =

Θ(q17/2 log q). Thus according to Theorem 10, (encG,decG) with G = GQ(q2, q3) gives the

desired code.

6 Concluding remarks

In this paper, we proposed a coding scheme based on bipartite graphs and showed that the

non-malleability can be satisfied if the underlying bipartite graph is a biregular µ-spectral

expander with sufficiently small µ. Based on it, we provided explicit non-malleable codes

via several types of biregular spectral expanders such as Ramanujan graphs and generalized

quadrangles. The established non-malleable codes can either work for a more flexible split-state

model or have better code rate in comparison with the existing results.
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In addition, our results show that some related error-correcting codes have potential ap-

plications to constructing non-malleable codes for the split-state model. For example, it is

well-known in coding theory and combinatorics that a low-density parity-check (LDPC) code

has an associated bipartite graph called Tanner graph. Precisely, the Tanner graph of an

LDPC code with parity-check matrix H = (hij) is a bipartite graph such that the vertex set

is the index set of rows and columns of H, and two vertices i and j are adjacent if and only if

hij ̸= 0, see [39]. It is shown that the algebraic or combinatorial constructions of LDPC codes

often provide Tanner graphs with small second largest eigenvalue, see [16], [25], [31], [38], [28]

for example. According to the bipartite graph based coding scheme proposed in this paper,

a connection between LDPC codes and non-malleable codes can be accordingly established.

Particularly, the constructions in Theorems 18 and 20 are based on several typical bipartite

graphs realized as Tanner graphs of LDPC codes.

In terms of practical applications, it is desirable to construct split-state non-malleable

codes for k-bit messages with k ≥ 2. As far as we know, there is no known graph-theoretic

constructions of split-state non-malleable codes for k ≥ 2. It would be of interest to generalize

the graph-based codes in this paper and [36] for k-bit messages in the split-state model (see

also [42, Section 2.1.3]).
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A Proof of Theorem 10

In this section, we prove Theorem 10. Although the proof is based on the discussion in [36],

we give a full proof for reader’s convenience. In the proof we adopt the following notations.

Let X, Y be two sets and f : X → Y be a function. For each y ∈ Y , denote f−1(y) := {x ∈
X : f(x) = y}. For a subset S ⊂ Y , denote f−1(S) := ∪s∈Sf−1(s). Also let G = (V1, V2, E)

15



be an (r, s)-biregular graph with n vertices, µ(G) = µ and
−→
G = (V1, V2,

−→
E ) be the associated

orientation of G. Then for any pair of subsets S ⊂ V1 and T ⊂ V2, let

E(S, T ) :=
∣∣{(s, t) ∈ −→E : s ∈ S, t ∈ T}

∣∣,
D(S, T ) :=

√
rs√

|V1||V2|
· |S||T | − E(S, T ).

(A.1)

Now recall the statement of Theorem 10.

(Theorem 10) Let G = (V1, V2, E) be a sufficiently large (r, s)-biregular graph which is a

µ-spectral expander. Suppose that |E| = Ω
(
(rs)2 log(rs)

µ

)
. Let F be the set of all functions

f = (g, h) with g : V1 → V1 and h : V2 → V2, where f(v1, v2) := (g(v1), h(v2)) for any

(v1, v2) ∈ V1 × V2. Then (encG, decG) is an O
(

µ
3
2√
rs

)
-non-malleable code with respect to F .

To derive the non-malleability in Theorem 10, we shall employ Theorem 4 and the following

lemmas.

Lemma 21. Let G = (V1, V2, E) be an (r, s)-biregular graph and
−→
G = (V1, V2,

−→
E ) the associated

orientation of G. For given functions g : V1 → V1 and h : V2 → V2, define f : V1×V2 → V1×V2

such that f(v1, v2) := (g(v1), h(v2)) for any (v1, v2) ∈ V1 × V2. Let

T :=
1

2

∑
b∈{0,1}

Pr
[
dec
(
f(enc(b))

)
= 1− b

]
.

Then we have

T =
1

2
+ δ ·

∑
(v,w)∈

−→
E

D
(
g−1(v), h−1(w)

)
where

δ :=
|V2|

2r(|V2| − r)|V1|
=

|V1|
2s(|V1| − s)|V2|

.

