The Need for Speed: A Fast Guessing Entropy
Calculation for Deep Learning-based SCA

Guilherme Perin, Lichao Wu, and Stjepan Picek Senior Member, IEEE

Abstract—The adoption of deep neural networks for profiling side-channel attacks (SCA) opened new perspectives for leakage
detection. Recent publications showed that cryptographic implementations featuring different countermeasures could be broken without
feature selection or trace preprocessing. This success comes with a high price: extensive hyperparameter search to find optimal deep
learning models. As deep learning models usually suffer from overfitting due to their high fitting capacity, it is crucial to avoid
over-training regimes, which require a correct number of epochs. For that, early stopping is employed as an efficient regularization
method that requires a consistent validation metric. Although guessing entropy is a highly informative metric for profiling SCA, it is
time-consuming, especially if computed for all epochs during training and the number of validation traces is significantly large.

This paper shows that guessing entropy can be efficiently computed during training by reducing the number of validation traces without
affecting the efficiency of early stopping decisions. Our solution significantly speeds up the process, impacting hyperparameter search
and overall profiling attack performances. Our fast guessing entropy calculation is up to 16 x faster, resulting in more hyperparameter
tuning experiments and allowing security evaluators to find more efficient deep learning model.

Index Terms—Side-channel Analysis, Deep learning, Guessing entropy, Validation phase, Fast Guessing Entropy.

1 INTRODUCTION

Side-channel attacks (SCA) explore the unintentional leak-
ages (power consumption, time, and electromagnetic emis-
sions) from electronic devices running secret-sensitive oper-
ations such as embedded cryptographic algorithms. Profil-
ing SCA [1], [2], one of the most popular attack methods, is
widely considered by developers and manufacturers when
assessing worst-case security with strongest adversary as-
sumptions. This type of attack assumes an adversary has
a clone (open) device to build the strongest possible prob-
abilistic model from collected side-channel measurements.
Thus, the adversary applies the model to the victim’s de-
vices to recover the secret. If the profiling model is correct
and can learn existing side-channel leakages, a profiling
attack phase usually requires fewer side-channel measure-
ments in comparison to non-profiling attacks [3]-[5].
Template attacks are the most classic form of profil-
ing SCA [1]. Template attacks theoretically represent the
strongest profiling model because of the typical underlying
statistical distribution of side-channel leakages following
multivariate Gaussian (or normal) distributions. Machine
learning methods have also been considered for profiling
attacks [6], [7], while their statistical parameters are learned
from side-channel measurements rather than directly com-
puted. Both Gaussian templates and machine learning mod-
els require feature selection. In the case of protected cryp-
tographic implementations, the inability to make efficient
feature selection (by selecting leakage samples with the
highest Signal-to-Noise Ratios) may become a limiting fac-
tor to building optimal profiling models. Indeed, an effective

o G. Perin is with the Delft University of Technology, The Netherlands.
o L. Wu is with the Delft University of Technology, The Netherlands.
e 5. Picek is with Radboud University, The Netherlands.

feature selection requires a strong correlation between the
leakages and processed intermediate data. For instance,
in the presence of masking countermeasures, evaluators
select the best features (or points of interest) by knowing
the secret random masks. Then, one can deploy worst-
case security evaluations to emulate the adversaries having
access to source code and secret shares during profiling.
Additionally, template and machine learning-based models
are susceptible to desynchronization effects in side-channel
measurements, thus bringing additional challenges.

In recent years, the adoption of deep neural networks
(DNNs) for profiling SCA provided competitive (and, in
some cases, superior) results compared to template attacks
and classical machine learning-based methods, especially
against AES implementations [8], [9]. Without feature se-
lection, which implies considering a weaker adversary,
deep learning-based SCA can break cryptographic imple-
mentations protected with different countermeasures, such
as Boolean masking and timing desynchronization [10].
Their high complexity follows the high learning capacity
of DNNSs; the expensive hyperparameter tuning becomes a
limitation to fully explore the full potential of deep learning
to find vulnerabilities in software and hardware implemen-
tations.

To make the hyperparameter tuning process more ef-
ficient, one tries to define appropriate hyperparameters
ranges, which directly reflect the number of trainable pa-
rameters. Indeed, smaller DNNs may limit the learning
capacity of a model, underfitting the profiling side-channel
traces and providing poor attack performance. On the other
hand, adding too many network layers results in larger
models that can easily overfit and learn a suboptimal pro-
filing model, thus reducing the possibility of fitting the
existing leakages. One straightforward way to avoid this
problem is by allowing larger models to be trained with

regularization, restricting the model’s capacity during train-
ing. Dropout, weight decay, and data augmentation are
well-known methods for regularization, but their indirect
influence on the attack performance adds newly introduced
hyperparameters to the tuning process. Alternatively, early
stopping is a very efficient regularization mechanism that
monitors a validation metric and saves model parameters
(weights and biases) when the training reaches the best
generalization moment.

An efficient early stopping implementation in profiling
SCA requires monitoring the most appropriate metric. Re-
ducing cross-entropy loss has been widely considered as the
main training objective [11]. This is especially advantageous
when security evaluations follow worst-case assumptions
where the learning of an optimal model, which has good
generalization, should also provide the smallest possible
validation loss value. Unfortunately, in profiling SCA, col-
lected leakages are normally extremely noisy because of en-
vironmental noise and implemented countermeasures. This
usually leads the profiling process to end up in a suboptimal
model. In those cases, as also empirically demonstrated
in [12], validation loss (and accuracy) are inconsistent with
SCA performance (i.e., key recovery) when the model is
trained on protected datasets and, sometimes, overfits. Al-
though the model can be optimized through gradient de-
scent by minimizing generic loss functions (such as categor-
ical cross-entropy or negative log-likelihood), the calculation
of guessing entropy (GE) from a set of validation traces is
consistent and highly informative concerning the profiling
model generalization in SCA. The main reason for that is
because GE measures the summation likelihood for each
possible key guess over a set of traces instead of assessing
the individual probabilities of expected classes only, as is
the case of machine learning metrics. Therefore, the appli-
cation of empirical GE as an early stopping metric tends
to be reliable to assess model generalization during train-
ing. However, empirical GE provides significant overheads
depending on the validation set size. If early stopping is
adopted with hyperparameter tuning, the process becomes
very slow and, in some cases, impractical.

