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Abstract. In this paper we present an optimized variant of Gentry,
Halevi and Vaikuntanathan (GHV)′s Homomorphic Encryption (HE)
scheme. Our scheme is appreciably more efficient than the original GHV
scheme without losing its merits of the (multi-key) homomorphic prop-
erty and matrix encryption property. In this research, we first measure
the density for the trapdoor pairs that are created by using Alwen and
Peikert′s trapdoor generation algorithm and Micciancio and Peikert′s
trapdoor generation algorithm, respectively, and use the measurement
result to precisely discuss the time and space complexity of the cor-
responding GHV instantiations. We then propose a generic GHV-type
construction with several optimizations that improve the time and space
efficiency from the original GHV scheme. In particular, our new scheme
can achieve asymptotically optimal time complexity and avoid gener-
ating and storing the inverse of the used trapdoor. Finally, we present
an instantiation that, by using a new set of (lower) bound parameters,
has the smaller sizes of the key and ciphertext than the original GHV
scheme.
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1 Introduction

Background and Related Work. Homomorphic Encryption (HE) allows run-
ning operations on ciphertexts so that decryptions match the results from the
corresponding operations on plaintexts. HE has many interesting application-
s in the real-world, e.g., the electronic voting [12], the private matching [13],
the computational private information retrieval [6], and the indistinguishabili-
ty obfuscation [5]. Since introduced by Rivest, Adleman and Dertouzos [30] in
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1978, the HE research has a long history in the modern cryptography. Early HE
systems focused on evaluating asymmetric encryption and supports only one
operation over encrypted data, either addition or multiplication. This type of
HE is referred to as partially HE. Typical examples involve the additively HE
schemes: Goldwasser-Micali and Paillier, and the multiplicatively HE schemes:
RSA and ElGamal.

Breaking through the single operation homomorphism took a long time.
The first step forward was given in 2005 by Boneh, Goh and Nissim (BGN
for short) [6], who presented an additively HE scheme supporting one multi-
plication. An HE scheme that can evaluate two types of operations but only
for a subset of operations is referred to as a Somewhat Homomorphic Encryp-
tion (SHE) scheme. The BGN scheme is the first SHE scheme. Breaking the
security of this scheme is as hard as solving the subgroup-membership problem
in composite-order groups that admit bilinear maps. Later Gentry, Halevi and
Vaikuntanathan (GHV for short) in 2010 [15] proposed an additively HE scheme
supporting one “direct” matrix multiplication. Notably, a “direct” matrix multi-
plication here means an ordinary matrix multiplication that does not require any
extra computation. Security of their scheme is based on the standard Learning
With Errors (LWE) assumption (see Sect. 2.1). The GHV scheme can be regard-
ed as an improvement of the BGN scheme and has several inherent advantages
(see Appendix A.2 on details of the GHV scheme). Specifically, one significant
advantage is that there is a worst-case/average-case classical reduction from the
standard LWE problem to the GHV security. Another important advantage is
that the GHV scheme can encrypt messages from a large space (i.e., any matrix
ring) and has no restriction for the output size. Moreover, the GHV scheme hold-
s much of the flexibility of the LWE-based cryptosystem, e.g., it can be made
identity-based and leakage-resilient. In a nutshell, the GHV cryptosystem is still
an outstanding SHE scheme.

The first theoretically feasible construction capable of supporting arbitrary
computations over ciphertexts, which is referred to as Fully HE (FHE), was in-
troduced by Gentry in 2009 [14]. Since then, many FHE schemes have been pro-
posed (e.g., [4, 10, 17, 19, 31, 33]). Generally speaking, the development of FHE
until now involves three generations. Typical examples of the first generation are
Gentry′s initial scheme based on ideal lattices [14] and van Dijk et al.′s propos-
al employing integer arithmetic [31]. The second generation includes Brakerski
and Vaikuntanathan′s constructions [4, 10] that use new techniques to control
the growth of noise. The third generation of FHE originates from the scheme
of Gentry, Sahai and Waters (GSW for short) [17], which exhibits a somewhat
distinct noise growth pattern. Although there is a great progress for the the-
oretical and practical improvements of FHE, for many applications, especially
the applications requiring a single algebraic operation, this type of encryption is
currently impractical because of the big key size, the large ciphertext expansion
and the long evaluation time [7, 11, 28].

Besides the GHV scheme, there are two asymmetric HE schemes that can
encrypt matrices and support homomorphic matrix addition and multiplication.
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The first one was proposed in 2015 by Hiromasa, Abe, and Okamoto (HAO for
short) [19], and their scheme is a matrix extension of the GSW-FHE scheme
[17]. Security of the HAO scheme can be reduced from the standard LWE as-
sumption, while an additional special circular security assumption is necessary.
The homomorphic matrix multiplication does not correspond to the “direct” ma-
trix multiplication and needs to employ a randomized function. In 2018, Wang,
Wang, Xue, and Huang (WWXH for short) [33] presented another FHE scheme
for encrypting matrices. Security of their scheme is based on hardness of the
standard LWE problem, and the size of ciphertext matrices is smaller than that
of the HAO scheme. However, for the WWXH scheme, the tensor product is
largely employed to perform the homomorphic matrix multiplication, and the
corresponding computational cost is Ω(m4) for m × m input matrices. Thus,
the complexity of using this scheme for some homomorphic computations (e.g.,
homomorphic computations over nondeterministic finite automata and linear al-
gebra) is very large and not lower than that of the HAO scheme for the same
computations. Some details of these two matrix-FHE schemes are listed in Ta-
ble 1. Notably, total computational costs of both schemes are O(m3).

Motivation and Our Target: Building a More Efficient GHV-Type HE
Scheme. Based on the above descriptions, asymmetric matrix-FHE schemes [19,
33] currently do not match with very efficient cloud computing-related applica-
tions that only run a single (linear algebra) operation. A typical example is the
private and verifiable delegation of linear algebra [23] that only allows a client
to run O(mc′) computation for matrices of large size m × m, where c′ ∈ [2, 3[
is close to 2. SHE schemes are much more efficient and suitable for many appli-
cations. In particular, the GHV scheme has a sequence of desirable properties.
Allowing encryption of a square matrix from any matrix ring in one operation
and supporting the “direct” homomorphic matrix multiplication can make this
scheme match with applications requiring the linear algebra computation over
any ring, and be a powerful tool for the very efficient verifiable linear algebra
computation. Although the construction of the GHV scheme is elegant, it seems
that there are some optimizations left in its performance, and these optimiza-
tions can make it more versatile. This brings the main question that we want to
answer in this work: Can we create a more efficient GHV-Type HE scheme? In
more detail, this question involves the following three aspects:

– The new GHV-type HE scheme has lower time complexity, and in particular
it is suitable for applications only permitting efficient privacy protection and
verification (e.g., the private and verifiable delegation of linear algebra).

– The new GHV-type HE scheme has lower space complexity. To achieve this
we need to first figure out whether some key employed by the original GHV
scheme is not needed for the improved one.

– The new GHV-type HE scheme has smaller key and ciphertext sizes than
those of the original GHV scheme.
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Our Results. In this work, we propose an efficient GHV-type HE scheme to-
gether with optimized parameters. Security of our proposal is still based on the
standard LWE assumption. Specifically, our contributions are four folds:

First Result (Sect. 3): Density of trapdoor matrix pairs. Trapdoor
generation algorithms (e.g., [1, 3, 25]) play a big role in advanced lattice-based
cryptographic primitives. They generate a pair of matrices (At, Tt), i.e., At is
an (almost) uniformly random matrix and Tt is the corresponding trapdoor that
is in the form of a nonsingular square matrix with short integer vectors. Some
significant parameters related to the matrix pair, i.e., the lattice dimension and
the quality of the trapdoor, generally have been explored when the correspond-
ing trapdoor construction was given. In an asymmetric encryption scheme, (At,
Tt) can be used as the public and secret keys. In particular, since the short
basis Tt and its inversion (Tt)−1 used in the encryption schemes may multiply
by matrices over a matrix ring, a natural question is how to evaluate the cor-
responding computational cost. To answer this question, we first introduce the
concept of the density of a (trapdoor) matrix for matrix multiplication and give
its definition. Actually, the density of a (trapdoor) matrix is measured by the
number of nonzero elements of a matrix needed for a single matrix multiplica-
tion. Then, we take (Tt, (Tt)−1) respectively generated by Alwen and Peikert′s
trapdoor sampling algorithm (APTrapSamp for short) [3] and by Micciancio and
Peikert′s trapdoor sampling algorithm (MPTrapSamp for short) [25] as targets
and analyze their concrete density. Notably, the non-deterministically construct-
ed components of these two trapdoor matrix pairs become the hard nut of the
corresponding density analyses. Technically, we thus employ the matrix decom-
position to simplify the complex components, which makes us simply focus on
exploring components with the deterministic distribution. Using our concrete
decompositions, for (Tt, (Tt)−1) generated by APTrapSamp and MPTrapSamp,
the analyses give accurate estimates on their density (see Lemma 4 to 7).

Second Result (Sect. 3 and 4): More accurate efficiency analyses.
For the GHV-HE scheme, although the approximate result of its computational
cost has been given in [15], the more accurate estimate on the computational
cost is important, in particular for finding applications which the cryptosystem
can be plugged directly into. Hence, we carefully analyze the encryption and
decryption procedures of the GHV scheme using APTrapSamp and MPTrapSamp,
and present accurate results on their computational cost and space cost (see
Theorem 2 to 5). Technically, our analysis for the decryption procedure is based
on the idea that multiplying matrices over a matrix ring with Tt (resp. (Tt)−1)
is equivalent to multiplying matrices over a matrix ring with the decomposition
form of Tt (resp. (Tt)−1). This implies that results on the density of Tt and
(Tt)−1 are used for the efficiency analyses of the decryption procedure. We
also employ the Hoeffding′s inequality to estimate a (near-)lower bound of the
computational cost of the decryption procedure. Of course, the same idea is
used to give the (time and space) efficiency analyses on our optimized GHV-
type scheme (see Theorem 10).
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Third Result (Sect. 4): Simpler construction and optimizations. To-
wards addressing the question of the above section in a systematic way, we first
propose a generic GHV-type construction that removes the expensive matrix in-
version computation for (Tt)−1 and the multiplication by (Tt)−1 on decryption.
In our generic construction, a sparse matrix T̃ that is easily built is employed to
recover the plaintext message (see Sect. 4.2 on T̃). Notice that, T̃ is constructed
deterministically, which means that it actually can be regarded as a “public”
key for decryption. Moreover, our generic construction has an additional benefit
for the multiplication by Tt on decryption. That is, a plaintext message can be
recovered by multiplying with part of Tt instead of Tt, which further reduces
the computational cost and space cost of decryption. Then we present some sim-
ple optimizations on speeding up the matrix multiplication used in our generic
construction (see Algorithm 2 and 3). For our optimizations, only element-wise
additions are employed to achieve the multiplication by part of Tt and T̃ on
decryption, and a random, short component of Tt is used as the unique secret
key (i.e., the component matrix R in Appendix A.1). This implies that our
optimizations guarantee that any instantiation of our GHV-type scheme using
APTrapSamp-like trapdoor generation algorithm can have the asymptotically op-
timal time complexity and storage size of the secret key. Surprisingly, we achieve
these efficiency improvements without having a negative effect on the security
of the concrete GHV-type scheme.

