
An End-to-End Bitstream Tamper Attack Against
Flip-Chip FPGAs

Fahim Rahman, Farimah Farahmandi, and Mark Tehranipoor
Florida Institute for Cybersecurity Research

University of Florida
Gainesville, United States

{fahimrahman, farimah, tehranipoor}@ece.ufl.edu

Abstract—FPGA bitstream encryption and authentication can
be defeated by various techniques and it is critical to understand
how these vulnerabilities enable extraction and tampering of com-
mercial FPGA bitstreams. We exploit the physical vulnerability
of bitstream encryption keys to readout using failure analysis
equipment and conduct an end-to-end bitstream tamper attack.
Our work underscores the feasibility of supply chain bitstream
tampering and the necessity of guarding against such attacks in
critical systems.

I. INTRODUCTION

Bitstream encryption and authentication secure FPGAs
against counterfeiting, intellectual property (IP) theft, and
bitstream tampering attacks [1]. However, architectural flaws,
side-channel analysis, and failure analysis techniques can
undermine bitstream protection schemes [2]. Considered to-
gether with bitstream editing [3]–[5] and reverse engineering
tools [6]–[8], these weaknesses suggest that supply chain
tampering attacks on FPGAs are feasible. Recent publications
affirm this threat: bitstream tampering has been able to sab-
otage cryptographic engines [9] and bypass the system-level
root-of-trust in Cisco routers [10].

We perform an end-to-end attack to study how an attacker
with temporary physical access to an FPGA system could tam-
per its bitstream. Modern FPGAs include hashing algorithms
in bitstream loading circuitry to verify bitstream authenticity.
The security of such a scheme is rooted in an on-device
symmetric key that can only be read by bitstream loading logic
and is hardened against side-channels, but can be extracted
with failure analysis techniques. Possession of this key enables
decryption and modification of a target bitstream.

We extract the key from a commercial FPGA and insert
a trojan circuit in empty space in the decrypted bitstreams.
Our trojan could give attackers a remotely-accessible foothold
in otherwise secure systems. We re-package the tampered
bitstream and show that the FPGA loads it without complaint.

II. BACKGROUND

A. FPGA bitstream protection

Field programmable gate arrays (FPGAs) are composed of
reconfigurable logic elements that get “programmed” by a
bitstream. Many FPGAs do not have internal non-volatile
memory (NVM), so bitstreams are stored in external NVM and
loaded during boot [1]. However, external NVM can be written

FPGA

Encryption key

(BBRAM/eFuse)

Encrypted

bitstream

w/ HMAC key
and digest

(External NVM)

Bitstream

loading

and

decryption

circuit

HMAC

Engine

Match?
Packaged digest

Computed digest

Fig. 1. Overview of FPGA secure boot process. If the packaged and computed
digests match, the bitstream is deemed authentic and boot proceeds. If the
digests do not match, boot is aborted.

or read by other components in a system (e.g., application
processors) or by physical adversaries, so bitstreams must be
encrypted to prevent intellectual property theft and cloning and
authenticated to prevent tampering and Trojan insertion [1].

Xilinx’s 7-series bitstream protection (Fig. 1) is typical of
modern FPGAs. An HMAC digest is generated for a bitstream
and the HMAC key is packaged in the encrypted portion of the
bitstream. The encryption key is then written to FPGA eFuse
ROM or battery-backed RAM (BBRAM) [11]. On boot, the
FPGA decrypts the bitstream, extracts the HMAC key and
verifies the HMAC digest using dedicated bitstream loading
circuitry. If HMAC verification fails, the boot is aborted.

Unfortunately, researchers have found and exploited several
vulnerabilities that undermine this protocol [12]–[14]. Several
compromise both confidentiality and integrity by learning the
bitstream encryption key; since the encryption key protects
the authentication key as shown in Fig. 2, knowledge of the
former implies knowledge of the latter.

B. Key extraction via thermal laser stimulation

Laser stimulation is a class of contactless fault isolation
techniques that measures the effect of laser radiation on a
device under test (DUT). The laser’s effect, and suitability
for different attacks, depends on its photon energy. In thermal
laser stimulation (TLS) the photon energy is below the silicon
band gap and thus cannot generate photocarriers. This ensures,
for example, that SRAM contents can be imaged without
disturbing stored values.

