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Abstract—As a recent fault-injection attack, SIFA defeats most
of the known countermeasures. Although error-correcting codes
have been shown effective against SIFA, they mainly require
a large redundancy to correct a few bits. In this work, we
propose a hybrid construction with the ability to detect and
correct injected faults at the same time. We provide a general
implementation methodology which guarantees the correction of
up to tc-bit faults and the detection of at most td faulty bits.
Exhaustive evaluation of our constructions, by the open-source
fault diagnostic tool VerFI, indicate the success of our designs
in achieving the desired goals.

I. INTRODUCTION

Steadily increasing the number of small embedded devices
involved in our daily life attracted a considerable amount of
attention towards their security. Physical accessibility to these
devices enables the attacker to mount all sorts of physical
threats including fault-injection attacks. The attacker forces
the target device to operate in a non-regular condition and
tries to recover the key by analyzing the faulty and/or fault-
free outcomes. The target device can be disturbed by means of
clock glitch, voltage glitch, and electromagnetic pulses while
more precise faults can be injected using laser beams.

There is a considerable body of works in literature focusing
on fault-injection attacks, firstly introduced by Boneh et al. [6]
on RSA. By presenting a new technique called Differential
Fault Analysis (DFA), Biham and Shamir successfully re-
covered the secret key of a DES implementation, using both
faulty and fault-free ciphertexts. Fuhr et al. [12] improved this
technique later by statistical analysis of only faulty ciphertexts,
known as Statistical Fault Attack (SFA), leading to more
relaxed requirements.

While the aforementioned techniques require faulty outputs
to mount a successful attack, Ineffective Fault Attack (IFA) [8]
keeps a distance to this necessity. The only requirement of IFA
is the knowledge that the injected fault was effective or not.
In IFA, the fault should be injected precisely and the exact
location of the fault should be known, which makes it hard
to mount in practice. By combining the principles of IFA and
SFA, the authors of [11] proposed Statistical Ineffective Fault
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Attack (SIFA), which uses only fault-free ciphertexts in the key
recovery process and an exact location for fault injections is
not needed. These minimal requirements enable the adversary
to bypass most of the known countermeasures [10], [11].

Countermeasures to fault attacks have been discussed by a
great number of articles, all of which employ some sort of re-
dundancy. The consistency of the outcome can be checked by
calculating the output twice, using area/time redundancy [13].
Parity code has been used in several publications (e.g., [19]) to
protect a design. Considering software platforms, more sophis-
ticated linear codes have been employed (e.g., in [3]) while
the authors of [1] took hardware implementations into account.
Based on the code-based Concurrent Error Detection (CED)
schemes, they proposed a methodology that guarantees the
detection of any bounded faults injected in any location of the
design. Notably, none of the aforementioned countermeasures
defeats SIFA [10].

Naturally, a couple of techniques have been proposed to
provide protection against SIFA, some focusing on error
detecting, others on error correcting. Breier et al. [7] suggested
an approach based on binary repetition code and majority
voting. Saha et al. [17] combined the majority voting with
masking and proposed a two-phase countermeasure called
Transform-and-Encode. Daemen et al. [9] demonstrated that
the majority voting circuitry can be replaced with a simple
detection module if the entire circuit is masked using reversible
building blocks, e.g., Toffoli gates. Baksi et al. [4] presented a
duplication-based countermeasure, in which the state bits are
randomized to remove the statistical bias caused by ineffective
faults. Shahmirzadi et al. [18] extended the idea of [1] to
employ Error Correcting Codes (ECCs) in Concurrent Error
Correction (CEC) to prevent SIFA.

On the other hand, DFA is still a great threat to crypto-
graphic implementations when the number of faulty encryp-
tions is limited. Examples include the works presented in [14]–
[16] where the adversary can recover the full secret key by
performing only two faulty encryptions. Generally, protection
against SIFA would provide resistance against DFA as well,
but fault models in SIFA are usually limited to a single (or
a few) bits while DFAs generally cover larger fault models.
At the dark side, extending the countermeasures of SIFA to
cover DFA would potentially lead to a high overhead. For
example, 3-bit redundancy is required to correct a single-bit
fault in a 4-bit value, i.e., protecting against 1-bit SIFA. In
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order to protect against a DFA with 2-bit faults, this leads to
7 redundant bits when extending the correction to 2 bits. As
a matter of fact, no study offers a hybrid construction with
the ability to detect and correct injected faults at the same
time. To complete this missing piece of the puzzle, this paper
provides a clear guideline of how such a construction should
be implemented in hardware platforms.