Fourth Result (Sect. 4): Tighter parameters. To ensure that our GHV-
type instantiation using APTrapSamp enjoys correctness and the same homomor-
phism as the original GHV instantiation using APTrapSamp holds, we show new
bounds for the modulus q and the lattice dimension m (see Theorem 6 and 7).
In particular, the parameter bounds that we establish are lower than those of
the original GHV instantiation (see Appendix A.2). Since q has a direct impact
on the key and ciphertext sizes, this means that sizes of elements of the public
key and ciphertext can be smaller than those of the original GHV instantiation.
Specifically, we first give a parameter setting for the case that our GHV-type
instantiation only supports polynomially many additions (see Theorem 6). Then
we present a parameter setting for the case that our GHV-type instantiation can
permit polynomial number of additions and one multiplication (see Theorem 7).

Comparisons and Applications. A comparison of our optimized GHV (oGHV
for short) scheme with the GHV scheme and other asymmetric matrix-(F)HE
schemes is shown in Table 1, where we assume that all the schemes make use of
the same security parameter n and plaintext matrix size m×m. Notice that n and
m are not the same; indeed, typically we have m = Θ(n lg q), where q = poly(n).

Clearly, based on the above comparisons, we believe that our oGHV scheme
can be plugged in as a “black box” to replace the original GHV scheme and
deliver significant efficiency benefits in such applications discussed by Gentry et
al. [15], e.g., electronic election protocols, private information retrieval protocols
and identity-based encryption. Of course, the oGHV scheme may be used as a
drop-in replacement in some other typical applications such as two-party compu-
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Table 1. Comparisons of asymmetric LWE-based matrix-HE schemes with equal pa-
rameters n and m satisfying n� m.

Scheme
Classifi

cation

Homomorphism

Encry
ption Time

Decr
yption Time

⊕† �†

GHV(APTrapSamp) [15] SHE ! ! O(nm2) O(m3)

GHV(MPTrapSamp)∗ SHE ! ! O(nm2) O(m3)

HAO [19] FHE ! % Õ(nm2) O(m3)

WWXH [33] FHE ! % Õ(nm2) O(m3)

oGHV(APTrapSamp) [this paper] SHE ! ! O(nm2) Õ(nm2)

oGHV(MPTrapSamp) [this paper] SHE ! ! O(nm2) Õ(nm2)

∗ For GHV(MPTrapSamp), MPTrapSamp is used in the original GHV scheme.
†⊕ and �: “Direct” matrix addition and multiplication between the input ciphertexts

tation protocols [22], graph encryption schemes supporting approximate shortest
distance queries [24] and the protocol for private regular-expression searches on
encrypted data [32]. Here we want to highlight that, compared with the GHV
scheme, our oGHV scheme opens the door to more efficient real-world privacy-
preserving applications. A such example is the private and verifiable delegation
of linear algebra, which is always an important research subject in cryptography.
Although Mohassel [23] has given the GHV scheme based delegation protocols
for some linear algebra problems such as matrix multiplication and matrix in-
version, as shown in Table 1, the GHV scheme actually should be excluded from
consideration due to the “heavy” decryption performing roughly O(m3) compu-
tations. Since our oGHV scheme achieves the desirable improvements in terms
of the efficiency, it can be a natural match for private delegations of some linear
algebra problems and even specific computations related to linear algebra.

2 Preliminaries

Notations. Throughout this paper, we use capital letters (e.g., X, Y) for random
variables and probability distributions, standard letters (e.g., x, y) for scalars,
and calligraphic letters (e.g., X , Y) for sets. We denote (column) vectors by
standard bold letters (e.g., x, y) and matrices by capital bold letters (e.g, X,
Y). For a matrix X over any ring, the ith column of X is denoted by xi, the ith
element of a vector x is denoted by xi, and the ith element of the jth column of
X is denoted by xi,j. NX is a random variable (or probability distribution) on the
number of nonzero elements of X. We use Xt to denote the transpose of X. The
ith standard basis vector is denoted by ei. lg refers to the base 2 logarithm. We

use [x] to denote the set {1, 2, · · · , x}. x
$←− X is considered as sampling an element

x from a finite set X uniformly at random, and x ← X refers to sampling an
element x according to a probability distribution X. For a finite set X , we denote
the uniform distribution over X by U(X ). We denote the binomial distribution
with parameters ρ ∈ [0, 1] and m ∈ N+ by Binρ,m, where Pr[Binρ,1 6= 0] = ρ
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and Pr[Binρ,1 = 0] = 1−ρ. We denote the discrete Gaussian (error) distribution
over Zq by Ψβ(q) that may be generated by sampling y ← 1

β exp(−π( x
β )2) and

outputting bq · yc (mod q), where β > 0 and q ≥ 2. X ∼ D denotes that a
random variable X follows a probability distribution D. For two distribution

ensembles X
def
= {Xn} and Y

def
= {Yn} indexed by n ∈ N+, X

s
≈ Y refers to

the statistical indistinguishability between X and Y. x (mod q) is considered as
mapping x into the interval ] − q

2 ,
q
2 ]. Let x = (x′1, x

′
2, . . . , x

′
n) ∈ {0, 1}n be the

binary representation of x. Then we call bwt(x) = ‖x‖1 = #{i ∈ [n]|x′i 6= 0}
the (Hamming) weight of x. Let ta, tm and tg denote the running time of the
(modulo) addition, (modulo) multiplication and discrete Gaussian sampling over
the integers, respectively.

We also use the following simplified notations in this paper. Throughout, we
denote the security parameter by n ∈ N+, and most parameters are functions
of n, e.g., m1,m2,m, q = poly(n), β = 1

poly(n) and c = c(n) > 0, where poly(n)

denotes some polynomial function in n. Thus, we often omit n for the simplified
notations. Moreover, overwhelming probability means that the probability is
1− ψ, where ψ is negligible in n.

2.1 Cryptographic Problem

We present below a famous hard learning problem, i.e., the Learning with Errors
(LWE) problem, which has proven to be a rich and versatile source of many
(post-quantum) cryptographic primitives.

Definition 1 (LWE [15, 29]) Let n,m, q be positive integers, s ∈ Zn
q be a

secret vector, and χ be a probability distribution over Zq. We denote the L-
WE distribution by Ls,χ,q that is the probability distribution over Zm×n

q × Zm
q

given by choosing A
$←− Zm×n

q , sampling a vector x ← χm and outputting
(A, 〈A, s〉+ x) = (A,b) ∈ Zm×n

q × Zm
q .

The decision LWE problem dLWE(n,m, q, χ) is the problem of distinguish-
ing whether a sample (A,b) is drawn from Ls,χ,q or uniformly at random from
Zm×n
q ×Zm

q . The search LWE problem sLWE(n,m, q, χ) is the problem of finding
the secret s from a sample (A, 〈A, s〉+ x) drawn according to Ls,χ,q.

In particular, χ is generally the discrete Gaussian distribution Ψβ(q) [21]. For
the LWE version defined with Ψβ(q), it is known as the “standard form”. About
the hardness of the standard LWE problem, there have been several results [8,
9, 27, 20, 29]. Specifically, Regev [29] first proved that solving sLWE(n,m, q, β)
efficiently is as hard as finding a quantum solution for approximating certain
worst-case lattice problems, i.e., the decision version of the Shortest Vector
Problem (GAPSVP) and the Shortest Independent Vectors Problem (SIVP).
Regev [29] also showed that dLWE(n,m, q, β) can be equivalent to (worst-case)
sLWE(n,m, q, β) for a prime modulus q ∈ [2, poly(n)], with a loss of up to a
poly(n) · q factor in m. Then, Peikert [27] gave that solving sLWE(n,m, q, β)
efficiently is (at least) as hard as approximating GAPSVP (and a GAPSVP
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variant) in the worst case via a classical (PPT) reduction with similar parame-
ters. Moreover, based on the above Regev′s search-to-decision reduction, Peikert
[27] provided a classical foundation for the hardness of dLWE(n,m, q, β). Notice
that s can be sampled from the error distribution (i.e., Ψβ(q)n) without any loss
in security [2]. In what follows, since (post-quantum) cryptographic application-
s are typically based on dLWE(n,m, q, β), we summarize Regev and Peikert′s
results for the decision variant.

Lemma 1 (Theorem 1.1 in [29], Theorem 3.3 in [27]) Let n be a positive integer,
β > 0 and q ∈ N+ be a product of co-prime numbers, i.e., q =

∏
qi, where

∀i ∈ N+ qi = poly(n). For βq > 2
√

n, if there is an efficient algorithm solving
dLWE(n,m, q, β), there is an efficient quantum algorithm running in time poly(n)
to approximate GAPSVP and SIVP on n-dimensional lattices in the worst case to
within Õ(n

β ) factors, and an efficient classical algorithm running in time poly(n)

to approximate a ζ-to-ζ ′ GAPSVP variant GAPSVPζ,ζ′ on n-dimensional lattices

in the worst case to within ζ = Õ(q
√

n) and ζ ′ = Õ(n
β ) factors.

2.2 Trapdoor Sampling Algorithms

Here we recall two significant trapdoor generation algorithms for cryptographic
lattices, which are inspired by Ajtai′s initial work [1]. The first proposal is the
Alwen and Peikert trapdoor generator [3], denoted by APTrapSamp. This ran-
domized algorithm outputs a hard random lattice At ∈ Zn×m

q together with some

short orthogonal basis (i.e., trapdoor) Tt ∈ Zm×m of the lattice Λ⊥q (At), where
m = Θ(n lg q). The block structures of At and Tt are shown in Fig. 1(a) (see Ap-

pendix A.1), where A1
$←− Zn×m1

q and m1 + m2 = m. In particular, APTrapSamp
involves two concrete algorithms. Compared with Alwen and Peikert′s first algo-
rithm, the second algorithm, denoted by APSTrapSamp, can be regarded as an
optimized algorithm with respect to the lattice dimension and the quality of the
trapdoor. Then, APSTrapSamp is more suitable for efficient cryptographic appli-
cations. The second type of trapdoor generator is introduced by Micciancio and
Peikert [25], which is the current state of the art in the trapdoor generation. This
randomized algorithm, denoted by MPTrapSamp, can output a hard random lat-
tice At ∈ Zn×m

q together with a sufficiently “short” integer matrix R ∈ Zm1×m2

as the gadget-based trapdoor (with tag (e.g., I) over Zn×n
q ), where m = Θ(n lg q)

and m1 + m2 = m. MPTrapSamp includes the statistical instantiation, denoted
by MPSTrapSamp, and the computational instantiation. In particular, the sta-
tistically secure trapdoor construction from MPSTrapSamp is the better choice
of cryptographic applications. Moreover, MPSTrapSamp may generate a good
basis Tt for Λ⊥(At) from knowledge of R, which implies that MPSTrapSamp
can also serve as a “traditional” trapdoor sampling algorithm. The correspond-
ing block structures of At and Tt are given in Fig. 1(b) (see Appendix A.1),

where A1
$←− Zn×m1

q . Notice that, since the block structure of Tt generated by
MPSTrapSamp is similar to that of the trapdoor from APSTrapSamp, we refer
to the “traditional” MPSTrapSamp as the APTrapSamp-type trapdoor sampling



An Optimized GHV-Type HE Scheme 9

algorithm. In what follows, we state some consequences related to APSTrapSamp
and MPSTrapSamp. In Appendix A.1, we present details of component matri-
ces G ∈ Zm1×m2(G ∈ Zn×m2

q ),P ∈ Zm2×m1 ,U ∈ Zm2×m2 and R ∈ Zm1×m2

generated by APSTrapSamp and MPSTrapSamp, respectively.

Lemma 2 (Theorem 3.2 in [3], Lemma 5.3 in [25])There are PPT randomized
algorithms APTrapSamp and MPSTrapSamp that, on input 1n, q ≥ 2 and m =
Θ(n lg q), can generate matrices At ∈ Zn×m

q and Tt ∈ Zm×m such that

– At is statistically close to uniform over Zn×m
q .

