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Abstract. Recent developments in the field of Dynamic Searchable Sym-
metric Encryption (DSSE) with forward and backward privacy have at-
tracted much attention from both research and industrial communities.
However, most forward and backward private DSSE schemes support
single keyword queries only, which impedes its prevalence in practice.
Until recently, Patranabis et al. (NDSS 2021) introduced a forward and
backward private DSSE for conjunctive queries (named ODXT) based on
the Oblivious Cross-Tags (OXT) framework. Unfortunately, its security
is not comprehensive for conjunctive queries, and it deploys “lazy dele-
tion”, which incurs more communication cost. Besides, it cannot delete
a file in certain circumstances. To address these problems, we intro-
duce two forward and backward private DSSE schemes with conjunctive
queries (named SDSSE-CQ and SDSSE-CQ-S). To analysis their security, we
present two new levels of backward privacy (named Type-O and Type-
O−, where Type-O− is more secure than Type-O), which describe the
leakages of conjunctive queries with OXT framework more accurately. Fi-
nally, the security and experimental evaluation demonstrate that our
proposed schemes achieve better security with comparable computation
and communication increase in comparison with ODXT.

Keywords: Dynamic Searchable Symmetric Encryption, Forward Pri-
vacy, Backward Privacy, Conjunctive Queries

1 Introduction

Dynamic searchable symmetric encryption (DSSE) enables the update of the
encrypted database while maintaining searchability, which is a useful tool for
protecting user’s data that stored on the cloud. However, it leaks more infor-
mation during the update operations, which can be abused by the attackers [5,
36, 2]. To mitigate the attacks, DSSE schemes are required to maintain two new
security notions, namely forward and backward privacy, which are informally
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introduced by Stefanov et al. [27]. The formal definitions of forward and back-
ward privacy are given by Bost [3] and Bost et al. [4], respectively. In particular,
Bost et al. [4] gave three different levels of backward privacy definitions (namely
Type-III to Type-I, Type-III is the least secure and Type-I is the most secure)
for single keyword queries. Informally, forward privacy requires that the server
cannot match newly updated files to previously issued search queries. Corre-
spondingly, during two same search queries, backward privacy does not allow
the server to learn the files that were previously added and later deleted. Later,
many DSSE schemes with forward/backward privacy have been introduced [22,
31, 15, 9, 1, 37, 30].

Nevertheless, most existing forward and backward private DSSE schemes
support single keyword queries only. To make forward and backward private
DSSE support conjunctive queries, we need to consider not only the leakages of
each keywords but also the leakages of the conjunction of the keywords, which is
nontrivial. Very recently, Patranabis et al. [25] proposed a forward and backward
private DSSE with conjunctive queries (named ODXT) by deploying the frame-
work of OXT [7]. Specifically, OXT framework has two encrypted datasets (named
“TSet” and “XSet”), where “TSet” is used to get files matching the least frequent
keyword in a conjunctive query, and “XSet” is used to test if the matching files
contain the remaining keywords in the conjunctive queries. For example, given
a conjunctive search query (w1, w2, · · · , wn), the server first searches the “TSet”
for keyword w1 (assume w1 is the least frequent keyword) and gets the matching
results. Then it tests if the results contain the remaining keywords by searching
the “XSet”.

Table 1. Comparison of results

Scheme Client Storage
Communication Computation Non-interactive Forward Backward Query

Search Update Search Update Deletion Privacy Privacy Type

Aura [30] O(|W|d) O(nw − dw) O(1) O(nw) O(1) 3 3 Type-II Single

ODXT [25] O(|W| logD) O(nq + dq) O(1) O(nq + dq) O(1) 7 3† Type-II‡ Conjunctive

SDSSE-CQ O(|W|d) O(nq − dq) O(1) O(nq) O(1) 3 3 Type-O Conjunctive

SDSSE-CQ-S O(|W|d) O(nq − dq) O(1) O(nq) O(1) 3 3 Type-O− Conjunctive

|W| is the number of keywords in a database. D and d are the number of files in a database and
the length of each entry for a keyword, respectively (note that d is slightly longer than logD). nw

(resp., nq) and dw (dq) are addition and deletion numbers for a keyword w (resp., a conjunctive
query q). Single and Conjunctive stand for single keyword queries and conjunctive queries,
respectively. † The forward privacy of ODXT is not comprehensive for conjunctive queries. ‡ ODXT
cannot delete a file in certain circumstance, and Type-II is not suitable for conjunctive queries.
Type-O and Type-O− are for conjunctive queries with OXT framework, and Type-O− is stronger
than Type-O.

Unfortunately, ODXT [25] does not consider the forward privacy for conjunctive
queries in certain circumstances. In other words, their security is not compre-
hensive for conjunctive queries with OXT framework. In particular, the authors
protect the forward privacy of “TSet”, while the “XSet” is not forward private. If a
client adds a new keyword/identifier pair for a keyword in {w2, · · · , wn} (not the
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least frequent keyword w1), the server can test if the newly added file matches the
previously issued query, since the server can use the previously issued xtokens
to test the “XSet”. For example, given following queries: {1, add, (w1, ind1)},
{2, search, (w1, w2)}, {3, add, (w2, ind1)}. For the search query happened at time
2 (assume w1 is the least frequent keyword), there is no matching files. How-
ever, according to ODXT, after the update query at time 3, the server can learn
that ind1 contains the keywords w1 and w2 by using the previously issued query
{2, search, (w1, w2)}, which is contradict to the requirement of forward privacy.

In addition, ODXT deploys the “lazy deletion” technique from [4], where the
deletion is achieved by adding an indicator “del” to the add operation. Then the
server returns all the search results to the client, and the client filters out the
deleted files, which requires more interactions between the client and the server.
Besides, ODXT cannot delete a file in certain circumstance, because the deletion
tag is not added for the files contain the least frequent keyword.

Type-
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Type-
I/II/III
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Fig. 1. Illustration of Type-O and Type-O−

Our Contributions. To address the problems, in this paper, we introduce two
schemes (named SDSSE-CQ and SDSSE-CQ-S). Table 1 compares our results with
the related works. The concrete contributions are as follows:
– We first give a new DSSE with conjunctive queries (named SDSSE-CQ) based

on the framework of OXT [7]. In particular, to reduce the interactions be-
tween the client and the server, we apply the state-of-the-art forward and
backward private DSSE (termed Aura) with non-interactive deletion from
[30]4. In addition, we guarantee the forward privacy of both “TSet” and

4 Note that Aura only supports single keyword queries, and it can be replaced with
any forward and backward private DSSE for single keyword queries.
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“XSet”. To further reduce the leakages of SDSSE-CQ, we introduce another
scheme (named SDSSE-CQ-S) by increasing the security of the “XSet”. See
Section 4 for details.