To generate an image with TLS, a small voltage is applied
to supply pins and current flow is monitored while a laser is
scanned over silicon substrate in a raster pattern. The laser
penetrates bulk silicon and causes supply current fluctuations

Fig. 2. Xilinx 6- and 7-series bitstream format. The encrypted portion of the
bitstream is decrypted using a key written to special FPGA memory when
the bitstream is programmed. Each FPGA can receive a unique encryption
key to prevent cloning. The HMAC authentication key (AKEY) is stored in
the encrypted portion of the bitstream. Thus, so long as the encryption key
remains secret, the bitstream is protected from reverse engineering, cloning,
and tampering.

due to the Seebeck effect [15] and Optical Beam Induced
Resistance Change (OBIRCH) [16]. For a detailed explanation
of TLS and TLS imaging of SRAM, we refer the reader to
the excellent work of Lohrke et al. [13].

TLS can extract bitstream encryption keys from FPGA
BBRAM in mere minutes and many modern FPGAs are
believed vulnerable [13]. We demonstrate TLS key extraction
in this study to draw attention to this potent and widespread
threat. FPGA BBRAM is an ideal target for TLS attacks for
several reasons:
• Many modern FPGAs are packaged as bare-die or lidded

flip-chips [16], obviating the need for tedious and dam-
aging depackaging steps. Previous experiments [13] have
extracted FPGA BBRAM without any sample prepara-
tion, including silicon bulk thinning. This significantly
reduces attack complexity and time requirements.

• BBRAM contents are maintained using a coin-cell battery
and separate power terminals. This creates an optimal
low-noise TLS signal when imaging BBRAM.

• BBRAM cells use relatively large transistors (approxi-
mately ten times minimum cell size) to increase reliability
and stretch coin cell battery life [13]. This makes them
easier to image using a laser spot larger than the minimum
feature width in an FPGA [17]. Non-standard BBRAM
cell sizes may also help adversaries to more quickly
localize BBRAM.

C. Bitstream tampering attacks

Even rudimentary bitstream editing capabilities can fa-
cilitate critical exploits against real targets: Kataria et al.
demonstrate a 15-byte bitstream modification that bypasses
Cisco’s FPGA-based secure boot [10], and Swierczynski et al.
undermine a FIPS-certified USB device by modifying AES S-
boxes stored in block RAM [9]. Tools like TORC [18] and
BITMAN [19] enable such direct bitstream editing.

Manipulation of encrypted bitstreams has also been ex-
plored. Swierczynski et al. proved that tampering encrypted
bitstreams can enable key extraction from AES engines [3].
However, bitstream authentication effectively prevents this
attack.

D. Other bitstream protection weaknesses

Several methods besides TLS can extract bitstream encryp-
tion keys and enable tampering. We summarize these here
to emphasize that the threat we demonstrate impacts many
FPGAs and applies in various threat models.

1) Side-channel bitstream key extraction: Researchers have
successfully extracted encryption keys from multiple Xil-
inx [20]–[22] and Intel [12], [23] device families using power
and electromagnetic (EM) side channels. Decryption cores in
newer FPGAs are hardened against side channel attacks [24],
but many older FPGA families are still widely used in safety-
critical systems [14] and are trivially exploitable.

2) Architectural flaws: An alleged “backdoor” was found
in the JTAG circuit of one Microsemi FPGA. The flaw enabled
bitstream readback, key readout, tamper attacks, and changes
to low-level silicon configuration [25].

More recently, Ender et al. disclosed an architectural flaw
affecting 7-series and Virtex 6 devices [14]. The attack abuses
a configuration register that is not cleared on reset to turn the
FPGA into a decryption oracle, then use the decryption oracle
to encrypt an arbitrary bitstream and bypass authentication.
An end-to-end exploit of this vulnerability would require 6-12
hours depending on bitstream size.

3) Failure analysis techniques: TLS is not the only failure
analysis technique capable of undermining bitstream protec-
tions. Encryption key readout using a focused ion beam (FIB)
is suggested in [26], though such an attack has not been
demonstrated. Tajik et al. extract a plaintext bitstream using
electro-optical probing [17]. Their analysis enables IP theft
and cloning but does not enable bitstream tampering. [27]
discusses how several contactless imaging techniques could be
applied to SRAM readout and demonstrates that Laser Logic
State Imaging (LLSI) based on Electro-Optical Frequency
Mapping (EOFM) can read BBRAM keys.