Contributions: To address the unsolved problem of hav-
ing a highly efficient early stopping metric for profiling
SCA, we propose a fast guessing entropy calculation by sim-
ply reducing the number of validation traces when accessing
model generalization during training. By doing so, we show
that the trained models do not suffer in performance, but
the training process becomes significantly faster, allowing
more detailed tuning. Our fast GE method (denoted FGE)
is especially important when security evaluators relax ad-
versaries” assumptions and do not assume the knowledge
of secret random masks. For this reason, deep learning-
based profiling attacks tend to become more difficult, which
then requires a larger number of model search attempts. We
compare the FGE method with state-of-the-art metrics for
early stopping and guessing entropy in a deep learning-
based SCA context. We show that FGE estimation is highly
competitive and provides superior results with a neglectable
time overhead in all scenarios. With FGE, training with early
stopping becomes faster, allowing hyperparameter tuning to
deploy more search attempts and increasing the chances to
select the model with higher performance.

2 BACKGROUND

In this section, we start by providing details about deep
learning-based SCA and commonly used metrics. After-
ward, we discuss the datasets we use in our experiments.

2.1 Deep learning-based SCA

Profiling SCAs consider the strongest adversary with access
to a clone device running the target cryptographic algo-
rithm. The adversary can query the clone device with any
set of plaintext P = (po,p1,...,pn—1) and chosen keys
K = (Ko, K1, ...,Ky_1), and measure side-channel traces
X = (xo,21,...,2n-1). These traces (X,of) are used for
training the classification algorithm (i.e., to build a machine
learning model). This phase is known as the training or
profiling phase. During this phase, a validation set, X,qi,
containing V' traces, is selected from the profiling set to
validate the model. Next, the adversary obtains measure-
ments from the target device, where traces (X4tzqc) are also
captured with known input but unknown (secret) key. The
previously trained model is then exploited to recover the
secret key £* used in the target device. This phase is known
as the attack or test phase.

The template attack is the first introduced profiling ap-
proach in SCA [1]. This attack is also the best possible attack
if sufficient (infinite) training traces are available [13]. Over
the years, machine learning and deep learning algorithms
have been shown to be more powerful in realistic scenarios,
where noise and countermeasures further reduce the mea-
surement quality [8], [9]. While the profiling attack assumes
a more powerful attacker than a non-profiling one, it re-
quires significantly fewer traces than direct attacks to break
the target: sometimes, only one trace could be sufficient.

Profiling SCA considers different methods to build or
learn the statistical parameters representing a profiling
model f(6). The template attack [1] assumes that side-
channel leakages follow a multivariate Gaussian distribu-
tion. The profiling phase consists of computing statistical
parameters for a Gaussian mixture model (f is given by
mean and covariance parameters). Thus, the model is built
for each possible hypothetical leakage class (e.g., all possible
Hamming weight values of a byte). In the attack phase, the
adversary computes the probability that a new side-channel
measurement (under attack) belongs to a specific class by
using the computed probability density function from the
approximate statistics.

In the case of machine learning (including deep learn-
ing), the statistical parameters ¢ (e.g., weights and biases
in the case of neural networks) are learned from profiling
traces X,,,r during the training phase. The deep neural
network can skip feature selection from X,.,¢, which is
an advantage over classic machine learning techniques and
template attacks [14].

In the attack phase, the adversary obtains a probability
v}, that the set of attack traces X401 process the key byte
k € K, according to:

Q-1
v =Y logp[l(di, k)|, 1)
=0

where [(d;, k) is the leakage function computed from public
information d; and the key hypothesis k. In our case, as we

attack AES implementations running encryption executions,
the leakage function is given by I(d;, k) = S—box(d; k) for
the Identity leakage model or [(d;, k) = HW (S —box(d; ®k)
for the Hamming weight leakage model. The public value d;
is the corresponding plaintext byte. The recovered (guessed)
key byte k from Xtk is then obtained as:

k = argmax([vg]).)
kEK

If the model is good (i.e., it learned the leakage), then the
recovered key is k* or at least £* is among the best guesses.

2.2 Metrics

The training process has the minimization of the selected
loss function as the main goal. In this paper, we consider
the categorical cross-entropy (CCE) as the loss function. As
demonstrated in [12], due to the imbalanced dataset prob-
lem, validation loss function values (including CCE) can
be inconsistent with SCA metrics, which is also the case of
SCA-based loss functions, as already proposed in [15], [16].
Therefore, we must select a more efficient validation metric
to assess the model’s performance for SCA.

Metrics like guessing entropy (GE) [17] are commonly
used by an adversary to estimate the required effort to
obtain the key. A side-channel attack outputs a key guessing
vector g = [g1,92,...,9|k|] in decreasing order of proba-
bility, i.e., g1 represents the most likely key candidate and
gk the least likely key candidate. Guessing entropy is
the average position of £* in g. Commonly, the averaged
value is calculated over multiple independent experiments
to obtain statistically significant results. In this paper, this
GE method is called empirical GE, and it is evaluated on a
set of V' validation traces, where the results of multiple key
rank executions are averaged and performed on a partition
Q from V.

2.3 Datasets

We consider three datasets commonly used in research on
deep learning-based SCA.

2.3.1 ASCAD

We evaluate ASCAD datasets [18] that contain side-channel
measurements collected from the first-order protected soft-
ware implementations of AES-128 running on an 8-bit AVR
microcontroller [19]. There are two versions of the AS-
CAD dataset. The first version, ASCAD{, has a fixed key
and 60000 traces in total. We split the dataset into 50000,
5000, and 5000 for profiling, validation, and attack sets,
respectively. The second version of the ASCAD dataset,
ASCADr, has fixed and random keys, and it consists of
300000 traces. In this case, we consider 200 000 for profiling
(with random keys), 10 000 for validation, and 10 000 for the
attack set. Both validation and attack sets have a fixed key.
For both versions, we attack the third key byte (which is the
first masked byte) by using the trimmed intervals already
extracted and released in [18]. Thus, we use a pre-selected
window of 700 features for ASCADf, while for ASCADr, the
window size equals 1400 features. For all experiments, the
datasets are labeled according to the leakage model from the
third S-box output byte in the first AES encryption round,
i.e., S—box(p;Dk;) and HW (S—box(p;®k;)) for the Identity
and Hamming weight leakage models, respectively.