Our Contributions: In this paper, we propose a new methodol-
ogy based on code-based schemes providing secure hardware
implementation in which fault propagation is considered. First
of all, we demonstrate that following the injective structure
proposed in [1], [18] is neither necessary nor beneficial, and
unite them into a single structure improving the area overhead.
Then, we consolidate the principle of error-detection method
in [1] with the error-correcting facility of [18] by keeping
the same adversary model. Our constructions guarantee the
correction of up to tc erroneous bits and the detection of td-
bit faults given that td > tc. We protect every component
of the circuit including data path, FSM, and cipher’s key
schedule at any clock cycle. We applied our methodology to
CRAFT [5] to have a fair comparison to the state of the art in
terms of area overhead and latency. We verified the ability of
our constructions in correcting and detecting the faults using
the open-source fault-diagnostics tool VerFI [2]. In short, it
confirms our claims as long as the injected faults fit into the
considered bounded model.

II. PRELIMINARIES

Error Detecting Codes (EDCs) and ECCs are essential
aspects of information theory and are often used in the coun-
termeasures against fault-injection attacks. In the following,
the necessary notions related to these codes are recalled.

Definition 1 (Binary Code). A binary [n, k]-code C with n >
k, is a bijective mapping from the space of messagesM = Fk

2

to the space of codewords C ⊂ Fn
2 , i.e., each message x ∈M

is mapped to a unique codeword c ∈ C with c = C(x).
The parameters n and k are referred to as the length and

rank of the [n, k]-code C, respectively. Besides, parity size
refers to the difference between length and rank, i.e., n−k.

Definition 2 (Systematic Code). A code in which the message
x is embedded in the codeword c is called a systematic code,
i.e., the codeword c is the concatenation of x with a parity
(redundancy) x′, i.e., c = (x‖x′), while the parity bits are
generated from x.

Systematic codes enable a simple split of the data paths
between message and parity. Therefore, the original imple-
mentation of the target operation can stay as it is. Furthermore,
the decoder can take the first k bits of a codeword to extract
the message, i.e., no implementation cost.

Definition 3 (Linear Code). The [n, k]-code for which the
codeword space is a vector subspace over Fn

2 is called linear.

Focusing on systematic linear codes does not lead to any
restrictions, since any linear non-systematic code can be
transformed into a systematic code with the same properties.

Definition 4 (Generator Parity Check Matrices and Syn-
drome). For a linear [n, k]-code, the k × n matrix G that
maps a message to the corresponding codeword, is called the
generator matrix, i.e., C(x) = x ·G.

Since the rank of the generator matrix is k, there are n−k
linear equations between the codeword bits to be satisfied.
These equations can be shown as matrix multiplication. The
n × (n−k) matrix H that checks if an element of Fn

2 is a
possible codeword is called the parity check matrix. Besides,
for any x ∈ Fn

2 , the output of x ·H is called syndrome. Hence,
for any c ∈ C, the corresponding syndrome c ·H = 0n−k.1

The generator matrix G of a linear systematic [n, k]-code is
of the form G = [Ik|P ] with Ik the identity matrix of size k,
while the parity bits are generated using a k × (n−k) matrix
P as x′ = x · P . Then, for any (x‖x′) ∈ Fn

2 , the syndrome
can be computed by x · P ⊕ x′.
Definition 5 (Minimum Distance). The minimum distance d
of an [n, k]-code C is defined as

d = min
∀c,c′∈C, c 6=c′

hw(c⊕ c′),
where hw denotes the Hamming weight. An [n, k]-code with
minimum distance d is denoted as an [n, k, d]-code.

Lemma 1. For a linear [n, k]-code, d = min
∀c∈ C\{0}

hw(c).

Lemma 2. A code C with minimal distance d can detect
additive errors e ∈ Fn

2 , if hw(e) < d, i.e., the faulty codeword
c̃ = c ⊕ e. Moreover, such a code can correct the errors e if
hw(e) < d/2.

Proof. Clearly, each c̃ ∈ Fn
2 which c̃ /∈ C is erroneous. In

the error detection mode, for any c ∈ C and any e ∈ Fn
2

with hw(e) < d, we have c ⊕ e /∈ C. Hence, such an error is
detectable.