– Tt is a “small” invertible matrix. In particular, the Euclidean norm of all
columns of Tt from APSTrapSamp is bounded by O(n lg q), where the constant
hidden in the O(·) is at most 20.

– TA = 0 (mod q).

2.3 The Gentry-Halevi-Vaikuntanathan Encryption Scheme

The GHV scheme [15] is a public-key encryption scheme for encrypting matrices
over any matrix ring Zm×m

p , where p ≥ 2. This scheme employs the idea of
the trapdoor function given by Gentry, Peikert and Vaikuntanathan in 2008
[16], where a near-uniformly random matrix A ∈ Zm×n

q is the “public key”
and an invertible “small” matrix T ∈ Zm×m such that TA = 0 (mod q) is
the used trapdoor, to get the public and secret key pair for the encryption
and decryption, and specifically runs the APTrapSamp-type sampling algorithm
(e.g., APSTrapSamp and MPSTrapSamp) to output such a key pair (A, T). The
basic construction of the GHV scheme, denoted by GHV, is due to the fact
that the trapdoor T can solve the standard LWE instance relative to A, which
implies that security of GHV relies on the hardness of the standard LWE problem
dLWE(n,m, q, β) (see Lemma 1). For more details, please refer to Appendix A.2.

2.4 Other Preliminaries

Definition 2 (Density of a Matrix for Matrix Multiplication) Let X and
Y be matrices over any rings. In a single matrix multiplication XY over a ma-
trix ring, density of X (resp. Y) is equal to the number of necessary nonzero
elements of X (resp. Y) over the ring. These nonzero elements are used in XY.

Lemma 3 (Fact 1 in [15]) Let positive integers n, q ≥ 2, β > 0 and g =
ω(
√

lg n). For x ← Ψβ(q)n and an arbitrary vector y ∈ Zn, | 〈x,y〉 | ≤ βqg‖y‖
with probability 1−ψ, where ‖y‖ is the Euclidean norm of y, and ψ is negligible
in n.

Theorem 1 (Hoeffding Bound [18]) Let X1,X2, . . . ,Xκ, where κ ∈ N+, be a
sequence of independent random variables such that ∀i ∈ [1, κ] Pr[Xi ∈ [ai, bi]] =
1. Let X =

∑κ
i=1 Xi. Then, for any τ > 0

Pr[|X− E[X]| ≥ τ ] ≤ 2 exp
− 2τ2∑κ

i=1
(bi−ai)

2
.
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3 Efficiency Analyses of GHV

In this section, we precisely discuss (time and space) efficiency of the original
scheme GHV and show why GHV using APSTrapSamp or even MPSTrapSamp is
“relatively” inefficient and should be ruled out for some cryptographic applica-
tions that only run in time O(mc′), where c′ ∈ [2, 3[. In particular, the density
of the “special” trapdoor matrix pair (T, T−1) has a direct influence on effi-
ciency of GHV, which means that it should be first explored. For APSTrapSamp
and MPSTrapSamp, although some significant parameters related to the output
lattice associated with At (and A) and the resulting basis Tt (and T), e.g., the
lattice dimension and the basis quality, have been explored in [3, 25], to the best
of our knowledge, our work give the first measure of density of (T, T−1) for
matrix multiplication.

3.1 On the Density of Trapdoor Matrix Pair (T, T−1)

We first give the density analysis of the matrix T generated by APSTrapSamp and
MPSTrapSamp (i.e., NT), respectively. Then, we focus on exploring density of the
corresponding inverse matrix T−1 over Zp for p ≥ 2 (i.e., NT−1). Interestingly, we
obtain NT and NT−1 based on simple and special decomposition forms of T and
T−1. Notice that, for APSTrapSamp, when the modulus q is a prime, H can be of

the form [ qe1 ··· qen Ĥ ], where Ĥ =
[
H̃
I

]
∈ Zm1×(m1−n)

q is the column reduction

form of the kernel of A1. Since A1
$←− Zn×m1

q in APSTrapSamp, we present a
mild assumption on H as follows: if q is a prime, ∀i ∈ [n] and ∀j ∈ [n + 1,m1]

hi,j
$←− Zq, which means H̃

$←− Zn×(m1−n)
q .

Lemma 4 For the trapdoor matrix T ∈ Zm×m generated by APSTrapSamp, it

has the decomposition form T =
([

GU −I
0 0

]
+ [ RI ] [ U P ]

)t
. Then, under the

assumption that ∀i ∈ [n] and ∀j ∈ [n + 1,m1] hi,j
$←− Zq, where q is a prime,

we have NT = NR + NPH̃
+ m + m2 + n(w + bwt(q− 1)), where NR ∼ Bin 1

2 ,dm2

and NPH̃

s
≈ Bin 1

2 ,n(m1−n)w, where PH̃ is the binary representation of {h′i,j|i ∈
[n], j ∈ [n + 1,m1]}.

Proof. See Appendix A.3 for the proof.

Lemma 5 Let the modulus q be a large enough prime. Consider that R is sam-
pled from the distribution over {0,±1}m1×m2 that outputs 0 with probability 1

2
and ±1 each with probability 1

4
4. For the trapdoor matrix T ∈ Zm×m generat-

ed by MPSTrapSamp, based on its decomposition form T = ([ I R
0 I ] [ I 0

P U ])
t
, we

have NT = NR + NP + 2m + n(w − 2 + bwt(q)), where NR ∼ Bin 1
2 ,m1m2

and

NP
s
≈ Bin 1

2 ,nm1w.

4 We believe that a matrix sampled from the distribution over {0,±1}m1×m2 is general-
ly sparser than a matrix from the discrete Gaussian distribution for some β′ ≥ ηυ(Z).



An Optimized GHV-Type HE Scheme 11

Proof. See Appendix A.4 for the proof.

Lemma 6 For the inverse matrix T−1 ∈ Zm×m
p corresponding to T generat-

ed by APSTrapSamp, it is of the form
([

U−1PH−1 U−1(I−PH−1(G+R))

−H−1 H−1(G+R)

])t
, and

can be expressed as
([

U−1 0
0 I

] (
[ 0 I
0 0 ] +

[
P
−I
]

[ H−1 −H−1(G+R) ]
))t

, where U−1 =
diag(V−1

w1
, · · · ,V−1

wm1
, I) and in particular ∀i ∈ [wk] the ith column of the wk×wk

matrix V−1
wk

(i.e.,v−1
i ) is

∑i
j=1 2i−jej, where k ∈ [m1]. Then, under the assump-

tion that ∀i ∈ [n] and ∀j ∈ [n+1,m1] hi,j
$←− Zq, where q is a prime, we have that

NT−1 is (at least) 2m+m1+nbwt(q−1)+NPH̃
+Y1+Y2 with Y1

s
≈ Bin p−1

p ,n(m−n)

and Y2 ∼ Bin 1
2 ,(d−n)m2

.

Proof. See Appendix A.5 for the proof.

Lemma 7 Let the modulus q be a large enough prime. Consider that R is
sampled from the distribution over {0,±1}m1×m2 that outputs 0 with probabil-
ity 1

2 and ±1 each with probability 1
4 . For the inverse matrix T−1 ∈ Zm×m

p

corresponding to T generated by MPSTrapSamp, it has the decomposition form

T−1 =
([

I 0
0 U−1

] [
I 0
−P I

] [
I −R
0 I

])t
, where U−1 = diag(V−1

w , · · · ,V−1
w , I). Then,

we have NT−1 = NR + NP + 3m + Y3, where NR ∼ Bin 1
2 ,m1m2

, NP
s
≈ Bin 1

2 ,nm1w

and n(w− 1) < Y3 ≤ n(w2+3w−2)
2 .

Proof. See Appendix A.6 for the proof.

3.2 Theoretical Efficiency of GHV

Now we analyze the computational cost and space cost of GHV when encrypting
matrices over Zm×m

p . In particular, the cases of employing APSTrapSamp and
MPSTrapSamp are discussed, respectively. Using results on the density of trap-
door matrix pair (T,T−1) in Lemma 4 to 7, we can show accurate estimates of
these two costs. Notice that, we present (near-)lower bounds on these two costs
of the decryption procedure of GHV.

Theorem 2 For a plaintext matrix B ∈ Zm×m
p (p ≥ 2) that is encrypted by

GHV using APSTrapSamp, Enc(B) takes at most m2((n + 1)tm + (n + 2)ta +
tg) time to generate a ciphertext matrix C, and Dec(C) needs to take at least
2m(p−1

p n(m − n) + (d − n
2 − 3

√
n
2 )m2 + (m1 − n)nw + 4m)(tm + ta) time (with

overwhelming probability) to recover B from C.

Proof. See Appendix A.7 for the proof.

Notice that, letting m1 = 101
100n lg q and m2 = 402

100n lg q, which means m =
503
100n lg q < b8n lg qc, from the consequence on Dec(C) in Theorem 2, we see
that the computational cost of the decryption procedure of GHV employing
APSTrapSamp is at least 2

5m3(tm + ta) (≈ O(m3)).



12 L. Zhao et al.

Theorem 3 For a plaintext matrix B ∈ Zm×m
p (p ≥ 2) that is encrypted by

GHV using MPSTrapSamp, Enc(B) takes at most m2((n + 1)tm + (n + 2)ta +
tg) time to generate a ciphertext matrix C, and Dec(C) needs to take at least

2m(m1(nw+m2)−
√

2n(m1(nw + m2) + 1)+5m+(2w−3)n)(tm + ta) time (with
overwhelming probability) to recover B from C.

Proof. See Appendix A.8 for the proof.

Let us consider m1 ≈ n lg q and m2 = n lgdqe, which are used in the “tradi-
tional” MPSTrapSamp construction. According to the consequence on Dec(C) in
Theorem 3, we see that the computational cost of the decryption procedure of
GHV employing MPSTrapSamp is about m3(tm + ta) (≈ O(m3)).

Theorem 4 For a plaintext matrix B ∈ Zm×m
p (p ≥ 2) that is encrypted by

GHV using APSTrapSamp, Enc(B) takes 2nmdlg qe + m2dlg pe bits to generate
a ciphertext matrix C, and Dec(C) needs to take at least 2m2dlg qe + n(m −
n)dlg pe+ 2dm2 + n(m1 − n)w bits to recover B from C.

Proof. See Appendix A.9 for the proof.

Theorem 5 For a plaintext matrix B ∈ Zm×m
p (p ≥ 2) that is encrypted by

GHV using MPSTrapSamp, Enc(B) takes 2nmdlg qe+ m2dlg pe bits to generate a
ciphertext matrix C, and Dec(C) needs to take at least 2m2dlg qe+m1(2m2 +nw)
bits to recover B from C.

Proof. See Appendix A.10 for the proof.

4 Our Optimized GHV-Type Encryption Scheme

The above efficiency analysis confirms that GHV is not suitable for applications
(e.g., the private and verifiable delegation of computation) that must use da-
ta protection techniques with roughly O(mc′) computational complexity, where
c′ ∈ [2, 3[ is close to 2. Hence, in this section, we modify the original scheme and
are ready to present our optimized variant, denoted by oGHV, for keeping inher-
ent merits of the scheme and making the corresponding running process more
efficient, e.g., achieving Õ(nm2) computational overhead. In particular, to make
comparisons with the GHV instantiation that employs APSTrapSamp (see [15]),
APSTrapSamp is still used in our oGHV instantiation. Of course, MPTrapSamp
is also a candidate for oGHV. Notice that the trapdoor Tt := [ Tt

1 Tt
2 ], where

Tt
1 :=

[
(G+R)U

U

]
and Tt

2 :=
[
RP−I

P

]
, as adopted throughout the whole section.