III. THREAT MODEL

We study a system containing an SRAM FPGA. Such
systems are used in critical infrastructure, aviation, defense,
etc. and their security is of great consequence. Bitstream en-
cryption and authentication are enabled but can be undermined
as discussed in Sections II-B and II-D.

Our adversary has temporary physical access to the system
and aims to tamper its bitstream, e.g., to cause denial of
service [5], undermine cryptography [28], create software-
exploitable hardware flaws [29], create bit flips to aid in
reverse engineering activities [3], etc. Such an attack is pos-
sible at any point after bitstream and encryption key installa-
tion. Electronic systems pass through many hands between
assembly and end-user and the feasibility of supply chain
“interdiction” attacks has been demonstrated [9], [30].

Encrypted

bitstream

Extract

encryption

key

Decrypt

bitstream

Extract

HMAC key

Tamper

bitstream

Generate

new HMAC

digest

Replace

digest in

bitstream

Re-encrypt

bitstream

Write back to

NVM

Tampered

bitstream

Fig. 3. Stages in hard-HMAC bitstream tamper attack.

For TLS key extraction, an adversary would prepare for
their attack by localizing a target device’s BBRAM and
writing image comparison programs [13] so that at attack
time, the target can be imaged quickly and images can be
automatically processed to recover the encryption key. The
necessary failure analysis equipment could be rented for an
estimated $300/hr [13] or a makeshift laser scanning setup
could be constructed for an estimated $100k [31].

We assume our adversary is capable of basic bitstream
manipulation using tools like BITMAN [27].

IV. METHODS

The steps in an end-to-end attack against hard authentication
are summarized in Fig. 3. We follow the procedure outlined
by Lohrke et al. [13] to extract the bitstream key from
BBRAM using TLS, then use standard encryption and hashing
algorithms to decrypt and re-package the bitstream.

A. Experimental setup

We target a Xilinx XC7K70T, a 7-series bare-die flip chip
that implements a hard authentication core and AES-CBC
encryption. We write a random, unknown encryption key to
BBRAM. The legitimate bitstream contains an Ethernet PHY
and a serial module for intra-system communication.

Our TLS setup uses a PHEMOS-1000 laser scanning mi-
croscope with a 1300 nm wavelength and 50x magnification
lens. To read the BBRAM key, we transfer BBRAM to a 1.5 V
benchtop power supply with current monitoring capability.

B. Key extraction

Emulating an adversary’s preparation, we used publicly-
available documents, information from Xilinx’s layout planner,
and images published in prior works [13] to localize our
target’s BBRAM. We verified that the logical-spatial mapping
of BBRAM bits matched prior literature [13], then imaged an
all-zero key to obtain a reference for image analysis algorithms
as suggested by [13].

Then, we programmed the FPGA with an unknown random
key. BBRAM was transferred from battery power to our
current-monitoring power supply and a TLS image of the
FPGA substrate was generated as described in Section II-B.
The captured image was compared against our all-zero refer-
ence to extract the key.

C. Bitstream decryption

We use the extracted key and a standard AES-CBC imple-
mentation to decrypt the bitstream. The unencrypted header is
parsed to obtain the decrypted word count (dwc) and AES-
CBC initialization vector (IV). Then, for each 16-byte block

Fig. 4. a) Initial ETHMAC design place and route view in Vivado FPGA
design software. b) Binary configuration analysis plotting row and column
resource usage to identify unused areas for Trojan insertion in a bitstream.

Algorithm 1 Insert trojan circuit into bitstream
1: Input: Decrypted bitstream BD , Required trojan area ATarget, Trojan bitstream

Tj

2: Output: Tampered bitstream BDM

3: procedure MODIFY(BD, ATarget)
4: AUnused ← 0
5: while AUnused < ATarget do
6: scan BD for unused resources
7: AUnused ← Union(AUnused, resources)
8: Tj ← trojan circuit design
9: Constrain Tj to AUnused

10: BDTj ← GenerateBitstream(Tj)
11: BDM ← BD ∪ BDTj

12: Disable CRC in bitstream header
13: Return: BDM

in BE , the block is bitwise-mirrored then decrypted using
AES-CBC.

