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Abstract. Performance in hardware has typically played a significant role in differen-
tiating among leading candidates in cryptographic standardization efforts. Winners
of two past NIST cryptographic contests (Rijndael in case of AES and Keccak in
case of SHA-3) were ranked consistently among the two fastest candidates when
implemented using FPGAs and ASICs. Hardware implementations of cryptographic
operations may quite easily outperform software implementations for at least a subset
of major performance metrics, such as latency, number of operations per second,
power consumption, and energy usage, as well as in terms of security against physical
attacks, including side-channel analysis. Using hardware also permits much higher
flexibility in trading one subset of these properties for another. This paper presents
high-speed hardware architectures for four lattice-based CCA-secure Key Encapsula-
tion Mechanisms (KEMs), representing three NIST PQC finalists: CRYSTALS-Kyber,
NTRU (with two distinct variants, NTRU-HPS and NTRU-HRSS), and Saber. We
rank these candidates among each other and compare them with all other Round 3
KEMs based on the data from the previously reported work.
Keywords: Post-Quantum Cryptography · lattice-based · Key Encapsulation Mech-
anism · hardware · FPGA

1 Introduction
Post-Quantum Cryptography (PQC) refers to a class of cryptographic algorithms that are
resistant against all known attacks using quantum computers and can be implemented on
traditional non-quantum computing platforms. These platforms include microprocessors,
microcontrollers, graphics processing units (GPUs), Field Programmable Gate Arrays
(FPGAs), Application-Specific Integrated Circuits (ASICs), and many others. The main
goal of PQC is to replace the existing public-key cryptography standards based on RSA
and Elliptic Curve Cryptography. These standards seem to be the most vulnerable to
quantum computing and impossible to defend using traditional approaches such as gradually
increasing key sizes [86, 14, 90, 39].

To initiate a timely transition to a new class of cryptographic schemes, in December
2016, NIST launched its PQC standardization process with the release of a "Call for
Proposals and Request for Nominations for Public-Key Post-Quantum Cryptographic
Algorithms" [72]. Sixty-nine submissions were judged complete and accepted for Round
1, which started in December 2017 [78, 1]. In January 2019, based on the initial security
analysis and preliminary software benchmarking results, 26 submissions were qualified
by NIST to Round 2. On July 22, 2020, NIST announced 15 candidates qualified for
Round 3 of the standardization process. These candidates are summarized in Fig. 1. All
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Figure 1: Finalists and alternate candidates qualified to Round 3 of the NIST PQC
Standardization Process

Round 3 candidates represent five diverse families: lattice-based, code-based, multivariate,
symmetric-based, and isogeny-based. Seven finalists are expected to be given priority
in the standardization process. One encryption/KEM scheme and one digital signature
scheme from this group may be selected as a PQC standard as early as 2022. Alternate
candidates are treated as backup candidates. In Round 2, alternate candidates were judged
to be either insufficiently investigated from the security point of view or were believed to
lack some desired properties related to their performance (such as small public keys, small
signatures, short execution time in software, etc.).

Hardware benchmarking has played a major role in all recent cryptographic standardiza-
tion efforts, such as the AES, eSTREAM, SHA-3 [8, 37, 55, 57], and CAESAR contests [17,
20]. With the emergence of commonly-accepted hardware application programming inter-
faces (APIs) [43], development packages [42, 46], specialized optimization tools [38, 28],
new design methodologies based on High-Level Synthesis (HLS) [44, 45], and mandatory
hardware implementations in the final round of the CAESAR contest [17], the percentage
of initial submissions implemented in hardware grew from 27.5% in the SHA-3 contest [36]
to 49.1% in the CAESAR competition [20, 35]. Unfortunately, this trend could not be
sustained in the NIST PQC standardization process. In many respects, PQC schemes are
diametrically different and at least an order of magnitude more complex to implement
compared to those evaluated in previous cryptographic contests.

Choice of Algorithms to Implement.
There are only four KEM PQC finalists. Since the NIST announcement in July 2020, it

is urgent to compare them against each other. In particular, NIST is tentatively planning
to choose only one of these candidates for the first round of standardization at the end of
2021 or at the beginning of 2022. The excellent implementation of Classic McEliece was
reported in 2017-2018. Thus, the efficient implementations of the remaining three KEM
finalists are of utmost importance at this point. Consequently, in this paper, we aim at
evaluating and contrasting the hardware efficiency of CRYSTALS-KYBER, NTRU, and
Saber.

In terms of algorithm types, we focus on KEMs with indistinguishability under a
chosen-ciphertext attack (IND-CCA). Our primary goal was to implement all lattice-based
IND-CCA secure KEMs described in the specifications of PQC finalists. The submission
package of NTRU describes two substantially different KEMs : NTRU-HRSS and NTRU-
HPS. As a result, we have implemented four KEMs representing three PQC finalists. For
each implemented KEM, we generated results for all supported security levels.
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Figure 2: Relation between the ciphertext and public-key sizes for Round 3 PQC Key
Encapsulation Mechanisms

In Fig. 2, we show the relationship between the ciphertext and public-key sizes of
all Round 3 candidates. All schemes based on structured lattices - Saber, CRYSTALS-
KYBER, NTRU Prime, and NTRU - have their ciphertext and public key sizes in the range
between 512 and 2048 bytes. The only candidate better than them is an isogeny-based
SIKE, which is still considered relatively recent and not sufficiently scrutinized from the
security point of view. As a result, this scheme was qualified for Round 3 only as an
alternate candidate. The only other PKE/KEM finalist, Classic McEliece, has public-key
lengths between 0.25 and 2 Megabytes. So large public key sizes may significantly impact
the sizes of data exchanged between two parties in the key establishment phase of any
modern secure communication protocol, such as TLS, IPSec, SSH, etc. The sizes of keys
and ciphertexts used by the selected lattice-based schemes are significantly smaller than
those of the alternate code-based schemes, BIKE and HQC, and the unstructured-lattice
scheme FrodoKEM. As a result, the key establishment time and the amount of memory
required to store public-key certificates are also the most practical among all Round 3
candidates other than SIKE.

High-speed vs. lightweight. Assuming comparable technology, hardware imple-
mentations outperform software implementations using at least one, and typically multiple,
metrics, such as latency, number of operations per second, power consumption, energy
usage, and security against physical attacks. They also allow much higher flexibility in
trading one subset of these metrics for another. From the point of view of benchmarking
and ranking of candidates, such flexibility may become a curse, especially considering that
no two metrics are likely to have a simple linear dependence on each other. A practical
solution to this problem is to focus during the evaluation process on two major types of
implementations: high-speed and lightweight.

In high-speed implementations, the primary target is speed, understood as either
minimum latency (a.k.a. execution time) or the number of operations per second. For
PQC schemes, this target amounts to optimizing the implementations of major operations
involving the public and private key, respectively. For Key Encapsulation Mechanisms
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(KEMs), these operations are encapsulation and decapsulation; for digital signature schemes,
signature verification and generation; for public-key encryption (PKE), encryption and
decryption. The time of key generation may also play a major role in the case when a
public-private key pair cannot be reused for security reasons. The resource utilization is
secondary. Still, hardware designers typically aim at achieving the Pareto optimality, in
which any further speed improvement comes at a disproportionate cost in terms of resource
utilization.

In lightweight implementations, the primary targets are typically minimum resource
utilization and minimum power consumption, assuming that the execution time does not
exceed a predefined maximum. Another way of formulating the goal is to achieve minimum
execution time, assuming a given maximum budget in terms of resource utilization, power
consumption, or energy usage. The maximum budget on resource utilization is related
to the cost of implementation; the budget on power assures correct operation without
overheating or devoting additional resources to cooling. The maximum energy usage affects
how long a battery-operated device can function before the next battery recharge. In
the context of the standardization process for cryptographic algorithms, the mentioned
above maximum budgets are very hard to select. Any change in these thresholds may
favor a different subset of candidates. With new standards remaining in use for decades,
the timing, cost, and power requirements of new and emerging applications are very
challenging to predict. Additionally, lightweight hardware implementations can outperform
only software implementations targeting specific low-cost, low-power embedded processors,
such as Cortex-M4. As a result, in this paper, we focus on developing, benchmarking, and
ranking high-speed implementations.

Design Methodology. Hardware design methodologies are developed by the industry
over the period of decades. The Register-Transfer Level (RTL) methodology is the most
popular design methodology codified by academic textbooks and supported by most
industry-grade computer-aided design tools. This methodology assumes designing/coding
at a level that is manageable for humans and easy for tools to turn into efficient hardware.
The entire system is divided into the Datapath and Controller. The Datapath is described
using a hierarchical block diagram using medium-scale components (e.g., adders, multipliers,
multiplexers, registers, and memories). The Controller is described using hierarchical
algorithmic state machine (ASM) charts or state diagrams. Indirectly, the designer specifies
what happens in the circuit in every clock cycle. Thus, the latency (the execution time
of a particular major operation) in clock cycles is an inherent feature of the design. The
tools determine the maximum clock frequency at which the circuit can operate and the
amount of hardware resources used.

Any other approaches to hardware design are often mistrusted. In some cases, justifiably
so. For example, recent attempts at replacing RTL with High-Level Synthesis resulted
in PQC designs 2-4 orders of magnitude less efficient [13, 21]. Similarly, the use of the
software/hardware co-design for PQC led to inconclusive results disregarded by NIST at
the end of Round 2 [21, 2]. Therefore, the development of hardware implementations
described in this paper follows the traditional RTL methodology.

Our Contributions. The main contributions of this paper are summarized below:

1. we have proposed, documented, and designed the first complete hardware implemen-
tations of two variants of NTRU (NTRU-HRSS and NTRU-HPS), as defined in the
submissions to Rounds 2 and 3 of the NIST PQC standardization process

2. we have developed a new hardware implementation of CRYSTALS-KYBER out-
performing the best previous design in terms of latency, number of operations per
second, and the product of latency × #LUTs.

3. we have developed four new implementations of Saber. For the security level 3, two
of them outperform the best previous design in terms of resource utilization. The
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Table 1: Reported Hardware and Software/Hardware Implementations of KEMs qualified
to Round 3

Algorithms Hardware Software/Hardware
Lattice-based

CRYSTALS-KYBER [13]H , [49], [95] [9], [10]∗, [33], [3], [94]
FrodoKEM [47], [13]H , [22], [9], [10]∗
NTRU [13]H –
NTRU Prime [66], [76] –
Saber [13]H , [87], [98] [22], [68], [33]

Isogeny-based
SIKE [59], [26] [67]

Code-based
BIKE [48], [79], [82], [81] –
Classic McEliece [92], [91], [13]H –
HQC [83]H –
H design developed using the High-Level Synthesis (HLS) approach

* extended version of [9]

other two have higher resource utilization but are significantly faster.

4. we benchmarked all mentioned above designs using two FPGA families and compared
them with the earlier reported designs for all remaining Round 3 KEMs in terms of
latency, the number of operations per second, and the number of LUTs.

All new designs reported in this paper are fully reproducible, and their source code will
be released as open-source after the acceptance of this paper to a journal or a conference
with proceedings.

2 Previous Work
Hardware and software/hardware implementations of all KEMs qualified to Round 3 of
the NIST PQC Standardization Process are summarized in Table 1. The PQC candidates
are grouped by family.

HLS-based implementations are distinguished with the superscriptH . These implemen-
tations were reported in only one paper [13]. They have been shown to give substantially
different results than implementations developed using traditional Register-Transfer Level
(RTL) methodology, in which HDL code is developed manually. Therefore, in this paper,
we focus on implementations in which a hardware part of the design was developed using
traditional RTL methodology. NTRU (as specified in Rounds 2 and 3 of the NIST process)
and HQC are the only candidates with no RTL implementations reported to date.

In particular relevance to this paper, we are unaware of any hardware implementation
of either NTRU-HPS or NTRU-HRSS as defined during Rounds 2 and 3 of the PQC
standardization process. Earlier versions of NTRU were significantly different. Therefore,
all major building blocks, top-level block diagram, scheduling scheme, and the corresponding
control unit had to be designed from scratch. Nevertheless, we would like to acknowledge
earlier work on the implementation of NTRUEncrypt Short Vector Encryption Scheme
(SVES), as defined in the IEEE 1363.1 Standard Specification for Public Key Cryptographic
Techniques Based on Hard Problems over Lattices [51]. The most complete high-speed
constant-time hardware implementation of this scheme is reported in [29]. Some of the
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major differences include the fact that NTRUEncrypt SVES is an encryption scheme
rather than KEM. The underlying hash function is SHA-256 rather than SHA3-256.
NTRUEncrypt SVES has a non-zero decryption failure rate. Decryption does not require
polynomial multiplication in which both operands have only "large" coefficients. There is
no notion of packing, unpacking, or lifting. All major parameters are substantially different.
Additionally, the implementation reported in [29] does not support key generation in
hardware. Another implementation of NTRUEncrypt SVES, reported in [62, 63], supports
only encryption. All earlier hardware implementations of NTRU, such as those reported
in [7, 74, 54, 5, 53], concerned variants that had even more differences as compared to the
most recent specifications of NTRU-HPS and NTRU-HRSS.

The most similar hardware implementation of CRYSTALS-Kyber is described in [95].
Our project started before [95] was published. Major design decisions were made in 2020
based only on earlier available literature. These decisions differed in many aspects from
those described in [95]. Some of the most important decisions included the use of k NTT
multipliers vs. one used in [95]. Additionally, our design uses a different modular reduction
unit, a much faster Keccak module, efficient NTT memory access, faster and smaller
encoding and decoding units, and a more efficient rejection sampler. Unlike [95], our design
is also technology independent by not employing any vendor-specific IPs. The detailed list
of differences is provided in Section 5.2.7. The second pure hardware implementation of
CRYSTALS-Kyber is reported in [49]. This implementation supports only encapsulation
and decapsulation and is about an order of magnitude less efficient than the one reported
in [95]. Earlier implementations of Kyber were of the software/hardware type, and many
of them concerned a substantially different Round 1 version of this candidate.

The most similar hardware implementations of Saber are described in [87, 98]. Both
designs follow an unified architecture approach that supports selecting parameter sets
at run time. [87] employed a schoolbook-based multiplier meanwhile [98] proposed a
hierarchical 8-level Karatsuba multiplier. [12] later improves area consumption of the
high-speed multiplier in [87] and introduces a new lightweight architecture.