4.1 Using a Sparse Matrix to Replace T−1

From Theorem 2, we know that GHV takes roughly O(nm2) running time to
encrypt an m × m matrix and uses O(m3) time to recover this matrix. In par-
ticular, the computational cost of the decryption procedure is evidently larger
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than that of the encryption procedure. This means that we can focus on optimiz-
ing the decryption algorithm and reducing the corresponding cost to make the
whole cryptosystem more efficient. Notice that there exist two steps in the de-
cryption algorithm, i.e., C′ = TCTt (mod q) and B = T−1C′(Tt)−1 (mod p).
Specifically, based on the fact that C is of the form AS + pX + B (mod q),
computing TCTt (mod q) is an indispensable step, which is used to cancel out
AS. T−1C′(Tt)−1 (mod p) can be seen as a “supplement” of TCTt (mod q).
The main purpose of this step is to cancel out (T,Tt) and recover B. Although
the second step is similar to an additional operation, the corresponding compu-
tation is expensive in the decryption procedure and has great influence on the
computational cost of the whole cryptosystem.

Thus, let us consider how to reduce the running time of the step T−1C′(Tt)−1

(mod p) and improve efficiency of the whole decryption algorithm including the
first step. Ideally, we would like to find a sufficiently sparse matrix to replace
T−1 and “indirectly” recover B from C′ by employing some other simple compu-
tation. Unfortunately, this is not a computationally feasible operation. However,
from the definition of T in Sect. 2.2 (see Fig. 1(a)), we notice that the m2×m2 in-
vertible component matrix U is the main part of T and satisfies NU � m2

2−NU.
According to Lemma 6, we also know that U−1 = diag(V−1

w , · · · ,V−1
w , I) satis-

fies NU−1 � m2
2 − NU−1 . These observations inspire us that we can construct

an extremely sparse matrix involving U−1, denoted by T̃, to decrypt B from C.
Specifically, the original plaintext matrix B should be first enlarged to [ 0 0

0 B ] by
padding zero elements in the encryption algorithm. Notice that, the number of
the padded zero elements is far less than that of elements of B. Then, in the de-
cryption algorithm, C′ = TCTt (mod q) is executed and, after that, T̃ =

[
U−1

0

]
is used to recover B by running T̃tC′T̃ (mod p). As described above, our opti-
mization for the construction of GHV is very simple but can surprisingly achieve
the desired efficiency improvement. In Sect. 4.3 and 4.5, we give the detailed
correctness analysis for the optimized scheme oGHV and also present the effi-
ciency exploration of oGHV, which supports our optimization. Moreover, here
we highlight another merit of using T̃ instead of T−1. That is, it is unnecessary
to store T̃ for multiple encryptions. From Lemma 6, we have that ∀i ∈ [m1] V−1

wi

can be seen as a deterministically-constructed matrix, which means that T̃ is
also a deterministically-constructed matrix that is easily reconstructed for mul-
tiple encryptions, while some components of T−1 must be stored for each GHV
encryption. In Sect. 4.4, we introduce a concrete algorithm (i.e., Algorithm 3)
to show how to efficiently run the multiplication between T̃ (resp. T̃t) and C′

without using T̃ (resp. T̃t).

4.2 Generic Construction of oGHV

Now we give details on the generic construction of the optimized GHV-type HE
scheme oGHV with parameters n,m1,m2,m, q, β for plaintext matrices over Zp

with any integer p ≥ 2, where q is an odd prime, and β is a Gussian error
parameter. In particular, oGHV including a triple of PPT algorithms (oKeyGen,
oEnc, oDec) is described below.
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– oKeyGen(1n) → (A, (T, T̃)) : Run APTrapSamp-type trapdoor sampling al-
gorithm to get a matrix A ∈ Zm×n

q and its trapdoor matrix T ∈ Zm×m

such that TA = 0 (mod q). Generate a matrix T̃ =
[
U−1

0

]
∈ Zm×m2 , where

U−1 ∈ Zm2×m2 is defined in Lemma 6. Output (A, (T, T̃)) as the public and
secret key pair.

– oEncA(B)→ C : Given a plaintext matrix B ∈ Zm2×m2
p , build an m×m matrix

B′ = [ 0 0
0 B ] using three small zero matrices of respective size m1×m1, m1×m2

and m2×m1, where m1 + m2 = m. Choose S
$←− Zn×m

q and X← Ψβ(q)m×m 5,
and generate a ciphertext matrix C ∈ Zm×m

q as

C = AS + pX + B′ (mod q).

– oDec(T,T̃)(C)→ B : Given the ciphertext matrix C, run C′ = TCTt (mod q)

= T(pX + B′)Tt (mod q) and output B = T̃tC′T̃ (mod p).

In the above construction, if APSTrapSamp is employed by oKeyGen, from
Sect. 2.2 (see Appendix A.1), we know that m1 can be equal to (1 + δ)n lg q and
m2 ≥ (4 + 2δ)n lg q, this implies that m1 and m2 can satisfy m2 � m1. Then,
most of elements of B′ come from B, and we have, in some sense, “oEncA(B) ≈
EncA(B)”, where Enc is the encryption algorithm of GHV. About concrete in-
stantiations of the parameters m1,m2,m, q and β, which are used to guarantee
that oGHV holds correctness, security and homomorphism, please refer to Sec-
t. 4.3. In particular, according to properties of the proposed generic construction,
the prime q related to the key and ciphertext sizes can be set to be smaller than
that used for GHV. Moreover, some detailed optimizations based on the generic
construction are presented in Sect. 4.4, which further reduce the computational
cost and memory cost of oGHV and guarantee that the smallest key pair is em-
ployed. Notice that, similar to that in GHV, the post-multiplication by Tt and T̃
on decryption in oGHV is unnecessary. This means that oDec simply runs T̃t(TC
(mod q)) (mod p) for obtaining B. The post-multiplication can be employed to
decrypt product ciphertexts (see Sect. 4.3).

4.3 Homomorphic Operations and Concrete Parameters

Our optimized scheme oGHV enjoys the same homomorphic properties as GHV
holds. Specifically, oGHV also supports addition and multiplication homomor-
phism. In particular, for two ciphertext matrices C1 = AS1 +pX1 +B′1 (mod q)
and C2 = AS2 + pX2 +B′2 (mod q) corresponding to two plaintext matrices B1

and B2, considering the sum ciphertext C = C1 + C2 (mod q), we have

C = C1 + C2 (mod q) = A (S1 + S2)︸ ︷︷ ︸
S

+p (X1 + X2)︸ ︷︷ ︸
X

+ B′1 + B′2︸ ︷︷ ︸
B′

(mod q).

5 Clearly, the state-of-the-art discrete Gaussian sampling algorithms over the integers
(e.g., [26]) can be considered as candidates used in oGHV to replace the sampling
method proposed by Gentry et al. [15]. What is important is that the corresponding
parameter setting needs to ensure that oGHV still holds the desired correctness,
security and homomorphism.
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It is easy to see that C1 + C2 (mod q) can be decrypted to B1 + B2 (mod p)
if values of all the elements of T(pX + B′)Tt are smaller than q

2 , where B′ =[
0 0
0 B1+B2

]
. Moreover, considering the product ciphertext C = C1C

t
2 (mod q),

we have

C = C1C
t
2 (mod q)

= A
(
S1C

t
2

)︸ ︷︷ ︸
S

+p
(
X1

(
pX2 + B′2

)
+ B′1X

t
2

)︸ ︷︷ ︸
X

+B′1(B′2)t︸ ︷︷ ︸
B′

+
(
pX1 + B′1

)
St
2︸ ︷︷ ︸

S̃

At (mod q).

This naturally implies that C1C
t
2 (mod q) can be decrypted to B1B

t
2 (mod p)

when values of all the elements of T(pX + B′)Tt are smaller than q
2 , where

B′ =
[
0 0
0 B1B

t
2

]
, as discussed above. In what follows, we present our answer on

the parameter setting (for q, m1, m2, m and β), which guarantees the feasibility
of the homomorphic operations.

Notably, according to the above analysis on the additive homomorphism of
oGHV, we know that, similar to the case on decryption of the normal ciphertext,
the post-multiplication by Tt is not required for decrypting a sum ciphertext

C =
∑nc

i=1 (ASi + pXi + B′i) (mod q), where c > 0. Moreover, compared with
GHV, of which the correctness of decryption must rely on a condition that each
element of T(pX + B)Tt is bounded by q

2 , we want to show that the correctness
of decryption of oGHV is able to depend on a more relaxed condition, resulting in
the smaller parameters q and m that we can set. Specifically, consider that C′ =[
C′1 C′2
C′3 C′4

]
, where block matrices C′1 = T1CTt

1 (mod q), C′2 = T1CTt
2 (mod q),

C′3 = T2CTt
1 (mod q) and C′4 = T2CTt

2 (mod q) are respective sizes m2×m2,
m2 × m1, m1 × m2 and m1 × m1, we have T̃tC′T̃ (mod p) = (U−1)tC′1U

−1

(mod p). This means that the final result can be recovered if the absolute value
of each element in T1(pX + B′)Tt

1 (instead of T(pX + B′)Tt) is bounded by
q
2 . Then, from the relaxed condition, we first set the parameters that simply
ensure that oGHV is able to support nc additions. After that, we establish the
concrete parameters that guarantee that oGHV also holds the one-multiplication
homomorphism.

Theorem 6 Consider that APSTrapSamp is employed by oGHV. For the fixed
parameters n and c > 0, let q, m1, m2, m, β be set as

q > 40nc+1p lg n,

m = m1 + m2 ≥ d
101

100
n lg qe+

201

50
n lg q, where m1 = d101

100
n lg qe and m2 ≥

201

50
n lg q,

β =
1

5ncp
√
m1 lg n

.

Then, oGHV with parameters n,m1,m2,m, q, β supports nc homomorphic addi-
tion operations over the matrix ring Zm×m

p (and Zm2×m2
p ).

Proof. See Appendix A.11 for the proof.
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Theorem 7 Consider that APSTrapSamp is employed by oGHV. For the fixed
parameters n and c > 0, let q, m1, m2, m, β be set as

q > 213n3+3cp2 lg3 n,

m = m1 + m2 ≥ d
101

100
n lg qe+

201

50
n lg q, where m1 = d101

100
n lg qe and m2 ≥

201

50
n lg q,

β =
1

2n
3c
2 p
√
mm1q lg n

.

Then, oGHV with parameters n,m1,m2,m, q, β supports nc homomorphic addi-
tion operations and one homomorphic multiplication operation over the matrix
ring Zm×m

p (and Zm2×m2
p ).

Proof. See Appendix A.12 for the proof.

4.4 Computational Optimizations

Generally speaking, the matrix multiplication is a costly operation for crypto-
graphic primitives related to the matrix. Here, according to concrete construc-
tions of Tt and T̃ from APSTrapSamp and the generic construction of the cryp-
tosystem presented in Appendix A.1 and Sect. 4.2, some practical optimizations
on speeding up the matrix multiplication used in oGHV and further improving
efficiency of oGHV are given6.

Algorithm 1: Ternary-Integer Matrix Product

Input: X ∈ {0,±1}m3×m4 , Y ∈ Zm4×m5
q , m3, m4, and m5

Output: Z = XY ∈ Zm3×m5
q

1 Z = {0}m3×m5 ;
2 for i ∈ [m3] do
3 for j ∈ [m4] do
4 for k ∈ [m5] do
5 if xi,j == 0 then
6 zi,k+= 0;
7 else if xi,j == 1 then
8 zi,k+= yj,k;
9 else if xi,j == −1 then

10 zi,k−= yj,k;
11 end
12 end
13 end
14 end
15 return Z;

Accelerating the Multiplication by a Ternary Matrix. Our idea is that,
if a ternary matrix is involved in the matrix multiplication, the corresponding
element multiplications are eliminated by running selections and additions. More
concretely, a product can be obtained based on Algorithm 1.