D. Bitstream tampering

We parse BD according to vendor documentation [32] and
note the row, column, and minor address of populated bit-
stream frames. Contiguous areas of unused fabric are candidate
sites for our trojan circuit. Unused frame addresses are used as
placement constraints in CAD tools. Algorithm 1 summarizes
this process. Fig. 4 illustrates our utilization analysis. For
our proof of concept, we create necessary trojan routing
and placement constraints in the Vivado GUI so that in-
depth reverse engineering of switch matrix connections is not
required. We generate a bitstream containing only our trojan
circuit, then logically OR frame write commands in the trojan
bitstream with the original.

Our malicious circuit, “PadLeech”, connects to an FPGA
pin (in this case, a UART interface) as shown in Fig. 5 and
to the FPGA’s Internal Configuration Access Port (ICAP).
The circuit snoops UART signals until it receives its trigger
sequence, then forwards all received data to the ICAP. Such
a trojan would be useful in a system where the UART is
connected to a CPU: an adversary could use software exploits
to gain code execution on the CPU, then control the UART
interface and remotely reprogram the FPGA.

Fig. 5. PadLeech attack. a) Design as exists in initial bitstream, b) Design after
PadLeech bitstream modification to insert hardware Trojan remotely controlled
using existing design I/O.

Fig. 6. Xilinx XCK70T-676 FPGA BBRAM localization microscope images
at a) 5x, b) 20x, c) 50x objectives. d) BBRAM key extraction using thermal
laser stimulation technique from [13]. e) BBRAM key decoding of a 32-bit
section.

E. Bitstream re-packaging

To complete the end-to-end attack, dwc is updated to
accommodate changes in bitstream length and a new HMAC
digest is generated for the tampered bitstream. The tampered
bitstream is assembled according to Fig. 2 with a new HMAC
and HMAC key (which need not equal the legitimate key), and
the bitstream body is re-encrypted using the key extracted from
BBRAM. The tampered bitstream is written to NVM and we
verify that the the FPGA boots the tampered bitstream without
error.

V. RESULTS

A. TLS images

Images of the BBRAM cells at magnifications of 5x to
50x are shown in Fig. 6(a)-(c). The random unknown key is
depicted in Fig. 6(d), and Fig. 6(e) illustrates a decoded 32-bit
key segment.

Fig. 7. Bitstream analysis of a) ETHMAC design before tampering, b) Trojan
circuit connected to a UART pin, and c) Tampered ETHMAC design. Regions
with all zeros (i.e., unused resources) are shown in black. Colored areas are
used FPGA resources and brightness indicates the intensity of configuration
bits.

B. Bitstream tampering

Fig. 7 compares resource utilization of the untampered de-
sign with the trojan-inserted design. The Trojan-only bitstream
is shown in Fig. 7(b) and the tampered bitstream is shown in
Fig. 7(c).

We validated our trojan circuit by transmitting its trigger
sequence to the relevant UART port and sending commands
to the ICAP that reconfigured GPIO connections on the board.
The GPIO ports were reconfigured as expected.

VI. TRADITIONAL COUNTERMEASURES

A. Bitstream Obfuscation

[33], [34] logic locked the original FPGA implementations
through modifications on the unused portions of LUTs so that
the circuitry cannot behave correctly until being unlocked by
receiving the expected obfuscation key [35]. The obfuscation
key could be generated on the FPGA fabric using PUFs or
stored in an external tamper- and read-proof memory [36]–
[38]. Given cases are also vulnerable to the demonstrated
attack if the key is stored in the memory.

B. Run-time Bitstream Authentication

Many modern FPGAs incorporate the primitives such as
ICAP and PCAP for the dynamic partial configuration and
readout capabilities [39]. This can be used for checking
bitstream integrity at run-time. [40] proposes a protocol for
secure key initialization and the general idea behind is utilized
in [41] for run-time bitstream authentication. However, the
proposed method in [41] requires security primitives like PUF
[42], [43] and cryptographic ciphers and hash functions [44]
for hardware and bitstream authentication by trusted entities.

VII. ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions
made by Adib Nahiyan, Tanjid Rahman, Shahin Tajik, Nitin
Varshney, Tao Zhang, and Navid Asadi.