Major types of polynomial multipliers used in the hardware implementations of lattice-
based PQC schemes include Schoolbook, Karatsuba [56], Toom-Cook [89, 16], and NTT-
based. NTT-based multipliers have been particularly popular in the last decade, and their
various architectures and optimized implementations were reported in various publications,
such as [77, 84, 24, 80, 75, 61, 96, 31, 97, 93]. Karatsuba and Toom-Cook multipliers
have been used for the implementation of Saber. In particular, [98] used Karatsuba,
and [68] explored the use of Toom-Cook. Schoolbook multipliers have been used for years,
in particular in [77, 27, 64, 87], and many others.

3 Background

3.1 Basic Features of Compared Algorithms
Selected features of all implemented KEMs are summarized in Table 2. All three KEMs are
based on the underlying IND-CPA public-key encryption (PKE) schemes. In CRYSTALS-
Kyber and Saber, the conversions to the corresponding IND-CCA KEMs are performed
using very similar variants of the Fujisaki–Okamoto (FO) transform [34], [41]. NTRU uses
a generic transformation from a deterministic public-key encryption scheme to construct a
KEM. The NTRU KEM transformation provides IND-CCA2 security with a tight reduction
to the well-studied OW-CPA (one-way CPA) security of the NTRU PKE [85]. The only
KEMs with no Decryption Failure in the underlying PKE are NTRU-based KEMs, NTRU-
HPS, and NTRU-HRSS. Consequently, these schemes require no re-encryption during
decapsulation.

In all of these KEMs, the elementary operation is multiplication mod q. In Saber,
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Table 2: Features of lattice-based NIST Round 3 finalists in the category of KEMs
Feature CRYSTALS-Kyber Saber NTRU-HPS NTRU-HRSS

Underlying
problem

Mod-LWE:
Module Learning

with Errors

Mod-LWR:
Module Learning
with Rounding

SVP: Shortest Vector
Problem

SVP: Shortest Vector
Problem

Sampling

Integers are sampled
from a centered

binomial distribution
(CBD)

Integers are sampled
from a centered

binomial distribution
(CBD)

Fixed-weight and variable
-weight polynomials are

sampled from a
uniform distribution

Variable-weight
polynomials are sampled

from a uniform
distribution

Degree n Power of 2 Power of 2 Prime Prime

Modulus q Prime Power of 2 Power of 2
with q/8− 2 ≤ 2n/3

Power of 2
with q > 8

√
2(n+ 1)

Other major
parameters

k: number of
polynomials per vector,
η: parameter of CBD

p, T : other moduli,
l: number of

polynomials per vector,
µ: parameter of CBD

d: Fixed weight
for g and m

Lift(m): Identity m 7→ m

f, g: Non-negative
correlation

Lift(m):
m 7→ Φ1 · S3(m/Φ1)

Hash-based
functions

SHA3-256,
SHA3-512,
SHAKE128,
SHAKE256

SHA3-256,
SHA3-512,
SHAKE128

SHA3-256 SHA3-256

Decryption
failures Yes Yes No No

Polynomial Rings Zq[x]/(xn + 1) Zq[x]/(xn + 1)
R/q: Zq[x]/(xn − 1)
S/q: Zq[x]/(Φn)∗
S/3: Z3[x]/(Φn)∗

R/q: Zq[x]/(xn − 1)
S/3: Z3[x]/(Φn)∗

#Polynomial
Multiplications
in Encapsulation

k2 + k l2 + l 1 in R/q 1 in R/q

#Polynomial
Multiplications
in Decapsulation

k2 + 2k l2 + 2l
1 in R/q
1 in S/q
1 in S/3

1 in R/q
1 in S/q
1 in S/3

∗ Φn = (xn − 1)/(x− 1) irreducible in Zq[x]

NTRU-HPS, and NTRU-HRSS, q is a power of two, significantly simplifying the reduction
mod q. In Kyber, q is a special prime, selected in such a way to support speeding up
polynomial multiplication in Zq[x]/(xn+ 1) using the Number Theoretic Transform (NTT).

All four algorithms use SHA3-256. Saber additionally employs SHA3-512 and SHAKE128.
Kyber requires the same set of hash-based algorithms as Saber, extended with SHAKE256.
NTRU-based KEMs use sampling from the uniform distribution. In Kyber and Saber, a
Centered Binomial Distribution (CBD) is employed.

There are two variants of NTRU described in the specification, the NTRU-HPS based
on Hoffstein, Pipher, and Silverman’s NTRU encryption scheme [40] and NTRU-HRSS
introduced by Hülsing, Rijnveld, Schanck, and Schwabe in [50]. The NTRU-HPS parameter
sets follow the approach to use fixed-weight sample spaces and allow several choices of
modulus q for each degree n. Meanwhile, the NTRU-HRSS allows arbitrary-weight sample
spaces but restricts q as a function of n.

In Kyber and Saber, the most time-consuming operations are matrix-by-vector and
vector-by-vector multiplications, where each element of a matrix or a vector is a polynomial
with n coefficients in Zq, and the multiplication of such polynomials is performed modulo
the reduction polynomial xn + 1. In the NTRU-based KEMs, the most time-consuming
operation is polynomial multiplication in the rings specified in Table 2.

Parameter sets of three investigated candidates are summarized in Table 3. The
specification of NTRU associates two different security categories with each parameter set of
NTRU-HPS and NTRU-HRSS. In this paper, we conservatively assumed the lower security
category based on the so-called non-local computational models (see [21], Section 5.3
Security Categories). The same computation model is implicitly assumed by the submitters
of the other investigated algorithms. We implemented three parameter sets of NTRU-
HPS and NTRU-HRSS, which are ntruhrss701, ntruhps2048677, and ntruhps4096821,
corresponding to security levels 1, 1, and 3, respectively in non-local models of computation.
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Table 3: Parameter sets of investigated algorithms. Notation: Sk - Secret Key, Pk - Public
key, Ct - Ciphertext.
Algorithm Parameter

Set
Security
Level

Degree
n

Modulus
q

Sk Size
[bytes]

Pk Size
[bytes]

Ct Size
[bytes]

Kyber Kyber512 1 256 3329 1,632 800 768
NTRU-HPS ntruhps2048677 1* 677 211 1,235 931 931
NTRU-HRSS ntruhrss701 1* 701 213 1,452 1,138 1,138
Saber LightSaber-KEM 1 256 213 1,568 672 736
Kyber Kyber768 3 256 3329 2,400 1,184 1,088
NTRU-HPS ntruhps4096821 3* 821 212 1,592 1,230 1,230
Saber Saber-KEM 3 256 213 2,304 992 1,088
Kyber Kyber1024 5 256 3329 3,168 1,568 1,568
Saber FireSaber-KEM 5 256 213 3,040 1,312 1,472
∗ assuming non-local computational models

3.2 Short Introductions to Compared Algorithms
3.2.1 NTRU

Definitions and Parameters. Φ1 is (x−1). Φn is (xn−1)/Φ1 = xn−1+xn−2+. . .+x+1 .
From the implementation point of view, all operations in NTRU are polynomial operations
over the quotient rings Rq, Sq and Sp where Rq : Zq[x]/Φ1Φn, Sq : Zq[x]/Φn, and
Sp : Zp[x]/Φn. Parameter p is fixed to 3 in all parameter sets of NTRU. Thus, polynomials
in Sp are in ternary form, i.e., have their coefficients in {−1, 0, 1}. In this paper, for
NTRU, we use the notation Sp and S3 interchangeably. Coefficients of polynomials in Rq
and Sq have bit-widths of εq = log2q and those of polynomials in Sp have bit-widths of
εp = dlog2pe.

In NTRU-HRSS, polynomial f , which is a part of the secret key, is required to have
non-negative correlation property,

∑
i fifi+1 ≥ 0. In NTRU-HPS, polynomial m in Sp

has the fixed-weight property, consisting of d/2 coefficients equal to 1 and d/2 coefficients
equal to −1, with d = q/8− 2. Having the fixed-weight property of m ensures that the
ciphertext c ≡ 0 (mod (q,Φ1)) in NTRU-HPS. In NTRU-HRSS, in order to achieve the
same property of c, m is lifted from S3 to Rq by the map m 7→ Φ1 · S3(m/Φ1).
Pseudocode. The key generation, encryption and decryption of the PKE scheme of
NTRU are shown in Algorithms 4, 6 and 7 in Appendix A, respectively [18]. The
IND-CCA2 NTRU KEM in Algorithms 5, 8 and 9 in Appendix A, is based on the Saito-
Xagawa-Yamakawa variant of the NTRU-HRSS KEM, with improvements that eliminate
re-encryption during decapsulation. In the reference implementation of NTRU, the Sample
function performs ternary sampling on random input, which requires kilobytes of random
data per each operation of key generation or encapsulation. We chose to deviate from
the reference implementation by using only 32-byte random input data and expanding it
using SHAKE128. Sample generates polynomials in ternary form, which may have either
an arbitrary or a fixed weight and/or non-negative correlation property.

During key generation, two polynomial inversions are performed in S3 (mod (3,Φn))
and Sq (mod (q,Φn)). All coefficients of polynomials modulo q or p are packed together
by unpack_εq and unpack_εp. Thus, they must be unpacked before being used in any
operation. The Lift function lifts polynomial in S3 to Rq. The most critical operation is
polynomial multiplication in Rq ( mod (q, (xn − 1))). Other multiplication operations in
S3 or Sq can be performed by doing multiplication in Rq, followed by modulo (3,Φn) or
(q,Φn), respectively. During decryption, the ciphertext c is checked to determine if c ≡ 0
(mod (q,Φ1)). As described in the specification [18], if c is unpacked by unpack_εq, we
only need to check whether the unused bits of the final byte of c are all zeros. r and m are
also needed to be checked if they are in the plaintext space, which means their coefficients
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are in the ternary form, and for NTRU-HPS, m must have the correct fixed weight.

3.2.2 CRYSTALS-Kyber

Polynomial Multiplication. A basic operation of CRYSTALS-Kyber is the multiplica-
tion of two polynomials. In Kyber the polynomials are elements of Rq = Zq[X]/〈Xn + 1〉.

Thus, for all security levels, polynomials are of the same degree n = 256, and their
coefficients are members of the base prime field Zq, where q = 3329. However, a different
number of polynomials is required for each security level. These polynomials are treated
as a vector. The size of this vector is specified using the parameter k. k is 2, 3, and 4
for security levels 1, 3, and 5, respectively. Secret noise polynomials are sampled from a
Centered Binomial Distribution (CBD), where η is either 2 or 3.

An efficient method for polynomial multiplication in Rq is through the use of the
Number-Theoretic Transform (NTT) [25] which is a generalization of the Discrete Fourier
Transform (DFT) to the finite ring Zq. In Rounds 2 and 3 of the NIST PQC standardization
process, Kyber uses n = 256 and q = 3329 = 13 · 28 + 1 where 2n - q − 1 = 13 · 28. To
make efficient NTT multiplication possible, a new definition of NTT was provided, which
transforms a polynomial of degree 256 to a polynomial of degree 128 made up of degree
one polynomials as its coefficients.

f̂k = f mod (X2 − ζ(2k+1)) (1)

where ζ=17 is the first primitive 256-th root of unity modulo q.
In other words f̂ consists of 128 polynomials of degree one:

f̂k = f mod (X2 − ζ(2k+1)) = ˆ̂
f2k + ˆ̂

f2k+1X (2)

The sequence of 128 coefficient pairs of degree 1 polynomials can be viewed as a
polynomial of degree 256, and then the NTT transform can be expressed separately for
the odd and even coefficients:

Point-wise multiplication consists of 128 basic products f̂ · ĝ mod X2 − ζ(2i+1):

ˆ̂
h2i + ˆ̂

h2i+1X = ( ˆ̂
f2i + ˆ̂

f2i+1X)(ˆ̂g2i + ˆ̂g2i+1X)

=
( ˆ̂
f2i ˆ̂g2i + ζ(2i+1) ˆ̂

f2i+1 ˆ̂g2i+1

)
+
( ˆ̂
f2i ˆ̂g2i+1 + ˆ̂

f2i+1 ˆ̂g2i

)
X (3)

Pseudocode. Pseudocode of the Kyber CPAPKE Key Generation, Encryption, and
Decryption are given in algorithms 10, 11, and 12 in Appendix B, respectively. Kyber
CCA KEM schemes are built upon the CPAPKE operations, multiple hashing operations,
and the FO transformation to achieve the IND-CCA2 security. The detailed algorithms of
the Kyber CCAKEM Key Generation, Encapsulation, and Decapsulation are shown in
algorithms 13, 14 and 15 in Appendix B.

3.2.3 Saber

A distinctive feature of Saber is that rounding operations are used to avoid the noise
addition step and reduce the amount of randomness required. Additionally, by using only
moduli that are powers of 2, modular reduction does not require any hardware resources
and rejection sampling is eliminated.
Definitions and Parameters. Saber involves operations on matrices and vectors of
polynomials over the quotient rings Rq : Zq[x]/(xn + 1) with fixed n = 256. Polynomials
in Saber are sampled from the uniform distribution or centered binomial distribution. βµ
denotes a centered binomial distribution with the parameter µ and the values of samples
in the range [−µ/2;µ/2]. The module dimension l defines the size of vectors and matrices
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Table 4: Features of algorithms and parameter sets affecting the choice of a multiplier type
Small

Coefficient
Range

Number
of

coefficients

NTT-friendly
ring

One operand
in

NTT domain

Encapsulation Decapsulation
Number of

"Small" × "Large"
Polynomial

Multiplications

Number of
"Large" × "Large"

Polynomial
Multiplications

Number of
"Small" × "Large"

Polynomials
Multiplications

Kyber512 [-3..3],
[-2..2] 256 Y Y

6 — 8

Kyber768 [-2..2] 12 — 15
Kyber1024 [-2..2] 20 — 24
ntruhrss701 [-1..1] 701

N N
1 1 3

ntruhps2048677 [-1..1] 677 1 1 3
ntruhps4096821 [-1..1] 821 1 1 3
LightSaber-KEM [-5..5]

256 N N
6 — 8

Saber-KEM [-4..4] 12 — 15
FireSaber-KEM [-3..3] 20 — 24

of polynomials as l × 1 and l × l, respectively. We denote Rl×lq and Rl×1
q as a matrix and

vector of polynomials in Rq. The rounding operation includes coefficient-wise addition
with a constant factor and is followed by bit shifting.
Pseudocode. The pseudocode of Saber is shown as Algorithms 16, 17, 18, 20, 19, and 21
in Appendix C . The KEM key generation includes sampling uniformly random matrix A
using SHAKE128. Secret vector s is sampled in binomial distribution from the uniformly
random output from SHAKE128. The vector product of AT · s is rounded and serves as
a public vector b in the public key. The secret key includes the public key, hash of the
public key, secret vector s, and a pseudo-random byte string z, which is used for implicit
rejection in FO transform.