– To precisely quantify the leakages of our proposed schemes, we introduce two
new levels of backward privacy definitions for conjunctive queries with OXT
framework (named Type-O and Type-O−, where Type-O− is more secure
than Type-O). Informally, as illustrated Fig. 1, the key difference between
Type-O and Type-O− is that if newly searched “xtag”s (e.g., w2 from q2 =
(w3, w2)) can be used by previously issued queries with the same “xterm”
(e.g., q1 = (w1∧w2)). Each keyword is protected by a forward and backward
private DSSE for single keyword queries. In other words, if we consider single
keyword queries only, then Type-O and Type-O− will be degraded to Type-
I/II/III5. Note that ODXT does not protect the forward privacy of the “xtag”s
(e.g., (w2, ind1) can be searched by the previously issued query q1 without
the help of q2).

– Finally, the security and experimental analysis demonstrate the security and
practicality of our proposed schemes. Compared with ODXT, our proposed
schemes achieve better security with little computation and communication
increase. See Section 6 for details.

1.1 Related Work

Song et al. [26] first deployed symmetric key encryption to address keyword
search over encrypted data, which is known as searchable symmetric encryption
(SSE). However, its search time is linear with the number of keyword/identifier
pairs. To improve the search efficiency, Goh [18] proposed a scheme with secure
indexes, where the search time is linear with the number of files. To further
improve the search efficiency, Curtmola et al. [10] gave a sublinear search time
SSE by deploying an inverted index data structure. In addition, they also for-
malized the SSE security model (i.e., Real v.s Ideal), which has been adopted by
the following works. Later, many SSE schemes with different improvements have
been introduced (e.g., rich queries [7, 16, 23, 14, 39], dynamism [21, 6], multi-client
model [10, 29], locality [8, 24, 13], small client storage [12], etc.).

To make SSE support update, dynamic SSE (DSSE) [21, 6] has been in-
troduced. However, these schemes leak extra information during updates, and
the information can be abused by adversaries to compromise data privacy [5,
36, 19, 20, 2], which highlights the importance of forward and backward privacy.
They are informally introduced by Stefanov et al. [27]. Bost [3] has formally
defined forward privacy, and the formal backward privacy is defined by Bost
et al. [4]. In particular, they defined Type-I, Type-II, and Type-III backward
privacy, where Type-I is more secure than Type-II and Type-II is more secure
than Type-III. In addition, they gave several DSSE schemes with different levels
of backward privacy. Specifically, the Type-I backward private (called MONETA)

5 It depends on which level of backward privacy the underlying DSSE achieves. For
example, if we deploy Aura, then it becomes Type-II backward privacy.
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shows the feasibility of the Type-I backward private DSSE, which is based on
the TWORAM [17]. Furthermore, They proposed FIDES with Type-II backward
privacy. DIANAdel and Janus, achieve Type-III backward privacy, are more ef-
ficient. To further improve the efficiency of Janus, Sun et al. [31] introduced
Janus++ with Type-III backward privacy by replacing the (public-key) punc-
turable encryption (PE) of Janus with their proposed symmetric PE (SPE).
Concurrently, Chamani et al. [9] introduced a forward and Type-II backward
private DSSE MITRA, while it needs to generate search tokens for each entry.
To reduce the search tokens, they also deployed the Path ORAM [28] to give
new constructions for forward and backward private DSSE (namely ORION and
HORUS). To achieve a stronger level of backward privacy efficiently, Zuo et al. [37]
introduced FB-DSSE by using the simple symmetric encryption with homomor-
phic addition and bitmap index. In particular, their scheme achieves Type-I−
backward privacy, which is somewhat stronger than Type-I6. Very recently, Sun
et al. [30] introduced a forward and backward private DSSE (named Aura), which
achieves non-interactive deletion.

However, the aforementioned forward and backward private DSSE schemes
support single keyword queries only. To address the problem, Zuo et al. [39] gave
two forward/backward DSSE schemes with range queries (named SchemeA and
SchemeB), where the first scheme is forward private and the other one is backward
private. Later, Wang et al. [32] proposed a generic forward private DSSE with
range queries based on the SchemeA. In addition, they extended the scheme to
achieve backward privacy by using the “lazy deletion” technique from [4], which
is less efficient. To give a more efficient forward and backward private DSSE with
range query, Zuo et al. [38] introduced FBDSSE-RQ, which applies the framework
of FB-DSSE [37]. Very recently, Patranabis et al. [25] introduced a forward and
backward DSSE for conjunctive queries (ODXT), which is based on the framework
of OXT [7]. However, as mentioned before, its security is not comprehensive for
conjunctive queries, and it cannot delete a file in certain circumstance. It is
not an easy task to make the DSSE with OXT framework support full forward
and backward privacy, because we need to quantify both the leakages of each
keyword in a conjunctive query and the keyword conjunction leakages, which is
complicate.

1.2 Organization

The remaining sections of this paper are organized as follows. In Section 2, we
give the necessary background and preliminaries. In Section 3, we define the
DSSE, its security model and introduce Aura. In Section 4, we give our forward
and backward DSSE schemes with conjunctive queries. The security analysis is
given in Section 5. Section 6 gives the experimental evaluation of our schemes
as well as the ODXT. Finally, Section 7 concludes the work.

6 Type-I− does not leak the insertion time of the matching files, while Type-I does.
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2 Preliminaries

In this section, we introduce the necessary cryptographic primitives and the
complexity assumption. λ denotes the security parameter, || denotes the con-
catenation of two strings, and |S| denotes the cardinality of the set S.

2.1 Decisional Diffie-Hellman (DDH) Assumption

Let a, b, c ∈ Z∗p and g be a generic generator of cyclic group G of order p = p(λ).
We say that DDH assumption holds in G if the advantageAdvDDHA (λ) is negligible
for any probabilistic polynomial time (PPT) adversary A to distinguish the tuple
(g, ga, gb, gab) from (g, ga, gb, gc). Formally,

AdvDDHA (λ) = |Pr[A(g, ga, gb, gab) = 1]−

Pr[A(g, ga, gb, gc) = 1]| ≤ negl(λ).

2.2 Symmetric Encryption

A symmetric encryption (SE) consists of the following polynomial-time algo-
rithms SE = (SE·Enc, SE·Dec):

– ct ← SE·Enc(k,m): On input a secret key k ∈ K and a message m ∈ M, it
outputs a ciphertext ct ∈ CT , where K,M, CT are the key space, message
space and ciphertext space, respectively.