2.3.2 CHESCTF 2018

This AES dataset was released as part of the Capture-the-
Flag (CTF) ! competition in the Cryptographic Hardware
and Embedded Systems (CHES) workshop in 2018. Four
sets of 10000 traces, featuring encryption operations of a
first-order masked software implementation, were released
for profiling purposes. These four sets were measured from
four different STM32 platforms, namely A, B, C, and D.
Additional two sets of 1000 traces were released as at-
tack traces from devices C and D. In our experiments,
we consider the three first sets A, B, and C, containing
random keys and random inputs, as a set of 30 000 profiling
traces. The set from device D, containing the fixed key, is
then used as attack and validation sets. As side-channel
measurements from CHES CTF contain 650000 samples
points per trace, we performed a window resampling on
the traces and concatenated two intervals representing the
mask processing before encryption and target intermediate
operation, i.e., the S-Box in the first encryption round. The
resulting dataset contains 4000 sample points. Both trace
intervals are selected through a visual trace inspection. Note
that for this dataset, source code and secret mask shares are
not provided.

3 RELATED WORKS

Optimizing performance in DL-based profiling SCA has
received significant attention in recent years. Due to the
expensive trial-and-error cost in the profiling phase, enhanc-
ing performance in DL-based profiling SCA is a challenging
task. In recent years, the SCA community considered two
main alternatives to improve the attack efficiency: (1) by
defining small neural network models that are faster to train
and easier to tune [8], [9] and (2) by reducing the number
of the required profiling traces during training [20]. Both so-
lutions can have severe impacts on attack or generalization
performance. The first approach may result in models that
underfit for more noisy leakages or leakages obtained from
other devices (portability problem [21]). The second alter-
native speeds up the process; still, it may result in limited
learnability due to the eventually low number of profiling
traces. Naturally, to reach small neural networks models,
one needs to use appropriate methodology. Zaid et al. [8]
and Wouters et al. [22] worked on designing methodologies
for finding efficient neural network architectures. Rijsdijk et
al. [9] and Wu et al. [23] investigated advanced hyperpa-
rameter tuning techniques like reinforcement learning and
Bayesian optimization, respectively. Perin et al. showed that
even a random search could find very successful neural
network models [24].

Besides the methods mentioned above, a third alterna-
tive uses efficient and reliable validation metrics to evaluate
training and, consequently, implement faster hyperparam-
eter tuning (which can provide faster convergence) with
larger models and larger profiling sets. Empirical GE (de-
scribed in Section 2.1) can be very expensive to compute
with larger validation sets, especially if used during training
to detect the best training epoch. In a recent publication,
Zhang et al. [15] proposed Guessing Entropy Estimation

1. https:/ /chesctf.riscure.com /2018 /content?show=training

Algorithm (GEEA) to reduce the computational limitation
cost of empirical GE for the full attacked key scenarios,
which computes faster than empirical GE calculation on
separate key bytes. Indeed, empirical GE executes multiple
key rank executions over multiple partitions of the dataset
V, each partition containing () measurements. GEEA, on
the other hand, only requires one execution over the @)
measurements.

Let us consider s(kq,;,d;) as a score indicating the
probability that a measurement x; process key k, for a input
(i.e., plaintext) d;. The GEEA first requires the calculation of
pairwise subtractions of scores concerning the correct key,
resulting in mean and variance for each key guess k, € K
as follows:

1
Mk, = a Z [S(kg7$i7di) - S(kcvxiadi)] (3)
=0

Q-1
1
Jkg = @ Z [S(k_lﬂx’hdi) - S(kc,l'i,di) - ng]za (4)
1=0

where k. is the correct key. Then, guessing entropy value is
obtained as:

|K|
GE=1+ Y @(m“’“), (5)
k=0,k,#k. Ok

where ®() is the cumulative density function of a normal
Gaussian distribution A/ (0, 1).

Alternative solutions were proposed as new validation
metrics for early stopping, stopping training sooner, and
speeding up the process. In [25], the authors considered
mutual information approach between the output probabil-
ities and validation labels to monitor the best epoch during
training. The work of [26] monitors the epoch when the
training achieves the minimal difference between the num-
ber of profiling and validation traces that are required to
achieve 90% of success rate. The authors proposed a routine
to abort training if this difference increases after reaching its
minimum value. In our work, we also consider the mutual
information metric for comparison. The method proposed
in [26] is not considered in our comparative analysis as it is
directly adapted to datasets with fixed keys in the profiling
set, which is not the case of ASCADr. The method requires
estimating the number of traces to reach a success rate of
90%, which implies obtaining the evolution of success rate
concerning the number of validation traces. This means that
the success rate is computed () times for each epoch, adding
significant time overhead to the process.

As we can see, none of the mentioned approaches com-
pute GE directly from the validation traces at the end of
each training epoch. GEEA was proposed as a fast and
more stable GE estimation, but it is not suggested to be
used during network training. On the other hand, although
GE can be a potential metric candidate, its computation
could be very slow if more validation traces are considered
(which is required for GE stability), finally providing sig-
nificant overheads to the training process. Therefore, the
SCA community did not consider directly applying GE
(including GEEA) as the early stopping metric, especially

4

in the hyperparameter search processes. This work shows
that significantly reducing the number of validation traces
for GE estimation during training is a reliable and efficient
metric for early stopping, benefiting hyperparameter tuning
optimization.

4 FAST GE FOR EARLY STOPPING

Running hyperparameter search without pre-selecting ef-
ficient ranges for each hyperparameter may fail to find
powerful attack models. A solution could be searching for
small models with restricted search ranges, as proposed
in [8], [22] or by setting the objective of the search as
being a small model, as proposed by Rijsdijk et al. [9].
Small models are usually self-regularized, but they still
suffer from limited fitting capacity, which is particularly
problematic for noisy and protected targets. An alternative
is to allow larger models and add regularization to prevent
overfitting [27]. Although regularization tends to improve
model generalization, regularized models with increased
size require more training epochs, reducing the efficiency in
a hyperparameter search process. As the number of training
epochs is a critical hyperparameter to be determined, early
stopping may become a standard approach.