Encapsulation includes encryption with additional hashing. A "small" vector s is
generated using sampling from the centered binomial distribution. The ciphertext has
two parts. The first part has the rounded product of A · s′. The second one includes the
sum of the inner product of b, s′, and the encoded message m. We adopt the optimization
in [98] to compute bT · s′ before A · s′. Since the generation of s′ and A requires the same
SHAKE128 function, we would need to finish generating s′ before performing A · s′ with
the on-the-fly generation of A. The multiplication of bT and s′ can be performed in parallel
with the sampling of s′. The shared secret is derived from the hashes of the public key,
message, and ciphertext. Decapsulation involves decryption and re-encryption. During
decryption, the secret key is used to compute v, which is used to extract the message. The
obtained message is then re-encrypted to check whether the re-encrypted ciphertext is the
same as the received one. To save bandwidth, all coefficients of polynomials modulo q or
rounded to p or T are packed together by pack_εq, pack_εp or pack_εT. Thus, they must
be unpacked before being used in any operation.

3.3 Choice of a Multiplier Type
Major features of investigated algorithms and their parameter sets affecting the choice

of a multiplier type are summarized in Table 4.
All four candidates involve multiplication of a polynomial with so-called "small" coeffi-

cients, belonging to the range listed in the second column of Table 4, by a polynomial with
"large" coefficients, in the range [0..q-1], where q is given in Table 3. Out of four major
multiplier types introduced at the end of Section 2, only the Schoolbook multiplier can
take full advantage of the feature that "small" coefficients have significantly fewer bits than
"large" coefficients. This multiplier has a very regular structure and, in each clock cycle,
allows the multiplication of u coefficients of one operand by all coefficients of the second
operand. The parameter u is an unrolling factor, typically set to 1, 2, 4, etc. Consequently,
the execution time of this multiplier is approximately equal to n/u clock cycles, and its area
in LUTs is proportional to n. Since "small" coefficients have from 2 to 4 bits, multiplication
by them can be accomplished using ANDs, shifts, and additions. These operations can
be efficiently implemented using LUTs and a special fast carry logic of Xilinx FPGAs,
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without the need for DSP units. Consequently, all polynomial multiplications in Saber and
all-but-one multiplications in NTRU can be efficiently implemented using the Schoolbook
multiplier. The disadvantage is a relatively large area, even for the smallest value of the
unrolling factor u=1.

An NTT-based multiplier has much smaller area, independent of n, and the execution
time proportional to n · lg2(n). They can be sped up using a small number of DSP units.
As a result, it is practical to instantiate several such multipliers within the same design
without reaching the area threshold. The improvement in execution time depends on
data dependencies and the relative speed of units producing inputs to the multipliers.
An additional speed-up can be accomplished by defining and/or storing some inputs in
the NTT domain. This way, the conversion from the regular to NTT domain may be
skipped for one operand. Among the investigated algorithms, only Kyber is defined this
way. NTT-based multipliers do not offer any advantage in terms of execution time for the
case when one operand has small coefficients. They also impose specific requirements on
the dependence between the number of coefficients in each operand, n and the modulus
q. If these dependencies do not hold, NTT may still be possible, but it requires extra
computations, increasing the multiplier’s area and possibly complicating control. Taking
all these features into account, an NTT-based multiplier is an obvious choice only for
CRYSTALS-Kyber.

As shown in Table 4, NTRU-HPS and NTRU-HRSS are the only investigated candidates
that require multiplying two polynomials with "large" coefficients. Values of n and q do
not fulfill the requirements of NTT. None of the operands is stored in the NTT domain.
As a result, the use of the Toom-Cook multiplier appears to be the best choice. These
multipliers have an area smaller than the Schoolbook and larger than NTT types. They
can be sped up using a relatively moderate number of DSP units. Consequently, they
appear to be the natural choice for the implementation of the "large" by "large" polynomial
multiplication in the decapsulation operation of NTRU-HPS and NTRU-HRSS.

4 Design and Benchmarking Methodology
As stated in the Introduction, we follow the best understood and commonly trusted RTL
methodology. The designers of each implementation worked very closely with each other
to ensure a consistent approach to all optimizations. Our designs started when no pure
hardware implementations of CRYSTALS-Kyber, NTRU, or Saber were reported in the
literature yet. All major designs decisions were made independently of those made in
related concurrent projects described in [95], [94], [87], and [98]. All code was developed
from scratch without using any library components or any parts of other groups’ designs.
Consequently, our designs are fully portable, well-documented, and easy to improve and
maintain.

All modules common for multiple algorithms, such as the SHA-3/SHAKE unit, were
reused. The designs for NTRU and Saber are encoded using VHDL. The design for
CRYSTALS-Kyber is encoded using Chisel [6]. We believe that in the RTL methodology,
the choice of a hardware description language has a negligible effect on the obtained
results. Functional verification of the hardware description language (HDL) code has been
performed by comparing simulation results with precomputed outputs generated by a
reference software implementation.

On top of this well-known and trusted design methodology, we define a quite straight-
forward benchmarking methodology. The primary goal is fairness, not a novelty.

All our hardware implementations assume the use of the FIFO interface defined in [27].
This interface is similar to the interface of the AXI4-Stream Protocol [4].

In terms of functionality of designed units, several options are possible: 1) separate
units for encapsulation, decapsulation, and key generation; 2) one unit supporting encap-
sulation, decapsulation, and key generation, with resource sharing; 3) one unit supporting
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encapsulation and decapsulation and the second unit responsible for key generation; 4)
one unit (on the server-side) supporting key generation and decapsulation, and the second
unit (on the client-side) supporting encapsulation. None of these assumptions meet the
requirements of all applications. In this paper, we assume Scenario 1). However, whenever
possible, we also report results for Scenario 2).

Similarly, there are two major assumptions regarding support for multiple parameter
sets: 1. choice among parameters sets at the time of synthesis; 2. choice among parameters
sets at run time. The advantage of Approach 1) is the ability to determine the minimum
possible resource utilization separately for each security level. Approach 2) demonstrates
the flexibility of hardware implementation. However, it will likely require a larger amount
of resources than the implementation supporting the highest security level. In this paper,
we adopted Approach 1.

One public key and one secret key are assumed to be loaded to the hardware unit
before the start of encapsulation and decapsulation, respectively. Thus, the latency of
these operations does not include the time required to load the respective keys.

The primary design goal is speed. The speed is characterized using two primary metrics:
a) the minimum latency in time units and b) the maximum number of operations per
second. These two metrics are related. However, any particular application may have
independent requirements in terms of their values. For example, real-time applications,
such as secure communication between two autonomous vehicles, may have very strict
requirements regarding the time required to establish secure communication and thus the
total time required for encapsulation and decapsulation. At the same time, the required
number of operations per second may be very small and thus not limiting. On the other
hand, a high-traffic server may have to handle thousands of secret key establishments per
second. Simultaneously, the time allowed for each individual transaction (and thus the
latency of decapsulation) may be quite large.

Taking into account that specific thresholds depend strongly on an application and the
state of technology, no specific values are assumed in this benchmarking effort. Instead, we
assume that both decreasing latency and increasing the number of operations per second
are worthy goals as they will broaden the range of applications that can use a new PQC
standard at a given stage of technology. For simplicity, we assume, in agreement with
most of the literature, that each design processes only one set of inputs (keys, ciphertexts,
random bits) at a time. As a result, the number of operations per second becomes a direct
inverse of latency in time units. One, however, should keep in mind an important difference
between them: duplicating a design doubles the number of operations per second, but it
does not change the latency.

When choosing between multiple potential solutions during the design-space exploration,
we give priority to the designs that minimize latency and thus maximize the number of
operations per second. However, the parallelization is pursued only until it gives a
substantial gain in speed as compared to the area increase in LUTs. Considering that
speed and area can be traded one for another, we perform space exploration, using the best
available approximations of the execution time in clock cycles and resource utilization in
LUTs, DSP units, and BRAMs. Afterward, we choose to include in the speed rankings the
implementations of each candidate that are the closest to each other in terms of resource
utilization.

For our target platforms, we chose representative devices of two different FPGA /
FPGA SoC families: Artix-7 and Zynq UltraScale+. Specifically, we choose the largest
devices of both families supported by free versions of Xilinx tools. For each device, we
assume that its highest speed grade is used. These assumptions led us to choosing a)
Artix-7 XC7A200T-3, with 134,600 LUTs, 365 BRAMs, and 740 DSP units, and Zynq
UltraScale+ ZU7EV-3, with 230,400 LUTs, 312 BRAMs, 96 Ultra BRAMs, and 1,728 DSP
units. Based on the previous work, summarized in Section 2, these devices are sufficient
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Figure 3: Top-level block diagrams of the Encapsulation and Decapsulation modules of
NTRU. The purple, blue modules are used only in Encapsulation and Decapsulation,
respectively.

for a vast majority of designs reported to date. Out of their resources, the number of LUTs
is the most limiting. The use of BRAMs and DSP units is typically negligible. Therefore,
for the purpose of design-space exploration, we use the number of LUTs as a measure of
the circuit Area. The maximum clock frequency is determined using binary search. Only
final results obtained after placing and routing are reported.

5 Hardware Designs
5.1 NTRU
The top-level diagram of NTRU is shown in Fig. 3. The scheduling of major operations
during encapsulation, decapsulation, and key generation is illustrated in Figs 4, 5, and 6,
respectively.

5.1.1 Ternary Sampling

For NTRU-HRSS, the generation of f and g is performed in S3 during key generation.
Random bytes coming from SHAKE128 are reduced modulo 3 to obtain the ternary
coefficients stored in a first-in, first-out (FIFO) unit. The sum of products of consecutive
coefficients s =

∑
i fifi+1 is computed at the same time. After finishing generating all

coefficients, if s < 0, coefficients at even indices are signed-flipped before being transferred
to the next computational stage. Thus, the non-negative correlation properties of f and
g are satisfied. g is later multiplied by x − 1, which can be carried out trivially during
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Figure 6: Operations Scheduling for Key Generation of NTRU-HRSS.

the transfer. During encryption, r and m do not have either the non-negative correlation
property or fixed-weight. They can be computed by simply reducing random data modulo
3.

For NTRU-HPS, f and r have arbitrary weight and can be sampled in a straightforward
manner. However, m and g have fixed weight and are sampled by creating a random
permutation of a list with a fixed number of values −1, 0 and 1. One can simply perform
Fisher-Yates shuffle to have a random non-biased permutation of such a list. However,
Fisher-Yates shuffle is not constant-time and creates a risk of potential timing attacks.
Given that, we adopt a constant-time merge sorting approach for the permutation. The
merge-sort module requires n random elements. Each element includes 30 random bits
concatenated with "01" for the first w/2 elements, "10" for the next d/2 elements, and "00"
for the rest. To get a 30-bit block, a 64-bit input is passed through a PISO, to be divided
into two 32-bit blocks. Each 32-bit block is then processed using a buffer register and a



Viet Ba Dang, Kamyar Mohajerani and Kris Gaj 15

>
FIFO

1

FIFO

1

FIFO

2

FIFO

2

>
FIFO

1

FIFO

1

FIFO

2

FIFO

2

….

….

>
FIFO

1

FIFO

1

FIFO

2

FIFO

2

1 1

1

>
FIFO

3

FIFO

3

FIFO

4

FIFO

4

>
FIFO

3

FIFO

3

FIFO

4

FIFO

4

….

….

1 1

Stage 0 Stage 1 Stage 9 

1
>

FIFO

1

FIFO

1

FIFO

2

FIFO

2

1

>
FIFO

3

FIFO

3

FIFO

4

FIFO

4

1

Stage 2

2 4

512
>

FIFO

1

FIFO

1

FIFO

2

FIFO

2

1

>
FIFO

3

FIFO

3

FIFO

4

FIFO

4

1

128

Stage 7

>
FIFO

1

FIFO

1

FIFO

2

FIFO

2

1

256

Stage 8

164

Figure 7: FIFO-based merge sort module for NTRUHPS2048677.

FIFO 1

FIFO 2

FIFO 3

FIFO 4

MEM

ad
-a

d
o

-a

ad
-b

d
i-

b

C
o
n
tr
o
lle
r

din_data

din_valid

din_ready

dout_ready

dout_data

dout_valid

>

w

1

1

1

w

Figure 8: One stage of a FIFO-based merge sort module implemented using dual-port
memory.

variable shifter to get a 30-bit block. The leftover bits are stored in the buffer register to
be concatenated with the subsequent output of PISO. After sorting, the upper 30 bits are
discarded, and the lower 2 bits are converted from {0, 1, 2} to {0, 1,−1}.

Related works: Wang et al. [91] proposed a fully pipelined constant-time merge sort
module to generate random permutation in the Key Generation operation of Classic
McEliece. To sort a random list of n elements, the module needs log2(n) iterations,
where each step requires O(n) comparison operations. Therefore, the total cycle count is
approximately equal to nlog2(n) cycles. Marotzke [66] implemented an iterative Batcher’s
merge exchange sort module for a very similar sampling function in the Streamlined NTRU
Prime. Its operation also have asymptotic complexity of O(nlog2(n)).

To speed up this operation, we use a merge-sort module consisting of log2(n) cascaded
Sort Stages to sort the random sequences. The FIFO-based merge-sort module for NTRU-
HPS677 is shown in Fig. 7. The inputs to each Sort Stage are two sorted lists, and the
output is a sorted list of double input length, including all elements from the two input
lists. Each input list is stored in a separate segment of memory. While the lower stages
can be implemented by registers, the higher stages are implemented in dual-port memory.
This approach can reduce the number of LUTs and FFs used to construct the large FIFO
in higher stages at the cost of a small number of BRAMs. The internal structure of a
Sort Stage is shown in Fig 8. By making use of the dual-port memory, the controller in
each stage can write out the sorted list to the next stage and receive other input lists from
the previous stage at the same time. By pipelining the operation of multiple Sort Stages,
we can achieve a highly optimized latency for sorting. Our merge-sort module requires n
clock cycles for reading n elements, roughly n cycles for sorting, and another n cycles to
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Table 5: Implementation Results of the FIFO-based Merge Sort module and comparison
with related works.