6 The proposed optimizations are not only focus on Tt and T̃ from APSTrapSamp. Ac-
tually, some extremely similar optimizations can be developed for any APTrapSamp-
type trapdoor sampling algorithm (e.g., MPTrapSamp).
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Decomposing the Multiplication by Tt and T. According to Algorithm 1,
we can get a method to replace the multiplications in TCTt by selections and
additions. In particular, our technique is based on the decomposition form of

Tt (resp. T) in Lemma 4. Specifically, for
[
GU −I
0 0

]
(resp.

[
GU −I
0 0

]t
), there is

(at most) a 1 in each column of GU, and others are zero elements. Then, (at
most) a 1 or −1 is in each column of

[
GU −I
0 0

]
, which means that the product of[

GU −I
0 0

]
(resp.

[
GU −I
0 0

]t
) and some matrix can be achieved by simply employing

selections shown in Algorithm 1. For [ RI ] (resp. [ RI ]
t
), since values of all elements

are from {0,±1}, Algorithm 1 can be directly used to obtain the product of

[ RI ] (resp. [ RI ]
t
) and some matrix. For [ U P ] (resp. [ U P ]

t
), values of elements

are from {−2, 0, 1}. Then, a modified Algorithm 1, where multiplying by −2 is
replaced by two additions, is suitable for generating the product of [ U P ] (resp.
[ U P ]

t
) and some matrix. In Algorithm 2, how to run the multiplication by T and

Tt is shown. Notice that, as discussed in Sect. 4.3, for C′ =
[
C′1 C′2
C′3 C′4

]
= TCTt,

only C′1 = T1CTt
1 is the required matrix corresponding to the final result.

According to the decomposition form in Lemma 4, this means that Algorithm 2
simply needs to involve Tt

1 = [ GU
0 ] + [ RI ] U, where R can be regarded as the

only “secret” matrix.

Simplifying the Multiplication by T̃ and T̃t. For T̃ =
[
U−1

0

]
, where U−1 =

diag(V−1
w , · · · ,V−1

w , I), we have ∀i ∈ [w] v−1
i =

∑i
j=1 2i−jej, which implies that

v−1
i′+1 = ei′+1 + 2v−1

i′ , where i′ ∈ [w − 1]. Based on this fact, for the case of

multiplying some matrix (e.g., C′) with T̃ (resp. T̃t), elements of the (wj+i+1)th
column (resp. row) of the corresponding product can be generated from elements
of the (wj + i)th column (resp. row) of the product by running 2m additions,

where i ∈ [w−1] and j ∈ [0,n−1]. Consider that C′ =
[
C′1 C′2
C′3 C′4

]
. Since the concrete

multiplications can focus on C′1, the “whole” product of (U−1)tC′1U
−1 = T̃tC′T̃

is computed as shown in Algorithm 3. Notice that Algorithm 3 does not need
any additional memory except the memory for storing C′1.

4.5 Property Analysis

In this section, we present the analyses on correctness, security and efficiency of
the optimized encryption scheme oGHV, respectively.

Theorem 8 For a plaintext matrix B ∈ Zm2×m2
p , oGHV with parameters n, m1,

m2, m, q, β that we can establish has correct encryption and decryption.

Proof. See Appendix A.13 for the proof.

Theorem 9 If there is a distinguishing algorithm with advantage ε against the
IND-CPA security of oGHV with parameters n, m1, m2, m, q, and β, then there
must be a distinguisher against dLWE(n,m, q, β) with roughly the same running
time and advantage (at most) ε

2m .
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Algorithm 2: Multiplication by Tt and T

Input: C ∈ Zm×m
q , R ∈ {0,±1}m1×m, n, w, m1, m2, and m

Output: C′1 ∈ Zm2×m2
q

1 Ĉ = C;
2 for i ∈ [m] do /* Running the multiplication by Tt

1 */
3 for j ∈ [m2] do
4 ĉi,j = ĉi,(j+m1);

5 for k ∈ [m1] do /* Invoking Algorithm 1 */
6 ĉi,j = ĉi,j + rk,jĉi,k;
7 end
8 end
9 for j ∈ [0,n− 1] do

10 for k ∈ [w− 1] do
11 ĉi,(wj+k+1) = ĉi,(wj+k+1) − (ĉi,(wj+k) + ĉi,(wj+k));
12 end
13 ĉi,(wj+1) = ci,(j+1) + ĉi,(wj+1);
14 end
15 end
16 for i ∈ [m2] do /* Running the multiplication by T1 */
17 for j ∈ [n] do
18 c̃j,i = ĉj,i;
19 end
20 for j ∈ [m2] do
21 ĉj,i = ĉ(j+m1),i;

22 for k ∈ [m1] do /* Invoking Algorithm 1 */
23 ĉj,i = ĉj,i + rk,jĉk,i;
24 end
25 end
26 for j ∈ [0,n− 1] do
27 for k ∈ [w− 1] do
28 ĉ(wj+k+1),i = ĉ(wj+k+1),i − (ĉ(wj+k),i + ĉ(wj+k),i);
29 end
30 ĉ(wj+1),i = c̃(j+1),i + ĉ(wj+1),i;
31 end
32 end
33 C′1 = the top-left m2 ×m2 block of Ĉ;

34 return C′1;

Algorithm 3: Multiplication by T̃ and T̃t

Input: C′1 ∈ Zm2×m2
q , n, w, and m2

Output: B = (U−1)tC′1U
−1 ∈ Zm2×m2

p

1 for i ∈ [w− 1] do
2 for j ∈ [0,n− 1] do
3 for k ∈ [m2] do
4 c′k,(wj+i+1) = c′k,(wj+i+1) + c′k,(wj+i) + c′k,(wj+i);

5 c′(wj+i+1),k = c′(wj+i+1),k + c′(wj+i),k + c′(wj+i),k;

6 end
7 end
8 end
9 return B = C′1;
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Proof. The security proof follows directly from the proof of IND-CPA security
for GHV (see Theorem 2 in [15]).

Theorem 10 For a plaintext matrix B ∈ Zm2×m2
p that is encrypted by the opti-

mized scheme oGHV using APSTrapSamp, oEnc(B) takes (at most) m2(n+1)(ta+
tm) + m2tg + m2

2ta time and 2nmdlg qe + m2
2dlg pe bits to generate a ciphertext

matrix C, and oDec(C) needs to take (at most) (( 1
2d+

√
n
2 +2)(m+m2)+4n(w−

1))m2ta time and (m2 + m2
2)dlg qe+ 2dm2 bits to recover B.

Proof. See Appendix A.14 for the proof.

5 Conclusions

In this paper, we have proposed an optimized GHV-type asymmetric HE scheme,
which is more efficient than the original GHV scheme. In particular, it provides a
much faster decryption algorithm, and the computational complexity of the de-
cryption is decreased from O(m3) to Õ(nm2). As the same as the GHV scheme,
security of our new GHV-type scheme is based on the standard LWE problem,
and our scheme also supports matrix encryption. We have compared the perfor-
mance of our scheme with two LWE-based FHE schemes, which support matrix
operations, and the comparison result indicates that our scheme is more efficient.
We also have discussed the options of using APSTrapSamp or MPSTrapSamp in
the GHV scheme, and our optimizations can benefit both of these two options.

Although we have given the optimized GHV-type HE scheme, from the per-
spective of implementation, how to make this proposal more practical is an
interesting open problem.
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A Appendices

A.1 Details of Component Matrices

APSTrapSamp. Given a fixed constant δ > 0, positive integers n, q, let m1 ≥
d = (1 + δ)n lg q and m2 ≥ (4 + 2δ)n lg q. Let H ∈ Zm1×m1 denote the Hermite
normal form of a lattice Λ⊥(A1). The component matrices G,P,U and R from
the PPT algorithm are defined as follows:

– G: Write G = [ G(1) G(2) ··· G(m1) M 0 ], where ∀i ∈ [m1] the block matrix G(i)

has wi = dlg hi,ie < 1+lg hi,i column vectors, where the diagonal element hi,i of

H is at least 1, and ∀j ∈ [wi] the jth column g
(i)
j of G(i) satisfies g

(i)
j = 2j−1ei.

Notice that, if q is a prime, all the values of hi,i that are greater than 1 are q,
and the number of this type of hi,i is at most n. Then,

∑
i∈[m1] wi ≤ ndlg qe.

Moreover, the special block matrix M has w column vectors, where w is the
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(G+R)U

U

RP‒I

P

m1

m2

m1m2

T
t
=A

t
=

m1

A1 ‒A1(R+G)

m2

n,

(a) APSTrapSamp

I+RP

P

RU

U

m1

m2

m1 m2

T
t 
=A

t =

m1

A1 G‒A1R

m2

n,

(b) MPSTrapSamp

Fig. 1. Block structures of At and Tt.

largest power of 2 in the range [d,m2 − 2n lg q] ⊇ [d, 2d]. The top d rows of
M are different rows of a square Hadamard matrix of size w × w, and other
elements of M are zero.

– P: Write Pt = [ (P(1))t (P(2))t ··· (P(m1))t 0 0 ], where ∀i ∈ [m1] the block matrix

P(i) ∈ Zwi×m1 . Let H′ = H− I. Then, ∀i, j ∈ [m1], the jth column p
(i)
j of P(i)

contains the binary representation of h′i,j, where h′i,j ∈ [0, hi,i[. This implies

that the element p
(i)
k,j ∈ {0, 1} of P(i) satisfies

∑
k∈[wi]

2k−1p
(i)
k,j = h′i,j. Moreover,

based on the definition of G(i), G(i)p
(i)
j = ei

∑
k∈[m1] 2k−1p

(i)
k,j = h′i,jei, which

means GP = H′.
– U: Write the block-diagonal matrix U = diag(Vw1 , · · · ,Vwm1

, I), where ∀i ∈
[m1] the unimodular upper-triangular matrix Vwi

∈ Zwi×wi . Specifically, the
value of the diagonal element vj,j of Vwi

is 1 (i.e., vj,j = 1 for j ∈ [wi]), and
the value of the upper diagonal element vj,j+1 of Vwi

is −2 (i.e., vj,j+1 = −2
for j ∈ [wi − 1]). All the other elements of Vwi are zero. Notice that, from the
definition of G, ∀i ∈ [n] wi = dlg qe when q is a prime. Then, we can write
U = diag(Vw, · · · ,Vw, I), where w = dlg qe and the total number of Vw is n.

– R: R is a “short” matrix. In particular, each element in the top d = (1+δ)n lg q
rows of R is independently chosen from {0,±1} according to the following
probability distribution: an element is 0 with probability 1

2 , −1 with proba-
bility 1

4 , and 1 with probability 1
4 . Moreover, elements of the remaining rows

are zero.