Besides, in the error correction mode, for each c̃ ∈ Fn
2 ,

there is only one c ∈ C with hw(c̃ ⊕ c) < d/2. Otherwise, it
contradicts the definition of minimum distance. Therefore, for
any c ∈ C and any e ∈ Fn

2 with hw(e) < d/2, the erroneous
word c̃ = c⊕ e can be corrected to the codeword c.

Syndrome Decoding is an efficient method of error detection
or error correction in linear codes. The underlying principle
idea lies on the linearity of the code. Naturally, if the value of
the syndrome is zero, the given input is a possible codeword;
otherwise, not. Assuming a systematic linear code, for a
codeword (x‖x′) ∈ C, we have x′ ⊕ x · P = 0. Then, for
an erroneous codeword (x⊕ e‖x′⊕ e′), the syndrome is e′′ =
(x′⊕e′)⊕(x⊕e)·P = e′⊕e·P . Using a proper look-up table,
one can map all syndrome values to the error vector (ẽ‖ẽ′)
with ẽ′⊕ẽ·P = e′′. Such a look-up table e′′ 7→ (ẽ‖ẽ′) is called
a syndrome decoder. Considering that in the coding channels,
occurrence probability of errors with smaller Hamming weight

10` and 1` denote the `-bit array of all 0 and all 1, respectively.
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is higher, for a given syndrome value, the syndrome’s error
is chosen from the ones that have the minimum possible
Hamming weight, i.e., hw(ẽ) + hw(ẽ′) < d/2.

By adding the syndrome’s error (ẽ‖ẽ′) to the erroneous
codeword, it is possible to correct the codeword. In this way,
output of addition is (x⊕e⊕ ẽ‖x′⊕e′⊕ ẽ′) and if the occurred
error (e‖e′) is the same as the syndrome’s error (ẽ|ẽ′) (which
is the case if hw(e)+hw(e′) < d/2), the output is the correct
codeword (x‖x′).

It is important to mention that the statement in Lemma 2
does not mean both correcting the errors with hw(e) < d/2
and detecting the other faults with hw(e) < d is possible. It
can only detect errors with hw(e) < d or only correct the
errors with hw(e) < d/2. The following lemma, generalizes
the correcting and detecting capability of the codes.

Lemma 3. A code C with minimal distance d can correct all
errors e ∈ Fn

2 with hw(e) ≤ tc and detect all errors e with
tc < hw(e) ≤ td, if tc + td < d.

Proof. Since tc < td and tc + td < d, hence tc < d/2.
Therefore, for any c ∈ C and any e ∈ Fn

2 with hw(e) ≤ tc,
the closest codeword to the erroneous word c̃ = c ⊕ e is
c and it is unique. Therefore, c̃ = c ⊕ e with hw(e) ≤ tc
is uniquely corrected to the codeword c. We call the subset
{c⊕ e|c ∈ C,hw(e) ≤ tc} the correction subset.

For any c and any e with tc < hw(e) ≤ td, the minimum
distance of the erroneous word c̃ = c⊕e from all codewords is
larger than tc, since tc+ td < d. Therefore, such an erroneous
word is out of the correction subset, but can be detected.

Here after, for simplicity, we use the tc-bit correction and
td-bit detection notion to call the correction up-to tc bits and
detection the other faults up-to td bits. Therefore, for a tc-bit
correction and td-bit detection, we need to use a code with
minimum distance of at least tc + td + 1.

Example 1. The Extended Hamming code [8, 4, 4] is capable
of either 1) detecting up-to 3-bit errors or 2) correcting all
1-bit errors and detecting all 2-bit errors. Hence, we can use
it in a tc = 1-bit correction and td = 2-bit detection scheme.

III. METHODOLOGY

A. Adversary Model

We assume the same adversary models as in [18], where
the adversary can inject faults at t arbitrarily cells (either a
register or a gate) by flipping or setting the cell output to a
certain value.

Definition 6 (Univariate Adversary Model Mt). In a given
sub-circuit, the adversary can make at most t cells faulty in
the entire operation of the algorithm, e.g., a full encryption. t
can be split into various clock cycles.

Definition 7 (Multivariate Adversary Model M∗t ). Here, the
adversary model is extended to allow the attacker to inject
such bounded faults at every clock cycle.