Freq. LUT FF BRAM DSP Cycles
NTRUPRime: n = 761, w = 32, Zynq Ultrascale+

Batcher’s Merge Exchange Sort [66] 279 231 87 1.0 0 49,400
FIFO-based Merge Sort 250 1,441 940 3.5 0 2,762

ClassicMcEliece: n = 8192, w = 45, Zynq Ultrascale+
4x Pipelined Merge Sort [91] 250 583 411 20.0 0 147,505
FIFO-based Merge Sort 250 2,533 1,589 33.0 0 26,646

write out a sorted sequence. In particular, sampling m or g takes 2,678 and 3,343 cycles
for NTRU-HPS677 and NTRU-HPS821, respectively.

The comparison of our FIFO-based merge sort module with previous work is shown
in Table 5. We synthesize our module with the parameters used in [66] and [91]. Since
the code of [91] is open-source, we can synthesize their merge-sort module targeting the
same platform, Zynq Ultrascale+, and obtain results. Our FIFO-based merge sort module
outperforms the previous designs by roughly an order of magnitude, excluding the time to
load input and unload output. Although the increase in resource utilization is significant,
it is still a quite compact design, suitable for high-speed applications that require random
constant-time permutation.

5.1.2 Polynomial Multiplication

In all previous work on hardware implementations of NTRU, the polynomial multipliers
always exploited the property of small ternary coefficients. The schoolbook multiplication
has quadratic-complexity but enables simple, parallel, easy-to-parameterize, and very
fast architecture for polynomial multiplication in NTRU. In [68], an efficient architecture
based on the Toom-Cook algorithm is proposed in a Software/Hardware codesign platform.
Toom-Cook 4-way was applied to divide polynomial multiplication of 256 coefficients into
seven multiplications with 64 coefficients. These seven multiplications are run in parallel
using seven schoolbook polynomial multipliers.

In the AVX2 implementation of the NTRU submission package [73], a multi-layer
Toom-Cook and Karatsuba are used to speed up the multiplication. In the recent work [19],
an NTT-based polynomial multiplication is proposed, which outperforms the Toom-Cook
method. However, the NTT-based polynomial multiplication was also applied to only
multiplication with ternary polynomials. Therefore, it is not applied to speed up the
key generation and the final multiplication in decryption, which does not have any input
polynomial in ternary form.
Toom-Cook Polynomial Multiplier. In this work, for multiplication without involving
ternary polynomial, we implement a Toom-Cook 3-way polynomial multiplier, which splits
an n-coefficient polynomial multiplication into five multiplications with n/3 coefficients.
The five multiplications are performed in parallel using five Odd-Even Karatsuba multipliers.
Our improvements over [68] include:

• Our implementation supports splitting input polynomials into three smaller polyno-
mials before the Evaluation step. The Toom-Cook core in [68] relies on software to
do this operation.

• Using the Odd-Even Karatsuba method significantly improves the latency of the
multiplication step.

• Our core supports Recomposition, which has the output polynomial in the ring Rq.
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Figure 10: Recomposition in Rq.

In [68], 5 output polynomials are transferred to software and are then recomposed
into a single polynomial.

Toom-Cook and Karatsuba are multiplication algorithms that have better asymptotic
complexity compared to the schoolbook method. Toom-Cook k-way is a generalization of
Karatsuba with k = 2. Both algorithms generally follow five steps: splitting, evaluation,
pointwise multiplication, interpolation, and recomposition. The input polynomials are
split into 2k − 1 polynomials with n/k coefficients. These polynomials are then evaluated
at 2k − 1 points. The evaluated polynomials are multiplied in the pointwise-multiplication
steps. The results are interpolated as an opposite of the evaluation step. The output
polynomials of the interpolation step are finally recomposed into the final product.

The top-level diagram of the Toom-Cook 3-way module is shown in Fig. 9. Toom-
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Cook 3-way splits input polynomial A(x) into three polynomial a0, a1 and a2 such that
A(y) = a0 + a1y + a2y, where y = dn/3e. a0, a1 and a2 are then evaluated at five points
{0, 1,−1, 2 and ∞}. The pointwise multiplications are performed by Odd-Even Karatsuba
modules. We adopt the optimal sequence for evaluation and interpolation in the Toom-
Cook 3-way from Bodrato et al. [16]. We would like to highlight that during evaluation,
there is a division by 2, which becomes a one-bit shift and causes a one-bit loss of precision.
Therefore, the pointwise multiplication and interpolation steps require one extra bit for
each coefficient.

After interpolation steps, we have 5 output polynomials c0, c1, . . . c4 with 2n/3 coeffi-
cients needed to be recomposed and reduced modulo xn − 1 in the ring Rq. Fig. 10 shows
the positions of polynomials c0, c1 . . . c4 in the final product polynomial d modulo xn − 1.
Since the recomposition module receives five coefficients with the same index from c0 to c4,
we need two registers d0, d2 and three shift registers of the size bn/3c− 1. For example, d0
will be initialized with the coefficient from c0 at the cycle 0, then it is added to a coefficient
from c2 in the cycle bn/3c − 1 and lastly added with the last coefficient from c4 in the
cycle b2n/3c − 1.

The overlap-free Karatsuba splits input polynomial A(x) into two polynomials a0
and a1 such that A(y) = a0 + a1y where y = x. It means that a0 consists of all
even coefficients of A(x); meanwhile, a1 consists of all odd coefficients of A(x). The
overlap-free Karatsuba scheme enables a more efficient alignment of product coefficients
compared to the classic Karatsuba scheme. The diagram of our overlap-free Karat-
suba module is shown in Fig. 11. Two polynomials are stored in RAM_a and RAM_b.
The multiplication between two coefficients from RAM_a and RAM_b would normally cost
12 integer multipliers. However, this number is reduced to 9 multipliers thanks to
the Karatsuba algorithm. The latency of this module can be calculated as follows:

Pointwise-Multiplication Latency = ( n
6×3 + 1)× (n6 + 1)

We note that the splitting and recomposition steps are merged into evaluation and
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Figure 12: S2/S3 Inversion Module

interpolation, respectively. Each splitting/evaluation or recomposition/interpolation takes
d2n/3e cycles. Our Toom-Cook multiplier finishes one polynomial multiplication in Rq or
Sq in 5507, 5098 and 7274 cycles for n = 701, 677 and 821, respectively.
Ternary Polynomial Multiplier. For multiplications involving polynomial in the
ternary form {−1, 0, 1}, we use the constant-time LFSR-based polynomial multiplier,
proposed in [27], which has the latency of n clock cycles. By loading the ternary polynomial
with coefficients in {−1, 0, 1} to the LFSR, instead of a polynomial with "big" coefficients,
we reduce the number of flip-flops required to realize this LFSR by a factor of four. We also
shorten the time required to load a polynomial into the LFSR, since eight 2-bit coefficients
can be loaded in a single clock cycle. All integer multiplication-and-accumulation operations
between coefficients of two operands and one product polynomials are reduced to addition,
pass-through, or subtraction. The LFSR is initialized to a polynomial with ternary
coefficients. Let us denote the initial state of this LFSR as a(x). In each subsequent
iteration, the output from LFSR contains the value a(x) · xi mod xn − 1. In a single clock
cycle, a simple multiplication by x, namely a(x) ·xi+1 mod xn−1= a(x) ·xi ·x mod xn−1,
is performed.

5.1.3 Inversion in S3 and Rq

The inverse of polynomials in Rq and S3 plays an important role in key generation. We
need to compute fp, which is an inverse of f in S3 for the secret key. Computation of
v1, which is an inverse of v0 in Sq, must be completed before any later operations could
proceed.

Inversion in S3: Inversion in S3 is done using the constant-time extended Greatest
Common Divisor (GCD) unit proposed in [15]. The top-level diagram of our S3_inverse
module is shown in Fig. 12. At first, g(x) is initialized with an input polynomial in reverse
order. f(x), r(x) and v(x) are initialized with Φn, 1 and 0 respectively. The module runs
in exactly 2(n− 1) cycles. All coefficients of four polynomials are updated simultaneously
during each iteration according to the value of δ and g0. All operations, including addition,
subtraction, and multiplication, are reduced modulo 3. Multiply and divide by x are
performed by simple bit shifting. Lastly, the inverse of input polynomial is f0 × v(x). We
note that the inverse polynomials are also stored in the reverse order. Our module also
supports inversion in S2, which is used in inversion in Sq. We compare our results for
NTRU-HPS821 with n = 821 with the Reciprocal in R/3 module in the implementation
of Streamlined NTRU Prime in [66]. We have shown that the extended GCD can be
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Table 6: Implementation results of the Extended GCD module and comparison with
related work for Streamlined NTRU Prime in Zynq Ultrascale+ platform.

Freq. LUT FF BRAM DSP Cycles
Extended GCD w/ n = 761 [66] 271 518 216 0 0 1,168,899
Extended GCD w/ n = 821 250 8,534 5,479 0 0 1,846

Algorithm 1 Polynomial Inversion in Sq [50]
Input: Polynomial a in Sq
Output: Polynomial b in Sq such that a · b = 1 mod (q,Φn)
1: v0 ← a−1 mod (2,Φn)
2: i← 1
3: while i < logq do
4: v0 ← v0 · (2− a · v0)
5: i← 2i
6: end while
7: b← v0

Algorithm 2 Lift in NTRU-HRSS [50]
Input: Polynomial v in S3
Output: Polynomial b = Φ1((v/Φ1) mod (3,Φn)) mod (q,Φ1Φn)

1: z = [1/Φ1] mod (3,Φn) =
n−2∑
i=0

(1− i) · xi (mod 3)

2: a = vz mod (q,Φ1Φn)
3: for i = 0 to n− 1 do
4: ai = ai − an−1 (mod 3) . a = v/Φ1 mod (3,Φn)
5: end for
6: b0 = an−1 − a0 (mod q)
7: for i = 1 to n− 1 do
8: bi = ai−1 − ai (mod q) . b = Φ1((v/Φ1) mod (3,Φn)) mod (q,Φ1Φn)
9: end for

implemented in an unrolled fashion, achieving highly optimized latency.
Inversion in Rq: To compute the inverse of h in Sq, we perform h−1 mod (2,Φn) and

then apply a variant of the Newton iteration in Rq to obtain hq ≡ h−1 mod (q,Φn). The
pseudocode of inversion in Rq is given in Algorithm 1. A similar approach is presented
in [50], which finds an inverse mod (2,Φn) using h−1 ≡ h2n−1−2 mod (2,Φn). Given
that squaring operation in Z2[x] is particularly very efficient in software, this approach is
suitable for software implementation. In our case, we can re-use our S3_inverse module
to compute inversion in S2. All arithmetic operations are now reduced modulo 2 instead
of 3 as in inversion in S3. Operations from lines 3 to 6 in Algorithm 1 are equivalent to 8
polynomial multiplications, which are performed by the Toom-Cook multiplier. Due to the
long latency of the polynomial multiplication, inversion in Rq is the most time-consuming
operation in Key Generation of NTRU.

5.1.4 Lift function

Lift function in NTRU-HPS applies a simple map to ternary coefficients of m, converting
{0, 1,−1} to {0, 1, q − 1}. This can done on-the-fly by sign extending all the coefficients
from εp = 3 bits to εq bits.

In NTRU-HRSS, the Lift function mapsm from S3 to Rq by doingm 7→ Φ1 ·S3(m/Φ1).
An efficient implementation of Lift is shown in Algorithm 2. As shown in the pseudocode,
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Lift function can be performed by one multiplication with z = 1/Φn then followed by
reduction modulo (3,Φn) and lastly multiplied by Φ1. Since z is a constant ternary
polynomial, it is stored in the memory and the multiplication can be performed by
the Ternary_Poly_Mult in n cycles. Reduction modulo (3,Φn) and multiplication by
Φ1 = x− 1 can be performed on-the-fly while transferring result back to the memory.

5.1.5 Operations scheduling

In Figs 4, 5, and 6, we show the scheduling of major operations for NTRU-HRSS.
Similar schedulings are also applied to NTRU-HPS with two significant differences as
follows:

• Lift(m) in NTRU-HPS is simpler compared to NTRU-HRSS. The function is
executed on-the-fly while storing m to the memory without occupying the Ternary
Polynomial Multiplier.

• Sampling m in Encapsulation and g in Key Generation take much longer time since
they require constant-time sort-based sampling.

Almost all pack and unpack operations are hidden by overlapping them with Polynomial
Multiplications and/or Sampling. In Decapsulation, the valid checks of r andm are executed
in parallel with packing them. The majority of the execution time of Decapsulation is
taken by the "large" × "large" polynomial multiplication. Meanwhile in Key Generation,
the polynomial inversion in Rq takes up to 90% of total latency.

5.2 CRYSTALS-Kyber
The proposed hardware architecture for Round 3 Kyber supports the following variants
and operations: a) CPA-PKE: Key Generation, Encryption, and Decryption, and b) CCA-
KEM: Key Generation, Encapsulation, and Decapsulation. The top-level unit is shown
in Fig. 13. The hardware is implemented in Chisel hardware design language [6][52] and
incorporates state-of-the-art techniques for optimizing speed and minimizing the resource
overhead. The scheduling of operations and units for security level 1 in Decapsulation is
shown in Figs 15 and 16.

5.2.1 Polynomial NTT and Multiplication Unit

The Polynomial-Vector Multiplication Unit (PVMU) can perform forward and inverse NTT
operations concurrently on up to k polynomials, where k is the security level parameter.
This unit also performs polynomial point-wise multiplication (PWM) and accumulation
to compute vector-vector and matrix-vector multiplications. The top-level block diagram
of PVMU is shown in Fig. 14. At the security level k, the PVMU module consists of k
DoubleButterfly pipelines and k memory banks (NTT RAM), each with a single read
port and a single write port and datawidth of 4× 12 bits (4 coefficients). On the input
path, k FIFOs exist, which allow receiving up to k polynomials while a previous operation
underway and the main memory bank port are busy.