To allow efficient early stopping with GE, we propose
a fast GE (FGE) calculation to reduce the empirical GE
overheads. When used as an early stopping metric, FGE
provides very small overheads to the training process,
usually between 1.5% and 3.3%, while, e.g., empirical GE
shows overheads between 18.59% and 28.19%, as reported
in Section 5. Our idea consists in reducing the number of
validation traces when computing GE for each processed
epoch, which has multiple benefits in DL-based SCA. The
pseudo-code showing how FGE is obtained is provided in
Algorithm 1. As the algorithm shows, the main application
of FGE is for the hyperparameter search process.

If the model converges, the attack is successful, and
the GE for a small number of validation traces can also
indicate the best epoch to stop training efficiently. Using
large validation sets for the metric calculation may obscure
the real performance of the model: a model that overfits may
also slowly decrease guessing entropy to 1 after processing
enough validation traces. In contrast, FGE is more sensitive
to the model’s performance change, thanks to its low usage
of the validation traces. This situation is illustrated in Fig-
ure 1. As we can see in Figure 1a, when using () = 3000
validation traces for empirical GE, the best epoch will be
returned at the moment when GE is equal to 1. If the next
epochs indicate a model that requires even fewer traces to
succeed (which means better generalization), empirical GE
will not capture that. On the other hand, using fewer traces
allows us to obtain this convergence and, as a consequence,
be able to recover the key with fewer attack traces, as shown
in Figure 1b. Of course, the question here is: why would
this be a problem if reaching GE of 1 allows an adversary
to recover the key? We can observe two main problems in
this scenario. First, empirical GE with more traces provides
more overhead and limits the number of hyperparameter
search attempts, preventing us from finding a model that
eventually breaks the target (which is the example of model
found in Figure 1). Second, from the current model, we

® ESFastGE
g 200 1 ES Emp. GE
€ 1501 \
w
(@)
.S 100 A
o
S 50-
G]
0 l T T T T T
0 50 100 150 200
Epochs
(a) GE vs epochs.
150 A
—— Fast GE
§ Emp. GE
g 100 -
w
(®)]
£
@A 50 1
[}
=}
G]
0] T T T
0 250 500 750 1000
Attack Traces

(b) GE vs attack traces.

Fig. 1: Fast GE vs Empirical GE (ES = Early Stopping).

would select trained parameters before it reaches its best
attack performance or generalization capacity, which can
also indicate overfitting on the validation set, possibly open-
ing issues in portability scenarios (when the device used for
profiling is different from the device used for attack [21]). If
a model generalizes, then GE will eventually decrease, and
FGE should show this behavior too.

5 EXPERIMENTAL RESULTS

This section provides experimental results for 1) machine
learning models obtained through a random search, 2) hy-
perparameter tuning for different validation metrics, and 3)
state-of-the-art model and different validation metrics.

5.1

In this work, we only consider convolutional neural net-
works (CNNs) as they contain many hyperparameters to
tune and, therefore, it becomes more challenging to find
good hyperparameter combinations than, e.g., multilayer
perceptrons.

Convolutional neural networks commonly consist of
three types of layers: convolutional layers, pooling layers,
and fully connected layers. The convolution layer computes
the output of neurons connected to local regions in the
input, each computing a dot product between their weights
and a small region they are connected to in the input
volume. Pooling decrease the number of extracted features

Hyperparameter Search Ranges

5

by performing a down-sampling operation along the spatial
dimensions. Finally, the fully connected layer computes the
hidden activations or the class scores.

Table 1 provides the selected ranges for the hyperpa-
rameter tuning processes. These selected ranges result in a
search space containing 2.7 x 10° possible combinations. As
we can see, we allow CNNs to contain up to eight hidden
layers, combining convolution and dense layers. A pooling
layer always follows each convolution layer. As the ASCADf
and ASCADr datasets contain 50 000 and 200000 profiling
traces, respectively, larger models would tend to overfit.

TABLE 1: Hyperparameter search space for CNNs (c in
convolution filters indicates the convolution layer index).

Ranges
Hyperparameter Min Max Step
Batch Size 100 1000 100
Convolution Layers 1 4 1
Convolution Filters 2x2¢-1 16 x 261 2
Kernel Size 4 20 1
Stride 1 4 1
Pooling Size 1 4 1
Pooling Stride 1 4 1
Dense layers 1 4 1

Options
Neurons 10, 20, 30, 40, 50, 100, 200, 300, 400, 500
Activation function RelLU, ELU, or SELU

Learning Rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5

Pooling Type Average, Max
Weight Initializer He, Random Uniform, Glorot Uniform
Optimizer Adam, RMSprop

5.2 Random Hyperparameter Search with Different Val-
idation Metrics

We compare different early stopping metrics in a random
hyperparameter search process for the two ASCAD datasets
and different leakage models. The results of the CHES CTF
dataset are only provided with Hamming weight leakage
model. Each randomly selected CNN is trained for 200
epochs, and we save the trained weights at the end of each
epoch. At the end of the training, each early stopping metric
indicates the best training epoch, and we restore the trained
weights from that epoch. Then, as the training is finished,
we compute GE for the attack set containing a larger number
of traces. Note that 200 epochs is a relatively small number
for training epochs, and, as shown in this section, stopping
the training after 200 epochs may also deliver good results
for some cases.

Table 2 gives the number of validation traces V' con-
sidered for each early stopping metric, while the partition
amount () is the number of the traces used to calculate each
specific metric. For instance, GE is the average of multiple
key rank executions over () traces, which are randomly se-
lected from a larger set V' for each key rank executions. This
way, we set V' greater than) so that sampling each data in
(@ preserves certain randomness. By doing so, the obtained
results would indicate a better generalization capacity of
models. For mutual information, we apply V' validation
traces. FGE estimation considers only 50 traces for) and
500 traces for V. We tested other values for @) and V, from

Algorithm 1 Hyperparameter Search with Early Stopping and Fast Guessing Entropy (FGE).