B. Fault Propagation and Independence Property

If an input of a gate in a circuit is faulty, depending on the
type of the gate and the value of the other inputs to the gate, its
output might become faulty. This phenomenon is propagated
through the circuit and as a result an Mt-bounded adversary
can achieve t′ faulty cells, where t′ ≥ t. The affect of fault
propagation is well-studied in [1]. It is shown that an Mt-
bounded attacker can target t certain cells in such a way that
more than t faults appear at the sub-circuit output avoiding
the underlying code to detect or correct it.

To prevent fault propagation, independence property has
been defined in [1]. It means that the corresponding sub-
circuits for computing each output bit must be implemented
separately, where no cell is shared between sub-circuits.
Hence, any injected fault in one cell, can only affect at most
one output bit.

C. Correction and Detection Point

In order to correct up-to tc-bit faults and detect the other
faults up-to td bits, we use a similar approach to the correction
point introduced in [18]. The construction shown in Fig. 1
demonstrates the correction+detection general structure.

We use F : Fk
2 7→ Fm

2 with F (x) = x · P to refer to the
multiplication with matrix P , where m = n−k denotes the
parity (redundancy) bit-length. As explained in Section II, we
make use of an [n, k, tc+td+1]-code, and write ∀x ∈ Fk

2 , x
′ ∈

Fm
2 with hw(x) + hw(x′) ≤ tc and x̃ = F (x)⊕ x′, we have

SD1(x̃) = x, SD2(x̃) = x′, and g(x̃) = 0,
while for any other syndrome value x̃, we have

SD1(x̃) = 0, SD2(x̃) = 0, and g(x̃) = 1.
Assume a faulty input codeword (x ⊕ e‖x′ ⊕ e′) with

the injected fault (e‖e′). At the correction+detection point,
the syndrome decoder is fed by F (x ⊕ e) ⊕ x′ ⊕ e′ =
F (e) ⊕ e′; hence, the injected fault (ẽ‖ẽ′) is predicted. If
hw(e) + hw(e′) ≤ tc, the predicted fault is the same as the
injected one; hence adding (ẽ|ẽ′) to the input word would
eliminate the injected fault. Note that in this case, the fault
detector function g(.) stays 0. If tc < hw(e) + hw(e′) ≤ td,
the output of the syndrome decoders would be 0 while g(.)
becomes 1. It is important to recall that the syndrome values
for hw(e) + hw(e′) ≤ tc are always different to those for
tc < hw(e)+hw(e′) ≤ td, i.e., no collision between correcting
and detecting.

It is noteworthy to mention that the syndrome decoders
SD1 and SD2 are employed to correct faulty bits in original
faults x and its redundancy x′, respectively. Since we are only
interested in correcting faulty bit(s) in x, we only implement
SD1 to achieve lower area overhead while maintaining the
same security level (see Fig. 2(b)). More details will be given
in the next subsection.

D. Application

Any sequential circuit can be represented by the general
scheme depicted in Fig. 2(a), which we use to to apply our
correction+detection strategy. It consists of a register which
loads the INPUT at the beginning (triggered by rst signal)
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Fig. 1. Correction+detection point.
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Fig. 2. Our proposed construction for both fault correction and detection.

and performs the function T repeatedly until the OUTPUT is
taken from the register. First, we only consider a univariate
adversary model, and later extend it to cover the multivariate
case. In contrary to the Concurrent Error Detection (CED) and
Concurrent Error Correction (CEC) schemes in [1] and [18],
which depending on the injective-ness of the F function
different structures were introduced, here, we only propose
one general structure for any F . Later, we explain that this
general structure covers all cases of [1] and [18].

Our correction+detection structure is shown in Fig. 2(b).
The redundant function T ′ is achieved by T ′ = F ◦ T and it
is independent of the injective-ness of F . Therefore, since T ′

needs to receive the original data x, we only need to correct
faults on x. That means, we do not need to implement the
SD2 function, i.e., less area overhead.

Note that, it is necessary to place a correction+detection
point at the input of each operation. Otherwise, the faults
injected at the register cells would potentially propagate to
multiple output bits of T or T ′. Besides, all output bits of each
dashed boxes in Fig. 2(b) must be implemented fulfilling the
independence property which may necessitate implementing
several instances of SD1.

Further, in a code with d = tc + td + 1, the output of
SD1 does not change if up to tc faults are injected. Thus,
F and the corresponding XOR can be instantiated separately
which can be beneficial to limit the area overhead. In short,
our structure guarantees CEC security against Mtc and CED
security against Mtd

adversary models.