A DoubleButterfly pipeline consists of two merged parallel configurable radix-2 butter-
flies, which can operate in three modes of operation: DIT (Decimation in Time) NTT, DIF
(Decimation in Frequency) iNTT (inverse NTT), and point-wise multiplication (PWM).
During the NTT/iNTT operations, each DoubleButterfly pipeline carries out two radix-2
butterfly operations in parallel for odd and even coefficients. The structure of a Double-
Butterfly pipeline is shown in Fig. 17. The butterfly datapath is deeply pipelined (up to
12 stages) to achieve good operating frequency.
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Figure 13: Block diagram of the Kyber top-level datapath

In each butterfly pipeline, a reordering of the input coefficients may be required,
depending on the butterfly operation (DIF/DIT/PWM). This is performed by the Head
Reorder unit at the input of the butterfly pipeline. A corresponding reordering at the
end of the butterfly pipeline is performed by the Tail Reorder unit. During DIF/DIT
operations, these reorder units operate as multi-path delay commutators (MDC), [96], not
only enabling an efficient memory access scheme similar to [84], but also ensuring correct
ordering of the stored coefficients and avoiding the need for any subsequent reordering
steps.

The inverse NTT operation involves scaling all coefficients by 256−1. In many software
and hardware implementations, the scaling step is performed in a separate step requiring
256 additional field multiplications for each polynomial. By performing a division by
2 (mod q) at each layer of inverse NTT, the scaling step can be entirely avoided. This
observation was also used by Zhang et al. [97]. In that implementation, two divide-by-2
hardware units are utilized to scale both outputs of the radix-2 iNTT butterfly. In our
implementation, we use a single divide-by-2 unit for each butterfly, and the other output
of each butterfly is scaled by using a scaled copy of the twiddle factors during the inverse
transform.

The twiddle factors are stored in a single ROM shared by all butterfly pipelines and
are mapped to BRAM-based memory during the FPGA synthesis.

Kyber’s point-wise multiplication of polynomials a and b (both in NTT domain) is
performed on base degree 1 polynomials in the form of a2i + a2i+1X and b2i + b2i+1X.
The resulting polynomial c = a · b is calculated using the following formula:

c2i + c2i+1X = (a2i + a2i+1X)(b2i + b2i+1X) mod X2 − ζi
which results to: {

c2i = a2ib2i + a2i+1b2i+1ζi

c2i+1 = a2ib2i+1 + a2i+1b2i

The straightforward formulation requires 5 modular multiplications for producing a
pair of coefficients. As demonstrated by Xing et al. in [95], by using the Karatsuba
method, only 4 modular multiplications is required:
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{
c2i = a2ib2i + a2i+1b2i+1ζi

c2i+1 = (a2i + a2i+1)(b2i + b2i+1)− a2ib2i − a2i+1b2i+1

With slight adjustments to the double-butterfly structure and careful scheduling
of the pipelines, the same resources are used to perform the point-wise multiplication.
The scheduling of the DoubleButterfly pipeline for point-wise multiplication is shown
in Figure 18. A feedback loop walks coefficients twice through the pipeline to perform
4 modular multiplications and the required addition and subtractions. The two passes
through the pipeline are interleaved in such a way to allow full utilization of the multiplier
and reduction units of both butterflies in each cycle and requiring only 128 cycles to perform
a full polynomial point-wise multiplication (depending on the subsequent operation, a
maximum of 21 additional cycles may be required to flush the pipeline).

5.2.2 Barrett reduction with support for division

Coefficients of polynomials are elements of a finite field (or ring) Zq, where q is a small
constant modulus (less than 20 bits). In Kyber q is a prime. This choice requires a
modular reduction step after most arithmetic operations to keep the bit width of the
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Algorithm 3 Optimized Barrett Modular Reduction and Division
Require: 0 ≤ u ≤ (q − 1)2

Ensure: r = u mod q, r ∈ [0, q) . remainder
Ensure: u = d.q + r mod q, d ∈ [0, q) . quotient

Generation Time: Find optimal values for α and β such that:
1. Only a single conditional subtraction is required
2. Multiplication with the constant µ has minimal hardware complexity.
For Kyber Round 3:
q := 3329, n := dlog2(q)e = 12, α := 12, β := −2, µ := b 2n+α

q
c = 5039

function BarrettReduce(u)
uh ← u� (n+ β) . discard n+ β least-significant bits
d← (µ · uh)� (α− β) . discard α− β least-significant bits
r ← u− d · q
if r ≥ q then . conditional subtraction

r ← r − q
d← d+ 1

end if
end function

data bounded. Variants of Barrett [11], Montgomery [69], K-RED [65], and SAMS2 [62]
reduction algorithms have been used in software and hardware implementations of R-LWE
schemes.

We use an optimized variant of the Barrett reduction algorithm shown in Algorithm 3.
As shown by Knezevic et al. [58], by careful selection of parameters α and β, only one
level of conditional subtraction will be required. The hardware generator code creates
optimized single constant multipliers (SCM) based on shift-adder trees and ternary adders
based on [60].

5.2.3 Hash and Sampling Unit

Kyber uses the SHA3-256 and SHA3-512 hash functions as well as SHAKE128 and
SHAKE256 extendable-output functions. All of them are based on the Keccak permutation.
Hash and Sampling Unit (HSU) integrates Keccak core with centered-binomial (CBD)
and uniform rejection-based samplers, performing hashing operations in the FO transform
as well as generation of noise polynomials and expansion of the public matrix A. HSU’s
block diagram is depicted in Fig. 19. Our Keccak implementation takes advantage of the
full-width, basic iterative architecture, which performs 24 rounds in 24 clock cycles. The
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data input and output are 64 bits wide with the valid-ready (decoupled) interface. In
Kyber, all hashed data and base seed values (without the "nonce" bytes) are of lengths
that are multiples of 64 bits. Based on this observation, we efficiently generate a padding
word and append it to the input in a single cycle. The padding word includes specific
SHA3/SHAKE padding bytes as well 1 nonce byte when generating noise polynomials
(CBD sampling) or 2 nonce bytes during the expansion of matrix A. Keccak output
is transferred from the state registers to a PISO to allow the next permutations to be
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performed while the output is consumed.
the MultiwidthCoverter module converts 64 bits data from the output PISO of the

Keccak code to the number of bits required for the selected sampling operation. This
module is an improvement to the "Bus Width Converter" design introduced by Farahmand
et al. in [30] with support for multiple output widths.
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Converter

Rejection

CBDη1 

CBDη2 

64
48
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cmd

din

Figure 19: Block diagram of Kyber Hash and Sampling Unit (HSU)

5.2.4 Centered Binomial Sampler

The CBD module in Kyber is responsible for performing the binomial sampling. Kyber
requires 12 bits of random data generated by the SHAKE module to generate four
coefficients per clock cycle. Two CBD parameters η1 and η2 are used. η2 = 2 for all
security levels, η1 = 3 for security Level 1 and η1 = 2 for the other security levels. The
samples are calculated from formula 4.

Bη =
η∑
i=1

(ai − bi) (4)

Hamming weights of the input chunks of the size η are calculated, and negative results are
mapped to equivalent mod+q positive values.

5.2.5 Rejection-based Sampler

In order to minimize the size of the public key, the public matrix A (or its transpose AT )
is generated through the rejection-based sampling of a deterministic random source. The
uniform random is generated using SHAKE128 from the public key seed. The output
from SHAKE is partitioned into groups of 12 bits, and the resulting unsigned value is
only accepted as a valid coefficient if it is less than q = 3329. This gives a probability of
81.27% for a sample to be valid. As k2 sampled polynomials need to be generated through
multiple invocations of the Keccak permutation and filtering of coefficients, this step is
one of the bottlenecks in Kyber hardware scheduling. The rejection-based sampling of A is
inherently not constant time, but any timing variation entirely depends on the public key
seed and therefore would not expose any secrets. The Rejection Sampling submodule of
the HSU is able to construct each constituent polynomial of 256 coefficients in an average
time of 82 cycles. The generation of SHAKE256 output is stopped only when enough valid
coefficients are sampled for each polynomial.
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5.2.6 Comparison of re-encrypted Ciphertext

During decapsulation, instead of comparing the re-encrypted ciphertext with the received
ciphertext, we first generate H(ct) of the original ciphertext. After re-encryption, the
hash of the re-encrypted ciphertext (H(ct′)) is computed, and then only the hashes are
compared. This eliminates the need for keeping the original ciphertext. This design
decision has negligible cycle overhead but allows a simpler control circuit and also provides
a path towards protection against ciphertext malleability side-channel attacks. Additional
protection against power and electromagnetic side-channel attacks for this design is under
development and will be presented in our future work.

5.2.7 Improvements over Previous Work

A state-of-the-art hardware implementation of Kyber is reported in [95]. Our design has
been conducted independently. Both designs employ all relevant optimization techniques
reported before, including:

• Flexible DIF/DIT butterflies for performing forward/inverse NTT transforms with
efficient resource sharing and avoiding any extra shuffling (bit-reverse ordering) steps.

• Efficient division by two at each step of inverse NTT, eliminating the need for the
scaling step.

• Parallel processing of even and odd coefficients using a double-butterfly structure.

• Reuse of DIF/DIT butterflies for performing Kyber’s point-wise multiplication.

• Use of Karatsuba algorithm to reduce the number of field multiplications for point-
wise multiplications from 5 to 4.

Our improvements over previous work are as follows:
Our high-level architecture and scheduling are based on the use of k DoubleButterfly

units with low area utilization ( and a single Hash/Sampling unit (HSU). In [95], only
one pair of butterflies are used. Our DoubleButterfly datapath is developed to have a
low area (around 726 LUTs), which allows efficient exploitation of Kyber’s algorithm-level
parallelism by deploying k instances of DoubleButterfly, with k set to 2, 3, and 4 for the
security levels 1, 3, and 5, respectively.

We utilize an efficient memory access scheme, reducing the memory requirement of
each DoubleButterfly unit to a 1-read 1-write (1R1W) 64x48-bit RAM. In Xilinx FPGAs,
this memory is mapped to a single BRAM tile (36 Kb block RAM) in the simple dual-port
(SDP) mode of operation. Efficient "Head/Tail Re-order" units of the double-butterfly
structure perform online re-ordering of coefficients entering/exiting the butterfly pipeline
in NTT/invNTT (as a Multi-path Delay Commutator) as well as the re-ordeing required
for PWM/MAC. The double-butterfly structure computes the point-wise multiplication
through the interleaved reiteration of the pipeline as depicted in Figure 18.

Our deeply pipelined butterfly implementation, including 12 stages, results in a higher
maximum clock frequency. The optimized control circuit can skip pipeline flushing stalls
whenever possible.

We have developed an optimized reduction unit based on a tweaked version of Barrett’s
algorithm. This unit has been shown to be faster and more efficient than the other
implementations of modular reduction suggested in the literature. It also computes the
division by q, required for a fast and efficient implementation of the compression step. As
a bonus, our hardware generation code works perfectly for any value of q, including the
value used in CRYSTALS-DILITHIUM.
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Figure 20: Top-level block diagrams of Saber. The orange, blue modules are used only in
key generation and decapsulation, respectively.

Our fast and efficient implementation of the Rejection sampler processes four coefficients
at a time, reducing the expansion of public matrix to 116 cycles per polynomial ( 116k2

cycles total).
Our fast and efficient Keecak implementation has input and output widths of 64 bits,

with decoupled output and efficient SHA3/SHAKE padding of the input words.
Efficient implementation of the CBD sampler which can simultaneously supports η

values 2 and 3 (for security level 1) and provide output in the standard range.
Finally, unlike [95], our design is technology-independent and does not employ any

vendor-specific IPs. These features allow for easy deployment on FPGA platforms other
than Xilinx, use of synthesis flows other than Vivado (including open-source FPGA flows),
as well as porting to ASICs.

5.3 Saber
The top-level block diagram is shown in Fig. 20.

5.3.1 Sampling

The diagram of our CBD sampling modules for three parameter sets of Saber is shown in
Fig. 21. The values of coefficients sampled from CBD are in the range [-5; 5], [-4; 4], and
[-3;3], corresponding to the bit-width w = 4, 4, 3. The 64-bit inputs are buffered in the
dual-step shift register. After the shift register is full, chunks of data are read out and
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Table 7: Polynomial Multipliers for Saber Level 3.

Cycles Freq
[MHz] µs LUT FF DSP BR

AM Device

Schoolbook-TW 256 370 0.7 11,426 8,727 0 0.0 Zynq U.+
NTT-TW e908 400 2.3 4,831 2,260 8 3.0 Zynq U.+
Karatsuba [98] 81 160 0.5 13,735 4,486 85 0.0 Zynq U.+
Toom-Cook 4 [68] 1,168 125 9.3 2,927 1,279 28 2.0 Zynq
NTT [32]* e11,008 153 71.9 2,454 1,917 7 4.5 Artix-7

∗ A first-order masking design that supports multiple lattice-based schemes.
e Total latency for multiplication is estimated by: 2× NTT + INTT + Pointwise Multiplication.

Table 8: Implementation results of the Optimized Polynomial Multiplier using optimized
integer multipliers vs. the centralized multiplier architecture in [12]

Optimized Multiplier Centralized Multiplier
LightSaber 12,492 LUTs, 8,727 FFs 13,658 LUTs, 8,727 FFs
Saber 12,492 LUTs, 8,727 FFs 11,426 LUTs, 8,727 FFs
FireSaber 8,726 LUTs, 8,215 FFs 8,734 LUTs, 8,215 FFs

fed through a pure combinational logic to generate the coefficients. The output width of
sampling modules is equal to 8 ∗ w. Therefore, we will have 8 samples generated per clock
cycle.

5.3.2 Polynomial Multiplication

The preliminary choice of a multiplier type for Saber is discussed in Section 3.3. However,
considering that for Saber, other groups have attempted different multiplier types, a more
detailed analysis is possible.