1: Set © as the set of models
2: for new search attempt S do
3: Generate new hyperparameter set H
Initialize model parameters 6
Select a small validation set Xyq;— fast
for Epoch E in Epochs do
Train neural network model F (0, Xprof, Yprof)

O X N Tk

Save model parameters §[E] at epoch E
10: end for

Compute FGE: GEfast [E] = GE(@, Xval—fash Yval—fast)

11: Retrieve model parameters from best epoch: OS] = 0[argmin(GEqs)]

12: Select a full validation set X, q;

13: Compute GE(Opest, Xvai, Yoar) and the corresponding number of validation traces to reach GE = 1, Ngg1[S].

14: end for
15: Return best model: Opest moder = Olargmin(Ngg1)] (model that requires minimum number of validation traces to
reach GE = 1).

20 up to 200, and 50 was the minimum value for () and V'
that still preserves the best results for FGE.

TABLE 2: Number of validation traces for each early stop-
ping method.

ASCADf ASCADr CHES CTF
v Q v Q v Q
FastGE | 500 50 500 50 500 50
Emp.GE | 5000 3000 10000 5000 5000 3000
GEEA | 5000 3000 10000 5000 5000 3000
MI 5000 5000 10000 10000 5000 5000

We execute 500 searches for each dataset, considering
the Hamming weight and Identity leakage models. Table 3
provides the average time overhead in percentage for each
considered metric. As we can see, the FGE estimation
provides a maximum of 3.35% overhead among the four
considered scenarios. For the ASCADr dataset, the overhead
is only 1.19% and 1.49%, which can be considered negligible
for the training time compared with its counterparts. As
expected, empirical GE and GEEA methods provide the
largest overheads, although GEEA is faster than empirical
GE. The mutual information method provides the second-
best results, which is related to the more straightforward
calculation than guessing entropy.

TABLE 3: Average time overhead of different early stopping
methods.

ASCADf ASCADr CHES CTF
HW Identity HW Identity HW
Fast GE 2.66% 3.35% 1.19% 1.49% 2.74%
Emp.GE | 20.70% 28.19% 18.59% 24.21% 20.61%
GEEA 11.48% 23.95% 9.31% 20.17% 13.56%
MI 9.28% 7.46% 7.81% 6.30% 11.28%

Table 4 provides the % that each metric can select a
generalizing model with early stopping (model that reaches
GE=1 in the attack phase, which is indicated by line 13
in Algorithm 1) from the random search. Together with

GEEA, the fast GE is a highly efficient metric (top two
performance in all considered scenarios). Most importantly,
we successfully verify that FGE is always superior to the
situation where no early stopping is used (200 epochs in the
table) and with neglectable overhead. For the case of the
Identity leakage models, FGE shows the best results.

TABLE 4: % of times a generalizing DNN was selected from
each metric and from the training with all 200 epochs.

ASCADf ASCADr CHES CTF
HW Identity HW Identity HW
Fast GE 56.52% 43.46% 49.63% 34.13% 21.85%
Emp. GE 59.66% 43.16% 50.00% 33.23% 20.79%
GEEA 59.66% 43.46% 54.34% = 29.30% 21.18%
MI 50.74% 37.38% 43.84% 33.53% 19.78%
200 epochs | 49.75% 4042% 45.83% 32.62% 15.06%

Figure 2 shows results for the ASCADf dataset. When
side-channel traces are labeled according to the Hamming
weight leakage model, the correct key is recovered with
514 traces for GEEA metric and 534 traces (the second best)
with FGE early stopping metric. In the case of the Identity
leakage model, the best results are achieved for the FGE
metric, where 101 attack traces are needed to achieve GE
equal to 1, which is aligned with state-of-the-art results [8],
[9], [22]. The good performing results from the mutual infor-
mation metric and the GE obtained with 200 epochs indicate
the effectiveness of early-stopping metrics in preventing the
best model from overfitting. Again, we confirm that FGE is
highly competitive in both leakage models and requires 10x
fewer validation traces.

For ASCADr dataset, results for FGE are also very
promising, as shown in Figure 3. For the Hamming weight
leakage model, FGE provides the best results, followed by
mutual information metric. In the case of the Identity leak-
age model, the best result is obtained with all 200 epochs,
showing that this number of epochs is appropriate for this
best model found through random search. The best results
are obtained with the FGE metric when early stopping is
considered.

= Fast GE === #traces for GE = 1: 534
125 + — GE === #traces for GE = 1: 846
= GEEA === #traces for GE = 1: 514
é 100 4 — M ~=- #traces for GE = 1: 711
g —— AllEpochs GE ==~ #traces for GE = 1: 632
(=
w 75 B
(o))
£
@ 50
0.)
3
25
0 m
T T T
10° 10t 10?2 103
Attack Traces
(a) Hamming weight leakage model.
100 + = Fast GE --= #traces for GE = 1: 101
= GE === #traces for GE = 1: 266
= GEEA —== #traces for GE = 1: 148
E 80 — M ~== #traces for GE = 1: 103
g ====_All Epochs GE === #traces for GE = 1: 110
{= 4
o 60
o
£
o 401
d)
3
20 i
N
0 -
T T
10° 10t 102 103
Attack Traces

(b) Identity leakage model.

Fig. 2: GE results from best models selected from different
early stopping metrics for the ASCADf dataset.

125 4 —— Fast GE === #traces for GE = 1: 285
- GE ~~~ #traces for GE = 1: 1030
— GEEA === #traces for GE = 1: 378
2 100 —_— === #traces for GE = 1: 313
g =—— All Epochs GE = === #traces for GE = 1: 367
& 75 : i
o]
£ 1
@ 50 !
o]
3 |
25 A ..\
| \
|
04 . -
T T
10° 10t 102 103
Attack Traces
(a) Hamming weight leakage model.
i — FastGE | -~ #traces for GE = 1: 37
80 | = GE === #traces for GE = 1: 531
|| =— GEEA -== #traces for GE = 1: 230
E L= === #traces for GE = 1: 52
g 60 i =—— AllEpochs GE === #traces for GE = 1: 29
= |
fra] i
o]
£ 40 :
& 1
2 |
I]
S 1
O 20 T
\\
T —
01 I
T T T
10° 10t 102 103
Attack Traces

(b) Identity leakage model.

Fig. 3: GE results from best models selected from different
early stopping metrics for the ASCADr dataset.