E. Extension to Multivariate Adversary

To extend our construction to a univariate model, we follow
the concept suggested in [18]. More precisely, we need to use
a code with a distance of 2(tc + td) + 1. This is because
between two consecutive correction+detection points, a M∗t
adversary is able to inject 2t faults. Therefore, by applying an
[n, k, 2(tc+ td)+1]-code, we guarantee CEC security against
M∗tc and CED security against M∗td adversary models.

F. FSM, Control Signals, Multiplexers, and Output

a) Multiplexers: Assume a k-bit multiplexer switching
between x and y controlled by a signal s. To equip it with
tc-bit correction and td-bit detection, in theory, it is enough
to make a tc-bit correcting multiplexer by following the
methodology described in [18], and check the consistency
of the signal s, which is able to detect up to td-bit faults.
Any uncorrected fault in the multiplexer will be detected at
the next detection point. In practice, however, this might lead
to an insecure design due to the limited drive strength of a
cell, as every cell has a certain maximum fanout. For a k-bit
multiplexer, k instances of 2-to-1 multiplexer should be used,
all of which are controlled by the same signal s. Therefore,
buffers are placed at the output of the cell driving the signal s.
Hence, some 2-to-1 multiplexers are controlled by the original
signal s and others by the buffered signal. The attacker can
take advantage of this and inject fault into the buffers and
bypass the consistency check as the original signal s is fault-
free. Therefore, we need to design a protected multiplexer
which is able to correct td-bit faults to ensure that the attacker
cannot gain any advantage by injecting fault to any buffers.

To this end, we employ a repetition code to protect the
selector signal s. Namely, the control signal s is generated
2td +1 times following the independence property; their con-
catenation can be seen as (s‖s′), where s′ is the redundancy
with the length of 2td bits. Considering x′ and y′ as the
parity (redundant counterpart) of x and y, the error correcting
multiplexer is a k+m-bit multiplexer switching between (x‖x′)
and (y‖y′) and controlled by (s‖s′). It is indeed a multiplexer
tree with 2td+1 levels, where the first row is controlled by s,
and the other rows by s′. The inputs vi of the first multiplexer
row with 0 ≤ i < 2k+m are defined as follow:

vi =

(x‖x′) ; i = 02td+1 ⊕ δ ,hw(δ) ≤ td
(y‖y′) ; i = 12td+1 ⊕ δ ,hw(δ) ≤ td

0 ; else

b) Output: We assume that the circuit provides a control
signal DONE demonstrating the end of e.g., encryption process.
An attacker can target such a signal and obtain intermediate
values of the cipher. Due to the issue described above for
the control signal s, checking the consistency of the DONE
signal with its redundant counterpart DONE′ is not enough in
practice. Hence, to avoid this kind of sniffing, we can make use
of a construction similar to the multiplexer. More precisely, the
DONE is generated td+1 times, and concatenated with FAULTY
signal (see Fig. 2(b)) to form a td+2-bit signal controlling a
td +2-level multiplexer. Note that FAULTY = 1 indicates that
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no fault is detected, i.e., invert of the function g(.) in Fig. 1.
The first-row inputs of the multiplexer are defined as:

vi =

{
OUTPUT ; i = 1td+2

0 ; else

This construction guarantees to protect the design against
sniffing intermediate results by up to td faults. Notably the
implementation should fulfill the independence property.

c) FSM and Control Signals: An attacker can manipulate
the circuit’s flow by inducing faults on the FSM, hence
obtaining intermediate results of the cipher exploiting the
secrets. The implementation of every FSM contains a set of
registers called STATE that is initialized by INIT and updated
every clock cycle by an update function U . The construction
shown in Fig 2(b) can be applied to such a circuit as well by
replacing INPUT and T with INIT and U , receptively. As a part
of the control logic, suppose that a function Gi receives the
corrected STATE and provides a control signal si, e.g., for a
multiplexer. Since every part of the circuit controlled by FSM
can be constructed by a multiplexer, we utilize the above-
given repetition code (i.e., 2td + 1) on every control signal.
Namely, for each i, the function Gi is instantiated multiple
times following the independence property.