MPSTrapSamp. Given positive integers n, q, let m1 > n lg q (e.g., m1 = n lg q +
ω(log n)) and m2 ≥ ndlg qe. The component matrices G,P,U and R from the
PPT algorithm can be defined as follows:

– G: G is a sparse primitive matrix. In particular, write G = [ G(1) G(2) ··· G(n) 0 ],
where ∀i ∈ [n] the block matrix G(i) has w = dlg qe column vectors, and

∀j ∈ [w] the jth column g
(i)
j of G(i) satisfies g

(i)
j = 2j−1ei. Notice that, the

size of ei is n.
– P: P ∈ Zm2×m1 is an arbitrary solution to GP = −A1 (mod q). Based on the

definition of G, we obtain an obvious solution Pt = [ (P(1))t (P(2))t ··· (P(n))t 0 ],
where ∀i ∈ [n] the block matrix P(i) ∈ Zw×m1 , and ∀j ∈ [m1], the jth column

p
(i)
j of P(i) contains the binary representation of −(a1)i,j.
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– U: U is the basis for Λ⊥(G), which implies that GU = 0 (mod q). Write the
block-diagonal matrix U = diag(Vw, · · · ,Vw, I) ∈ Zm2×m2 , where the lower-
triangular matrix Vw ∈ Zw×w, and the total number of Vw is n. Specifically,
if q = 2w the value of the diagonal element vj,j of Vw is 2 (i.e., vj,j = 2 for
j ∈ [w]), and the value of the lower diagonal element vj+1,j of Vw is −1 (i.e.,
vj+1,j = −1 for j ∈ [w − 1]). If q 6= 2w, for j ∈ [w − 1] the construction of
the jth column (vw)j of Vw is the same as that of the case q = 2w, while
the wth column (vw)w of Vw contains the binary representation of q. Let
q = (q′1, q

′
2, . . . , q

′
w) ∈ {0, 1}w be the binary representation of q =

∑w
i=1 2i−1q′i.

Then, (vw)w = q.
– R: R is a random “short” matrix sampled from a probability distribution D

over Zm1×m2 . In particular, D is subgaussian with some (Gaussian) parameter
β′ > 0. This means that D can be a discrete Gaussian distribution for some
β′ ≥ ηυ(Z), where ηυ is the smoothing parameter and υ is negligible in n, or
the distribution over {0,±1}m1×m2 that outputs 0 with probability 1

2 and ±1
with probability 1

4 , respectively.

A.2 Details of GHV

The concrete GHV cryptosystem with parameters n,m, q, β involves a triple of
PPT algorithms GHV = (KeyGen,Enc,Dec) below:

– KeyGen(1n)→ (A,T): On input 1n, run the APTrapSamp-type trapdoor sam-
pling algorithm (e.g., APSTrapSamp) to compute its public key A ∈ Zm×n

q

and its trapdoor T ∈ Zm×m as the secret key. Output the key pair (A, T).
– EncA(B) → C: On input a plaintext message B ∈ Zm×m

p , sample a matrix

S
$←− Zn×m

q and an “error matrix” X ← Ψβ(q)m×m. Compute a ciphertext
C ∈ Zm×m

q as follows: C = AS + pX + B (mod q).

– DecT(C) → B: On input the ciphertext message C, first run C′ = TCTt

(mod q) and then recover B = T−1C′(Tt)−1 (mod p).

The attractive thing is that GHV supports one multiplication and polynomial-
ly number (i.e., nc for c > 0) of additions. This means that B1B

t
2 = DecT(C1C

t
2)

and B1 + B2 = DecT(C1 + C2), where EncA(B1) = C1 and EncA(B2) = C2.
Consider the case that APSTrapSamp is used in KeyGen. To guarantee the cor-
responding homomorphic operations, if p = 2, parameters q, m and β can be
set as q > 220(c + 4)3n3c+4 lg5 n (with q an odd prime), m = b8n lg qc and
β = 1

27n1+ 3c
2 lg n lg q

√
qm

, and if p > 2, q = ω(p2(c + 4)3n3c+4 lg5 n) and the oth-

er parameters are the same as above. Moreover, GHV holds a “very special”
property that the product of two encryptions under two distinct public keys can
be correctly decrypted by pulling together the corresponding two secret keys.
Specifically, given two key pairs (A1,T1) and (A2,T2) with both defined mod-
ulo the same prime q. Assume that C1 = EncA1(B1) = A1S1 + pX1 + B1

(mod q) and C2 = EncA2
(B2) = A2S2 + pX2 + B2 (mod q). Then, B1B

t
2 =

Dec(T1,T2)(C1C
t
2) = T−1

1 (T1C1C
t
2T

t
2 (mod q))(Tt

2)−1 (mod p). To the best of
our knowledge, this property is known as the multi-key homomorphism which is
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first defined by López-Alt, Tromer and Vaikuntanathan in 2012 [22]. From this
point of view, GHV is actually a multi-key homomorphic encryption scheme that
may be used for multi-party computation.

A.3 Proof of Lemma 4

Proof. From Sect. 2.2 (see Fig. 1(a)), we obtain that T =
([

(G+R)U RP−I
U P

])t
=([

GU −I
0 0

]
+ [ RU RP

U P ]
)t

=
([

GU −I
0 0

]
+ [ RI ] [ U P ]

)t
. Then, NT actually involves

numbers of nonzero elements in
([

GU −I
0 0

])t
and ([ RI ] [ U P ])

t
. Specifically, from

the constructions of G and U in Sect. 2.2 (see Appendix A.1), since the modulus
q that we need to set is prime, GU can be equal to [ G(1)Vw G(2)Vw ··· G(n)Vw 0 ].
In particular, ∀i ∈ [n], the first column of G(i)Vw is ei, and other columns of

G(i)Vw are zero vectors. Hence, there are n+m1 nonzero elements in
([

GU −I
0 0

])t
.

For ([ RI ] [ U P ])
t
, we first discuss NR, NU and NP, respectively. Based on the

fact that each element in the first d rows of R is nonzero with probability 1
2 , we

have NR ∼ Bin 1
2 ,dm2

. According to Sect. 2.2 (see Appendix A.1), since only the w

diagonal elements and the w−1 upper diagonal elements of Vw are nonzero (i.e.,
1 and −2), U consisting of n matrices Vw and an (m2−nw)× (m2−nw) identity
matrix I satisfies that NU = m2 + n(w − 1). For P, it can be regarded as the
binary representation of H′ = H− I, where H = [ qe1 ··· qen Ĥ ] when q is prime.

Then, under the assumption that hi,j
$←− Zq for i ∈ [n] and j ∈ [n +1,m1], we can

obtain that NP = nbwt(q−1)+NPH̃
, where we have NPH̃

s
≈ Bin 1

2 ,n(m1−n)w. Next,

based on the above analysis, there are 2m2 + n(w + bwt(q− 1)− 1) + NR + NPH̃

nonzero elements in [ RI ] and [ U P ]. According to Definition 2, this means that

2m2 +n(w+bwt(q−1)−1)+NR +NPH̃
nonzero elements related to ([ RI ] [ U P ])

t

are needed for matrix multiplication. Hence, NT = n+m1 +2m2 +n(w+bwt(q−
1)− 1) + NR + NPH̃

= m + m2 + n(w + bwt(q− 1)) + NR + NPH̃
, which confirms

our lemma.

A.4 Proof of Lemma 5

Proof. From the decomposition form of T, we know that NT actually involves
numbers of nonzero elements in ([ I 0

P U ])
t

and ([ I R
0 I ])

t
. Specifically, from the

definition of R, since each element in R is nonzero with probability 1
2 , we have

NR ∼ Bin 1
2 ,m1m2

. For P, since each column contains the binary representation

of an element of −A1, where A1
$←− Zn×m1

q , we have NP
s
≈ Bin 1

2 ,nm1w. According

to the definition of U, we have NU = nNVw + (m2 − nw), where NVw = 2w −
2 + bwt(q). Then, NU = n(w− 2 + bwt(q)) + m2. Based on the above results, we
obtain that NT = NR + NP + n(w− 2 + bwt(q)) + m2 + (m1 + m) = NR + NP +
2m + n(w− 2 + bwt(q)), which confirms our lemma.

A.5 Proof of Lemma 6

Proof. We employ the column transformation to generate the inversion of the
trapdoor matrix T, and the detailed procedure on computing (T−1)t is shown
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in Fig. 2. Notice that, the second transformation in Fig. 2 is based on the fac-

t that GP = H′. Then, T−1 =
([

U−1 0
0 I

] (
[ 0 I
0 0 ] +

[
P
−I
]

[ H−1 −H−1(G+R) ]
))t

.
For U−1, from definitions of U and V in Appendix A.1, it is easy to find that
U−1 = diag(V−1

w1
, · · · ,V−1

wm1
, I), where ∀i ∈ [wk] with k ∈ [m1] the ith colum-

n of the wk × wk matrix V−1
wk

is
∑i

j=1 2i−jej. Here we first focus on explor-

ing [ H−1 −H−1(G+R) ] ∈ Zm1×m
p that involves three matrices H−1, G and R.

Specifically, H−1 is able to be directly generated from H, which means that
∀i ∈ [n], j ∈ [n + 1,m1] h−1

i,i = q−1, h−1
j,j = 1, h−1

i,j = −q−1hi,j, and other

elements are zero. We write H−1 =
[

(q−1)I H̃−1

0 I

]
as a block matrix, where

H̃−1 ∈ Zn×(m1−n)
p corresponds to {h−1

i,j |∀i ∈ [n], j ∈ [n + 1,m1]}. Based on

the assumption that hi,j
$←− Zq and the random choice of R =

[
R1

R2

]
, where

R1 ∈ {0,±1}n×m2 and R2 ∈ {0,±1}(m1−n)×m2 , we have that [ H̃−1 H̃−1R2 ] is
statistically close to uniformly random by the matrix-vector leftover hash lem-
ma [10]. Now letting F = [ (q−1)I H̃−1 ] R = [ (q−1)I H̃−1 ]

[
R1

R2

]
, we have that

[ H̃−1 F ] is an (almost) uniformly random matrix over Zn×(m2+m1−n)
p , and so

is the block matrix [ H̃−1 −[ (q−1)I H̃−1 ](G+R) ]. Hence, the number of nonzero
elements of [ H̃−1 −[ (q−1)I H̃−1 ](G+R) ] can be regarded as a random variable
following a distribution that is statistically close to Bin p−1

p ,n(m2+m1−n). More-

over, since ∀i ∈ [n + 1,m1], j ∈ [m2] gi,j = 0 in G when q is a prime, we obtain

that − [ 0 I ] (G + R) = − [ 0 I ]
[
R1

R2

]
= −R2. This means that the number of

nonzero elements of − [ 0 I ] (G + R) can also be regarded as a random variable
that follows Bin 1

2 ,(d−n)m2
. According to the above analysis, we have that the

number of nonzero elements of [ H−1 −H−1(G+R) ] is equal to m1 + Y1 + Y2,

where Y1
s
≈ Bin p−1

p ,n(m2+m1−n) and Y2 ∼ Bin 1
2 ,(d−n)m2

. For
[
U−1 0
0 I

]
, from

the above discussion on U−1, we know that NU−1 ∈ [m2,m2 + nw(w−1)
2 ] and

NU−1 = m2 if p = 2, which indicates that the number of nonzero elements
in
[
U−1 0
0 I

]
is (at least) m. For [ 0 I

0 0 ], the number of corresponding nonzero

elements is m2. For
[

P
−I
]
, based on the exploration of NP in Lemma 4, the

number of corresponding nonzero elements is m1 + nbwt(q − 1) + NPH̃
, where

NPH̃

s
≈ Bin 1

2 ,n(m1−n)w. Next, taking all numbers together, NT−1 is (at least)

2m + m1 + nbwt(q− 1) + NPH̃
+ Y1 + Y2, which confirms our lemma.

A.6 Proof of Lemma 7

Proof. From Lemma 5, we know that T−1 =
(

([ I R
0 I ] [ I 0

P U ])
−1
)t

, where [ I 0
P U ] =

[ I 0
P I ] [ I 0

0 U ]. Then, we immediately obtain that T−1 =
([

I 0
0 U−1

] [
I 0
−P I

] [
I −R
0 I

])t
.