– m← SE·Dec(k, ct): On input the secret key k and the ciphertext ct, it outputs
the message m.

Correctness. An SE scheme is perfectly correct if for all message m ∈M, secret
key k ∈ K, and ct← SE·Enc(k,m), it holds that Pr[SE·Dec(k, ct)] = 1.

Security. We say an SE is IND-CPA secure if for every probabilistic polynomial
time (PPT) adversary A, its advantage

AdvIND-CPASE,A (λ) = |Pr[A(SE·Enc(k,m0)) = 1]−

Pr[A(A(SE·Enc(k,m1)) = 1]|

is negligible, where the secret key k ∈ K is kept secret, and A chooses m0,m1 ∈
M with equal length. In addition, A can adaptively issue a polynomial number of
encryption queries. For each m ∈M, the challenger returns ct← SE·Enc(k,m).

3 DSSE Definition and Security Model

A database DB stores a list of file-identifier/keyword-set pairs or DB= (indi,Wi)
D
i=1,

where indi ∈ {0, 1}λ is the file identifier, Wi is the keyword set of file fi and
D is the total number of files in DB. We denote the collection of all distinct
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keywords in DB by W = ∪Di=1Wi. The notation |W| stands for the total num-
ber of keywords in the set W (or cardinality of the set). The total number of
file-identifier/keyword pairs is denoted by N =

∑D
i=1 |Wi|.

A set of files that satisfy a conjunctive query q is denoted by DB(q). For a
search query q, the result is a set of file identifiers represented in DB(q). For an
update query u, a file index ind corresponding to a keyword w is updated 7.

3.1 DSSE Definition

A DSSE scheme consists of an algorithm Setup, two protocols Search and
Update that are executed between a client and a server. They are described as
follows:

– (EDB, σ) ← Setup(1λ, DB): For a security parameter λ and a database DB,
the algorithm outputs a pair: an encrypted database EDB and a state σ. EDB
is stored by the server and σ is kept by the client.

– (I,⊥) ← Search(q, σ; EDB): For a state σ, the client issues a search query q
and interacts with the server who holds EDB. At the end of the protocol, the
client outputs a set of file identifiers I that match q and the server outputs
nothing.

– (σ′, EDB′) ← Update(σ, op, in; EDB): For a state σ, the operation op ∈
{add, del} and a collection of in = (ind,w) pairs8, the client requests the
server (who holds EDB) to update database by adding/deleting files specified
by the collection in. Finally, the protocol returns an updated state σ′ to the
client and an updated encrypted database EDB′ to the server.

Remark. There are two result models for (D)SSE schemes in the literature.
In the first one (considered in the work [7]), the server returns encrypted file
identifiers, so the client needs to decrypt them. In the second one (studied in
the work [3]), the server returns the file identifiers to the client as plaintext. In
this work, we consider the first variant, where the protocol returns encrypted
file identifiers.

3.2 Security Model

DSSE security is modeled by the interaction between the Real and Ideal worlds
called REAL and IDEAL, respectively. The behavior of REAL is exactly the same as
the original DSSE. However, IDEAL reflects a behavior of a simulator S, which
takes the leakages of the original DSSE as input. The leakages are defined by
the function L = (LSetup,LSearch,LUpdate), which details what information the
adversary A can learn during execution of the Setup algorithm, Search and
Update protocols.
7 If you want to update more file-identifier/keyword-set pairs, you can update many
times.

8 Note that in this paper, as mentioned before, for every update, we update one file-
identifier/keyword pair.
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If the adversary A can distinguish REAL from IDEAL with a negligible advan-
tage, we can say that leakage of information is restricted to the leakage L. More
formally, we consider the following security game. The adversary A interacts
with one of the two worlds REAL or IDEAL which are described as follows:

– REALA(λ): On input a database DB, which is chosen by the adversary A, it
outputs EDB to the A by running Setup(λ, DB). A performs search queries q
(or update queries (op, in)). Eventually, A outputs a bit b, where b ∈ {0, 1}.

– IDEALA,S(λ): Simulator S outputs the simulated EDB with input LSetup(λ, DB)).
For search queries q (or update queries (op, in)) generated by the adver-
sary A, the simulator S replies by using the leakage function LSearch(q) (or
LUpdate(op, in)). Eventually, A outputs a bit b, where b ∈ {0, 1}.

Definition 1. Given a DSSE scheme and the security game described above.
The scheme is L-adaptively-secure if for every probabilistic polynomial time
(PPT) adversary A, there exists an efficient simulator S (with the input L)
such that,

|Pr[REALA(λ) = 1]− Pr[IDEALA,S(λ) = 1]| ≤ negl(λ).

3.3 DSSE for Single Keyword Queries

Our schemes can be constructed from any forward and backward private DSSE
for single keyword queries. As mentioned before, ODXT deploys “lazy deletion”
to achieve backward privacy, which incurs more interactions and is not efficient.
To mitigate this, we deploy the state-of-the-art DSSE scheme for single keyword
queries from [30] (named Aura), which achieves non-interactive deletion and is
forward and Type-II backward private. Specifically, Aura consists of the following
polynomial-time algorithm and protocolsΣ = (Σ·Setup, Σ·Search, Σ·Update):

– (σ, EDB)← Σ·Setup(1λ): The algorithm is run by the client. On input the se-
curity parameter λ, it outputs the secret state σ and the encrypted database
EDB.

– (σ′, EDB′) ← Σ·Update(op, (w, ind), σ; EDB): The protocol runs between a
client and a server. The client inputs an operation op, a keyword/identifier
pair (w, ind), the secret state σ and the server inputs the encrypted database
EDB. Finally, the client outputs an updated state σ′ and the server outputs
an updated encrypted database EDB′.

– Res ← Σ·Search(w, σ; EDB): The protocol runs between a client and a
server. The client inputs a search keyword w, the state σ and the server
inputs the encrypted database EDB. Finally, the client outputs the search
result Res and the server outputs nothing.

Correctness. Aura deploys the bloom filter, so it inherits the false-positive of
bloom filter. As a result, Aura is probabilistic correct, where the false-positive
can be negligible by carefully set the bloom filer. Let Aura be defined as above,
it holds that Pr[Σ·Search(w, σ; EDB) 6= DB(w)] ≤ negl(λ).
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Security. According to [30], Aura achieves forward and Type-II backward pri-
vacy. According to definition 3, we say Aura is forward and Type-II backward
private if for every probabilistic polynomial time (PPT) adversary A, its advan-
tage

AdvFBΣ,A(λ) = |Pr[REALΣA(λ) = 1]− Pr[IDEALΣA,S(λ) = 1]|

is negligible. We refer readers to [30] for details.