VIII. CONCLUSION

We demonstrate the feasibility of an end-to-end tampering
attack on modern FPGAs. We used TLS to image a bitstream
encryption key in Kintex Ultrascale BBRAM, then processed
the images to extract the key. We used the key to decrypt the
bitstream and used basic bitstream manipulation to insert a
trojan circuit. We verified that the FPGA loads our tampered
bitstream and that the trojan works as expected. Our work
highlights a significant threat to FPGA-based systems used in
critical real-world applications.

REFERENCES

[1] S. M. Trimberger and J. J. Moore, “FPGA Security: Motivations,
Features, and Applications,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1248–1265, Aug. 2014.

[2] A. Duncan, F. Rahman, A. Lukefahr, F. Farahmandi, and M. Tehra-
nipoor, “FPGA Bitstream Security: A Day in the Life,” in 2019 IEEE
International Test Conference (ITC). IEEE, 2019, pp. 1–10.

[3] P. Swierczynski, G. T. Becker, A. Moradi, and C. Paar, “Bitstream
Fault Injections (BiFI)–Automated Fault Attacks Against SRAM-Based
FPGAs,” IEEE Transactions on Computers, vol. 67, no. 3, pp. 348–360,
2018.

[4] D. Ziener, J. Pirkl, and J. Teich, “Configuration Tampering of BRAM-
based AES Implementations on FPGAs,” in 2018 International Confer-
ence on ReConFigurable Computing and FPGAs (ReConFig). IEEE,
2018, pp. 1–7.

[5] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, “Hard-
ware Trojan Insertion by Direct Modification of FPGA Configuration
Bitstream,” IEEE Design & Test, vol. 30, no. 2, pp. 45–54, 2013.

[6] T. Zhang, J. Wang, S. Guo, and Z. Chen, “A Comprehensive FPGA
Reverse Engineering Tool-chain: From Bitstream to RTL code,” IEEE
Access, vol. 7, pp. 38 379–38 389, 2019.

[7] F. Benz, A. Seffrin, and S. A. Huss, “BIL: A Tool-chain for Bitstream
Reverse-engineering,” in 22nd International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE, 2012, pp. 735–738.

[8] M. Ender, P. Swierczynski, S. Wallat, M. Wilhelm, P. M. Knopp, and
C. Paar, “Insights into the Mind of a Trojan Designer: the Challenge to
Integrate a Trojan into the Bitstream,” in Proceedings of the 24th Asia
and South Pacific Design Automation Conference, 2019, pp. 112–119.

[9] P. Swierczynski, M. Fyrbiak, P. Koppe, A. Moradi, and
C. Paar, “Interdiction in practice—Hardware Trojan against a
high-security USB flash drive,” Journal of Cryptographic Engineering,
vol. 7, no. 3, pp. 199–211, Sep. 2017. [Online]. Available:
https://doi.org/10.1007/s13389-016-0132-7

[10] J. Kataria, R. Housley, J. Pantoga, and A. Cui, “Defeating
Cisco Trust Anchor: A Case-Study of Recent Advancements
in Direct FPGA Bitstream Manipulation,” in 13th USENIX
Workshop on Offensive Technologies (WOOT 19). Santa Clara,
CA: USENIX Association, Aug. 2019. [Online]. Available:
https://www.usenix.org/conference/woot19/presentation/kataria

[11] Xilinx, “Using Encryption to Secure a 7 Series FPGA Bitstream,” 2021,
app note #1239.

[12] P. Swierczynski, A. Moradi, D. Oswald, and C. Paar, “Physical
Security Evaluation of the Bitstream Encryption Mechanism of Altera
Stratix II and Stratix III FPGAs,” ACM Trans. Reconfigurable Technol.
Syst., vol. 7, no. 4, Dec. 2014, place: New York, NY, USA
Publisher: Association for Computing Machinery. [Online]. Available:
https://doi.org/10.1145/2629462

[13] H. Lohrke, S. Tajik, T. Krachenfels, C. Boit, and J.-P. Seifert, “Key
Extraction Using Thermal Laser Stimulation: A Case Study on Xilinx
Ultrascale FPGAs,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2018, no. 3, pp. 573–595, Aug. 2018. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/7287

[14] M. Ender, A. Moradi, and C. Paar, “The Unpatchable Silicon:
A Full Break of the Bitstream Encryption of Xilinx 7-Series
FPGAs,” in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 1803–1819. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/ender

[15] C. Boit, C. Helfmeier, D. Nedospasov, and A. Fox, “Ultra high precision
circuit diagnosis through seebeck generation and charge monitoring,” in
Proceedings of the 20th IEEE International Symposium on the Physical
and Failure Analysis of Integrated Circuits (IPFA), 2013, pp. 17–21.