Proof of Lemma 21. The proof here is analogous to the proof of [36, Proposition 6]. For

b ∈ {0, 1}, let
Qb := Pr

[
decG

(
f(encG(b))

)
= 1− b

]
.

Notice that

Q0 = Pr
(v,w)←(V1×V2)\

−→
E

[
(g(v), h(w)) ∈

−→
E
]
,

Q1 = Pr
(v,w)←

−→
E

[
(g(v), h(w)) /∈

−→
E
]
,

and thus T = (Q0 +Q1)/2. Now we turn to compute Qb.

First let b = 0. For any e = (v, w) ∈
−→
E , the total number of non-edges of G mapped by f

to e is

|{(x, y) ∈ (V1 × V2) \
−→
E : f(x, y) = (g(x), h(y)) = (v, w)}|
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= |g−1(v)||h−1(w)| − E
(
g−1(v), h−1(w)

)
.

Since (2.1) implies |(V1 × V2) \
−→
E | = (|V2| − r)|V1| = (|V1| − s)|V2|, we have

Q0 =

∑
(v,w)∈

−→
E

{
|g−1(v)||h−1(w)| − E

(
g−1(v), h−1(w)

)}
(|V2| − r)|V1|

. (A.2)

Next suppose b = 1. For any e = (v, w) ∈ (V1 × V2) \
−→
E , the total number of edges of G

mapped by f to e is E
(
g−1(v), h−1(w)

)
. Thus we have

Q1 =

∑
(v,w)/∈

−→
E
E
(
g−1(v), h−1(w)

)
r|V1|

=
|
−→
E | −

∑
(v,w)∈

−→
E
E
(
g−1(v), h−1(w)

)
r|V1|

= 1−

∑
(v,w)∈

−→
E
E
(
g−1(v), h−1(w)

)
r|V1|

,

(A.3)

where the last equality follows from (2.1).

Summing up (A.2) and (A.3) completes the proof.

Let f = (g, h) : V1 × V2 → V1 × V2 be a given tampering function from F . Recall that for

each pair of 1 ≤ i ̸= j ≤ 2 and each vertex v ∈ Vi, N(v) = {u ∈ Vj : u, v are adjacent in G}.
Define the following partitions of V1 and V2.

G1 :=

{
v ∈ V1 : |g−1(v)| >

|V1|
rs

}
, G2 :=

{
v ∈ V1 : |g−1(v)| ≤

|V1|
rs

}
,

H1 :=

{
w ∈ V2 : |h−1(w)| >

|V2|
rs

}
, H2 :=

{
w ∈ V2 : |h−1(w)| ≤

|V2|
rs

}
.

For 1 ≤ i, j ≤ 2, let

Ri,j := δ ·
∑

(v,w)∈
−→
E∩(Gi×Hj)

D
(
g−1(v), h−1(w)

)
.

It follows from Lemma 21 that

T =
1

2
+

∑
1≤i,j≤2

Ri,j . (A.4)

By (A.4), the proof of Theorem 10 is completed from the following Lemmas 22, 23 and 24.

Lemma 22 (i = 2).

R2,1 +R2,2 = O
(1
r

)
.
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Proof. By the definition of D(S, T ) in (A.1),

R2,1 +R2,2 ≤ δ ·
∑

(v,w)∈
−→
E∩(G2×V2)

√
rs√

|V1||V2|
· |g−1(v)||h−1(w)|

≤ δ · s ·
∑
w∈V2

√
rs√

|V1||V2|
· |V1|
rs
· |h−1(w)|

≤ |V1|
2s(|V1| − s)|V2|

· s ·
√
rs√

|V1||V2|
· |V1|
rs
· |V2|

= O

(
1√
rs
·

√
|V1|
|V2|

)
= O

(1
r

)
where the second inequality follows from the definition of G2.

Lemma 23 (i = 1, j = 2).

R1,2 = O
(1
s

)
.

Proof. Similar to Case 1, we have

R1,2 ≤ δ ·
∑

(v,w)∈
−→
E∩(G1×H2)

√
rs√

|V1||V2|
· |g−1(v)||h−1(w)|

≤ δ ·
∑

(v,w)∈
−→
E∩(V1×H2)

√
rs√

|V1||V2|
· |g−1(v)||h−1(w)|

≤ δ · r ·
∑
v∈V1

√
rs√

|V1||V2|
· |g−1(v)| · |V2|

rs

≤ |V2|
2r(|V2| − r)|V1|

· r ·
√
rs√

|V1||V2|
· |V1| ·

|V2|
rs

= O

(
1√
rs
·

√
|V2|
|V1|

)
= O

(1
s

)
.