4 Our Constructions

In this section, we give two DSSE schemes with conjunctive queries. The first
scheme (termed SDSSE-CQ) improves the forward privacy of ODXT and supports
non-interactive deletion. To further reduce the leakages, we introduce the second
DSSE (named SDSSE-CQ-S) with a stronger level of backward privacy.

4.1 Forward and Backward Private DSSE for Conjunctive Queries

As mentioned before, the security model of ODXT[25] is not comprehensive for
conjunctive queries with OXT[7] framework. This is due to the fact that, similar
to OXT, ODXT has two datasets (named “TSet” and “XSet”). ODXT only guarantees
the forward privacy of “TSet”, while “XSet” is not forward private. To address the
problem, we protect the forward privacy of both “TSet” and “XSet”. In addition,
for ODXT, the authors deploy the “lazy deletion” to support deletion, which incurs
more interactions and is inefficient. To reduce the interactions between the client
and the server, we deploy the general construction (named Aura) from [30], which
supports non-interactive deletion. Note that Aura only supports single keyword
queries. In addition, we can replace Aura with any forward and backward private
DSSE for single keyword queries.

Let Σ = (Σ·Setup, Σ·Search, Σ·Update) be the forward and backward
private DSSE scheme from [30]. We introduce our forward and backward private
DSSE with conjunctive queries SDSSE-CQ = (SDSSE-CQ·Setup, SDSSE-CQ·Update,
SDSSE-CQ·Search), which is defined in algorithm 1. For simplicity, we assume
w1 is the least frequent keyword. The algorithms are described as follows:

– (EDB, σ) ← SDSSE-CQ·Setup(1λ): The algorithm is run by a client. He/she
takes the security parameter λ as input. Then he/she chooses a secret key
k for keyed PRF F and key kx, ki, kz for keyed PRF Fp (with range in Z∗p ).
Moreover, he/she sets an empty map CT, which stores keyword/counter
(w/c) pairs. In addition, he/she sets two Aura instances, which are used
for for “TSet” and “XSet”, respectively. Finally, he/she outputs encrypted
database EDB = (EDBT , EDBX) and the state σ = (k, kx, ki, kz,CT, σT , σX),
and the client keeps the state σ secret.

– (σ′, EDB′) ← SDSSE-CQ·Update(op, w, ind, σ; EDB): The protocol runs be-
tween a client and a server. The client inputs an operation op, a keyword w
corresponding to a file identifier ind, a state σ and the server inputs the en-
crypted database EDB. The client generates the encrypted identifier e, y, and
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Algorithm 1 SDSSE-CQ

SDSSE-CQ·Setup(1λ)

1: k $←− {0, 1}λ for PRF F , kx, ki, kz
$←−

{0, 1}λ for PRF Fp (with range in Z∗p )
2: CT← empty map
3: (σT , EDBT )← Σ·Setup(1λ)
4: (σX , EDBX)← Σ·Setup(1λ)
5: return (EDB = (EDBT , EDBX), σ =

(k, kx, ki, kz,CT, σT , σX))

SDSSE-CQ·Update(op, w, ind, σ; EDB)
Client:
1: c← CT[w]
2: if c =⊥ then
3: c← −1
4: end if
5: c← c+ 1, CT[w]← c
6: kw ← F (k,w), e← SE·Enc(kw, ind)
7: xind ← Fp(ki, ind), z ← Fp(kz, w||c),
y ← xind · z−1

8: xtag ← gFp(kx,w)·xind

Client ↔ Server:
9: RunΣ·Update(op, (w, e||y||c), σT ; EDBT )
10: RunΣ·Update(op, (w, xtag), σX ; EDBX)

SDSSE-CQ·Search(q = (w1, · · · , wn), σ; EDB)
Client:
1: c← CT[w], kw1 ← F (k,w1)
2: if c =⊥ then
3: return ∅
4: end if
5: for i = 0 to c, j = 2 to n do
6: xtoken[i, j]← gFp(kz ,w1||i)·Fp(kx,wj)

7: end for

8: Send xtoken to the server.
Client ↔ Server:
9: ResT ← Σ·Search(w1, σT ; EDBT )
10: if ResT =⊥ then
11: return ∅
12: end if
13: XSet← empty set
14: for j = 2 to n do
15: ResX ← Σ·Search(wj , σX ; EDBX)
16: if ResX =⊥ then
17: return ∅
18: end if
19: XSet← XSet ∪ResX
20: end for
Server:
21: Res← empty set
22: for each (e||y||c) ∈ ResT do
23: flag ← true
24: for j = 2 to n do
25: if xtoken[c, j]y /∈ XSet then
26: flag ← false
27: end if
28: end for
29: if flag then
30: Res← Res ∪ e
31: end if
32: end for
33: Send Res to the client.
Client:
34: for each e ∈ Res do
35: ind← SE·Dec(kw1 , e)
36: end for

xtag. Then the client interacts with the server to update (e||y||c) and xtag
corresponding to keyword w by using the Σ·Update9. Finally, the client
outputs an updated state σ′ and the server outputs an updated encrypted
database EDB′.

– I ← SDSSE-CQ·Search(q = (w1, w2, · · · , wn), σ; EDB): The protocol runs
between a client and a server. The client inputs a conjunctive query q =
(w1, w2, · · · , wn) and a state σ, and the server inputs EDB. Firstly, the client
gets c from CT corresponding to keyword w1 (we assume w1 is the least

9 Note that the update time of Aura is leaked. In other words, the counter c is implicitly
leaked in Aura. Hence, the counter c does not incur a new leakage.
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frequent keyword). Then he/she generates the xtoken for each i from 0 to
c and j from 2 to n, which will be sent to the server. After that, the client
interacts with the server to search w1 from EDBT and (w2, · · · , wn) from EDBX
through Σ·Search. The server retrieves all the file identifiers corresponding
to w1 and tests if them contain the keywords w2, · · · , wn with the xtokens.
Finally, the server sends all the encrypted file identifiers I back to the client,
and the client can decrypt them.