[16] Wai Mun Yee, M. Paniccia, T. Eiles, and V. Rao, “Laser voltage
probe (LVP): a novel optical probing technology for flip-chip packaged
microprocessors,” in Proceedings of the 1999 7th International Sympo-
sium on the Physical and Failure Analysis of Integrated Circuits (Cat.
No.99TH8394), Jul. 1999, pp. 15–20, journal Abbreviation: Proceedings
of the 1999 7th International Symposium on the Physical and Failure
Analysis of Integrated Circuits (Cat. No.99TH8394).

[17] S. Tajik, H. Lohrke, J.-P. Seifert, and C. Boit, “On the Power
of Optical Contactless Probing: Attacking Bitstream Encryption of
FPGAs,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17. New
York, NY, USA: Association for Computing Machinery, 2017, pp.
1661–1674, event-place: Dallas, Texas, USA. [Online]. Available:
https://doi.org/10.1145/3133956.3134039

[18] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French,
“Torc: Towards an Open-Source Tool Flow,” in Proceedings of the
19th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, ser. FPGA ’11. New York, NY, USA: Association for
Computing Machinery, 2011, pp. 41–44, event-place: Monterey, CA,
USA. [Online]. Available: https://doi.org/10.1145/1950413.1950425

[19] K. Dang Pham, E. Horta, and D. Koch, “BITMAN: A tool and API
for FPGA bitstream manipulations,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017, Mar. 2017, pp. 894–897,
journal Abbreviation: Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017.

[20] A. Moradi and T. Schneider, “Improved Side-Channel Analysis Attacks
on Xilinx Bitstream Encryption of 5, 6, and 7 Series,” in Constructive
Side-Channel Analysis and Secure Design, F.-X. Standaert and E. Os-
wald, Eds. Cham: Springer International Publishing, 2016, pp. 71–87.

[21] A. Moradi, M. Kasper, and C. Paar, “Black-Box Side-Channel Attacks
Highlight the Importance of Countermeasures,” in Topics in Cryptology
– CT-RSA 2012, O. Dunkelman, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 1–18.

[22] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the Vulnerability
of FPGA Bitstream Encryption against Power Analysis Attacks:
Extracting Keys from Xilinx Virtex-II FPGAs,” in Proceedings of the
18th ACM Conference on Computer and Communications Security,
ser. CCS ’11. New York, NY, USA: Association for Computing
Machinery, 2011, pp. 111–124, event-place: Chicago, Illinois, USA.
[Online]. Available: https://doi.org/10.1145/2046707.2046722

[23] A. Moradi, D. Oswald, C. Paar, and P. Swierczynski, “Side-Channel
Attacks on the Bitstream Encryption Mechanism of Altera Stratix II:
Facilitating Black-Box Analysis Using Software Reverse-Engineering,”
in Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, ser. FPGA ’13. New York,
NY, USA: Association for Computing Machinery, 2013, pp. 91–
100, event-place: Monterey, California, USA. [Online]. Available:
https://doi.org/10.1145/2435264.2435282

[24] Xilinx, “Using Encryption and Authentication to Secure an Ultra-
Scale/UltraScale+ FPGA Bitstream,” 2021, app note #1267.

[25] S. Skorobogatov and C. Woods, “Breakthrough Silicon Scanning Dis-
covers Backdoor in Military Chip,” in Cryptographic Hardware and
Embedded Systems – CHES 2012, E. Prouff and P. Schaumont, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 23–40.

[26] B. Linke, “Protect Your FPGA Against Piracy: Cost-Effective Authenti-
cation Scheme Protects IP in SRAM-Based FPGA Designs,” 2009, app
Note #4594.

[27] C. Boit, T. Kiyan, T. Krachenfels, and J.-P. Seifert, “Logic State
Imaging From FA Techniques for Special Applications to One of
the Most Powerful Hardware Security Side-Channel Threats,” in 2020
IEEE International Symposium on the Physical and Failure Analysis of
Integrated Circuits (IPFA), 2020, pp. 1–7.