The high-speed SW/HW codesign of Saber in [22] uses a schoolbook-based multiplier,
which requires 256 DSPs with 13-bit inputs. A Toom-Cook based multiplier for Saber
is proposed in [68], also in the SW/HW co-design context. The Saber crypto-processor
implementation in [88] uses a schoolbook-based multiplier, which exploits the small sizes
of input coefficients. It can provide very good performance with moderate resource
consumption. [12] improves the multiplier used in [88] by centralizing coefficient-wise
multiplication and replacing integer multipliers with simple multiplexers. [33] proposed an
approach to use an NTT module to speed up polynomial multiplication in Saber based on
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Figure 22: Schoolbook-based polynomial multiplier with unroll factor u = 1, 2, 4.

the Chinese Remainder Theorem. Recently, [98] introduced an 8-level Karatsuba multiplier
for Saber with efficient scheduling of operations, which achieves very small latency in terms
of clock cycles. However, it requires a large area and a long critical path, which leads to
low clock frequency. A masked accelerator for RISC-V platform is presented in [32]. It
includes an NTT-based multiplier which supports Saber and multiple other lattice-based
schemes.

In Table 7, we summarize attempts at implementing Saber’s polynomial multiplication
using four different multiplier types. The Karatsuba and Schoolbook multipliers are
clearly the fastest but also the largest (in terms of the number of LUTs and FFs) among
the four attempted designs. The main advantage of the Schoolbook multiplier is no
use of DSP units. However, if this resource is not critical and the Latency[µ s] is more
important than the number of LUTs, then Karatsuba is a slightly better choice. The
Toom-Cook 4, implemented in [68], is significantly slower than Karatsuba and Schoolbook,
even considering the effect of different FPGA devices. This multiplier also uses several
times fewer LUTs. The NTT multiplier reported in [32] is slightly smaller than Toom-Cook
4, but it requires about 7.7x more time. This result may be, however, affected by the
first-order masking design of the multiplier in [32], so more investigation may be warranted
in the future. Overall, for the purpose of this project, we decided to select the Schoolbook
and NTT-based multipliers.
Schoolbook-based Polynomial Multiplier. The block diagram of the schoolbook-
based polynomial multiplier for Saber is shown in Fig. 22. Since there are multiple
multiplications involved in vector-vector or matrix-vector multiplication, we improve the
latency of multiplication by adding input and output buffers. The buffers are capable of pre-
loading the next input polynomial as well as unloading the previous product polynomial
at the same time as the current multiplication is performed. The S&S’MEM stores all
small coefficients of secret polynomials in their unpacked form. Thus, it can provide one
polynomial in 32 cycles. The latencies of loading and unloading polynomials are hidden
in the multiplication latency. The multiplier can also be unrolled by a factor u = 1, 2, or
4, which can finish one polynomial multiplication in 256, 128 or 64 cycles, respectively.
Instead, having simple integer coefficient-wise multipliers, which are based on shift-add
operations, as in [88], we generated optimized integer multipliers using an open-source tool
FloPoCo [23]. We also tried the centralized coefficient-wise multiplier approach proposed
in [12]. We report the results of the two approaches in Table 8. The centralized multipliers
approach has better area consumption in the case of Saber, so we use this approach for the
specific parameter set. For LightSaber and FireSaber, the optimized integer multipliers
are used.
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Figure 23: Block diagram of the 2x2Butterfly unit. All adders, subtractors and multipliers
are followed by a signed reduction modulo p. All bus widths are 25 bits unless specified.

NTT-based Polynomial Multiplier. Given that polynomial multiplication in Saber
can be treated as negative-wrapped convolution with the reduction polynomial xn + 1,
n = 2k, NTT can be used for Saber by choosing an appropriate lifted modulus p. Recent
work by Chung et al. [19] shows a trick allowing to apply NTT to Saber in software
implementations targeting Cortex-M4 and AVX2. Fritzmann et al. applied the same idea
in a masked accelerator for the RISC-V platform targeting Saber and other lattice-based
schemes [32].

In Kyber, incomplete NTT is used by default because the modulus q does not support
full NTT. This approach requires the point-wise multiplication of degree-1 polynomials
using the Karatsuba method. For Saber, we chose to do complete NTT to reduce the
complexity of the NTT module. To avoid padding polynomials with degree n to 2n in
negative wrapped convolution, one can multiply input polynomials with powers of the
2nth root of unity, γ. To recover the coefficients of the product polynomial during Inverse
NTT, we multiply the product polynomials with powers of γ−1 and the scaling factor n−1.
In order to make the 2nth roots of unity γ exist, the prime modulus p must satisfy the
equation: p = 1 mod 2n. When multiplying a polynomial with coefficients in [0, q − 1] by
a polynomial with small coefficients in [−µ2 ; µ2 ], the coefficients of the product will be in
the range (−nqµ2 ; nqµ2 ). Thus, we can choose an NTT-friendly prime p > qnµ, and then
use NTT to do polynomial multiplication treating coefficients as integers, and then reduce
coefficients modulo the actual q. Based on this condition and the condition for the 2nth
roots of unity, we chose the value of p = 33, 550, 337 = 225 − 212 + 1 (25 bits) which is
applicable to all Saber parameter sets. The special structure of p enables a very efficient
modulo p reduction. All coefficients during the NTT-related operations are reduced to
stay in the range [−p2 ,

p
2 ). By using NTT, a multiplication in Zq/(xn + 1) can be computed

as follows:

C = INTT(NTT(A) ∗NTT(B))

The matrix-vector multiplication in Saber involves computing a product of l× l matrix
of polynomials and a l × 1 vector. We compute negacyclic NTT for polynomials in the
matrix and vector, do pointwise multiplications, and accumulate the results to a vector
in the NTT domain. Then we only need to do l inverse NTT operations to obtain the
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results. Similarly, the inner product of two l × 1 vectors can be computed using 2l NTT
and 1 inverse NTT operation. Similar to our Kyber implementation, we opt to use a
Polynomial-Vector Multiplication Unit (PVMU) which can process up to l polynomials at
the same time.

Kyber is specifically designed with NTT as a method to do polynomial multiplications.
Its matrices and vectors are sampled and stored as parts of keys or ciphertext in the
NTT domain. In Saber, all components are generated and transferred into the normal
domain. Therefore Saber requires substantially more NTT and inverse NTT operations.
To compensate for this disadvantage, we further extend our DoubleButtefly unit to a
2x2Butterfly unit. This unit builds upon the NTT design by Nguyen et al. [70, 71]. It
consists of 4 configurable radix-2 butterflies and processes 4 coefficients and 2 subsequent
NTT layers in every clock cycle. The ideal latency for NTT operations using this module
is n

4
logn

2 cycles. There are 3 modes of operation: NTT (Decimation in Time), iNTT
(Decimation in Frequency), and point-wise multiplication. The structure of the 2x2Butterfly
unit is shown in Fig. 23. The unit has 14 stages of pipelines to achieve optimal maximum
frequency. Each NTT and each iNTT operation takes 276 cycles; a point-wise multiplication
takes 80 cycles. One NTT module for Saber requires 4831 LUTs, 2260 FFs, 8 DSP units,
and 3 BRAMs when synthesized at 400 MHz in our Zynq-Ultrascale+ device.

5.3.3 Operations Scheduling

The timing diagrams of Key Generation, Encapsulation, and Decapsulation of LightSaber
implemented using the schoolbook-based multiplier are shown in Figs. 26, 24 and 25, re-
spectively. Similar scheduling is used when the NTT-based multiplier is employed. During
encapsulation and decapsulation, the generation of a vector of polynomials with "small"
coefficients in CBD takes uniform inputs from Keccak module. Whenever a polynomial is
generated, it is then loaded into the polynomial multiplier and at the same time, stored
in S&S’MEM for later use. Multiplication can start as soon as a polynomial with "small"
coefficients is fully loaded. For each cycle during multiplication, 1, 2, and 4 coefficients
of a polynomial in A are fetched to the multiplier with unroll factor u = 1, 2, and 4,
respectively. The unpack_εpq modules serialize 64-bit data block into 13-bit coefficients.
Since the multiplier consumes data at a slower rate than the Keccak module, Keccak
module works intermittently when generating A. It stops its operation when there is still
data left to be read by the multiplier. The next small noise polynomial is loaded in parallel
with the multiplication of the current polynomials. Thus the multiplier is always busy
during vector-vector and matrix-vector multiplication. The result polynomials are rounded
and packed and stored into the Main_Mem. During key generation, matrix A is generated
in column-major order. The intermediate results of polynomials in vector b have to be
stored in Main_Mem.

5.3.4 Improvements over Previous Work

The Karatsuba-based multiplier in [98] can execute polynomial multiplications in a
very low number of clock cycles. By employing pipelined 8-level Karatsuba unit with
efficient scheduling, one polynomial multiplication can be completed in 81 cycles. However,
its area consumption is much higher than that of our multiplier in terms of DSP units
(85 vs. 0) and BRAMs (6.0 vs. 1.5). Due to the recursive nature of the algorithm, the
critical path through the multiplier is longer. Consequently, the circuit can only operate
at a low frequency, 100 MHz and 160 MHz, for the unified and Saber Level 3 architecture,
respectively. By unrolling our schoolbook-based multiplier, with the unrolling factors equal
to 2 and 4, respectively, we obtain the designs Saber x2 and Saber x4, listed in Table 13.
These designs can achieve comparable cycle count while having a much higher maximum
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Figure 25: Operations Scheduling for Decapsulation of LightSaber.
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Figure 26: Operations Scheduling for Key Generation of LightSaber.

clock frequency and hence also better latency in µs. We note that the design in [98] targets
an ASIC platform. Thus, both the area consumption and maximum frequency on FPGA
might still be improved.

The high-speed instruction-set coprocessor in [87] offers flexibility in supporting multiple
parameter sets in a unified architecture. The polynomial multiplier is then improved in [12].
Area consumption is significantly reduced while keeping the same latency in clock cycles.
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The coprocessor design, however, limits exploiting parallelism between non-data-dependent
operations. As we have demonstrated in our timing diagrams, many operations can be
executed in parallel with polynomial multiplications. In Table 9, we show in detail how
our efficient scheduling of operations for Saber Level 3 can improve the overall latency of
Decapsulation. The latency of polynomial multiplications is improved by 14% using buffers,
allowing loading input and unloading output in parallel with multiplications. SHAKE128
and CBD sampling are almost fully overlapped. The remaining operations only include
loading random inputs, ciphertext, rounding, and packing final polynomial in the result
vectors. Consequently, the total cycle count for Decapsulation at Level 3 is shortened by
more than 40%.

Compared to the previous work on the implementations of Saber, reported in [87]
and [98], we further optimize the schoolbook multiplier. Additionally, we optimize the
scheduling of all operations in hardware by fully exploiting the potential for parallel
processing of operations without data dependencies. Our implementation achieves the best
latency and the usage of LUTs.

Table 9: Comparison to Saber implementation in [87] for Level 3 Decapsulation based on
[[87], Table 1]. Operations with ∗ have majority of their latency overlapped with Polyno-
mials Multiplication in our design. Hence, only their non-overlapped cycles contributing
to the total cycle count are reported.

Operations Decapsulation
[87] TW

SHA3-256 303 294
SHA3-512 62 47
SHAKE-128∗ 1,403 51
CBD Sampling∗ 176 89
Polynomial multiplications 4,484 3,873
Remaining operations∗ 1,606 328
Total Cycles 8,034 4,682

6 Results
6.1 NTRU
The results of our implementations of two variants of NTRU, NTRU-HRSS (at the security
level 1) and NTRU-HPS (at the security levels 1 and 3), are summarized in Table 10.

Table 10: Implementation results of NTRU on Zynq UltraScale+
Design Module Freq LUT FF Slice DSP BRAM Latency

Cycles µs
Security Level 1

NTRU-HRSS701
Key Gen. 300 49,001 39,957 9,357 45 2.5 51,812 172.7
Encaps. 300 31,494 25,120 6,652 0 2.5 2,219 7.4
Decaps. 300 37,702 34,441 8,032 45 2.5 8,826 29.4

NTRU-HPS677
Key Gen. 250 41,047 39,037 7,968 45 6 48,179 192.7
Encaps. 250 26,325 17,568 4,638 0 5 3,687 14.7
Decaps. 300 29,935 19,511 5,217 45 2.5 7,522 25.1

Security Level 3

NTRU-HPS821
Key Gen. 250 50,347 44,281 10,127 45 6.5 67,157 268.6
Encaps. 250 33,698 30,551 7,370 0 5.5 4,576 18.3
Decaps. 300 38,642 33,003 7,785 45 2.5 10,211 34.0
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At the security level 1, NTRU-HRSS outperforms NTRU-HPS for key generation and
encapsulation. However, it slightly lags behind for decapsulation. NTRU-HRSS operates
at a higher clock frequency (except for decapsulation) but requires consistently more
resources than NTRU-HPS. With the increase in the security level, NTRU-HPS requires
more FPGA resources, with the exception of DSP units, the number of which remains the
same.

In NTRU-HPS, the maximum clock frequency for the key generation and encapsulation
is limited by the sort-based sampling unit. This unit is not a part of the decapsulation
core. Consequently, decapsulation can be performed at a 50 MHz higher clock frequency.

6.2 CRYSTALS-Kyber
In Table 11, we report our results for CRYSTALS-Kyber and compare them with previous
hardware-only implementations. We omit software/hardware implementations reported in
[9], [10], [33], [3], and [94]. These implementations are clearly inferior in terms of both the
latency and the product of the latency and the number of LUTs.

The implementation of Kyber presented in this work outperforms the best previous
implementation, reported in [95], by approximately a factor of two in terms of the
execution time in microseconds for all major operations (key generation, encapsulation,
and decapsulation). The comparison in terms of resource utilization is less obvious,
considering that all operations are allowed to share the same resources in this work. In
[95], the resource utilization for the server side (executing key generation and decapsulation)
and the client side (executing encapsulation) are reported separately. However, based on our
design, extending the coverage of operations from the server side to include encapsulation
has negligible influence on the circuit area. Thus, it seems fair to compare our resource
utilization numbers with the corresponding numbers for the server unit in [95].

The implementation reported in [49] is significantly less efficient. It also does not
support key generation. The execution time for encapsulation is 21.5x and 29.4x longer
in [49] compared to this paper, at the security levels 1 and 3, respectively. For decapsulation,
the corresponding ratios of the execution times are 21.7x and 29.7x. At level 5, only
Virtex-7 results are reported in [49].