Remark. SDSSE-CQ achieves forward privacy for DSSE with conjunctive queries
because it protects the forward privacy of both “TSet” and “XSet”, where ODXT
does not. Nevertheless, the newly searched xtags still can be used by previ-
ously issued search queries (with different least frequent keywords), and we
call this Type-O backward privacy. In particular, given the following queries:
{1, add, (w1, ind1)}, {2, search, (w1, w2)}, {3, add, (w2, ind1)}, {4, search, (w3, w2)}
(assume w1, w3 are the least frequent keywords). For the search query happened
at time 2, there is no matching files. After the search query happened at time
4, the server can learn that ind1 contains the keywords w1 and w2 by using the
previously issued query {2, search, (w1, w2)}. This is due to the fact that the
newly generated xtags are revealed to the server and can be used by previously
issued search queries.

4.2 Stronger Backward Privacy

As mentioned before, SDSSE-CQ achieves Type-O backward privacy. To further
reduce the leakage, we introduce a stronger level backward privacy (named Type-
O−), where the newly generated xtags cannot be used by previously issued search
queries. To achieve the stronger level of backward privacy, we add a new random
number (corresponding to the keyword/counter pair) to the xtag. Specifically, we
introduce SDSSE-CQ-S = (SDSSE-CQ-S·Setup, SDSSE-CQ-S·Update, SDSSE-CQ-S
·Search), which is described in algorithm 2 and the differences from SDSSE-CQ
are highlighted in red.

– (EDB, σ)← SDSSE-CQ-S·Setup(1λ): Apart from the keys and maps generated
in SDSSE-CQ·Setup, it additionally chooses two new secret keys k′x and k′z
for PRF Fp.

– (σ′, EDB′)← SDSSE-CQ-S·Update(op, w, ind, σ; EDB): This protocol is almost
the same as the SDSSE-CQ·Update except that it puts a new randomness
(corresponding to the update keyword/counter w||c, Fp(k′x, w||c)−1) to the
wxtag (← gFp(kx,w)·xind·Fp(k

′
x,w||c)

−1

), which is used to avoid the newly gen-
erated wxtags to be used by previously issued search queries (with different
least frequent keyword).

– I ← SDSSE-CQ-S·Search(q = (w1, w2, · · · , wn), σ; EDB): This protocol is
similar to the SDSSE-CQ·Search. The differences are that the client puts
the randomness Fp(k′z, w1) (corresponding to the least frequent keyword w1)
to the wxtokens (wxtoken[i, j]← gFp(kz,w1||i)·Fp(kx,wj)·Fp(k

′
z,w1)) and gener-

ates new tokens wxk[j][k] = Fp(k
′
x, wj ||cj) · Fp(k′z, w1). When the server try
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Algorithm 2 SDSSE-CQ-S (Differences from SDSSE-CQ are highlighted in red)

SDSSE-CQ-S·Setup(1λ)

1: k $←− {0, 1}λ for PRF F ,
kx, ki, kz, k

′
x, k
′
z

$←− {0, 1}λ for PRF
Fp (with range in Z∗p )

2: CT← empty map
3: (σT , EDBT )← Σ·Setup(1λ)
4: (σX , EDBX)← Σ·Setup(1λ)
5: return (EDB = (EDBT , EDBX), σ =

(k, kx, ki, kz, k
′
x, k
′
z, CT, σT , σX))

SDSSE-CQ-S·Update(op, w, ind, σ; EDB)
Client:
1: c← CT[w]
2: if c =⊥ then
3: c← −1
4: end if
5: c← c+ 1, CTT [w]← c
6: kw ← F (k,w), e← SE·Enc(kw, ind)
7: xind ← Fp(ki, ind), z ← Fp(kz, w||c),
y ← xind · z−1

8: wxtag ← gFp(kx,w)·xind·Fp(k
′
x,w||c)

−1

Client ↔ Server:
9: Run Σ·Update(op, (w, e||y||c), σT ;

EDBT )
10: RunΣ·Update(op, (w,wxtag||c), σX ;

EDBX)

SDSSE-CQ·Search(q = (w1, · · · , wn), σ; EDB)
Client:
1: c← CT[w], kw1 ← F (k,w1)
2: if c =⊥ then
3: return ∅
4: end if
5: for i = 0 to c, j = 2 to n do
6: wxtoken[i, j]←

gFp(kz ,w1||i)·Fp(kx,wj)·Fp(k
′
z ,w1)

7: end for
8: for j = 2 to n do
9: cj ← CT[wj ]
10: if cj =⊥ then
11: return ∅
12: end if

13: for k = 0 to cj do
14: wxt[j][k]←

Fp(k
′
x, wj ||k) · Fp(k′z, w1)

15: end for
16: end for
17: Send (wxtoken,wxt) to the server.
Client ↔ Server:
18: ResT ← Σ·Search(w1, σT ; EDBT )
19: if ResT =⊥ then
20: return ∅
21: end if
22: WXSet← empty set
23: for j = 2 to n do
24: ResX ← Σ·Search(wj , σX ; EDBX)
25: if ResX =⊥ then
26: return ∅
27: end if
28: for each wxtag||cj ∈ ResX do
29: WXSet←

WXSet ∪ wxtagwxt[j][cj ]
30: end for
31: end for
Server:
32: Res← empty set
33: for each (e||y||c) ∈ ResT do
34: flag ← true
35: for j = 2 to n do
36: if wxtoken[c, j]y /∈ WXSet

then
37: flag ← false
38: end if
39: end for
40: if flag then
41: Res← Res ∪ e
42: end if
43: end for
44: Send Res to the client.
Client:
45: for each e ∈ Res do
46: ind← SE·Dec(kw1 , e)
47: end for

to recover the new “xtag” from wxtag (wxtagwxt). Then the randomness
Fp(k

′
x, wj ||cj) will be canceled out, and the randomness Fp(k′z, w1) (with re-
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spect to the w1) will be added to the new “xtag”. Then these tags can only
be used to test the existence of the rest keywords in a conjunctive query
(w2, · · · , wn) corresponding to the current least frequent keyword w1. In
other words, they can not be used to test the existence of the rest keywords
with a different least frequent keyword. As a result, SDSSE-CQ-S achieves
Type-O− backward privacy.

5 Security Analysis

In this section, we first define the common leakage functions in DSSE. Then we
give the forward and backward privacy for our conjunctive queries. Finally, we
give the security analysis of our proposed schemes.

Common Leakage Functions. Before defining the common leakage func-
tions, we define a conjunctive query q = (w1, w2, · · · , wn). An update query
u = (op, (w, ind)), where op ∈ {add, del} is the update operation and (w, ind)
denotes a file-identifier/keyword pair. For a list of queries Q, we define a search
pattern

sp(q) = {t : {sp(w)}w∈q}q∈Q,

where t is a timestamp and sp(w) = (t : (t, w)) leaks the timestamp of a keyword
w. The search pattern leaks the repetition of search queries on each keyword
w ∈ q. We also define a result pattern

rp(q) = {I}q∈Q,

where I represents all file identifiers that match the conjunctive query (i.e.,
DB(q)).