[28] M. Ender, P. Swierczynski, S. Wallat, M. Wilhelm, P. M. Knopp, and
C. Paar, “Insights into the Mind of a Trojan Designer: The Challenge
to Integrate a Trojan into the Bitstream,” in Proceedings of the 24th
Asia and South Pacific Design Automation Conference, ser. ASPDAC
’19. New York, NY, USA: Association for Computing Machinery,
2019, pp. 112–119, event-place: Tokyo, Japan. [Online]. Available:
https://doi.org/10.1145/3287624.3288742

[29] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi,
H. Khattri, J. M. Fung, A.-R. Sadeghi, and J. Rajendran,
“HardFails: Insights into Software-Exploitable Hardware Bugs,” in 28th
USENIX Security Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 213–230. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky

[30] “NSA ANT Catalog.” [Online]. Available:
https://www.eff.org/document/20131230-appelbaum-nsa-ant-catalog

[31] T. Krachenfels, H. Lohrke, J.-P. Seifert, E. Dietz, S. Frohmann, and
H.-W. Hübers, “Evaluation of Low-Cost Thermal Laser Stimulation for
Data Extraction and Key Readout,” Journal of Hardware and Systems
Security, vol. 4, no. 1, pp. 24–33, Mar. 2020. [Online]. Available:
https://doi.org/10.1007/s41635-019-00083-9

[32] Xilinx, “7 Series FPGAs Configuration,” 2018, uG470.
[33] R. Karam, T. Hoque, S. Ray, M. Tehranipoor, and S. Bhunia, “Robust

Bitstream Protection in FPGA-based Systems through Low-overhead
Obfuscation,” in 2016 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, 2016, pp. 1–8.

[34] B. Olney and R. Karam, “Tunable FPGA Bitstream Obfuscation with
Boolean Satisfiability Attack Countermeasure,” ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 25, no. 2, pp.
1–22, 2020.

[35] B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “CAS-lock: A Security-
corruptibility Trade-off Resilient Logic Locking Scheme,” IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pp. 175–
202, 2020.

[36] P. Mishra, S. Bhunia, and M. Tehranipoor, Hardware IP Security and
Trust. Springer, 2017.

[37] M. T. Rahman, S. Tajik, M. S. Rahman, M. Tehranipoor, and
N. Asadizanjani, “The Key is Left under the Mat: On the Inappropriate
Security Assumption of Logic Locking Schemes,” in 2020 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, 2020, pp. 262–272.

[38] M. T. Rahman, M. S. Rahman, H. Wang, S. Tajik, W. Khalil, F. Farah-
mandi, D. Forte, N. Asadizanjani, and M. Tehranipoor, “Defense-in-
depth: A Recipe for Logic Locking to Prevail,” Integration, vol. 72, pp.
39–57, 2020.

[39] M. Tehranipoor and C. Wang, Introduction to Hardware Security and
Trust. Springer Science & Business Media, 2011.

[40] A. Duncan, A. Nahiyan, F. Rahman, G. Skipper, M. Swany, A. Lukefahr,
F. Farahmandi, and M. Tehranipoor, “SeRFI: Secure Remote FPGA
Initialization in an Untrusted Environment,” in 2020 IEEE 38th VLSI
Test Symposium (VTS). IEEE, 2020, pp. 1–6.

[41] T. Zhang, F. Rahman, F. Farahmandi, and M. Tehranipoor, “FPGA-
Chain: Enabling Holistic Protection of FPGA Supply Chain with
Blockchain Technology,” in IEEE Workshop on Silicon Lifecycle Man-
agement (SLM). IEEE, 2021.

[42] M. T. Rahman, F. Rahman, D. Forte, and M. Tehranipoor, “An Aging-
resistant RO-PUF for Reliable Key Generation,” IEEE Transactions on
Emerging Topics in Computing, vol. 4, no. 3, pp. 335–348, 2015.

[43] N. N. Anandakumar, M. S. Hashmi, and M. Tehranipoor, “FPGA-based
Physical Unclonable Functions: A Comprehensive Overview of Theory
and Architectures,” Integration, 2021.

[44] L. Wu, X. Wang, X. Zhao, Y. Cheng, D. Su, A. Chen, Q. Shi,
and M. Tehranipoor, “AES Design Improvement Towards Information
Safety,” in 2016 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2016, pp. 1706–1709.