Lemma 24 (i = j = 1).

R1,1 = O
( µ

3
2

√
rs

)
.

Since the proof of Lemma 24 is complicated, we first prove Theorem 10 assuming that

Lemma 24 holds.

Proof of Theorem 10. By Theorem 4 and (A.4), Theorem 10 immediately follows from Lem-

mas 22, 23 and 24.
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Now we are going to prove Lemma 24. We will make use of the following lemma which

plays a key role to prove the technical Lemma 24.

Lemma 25 (Expander mixing lemma, [15], [23], [24]). Let G = (V1, V2, E) be an (r, s)-biregular

graph with n vertices, µ(G) = µ. Then for any pair of subsets S ⊂ V1 and T ⊂ V2, we have

|D(S, T )| ≤ µ
√
|S||T |. (A.5)

Remark 26. The non-malleable codes from [36] used the following fact. Let G = (V,E) be a

d-regular (possibly non-bipartite) graph with λ(G) = λ. Then for any pair of subsets S, T ⊂ V ,∣∣∣∣dn |S||T | − e(S, T )

∣∣∣∣ ≤ λ
√
|S||T |. (A.6)

Here e(S, T ) denotes the number of edges between S and T . However, if G is a bipartite graph,

the estimation (A.6) cannot be used to prove the non-malleability for the coding schemes

in [36] (see Appendix) and the coding scheme in this paper (see Definition 8), since in this case

λ(G) = d (see Lemma 5), which only implies O(
√
d)-non-malleable codes. However we could

see from Theorem 10 that using Lemma 25 can produce o(1)-non-malleable codes.

Proof of Lemma 24. Take partitions of G1 andH1 so that for each pair of 1 ≤ k, l ≤ ⌈log2(rs)⌉,

G1(k) :=
{
v ∈ G1 :

|V1|
2k−1

≥ |g−1(v)| ≥ |V1|
2k

}
,

H1(l) :=
{
w ∈ H1 :

|V2|
2l−1

≥ |h−1(w)| ≥ |V2|
2l

}
.

For each pair of 1 ≤ k, l ≤ ⌈log2(rs)⌉, let

Sk,l := δ ·
∑

(v,w)∈
−→
E∩
(
G1(k)×H1(l)

)D
(
g−1(v), h−1(w)

)
.

Since R1,1 =
∑

1≤k,l≤⌈log2(rs)⌉ Sk,l, Lemma 24 follows from the following.

∑
1≤k,l≤⌈log2(rs)⌉

Sk,l = O
( µ

3
2

√
rs

)
. (A.7)

To that end, we divide the sum in (A.7) into two parts, namely,∑
1≤k≤l≤⌈log2(rs)⌉

Sk,l and
∑

1≤l<k≤⌈log2(rs)⌉

Sk,l.

Case 1. This case is to prove the following estimation.

∑
1≤k≤l≤⌈log2(rs)⌉

Sk,l = O
( µ

3
2

√
rs

)
. (A.8)
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First we have

δ−1Sk,l =
∑

v∈G1(k)

D

(
g−1(v),

⋃
w∈N(v)∩H1(l)

h−1(w)

)

≤
∑

v∈G1(k)

µ

√
|g−1(v)| ·

∑
w∈N(v)∩H1(l)

|h−1(w)|

≤ µ

√
|V1|
2k−1

· |V2|
2l−1

∑
v∈G1(k)

√
|N(v) ∩H1(l)|

≤ 2µ · 2−
l+k
2 ·

√
|V1||V2| ·

√
|G1(k)| ·

√
E
(
G1(k), H1(l)

)
≤ 2µ · 2−

l+k
2 ·

√
|V1||V2| ·

√
|G1(k)| ·

√ √
rs√

|V1||V2|
· |G1(k)||H1(l)|+ µ

√
|G1(k)||H1(l)|,

where the second and last inequalities follow from Lemma 25.

By Jensen’s inequality and (2.1), we obtain

Sk,l ≤ O
( µ√
|E|

)
· 2−

l+k
2 · |G1(k)| ·

√
|H1(l)|+O

( µ
3
2

√
rs

)
· 2−

l+k
2 ·

(
|G1(k)|3|H1(l)|

) 1
4
.