5.1 Forward Privacy

Informally, for any adversary who may continuously observe the interactions
between the server and the client, forward privacy guarantees that an update
does not leak information about the newly added files that match the previously
issued queries. In 2016, Bost [3] gave a formal forward privacy definition, which
is described below.

Definition 2. A L-adaptively-secure DSSE scheme is forward private, if the
update leakage function LUpdate can be written as

LUpdate(op, in) = L′(op, {(indi, µi)}),

where indi is identifier of the updated file, µi is the number of keywords corre-
sponding to the updated file fi, and L′ is stateless.

In [25], Patranabis et al. deployed the OXT [7] framework to achieve forward
and backward private DSSE for conjunctive queries (named ODXT). However,
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as mentioned before, their security is not comprehensive. This is because OXT
contains two data structures (namely “TSet” and “XSet”), and ODXT only guar-
antees the forward privacy of the “TSet”. To address this problem, for each pair
of keyword/identifier update, we need to guarantee the forward privacy of both
“TSet” and “XSet”. To achieve this, we need to define the leakage function for
both “TSet” and “XSet”. Specifically, the leakage function for update is

LUpdate(op, w, ind) = L′((op, ind)T , (op, ind)X),

where (op, ind)T and (op, ind)X are the leakages of (op, ind) for “TSet” and
“XSet”, respectively.

5.2 Backward Privacy

Informally, during two same search queries q, backward privacy ensures that the
server cannot learn the files previously added and later deleted. Note that the
two search queries should be the same. Otherwise, the server cannot tell whether
the missing files do not match the search query or are deleted. In [4], Bost et al.
gave three different levels of backward privacy (namely, Type-I to Type-III, from
most secure to least secure) for single keyword queries, which can not describe
the leakages of conjunctive queries properly. For conjunctive queries with OXT
framework, two search queries may have same “xterm” (i.e., q1 = (w1, w2) and
q2 = (w3, w2), where w2 is the “xterm”. If there is an update query between q1 and
q2 for keyword w2. After q2, the server can use the previous query q1 to test if the
new added file contains keyword w1. SDSSE-CQ contains such leakage. To avoid
this leakage, we introduce SDSSE-CQ-S. To formally describe this information,
we define two new backward privacy definitions named Type-O and Type-O−,
where Type-O− is more secure. Note that our schemes deploy Aura, then the
leakages of each keyword are the same as the leakages of Aura, which is Type-II
backward private. Hence, for each keyword in Type-O/O−, we mainly focus on
the Type-II backward privacy. Specifically,

– Type-O−: Given two same consecutive conjunctive queries q, it leaks file
identifiers that currently match a query q. It also leaks the number of match-
ing files of each w1 ∧Ww1

pair, where q = (w1, w2, · · · , wn)10, Ww1
is the

conjunction of any subset of {w2, · · · , wn} corresponding to the current least
frequent keyword w1. For each keyword w ∈ q, it leaks the total number of
updates and the corresponding update times11.

– Type-O: Apart from the leakages in Type-O−, it leaks the number of match-
ing files of each w1 ∧W pair, where W is the conjunction of any subset of
{w2, · · · , wn}.

10 We assume w1 is the least frequent keyword.
11 This is dependent on the Type-II backward privacy. For other types of backward

privacy (e.g., Type-III), it can be changed accordingly.
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To formally define the notion, we need to introduce some new leakage func-
tions. For a conjunctive query q, Time(q) shows update time t for each keyword
w ∈ q. Formally,

Time(q) = {t : {t, op, (w, ind)}w∈q}.
Let size(w1 ∧W ) = {|DB(w1 ∧W )|} denotes the number of matching files for
any conjunctive queries with the form w1 ∧W , where q = (w1, w2, · · · , wn), W
is the conjunction of any subset of {w2, · · · , wn}, and |DB(w1 ∧W )| denotes the
number of matching files for all possible combinations (e.g., (w1 ∧ w2), (w1 ∧
w2 ∧ w3), etc)12. Similarly, we can define size(w1 ∧Ww1) = {|DB(w1 ∧Ww1)|},
where Ww1

denotes the keywords in W correspond to the current least frequent
keyword w1. For example, we initially assume file ind1 has keywords w1 and w3.
Now, we have a series of queries (1, search, q = (w1, w2)), (2, add, (w2, ind1)),
(3, search, q = (w3, w2)). After the search time 3, we have size(w1 ∧W ) = 1
and size(w1 ∧Ww1) = 0, where W is {w2}.

Definition 3. A L-adaptively-secure DSSE scheme is Type-O−/O backward pri-
vate if the update leakage function LUpdate and the search leakage function LSearch
can be written as the following types, respectively:

Type-O−: LUpdate(op, w, ind) = L′(op) and
LSearch(q) = L′′(sp(q), rp(q), Time(q), size(w1 ∧Ww1)),

Type-O: LUpdate(op, w, ind) = L′(op) and
LSearch(q) = L′′(sp(q), rp(q), Time(q), size(w1 ∧W )),

where L′ and L′′ are stateless.

5.3 Proofs

In this subsection, we give the security proofs of our proposed schemes. Note that
SDSSE-CQ and SDSSE-CQ-S do not leak the final result rp. Hence the following
theorems do not contain this leakage. We first give the proof of SDSSE-CQ, which
achieves forward and Type-O backward privacy. Formally,

Theorem 1. (Adaptive forward and Type-O backward privacy of SDSSE-CQ).
Let Σ be forward and backward private, F, Fp be secure PRFs, DDH assump-
tion holds over G, SE be a IND-CPA secure symmetric encryption. We define
LSDSSE-CQ = (LUpdateSDSSE-CQ,LSearchSDSSE-CQ), where LUpdate(op, w, ind) = op and LSearch(q) =
(sp(q), Time(q), size(w1 ∧W )). Then SDSSE-CQ is LSDSSE-CQ-adaptively forward
and Type-O backward private.

We update the “TSet” and “XSet” by using Aura, hence the forward privacy
of SDSSE-CQ is guaranteed by the forward privacy of Aura. The non-interactive
deletion is achieved by using the Aura, which is Type-II backward private. To
support conjunctive queries, SDSSE-CQ deploys the OXT data structure, which
inherits the leakage of the number of matching files for the pair of w1 ∧W (W
denotes the conjunction of any subset of {w2, · · · , wn}). Hence, SDSSE achieves
Type-O backward privacy.
12 The number of matching files for each keyword w can be deduced from the Time(q).
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Proof. The proof consists of a series of games from REAL to IDEAL, and we argue
that an adversary A cannot distinguish between any two consecutive games.