IV. CASE STUDY

Optimized with respect to protection against DFA,
CRAFT [5] is a lightweight block cipher operating on a 64-
bit state, 128-bit key, and 64-bit tweak within 32 rounds.
Based on the given key and tweak, the key schedule generates
4 tweakeys, one of which is chosen every round based on
the round counter. The round function is made out of five
involutory round operations: SB, MC, PN, AC, and ATK. While
the state is shown by a matrix of 4×4 nibbles, in each round,
the MC matrix is multiplied to each column of nibbles; then the
AC and the ATK are applied to the state followed by the SB and
the PN operations. Note that SB and PN are missing in the last
round. To assess the area overhead and latency of our proposed
methodology, we focus on round-based implementation of
encryption-only module, i.e., without tweak and decryption.
We synthesized our designs by Synopsys Design Compiler
and all simulations and reports are based on NanGate 45 nm
ASIC standard cell library.

A. Implementation Details

Since the CRAFT’s S-box is applied on nibbles, we consid-
ered a code with k = 4 and d = 5 to correct 2-bit faults,
and another code with the same message size but d = 4
to correct 1-bit fault and detect 2-bit faults. More precisely,
we applied [11, 4, 5]-code for the former and [8, 4, 4]-code
for the latter case. We can actually use larger codes, i.e.,
with larger message sizes k but with the same distance d.
To point out such a trade-off, we also applied [22, 16, 4]-code
to equip CRAFT with 1-bit correction and 2-bit detection,
while encoding 16-bit messages. The results and comparison
of our implementations are summarized in Table I. We should
highlight that the number of clock cycles to perform an

TABLE I
AREA AND LATENCY COMPARISON OF CRAFT ROUND-BASED
IMPLEMENTATIONS, USING NANGATE 45 NM ASIC LIBRARY.

Code Area (GE) Latency (ns) Ref.

unprotected [4, 4, 1] 1097 0.55 [5]

1-bit corr. [7, 4, 3] 5187 0.87 [18]

2-bit corr. [11, 4, 5] 21617 1.08 [18]
[11, 4, 5] 17538 1.10 Sec. IV

1-bit corr. [8, 4, 4] 7799 0.97 Sec. IV
+2-bit det. [22, 16, 4] 7438 1.28 Sec. IV

encryption in the all designs is 32 and the critical path of
each design is reported as latency in that table.

[11, 4, 5]-code: Here, the F function is injective and the
parity generator matrix P is

P[11,4,5] =

 1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 1

 .
We followed the general structure shown in Fig. 2(b), even
though F is injective. Compared to [18], utilizing the non-
injective construction leads to around 20% less area overhead
and roughly the same latency while maintains the same
security claim, i.e., 2-bit correction (see Table I).

[8, 4, 4]-code: This code – known as Extended Hamming
code – is capable of correcting 1-bit fault and detecting 2-bit
faults with the following parity generator matrix.

P[8,4,4] =

 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


Due to the issue mentioned earlier in Section III-F, we
implemented a protected multiplexer which is able to correct
2-bit faults on its controlling (select) signal to ensure that the
attacker cannot gain any advantage by injecting fault to any
buffers. Since k = 4 (i.e., dealing with nibbles), the flow of
the construction is similar to the previous code. As shown
in Table I, compared to [7, 4, 3]-code, which can only correct
1-bit faults, the area overhead of increasing its capability to
detect 2-bit faults is around 50%.

[22, 16, 4]-code: The correction and detection capability
of this code is the same as [8, 4, 4]-code, as both have the same
distance d = 4. Its parity generator matrix can be written as

P[22,16,4] =


0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1
0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1
0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1
1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0
1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0

 .
Here, each 16-bit cipher state has 6 parity bits, i.e., 10

bits less compared to [8, 4, 4]-code. However, F and SD1 are
larger functions. The implementation of the MC, SB operations,
XORs, and the FSM is similar to the case in [8, 4, 4]-code.
However, PN cannot solely operate on the redundant coun-
terpart as the state is not coded nibble-wise. As a result, PN
should be applied before T and T ′ operations (see Fig. 2(b)).
As shown in Table I, compared to [8, 4, 4]-code, this trick can
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slightly reduce the area overhead (around 5%), but it has a
negative impact on the circuits latency (32% larger).

B. On the Choice of [22, 16, 4]-code

The above-given P[22,16,4] matrix has been chosen in order
to reduce the area of the implementation. We searched through
all 6×16 binary matrices with d=4 with the following criteria:
• Hamming weight of P should be minimum, which in

this case is 48. This condition is reflected by the imple-
mentation of the F function, since an implementation of
an r × c binary matrix M following the independence
property needs hw(M)−r number of XORs.