125 = Fast GE --= #traces for GE = 1: 585
—_ GE --= #traces for GE = 1: 1294

— GEEA -== #traces for GE = 1: 427

2 100 A —_— ~==- #traces for GE = 1: 702

g =—— AllEpochs GE === #traces for GE = 1: 898
2 ’
w75 |
o |
£ !
Q50 A i
e |

3
'
25 A B S
| \\

e —

01 !
T T T
10° 10! 102 10°
Attack Traces

Fig. 4: GE results from best models selected from different
early stopping metrics for the CHES CTF 2018 dataset
(Hamming weight leakage model).

Figure 4 provides results for the CHES CTF dataset. FGE
metric provides second-best results after GEEA. Results for
the CHES CTF dataset are only shown for the Hamming
weight leakage model, as this dataset provides bad results
with the Identity leakage model, as discussed in [9].

Furthermore, the performance of the best models se-
lected from empirical GE as an early stopping metric pro-
vided less efficient results. As already mentioned in [15],
empirical GE requires a very large validation set and a more
stable GE estimation can be obtained with the selection of
larger validation sets. Of course, using larger validation
sets provides an estimation of model generalization. This
is especially important for models that provide suboptimal
performance and require more traces to show guessing
entropy reduction for the correct key. However, computing
GE for this large number of traces is undesirable as an early
stopping metric due to significant time overhead.

5.3 Hyperparameter Tuning with Different Validation
Metrics

This section analyzes how the evaluated early stopping
metrics perform with Bayesian optimization (BO) for hy-
perparameter search [23]. For that, we consider the open-
source BayesianOptimization method provided in keras-
tuner [28] Python package. We run BO for 100 searches with
ASCAD datasets and the Hamming weight and Identity
leakage models. We repeat each search process five times for
each different early stopping metric. The guessing entropy
results without early-stopping (“all epochs” labels in figures
from the previous section) are omitted because keras-tuner
inherently implements early-stopping and, for this reason,
it is not possible to select the best model by ignoring early-
stopping. The results reported in this section are extracted
from the best-found model out of the five search attempts.
Results from BO for the ASCADf dataset are shown in
Figure 5. The best results are obtained from FGE for both
Hamming weight and Identity leakage models. In particu-
lar, for the Identity leakage model, as shown in Figure 5b,
the best found model achieves GE equal to 1 with less than
half of the attack traces needed for GEEA. In these experi-
ments, mutual information provides less efficient results.
Figure 6 provides BO results for the ASCADr dataset. For
the Hamming leakage model, GEEA and FGE provide the
best results. For the Identity leakage model, results for FGE

== FastGE ——- #traces for GE = 1: 455

125 —GE === #traces for GE = 1: 883
= GEEA —== #traces for GE = 1: 587
g 100 4 — M —== #traces for GE = 1: 1650
5
o 751
=
& 501 i
3 by i
25 A \.\
0 - —_—
10° 10t 10? 103
Attack Traces
(a) Hamming weight leakage model.
125 4 —_ Fast GE === #traces for GE = 1: 72
— GE === #traces for GE = 1: 177
= GEEA === #traces for GE = 1: 157
2 100 —_— ~== #traces for GE = 1: 3000
o haaa
& 75 N
o
=
@ 50
()
>
© 254 \
0 -
10° 10t 102 103

Attack Traces

(b) Identity leakage model.

Fig. 5: GE results from best models found with BO with
different early stopping metrics for the ASCADf dataset.

are superior, and only 60 attack traces are required for key
byte recovery, while empirical GE requires 10x more attack
traces to succeed. Again, the mutual information metric
delivers the worst results.

Running hyperparameter tuning with Bayesian opti-
mization for the CHES CTF dataset and the Hamming
weight leakage model, the results obtained with FGE are
significantly better compared to other validation metrics, as
shown in Figure 7. As we can see, FGE returns the best
model that reaches GE equal to 1 in the attack phase with
only 232 traces, while other metrics always significant more
attack traces.

5.4 State-Of-The-Art Models with Different Validation
Metrics

The works of [8], [9], [22] proposed hyperparameter tuning
for ASCAD(dataset and their models reported state-of-the-
art results. In this section, we also verify how FGE can
improve the performance of those best models even more.
This way, we provide attack results when applying early
stopping to three different CNN architectures. As the results
for these CNN were reported for the Identity leakage model,
we only consider that scenario in our analysis.

As shown in Figure 8, for CNN models from [8] and [9],
our FGE metric provides the best results. Results for CNN
model from [22] also put FGE among the best-performing
metrics.

6 CONCLUSIONS AND FUTURE WORK

Profiling attacks are important during security evaluations
because evaluators can determine if the device leaks in-
formation with high assurance. This is especially possible

= Fast GE. 1 #traces ﬂ‘ar GE ='1: 338
125 A — GE -== #traces for GE = 1: 1234
- —— GEEA --- #traces for GE = 1: 274
—_— =i f =1
g 100 4 M #traces for GE i1 2255
£ !
Y75 !
=) |
£ |
A i
g 307 N i
S I
= \‘\
0 4
10° 10t 102 103
Attack Traces
(a) Hamming weight leakage model.
—— FastGE === #traces for GE = 1: 60
125 A b~ CE -== #traces for GE = 1: 430
=== GEEA —=~ #traces for GE = 1: 133
E 100 A M ~~~ #traces for GE = 1: 5000
o
e
w 75 <
=)
£
@ 50 1
1]
3
254
N~
0 4
10° 10! 102 103
Attack Traces

(b) Identity leakage model.

Fig. 6: GE results from best models found with BO with
different early stopping metrics for the ASCADr dataset.

125 4 —— FastGE === #fraces for GE = 1: 232

= GE === #traces for GE = 1: 751

= GEEA === #traces for GE = 1: 421

2 100+ —_ --- #traces for GE = 1: 1027
g i
& 75 1 i |
g o :
'
@ 50 i i i
a H i i
o H i i
] 1 i i
251 : i i
; t
|
04 ; , m— ¥
10° 10? 102 10°
Attack Traces

Fig. 7: GE results from best models found with BO with
different early stopping metrics for the CHES CTF dataset
(Hamming weight leakage model).

because assumptions during a profiling analysis consider
that the target faces an adversary that can learn existing
side-channel leakages in a supervised learning setting.