Game G0: The game is exactly same as the original DSSE scheme (see
Algorithm 1). Then we have

Pr[REALSDSSE-CQA (λ) = 1] = Pr[G0 = 1].

Game G1: In this game we replace the keyed PRFs F (resp., Fp with kx, ki,
kz) with a truly random function. For a new keyword w (resp., w, ind, w||c),
they choose new values and store them in table Key (resp., Gx, Gi, Gz). For a
queried keyword, we retrieve the values from the corresponding tables. Then we
can establish an adversary B1 to distinguish the keyed PRF from a truly random
function if an adversary A can distinguish G1 from G0. So we have

Pr[G0 = 1]− Pr[G1 = 1] ≤ 4AdvprfF,B1
(λ).

Game G2: In this game, similar to [7], we choose a random value r from Zp
and generate the corresponding xtag ← gr for the “XSet”. In addition, we store
the values in the set XTag. If an adversary A can distinguish G2 from G1, then
we can build an adversary B2 to break the DDH assumption. So we have

Pr[G1 = 1]− Pr[G2 = 1] ≤ AdvDDHB2
(λ).

Game G3: This game is similar to G2 except that we encrypt a constant
0 by using the symmetric encryption SE. If an adversary A can distinguish G3

from G2, then we can establish an adversary B3 to break the IND-CPA security
of the standard symmetric key encryption SE. Then we have

Pr[G2 = 1]− Pr[G3 = 1] ≤ AdvIND-CPASE,B3
(λ).

Game G4: In this game, we can use the leakage of Time(q) and size(w1∧W )
to choose and set the random values for xtokens properly. This has no influence
to the distribution of G4, Then we have

Pr[G3 = 1] = Pr[G4 = 1].

Game G5: For the update and search of Aura [30], we can use the same
technique to simulate the corresponding values by using the leakages defined in
LSDSSE-CQ. If an adversary A can distinguish G5 from G4, then we can build an
adversary B4 to break the forward and backward privacy of Aura. Therefore, we
have

Pr[G4 = 1]− Pr[G5 = 1] ≤ AdvFBΣ,B4
(λ).

Simulator: Now, we can use the sp(q) = min{sp(w)}w∈q to simulate the
search queries. Moreover, the construction of encrypted database EDB can be
properly simulated by using the leakage of Time(q) and size(w1 ∧W ) as the
input of SDSSE-CQ·Search. Then we can find that G5 can be simulated by the
simulator S with the defined leakages. Then we have

Pr[G5 = 1] = Pr[IDEALSDSSE-CQA,S = 1].
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Finally, we can conclude that the advantage of any adversary A attacking
SDSSE-CQ is

Pr[REALSDSSE-CQA (λ) = 1]− Pr[IDEALSDSSE-CQA,S = 1] ≤

4AdvprfF,B1
(λ) +AdvDDHB2

(λ) +AdvIND-CPASE,B3
(λ) +AdvFBΣ,B4

(λ).

As mentioned before, for SDSSE-CQ, the newly searched xtags still can be used
by previously issued search queries (with different least frequent keywords). To
avoid this, we introduce SDSSE-CQ-S, which achieves a stronger level of backward
privacy (named Type-O−). Compared with SDSSE-CQ, SDSSE-CQ-S combines
the “xtag” with a random value corresponding to the least frequent keyword
w1, which does not influence the forward privacy of SDSSE-CQ-S. Then new
“xtag” (termed as wxtag) can only be used to test the remaining keywords
corresponding to the current least frequent keyword w1. Formally,

Theorem 2. (Adaptive forward and Type-O− backward privacy of SDSSE-CQ-S).
Let Σ be forward and backward private, F, Fp be secure PRFs, DDH assump-
tion holds over G, SE be a IND-CPA secure symmetric encryption. We define
LSDSSE-CQ = (LUpdateSDSSE-CQ, LSearchSDSSE-CQ), where LUpdate(op, w, ind) = op and LSearch(q) =
(sp(q), Time(q), size(w1∧Ww1

)). Then we have SDSSE-CQ-S is LSDSSE-CQ-S-adaptively
forward and Type-O− backward private.

Proof. Similar to the proof of Theorem 1, we can set a series of games from
REALSDSSE-CQ-SA (λ) to IDEALSDSSE-CQ-SA,S (λ) and proof that every two consecutive
games are indistinguishable.

The difference is that, in G1, we need to additionally use two truly random
functions to replace Fp with two new keys k′x, k′z. Then we can simulate the
wxtag, wxtoken and wxt. As a result, we can conclude that the advantage of
any adversary A attacking SDSSE-CQ-S is

Pr[REALSDSSE-CQ-SA (λ) = 1]− Pr[IDEALSDSSE-CQ-SA,S = 1] ≤

6AdvprfF,B1
(λ) +AdvDDHB2

(λ) +AdvIND-CPASE,B3
(λ) +AdvFBΣ,B4

(λ).

6 Experimental Analysis

In this section, we give the experimental analysis of our proposed schemes and
the state-of-the-art ODXT.
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6.1 Implementation and Settings

The proposed schemes and ODXT are implemented with JAVA, and we use Aura
[30] to instantiate our schemes as Aura achieves non-interactive deletion. For
Aura, we use the symmetric one-way technique of FB-DSSE from [37] as the un-
derlying forward private DSSE13. Similar to [30], the parameters for the bloom
filter used in Aura are set as follows: false positive (10−4), number of bytes
(24729) and number of hash functions (6). In addition, the client knows the
w/ind pair, so we still use this value to generate the tag for compressed sym-
metric revocable encryption (CSRE, we refer readers to [30] for details). We
leverage the group GT 14 of JPBC [11] with the input a.properties to enable the
elliptical curve-based cryptographic operations (e.g., group multiplication and
exponentiation) involved in conjunctive queries.

Our evaluation platform is a Ubuntu 20.04.3 LTS workstation with Intel
@Xeon(R) W-2123 CPU 3.60GHz with 8 cores and 32GB RAM. We construct
a synthesis dataset with 105 files, and each file contains at least two same key-
words. In the following evaluations, we aim to demonstrate the practicality of
the proposed schemes and discuss the difference between our schemes and the
prior ODXT under the two-keyword conjunctive queries scenario. We compare the
result of our schemes with the only prior art ODXT proposed in [25].