In particular, U−1 = diag(V−1
w , · · · ,V−1

w , I), where there exists a decomposition

V−1
w = (V̂wṼw)−1 = Ṽ−1

w V̂−1
w , and I is of size (m2 − nw)× (m2 − nw). Specif-

ically, for V̂w, the value of the diagonal element v̂i,i is −1 (i.e., v̂i,i = −1 for
i ∈ [w]), and the value of the upper diagonal element v̂i,i+1 is 2 (i.e., v̂i,i+1 = 2
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Fig. 2. The detailed procedure for computing (T−1)t.

for i ∈ [w− 1]). All the other elements of V̂w are zero. For Ṽw, the value of the
lower diagonal element ṽi+1,i is 1 (i.e., ṽi+1,i = 1 for i ∈ [w − 1]), and ∀j ∈ [w]

ṽj,w = −
∑w

k=j 2k−jq′k, where q′k ∈ {0, 1}. All the other elements of Ṽw are also

zero. Then, the nonzero element of V̂−1
w focuses on v̂−1

i,j , where i, j ∈ [w] and

i ≤ j. This means that NV̂−1
w
≥ w and NV̂−1

w
is at most (w+1)w

2 when p > 2 is

a prime. The nonzero element of Ṽ−1
w focuses on ṽ−1

i,w and ṽ−1
i,i+1, where i ∈ [w].

Since q is a prime, NṼ−1
w
> w− 1, and NṼ−1

w
is at most 2w− 1. From the above

analysis, we have m2 + n(w − 1) < NU−1 ≤ m2 + n(w2+3w−2)
2 . Moreover, ac-

cording to Lemma 5, N−R = NR ∼ Bin 1
2 ,m1m2

, and N−P = NP
s
≈ Bin 1

2 ,nm1w.
Hence, NT−1 = NU−1 + N−R + N−P + 2m + m1 = NR + NP + 3m + Y3, where

n(w− 1) < Y3 ≤ n(w2+3w−2)
2 . This confirms our lemma.
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A.7 Proof of Theorem 2

Proof. Let us first show the computational cost of Enc(B) = AS + pX + B
(mod q). Specifically, for the matrix multiplication AS, since A is an (almost)

uniformly random matrix over Zm×n
q and S

$←− Zn×m
q , it at most involves nm2

element-wise multiplications and additions. For pX, there are m2 element-wise
multiplications and discrete Gaussian samplings. Moreover, two necessary matrix
additions in AS+ pX+B (mod q) need 2m2 element-wise additions. Therefore,
the computation of Enc(B) takes at most m2((n + 1)tm + (n + 2)ta + tg) time.

Then, we explore the computational cost of Dec(C) that includes two steps.
The first step C′ = TCTt (mod q) involves two independent matrix multi-
plications (using the decomposition form of T). From Lemma 4, we know that

NT = NR +NPH̃
+m+m2 +n(w+bwt(q−1)), where NR ∼ Bin 1

2 ,dm2
and NPH̃

s
≈

Bin 1
2 ,n(m1−n)w. In particular, applying Theorem 1, Pr[NR + NPH̃

< 1
2 (dm2 +

n(m1−n)w)−
√

n
2 m2] < exp−n, which means that NR +NPH̃

+n(w+bwt(q−1))

is at least 1
2 (dm2 +n(m1−n)w)−

√
n
2 m2 (with overwhelming probability). Then

the computational overhead of TCTt (mod q), which is equal to 2mNT(tm+ta),
is at least 2m(( 1

2d + 1−
√

n
2 )m2 + m + 1

2n(m1 − n)w)(tm + ta). The second step
B = T−1C′(Tt)−1 (mod p) also involves two independent matrix multiplica-
tions (using the decomposition form of T−1). According to Lemma 6, NT−1 is

at least 2m + m1 + nbwt(q− 1) + NPH̃
+ Y1 + Y2, where Y1

s
≈ Bin p−1

p ,n(m−n) and

Y2 ∼ Bin 1
2 ,(d−n)m2

. In particular, applying Theorem 1,{
Pr[Y1 <

p−1
p n(m− n)−

√
n
2 m2] < exp−n,

Pr[Y2 + NPH̃
< 1

2 ((d− n)m2 + (m1 − n)nw)−
√

n
2 m2] < exp−n,

which implies that (with overwhelming probability) Y1 + Y2 + NPH̃
+ nbwt(q−

1) is at least p−1
p n(m − n) −

√
n
2 m2 + 1

2 ((d − n)m2 + (m1 − n)nw) −
√

n
2 m2.

Hence, the computational overhead of T−1C′(Tt)−1 (mod p), which is equal to
2mNT−1(tm + ta), is at least 2m(p−1

p n(m − n) + 1
2 ((d − n)m2 + (m1 − n)nw) −√

2nm2 + 2m + m1)(tm + ta). Taking both costs together, the computation of
Dec(C) takes at least 2m(p−1

p n(m − n) + (d − n
2 − 3

√
n
2 )m2 + (m1 − n)nw +

4m)(tm + ta) time.

A.8 Proof of Theorem 3

Proof. For GHV using MPSTrapSamp, the analysis of the computational cost
of Enc(B) = AS + pX + B (mod q) is the same as that of the case when
APSTrapSamp is employed by GHV. Then, the encryption also takes at most
m2((n + 1)tm + (n + 2)ta + tg) time.

Next, we focus on showing the computational cost of Dec(C) that includes
two steps. For the first step C′ = TCTt (mod q) involving two independent ma-
trix multiplications (using the decomposition form of T), according to Lemma 5,
we have NT = NR + NP + 2m + n(w− 2 + bwt(q)), where NR ∼ Bin 1

2 ,m1m2
and
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NP
s
≈ Bin 1

2 ,nm1w. In particular, applying Theorem 1, Pr[NR + NP < 1
2m1(nw +

m2)−
√

n(m1(nw+m2)+1)
2 ] < exp−n, which implies that (with overwhelming prob-

ability) NR+NP+n(w−2+bwt(q)) is at least 1
2m1(nw+m2)−

√
n(m1(nw+m2)+1)

2 +

n(w− 2). Hence, the computational cost of C′ = TCTt (mod q), which is equal

to 2mNT(tm + ta), is at least 2m( 1
2m1(nw + m2) −

√
n(m1(nw+m2)+1)

2 + 2m +

n(w − 2))(tm + ta). Moreover, the second step B = T−1C′(Tt)−1 (mod p) also
involves two independent matrix multiplications (using the decomposition form
of T−1). According to Lemma 7, NT−1 = NR + NP + 3m + Y3, where n(w−1) <

Y3 ≤ n(w2+3w−2)
2 . Thus, NT−1 is at least 1

2m1(nw + m2) −
√

n(m1(nw+m2)+1)
2 +

3m + n(w − 1) (with overwhelming probability). This means that the compu-
tational overhead of the second step, which is equal to 2mNT−1(tm + ta), is at

least 2m( 1
2m1(nw + m2) −

√
n(m1(nw+m2)+1)

2 + 3m + n(w − 1))(tm + ta). Based

on the above analysis, the computation of Dec(C) takes at least 2m(m1(nw +
m2)−

√
2n(m1(nw + m2) + 1) + 5m + (2w− 3)n)(tm + ta) time.

A.9 Proof of Theorem 4

Proof. The whole computation procedure of Enc(B) needs four matrices, i.e.,
A, S, X and B. Specifically, since A and S are matrices over Zm×n

q and Zn×m
q ,

respectively, the size of A and S are bounded by 2nmdlg qe. Each element of
X is generated by a discrete Gaussian sampling algorithm over the integers.
Then, after generating an element of pX, we can directly add it to an element
of AS. This implies that there is no need to store X. For B ∈ Zm×m

p , the
corresponding size is bounded by m2dlg pe. Therefore, the memory cost of Enc(B)
is 2nmdlg qe+ m2dlg pe bits.

Next, we analyze the case of Dec(C). Notably, this computation involves
four matrices, i.e., C, C′, T and T−1. In particular, the size of C ∈ Zm×m

q

and C′ ∈ Zm×m
q are bounded by 2m2dlg qe. For T and T−1, we can employ the

corresponding decomposition forms and simply store non-deterministic compo-

nents for building these two matrices7. Consider T =
([

GU −I
0 0

]
+ [ RI ] [ U P ]

)t
.

From the constructions of G and U in Appendix A.1, we know that ∀i ∈
[0,n − 1] the (iw + 1)th column of GU is ei, and other columns of GU are
zero vectors. This implies that GU is easily reconstructed for each decryption.
Then, there is no need to store the deterministically-constructed matrices U
and GU, and the memory cost is simply used for R ∈ {0,±1}m1×m2 and P ∈
{0, 1}m2×m1 . Moreover, P is the binary representation of H′ = H−I, where H =
[ qe1 ··· qen Ĥ ] and Ĥ =

[
H̃
I

]
. The only non-deterministic component in P is the

binary representation of H̃. Hence the real memory cost for T is 2dm2 + n(m1−
n)w. Now, let us consider T−1 =

([
U−1 0
0 I

] (
[ 0 I
0 0 ] +

[
P
−I
]

[ H−1 −H−1(G+R) ]
))t ∈

7 In Sect. 4.4, some concrete optimizations on speeding up matrix multiplication are
given, which demonstrate that why the memory cost is only used for the non-
deterministic components.
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Zm×m
p . From Lemma 6, we know that U−1 is constructed deterministically. For

[ H−1 −H−1(G+R) ], where H−1 =
[

(q−1)I H̃−1

0 I

]
, the non-deterministic compo-

nent is [ H̃−1 −[ (q−1)I H̃−1 ](G+R) ] ∈ Zn×(m−n)
p . This means that the real mem-

ory cost for T−1 can only be n(m − n)dlg pe. Based on the above analysis, we
believe that the memory cost of Dec(C) is (at least) 2m2dlg qe+n(m−n)dlg pe+
2dm2 + n(m1 − n)w bits.

A.10 Proof of Theorem 5

Proof. For GHV using MPSTrapSamp, the analysis of the memory cost of Enc(B) =
AS + pX + B (mod q) is the same as that of the case when APSTrapSamp is
employed by GHV. Then, the encryption also takes 2nmdlg qe+ m2dlg pe bits.

For the case of Dec(C). The corresponding computation involves four matri-
ces, i.e., C, C′, T and T−1. The size of C ∈ Zm×m

q and C′ ∈ Zm×m
q are bounded

by 2m2dlg qe. For T and T−1, we still use the decomposition forms and simply
store non-deterministic components for building these two matrices. From Lem-

ma 5 and 7, we know T = ([ I R
0 I ] [ I 0

P U ])
t

and T−1 =
([

I 0
0 U−1

] [
I 0
−P I

] [
I −R
0 I

])t
.

According to the construction of U in Appendix A.1 and our analysis on the con-
struction of U−1 in Lemma 7, we also know that U and U−1 can be constructed
deterministically. Hence, it is simply necessary to store R ∈ {0,±1}m1×m2 and
P ∈ {0, 1}m2×m1 , where elements of the last m2 − nw rows of P are zero. This
means that the real memory cost for T and T−1 is m1(2m2 + nw), and Dec(C)
takes (at least) 2m2dlg qe+ m1(2m2 + nw) bits to perform the decryption.

A.11 Proof of Theorem 6

Proof. Let C =
∑nc

i=1(ASi + pXi + B′i). Since the post-multiplication by Tt for

decrypting C is redundant, we analyze the size of elements in
∑nc

i=1 T(pXi+B′i).