• Considering each row of P as 4 nibbles, the number of
nonzero nibbles should be minimum. This is related to the
implementation of F ◦S. As an example, let us consider
the implementation of its last output bit, which is related
to the last row of P , i.e., 1110,1100,1110,0000. It
means that 1110 is multiplied to the output of the first
Sbox, and so on. Therefore, the fourth Sbox does not
contribute to the last output bit of F ◦ S. Looking at P ,
each row has at most 3 nonzero nibbles.

C. Implementation of F

In contrast to other part of the design, we can implement the
F function, which encodes the given INPUT (see Fig. 2(b)),
without considering the independence property. This improve-
ment is due to the cryptanalytic security of the cipher. Con-
sider (x‖x′) and (y‖y′) as the codeword corresponding to
the plaintext x and ciphertext y. Assume that the adversary
injects some faults (bounded by the underlying code) in the
aforementioned F function (without independence property).
This results in (x⊕ei‖x′⊕e′i) with probable fault propagation,
i.e., hw(ei) + hw(e′i) is not necessarily smaller than d. There
are three possible cases for (x⊕ ei‖x′ ⊕ e′i):

1) It is a valid codeword; it will pass through the first
correction+detection point without any changes.

2) It is not a codeword, but it is in the correction zone; it
will be changed to (x̂‖x̂′) which may equal (x‖x′).

3) It is not a codeword and also not in the correction zone;
the first correction+detection point will detect the fault.

In the first two cases, the fault is neither corrected nor
detected. Since any other (tc, td)-bound fault will be corrected
or detected, we just need to make sure that the adversary
cannot have a successful attack in those two cases. Here,
the output of the first correction+detection point is a valid
codeword (x̂‖x̂′) (different than (x‖x′)) leading to (ŷ‖ŷ′)
as a a valid codeword for the generated ciphertext. Any
successful attack with the knowledge of

(
(x‖x′), (y‖y′)

)
and

(
(x̂‖x̂′), (ŷ‖ŷ′)

)
pairs (even with many of such two-

pairs) is equal to a successful differential cryptanalysis attack
with the knowledge of having (several of) x, y and x̂, ŷ
plaintext/ciphertext pairs. Therefore, the adversary gains no
advantage by injecting faults into F functions, if the cipher is
secure against differential cryptanalysis. This improvement is
also valid for the CED and CEC schemes of [1] and [18].

D. Simulation

To verify our proposed constructions, we employed the bit-
sliced implementation of the open-source fault-diagnostics tool
VerFI(ver2Beta) [2]. For a fixed plaintext and key, the tool
injects either bit-flip or stuck-at-0/1 into specified gates at
desired clock cycle(s). It receives the NanGate 45 net-list of
the design and provides a report presenting the number of
detected, non-detected, and ineffective faults.

We examined our protected CRAFT designs equipped with
[11, 4, 5]-code considering two different adversary models: i)
injecting all possible 2-bit faults at a certain clock cycle. i.e.,
Mt=2, and ii) injecting all possible 2-bit faults split into
two consecutive clock cycles, i.e.,M∗t=1. The design contains
11 394 cells and the tool running on a 40-core machine with
two Intel Xeon CPUs required 14 and 26 minutes respectively
to report the correction of all injected faults. The designs
equipped with [8, 4, 4]-code and [22, 16, 4]-code consist of
4 331 and 4 148 cells, respectively. These designs have been
evaluated in two scenarios: i) all possible single-bit faults at
a clock cycle, i.e., Mt=1, and ii) all possible 2-bit faults
at a clock cycle, i.e., Mt=2. Conducting each of these fault
simulations took less then 2 minutes, reporting the correction
of all 1-bit and detection of all 2-bit faults.

V. CONCLUSIONS

In this work, we introduced a new structure for both fault
correction and detection in the cryptographic primitives. By
applying the code-based schemes, we showed how to correct
up to tc-bit injected faults and at the same time detect other
faults up to td bits (with td > tc). Further, we presented several
improvements compared to the state-of-the-art schemes. Our
construction guarantees the correction and detection of (tc,td)-
bounded faults injected in any point of the circuit including
the data path, FSM, control signals, and even the modules
responsible for faults correction/detection and at any clock
cycle. As a case study, we applied our technique on CRAFT
block cipher and compared the performance figures with
the known only-correction designs. Based on the evaluations
conducted using the fault diagnostic tool VerFI, we claim
protection against SIFA with up to tc faults and against DFA
with up to td-bit injected faults.
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