To obtain (A.8), let

L :=
∑

1≤k≤l≤⌈log2(rs)⌉

2−
l+k
2 · |G1(k)| ·

√
|H1(l)|,

K :=
∑

1≤k≤l≤⌈log2(rs)⌉

2−
l+k
2 ·

(
|G1(k)|3|H1(l)|

) 1
4
.

By the definitions of L and K,

∑
1≤k≤l≤⌈log2(rs)⌉

Sk,l = O
( µ√
|E|

)
· L+O

( µ
3
2

√
rs

)
·K. (A.9)

First we estimate L. Notice that for each k ≤ ⌈log2(rs)⌉,

|G1(k)| · 2−
k
2 ≤ 2

k
2 ≤ 2

√
rs. (A.10)

Then by the Cauchy-Schwartz inequality,

L ≤
∑

1≤k,l≤⌈log2(rs)⌉

2−
l+k
2 · |G1(k)| ·

√
|H1(l)|,

≤ 2
√
rs ·

∑
1≤l≤⌈log2(rs)⌉

√
2−l|H1(l)|

≤ O
(√

rs log(rs)
)
·
√ ∑

1≤l≤⌈log2(rs)⌉

2−l|H1(l)|,
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where the second inequality follows from (A.10). On the other hand, the definition of H1(l)

implies that

|h−1(H1(l))| ≥ |V2||H1(l)|
2l

. (A.11)

Since H1(1), . . . ,H1(⌈log2(rs)⌉) are disjoint subsets of V2, we have

L = O
(√

rs log(rs)
)
·

√√√√ ∑
1≤l≤⌈log2(rs)⌉

|h−1(H1(l))|
|V2|

= O
(√

rs log(rs)
)
, (A.12)

where the last equation follows from (A.11).

Next we aim to bound K. Since we are assuming that k ≤ l, setting t = l − k, we obtain

K ≤
∑

1≤k≤l≤⌈log2(rs)⌉

2
k−l
4

(|V1|3|V2|)
1
4

(
|g−1(G1(k))|3 · |h−1(H1(l))|

) 1
4

≤
⌈log2(rs)⌉∑

t=0

2−
t
4

(|V1|3|V2|)
1
4

⌈log2(rs)⌉∑
l=t

(
|g−1(G1(l − t))|3 · |h−1(H1(l))|

) 1
4
,

where the first inequality follows from (A.11) and the following inequality.

|g−1(G1(k))| ≥ |V1||G1(k)|
2k

. (A.13)

By the definitions of G1(k) and H1(l), for each 0 ≤ t ≤ ⌈log2(rs)⌉, the sets g−1(G1(l − t))

and h−1(G1(l)), t ≤ l ≤ ⌈log2(rs)⌉, are disjoint subsets of V1 and V2, respectively. Then it

follows from Hörder’s inequality that

K ≤
⌈log2(rs)⌉∑

t=0

2−
t
4

(|V1|3|V2|)
1
4

(⌈log2(rs)⌉∑
l=t

(
|g−1(G1(l − t))|

) 3
4

·

(⌈log2(rs)⌉∑
l=t

|h−1(H1(l))|

) 1
4

≤
⌈log2(rs)⌉∑

t=0

2−
t
4 = O(1).

(A.14)

By (A.9), (A.12) and (A.14), we get

∑
1≤k≤l≤⌈log2(rs)⌉

Sk,l = O
( µ√
|E|
·
√

rs log(rs)
)
+O

( µ
3
2

√
rs

)

= O
( µ

3
2

√
rs

)
,

where the last equality follows from the condition in Theorem 10 that |E| = Ω
(
(rs)2 log(rs)

µ

)
.

This concludes the discussion for Case 1.
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Case 2. In this case, we aim to show the following.

∑
1≤l<k≤⌈log2(rs)⌉

Sk,l = O
( µ

3
2

√
rs

)
. (A.15)

To prove (A.15), we deal with the following equation.

δ−1Sk,l =
∑

w∈H1(l)

D

( ⋃
v∈N(w)∩G1(k)

g−1(v), h−1(w)

)
.

This follows from an analogous calculation as in Case 1.

Combining Cases 1 and 2 yields (A.7). This completes the proof of Lemma 24.
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