Notice that, as shown above, here we only need to focus on
∑nc

i=1 T1(pXi + B′i)
that is directly related to the computation of C′1. Specifically, consider that T1 =
[ ((G+R)U)t Ut ]. According to constructions of G, R and U in Appendix A.1,
for i ∈ [nw], if i (mod w) = 1 the ith column of (G + R)U is ei + ri, and
if i (mod w) 6= 1 the ith column of (G + R)U is ri − 2ri−1. Moreover, for
i ∈ [nw + 1,m2], the ith column of (G + R)U is equal to ri. To determine the
upper bound of the Euclidean norm of all the rows of T1 = [ ((G+R)U)t Ut ], we
explore the Euclidean norm of ri−2ri−1, of which the upper bound is larger than
that of ei+ri and ri, where i ∈ [m2]. Assume that ∀j ∈ [m1] Rj := (ri,j−2ri−1,j)

2.
From the definition of R (see Appendix A.1), Pr[ri,j = 0] = 1

2 , Pr[ri,j = 1] = 1
4

and Pr[ri,j = −1] = 1
4 . Then, we have the following probability distribution

related to Rj: ∀j ∈ [m1], if (ri,j, ri−1,j) = (0, 0), Rj = 0 and Pr[Rj = 0] = 1
4 ;

if (ri,j, ri−1,j) ∈ {(1, 1), (−1,−1), (1, 0), (−1, 0)}, Rj = 1 and Pr[Rj = 1] = 3
8 ;

if (ri,j, ri−1,j) ∈ {(0, 1), (0,−1)}, Rj = 4 and Pr[Rj = 4] = 1
4 ; if (ri,j, ri−1,j) ∈

{(1,−1), (−1, 1)}, Rj = 9 and Pr[Rj = 9] = 1
8 . This implies that the mean of Rj is

5
2 . Applying Theorem 1, we obtain Pr[

∑m1

j=1 Rj− 5
2m1 >

3
2m1] < exp−

1
36m1 . Now
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consider the general case that m1 = d 101
100n lg qe � 36. The Euclidean norm of all

the rows of T1 is less than 2
√

m1 with overwhelming probability. Based on Lem-
ma 3 (with g =

√
lg n− 3

2nc
√
m1βq

), each element of T1Xi is bounded by 2βqg
√

m1

with overwhelming probability. Moreover, since every element of Bi is at most

p− 1, each element of
∑nc

i=1 UtBi is bounded by 3ncp, which implies that each

element in
∑nc

i=1 T1B
′
i =

∑nc

i=1 [ Ut(G+R)t Ut ] B′i = [ Ut(G+R)t Ut ]
[
0 0
0

∑nc

i=1 Bi

]
=

[ 0
∑nc

i=1 UtBi ] is also bounded by 3ncp. Hence, the absolute value of each element

of
∑nc

i=1 T1(pXi + B′i) is bounded by 2nc√m1βpqg + 3ncp = 2ncβpq
√

m1 lg n =
2ncpq

√
m1 lg n

5pnc
√
m1 lg n

= 2
5q < q

2 . According to TA = 0 (mod q), C′1 = T1C (mod q) =∑nc

i=1 T1(pXi + B′i) (mod q) =
∑nc

i=1 T1(pXi + B′i), which confirms our param-
eter setting. About the detailed proof of the correctness of the homomorphic
addition operation, please see a similar proof for Theorem 8.

A.12 Proof of Theorem 7

Proof. We first discuss the case of supporting nc homomorphic addition op-

erations. Let C =
∑nc

i=1(ASi + pXi + B′i). The analysis for the size of ele-

ments in
∑nc

i=1 T1(pXi + B′i) is nearly the same as that in the proof of Theo-

rem 6. In particular, the absolute value of each element in
∑nc

i=1 T1(pXi +B′i) is

bounded by 2ncβpq
√

m1 lg n that satisfies 2ncβpq
√

m1 lg n = 2ncpq
√
m1 lg n

2pn
3c
2
√
mm1q lg n

=

1

n
c
2

√
q
m �

√
q
m , where inequality is based on the general condition that n

c
2 � 1.

Then, each element in
∑nc

i=1 T1(pXi + B′i)T
t
1 is bounded by 2m

√
m1

√
q
m =

2m
√
d 101

100n lg qe q
m � q

2 . Since TA = 0 (mod q), we obtain C′1 = T1CTt
1

(mod q) =
∑nc

i=1 T1(pXi +B′i)T
t
1 (mod q) =

∑nc

i=1 T1(pXi +B′i)T
t
1, which con-

firms our parameter setting. About the detailed proof of the correctness of the
homomorphic addition operation, please see a similar proof for Theorem 8.

Then, we explore the case of supporting one homomorphic multiplication op-
eration. Specifically, assume that there is a circuit with one `1-fan-in addition
layer, which is followed by a multiplication layer of fan-in two, and another `2-
fan-in addition layer, where `1 +`2 ≤ nc 8. As shown above, the ciphertext Ci at
the output of the multiplication layer is of the form ASi + pXi +B′i + S̃iA

t, and
all the products from the output of the multiplication layer are of the same form.
Notably, the product ciphertext Ci can be described as ASi+(pXi1+B′i1)(pXi2+

B′i2)t+S̃iA
t, which implies that TCiT

t (mod q) = T(pXi1+B′i1)(pXi2+B′i2)tTt

(mod q), where both pXi1 + B′i1 and pXi2 + B′i2 are generated by adding up-
to `1 encryptions. According to the relaxed condition, we simply analyze the
size of elements in T1(pXi1 + B′i1)(pXi2 + B′i2)tTt

1. Moreover, from the above
analysis, we know that the absolute value of each element in T1(pXi1 + B′i1)

and (T1(pXi2 + B′i2))t is bounded by `1

n
3c
2

√
q
m . This means that every ele-

8 The circuit used in our proof is the same as that in the proof of Theorem 1 in [15].
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ment of T1(pXi1 + B′i1)(pXi2 + B′i2)tTt
1 is bounded by m

(
`1

n
3c
2

√
q
m

)2

=
`21
n3c q.

Next, for the final ciphertext C =
∑`2

i=1(ASi + pXi + B′i + S̃iA
t) at the out-

put of the addition layer, we still focus on considering the size of elements of∑`2
i=1 T1(pXi + B′i)T

t
1 that is directly related to the computation of C′1, where

`2 ≤ nc−`1. Then, based on the above analysis, each element of
∑`2

i=1 T1(pXi +

B′i)T
t
1 is bounded by

`21`2
n3c q ≤ `21(nc−`1)

n3c q ≤ 2
9q < q

2 , where the second inequal-
ity is based on the fact that `21(nc − `1) can achieve the maximum 2

9n3c when

`1 = 2
3nc. Once again, we have C′1 = T1CTt

1 (mod q) =
∑`2

i=1 T1(pXi + B′i)T
t
1

(mod q) =
∑`2

i=1 T1(pXi + B′i)T
t
1, which also confirms our parameter setting.

About the detailed proof of the correctness of the homomorphic multiplication
operation, please see a similar proof for Theorem 8.

A.13 Proof of Theorem 8

Proof. For a plaintext matrix B ∈ Zm2×m2
p , run oEnc to construct an enlarged

matrix B′ = [ 0 0
0 B ] ∈ Zm×m

p , and generate its corresponding ciphertext ma-
trix C = (AS + pX + B′) (mod q) ∈ Zm×m

q . Then, from TA (mod q) = 0,
we have C′ = TCTt (mod q) = T(AS + pX + B′)Tt (mod q) = T(pX +
B′)Tt (mod q). Consider that APSTrapSamp is employed by oKeyGen. Accord-
ing to the parameter setting in Theorem 7 (and Theorem 6), T(pX + B′)Tt

(mod q) = T(pX + B′)Tt, which means that C′ = T(pX + B′)Tt and T̃tC′T̃
(mod p) = T̃tTB′TtT̃ (mod p). In particular, we know that Tt = [ Tt

1 Tt
2 ],

where Tt
1 =

[
(G+R)U

U

]
∈ Zm×m2 and Tt

2 =
[
RP−I

P

]
∈ Zm×m1 . This implies that

we can get TB′Tt =
[
T1

T2

]
[ 0 0
0 B ] [ Tt

1 Tt
2 ] =

[
Ut

Pt

]
B [ U P ] . Hence, T̃tTB′TtT̃

(mod p) = ([ U P ] T̃)tB [ U P ] T̃ (mod p). Moreover, since T̃ =
[
U−1

0

]
, we have

[ U P ]
[
U−1

0

]
= I. Then the output of oDec is T̃t(TCTt (mod q))T̃ (mod p) =

IBI (mod p) = B, which confirms our result.

A.14 Proof of Theorem 10

Proof. We first analyze the overhead of encrypting an m2×m2 matrix B. Specif-
ically, the matrix multiplication involved in oEnc is AS, where A ∈ Zm×n

q and
S ∈ Zn×m

q . The computation of AS needs at most 2m2n element-wise arithmetic
operations. The computation of pX includes m2 element-wise multiplications
and discrete Gaussian samplings. Moreover, two necessary matrix additions of
AS + pX + B (mod q) involve at most m2 + m2

2 element-wise additions. Thus,
the overall computational cost of oEnc(B) is (at most) m2(n + 1)(ta + tm) +
m2tg + m2

2ta. The whole procedure of oEnc(B) involves four matrices, i.e., A, S,
X and B. In particular, A and S have 2nmdlg qe bits. B ∈ Zm2×m2

p has m2
2dlg pe

bits. Notice that, as discussed in Theorem 4, there is also no need to store pX.
Then, the memory cost of oEnc(B) is 2nmdlg qe+ m2

2dlg pe bits.

Next, we analyze the cost of oDec. Specifically, the first step C′ =
[
C′1 C′2
C′3 C′4

]
=

TCTt (mod q) includes two independent matrix multiplications. Since B is re-
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covered from the m2 ×m2 matrix C′1, the corresponding efficiency analysis ac-
tually can only focus on the generating process of C′1. From Lemma 4, we know
that the first m2 columns of Tt (i.e., Tt

1) can be expressed as [ GU
0 ] + [ RI ] U.

Thus, based on the consequence of NT in Lemma 4, NT1 = NR + nw + 2m2.
Moreover, from the second optimization in Sect. 4.4 (see Algorithm 2), we ob-
tain that the computation of C′1 = ([ GU

0 ] + [ RI ] U)tC([ GU
0 ] + [ RI ] U) simply

takes (m2 + m)NT1
ta = (m2 + m)(NR + nw + 2m2)ta time. In particular, ac-

cording to Theorem 1, Pr[NR > 1
2dm2 +

√
n
2 m2 − nw] < exp−n, which mean-

s that NR + nw is at most 1
2dm2 +

√
n
2 m2 (with overwhelming probability).

The second step B = T̃tC′T̃ (mod p) involves two matrix multiplications re-
lated to T̃ and T̃t. By employing the third optimization in Sect. 4.4 (see Algo-
rithm 3), the computation of T̃tC′T̃ (mod p) = (U−1)tC′1U

−1 (mod p) takes
4nm2(w− 1)ta time. Therefore, the overall computational cost of oDec(C) is (at
most) (( 1

2d +
√

n
2 +2)(m + m2)+4n(w−1))m2ta. As discussed in Sect. 4.4, since

there is no need to store T (including GU, U and P) and T̃, the whole proce-
dure of oDec(C) involves three stored matrices, i.e., R, C and C′. In particular,
the memory cost of R ∈ {0,±1}m1×m2 needs 2dm2 bits, and C and C′ (i.e., C′1)
have (m2 +m2

2)dlg qe bits, which means that the overall memory cost of oDec(C)
can be (m2 + m2

2)dlg qe+ 2dm2 bits.