In a recent publication [29], Bronchain et al. showed
through the lens of perceived information (PI) [30] how
different profiling methods perform against protected cryp-
tographic implementations. Their analysis allows security
evaluators to conclude about the target’s leakages with the
worst-case security. For that, the evaluator assumes that the
adversary has knowledge of all intermediate secret shares
during profiling as well as the source code. Consequently,
such an evaluation provides conditions to implement opti-
mal profiling models, where assumptions about the target
(e.g., leakage model) contain as few errors as possible. Also,
the evaluator can build a profiling model with a sufficient
number of traces, thus minimizing estimation errors.

The case of deep learning for profiling SCA brings a new

120 o AT T T
= Fast GE ~== #traces for GE=1: 88
- GE === #traces for GE=1: 502
1001 — GEEA - # =
- traces for GE=1: 176
a _— M === #traces for GE=1: 124
g 80 —— AllEpochs GE -~ #traces for GE=1; 112
c i
wi i
o 60 1
f= [N
@ i
wn -
o 40 N
=] N\
o Ny
20 A
0 E
T T T
10° 10t 102 103
Attack Traces
(a) CNN from [8]
= Fast GE —== #traces for GE=1: 76
100 A — GE === #traces for GE=1: 372
—— GEEA === #traces for GE=1: 161
2 30 4 _— M === #traces for GE=1: 64
g === _All Epochs GE —== #traces for GE=1: 73
uCJ i i
60 1 : :
=) i i
= | |
0
A 40 4 f |
g | :
o | |
20 A |
01 .
T T T
10° 10! 102 103
Attack Traces
(b) CNN from [22]
120 4 = Fast GE === #traces for GE=1: 124
— GE === #traces for GE=1: 326
4 = GEEA === #t for GE=1: 164
- 100 races for
a _— M === #traces for GE=1: 161
g 80 - —— AllEpochs GE —-- #traces for GE=1: 238
c i
w I
=) 4 i
2 60 :
£ |
%]
o 401 1
=] 1
© |
20 4 !
|
04 .
T T T
10° 10! 102 103

Attack Traces

(c) Best CNN from [9]

Fig. 8: Performance of different validation metrics on state-
of-the-art CNN architectures, ASCADf dataset.

perspective over profiling attacks. The main reason for that
is related to the ability of a deep neural network to perform
efficiently without feature selection. In practice, this means
that the attacked interval contains several low SNR points
of interest, and the selection of most leaky points of interest
with a high SNR becomes more challenging. The advantages
for security evaluations come from the fact that neural
networks as profiling models can learn existing leakages
even without feature selection and, in practice, deliver close
to optimal results. The results for CNN architectures from
Figure 8 is an example of this case. Of course, to reach an
optimal deep learning profiling model, costly hyperparam-
eter tuning needs to be implemented, especially for more
protected targets.

Therefore, to reach optimal deep learning models with-
out worst-case security assumptions, hyperparameter tun-
ing needs to be as efficient as possible. For that, assessing
the model generalization during training becomes crucial,
requiring fast and efficient validation metrics. We propose
using a fast GE metric that requires significantly fewer
validation traces in the GE calculation. Our results indicate

9

that FGE as a validation metric delivers efficient and com-
petitive early stopping results. Our technique is validated in
different scenarios and shows good results with neglectable
time overheads. Thus, we consider FGE as the method of
choice for practical deep learning-based SCA hyperparame-
ter tuning.

As future works, we will explore the efficiency of dif-
ferent validation metrics in portability settings and with
different countermeasures in future work. Additionally, as
this work contains results for convolutional neural networks
only, it would be interesting to assess FGE performance with
architectures like multilayer perceptrons and residual neural
networks.

REFERENCES

[1] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryp-
tographic Hardware and Embedded Systems - CHES 2002. Springer
Berlin Heidelberg, 2003, pp. 13-28.

[2] W. Schindler, K. Lemke, and C. Paar, “A stochastic model for
differential side channel cryptanalysis,” in Cryptographic Hardware
and Embedded Systems - CHES 2005, 7th International Workshop,
Edinburgh, UK, August 29 - September 1, 2005, Proceedings, ser.
Lecture Notes in Computer Science, J. R. Rao and B. Sunar,
Eds., vol. 3659. Springer, 2005, pp. 30—46. [Online]. Available:
https://doi.org/10.1007/11545262_3

[3] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
in Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, ser. Lecture Notes in Computer Science, M. J.
Wiener, Ed., vol. 1666. Springer, 1999, pp. 388-397. [Online].
Available: https://doi.org/10.1007 /3-540-48405-1_25

[4] E. Brier, C. Clavier, and F Olivier, “Correlation power
analysis with a leakage model,” in Cryptographic Hardware
and Embedded Systems - CHES 2004: 6th International Workshop
Cambridge, MA, USA, August 11-13, 2004. Proceedings, ser.
Lecture Notes in Computer Science, M. Joye and J. Quisquater,
Eds., vol. 3156. Springer, 2004, pp. 16-29. [Online]. Available:
https:/ /doi.org/10.1007 /978-3-540-28632-5_2

[5] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, “Mutual
information analysis,” in Cryptographic Hardware and Embedded
Systems - CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings, ser. Lecture Notes
in Computer Science, E. Oswald and P. Rohatgi, Eds.,
vol. 5154. Springer, 2008, pp. 426—442. [Online]. Available:
https://doi.org/10.1007 /978-3-540-85053-3_27

[6] V. Banciu, E. Oswald, and C. Whitnall, “Reliable information
extraction for single trace attacks,” in Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition,
DATE 2015, Grenoble, France, March 9-13, 2015, W. Nebel and
D. Atienza, Eds. ACM, 2015, pp. 133-138. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2755783

[7] L. Lerman, G. Bontempi, and O. Markowitch, “A machine
learning approach against a masked AES - reaching the limit
of side-channel attacks with a learning model,”]. Cryptogr.
Eng., vol. 5, no. 2, pp. 123-139, 2015. [Online]. Available:
https://doi.org/10.1007 /s13389-014-0089-3

[8] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology
for efficient CNN architectures in profiling attacks,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 1, pp. 1-36, 2020.

[9] T. Rijsdijk, L. Wu, G. Perin, and S. Picek, “Reinforcement learning

for hyperparameter tuning in deep learning-based side-channel

analysis,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2021,

no. 3, pp. 677707, 2021.