6.3 Saber
The results of our implementations of Saber using the schoolbook multiplier at the security
levels 1, 3, and 5, targeting Zynq UltraScale+, are summarized in Table 12. This table
demonstrates three clear advantages of Saber: 1) the resource utilization stays almost the
same, independently of the security level, 2) the maximum clock frequency is independent
of the security level, 3) implementations use no DSP units and a very small number of
BRAMs. Only latency is affected considerably by using higher security levels.

The comparison with our implementation using NTT-based multiplier and the best
implementations of Saber reported in the literature to date is shown in Table 13 and
Figs 34, 36, and 38. In Table 13, our implementations are marked in bold.

To achieve a fair comparison with other types of multipliers, all inputs and outputs of
our NTT-based Saber implementation are in normal form and the latency of computing the
NTT/iNTT of the inputs and outputs are all taken into account. The designs with the terms
x2 and x4 in the name are obtained by unrolling the schoolbook polynomial multiplication
unit by 2 and 4 times, respectively. These designs offer significant improvements in latency
at the cost of a substantial increase in the number of LUTs, flip-flops, and slices. In
Figs 34, 36, and 38, the implementation described in [98] is denoted as Saber-Tsinghua, the
implementation from [87] as Saber-U.Birmingham, and our designs as Saber-TW. Based on
these figures and Table 13, Saber x4 and Saber x2 are the fastest, Saber x1 and Saber-NTT
are the smallest among the compared high-speed implementations.
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Table 11: Implementation results for different Kyber instances on various FPGAs. Notation:
S/C - Server/Client, E/D - Encapsulation/Decapsulation.
Scheme Key/Encaps/Decaps

[K Cycles]
Freq.
[MHz]

Key/Encaps/Decaps
[us] LUT FF

D
SP BR

AM Device

Kyber-CCAKEM L1
Kyber R3
[this work] 2.2/3.2/4.5 220 10.0/14.7/20.5 9,457 8,543 4 4.5 Artix-7

XC7A200
Kyber R3
[95] 3.8/5.1/6.7 S/C

161/167 23.4/30.5/41.3 S/C
7412/6785

S/C
4644/3981

S/C
3/3

S/C
2/2

Artix-7
XA7A12

Kyber R2
[49] –/49.0/68.8 155 –/316/444 E/D

80,322/88,901 N/A E/D
54/354

E/D
200.5/202

Artix-7
XA7A12

Kyber R3
[this work] 2.2/3.2/4.5 450 4.9/7.2/10.0 9,504 8,957 4 4.5 Zynq-UltraScale+

XCZU7EV
Kyber-CCAKEM L3

Kyber R3
[this work] 2.6/3.7/4.9 220 12.0/17.0/22.2 10,530 9,837 6 6.5 Artix-7

XC7A200
Kyber R3
[95] 6.3/7.9/10.0 S/C

161/167 39.2/47.6/62.3 S/C
7412/6785

S/C
4644/3981

S/C
3/3

S/C
2/2

Artix-7
XA7A12

Kyber R2
[49] –/77.5/102.1 155 –/500/659 E/D

97,085/110,260 N/A E/D
36/292

E/D
200.5/202

Artix-7
XA7A12

Kyber R3
[this work] 2.6/3.7/4.9 450 5.9/8.3/10.9 10,590 10,458 6 6.5 Zynq-UltraScale+

XCZU7EV
Kyber-CCAKEM L5

Kyber R3
[this work] 3.6/4.8/5.8 220 16.2/21.7/26.4 11,623 11,131 8 8.5 Artix-7

XC7A200
Kyber R3
[95] 9.4/11.3/13.9 S/C

161/167 58.2/67.9/86.2 S/C
7412/6785

S/C
4644/3981

S/C
3/3

S/C
2/2

Artix-7
XA7A12

Kyber R2
[49] –/107.1/135.6 192 –/558/706 E/D

119,189/132,918 N/A E/D
36/548

E/D
200.5/202

Virtex-7
VC707

Kyber R3
[this work] 3.6/4.8/5.8 450 7.9/10.6/12.9 11,676 11,959 8 8.5 Zynq-UltraScale+

XCZU7EV

Table 12: Implementation results of Saber on Zynq UltraScale+

Design Module Freq LUT FF Slice DSP BRAM Latency
Cycles µs

Security Level 1

LightSaber
Key Gen. 370 23,557 14,190 3,844 0 1.5 1,607 4.3
Encaps. 370 24,199 14,457 3,984 0 1.5 2,153 5.8
Decaps. 370 24,655 14,879 4,364 0 1.5 2,794 7.6

Security Level 3

Saber
Key Gen. 370 20,496 13,939 3,634 0 1.5 2,709 7.3
Encaps. 370 21,069 14,074 3,503 0 1.5 3,735 10.1
Decaps. 370 21,342 14,233 3,816 0 1.5 4,682 12.7

Security Level 5

FireSaber
Key Gen. 370 19,752 14,358 3,321 0 1.5 4,895 13.2
Encaps. 370 20,696 13,949 3,455 0 1.5 5,867 15.9
Decaps. 370 20,868 14,237 3,460 0 1.5 7,128 19.3

6.4 Comparison of Round 3 candidates

In Figs. 27–38, we illustrate the dependence between the speed of the Round 3 candidates
(in the number operations per second, which, for all considered designs, is equivalent
to the inverse of latency in time units) and their resource utilization in LUTs. All
other components of resource utilization, such as the number of BRAMs or DSP units,
are omitted for simplicity. In terms of the percentage of the total amount of FPGA
resources, the utilization of LUTs is typically the highest. However, some exceptions to
this typical scenario may occasionally occur. The exact correspondence between the names
of designs given in these figures’ legends and the related publications is shown below:
<candidate_name>-TW – this work, Classic McEliece-Yale U. – [92], [91], FrodoKEM-
PQShield/Bristol – [47], BIKE-R-U Bochum, Intel – [82, 81], CRYSTALS-Kyber-Tsinghua
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Table 13: Implementation results of Saber and comparison with related work on ZynqUl-
trascale+ platform.

Design Key/Encaps/Decaps
[K Cycles]

Freq
[MHz]

Key/Encaps/Decap
[us] LUT FF Slices

D
SP BR

AM
Security Level 1

LightSaber x4 0.9/1/1.3 310 2.9/3.3/4.2 65,890 28,230 10,404 0 1.5
LightSaber x2 1.1/1.4/1.8 345 3.2/4.1/5.2 39,423 21,467 6,610 0 1.5
LightSaber x1 1.6/2.2/2.8 370 4.3/5.8/7.6 24,688 14,785 4,309 0 1.5
LightSaber-NTT 2.0/3/3.9 400 5.0/7.5/9.8 16,617 10,575 3,201 16 7.5
Unified Saber [98] 0.6/0.9/1.1 100 6/8.6/10.8 34,886 9,858 — 85 6.0
Unified Saber [87] 2.8/4/5 150 18.4/26.9/33.6 24,979 10,732 — 0 2.0

Security Level 3
Saber x4 1.3/1.5/1.9 310 4.3/4.8/6 48,895 27,715 7,726 0 1.5
Saber x2 1.8/2.2/2.8 345 5.2/6.5/8.1 32,099 21,037 5,294 0 1.5
Saber [98] 1.1/1.5/1.7 160 6.7/9.1/10.6 28,169 9,504 — 85 6.0
Saber x1 2.7/3.7/4.7 370 7.3/10.1/12.7 21,352 14,232 3,763 0 1.5
Saber-NTT 3.0/4.2/5.7 400 7.6/10.5/14.2 21,555 12,254 3,891 24 10.5
Unified Saber [98] 1.1/1.5/1.7 100 10.7/14.6/17 34,886 9,858 — 85 6.0
Saber [87] 5.5/6.6/8 250 21.8/26.5/32.1 25,079 10,750 — 0 2.0
Unified Saber [87] 5.5/6.6/8 150 36.4/44.1/53.6 24,979 10,732 — 0 2.0

Security Level 5
FireSaber x4 2/2.1/2.6 310 6.5/6.9/8.5 38,268 27,677 6,348 0 1.5
FireSaber x2 2.9/3.4/4.1 345 8.4/9.8/11.9 25,760 21,035 4,239 0 1.5
FireSaber-NTT 4.5/5.7/6.2 400 11.1/14.2/15.4 25,794 15,040 4,147 32 13.5
FireSaber x1 4.9/5.9/7.1 370 13.2/15.9/19.3 20,383 14,239 3,408 0 1.5
Unified Saber [98] 1.7/2.2/2.5 100 17.2/21.9/24.8 34,886 9,858 — 85 6.0
Unified Saber [87] 9/10.3/12.3 150 60.2/68.4/82 24,979 10,732 — 0 2.0

– [95], CRYSTALS-Kyber-Nanjing U. – [49], HQC-HQC Team – [83], SIKE-FAU – [26] ,
Saber-Tsinghua– [98], Saber-U. Birmingham– [87], StrNTRUPrime-TUHH,NXP,NTU,IIS
– [66, 76].

For security level 1, the number of implementations on Artix-7 FPGAs, illustrated in
Figs. 27, 29, and 31, is 10 for key generation and 11 for encapsulation and decapsulation.
These implementations represent eight Round 3 KEMs (all except NTRU Prime). Saber is
the fastest for all three major operations. From left to right, Saber-TW is represented by
four diamonds corresponding to the NTT, x1, x2, and x4 architectures. CRYSTALS-Kyber
is clearly the second for key generation and decapsulation. In the case of encapsulation,
Saber x1 is practically tied with NTRU-HRSS in terms of latency but smaller in terms of
area. Saber x2 and Saber x4 are faster but bigger in terms of the LUT count. Compared
to Saber x1, NTRU-HRSS and NTRU-HPS are about 3x slower for decapsulation and
over 30x slower for key generation. Classic McEliece is more than two orders of magnitude
slower than Saber for key generation, about an order of magnitude slower for decapsulation,
and only a few times slower for encapsulation. It requires a comparable number of LUTs.
FrodoKEM and SIKE are at least two orders of magnitude slower than Saber for all three
operations. However, they can be implemented using fewer LUTs. BIKE trails Saber by
more than one order of magnitude for encapsulation, and almost two orders of magnitude
for key generation and decapsulation.
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Figure 27: L1, KeyGen, Artix-7
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Figure 29: L1, Encaps, Artix-7
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Figure 31: L1, Decaps, Artix-7
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Figure 33: L3, KeyGen, Artix-7
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Figure 35: L3, Encaps, Artix-7
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Figure 37: L3, Decaps, Artix-7
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Figure 38: L3, Decaps, Zynq UltraScale+

Key generation in HQC is similar in terms of speed to NTRU and the third fastest
overall. However, its encapsulation and decapsulation are about two orders of magnitude
slower than for Saber and comparable in speed to the fastest reported implementation of
FrodoKEM. Overall, four finalists – Saber, Kyber, NTRU, and Classic McEliece – clearly
outperform four alternates – FrodoKEM, BIKE, HQC, and SIKE. Among the finalists,
Saber and Kyber perform overall much better than NTRU and Classic McEliece.

The results for the security level 5 are shown in Figs. 28, 30, and 32. The majority of
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Table 14: Artix-7 results for designs proposed and documented in this work
Key Generation

Level 1 Level 3 Level 5
Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber x1 9.5 1.00 Kyber 12.0 1.00 Kyber 16.2 1.00
Kyber 10.0 1.05 Saber x1 15.9 1.33 Saber x1 28.8 1.78
NTRU-HRSS 323.8 34.08 NTRU-HPS 516.6 43.05
NTRU-HPS 370.6 39.01

Encapsulation
Level 1 Level 3 Level 5

Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber x1 12.7 1.00 Kyber 17.0 1.00 Kyber 21.7 1.00
NTRU-HRSS 13.9 1.09 Saber x1 22.0 1.29 Saber x1 34.5 1.59
Kyber 14.7 1.16 NTRU-HPS 35.2 2.07
NTRU-HPS 28.4 2.24

Decapsulation
Level 1 Level 3 Level 5

Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber x1 16.4 1.00 Kyber 22.2 1.00 Kyber 26.4 1.00
Kyber 20.5 1.25 Saber x1 27.5 1.24 Saber x1 41.9 1.59
NTRU-HPS 47.0 2.87 NTRU-HPS 63.8 2.87
NTRU-HRSS 55.2 3.37

Round 3 candidates either do not have implementations, or these implementations have
exceeded the resources of Artix-7 FPGAs. From left to right, Saber is represented by four
diamonds corresponding to the x1, NTT, x2, and x4 architecture, respectively. Kyber and
Saber are in a virtual tie, with the Kyber speed matching that of Saber x2 and its area
more than two times smaller.

For the security level 3, we present results for both Artix-7 and Zynq UltraScale+
in Figs 33–38. In the case of Artix-7, results are reported for all four finalists and four
alternates (Streamlined NTRU Prime, FrodoKEM, BIKE, and SIKE). In the case of Zynq
UltraScale+, the graphs cover three lattice-based finalists and one alternate candidate,
NTRU Prime. The results for Saber-NTT are very similar to the results for Saber x1; their
points in the graphs almost overlap. For all operations, at security level 3, the speed of
Kyber is comparable to the speed of Saber x2, but its area in LUTs is about 3 times smaller.
NTRU (represented at this level only by NTRU-HPS) is more than an order of magnitude
slower than both Saber and Kyber for key generation and 2-3 times slower for encapsulation
and decapsulation. Classic McEliece slightly exceeds the speed of NTRU for encapsulation
but lags behind by almost an order of magnitude for decapsulation and two orders of
magnitude for key generation. The high-speed implementation of Streamlined NTRU
Prime reported in [76] has its speed and area in LUTs comparable to NTRU. FrodoKEM,
SIKE, and BIKE are orders of magnitude slower than finalists for encapsulation and
decapsulation and better only than Classic McEliece for key generation.

The results obtained using Zynq UltraScale+ (or UltraScale+) indicate that Streamlined
NTRU Prime has a similar speed to NTRU and slightly better LUT usage.