6.2 Evaluation Results

Update Time. We respectively run the addition and deletion of our proposed
schemes and ODXT 104 times and measure the average running time. The results
are presented in Table 2. From Table 2, it can be seen that the addition time of
our proposed schemes is tiny (less than 2 ms), while it is larger than the addition
time of ODXT (less than 1 ms). This is due to the fact our schemes need to
generate the CSRE ciphertexts (see [30] for details) for both “TSet” and “XSet”.
For deletion, SDSSE-CQ and SDSSE-CQ-S only need 0.01 ms because they only
require to insert the tag of deleted keyword/identifier pair into a bloom filter,
while ODXT uses “lazy deletion”, which consumes the same amount of running
time as the addition.

Table 2. Average addition and deletion time of our proposed schemes and ODXT

Scheme SDSSE-CQ SDSSE-CQ-S ODXT

Per addition (ms) 1.8 1.8 0.7

Per deletion (ms) 0.01 0.01 0.7

13 Note that, ODXT deploys the technique of MITRA [9] to achieve forward privacy, where
the client needs to generate a token for each entry in the list of files matching a
keyword w.

14 The modular exponentiation in GT is the fastest.
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Note that, although our schemes consume more addition time than ODXT,
our schemes achieve better security and incur less deletion time. Besides, ODXT
cannot delete a keyword/identifier pair in certain circumstance, because it only
add the deletion tag with the corresponding keyword in the “XSet”. For example,
assume a client deletes a keyword/identifier pair w2/ind. Then, for a search query
w1∧w2 (assume w1 is the least frequent keyword and ind contains keyword w1),
the ind will still be returned. In other words, the w2/ind pair is not deleted.

Search Time. We follow the same setting in [25] to evaluate the schemes. In
particular, we execute two types of two-keyword conjunctive queries (w1∧w2) for
the schemes. In the first type of queries, w1 has a fixed number of corresponding
files (i.e., 10), while the number of files matching w2 varies from 10 to 105.
Correspondingly, the second type of queries has a fixed number of files (i.e., 10)
containing w2, but the number of files matching w1 varies from 10 to 105.
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Fig. 2. Search time of SDSSE-CQ, SDSSE-CQ-S and ODXT with constant |w1|

The search time of the first type queries is presented in Figure 2. It shows
that the search time increases with the increase of |w2| for our schemes, while it
is almost the same for ODXT. This is because ODXT only needs to test the same
(small) amount of identifiers (i.e., 10) in the “TSet”, while our schemes needs
to recover the xtags in the “XSet”, which are increased with the |w2|. For our
schemes, the search time of SDSSE-CQ is less than the search time of SDSSE-CQ-S.
For each scheme, the search time with 10% deletion has a better search time,
because the deletion operation reduces the size of the reconstructed “TSet” and
“XSet”. When |w2| is small (i.e., 10 to 103), the search time of the schemes is
almost the same and small. When |w2| grows larger, our proposed scheme incurs
more search time than ODXT. Note that, as mentioned before, our schemes achieve
better security.

A similar trend can be found in Figure 3, which demonstrates the search
time of the second type of queries. The difference is that the search time of
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Fig. 3. Search time of SDSSE-CQ, SDSSE-CQ-S and ODXT with constant |w2|

all schemes increases with the increase of |w1|. This is due to the fact that the
number of identifiers in “TSet” increases, where each identifier needs to be tested
if it contains keyword w2. This further demonstrates that the influence of |w1| is
dominant in all schemes. Finally, we delete 10% of matched files and evaluate the
search time again. We observe that the search time is accelerated after deletion
for our schemes, while the search time of ODXT is increased. This is because the
deletion operation of ODXT increases the size of the reconstructed “TSet” and
“XSet” (“lazy deletion”).

Update Communication Cost. Next, we compare the update communication
cost of our proposed schemes with ODXT. We set the key size of the maps, the
identifier size and the counter size to 4 bytes, and the element size in group Zr
and GT is 20 and 128 bytes, respectively. In addition, we set the operation size of
ODXT to 1 byte. As shown in Table 3, the communication cost of SDSSE-CQ-S is
slightly larger than the communication cost of SDSSE-CQ, because SDSSE-CQ-S
needs to store an additional counter for the “XSet”. Since the deletion of our
schemes only involves operations on the client side, it does not incur any com-
munication cost. For ODXT, it has the same communication cost (156 bytes) for
both the insertion and deletion process, which is slightly smaller than the com-
munication cost of our schemes.

Table 3. Update communication cost of our proposed schemes and ODXT for each
keyword/identifier pair

Scheme SDSSE-CQ SDSSE-CQ-S ODXT

Addition (Byte) 172 176 156

Deletion (Byte) 0 0 156
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Table 4. Search communication cost of our proposed schemes and ODXT

Scheme SDSSE-CQ SDSSE-CQ-S ODXT

1000 0.13 MB 0.15 MB 0.13 MB

10000 1.23 MB 1.42 MB 1.26 MB

100000 12.21 MB 14.12 MB 12.59 MB

Search Communication Cost. Table 4 shows the search communication cost
of our proposed schemes and ODXT. The search query is two-keyword conjunctive
query (w1 ∧ w2). The dataset consists of different number of files (i.e., 103, 104
and 105), where each file contains keyword w1 and w2. In addition, we set the key
size of the keyed hash functions and AES encryption to 16 bytes. From Table 4,
we can see that the search communication cost of all schemes is similar, and it
increases with the increase of the number of files. The search communication
cost of SDSSE-CQ is slightly smaller than the cost of ODXT. This is due to the
fact that ODXT needs to generate an address for each file contains keyword w1.
Nevertheless, the search communication cost of SDSSE-CQ-S is slightly larger
than ODXT. This is due to the fact that SDSSE-CQ-S needs to generate additional
tokens wxt for files contain keyword w2.

7 Conclusion

In this paper, we give two DSSE schemes (named SDSSE-CQ, SDSSE-CQ-S) based
on the framework of OXT [7]. In addition, we give two different levels of backward
privacy for conjunctive queries (named Type-O and Type-O−), where Type-
O is less secure than Type-O−. Our first scheme (SDSSE-CQ) achieves forward
and Type-O backward privacy. To achieve a stronger level of backward privacy
(Type-O−), we give our second scheme (SDSSE-CQ-S). The security model of
our schemes is more comprehensive for conjunctive queries with OXT framework.
Moreover, our schemes do not need to send the deleted files to the server, which
reduces the interactions between the server and the client. In the future, we
would like to make our schemes support more expressive queries.
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