E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks

with data augmentation against jitter-based countermeasures -

profiling attacks without pre-processing,” in Cryptographic

Hardware and Embedded Systems - CHES 2017 - 19th International

Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, ser.

Lecture Notes in Computer Science, W. Fischer and N. Homma,

Eds., vol. 10529. Springer, 2017, pp. 45-68. [Online]. Available:

https://doi.org/10.1007 /978-3-319-66787-4_3

[10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

L. Masure, C. Dumas, and E. Prouff, “A comprehensive study of
deep learning for side-channel analysis,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2020, no. 1, pp. 348-375, 2020. [Online].
Available: https:/ /doi.org/10.13154/tches.v2020.i1.348-375

S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “The
curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2019, no. 1, pp. 209-237, 2019.

L. Lerman, R. Poussier, G. Bontempi, O. Markowitch, and E-X.
Standaert, “Template Attacks vs. Machine Learning Revisited (and
the Curse of Dimensionality in Side-Channel Analysis),” in Lecture
Notes in Computer Science, 2015, vol. 9064, no. M1, pp. 20-33.

X. Ly, C. Zhang, P. Cao, D. Gu, and H. Lu, “Pay attention to raw
traces: A deep learning architecture for end-to-end profiling at-
tacks,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2021, no. 3, p. 235-274, Jul. 2021. [Online]. Available:
https:/ /tches.iacr.org/index.php/TCHES/article /view /8974

J. Zhang, M. Zheng, J. Nan, H. Hu, and N. Yu, “A novel evalua-
tion metric for deep learning-based side channel analysis and its
extended application to imbalanced data,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2020, no. 3, pp. 73-96, 2020.

G. Zaid, L. Bossuet, F. Dassance, A. Habrard, and A. Venelli,
“Ranking loss: Maximizing the success rate in deep learning side-
channel analysis,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol.
2021, no. 1, pp. 25-55, 2021.

F. X. Standaert, T. G. Malkin, and M. Yung, “A unified framework
for the analysis of side-channel key recovery attacks,” Lecture Notes
in Computer Science, vol. 5479 LNCS, pp. 443—461, 2009.

“ASCAD GitHub Repository,” Website, 2018,
https://github.com/ANSSI-FR/ASCAD.

R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep
learning for side-channel analysis and introduction to ASCAD
database,” J. Cryptographic Engineering, vol. 10, no. 2, pp. 163-188,
2020.

S. Picek, A. Heuser, G. Perin, and S. Guilley, “Profiling side-
channel analysis in the efficient attacker framework,” Cryptology
ePrint Archive, Report 2019/168, 2019.

S. Bhasin, A. Chattopadhyay, A. Heuser, D. Jap, S. Picek, and
R. R. Shrivastwa, “Mind the portability: A warriors guide through
realistic profiled side-channel analysis,” in 27th NDSS, 2020.

L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel, “Revisiting a
methodology for efficient CNN architectures in profiling attacks,”
IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 3, pp. 147-
168, 2020.

L. Wu, G. Perin, and S. Picek, “I choose you: Automated hyper-
parameter tuning for deep learning-based side-channel analysis,”
Cryptology ePrint Archive, Report 2020/1293, 2020.

G. Perin, L. Chmielewski, and S. Picek, “Strength in numbers:
Improving generalization with ensembles in machine learning-
based profiled side-channel analysis,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol.
2020, no. 4, pp. 337-364, Aug. 2020. [Online]. Available:
https:/ /tches.iacr.org/index.php/TCHES/article /view /8686

G. Perin, I. Buhan, and S. Picek, “Learning when to stop: A
mutual information approach to prevent overfitting in profiled
side-channel analysis,” ser. LNCS, vol. 12910. Springer, 2021, pp.
53-81.

D. Robissout, G. Zaid, B. Colombier, L. Bossuet, and A. Habrard,
“Online performance evaluation of deep learning networks for
profiled side-channel analysis,” ser. Lecture Notes in Computer
Science, vol. 12244. Springer, 2020, pp. 200-218.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929-1958, 2014.

T. O’Malley, E. Bursztein, J. Long, E. Chollet, H. Jin, L. Invernizzi
et al., “Kerastuner,” https://github.com/keras-team /keras-tuner,
2019.

O. Bronchain, F. Durvaux, L. Masure, and E-X. Standaert, “Effi-
cient profiled side-channel analysis of masked implementations,
extended,” IEEE Transactions on Information Forensics and Security,
vol. 17, pp. 574-584, 2022.

O. Bronchain, J. M. Hendrickx, C. Massart, A. Olshevsky, and
F. Standaert, “Leakage certification revisited: Bounding model
errors in side-channel security evaluations,” in Advances in
Cryptology - CRYPTO 2019 - 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,

10

Part 1, ser. Lecture Notes in Computer Science, A. Boldyreva
and D. Micciancio, Eds., vol. 11692. Springer, 2019, pp.

713-737. [Online]. Available: https://doi.org/10.1007/978-3-030-
26948-7_25

Guilherme Perin is a postdoctoral
researcher at the Delft University of
Technology. He graduated in Elec-
trical Engineering (2008) and has
Master in Informatics (2011) by the
Federal University of Santa Maria.
In 2014, he received his PhD in Mi-
croelectronics and Automated Sys-
tems at University of Montpellier.
His research areas include hard-
ware security, cryptography, opti-
mization algorithms, and machine
learning.

Lichao Wu is a PhD student in
the cybersecurity research group at
the Delft University of Technology.
After obtaining a bachelor’s degree
at Northwestern Polytechnical Uni-
versity (2015), Wu received his mas-
ter’'s degree in Microelectronic at
the Delft University of Technology
in 2017. His main research inter-
ests are at the intersection of im-
plementation attacks, cryptography,
and machine learning.

Stjepan Picek is an associate pro-
fessor at Radboud University, The
Netherlands. He received his PhD
in 2015, and from 2015 to 2017, he
was a postdoctoral researcher at KU
Leuven, Belgium and MIT, USA.
From 2017 to 2021, he was an as-
sistant professor at the Delft Uni-
versity of Technology, The Nether-
lands. His research interests in-
clude cryptography, machine learn-
ing, and evolutionary algorithms.