In Tables 14 and 15, the exact numerical results are presented for the execution times of
implementations proposed and described in this paper. In these tables, Saber is represented
by Saber x1, as this design has the area closest to the area of CRYSTALS-Kyber. These
results clearly indicate that NTRU is between 30 and 50 times slower than Saber for the
key generation at both level 1 and level 3. NTRU is also about 2-4 times slower than Saber
for decapsulation. Only for encapsulation, the performance of NTRU becomes comparable.
Kyber is between 5% and 32% slower than Saber x1 at level 1. It outperforms Saber x1
(but not Saber x2 or Saber x4) in all rankings at levels 3 by a factor ranging between 17%
and 33%. At level 5, the advantage of Kyber increases to the range 50%-80%. The reasons
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Table 15: Zynq UltraScale+ results for designs proposed and documented in this work
Key Generation

Level 1 Level 3 Level 5
Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber x1 4.3 1.00 Kyber 5.9 1.00 Kyber 7.9 1.00
Kyber 4.9 1.14 Saber x1 7.3 1.24 Saber x1 13.2 1.67
NTRU-HRSS 172.7 40.16 NTRU-HPS 268.6 44.81
NTRU-HPS 192.7 48.18

Encapsulation
Level 1 Level 3 Level 5

Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber x1 5.8 1.00 Kyber 8.3 1.00 Kyber 10.6 1.00
Kyber 7.2 1.24 Saber x1 10.1 1.22 Saber x1 15.9 1.50
NTRU-HRSS 7.4 1.28 NTRU-HPS 18.3 1.81
NTRU-HPS 14.7 2.53

Decapsulation
Level 1 Level 3 Level 5

Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber x1 7.6 1.00 Kyber 10.9 1.00 Kyber 12.9 1.00
Kyber 10.0 1.32 Saber x1 12.7 1.17 Saber x1 19.3 1.50
NTRU-HPS 25.1 3.30 NTRU-HPS 34.0 3.12
NTRU-HRSS 29.4 3.87

for the change in the ranking of Kyber and Saber depending on the security level are as
follows. In Kyber, the NTT-based multiplier is quite small and sequential. Therefore, it is
justifiable to use 2, 3, and 4 multipliers at the security levels 1, 3, and 5, respectively (as
described in Section 5.2). In Saber, the schoolbook multiplier is big and parallel. Therefore,
increasing the number of multipliers is not justifiable, as a small increase in speed causes a
large increase in area. On the other hand, in Kyber, the NTT multiplier is relatively small.
Consequently, we scaled the number of multipliers proportionally to the parameter k of
Kyber, equal to 2, 3, and 4 for security levels 1, 3, and 5, respectively. As a result, the
relative performance of Kyber, as compared to Saber x1, has increased at higher security
levels, while its area stayed significantly below the area for Saber.

7 Conclusions
In this paper, we have proposed, documented, and benchmarked a) the first complete
hardware implementations of two variants of NTRU (NTRU-HRSS and NTRU-HPS), as
defined in the submissions to Rounds 2 and 3 of the NIST PQC standardization process;
b) four high-speed implementations of Saber, with two of them outperforming competing
designs in terms of speed and two in terms of resource utilization, and c) the fastest
implementation of CRYSTALS-Kyber. All designs are fully reproducible, and their source
code will be released as open-source after the acceptance of this paper to a journal or a
conference with proceedings.

We also have reviewed the related literature and collected information about hard-
ware implementations of all Round 3 candidates in the category of Key Encapsulation
Mechanisms (KEMs). Our analysis reveals that four NIST PQC finalists significantly
outperform almost all alternate candidates when implemented in hardware with speed as
a primary optimization target. Among the four finalists, Saber and CRYSTALS-Kyber
significantly outperform NTRU and Classic McEliece for at least a subset of all operations.
The differences between the two top candidates are relatively minor and may change as a
result of future optimizations.
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8 Future Work
Work presented in this paper could be extended with the attempts at implementing

CRYSTALS-Kyber and Saber using an NTT-based multiplier with a higher radix. Addition-
ally, using well-known techniques such as folding, resource sharing, and Domain-Oriented
Masking (DOM), high-speed implementations resistant against timing attacks could be
converted to lightweight implementations resistant against side-channel analysis. After
the end of Round 3, during the expected Round 4, our focus will shift toward evaluating
candidates qualified for that round. These candidates will likely include a significant subset
of Round 3 alternates.
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A Pseudocode of NTRU

Algorithm 4 NTRU PKE Keypair
Input: fg_bits
Output: pk = packed_h and sk = (packed_f,
packed_fp, packed_hq)
1: (f, g)← Sample(fg_bits) mod (3,Φn)
2: fp ← f−1 mod (3,Φn)
3: G← 3 · g
4: v0 ← (G · f) mod (q,Φn)
5: v1 ← v−1

0 mod (q,Φn)
6: h← (v1 ·G ·G) mod (q,Φ1Φn)
7: hq ← (v1 · f · f) mod (q,Φ1Φn)
8: sk ← (pack_εp(f), pack_εp(fp),

pack_εq(hq))
9: pk ← pack_εq(h)

Algorithm 5 NTRU KEM Keypair
Input: Random seed seeds
Output: pk = packed_h and sk =
(packed_f, packed_fp, packed_hq, s)
1: (fg_bits, prf_key)← SHAKE128(seeds)
2: (packed_h, packed_f, packed_fp,
3: packed_hq)← PKE.KeyPair(fg_bits)
4: sk ← (packed_f ||packed_fp||packed_hq||
bits_to_bytes(prf_key))

5: pk ← packed_h

Algorithm 6 NTRU PKE Encryption
Input: pk = packed_h, r and m
Output: packed_c
1: m′ ← Lift(m)
2: h← unpack_εq(packed_h)
3: c← (r · h+m′) mod (q,Φ1Φn)
4: packed_c← pack_εq(c)

Algorithm 7 NTRU DPKE Decryption
Input: sk = (packed_f, packed_fp,
packed_hq) and packed_c
Output: r,m, fail
1: if c 6≡ 0 (mod (q,Φ1)) return (0, 0, 1)
2: c← unpacked_εq(packed_c)
3: f ← unpacked_εp(packed_f)
4: a′ ← (c · f) mod (q,Φ1Φn)
5: a← Rq_to_S3(a′)
6: fp ← unpacked_εp(packed_fp)
7: m← (a · fp) mod (3,Φn)
8: hq ← unpacked_εq(packed_hq)
9: m′ ← Lift(m)
10: r ← ((c−m′) · hq) mod (q,Φn)
11: if (r,m) valid return (r,m, 0) else return

(0, 0, 1)

Algorithm 8 NTRU KEM Encapsulation
Input: pk = packed_h and seed
Output: packed_c and shared key K
1: seedrm ← SHAKE128(seed)
2: (r,m)← Sample(seedrm) mod (3,Φn)
3: packed_c← PKE.Encrypt (pk, (r,m))
4: packed_rm← (pack_εp(r)||pack_εp(m))
5: K ← SHA3-256(packed_rm)

Algorithm 9 NTRU KEM Decapsulation
Input: sk = (packed_f, packed_fp,
packed_hq, s) and packed_c
Output: Shared key K
1: (r,m, fail) ← PKE.Decrypt((packed_f,
packed_fp, packed_hq), packed_c)

2: packed_rm← (pack_εp(r)||pack_εp(m))
3: k1 ← SHA3-256(packed_rm)
4: k2 ← SHA3-256(s||packed_c)
5: if fail == 0 then
6: K ← k1
7: else
8: K ← k2
9: end if
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B Pseudocode of CRYSTALS-Kyber
Here is the meaning of notation used in the given below algorithms:

• CBDη: Sample from centered binomial distribution η ∈ {2, 3}.

• Rej: Sample from uniform distribution using rejection sampling.

• Decode: Deserialize a byte array into a polynomial or a polynomial-vector.

• Encode: Serialize polynomial or polynomial vector with coefficients in [0, q − 1] into
an array of bytes.

• Compress(x, d): Compress a polynomial or polynomial-vector by mapping coefficients
x ∈ Zq to integers in 0, . . . , 2d − 1, where d <

⌈
log2(q)

⌉
• Decompress(x, d): Decompress a polynomial or polynomial-vector x such that coeffi-

cients of x′ = Decompress(Compress(x, d), d) are close to corresponding coefficients
in x.

Algorithm 10 Kyber PKE.KeyGen
Input: Uniform random seed
Outputs: PKE keys (pk, sk)
1: (ρ||σ)← SHA3-512(seed)
2: for i from 0 to k − 1 do
3: for j from 0 to k − 1 do
4: Â[i][j]← Rej(SHAKE128(ρ||j||i))
5: for i from 0 to k − 1 do
6: s[i]← CBDη1 (SHAKE256(σ||i))
7: for i from 0 to k − 1 do
8: e[i]← CBDη1 (SHAKE256(σ||(i+ k)))
9: ŝ← NTT(s)
10: ê← NTT(e)
11: t̂← (Â ◦ ŝ + ê)
12: pk ← Encode(̂t) || ρ
13: sk ← Encode(̂s)

Algorithm 11 Kyber PKE.Enc
Inputs: Public key pk, message m, random
coins
Output: Ciphertext ct
1: (pk′||ρ)← pk
2: t̂← Decode(pk′)
3: for i from 0 to k − 1 do
4: for j from 0 to k − 1 do
5: ÂT [i][j]← Rej(SHAKE128(ρ||i||j))
6: for i from 0 to k − 1 do
7: r[i]← CBDη1 (SHAKE256(coins||i))
8: for i from 0 to k − 1 do
9: e1[i]← CBDη2 (SHAKE256(coins||i+ k))
10: e2 ← CBDη2 (SHAKE256(coins||2k))
11: r̂← NTT(r)
12: u← NTT−1(ÂT ◦ r̂) + e1
13: v ← NTT−1(̂tT ◦ r̂)+e2 +Decompress(m, 1)
14: c1 ← Compress(u, du)
15: c2 ← Compress(v, dv)
16: ct← (c1||c2)

Algorithm 12 Kyber PKE.Dec
Inputs: Secret key sk, Ciphertext ct
Output: Message m
1: (c1||c2)← ct
2: u← Decompress(c1, du)
3: v ← Decompress(c2, dv)
4: ŝ← Decode(sk)
5: û← NTT(u)
6: µ← v −NTT−1(̂s ◦ û)
7: m← Compress(µ, 1)

Algorithm 13 Kyber KEM KeyGen
Inputs: random seed, random z
Outputs: Public key pk, Secret key skKEM

1: (pk, sk′)← PKE.KeyGen(seed)
2: hpk ← SHA3-256(pk)
3: skKEM ← (sk′||pk||hpk||z)
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Algorithm 14 Kyber KEM Encapsulation
Input: Public key pk, m′
Output: Ciphertext ct, shared secret ss
1: m← SHA3-256(m′)
2: hpk ← SHA3-256(pk)
3: (s̄s||coins)← SHA3-512(m||hpk)
4: ct← PKE.Enc(pk,m, coins)
5: hct ← SHA3-256(ct)
6: ss← SHAKE256(s̄s||hct)

Algorithm 15 Kyber KEM Decapsulation
Inputs: Ciphertext ct, Secret key skKEM
Output: Shared secret ss ∈ {0, 1}256

1: (sk′||pk||hpk||z)← skKEM
2: m′ ← PKE.Dec(sk′, ct)
3: hct ← SHA3-256(ct)
4: (s̄s||coins)← SHA3-512(m′||hpk)
5: ct′ ← PKE.Enc(pk,m′, coins)
6: hct′ ← SHA3-256(ct′)
7: if hct = hct′ :
8: s0 ← s̄s
9: else:
10: s0 ← z
11: ss← SHAKE256(s0||hct)
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C Pseudocode of Saber

Algorithm 16 Saber PKE Keypair
Input: seedA and seeds
Output: pk = (seedA, packed_b), sk =
(packed_s)
1: seedA ← SHAKE128(seedA)
2: A ← Unpack_εq(SHAKE128(seedA)) ∈
Rl×lq

3: s← CBDµ(SHAKE128(seeds)) ∈ Rl×1
q

4: sk ← Pack_w(s)
5: b← Roundqp(AT · s) ∈ Rl×1

p

6: pk ← (seedA,Pack_εp(b))

Algorithm 17 Saber KEM Keypair
Input: seedA, seeds and z.
Output: pk = (seedA, packed_b), sk = (z,
pkh, pk, packed_s)
1: (seedA, packed_b, packed_s) ←

Saber.PKE.Keypair(seedA, seeds)
2: pk ← (seedA, packed_b)
3: pkh← SHA3-256(pk)
4: sk ← (z, pkh, pk, packed_s)

Algorithm 18 Saber PKE Encryption
Input: pk = (seedA, packed_b), m and seeds′
Output: c = (packed_cm, packed_b′))
1: s′ ← CBDµ(SHAKE128(seeds′)) ∈ Rl×1

q

2: A ← Unpack_εq(SHAKE-128(seedA)) ∈
Rl×lq

3: b′ ← Roundqp((A · s′ + h) mod q) ∈ Rl×1
p

4: packed_b′ ← Pack_εp(b′)
5: b← Unpack_εp(packed_b)
6: v′ ← bT · (s′ mod p) ∈ Rp
7: cm ← RoundpT (v′ + h1 − 2εp−1 · m mod
p) ∈ RT

8: packed_cm ← Pack_εT (cm)
9: c← (packed_cm, packed_b′)

Algorithm 19 Saber PKE Decryption
Input: sk = packed_s and c = (packed_cm,
packed_b′))
Output: m
1: s← Unpack_w(packed_s) ∈ Rl×1

q

2: b′ ← Unpack_εp(packed_b′) ∈ Rl×1
p

3: v ← b′T · s mod p ∈ Rp
4: m′ ← Roundp2(v + h2 − 2εp−εT · cm mod
p) ∈ R2

Algorithm 20 Saber KEM Encapsulation
Input: pk = (seedA, BS_b),m
Output: c = (packed_cm, packed_b′)) and a
shared key K
1: (K̂, r) ← SHA3-512(SHA3-256(pk)||

SHA3-256(m))
2: c← Saber.PKE.Enc(pk,m, r)
3: h_c← SHA3-256(c)
4: K ← SHA3-256(K̂||h_c)

Algorithm 21 Saber KEM Decapsulation
Input: sk = (z, pkh, pk = (seedA, packed_b),
packed_s) and c = (packed_cm, packed_b′))
Output: Shared key K
1: m′ ← Saber.PKE.Dec(packed_s, c)
2: (K̂′, r′)← SHA3-512(pkh||m′)
3: c′ ← Saber.PKE.Enc(pk,m′, r′)
4: h_c← SHA3-256(c)
5: if c = c′ then
6: K ← SHA3-256(K̂′||h_c)
7: else
8: K ← SHA3-256(z||h_c)
9: end if
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